Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2015 Broadcom
4 */
5
6/**
7 * DOC: VC4 CRTC module
8 *
9 * In VC4, the Pixel Valve is what most closely corresponds to the
10 * DRM's concept of a CRTC. The PV generates video timings from the
11 * encoder's clock plus its configuration. It pulls scaled pixels from
12 * the HVS at that timing, and feeds it to the encoder.
13 *
14 * However, the DRM CRTC also collects the configuration of all the
15 * DRM planes attached to it. As a result, the CRTC is also
16 * responsible for writing the display list for the HVS channel that
17 * the CRTC will use.
18 *
19 * The 2835 has 3 different pixel valves. pv0 in the audio power
20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
21 * image domain can feed either HDMI or the SDTV controller. The
22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23 * SDTV, etc.) according to which output type is chosen in the mux.
24 *
25 * For power management, the pixel valve's registers are all clocked
26 * by the AXI clock, while the timings and FIFOs make use of the
27 * output-specific clock. Since the encoders also directly consume
28 * the CPRMAN clocks, and know what timings they need, they are the
29 * ones that set the clock.
30 */
31
32#include <linux/clk.h>
33#include <linux/component.h>
34#include <linux/of_device.h>
35#include <linux/pm_runtime.h>
36
37#include <drm/drm_atomic.h>
38#include <drm/drm_atomic_helper.h>
39#include <drm/drm_atomic_uapi.h>
40#include <drm/drm_fb_dma_helper.h>
41#include <drm/drm_framebuffer.h>
42#include <drm/drm_drv.h>
43#include <drm/drm_print.h>
44#include <drm/drm_probe_helper.h>
45#include <drm/drm_vblank.h>
46
47#include "vc4_drv.h"
48#include "vc4_hdmi.h"
49#include "vc4_regs.h"
50
51#define HVS_FIFO_LATENCY_PIX 6
52
53#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
54#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
55
56static const struct debugfs_reg32 crtc_regs[] = {
57 VC4_REG32(PV_CONTROL),
58 VC4_REG32(PV_V_CONTROL),
59 VC4_REG32(PV_VSYNCD_EVEN),
60 VC4_REG32(PV_HORZA),
61 VC4_REG32(PV_HORZB),
62 VC4_REG32(PV_VERTA),
63 VC4_REG32(PV_VERTB),
64 VC4_REG32(PV_VERTA_EVEN),
65 VC4_REG32(PV_VERTB_EVEN),
66 VC4_REG32(PV_INTEN),
67 VC4_REG32(PV_INTSTAT),
68 VC4_REG32(PV_STAT),
69 VC4_REG32(PV_HACT_ACT),
70};
71
72static unsigned int
73vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
74{
75 struct vc4_hvs *hvs = vc4->hvs;
76 u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
77 /* Top/base are supposed to be 4-pixel aligned, but the
78 * Raspberry Pi firmware fills the low bits (which are
79 * presumably ignored).
80 */
81 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
82 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
83
84 return top - base + 4;
85}
86
87static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
88 bool in_vblank_irq,
89 int *vpos, int *hpos,
90 ktime_t *stime, ktime_t *etime,
91 const struct drm_display_mode *mode)
92{
93 struct drm_device *dev = crtc->dev;
94 struct vc4_dev *vc4 = to_vc4_dev(dev);
95 struct vc4_hvs *hvs = vc4->hvs;
96 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
97 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
98 unsigned int cob_size;
99 u32 val;
100 int fifo_lines;
101 int vblank_lines;
102 bool ret = false;
103
104 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
105
106 /* Get optional system timestamp before query. */
107 if (stime)
108 *stime = ktime_get();
109
110 /*
111 * Read vertical scanline which is currently composed for our
112 * pixelvalve by the HVS, and also the scaler status.
113 */
114 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
115
116 /* Get optional system timestamp after query. */
117 if (etime)
118 *etime = ktime_get();
119
120 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
121
122 /* Vertical position of hvs composed scanline. */
123 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
124 *hpos = 0;
125
126 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
127 *vpos /= 2;
128
129 /* Use hpos to correct for field offset in interlaced mode. */
130 if (vc4_hvs_get_fifo_frame_count(hvs, vc4_crtc_state->assigned_channel) % 2)
131 *hpos += mode->crtc_htotal / 2;
132 }
133
134 cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
135 /* This is the offset we need for translating hvs -> pv scanout pos. */
136 fifo_lines = cob_size / mode->crtc_hdisplay;
137
138 if (fifo_lines > 0)
139 ret = true;
140
141 /* HVS more than fifo_lines into frame for compositing? */
142 if (*vpos > fifo_lines) {
143 /*
144 * We are in active scanout and can get some meaningful results
145 * from HVS. The actual PV scanout can not trail behind more
146 * than fifo_lines as that is the fifo's capacity. Assume that
147 * in active scanout the HVS and PV work in lockstep wrt. HVS
148 * refilling the fifo and PV consuming from the fifo, ie.
149 * whenever the PV consumes and frees up a scanline in the
150 * fifo, the HVS will immediately refill it, therefore
151 * incrementing vpos. Therefore we choose HVS read position -
152 * fifo size in scanlines as a estimate of the real scanout
153 * position of the PV.
154 */
155 *vpos -= fifo_lines + 1;
156
157 return ret;
158 }
159
160 /*
161 * Less: This happens when we are in vblank and the HVS, after getting
162 * the VSTART restart signal from the PV, just started refilling its
163 * fifo with new lines from the top-most lines of the new framebuffers.
164 * The PV does not scan out in vblank, so does not remove lines from
165 * the fifo, so the fifo will be full quickly and the HVS has to pause.
166 * We can't get meaningful readings wrt. scanline position of the PV
167 * and need to make things up in a approximative but consistent way.
168 */
169 vblank_lines = mode->vtotal - mode->vdisplay;
170
171 if (in_vblank_irq) {
172 /*
173 * Assume the irq handler got called close to first
174 * line of vblank, so PV has about a full vblank
175 * scanlines to go, and as a base timestamp use the
176 * one taken at entry into vblank irq handler, so it
177 * is not affected by random delays due to lock
178 * contention on event_lock or vblank_time lock in
179 * the core.
180 */
181 *vpos = -vblank_lines;
182
183 if (stime)
184 *stime = vc4_crtc->t_vblank;
185 if (etime)
186 *etime = vc4_crtc->t_vblank;
187
188 /*
189 * If the HVS fifo is not yet full then we know for certain
190 * we are at the very beginning of vblank, as the hvs just
191 * started refilling, and the stime and etime timestamps
192 * truly correspond to start of vblank.
193 *
194 * Unfortunately there's no way to report this to upper levels
195 * and make it more useful.
196 */
197 } else {
198 /*
199 * No clue where we are inside vblank. Return a vpos of zero,
200 * which will cause calling code to just return the etime
201 * timestamp uncorrected. At least this is no worse than the
202 * standard fallback.
203 */
204 *vpos = 0;
205 }
206
207 return ret;
208}
209
210static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
211{
212 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
213 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
214 struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
215 u32 fifo_len_bytes = pv_data->fifo_depth;
216
217 /*
218 * Pixels are pulled from the HVS if the number of bytes is
219 * lower than the FIFO full level.
220 *
221 * The latency of the pixel fetch mechanism is 6 pixels, so we
222 * need to convert those 6 pixels in bytes, depending on the
223 * format, and then subtract that from the length of the FIFO
224 * to make sure we never end up in a situation where the FIFO
225 * is full.
226 */
227 switch (format) {
228 case PV_CONTROL_FORMAT_DSIV_16:
229 case PV_CONTROL_FORMAT_DSIC_16:
230 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
231 case PV_CONTROL_FORMAT_DSIV_18:
232 return fifo_len_bytes - 14;
233 case PV_CONTROL_FORMAT_24:
234 case PV_CONTROL_FORMAT_DSIV_24:
235 default:
236 /*
237 * For some reason, the pixelvalve4 doesn't work with
238 * the usual formula and will only work with 32.
239 */
240 if (crtc_data->hvs_output == 5)
241 return 32;
242
243 /*
244 * It looks like in some situations, we will overflow
245 * the PixelValve FIFO (with the bit 10 of PV stat being
246 * set) and stall the HVS / PV, eventually resulting in
247 * a page flip timeout.
248 *
249 * Displaying the video overlay during a playback with
250 * Kodi on an RPi3 seems to be a great solution with a
251 * failure rate around 50%.
252 *
253 * Removing 1 from the FIFO full level however
254 * seems to completely remove that issue.
255 */
256 if (!vc4->is_vc5)
257 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
258
259 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
260 }
261}
262
263static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
264 u32 format)
265{
266 u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
267 u32 ret = 0;
268
269 ret |= VC4_SET_FIELD((level >> 6),
270 PV5_CONTROL_FIFO_LEVEL_HIGH);
271
272 return ret | VC4_SET_FIELD(level & 0x3f,
273 PV_CONTROL_FIFO_LEVEL);
274}
275
276/*
277 * Returns the encoder attached to the CRTC.
278 *
279 * VC4 can only scan out to one encoder at a time, while the DRM core
280 * allows drivers to push pixels to more than one encoder from the
281 * same CRTC.
282 */
283struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
284 struct drm_crtc_state *state)
285{
286 struct drm_encoder *encoder;
287
288 WARN_ON(hweight32(state->encoder_mask) > 1);
289
290 drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
291 return encoder;
292
293 return NULL;
294}
295
296static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
297{
298 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
299 struct drm_device *dev = crtc->dev;
300 int idx;
301
302 if (!drm_dev_enter(dev, &idx))
303 return;
304
305 /* The PV needs to be disabled before it can be flushed */
306 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
307 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
308
309 drm_dev_exit(idx);
310}
311
312static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
313 struct drm_atomic_state *state)
314{
315 struct drm_device *dev = crtc->dev;
316 struct vc4_dev *vc4 = to_vc4_dev(dev);
317 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
318 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
319 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
320 struct drm_crtc_state *crtc_state = crtc->state;
321 struct drm_display_mode *mode = &crtc_state->adjusted_mode;
322 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
323 bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 ||
324 vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1;
325 u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1;
326 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
327 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
328 bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
329 u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
330 u8 ppc = pv_data->pixels_per_clock;
331 bool debug_dump_regs = false;
332 int idx;
333
334 if (!drm_dev_enter(dev, &idx))
335 return;
336
337 if (debug_dump_regs) {
338 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
339 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
340 drm_crtc_index(crtc));
341 drm_print_regset32(&p, &vc4_crtc->regset);
342 }
343
344 vc4_crtc_pixelvalve_reset(crtc);
345
346 CRTC_WRITE(PV_HORZA,
347 VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
348 PV_HORZA_HBP) |
349 VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
350 PV_HORZA_HSYNC));
351
352 CRTC_WRITE(PV_HORZB,
353 VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
354 PV_HORZB_HFP) |
355 VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
356 PV_HORZB_HACTIVE));
357
358 CRTC_WRITE(PV_VERTA,
359 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end +
360 interlace,
361 PV_VERTA_VBP) |
362 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
363 PV_VERTA_VSYNC));
364 CRTC_WRITE(PV_VERTB,
365 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
366 PV_VERTB_VFP) |
367 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
368
369 if (interlace) {
370 CRTC_WRITE(PV_VERTA_EVEN,
371 VC4_SET_FIELD(mode->crtc_vtotal -
372 mode->crtc_vsync_end,
373 PV_VERTA_VBP) |
374 VC4_SET_FIELD(mode->crtc_vsync_end -
375 mode->crtc_vsync_start,
376 PV_VERTA_VSYNC));
377 CRTC_WRITE(PV_VERTB_EVEN,
378 VC4_SET_FIELD(mode->crtc_vsync_start -
379 mode->crtc_vdisplay,
380 PV_VERTB_VFP) |
381 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
382
383 /* We set up first field even mode for HDMI. VEC's
384 * NTSC mode would want first field odd instead, once
385 * we support it (to do so, set ODD_FIRST and put the
386 * delay in VSYNCD_EVEN instead).
387 */
388 CRTC_WRITE(PV_V_CONTROL,
389 PV_VCONTROL_CONTINUOUS |
390 (is_dsi ? PV_VCONTROL_DSI : 0) |
391 PV_VCONTROL_INTERLACE |
392 VC4_SET_FIELD(mode->htotal * pixel_rep / (2 * ppc),
393 PV_VCONTROL_ODD_DELAY));
394 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
395 } else {
396 CRTC_WRITE(PV_V_CONTROL,
397 PV_VCONTROL_CONTINUOUS |
398 (is_dsi ? PV_VCONTROL_DSI : 0));
399 }
400
401 if (is_dsi)
402 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
403
404 if (vc4->is_vc5)
405 CRTC_WRITE(PV_MUX_CFG,
406 VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
407 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
408
409 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
410 vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
411 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
412 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
413 PV_CONTROL_CLR_AT_START |
414 PV_CONTROL_TRIGGER_UNDERFLOW |
415 PV_CONTROL_WAIT_HSTART |
416 VC4_SET_FIELD(vc4_encoder->clock_select,
417 PV_CONTROL_CLK_SELECT));
418
419 if (debug_dump_regs) {
420 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
421 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
422 drm_crtc_index(crtc));
423 drm_print_regset32(&p, &vc4_crtc->regset);
424 }
425
426 drm_dev_exit(idx);
427}
428
429static void require_hvs_enabled(struct drm_device *dev)
430{
431 struct vc4_dev *vc4 = to_vc4_dev(dev);
432 struct vc4_hvs *hvs = vc4->hvs;
433
434 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
435 SCALER_DISPCTRL_ENABLE);
436}
437
438static int vc4_crtc_disable(struct drm_crtc *crtc,
439 struct drm_encoder *encoder,
440 struct drm_atomic_state *state,
441 unsigned int channel)
442{
443 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
444 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
445 struct drm_device *dev = crtc->dev;
446 struct vc4_dev *vc4 = to_vc4_dev(dev);
447 int idx, ret;
448
449 if (!drm_dev_enter(dev, &idx))
450 return -ENODEV;
451
452 CRTC_WRITE(PV_V_CONTROL,
453 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
454 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
455 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
456
457 /*
458 * This delay is needed to avoid to get a pixel stuck in an
459 * unflushable FIFO between the pixelvalve and the HDMI
460 * controllers on the BCM2711.
461 *
462 * Timing is fairly sensitive here, so mdelay is the safest
463 * approach.
464 *
465 * If it was to be reworked, the stuck pixel happens on a
466 * BCM2711 when changing mode with a good probability, so a
467 * script that changes mode on a regular basis should trigger
468 * the bug after less than 10 attempts. It manifests itself with
469 * every pixels being shifted by one to the right, and thus the
470 * last pixel of a line actually being displayed as the first
471 * pixel on the next line.
472 */
473 mdelay(20);
474
475 if (vc4_encoder && vc4_encoder->post_crtc_disable)
476 vc4_encoder->post_crtc_disable(encoder, state);
477
478 vc4_crtc_pixelvalve_reset(crtc);
479 vc4_hvs_stop_channel(vc4->hvs, channel);
480
481 if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
482 vc4_encoder->post_crtc_powerdown(encoder, state);
483
484 drm_dev_exit(idx);
485
486 return 0;
487}
488
489static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc,
490 enum vc4_encoder_type type)
491{
492 struct drm_encoder *encoder;
493
494 drm_for_each_encoder(encoder, crtc->dev) {
495 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
496
497 if (vc4_encoder->type == type)
498 return encoder;
499 }
500
501 return NULL;
502}
503
504int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
505{
506 struct drm_device *drm = crtc->dev;
507 struct vc4_dev *vc4 = to_vc4_dev(drm);
508 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
509 enum vc4_encoder_type encoder_type;
510 const struct vc4_pv_data *pv_data;
511 struct drm_encoder *encoder;
512 struct vc4_hdmi *vc4_hdmi;
513 unsigned encoder_sel;
514 int channel;
515 int ret;
516
517 if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
518 "brcm,bcm2711-pixelvalve2") ||
519 of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
520 "brcm,bcm2711-pixelvalve4")))
521 return 0;
522
523 if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
524 return 0;
525
526 if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
527 return 0;
528
529 channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output);
530 if (channel < 0)
531 return 0;
532
533 encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
534 if (WARN_ON(encoder_sel != 0))
535 return 0;
536
537 pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
538 encoder_type = pv_data->encoder_types[encoder_sel];
539 encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type);
540 if (WARN_ON(!encoder))
541 return 0;
542
543 vc4_hdmi = encoder_to_vc4_hdmi(encoder);
544 ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
545 if (ret)
546 return ret;
547
548 ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
549 if (ret)
550 return ret;
551
552 /*
553 * post_crtc_powerdown will have called pm_runtime_put, so we
554 * don't need it here otherwise we'll get the reference counting
555 * wrong.
556 */
557
558 return 0;
559}
560
561void vc4_crtc_send_vblank(struct drm_crtc *crtc)
562{
563 struct drm_device *dev = crtc->dev;
564 unsigned long flags;
565
566 if (!crtc->state || !crtc->state->event)
567 return;
568
569 spin_lock_irqsave(&dev->event_lock, flags);
570 drm_crtc_send_vblank_event(crtc, crtc->state->event);
571 crtc->state->event = NULL;
572 spin_unlock_irqrestore(&dev->event_lock, flags);
573}
574
575static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
576 struct drm_atomic_state *state)
577{
578 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
579 crtc);
580 struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
581 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
582 struct drm_device *dev = crtc->dev;
583
584 drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
585 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
586
587 require_hvs_enabled(dev);
588
589 /* Disable vblank irq handling before crtc is disabled. */
590 drm_crtc_vblank_off(crtc);
591
592 vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
593
594 /*
595 * Make sure we issue a vblank event after disabling the CRTC if
596 * someone was waiting it.
597 */
598 vc4_crtc_send_vblank(crtc);
599}
600
601static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
602 struct drm_atomic_state *state)
603{
604 struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
605 crtc);
606 struct drm_device *dev = crtc->dev;
607 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
608 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
609 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
610 int idx;
611
612 drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
613 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
614
615 if (!drm_dev_enter(dev, &idx))
616 return;
617
618 require_hvs_enabled(dev);
619
620 /* Enable vblank irq handling before crtc is started otherwise
621 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
622 */
623 drm_crtc_vblank_on(crtc);
624
625 vc4_hvs_atomic_enable(crtc, state);
626
627 if (vc4_encoder->pre_crtc_configure)
628 vc4_encoder->pre_crtc_configure(encoder, state);
629
630 vc4_crtc_config_pv(crtc, encoder, state);
631
632 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
633
634 if (vc4_encoder->pre_crtc_enable)
635 vc4_encoder->pre_crtc_enable(encoder, state);
636
637 /* When feeding the transposer block the pixelvalve is unneeded and
638 * should not be enabled.
639 */
640 CRTC_WRITE(PV_V_CONTROL,
641 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
642
643 if (vc4_encoder->post_crtc_enable)
644 vc4_encoder->post_crtc_enable(encoder, state);
645
646 drm_dev_exit(idx);
647}
648
649static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
650 const struct drm_display_mode *mode)
651{
652 /* Do not allow doublescan modes from user space */
653 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
654 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
655 crtc->base.id);
656 return MODE_NO_DBLESCAN;
657 }
658
659 return MODE_OK;
660}
661
662void vc4_crtc_get_margins(struct drm_crtc_state *state,
663 unsigned int *left, unsigned int *right,
664 unsigned int *top, unsigned int *bottom)
665{
666 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
667 struct drm_connector_state *conn_state;
668 struct drm_connector *conn;
669 int i;
670
671 *left = vc4_state->margins.left;
672 *right = vc4_state->margins.right;
673 *top = vc4_state->margins.top;
674 *bottom = vc4_state->margins.bottom;
675
676 /* We have to interate over all new connector states because
677 * vc4_crtc_get_margins() might be called before
678 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
679 * might be outdated.
680 */
681 for_each_new_connector_in_state(state->state, conn, conn_state, i) {
682 if (conn_state->crtc != state->crtc)
683 continue;
684
685 *left = conn_state->tv.margins.left;
686 *right = conn_state->tv.margins.right;
687 *top = conn_state->tv.margins.top;
688 *bottom = conn_state->tv.margins.bottom;
689 break;
690 }
691}
692
693static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
694 struct drm_atomic_state *state)
695{
696 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
697 crtc);
698 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
699 struct drm_connector *conn;
700 struct drm_connector_state *conn_state;
701 struct drm_encoder *encoder;
702 int ret, i;
703
704 ret = vc4_hvs_atomic_check(crtc, state);
705 if (ret)
706 return ret;
707
708 encoder = vc4_get_crtc_encoder(crtc, crtc_state);
709 if (encoder) {
710 const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
711 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
712
713 if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
714 vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 8000,
715 mode->clock * 9 / 10) * 1000;
716 } else {
717 vc4_state->hvs_load = mode->clock * 1000;
718 }
719 }
720
721 for_each_new_connector_in_state(state, conn, conn_state,
722 i) {
723 if (conn_state->crtc != crtc)
724 continue;
725
726 vc4_state->margins.left = conn_state->tv.margins.left;
727 vc4_state->margins.right = conn_state->tv.margins.right;
728 vc4_state->margins.top = conn_state->tv.margins.top;
729 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
730 break;
731 }
732
733 return 0;
734}
735
736static int vc4_enable_vblank(struct drm_crtc *crtc)
737{
738 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
739 struct drm_device *dev = crtc->dev;
740 int idx;
741
742 if (!drm_dev_enter(dev, &idx))
743 return -ENODEV;
744
745 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
746
747 drm_dev_exit(idx);
748
749 return 0;
750}
751
752static void vc4_disable_vblank(struct drm_crtc *crtc)
753{
754 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
755 struct drm_device *dev = crtc->dev;
756 int idx;
757
758 if (!drm_dev_enter(dev, &idx))
759 return;
760
761 CRTC_WRITE(PV_INTEN, 0);
762
763 drm_dev_exit(idx);
764}
765
766static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
767{
768 struct drm_crtc *crtc = &vc4_crtc->base;
769 struct drm_device *dev = crtc->dev;
770 struct vc4_dev *vc4 = to_vc4_dev(dev);
771 struct vc4_hvs *hvs = vc4->hvs;
772 u32 chan = vc4_crtc->current_hvs_channel;
773 unsigned long flags;
774
775 spin_lock_irqsave(&dev->event_lock, flags);
776 spin_lock(&vc4_crtc->irq_lock);
777 if (vc4_crtc->event &&
778 (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
779 vc4_crtc->feeds_txp)) {
780 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
781 vc4_crtc->event = NULL;
782 drm_crtc_vblank_put(crtc);
783
784 /* Wait for the page flip to unmask the underrun to ensure that
785 * the display list was updated by the hardware. Before that
786 * happens, the HVS will be using the previous display list with
787 * the CRTC and encoder already reconfigured, leading to
788 * underruns. This can be seen when reconfiguring the CRTC.
789 */
790 vc4_hvs_unmask_underrun(hvs, chan);
791 }
792 spin_unlock(&vc4_crtc->irq_lock);
793 spin_unlock_irqrestore(&dev->event_lock, flags);
794}
795
796void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
797{
798 crtc->t_vblank = ktime_get();
799 drm_crtc_handle_vblank(&crtc->base);
800 vc4_crtc_handle_page_flip(crtc);
801}
802
803static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
804{
805 struct vc4_crtc *vc4_crtc = data;
806 u32 stat = CRTC_READ(PV_INTSTAT);
807 irqreturn_t ret = IRQ_NONE;
808
809 if (stat & PV_INT_VFP_START) {
810 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
811 vc4_crtc_handle_vblank(vc4_crtc);
812 ret = IRQ_HANDLED;
813 }
814
815 return ret;
816}
817
818struct vc4_async_flip_state {
819 struct drm_crtc *crtc;
820 struct drm_framebuffer *fb;
821 struct drm_framebuffer *old_fb;
822 struct drm_pending_vblank_event *event;
823
824 union {
825 struct dma_fence_cb fence;
826 struct vc4_seqno_cb seqno;
827 } cb;
828};
829
830/* Called when the V3D execution for the BO being flipped to is done, so that
831 * we can actually update the plane's address to point to it.
832 */
833static void
834vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state)
835{
836 struct drm_crtc *crtc = flip_state->crtc;
837 struct drm_device *dev = crtc->dev;
838 struct drm_plane *plane = crtc->primary;
839
840 vc4_plane_async_set_fb(plane, flip_state->fb);
841 if (flip_state->event) {
842 unsigned long flags;
843
844 spin_lock_irqsave(&dev->event_lock, flags);
845 drm_crtc_send_vblank_event(crtc, flip_state->event);
846 spin_unlock_irqrestore(&dev->event_lock, flags);
847 }
848
849 drm_crtc_vblank_put(crtc);
850 drm_framebuffer_put(flip_state->fb);
851
852 if (flip_state->old_fb)
853 drm_framebuffer_put(flip_state->old_fb);
854
855 kfree(flip_state);
856}
857
858static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb)
859{
860 struct vc4_async_flip_state *flip_state =
861 container_of(cb, struct vc4_async_flip_state, cb.seqno);
862 struct vc4_bo *bo = NULL;
863
864 if (flip_state->old_fb) {
865 struct drm_gem_dma_object *dma_bo =
866 drm_fb_dma_get_gem_obj(flip_state->old_fb, 0);
867 bo = to_vc4_bo(&dma_bo->base);
868 }
869
870 vc4_async_page_flip_complete(flip_state);
871
872 /*
873 * Decrement the BO usecnt in order to keep the inc/dec
874 * calls balanced when the planes are updated through
875 * the async update path.
876 *
877 * FIXME: we should move to generic async-page-flip when
878 * it's available, so that we can get rid of this
879 * hand-made cleanup_fb() logic.
880 */
881 if (bo)
882 vc4_bo_dec_usecnt(bo);
883}
884
885static void vc4_async_page_flip_fence_complete(struct dma_fence *fence,
886 struct dma_fence_cb *cb)
887{
888 struct vc4_async_flip_state *flip_state =
889 container_of(cb, struct vc4_async_flip_state, cb.fence);
890
891 vc4_async_page_flip_complete(flip_state);
892 dma_fence_put(fence);
893}
894
895static int vc4_async_set_fence_cb(struct drm_device *dev,
896 struct vc4_async_flip_state *flip_state)
897{
898 struct drm_framebuffer *fb = flip_state->fb;
899 struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
900 struct vc4_dev *vc4 = to_vc4_dev(dev);
901 struct dma_fence *fence;
902 int ret;
903
904 if (!vc4->is_vc5) {
905 struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
906
907 return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno,
908 vc4_async_page_flip_seqno_complete);
909 }
910
911 ret = dma_resv_get_singleton(dma_bo->base.resv, DMA_RESV_USAGE_READ, &fence);
912 if (ret)
913 return ret;
914
915 /* If there's no fence, complete the page flip immediately */
916 if (!fence) {
917 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
918 return 0;
919 }
920
921 /* If the fence has already been completed, complete the page flip */
922 if (dma_fence_add_callback(fence, &flip_state->cb.fence,
923 vc4_async_page_flip_fence_complete))
924 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
925
926 return 0;
927}
928
929static int
930vc4_async_page_flip_common(struct drm_crtc *crtc,
931 struct drm_framebuffer *fb,
932 struct drm_pending_vblank_event *event,
933 uint32_t flags)
934{
935 struct drm_device *dev = crtc->dev;
936 struct drm_plane *plane = crtc->primary;
937 struct vc4_async_flip_state *flip_state;
938
939 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
940 if (!flip_state)
941 return -ENOMEM;
942
943 drm_framebuffer_get(fb);
944 flip_state->fb = fb;
945 flip_state->crtc = crtc;
946 flip_state->event = event;
947
948 /* Save the current FB before it's replaced by the new one in
949 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
950 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
951 * it consistent.
952 * FIXME: we should move to generic async-page-flip when it's
953 * available, so that we can get rid of this hand-made cleanup_fb()
954 * logic.
955 */
956 flip_state->old_fb = plane->state->fb;
957 if (flip_state->old_fb)
958 drm_framebuffer_get(flip_state->old_fb);
959
960 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
961
962 /* Immediately update the plane's legacy fb pointer, so that later
963 * modeset prep sees the state that will be present when the semaphore
964 * is released.
965 */
966 drm_atomic_set_fb_for_plane(plane->state, fb);
967
968 vc4_async_set_fence_cb(dev, flip_state);
969
970 /* Driver takes ownership of state on successful async commit. */
971 return 0;
972}
973
974/* Implements async (non-vblank-synced) page flips.
975 *
976 * The page flip ioctl needs to return immediately, so we grab the
977 * modeset semaphore on the pipe, and queue the address update for
978 * when V3D is done with the BO being flipped to.
979 */
980static int vc4_async_page_flip(struct drm_crtc *crtc,
981 struct drm_framebuffer *fb,
982 struct drm_pending_vblank_event *event,
983 uint32_t flags)
984{
985 struct drm_device *dev = crtc->dev;
986 struct vc4_dev *vc4 = to_vc4_dev(dev);
987 struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
988 struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
989 int ret;
990
991 if (WARN_ON_ONCE(vc4->is_vc5))
992 return -ENODEV;
993
994 /*
995 * Increment the BO usecnt here, so that we never end up with an
996 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
997 * plane is later updated through the non-async path.
998 *
999 * FIXME: we should move to generic async-page-flip when
1000 * it's available, so that we can get rid of this
1001 * hand-made prepare_fb() logic.
1002 */
1003 ret = vc4_bo_inc_usecnt(bo);
1004 if (ret)
1005 return ret;
1006
1007 ret = vc4_async_page_flip_common(crtc, fb, event, flags);
1008 if (ret) {
1009 vc4_bo_dec_usecnt(bo);
1010 return ret;
1011 }
1012
1013 return 0;
1014}
1015
1016static int vc5_async_page_flip(struct drm_crtc *crtc,
1017 struct drm_framebuffer *fb,
1018 struct drm_pending_vblank_event *event,
1019 uint32_t flags)
1020{
1021 return vc4_async_page_flip_common(crtc, fb, event, flags);
1022}
1023
1024int vc4_page_flip(struct drm_crtc *crtc,
1025 struct drm_framebuffer *fb,
1026 struct drm_pending_vblank_event *event,
1027 uint32_t flags,
1028 struct drm_modeset_acquire_ctx *ctx)
1029{
1030 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) {
1031 struct drm_device *dev = crtc->dev;
1032 struct vc4_dev *vc4 = to_vc4_dev(dev);
1033
1034 if (vc4->is_vc5)
1035 return vc5_async_page_flip(crtc, fb, event, flags);
1036 else
1037 return vc4_async_page_flip(crtc, fb, event, flags);
1038 } else {
1039 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
1040 }
1041}
1042
1043struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
1044{
1045 struct vc4_crtc_state *vc4_state, *old_vc4_state;
1046
1047 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
1048 if (!vc4_state)
1049 return NULL;
1050
1051 old_vc4_state = to_vc4_crtc_state(crtc->state);
1052 vc4_state->margins = old_vc4_state->margins;
1053 vc4_state->assigned_channel = old_vc4_state->assigned_channel;
1054
1055 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
1056 return &vc4_state->base;
1057}
1058
1059void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1060 struct drm_crtc_state *state)
1061{
1062 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1063 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1064
1065 if (drm_mm_node_allocated(&vc4_state->mm)) {
1066 unsigned long flags;
1067
1068 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1069 drm_mm_remove_node(&vc4_state->mm);
1070 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1071
1072 }
1073
1074 drm_atomic_helper_crtc_destroy_state(crtc, state);
1075}
1076
1077void vc4_crtc_reset(struct drm_crtc *crtc)
1078{
1079 struct vc4_crtc_state *vc4_crtc_state;
1080
1081 if (crtc->state)
1082 vc4_crtc_destroy_state(crtc, crtc->state);
1083
1084 vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
1085 if (!vc4_crtc_state) {
1086 crtc->state = NULL;
1087 return;
1088 }
1089
1090 vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
1091 __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
1092}
1093
1094int vc4_crtc_late_register(struct drm_crtc *crtc)
1095{
1096 struct drm_device *drm = crtc->dev;
1097 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1098 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
1099 int ret;
1100
1101 ret = vc4_debugfs_add_regset32(drm->primary, crtc_data->debugfs_name,
1102 &vc4_crtc->regset);
1103 if (ret)
1104 return ret;
1105
1106 return 0;
1107}
1108
1109static const struct drm_crtc_funcs vc4_crtc_funcs = {
1110 .set_config = drm_atomic_helper_set_config,
1111 .page_flip = vc4_page_flip,
1112 .set_property = NULL,
1113 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1114 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1115 .reset = vc4_crtc_reset,
1116 .atomic_duplicate_state = vc4_crtc_duplicate_state,
1117 .atomic_destroy_state = vc4_crtc_destroy_state,
1118 .enable_vblank = vc4_enable_vblank,
1119 .disable_vblank = vc4_disable_vblank,
1120 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1121 .late_register = vc4_crtc_late_register,
1122};
1123
1124static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1125 .mode_valid = vc4_crtc_mode_valid,
1126 .atomic_check = vc4_crtc_atomic_check,
1127 .atomic_begin = vc4_hvs_atomic_begin,
1128 .atomic_flush = vc4_hvs_atomic_flush,
1129 .atomic_enable = vc4_crtc_atomic_enable,
1130 .atomic_disable = vc4_crtc_atomic_disable,
1131 .get_scanout_position = vc4_crtc_get_scanout_position,
1132};
1133
1134static const struct vc4_pv_data bcm2835_pv0_data = {
1135 .base = {
1136 .debugfs_name = "crtc0_regs",
1137 .hvs_available_channels = BIT(0),
1138 .hvs_output = 0,
1139 },
1140 .fifo_depth = 64,
1141 .pixels_per_clock = 1,
1142 .encoder_types = {
1143 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1144 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1145 },
1146};
1147
1148static const struct vc4_pv_data bcm2835_pv1_data = {
1149 .base = {
1150 .debugfs_name = "crtc1_regs",
1151 .hvs_available_channels = BIT(2),
1152 .hvs_output = 2,
1153 },
1154 .fifo_depth = 64,
1155 .pixels_per_clock = 1,
1156 .encoder_types = {
1157 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1158 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1159 },
1160};
1161
1162static const struct vc4_pv_data bcm2835_pv2_data = {
1163 .base = {
1164 .debugfs_name = "crtc2_regs",
1165 .hvs_available_channels = BIT(1),
1166 .hvs_output = 1,
1167 },
1168 .fifo_depth = 64,
1169 .pixels_per_clock = 1,
1170 .encoder_types = {
1171 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1172 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1173 },
1174};
1175
1176static const struct vc4_pv_data bcm2711_pv0_data = {
1177 .base = {
1178 .debugfs_name = "crtc0_regs",
1179 .hvs_available_channels = BIT(0),
1180 .hvs_output = 0,
1181 },
1182 .fifo_depth = 64,
1183 .pixels_per_clock = 1,
1184 .encoder_types = {
1185 [0] = VC4_ENCODER_TYPE_DSI0,
1186 [1] = VC4_ENCODER_TYPE_DPI,
1187 },
1188};
1189
1190static const struct vc4_pv_data bcm2711_pv1_data = {
1191 .base = {
1192 .debugfs_name = "crtc1_regs",
1193 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1194 .hvs_output = 3,
1195 },
1196 .fifo_depth = 64,
1197 .pixels_per_clock = 1,
1198 .encoder_types = {
1199 [0] = VC4_ENCODER_TYPE_DSI1,
1200 [1] = VC4_ENCODER_TYPE_SMI,
1201 },
1202};
1203
1204static const struct vc4_pv_data bcm2711_pv2_data = {
1205 .base = {
1206 .debugfs_name = "crtc2_regs",
1207 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1208 .hvs_output = 4,
1209 },
1210 .fifo_depth = 256,
1211 .pixels_per_clock = 2,
1212 .encoder_types = {
1213 [0] = VC4_ENCODER_TYPE_HDMI0,
1214 },
1215};
1216
1217static const struct vc4_pv_data bcm2711_pv3_data = {
1218 .base = {
1219 .debugfs_name = "crtc3_regs",
1220 .hvs_available_channels = BIT(1),
1221 .hvs_output = 1,
1222 },
1223 .fifo_depth = 64,
1224 .pixels_per_clock = 1,
1225 .encoder_types = {
1226 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1227 },
1228};
1229
1230static const struct vc4_pv_data bcm2711_pv4_data = {
1231 .base = {
1232 .debugfs_name = "crtc4_regs",
1233 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1234 .hvs_output = 5,
1235 },
1236 .fifo_depth = 64,
1237 .pixels_per_clock = 2,
1238 .encoder_types = {
1239 [0] = VC4_ENCODER_TYPE_HDMI1,
1240 },
1241};
1242
1243static const struct of_device_id vc4_crtc_dt_match[] = {
1244 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1245 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1246 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1247 { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1248 { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1249 { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1250 { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1251 { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1252 {}
1253};
1254
1255static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1256 struct drm_crtc *crtc)
1257{
1258 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1259 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1260 const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1261 struct drm_encoder *encoder;
1262
1263 drm_for_each_encoder(encoder, drm) {
1264 struct vc4_encoder *vc4_encoder;
1265 int i;
1266
1267 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1268 continue;
1269
1270 vc4_encoder = to_vc4_encoder(encoder);
1271 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1272 if (vc4_encoder->type == encoder_types[i]) {
1273 vc4_encoder->clock_select = i;
1274 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1275 break;
1276 }
1277 }
1278 }
1279}
1280
1281int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1282 const struct drm_crtc_funcs *crtc_funcs,
1283 const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1284{
1285 struct vc4_dev *vc4 = to_vc4_dev(drm);
1286 struct drm_crtc *crtc = &vc4_crtc->base;
1287 struct drm_plane *primary_plane;
1288 unsigned int i;
1289 int ret;
1290
1291 /* For now, we create just the primary and the legacy cursor
1292 * planes. We should be able to stack more planes on easily,
1293 * but to do that we would need to compute the bandwidth
1294 * requirement of the plane configuration, and reject ones
1295 * that will take too much.
1296 */
1297 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY, 0);
1298 if (IS_ERR(primary_plane)) {
1299 dev_err(drm->dev, "failed to construct primary plane\n");
1300 return PTR_ERR(primary_plane);
1301 }
1302
1303 spin_lock_init(&vc4_crtc->irq_lock);
1304 ret = drmm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1305 crtc_funcs, NULL);
1306 if (ret)
1307 return ret;
1308
1309 drm_crtc_helper_add(crtc, crtc_helper_funcs);
1310
1311 if (!vc4->is_vc5) {
1312 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1313
1314 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1315
1316 /* We support CTM, but only for one CRTC at a time. It's therefore
1317 * implemented as private driver state in vc4_kms, not here.
1318 */
1319 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1320 }
1321
1322 for (i = 0; i < crtc->gamma_size; i++) {
1323 vc4_crtc->lut_r[i] = i;
1324 vc4_crtc->lut_g[i] = i;
1325 vc4_crtc->lut_b[i] = i;
1326 }
1327
1328 return 0;
1329}
1330
1331static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1332{
1333 struct platform_device *pdev = to_platform_device(dev);
1334 struct drm_device *drm = dev_get_drvdata(master);
1335 const struct vc4_pv_data *pv_data;
1336 struct vc4_crtc *vc4_crtc;
1337 struct drm_crtc *crtc;
1338 int ret;
1339
1340 vc4_crtc = drmm_kzalloc(drm, sizeof(*vc4_crtc), GFP_KERNEL);
1341 if (!vc4_crtc)
1342 return -ENOMEM;
1343 crtc = &vc4_crtc->base;
1344
1345 pv_data = of_device_get_match_data(dev);
1346 if (!pv_data)
1347 return -ENODEV;
1348 vc4_crtc->data = &pv_data->base;
1349 vc4_crtc->pdev = pdev;
1350
1351 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1352 if (IS_ERR(vc4_crtc->regs))
1353 return PTR_ERR(vc4_crtc->regs);
1354
1355 vc4_crtc->regset.base = vc4_crtc->regs;
1356 vc4_crtc->regset.regs = crtc_regs;
1357 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1358
1359 ret = vc4_crtc_init(drm, vc4_crtc,
1360 &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1361 if (ret)
1362 return ret;
1363 vc4_set_crtc_possible_masks(drm, crtc);
1364
1365 CRTC_WRITE(PV_INTEN, 0);
1366 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1367 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1368 vc4_crtc_irq_handler,
1369 IRQF_SHARED,
1370 "vc4 crtc", vc4_crtc);
1371 if (ret)
1372 return ret;
1373
1374 platform_set_drvdata(pdev, vc4_crtc);
1375
1376 return 0;
1377}
1378
1379static void vc4_crtc_unbind(struct device *dev, struct device *master,
1380 void *data)
1381{
1382 struct platform_device *pdev = to_platform_device(dev);
1383 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1384
1385 CRTC_WRITE(PV_INTEN, 0);
1386
1387 platform_set_drvdata(pdev, NULL);
1388}
1389
1390static const struct component_ops vc4_crtc_ops = {
1391 .bind = vc4_crtc_bind,
1392 .unbind = vc4_crtc_unbind,
1393};
1394
1395static int vc4_crtc_dev_probe(struct platform_device *pdev)
1396{
1397 return component_add(&pdev->dev, &vc4_crtc_ops);
1398}
1399
1400static int vc4_crtc_dev_remove(struct platform_device *pdev)
1401{
1402 component_del(&pdev->dev, &vc4_crtc_ops);
1403 return 0;
1404}
1405
1406struct platform_driver vc4_crtc_driver = {
1407 .probe = vc4_crtc_dev_probe,
1408 .remove = vc4_crtc_dev_remove,
1409 .driver = {
1410 .name = "vc4_crtc",
1411 .of_match_table = vc4_crtc_dt_match,
1412 },
1413};
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2015 Broadcom
4 */
5
6/**
7 * DOC: VC4 CRTC module
8 *
9 * In VC4, the Pixel Valve is what most closely corresponds to the
10 * DRM's concept of a CRTC. The PV generates video timings from the
11 * encoder's clock plus its configuration. It pulls scaled pixels from
12 * the HVS at that timing, and feeds it to the encoder.
13 *
14 * However, the DRM CRTC also collects the configuration of all the
15 * DRM planes attached to it. As a result, the CRTC is also
16 * responsible for writing the display list for the HVS channel that
17 * the CRTC will use.
18 *
19 * The 2835 has 3 different pixel valves. pv0 in the audio power
20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
21 * image domain can feed either HDMI or the SDTV controller. The
22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23 * SDTV, etc.) according to which output type is chosen in the mux.
24 *
25 * For power management, the pixel valve's registers are all clocked
26 * by the AXI clock, while the timings and FIFOs make use of the
27 * output-specific clock. Since the encoders also directly consume
28 * the CPRMAN clocks, and know what timings they need, they are the
29 * ones that set the clock.
30 */
31
32#include <linux/clk.h>
33#include <linux/component.h>
34#include <linux/of_device.h>
35
36#include <drm/drm_atomic.h>
37#include <drm/drm_atomic_helper.h>
38#include <drm/drm_atomic_uapi.h>
39#include <drm/drm_fb_cma_helper.h>
40#include <drm/drm_print.h>
41#include <drm/drm_probe_helper.h>
42#include <drm/drm_vblank.h>
43
44#include "vc4_drv.h"
45#include "vc4_regs.h"
46
47#define HVS_FIFO_LATENCY_PIX 6
48
49#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
50#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
51
52static const struct debugfs_reg32 crtc_regs[] = {
53 VC4_REG32(PV_CONTROL),
54 VC4_REG32(PV_V_CONTROL),
55 VC4_REG32(PV_VSYNCD_EVEN),
56 VC4_REG32(PV_HORZA),
57 VC4_REG32(PV_HORZB),
58 VC4_REG32(PV_VERTA),
59 VC4_REG32(PV_VERTB),
60 VC4_REG32(PV_VERTA_EVEN),
61 VC4_REG32(PV_VERTB_EVEN),
62 VC4_REG32(PV_INTEN),
63 VC4_REG32(PV_INTSTAT),
64 VC4_REG32(PV_STAT),
65 VC4_REG32(PV_HACT_ACT),
66};
67
68static unsigned int
69vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
70{
71 u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
72 /* Top/base are supposed to be 4-pixel aligned, but the
73 * Raspberry Pi firmware fills the low bits (which are
74 * presumably ignored).
75 */
76 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
77 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
78
79 return top - base + 4;
80}
81
82static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
83 bool in_vblank_irq,
84 int *vpos, int *hpos,
85 ktime_t *stime, ktime_t *etime,
86 const struct drm_display_mode *mode)
87{
88 struct drm_device *dev = crtc->dev;
89 struct vc4_dev *vc4 = to_vc4_dev(dev);
90 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
91 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
92 unsigned int cob_size;
93 u32 val;
94 int fifo_lines;
95 int vblank_lines;
96 bool ret = false;
97
98 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
99
100 /* Get optional system timestamp before query. */
101 if (stime)
102 *stime = ktime_get();
103
104 /*
105 * Read vertical scanline which is currently composed for our
106 * pixelvalve by the HVS, and also the scaler status.
107 */
108 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
109
110 /* Get optional system timestamp after query. */
111 if (etime)
112 *etime = ktime_get();
113
114 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
115
116 /* Vertical position of hvs composed scanline. */
117 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
118 *hpos = 0;
119
120 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
121 *vpos /= 2;
122
123 /* Use hpos to correct for field offset in interlaced mode. */
124 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
125 *hpos += mode->crtc_htotal / 2;
126 }
127
128 cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
129 /* This is the offset we need for translating hvs -> pv scanout pos. */
130 fifo_lines = cob_size / mode->crtc_hdisplay;
131
132 if (fifo_lines > 0)
133 ret = true;
134
135 /* HVS more than fifo_lines into frame for compositing? */
136 if (*vpos > fifo_lines) {
137 /*
138 * We are in active scanout and can get some meaningful results
139 * from HVS. The actual PV scanout can not trail behind more
140 * than fifo_lines as that is the fifo's capacity. Assume that
141 * in active scanout the HVS and PV work in lockstep wrt. HVS
142 * refilling the fifo and PV consuming from the fifo, ie.
143 * whenever the PV consumes and frees up a scanline in the
144 * fifo, the HVS will immediately refill it, therefore
145 * incrementing vpos. Therefore we choose HVS read position -
146 * fifo size in scanlines as a estimate of the real scanout
147 * position of the PV.
148 */
149 *vpos -= fifo_lines + 1;
150
151 return ret;
152 }
153
154 /*
155 * Less: This happens when we are in vblank and the HVS, after getting
156 * the VSTART restart signal from the PV, just started refilling its
157 * fifo with new lines from the top-most lines of the new framebuffers.
158 * The PV does not scan out in vblank, so does not remove lines from
159 * the fifo, so the fifo will be full quickly and the HVS has to pause.
160 * We can't get meaningful readings wrt. scanline position of the PV
161 * and need to make things up in a approximative but consistent way.
162 */
163 vblank_lines = mode->vtotal - mode->vdisplay;
164
165 if (in_vblank_irq) {
166 /*
167 * Assume the irq handler got called close to first
168 * line of vblank, so PV has about a full vblank
169 * scanlines to go, and as a base timestamp use the
170 * one taken at entry into vblank irq handler, so it
171 * is not affected by random delays due to lock
172 * contention on event_lock or vblank_time lock in
173 * the core.
174 */
175 *vpos = -vblank_lines;
176
177 if (stime)
178 *stime = vc4_crtc->t_vblank;
179 if (etime)
180 *etime = vc4_crtc->t_vblank;
181
182 /*
183 * If the HVS fifo is not yet full then we know for certain
184 * we are at the very beginning of vblank, as the hvs just
185 * started refilling, and the stime and etime timestamps
186 * truly correspond to start of vblank.
187 *
188 * Unfortunately there's no way to report this to upper levels
189 * and make it more useful.
190 */
191 } else {
192 /*
193 * No clue where we are inside vblank. Return a vpos of zero,
194 * which will cause calling code to just return the etime
195 * timestamp uncorrected. At least this is no worse than the
196 * standard fallback.
197 */
198 *vpos = 0;
199 }
200
201 return ret;
202}
203
204void vc4_crtc_destroy(struct drm_crtc *crtc)
205{
206 drm_crtc_cleanup(crtc);
207}
208
209static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
210{
211 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
212 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
213 struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
214 u32 fifo_len_bytes = pv_data->fifo_depth;
215
216 /*
217 * Pixels are pulled from the HVS if the number of bytes is
218 * lower than the FIFO full level.
219 *
220 * The latency of the pixel fetch mechanism is 6 pixels, so we
221 * need to convert those 6 pixels in bytes, depending on the
222 * format, and then subtract that from the length of the FIFO
223 * to make sure we never end up in a situation where the FIFO
224 * is full.
225 */
226 switch (format) {
227 case PV_CONTROL_FORMAT_DSIV_16:
228 case PV_CONTROL_FORMAT_DSIC_16:
229 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
230 case PV_CONTROL_FORMAT_DSIV_18:
231 return fifo_len_bytes - 14;
232 case PV_CONTROL_FORMAT_24:
233 case PV_CONTROL_FORMAT_DSIV_24:
234 default:
235 /*
236 * For some reason, the pixelvalve4 doesn't work with
237 * the usual formula and will only work with 32.
238 */
239 if (crtc_data->hvs_output == 5)
240 return 32;
241
242 /*
243 * It looks like in some situations, we will overflow
244 * the PixelValve FIFO (with the bit 10 of PV stat being
245 * set) and stall the HVS / PV, eventually resulting in
246 * a page flip timeout.
247 *
248 * Displaying the video overlay during a playback with
249 * Kodi on an RPi3 seems to be a great solution with a
250 * failure rate around 50%.
251 *
252 * Removing 1 from the FIFO full level however
253 * seems to completely remove that issue.
254 */
255 if (!vc4->hvs->hvs5)
256 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
257
258 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
259 }
260}
261
262static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
263 u32 format)
264{
265 u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
266 u32 ret = 0;
267
268 ret |= VC4_SET_FIELD((level >> 6),
269 PV5_CONTROL_FIFO_LEVEL_HIGH);
270
271 return ret | VC4_SET_FIELD(level & 0x3f,
272 PV_CONTROL_FIFO_LEVEL);
273}
274
275/*
276 * Returns the encoder attached to the CRTC.
277 *
278 * VC4 can only scan out to one encoder at a time, while the DRM core
279 * allows drivers to push pixels to more than one encoder from the
280 * same CRTC.
281 */
282static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
283 struct drm_atomic_state *state,
284 struct drm_connector_state *(*get_state)(struct drm_atomic_state *state,
285 struct drm_connector *connector))
286{
287 struct drm_connector *connector;
288 struct drm_connector_list_iter conn_iter;
289
290 drm_connector_list_iter_begin(crtc->dev, &conn_iter);
291 drm_for_each_connector_iter(connector, &conn_iter) {
292 struct drm_connector_state *conn_state = get_state(state, connector);
293
294 if (!conn_state)
295 continue;
296
297 if (conn_state->crtc == crtc) {
298 drm_connector_list_iter_end(&conn_iter);
299 return connector->encoder;
300 }
301 }
302 drm_connector_list_iter_end(&conn_iter);
303
304 return NULL;
305}
306
307static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
308{
309 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
310
311 /* The PV needs to be disabled before it can be flushed */
312 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
313 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
314}
315
316static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_atomic_state *state)
317{
318 struct drm_device *dev = crtc->dev;
319 struct vc4_dev *vc4 = to_vc4_dev(dev);
320 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, state,
321 drm_atomic_get_new_connector_state);
322 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
323 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
324 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
325 struct drm_crtc_state *crtc_state = crtc->state;
326 struct drm_display_mode *mode = &crtc_state->adjusted_mode;
327 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
328 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
329 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
330 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
331 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
332 u8 ppc = pv_data->pixels_per_clock;
333 bool debug_dump_regs = false;
334
335 if (debug_dump_regs) {
336 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
337 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
338 drm_crtc_index(crtc));
339 drm_print_regset32(&p, &vc4_crtc->regset);
340 }
341
342 vc4_crtc_pixelvalve_reset(crtc);
343
344 CRTC_WRITE(PV_HORZA,
345 VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
346 PV_HORZA_HBP) |
347 VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
348 PV_HORZA_HSYNC));
349
350 CRTC_WRITE(PV_HORZB,
351 VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
352 PV_HORZB_HFP) |
353 VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
354 PV_HORZB_HACTIVE));
355
356 CRTC_WRITE(PV_VERTA,
357 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
358 PV_VERTA_VBP) |
359 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
360 PV_VERTA_VSYNC));
361 CRTC_WRITE(PV_VERTB,
362 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
363 PV_VERTB_VFP) |
364 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
365
366 if (interlace) {
367 CRTC_WRITE(PV_VERTA_EVEN,
368 VC4_SET_FIELD(mode->crtc_vtotal -
369 mode->crtc_vsync_end - 1,
370 PV_VERTA_VBP) |
371 VC4_SET_FIELD(mode->crtc_vsync_end -
372 mode->crtc_vsync_start,
373 PV_VERTA_VSYNC));
374 CRTC_WRITE(PV_VERTB_EVEN,
375 VC4_SET_FIELD(mode->crtc_vsync_start -
376 mode->crtc_vdisplay,
377 PV_VERTB_VFP) |
378 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
379
380 /* We set up first field even mode for HDMI. VEC's
381 * NTSC mode would want first field odd instead, once
382 * we support it (to do so, set ODD_FIRST and put the
383 * delay in VSYNCD_EVEN instead).
384 */
385 CRTC_WRITE(PV_V_CONTROL,
386 PV_VCONTROL_CONTINUOUS |
387 (is_dsi ? PV_VCONTROL_DSI : 0) |
388 PV_VCONTROL_INTERLACE |
389 VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
390 PV_VCONTROL_ODD_DELAY));
391 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
392 } else {
393 CRTC_WRITE(PV_V_CONTROL,
394 PV_VCONTROL_CONTINUOUS |
395 (is_dsi ? PV_VCONTROL_DSI : 0));
396 }
397
398 if (is_dsi)
399 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
400
401 if (vc4->hvs->hvs5)
402 CRTC_WRITE(PV_MUX_CFG,
403 VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
404 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
405
406 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
407 vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
408 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
409 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
410 PV_CONTROL_CLR_AT_START |
411 PV_CONTROL_TRIGGER_UNDERFLOW |
412 PV_CONTROL_WAIT_HSTART |
413 VC4_SET_FIELD(vc4_encoder->clock_select,
414 PV_CONTROL_CLK_SELECT));
415
416 if (debug_dump_regs) {
417 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
418 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
419 drm_crtc_index(crtc));
420 drm_print_regset32(&p, &vc4_crtc->regset);
421 }
422}
423
424static void require_hvs_enabled(struct drm_device *dev)
425{
426 struct vc4_dev *vc4 = to_vc4_dev(dev);
427
428 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
429 SCALER_DISPCTRL_ENABLE);
430}
431
432static int vc4_crtc_disable(struct drm_crtc *crtc,
433 struct drm_encoder *encoder,
434 struct drm_atomic_state *state,
435 unsigned int channel)
436{
437 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
438 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
439 struct drm_device *dev = crtc->dev;
440 int ret;
441
442 CRTC_WRITE(PV_V_CONTROL,
443 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
444 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
445 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
446
447 /*
448 * This delay is needed to avoid to get a pixel stuck in an
449 * unflushable FIFO between the pixelvalve and the HDMI
450 * controllers on the BCM2711.
451 *
452 * Timing is fairly sensitive here, so mdelay is the safest
453 * approach.
454 *
455 * If it was to be reworked, the stuck pixel happens on a
456 * BCM2711 when changing mode with a good probability, so a
457 * script that changes mode on a regular basis should trigger
458 * the bug after less than 10 attempts. It manifests itself with
459 * every pixels being shifted by one to the right, and thus the
460 * last pixel of a line actually being displayed as the first
461 * pixel on the next line.
462 */
463 mdelay(20);
464
465 if (vc4_encoder && vc4_encoder->post_crtc_disable)
466 vc4_encoder->post_crtc_disable(encoder, state);
467
468 vc4_crtc_pixelvalve_reset(crtc);
469 vc4_hvs_stop_channel(dev, channel);
470
471 if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
472 vc4_encoder->post_crtc_powerdown(encoder, state);
473
474 return 0;
475}
476
477static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc,
478 enum vc4_encoder_type type)
479{
480 struct drm_encoder *encoder;
481
482 drm_for_each_encoder(encoder, crtc->dev) {
483 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
484
485 if (vc4_encoder->type == type)
486 return encoder;
487 }
488
489 return NULL;
490}
491
492int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
493{
494 struct drm_device *drm = crtc->dev;
495 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
496 enum vc4_encoder_type encoder_type;
497 const struct vc4_pv_data *pv_data;
498 struct drm_encoder *encoder;
499 unsigned encoder_sel;
500 int channel;
501
502 if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
503 "brcm,bcm2711-pixelvalve2") ||
504 of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
505 "brcm,bcm2711-pixelvalve4")))
506 return 0;
507
508 if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
509 return 0;
510
511 if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
512 return 0;
513
514 channel = vc4_hvs_get_fifo_from_output(drm, vc4_crtc->data->hvs_output);
515 if (channel < 0)
516 return 0;
517
518 encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
519 if (WARN_ON(encoder_sel != 0))
520 return 0;
521
522 pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
523 encoder_type = pv_data->encoder_types[encoder_sel];
524 encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type);
525 if (WARN_ON(!encoder))
526 return 0;
527
528 return vc4_crtc_disable(crtc, encoder, NULL, channel);
529}
530
531static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
532 struct drm_atomic_state *state)
533{
534 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
535 crtc);
536 struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
537 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, state,
538 drm_atomic_get_old_connector_state);
539 struct drm_device *dev = crtc->dev;
540
541 require_hvs_enabled(dev);
542
543 /* Disable vblank irq handling before crtc is disabled. */
544 drm_crtc_vblank_off(crtc);
545
546 vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
547
548 /*
549 * Make sure we issue a vblank event after disabling the CRTC if
550 * someone was waiting it.
551 */
552 if (crtc->state->event) {
553 unsigned long flags;
554
555 spin_lock_irqsave(&dev->event_lock, flags);
556 drm_crtc_send_vblank_event(crtc, crtc->state->event);
557 crtc->state->event = NULL;
558 spin_unlock_irqrestore(&dev->event_lock, flags);
559 }
560}
561
562static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
563 struct drm_atomic_state *state)
564{
565 struct drm_device *dev = crtc->dev;
566 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
567 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, state,
568 drm_atomic_get_new_connector_state);
569 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
570
571 require_hvs_enabled(dev);
572
573 /* Enable vblank irq handling before crtc is started otherwise
574 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
575 */
576 drm_crtc_vblank_on(crtc);
577
578 vc4_hvs_atomic_enable(crtc, state);
579
580 if (vc4_encoder->pre_crtc_configure)
581 vc4_encoder->pre_crtc_configure(encoder, state);
582
583 vc4_crtc_config_pv(crtc, state);
584
585 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
586
587 if (vc4_encoder->pre_crtc_enable)
588 vc4_encoder->pre_crtc_enable(encoder, state);
589
590 /* When feeding the transposer block the pixelvalve is unneeded and
591 * should not be enabled.
592 */
593 CRTC_WRITE(PV_V_CONTROL,
594 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
595
596 if (vc4_encoder->post_crtc_enable)
597 vc4_encoder->post_crtc_enable(encoder, state);
598}
599
600static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
601 const struct drm_display_mode *mode)
602{
603 /* Do not allow doublescan modes from user space */
604 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
605 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
606 crtc->base.id);
607 return MODE_NO_DBLESCAN;
608 }
609
610 return MODE_OK;
611}
612
613void vc4_crtc_get_margins(struct drm_crtc_state *state,
614 unsigned int *left, unsigned int *right,
615 unsigned int *top, unsigned int *bottom)
616{
617 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
618 struct drm_connector_state *conn_state;
619 struct drm_connector *conn;
620 int i;
621
622 *left = vc4_state->margins.left;
623 *right = vc4_state->margins.right;
624 *top = vc4_state->margins.top;
625 *bottom = vc4_state->margins.bottom;
626
627 /* We have to interate over all new connector states because
628 * vc4_crtc_get_margins() might be called before
629 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
630 * might be outdated.
631 */
632 for_each_new_connector_in_state(state->state, conn, conn_state, i) {
633 if (conn_state->crtc != state->crtc)
634 continue;
635
636 *left = conn_state->tv.margins.left;
637 *right = conn_state->tv.margins.right;
638 *top = conn_state->tv.margins.top;
639 *bottom = conn_state->tv.margins.bottom;
640 break;
641 }
642}
643
644static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
645 struct drm_atomic_state *state)
646{
647 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
648 crtc);
649 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
650 struct drm_connector *conn;
651 struct drm_connector_state *conn_state;
652 int ret, i;
653
654 ret = vc4_hvs_atomic_check(crtc, state);
655 if (ret)
656 return ret;
657
658 for_each_new_connector_in_state(state, conn, conn_state,
659 i) {
660 if (conn_state->crtc != crtc)
661 continue;
662
663 vc4_state->margins.left = conn_state->tv.margins.left;
664 vc4_state->margins.right = conn_state->tv.margins.right;
665 vc4_state->margins.top = conn_state->tv.margins.top;
666 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
667 break;
668 }
669
670 return 0;
671}
672
673static int vc4_enable_vblank(struct drm_crtc *crtc)
674{
675 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
676
677 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
678
679 return 0;
680}
681
682static void vc4_disable_vblank(struct drm_crtc *crtc)
683{
684 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
685
686 CRTC_WRITE(PV_INTEN, 0);
687}
688
689static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
690{
691 struct drm_crtc *crtc = &vc4_crtc->base;
692 struct drm_device *dev = crtc->dev;
693 struct vc4_dev *vc4 = to_vc4_dev(dev);
694 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
695 u32 chan = vc4_state->assigned_channel;
696 unsigned long flags;
697
698 spin_lock_irqsave(&dev->event_lock, flags);
699 if (vc4_crtc->event &&
700 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
701 vc4_state->feed_txp)) {
702 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
703 vc4_crtc->event = NULL;
704 drm_crtc_vblank_put(crtc);
705
706 /* Wait for the page flip to unmask the underrun to ensure that
707 * the display list was updated by the hardware. Before that
708 * happens, the HVS will be using the previous display list with
709 * the CRTC and encoder already reconfigured, leading to
710 * underruns. This can be seen when reconfiguring the CRTC.
711 */
712 vc4_hvs_unmask_underrun(dev, chan);
713 }
714 spin_unlock_irqrestore(&dev->event_lock, flags);
715}
716
717void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
718{
719 crtc->t_vblank = ktime_get();
720 drm_crtc_handle_vblank(&crtc->base);
721 vc4_crtc_handle_page_flip(crtc);
722}
723
724static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
725{
726 struct vc4_crtc *vc4_crtc = data;
727 u32 stat = CRTC_READ(PV_INTSTAT);
728 irqreturn_t ret = IRQ_NONE;
729
730 if (stat & PV_INT_VFP_START) {
731 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
732 vc4_crtc_handle_vblank(vc4_crtc);
733 ret = IRQ_HANDLED;
734 }
735
736 return ret;
737}
738
739struct vc4_async_flip_state {
740 struct drm_crtc *crtc;
741 struct drm_framebuffer *fb;
742 struct drm_framebuffer *old_fb;
743 struct drm_pending_vblank_event *event;
744
745 struct vc4_seqno_cb cb;
746};
747
748/* Called when the V3D execution for the BO being flipped to is done, so that
749 * we can actually update the plane's address to point to it.
750 */
751static void
752vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
753{
754 struct vc4_async_flip_state *flip_state =
755 container_of(cb, struct vc4_async_flip_state, cb);
756 struct drm_crtc *crtc = flip_state->crtc;
757 struct drm_device *dev = crtc->dev;
758 struct drm_plane *plane = crtc->primary;
759
760 vc4_plane_async_set_fb(plane, flip_state->fb);
761 if (flip_state->event) {
762 unsigned long flags;
763
764 spin_lock_irqsave(&dev->event_lock, flags);
765 drm_crtc_send_vblank_event(crtc, flip_state->event);
766 spin_unlock_irqrestore(&dev->event_lock, flags);
767 }
768
769 drm_crtc_vblank_put(crtc);
770 drm_framebuffer_put(flip_state->fb);
771
772 /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
773 * when the planes are updated through the async update path.
774 * FIXME: we should move to generic async-page-flip when it's
775 * available, so that we can get rid of this hand-made cleanup_fb()
776 * logic.
777 */
778 if (flip_state->old_fb) {
779 struct drm_gem_cma_object *cma_bo;
780 struct vc4_bo *bo;
781
782 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
783 bo = to_vc4_bo(&cma_bo->base);
784 vc4_bo_dec_usecnt(bo);
785 drm_framebuffer_put(flip_state->old_fb);
786 }
787
788 kfree(flip_state);
789}
790
791/* Implements async (non-vblank-synced) page flips.
792 *
793 * The page flip ioctl needs to return immediately, so we grab the
794 * modeset semaphore on the pipe, and queue the address update for
795 * when V3D is done with the BO being flipped to.
796 */
797static int vc4_async_page_flip(struct drm_crtc *crtc,
798 struct drm_framebuffer *fb,
799 struct drm_pending_vblank_event *event,
800 uint32_t flags)
801{
802 struct drm_device *dev = crtc->dev;
803 struct drm_plane *plane = crtc->primary;
804 int ret = 0;
805 struct vc4_async_flip_state *flip_state;
806 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
807 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
808
809 /* Increment the BO usecnt here, so that we never end up with an
810 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
811 * plane is later updated through the non-async path.
812 * FIXME: we should move to generic async-page-flip when it's
813 * available, so that we can get rid of this hand-made prepare_fb()
814 * logic.
815 */
816 ret = vc4_bo_inc_usecnt(bo);
817 if (ret)
818 return ret;
819
820 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
821 if (!flip_state) {
822 vc4_bo_dec_usecnt(bo);
823 return -ENOMEM;
824 }
825
826 drm_framebuffer_get(fb);
827 flip_state->fb = fb;
828 flip_state->crtc = crtc;
829 flip_state->event = event;
830
831 /* Save the current FB before it's replaced by the new one in
832 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
833 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
834 * it consistent.
835 * FIXME: we should move to generic async-page-flip when it's
836 * available, so that we can get rid of this hand-made cleanup_fb()
837 * logic.
838 */
839 flip_state->old_fb = plane->state->fb;
840 if (flip_state->old_fb)
841 drm_framebuffer_get(flip_state->old_fb);
842
843 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
844
845 /* Immediately update the plane's legacy fb pointer, so that later
846 * modeset prep sees the state that will be present when the semaphore
847 * is released.
848 */
849 drm_atomic_set_fb_for_plane(plane->state, fb);
850
851 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
852 vc4_async_page_flip_complete);
853
854 /* Driver takes ownership of state on successful async commit. */
855 return 0;
856}
857
858int vc4_page_flip(struct drm_crtc *crtc,
859 struct drm_framebuffer *fb,
860 struct drm_pending_vblank_event *event,
861 uint32_t flags,
862 struct drm_modeset_acquire_ctx *ctx)
863{
864 if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
865 return vc4_async_page_flip(crtc, fb, event, flags);
866 else
867 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
868}
869
870struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
871{
872 struct vc4_crtc_state *vc4_state, *old_vc4_state;
873
874 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
875 if (!vc4_state)
876 return NULL;
877
878 old_vc4_state = to_vc4_crtc_state(crtc->state);
879 vc4_state->feed_txp = old_vc4_state->feed_txp;
880 vc4_state->margins = old_vc4_state->margins;
881 vc4_state->assigned_channel = old_vc4_state->assigned_channel;
882
883 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
884 return &vc4_state->base;
885}
886
887void vc4_crtc_destroy_state(struct drm_crtc *crtc,
888 struct drm_crtc_state *state)
889{
890 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
891 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
892
893 if (drm_mm_node_allocated(&vc4_state->mm)) {
894 unsigned long flags;
895
896 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
897 drm_mm_remove_node(&vc4_state->mm);
898 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
899
900 }
901
902 drm_atomic_helper_crtc_destroy_state(crtc, state);
903}
904
905void vc4_crtc_reset(struct drm_crtc *crtc)
906{
907 struct vc4_crtc_state *vc4_crtc_state;
908
909 if (crtc->state)
910 vc4_crtc_destroy_state(crtc, crtc->state);
911
912 vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
913 if (!vc4_crtc_state) {
914 crtc->state = NULL;
915 return;
916 }
917
918 vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
919 __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
920}
921
922static const struct drm_crtc_funcs vc4_crtc_funcs = {
923 .set_config = drm_atomic_helper_set_config,
924 .destroy = vc4_crtc_destroy,
925 .page_flip = vc4_page_flip,
926 .set_property = NULL,
927 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
928 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
929 .reset = vc4_crtc_reset,
930 .atomic_duplicate_state = vc4_crtc_duplicate_state,
931 .atomic_destroy_state = vc4_crtc_destroy_state,
932 .enable_vblank = vc4_enable_vblank,
933 .disable_vblank = vc4_disable_vblank,
934 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
935};
936
937static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
938 .mode_valid = vc4_crtc_mode_valid,
939 .atomic_check = vc4_crtc_atomic_check,
940 .atomic_flush = vc4_hvs_atomic_flush,
941 .atomic_enable = vc4_crtc_atomic_enable,
942 .atomic_disable = vc4_crtc_atomic_disable,
943 .get_scanout_position = vc4_crtc_get_scanout_position,
944};
945
946static const struct vc4_pv_data bcm2835_pv0_data = {
947 .base = {
948 .hvs_available_channels = BIT(0),
949 .hvs_output = 0,
950 },
951 .debugfs_name = "crtc0_regs",
952 .fifo_depth = 64,
953 .pixels_per_clock = 1,
954 .encoder_types = {
955 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
956 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
957 },
958};
959
960static const struct vc4_pv_data bcm2835_pv1_data = {
961 .base = {
962 .hvs_available_channels = BIT(2),
963 .hvs_output = 2,
964 },
965 .debugfs_name = "crtc1_regs",
966 .fifo_depth = 64,
967 .pixels_per_clock = 1,
968 .encoder_types = {
969 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
970 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
971 },
972};
973
974static const struct vc4_pv_data bcm2835_pv2_data = {
975 .base = {
976 .hvs_available_channels = BIT(1),
977 .hvs_output = 1,
978 },
979 .debugfs_name = "crtc2_regs",
980 .fifo_depth = 64,
981 .pixels_per_clock = 1,
982 .encoder_types = {
983 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
984 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
985 },
986};
987
988static const struct vc4_pv_data bcm2711_pv0_data = {
989 .base = {
990 .hvs_available_channels = BIT(0),
991 .hvs_output = 0,
992 },
993 .debugfs_name = "crtc0_regs",
994 .fifo_depth = 64,
995 .pixels_per_clock = 1,
996 .encoder_types = {
997 [0] = VC4_ENCODER_TYPE_DSI0,
998 [1] = VC4_ENCODER_TYPE_DPI,
999 },
1000};
1001
1002static const struct vc4_pv_data bcm2711_pv1_data = {
1003 .base = {
1004 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1005 .hvs_output = 3,
1006 },
1007 .debugfs_name = "crtc1_regs",
1008 .fifo_depth = 64,
1009 .pixels_per_clock = 1,
1010 .encoder_types = {
1011 [0] = VC4_ENCODER_TYPE_DSI1,
1012 [1] = VC4_ENCODER_TYPE_SMI,
1013 },
1014};
1015
1016static const struct vc4_pv_data bcm2711_pv2_data = {
1017 .base = {
1018 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1019 .hvs_output = 4,
1020 },
1021 .debugfs_name = "crtc2_regs",
1022 .fifo_depth = 256,
1023 .pixels_per_clock = 2,
1024 .encoder_types = {
1025 [0] = VC4_ENCODER_TYPE_HDMI0,
1026 },
1027};
1028
1029static const struct vc4_pv_data bcm2711_pv3_data = {
1030 .base = {
1031 .hvs_available_channels = BIT(1),
1032 .hvs_output = 1,
1033 },
1034 .debugfs_name = "crtc3_regs",
1035 .fifo_depth = 64,
1036 .pixels_per_clock = 1,
1037 .encoder_types = {
1038 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1039 },
1040};
1041
1042static const struct vc4_pv_data bcm2711_pv4_data = {
1043 .base = {
1044 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1045 .hvs_output = 5,
1046 },
1047 .debugfs_name = "crtc4_regs",
1048 .fifo_depth = 64,
1049 .pixels_per_clock = 2,
1050 .encoder_types = {
1051 [0] = VC4_ENCODER_TYPE_HDMI1,
1052 },
1053};
1054
1055static const struct of_device_id vc4_crtc_dt_match[] = {
1056 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1057 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1058 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1059 { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1060 { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1061 { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1062 { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1063 { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1064 {}
1065};
1066
1067static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1068 struct drm_crtc *crtc)
1069{
1070 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1071 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1072 const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1073 struct drm_encoder *encoder;
1074
1075 drm_for_each_encoder(encoder, drm) {
1076 struct vc4_encoder *vc4_encoder;
1077 int i;
1078
1079 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1080 continue;
1081
1082 vc4_encoder = to_vc4_encoder(encoder);
1083 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1084 if (vc4_encoder->type == encoder_types[i]) {
1085 vc4_encoder->clock_select = i;
1086 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1087 break;
1088 }
1089 }
1090 }
1091}
1092
1093int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1094 const struct drm_crtc_funcs *crtc_funcs,
1095 const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1096{
1097 struct vc4_dev *vc4 = to_vc4_dev(drm);
1098 struct drm_crtc *crtc = &vc4_crtc->base;
1099 struct drm_plane *primary_plane;
1100 unsigned int i;
1101
1102 /* For now, we create just the primary and the legacy cursor
1103 * planes. We should be able to stack more planes on easily,
1104 * but to do that we would need to compute the bandwidth
1105 * requirement of the plane configuration, and reject ones
1106 * that will take too much.
1107 */
1108 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1109 if (IS_ERR(primary_plane)) {
1110 dev_err(drm->dev, "failed to construct primary plane\n");
1111 return PTR_ERR(primary_plane);
1112 }
1113
1114 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1115 crtc_funcs, NULL);
1116 drm_crtc_helper_add(crtc, crtc_helper_funcs);
1117
1118 if (!vc4->hvs->hvs5) {
1119 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1120
1121 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1122
1123 /* We support CTM, but only for one CRTC at a time. It's therefore
1124 * implemented as private driver state in vc4_kms, not here.
1125 */
1126 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1127 }
1128
1129 for (i = 0; i < crtc->gamma_size; i++) {
1130 vc4_crtc->lut_r[i] = i;
1131 vc4_crtc->lut_g[i] = i;
1132 vc4_crtc->lut_b[i] = i;
1133 }
1134
1135 return 0;
1136}
1137
1138static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1139{
1140 struct platform_device *pdev = to_platform_device(dev);
1141 struct drm_device *drm = dev_get_drvdata(master);
1142 const struct vc4_pv_data *pv_data;
1143 struct vc4_crtc *vc4_crtc;
1144 struct drm_crtc *crtc;
1145 struct drm_plane *destroy_plane, *temp;
1146 int ret;
1147
1148 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1149 if (!vc4_crtc)
1150 return -ENOMEM;
1151 crtc = &vc4_crtc->base;
1152
1153 pv_data = of_device_get_match_data(dev);
1154 if (!pv_data)
1155 return -ENODEV;
1156 vc4_crtc->data = &pv_data->base;
1157 vc4_crtc->pdev = pdev;
1158
1159 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1160 if (IS_ERR(vc4_crtc->regs))
1161 return PTR_ERR(vc4_crtc->regs);
1162
1163 vc4_crtc->regset.base = vc4_crtc->regs;
1164 vc4_crtc->regset.regs = crtc_regs;
1165 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1166
1167 ret = vc4_crtc_init(drm, vc4_crtc,
1168 &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1169 if (ret)
1170 return ret;
1171 vc4_set_crtc_possible_masks(drm, crtc);
1172
1173 CRTC_WRITE(PV_INTEN, 0);
1174 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1175 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1176 vc4_crtc_irq_handler,
1177 IRQF_SHARED,
1178 "vc4 crtc", vc4_crtc);
1179 if (ret)
1180 goto err_destroy_planes;
1181
1182 platform_set_drvdata(pdev, vc4_crtc);
1183
1184 vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1185 &vc4_crtc->regset);
1186
1187 return 0;
1188
1189err_destroy_planes:
1190 list_for_each_entry_safe(destroy_plane, temp,
1191 &drm->mode_config.plane_list, head) {
1192 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1193 destroy_plane->funcs->destroy(destroy_plane);
1194 }
1195
1196 return ret;
1197}
1198
1199static void vc4_crtc_unbind(struct device *dev, struct device *master,
1200 void *data)
1201{
1202 struct platform_device *pdev = to_platform_device(dev);
1203 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1204
1205 vc4_crtc_destroy(&vc4_crtc->base);
1206
1207 CRTC_WRITE(PV_INTEN, 0);
1208
1209 platform_set_drvdata(pdev, NULL);
1210}
1211
1212static const struct component_ops vc4_crtc_ops = {
1213 .bind = vc4_crtc_bind,
1214 .unbind = vc4_crtc_unbind,
1215};
1216
1217static int vc4_crtc_dev_probe(struct platform_device *pdev)
1218{
1219 return component_add(&pdev->dev, &vc4_crtc_ops);
1220}
1221
1222static int vc4_crtc_dev_remove(struct platform_device *pdev)
1223{
1224 component_del(&pdev->dev, &vc4_crtc_ops);
1225 return 0;
1226}
1227
1228struct platform_driver vc4_crtc_driver = {
1229 .probe = vc4_crtc_dev_probe,
1230 .remove = vc4_crtc_dev_remove,
1231 .driver = {
1232 .name = "vc4_crtc",
1233 .of_match_table = vc4_crtc_dt_match,
1234 },
1235};