Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * blk-mq scheduling framework
  4 *
  5 * Copyright (C) 2016 Jens Axboe
  6 */
  7#include <linux/kernel.h>
  8#include <linux/module.h>
  9#include <linux/blk-mq.h>
 10#include <linux/list_sort.h>
 11
 12#include <trace/events/block.h>
 13
 14#include "blk.h"
 15#include "blk-mq.h"
 16#include "blk-mq-debugfs.h"
 17#include "blk-mq-sched.h"
 18#include "blk-mq-tag.h"
 19#include "blk-wbt.h"
 20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 21/*
 22 * Mark a hardware queue as needing a restart. For shared queues, maintain
 23 * a count of how many hardware queues are marked for restart.
 24 */
 25void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
 26{
 27	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
 28		return;
 29
 30	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
 31}
 32EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
 33
 34void __blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
 35{
 
 
 36	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
 37
 38	/*
 39	 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
 40	 * in blk_mq_run_hw_queue(). Its pair is the barrier in
 41	 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
 42	 * meantime new request added to hctx->dispatch is missed to check in
 43	 * blk_mq_run_hw_queue().
 44	 */
 45	smp_mb();
 46
 47	blk_mq_run_hw_queue(hctx, true);
 48}
 49
 50static int sched_rq_cmp(void *priv, const struct list_head *a,
 51			const struct list_head *b)
 52{
 53	struct request *rqa = container_of(a, struct request, queuelist);
 54	struct request *rqb = container_of(b, struct request, queuelist);
 55
 56	return rqa->mq_hctx > rqb->mq_hctx;
 57}
 58
 59static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
 60{
 61	struct blk_mq_hw_ctx *hctx =
 62		list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
 63	struct request *rq;
 64	LIST_HEAD(hctx_list);
 65	unsigned int count = 0;
 66
 67	list_for_each_entry(rq, rq_list, queuelist) {
 68		if (rq->mq_hctx != hctx) {
 69			list_cut_before(&hctx_list, rq_list, &rq->queuelist);
 70			goto dispatch;
 71		}
 72		count++;
 73	}
 74	list_splice_tail_init(rq_list, &hctx_list);
 75
 76dispatch:
 77	return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
 78}
 79
 80#define BLK_MQ_BUDGET_DELAY	3		/* ms units */
 81
 82/*
 83 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 84 * its queue by itself in its completion handler, so we don't need to
 85 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
 86 *
 87 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
 88 * be run again.  This is necessary to avoid starving flushes.
 89 */
 90static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
 91{
 92	struct request_queue *q = hctx->queue;
 93	struct elevator_queue *e = q->elevator;
 94	bool multi_hctxs = false, run_queue = false;
 95	bool dispatched = false, busy = false;
 96	unsigned int max_dispatch;
 97	LIST_HEAD(rq_list);
 98	int count = 0;
 99
100	if (hctx->dispatch_busy)
101		max_dispatch = 1;
102	else
103		max_dispatch = hctx->queue->nr_requests;
104
105	do {
106		struct request *rq;
107		int budget_token;
108
109		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
110			break;
111
112		if (!list_empty_careful(&hctx->dispatch)) {
113			busy = true;
114			break;
115		}
116
117		budget_token = blk_mq_get_dispatch_budget(q);
118		if (budget_token < 0)
119			break;
120
121		rq = e->type->ops.dispatch_request(hctx);
122		if (!rq) {
123			blk_mq_put_dispatch_budget(q, budget_token);
124			/*
125			 * We're releasing without dispatching. Holding the
126			 * budget could have blocked any "hctx"s with the
127			 * same queue and if we didn't dispatch then there's
128			 * no guarantee anyone will kick the queue.  Kick it
129			 * ourselves.
130			 */
131			run_queue = true;
132			break;
133		}
134
135		blk_mq_set_rq_budget_token(rq, budget_token);
136
137		/*
138		 * Now this rq owns the budget which has to be released
139		 * if this rq won't be queued to driver via .queue_rq()
140		 * in blk_mq_dispatch_rq_list().
141		 */
142		list_add_tail(&rq->queuelist, &rq_list);
143		count++;
144		if (rq->mq_hctx != hctx)
145			multi_hctxs = true;
146
147		/*
148		 * If we cannot get tag for the request, stop dequeueing
149		 * requests from the IO scheduler. We are unlikely to be able
150		 * to submit them anyway and it creates false impression for
151		 * scheduling heuristics that the device can take more IO.
152		 */
153		if (!blk_mq_get_driver_tag(rq))
154			break;
155	} while (count < max_dispatch);
156
157	if (!count) {
158		if (run_queue)
159			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
160	} else if (multi_hctxs) {
161		/*
162		 * Requests from different hctx may be dequeued from some
163		 * schedulers, such as bfq and deadline.
164		 *
165		 * Sort the requests in the list according to their hctx,
166		 * dispatch batching requests from same hctx at a time.
167		 */
168		list_sort(NULL, &rq_list, sched_rq_cmp);
169		do {
170			dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
171		} while (!list_empty(&rq_list));
172	} else {
173		dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
174	}
175
176	if (busy)
177		return -EAGAIN;
178	return !!dispatched;
179}
180
181static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
182{
183	unsigned long end = jiffies + HZ;
184	int ret;
185
186	do {
187		ret = __blk_mq_do_dispatch_sched(hctx);
188		if (ret != 1)
189			break;
190		if (need_resched() || time_is_before_jiffies(end)) {
191			blk_mq_delay_run_hw_queue(hctx, 0);
192			break;
193		}
194	} while (1);
195
196	return ret;
197}
198
199static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
200					  struct blk_mq_ctx *ctx)
201{
202	unsigned short idx = ctx->index_hw[hctx->type];
203
204	if (++idx == hctx->nr_ctx)
205		idx = 0;
206
207	return hctx->ctxs[idx];
208}
209
210/*
211 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
212 * its queue by itself in its completion handler, so we don't need to
213 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
214 *
215 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
216 * be run again.  This is necessary to avoid starving flushes.
217 */
218static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
219{
220	struct request_queue *q = hctx->queue;
221	LIST_HEAD(rq_list);
222	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
223	int ret = 0;
224	struct request *rq;
225
226	do {
227		int budget_token;
228
229		if (!list_empty_careful(&hctx->dispatch)) {
230			ret = -EAGAIN;
231			break;
232		}
233
234		if (!sbitmap_any_bit_set(&hctx->ctx_map))
235			break;
236
237		budget_token = blk_mq_get_dispatch_budget(q);
238		if (budget_token < 0)
239			break;
240
241		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
242		if (!rq) {
243			blk_mq_put_dispatch_budget(q, budget_token);
244			/*
245			 * We're releasing without dispatching. Holding the
246			 * budget could have blocked any "hctx"s with the
247			 * same queue and if we didn't dispatch then there's
248			 * no guarantee anyone will kick the queue.  Kick it
249			 * ourselves.
250			 */
251			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
252			break;
253		}
254
255		blk_mq_set_rq_budget_token(rq, budget_token);
256
257		/*
258		 * Now this rq owns the budget which has to be released
259		 * if this rq won't be queued to driver via .queue_rq()
260		 * in blk_mq_dispatch_rq_list().
261		 */
262		list_add(&rq->queuelist, &rq_list);
263
264		/* round robin for fair dispatch */
265		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
266
267	} while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
268
269	WRITE_ONCE(hctx->dispatch_from, ctx);
270	return ret;
271}
272
273static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
274{
275	struct request_queue *q = hctx->queue;
276	const bool has_sched = q->elevator;
277	int ret = 0;
278	LIST_HEAD(rq_list);
279
280	/*
281	 * If we have previous entries on our dispatch list, grab them first for
282	 * more fair dispatch.
283	 */
284	if (!list_empty_careful(&hctx->dispatch)) {
285		spin_lock(&hctx->lock);
286		if (!list_empty(&hctx->dispatch))
287			list_splice_init(&hctx->dispatch, &rq_list);
288		spin_unlock(&hctx->lock);
289	}
290
291	/*
292	 * Only ask the scheduler for requests, if we didn't have residual
293	 * requests from the dispatch list. This is to avoid the case where
294	 * we only ever dispatch a fraction of the requests available because
295	 * of low device queue depth. Once we pull requests out of the IO
296	 * scheduler, we can no longer merge or sort them. So it's best to
297	 * leave them there for as long as we can. Mark the hw queue as
298	 * needing a restart in that case.
299	 *
300	 * We want to dispatch from the scheduler if there was nothing
301	 * on the dispatch list or we were able to dispatch from the
302	 * dispatch list.
303	 */
304	if (!list_empty(&rq_list)) {
305		blk_mq_sched_mark_restart_hctx(hctx);
306		if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) {
307			if (has_sched)
308				ret = blk_mq_do_dispatch_sched(hctx);
309			else
310				ret = blk_mq_do_dispatch_ctx(hctx);
311		}
312	} else if (has_sched) {
313		ret = blk_mq_do_dispatch_sched(hctx);
314	} else if (hctx->dispatch_busy) {
315		/* dequeue request one by one from sw queue if queue is busy */
316		ret = blk_mq_do_dispatch_ctx(hctx);
317	} else {
318		blk_mq_flush_busy_ctxs(hctx, &rq_list);
319		blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
320	}
321
322	return ret;
323}
324
325void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
326{
327	struct request_queue *q = hctx->queue;
328
329	/* RCU or SRCU read lock is needed before checking quiesced flag */
330	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
331		return;
332
333	hctx->run++;
334
335	/*
336	 * A return of -EAGAIN is an indication that hctx->dispatch is not
337	 * empty and we must run again in order to avoid starving flushes.
338	 */
339	if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
340		if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
341			blk_mq_run_hw_queue(hctx, true);
342	}
343}
344
345bool blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
346		unsigned int nr_segs)
347{
348	struct elevator_queue *e = q->elevator;
349	struct blk_mq_ctx *ctx;
350	struct blk_mq_hw_ctx *hctx;
351	bool ret = false;
352	enum hctx_type type;
353
354	if (e && e->type->ops.bio_merge) {
355		ret = e->type->ops.bio_merge(q, bio, nr_segs);
356		goto out_put;
357	}
358
359	ctx = blk_mq_get_ctx(q);
360	hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
361	type = hctx->type;
362	if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) ||
363	    list_empty_careful(&ctx->rq_lists[type]))
364		goto out_put;
365
366	/* default per sw-queue merge */
367	spin_lock(&ctx->lock);
368	/*
369	 * Reverse check our software queue for entries that we could
370	 * potentially merge with. Currently includes a hand-wavy stop
371	 * count of 8, to not spend too much time checking for merges.
372	 */
373	if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs))
 
374		ret = true;
 
375
376	spin_unlock(&ctx->lock);
377out_put:
378	return ret;
379}
380
381bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq,
382				   struct list_head *free)
383{
384	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free);
385}
386EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
387
388static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
389				       struct request *rq)
390{
391	/*
392	 * dispatch flush and passthrough rq directly
393	 *
394	 * passthrough request has to be added to hctx->dispatch directly.
395	 * For some reason, device may be in one situation which can't
396	 * handle FS request, so STS_RESOURCE is always returned and the
397	 * FS request will be added to hctx->dispatch. However passthrough
398	 * request may be required at that time for fixing the problem. If
399	 * passthrough request is added to scheduler queue, there isn't any
400	 * chance to dispatch it given we prioritize requests in hctx->dispatch.
401	 */
402	if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
403		return true;
404
405	return false;
406}
407
408void blk_mq_sched_insert_request(struct request *rq, bool at_head,
409				 bool run_queue, bool async)
410{
411	struct request_queue *q = rq->q;
412	struct elevator_queue *e = q->elevator;
413	struct blk_mq_ctx *ctx = rq->mq_ctx;
414	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
415
416	WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG));
417
418	if (blk_mq_sched_bypass_insert(hctx, rq)) {
419		/*
420		 * Firstly normal IO request is inserted to scheduler queue or
421		 * sw queue, meantime we add flush request to dispatch queue(
422		 * hctx->dispatch) directly and there is at most one in-flight
423		 * flush request for each hw queue, so it doesn't matter to add
424		 * flush request to tail or front of the dispatch queue.
425		 *
426		 * Secondly in case of NCQ, flush request belongs to non-NCQ
427		 * command, and queueing it will fail when there is any
428		 * in-flight normal IO request(NCQ command). When adding flush
429		 * rq to the front of hctx->dispatch, it is easier to introduce
430		 * extra time to flush rq's latency because of S_SCHED_RESTART
431		 * compared with adding to the tail of dispatch queue, then
432		 * chance of flush merge is increased, and less flush requests
433		 * will be issued to controller. It is observed that ~10% time
434		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
435		 * drive when adding flush rq to the front of hctx->dispatch.
436		 *
437		 * Simply queue flush rq to the front of hctx->dispatch so that
438		 * intensive flush workloads can benefit in case of NCQ HW.
439		 */
440		at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
441		blk_mq_request_bypass_insert(rq, at_head, false);
442		goto run;
443	}
444
445	if (e) {
446		LIST_HEAD(list);
447
448		list_add(&rq->queuelist, &list);
449		e->type->ops.insert_requests(hctx, &list, at_head);
450	} else {
451		spin_lock(&ctx->lock);
452		__blk_mq_insert_request(hctx, rq, at_head);
453		spin_unlock(&ctx->lock);
454	}
455
456run:
457	if (run_queue)
458		blk_mq_run_hw_queue(hctx, async);
459}
460
461void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
462				  struct blk_mq_ctx *ctx,
463				  struct list_head *list, bool run_queue_async)
464{
465	struct elevator_queue *e;
466	struct request_queue *q = hctx->queue;
467
468	/*
469	 * blk_mq_sched_insert_requests() is called from flush plug
470	 * context only, and hold one usage counter to prevent queue
471	 * from being released.
472	 */
473	percpu_ref_get(&q->q_usage_counter);
474
475	e = hctx->queue->elevator;
476	if (e) {
477		e->type->ops.insert_requests(hctx, list, false);
478	} else {
479		/*
480		 * try to issue requests directly if the hw queue isn't
481		 * busy in case of 'none' scheduler, and this way may save
482		 * us one extra enqueue & dequeue to sw queue.
483		 */
484		if (!hctx->dispatch_busy && !run_queue_async) {
485			blk_mq_run_dispatch_ops(hctx->queue,
486				blk_mq_try_issue_list_directly(hctx, list));
487			if (list_empty(list))
488				goto out;
489		}
490		blk_mq_insert_requests(hctx, ctx, list);
491	}
492
493	blk_mq_run_hw_queue(hctx, run_queue_async);
494 out:
495	percpu_ref_put(&q->q_usage_counter);
496}
497
498static int blk_mq_sched_alloc_map_and_rqs(struct request_queue *q,
499					  struct blk_mq_hw_ctx *hctx,
500					  unsigned int hctx_idx)
501{
502	if (blk_mq_is_shared_tags(q->tag_set->flags)) {
503		hctx->sched_tags = q->sched_shared_tags;
504		return 0;
505	}
506
507	hctx->sched_tags = blk_mq_alloc_map_and_rqs(q->tag_set, hctx_idx,
508						    q->nr_requests);
509
 
 
510	if (!hctx->sched_tags)
511		return -ENOMEM;
512	return 0;
513}
514
515static void blk_mq_exit_sched_shared_tags(struct request_queue *queue)
516{
517	blk_mq_free_rq_map(queue->sched_shared_tags);
518	queue->sched_shared_tags = NULL;
 
 
 
519}
520
521/* called in queue's release handler, tagset has gone away */
522static void blk_mq_sched_tags_teardown(struct request_queue *q, unsigned int flags)
523{
524	struct blk_mq_hw_ctx *hctx;
525	unsigned long i;
526
527	queue_for_each_hw_ctx(q, hctx, i) {
528		if (hctx->sched_tags) {
529			if (!blk_mq_is_shared_tags(flags))
530				blk_mq_free_rq_map(hctx->sched_tags);
531			hctx->sched_tags = NULL;
532		}
533	}
534
535	if (blk_mq_is_shared_tags(flags))
536		blk_mq_exit_sched_shared_tags(q);
537}
538
539static int blk_mq_init_sched_shared_tags(struct request_queue *queue)
540{
541	struct blk_mq_tag_set *set = queue->tag_set;
 
 
 
542
543	/*
544	 * Set initial depth at max so that we don't need to reallocate for
545	 * updating nr_requests.
546	 */
547	queue->sched_shared_tags = blk_mq_alloc_map_and_rqs(set,
548						BLK_MQ_NO_HCTX_IDX,
549						MAX_SCHED_RQ);
550	if (!queue->sched_shared_tags)
551		return -ENOMEM;
 
 
 
 
 
 
 
 
552
553	blk_mq_tag_update_sched_shared_tags(queue);
 
554
555	return 0;
556}
557
558/* caller must have a reference to @e, will grab another one if successful */
 
 
 
 
 
559int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
560{
561	unsigned int flags = q->tag_set->flags;
562	struct blk_mq_hw_ctx *hctx;
563	struct elevator_queue *eq;
564	unsigned long i;
565	int ret;
566
 
 
 
 
 
 
567	/*
568	 * Default to double of smaller one between hw queue_depth and 128,
569	 * since we don't split into sync/async like the old code did.
570	 * Additionally, this is a per-hw queue depth.
571	 */
572	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
573				   BLKDEV_DEFAULT_RQ);
574
575	if (blk_mq_is_shared_tags(flags)) {
576		ret = blk_mq_init_sched_shared_tags(q);
577		if (ret)
578			return ret;
579	}
580
581	queue_for_each_hw_ctx(q, hctx, i) {
582		ret = blk_mq_sched_alloc_map_and_rqs(q, hctx, i);
583		if (ret)
584			goto err_free_map_and_rqs;
585	}
586
587	ret = e->ops.init_sched(q, e);
588	if (ret)
589		goto err_free_map_and_rqs;
590
591	mutex_lock(&q->debugfs_mutex);
592	blk_mq_debugfs_register_sched(q);
593	mutex_unlock(&q->debugfs_mutex);
594
595	queue_for_each_hw_ctx(q, hctx, i) {
596		if (e->ops.init_hctx) {
597			ret = e->ops.init_hctx(hctx, i);
598			if (ret) {
599				eq = q->elevator;
600				blk_mq_sched_free_rqs(q);
601				blk_mq_exit_sched(q, eq);
602				kobject_put(&eq->kobj);
603				return ret;
604			}
605		}
606		mutex_lock(&q->debugfs_mutex);
607		blk_mq_debugfs_register_sched_hctx(q, hctx);
608		mutex_unlock(&q->debugfs_mutex);
609	}
610
611	return 0;
612
613err_free_map_and_rqs:
614	blk_mq_sched_free_rqs(q);
615	blk_mq_sched_tags_teardown(q, flags);
616
 
 
617	q->elevator = NULL;
618	return ret;
619}
620
621/*
622 * called in either blk_queue_cleanup or elevator_switch, tagset
623 * is required for freeing requests
624 */
625void blk_mq_sched_free_rqs(struct request_queue *q)
626{
627	struct blk_mq_hw_ctx *hctx;
628	unsigned long i;
629
630	if (blk_mq_is_shared_tags(q->tag_set->flags)) {
631		blk_mq_free_rqs(q->tag_set, q->sched_shared_tags,
632				BLK_MQ_NO_HCTX_IDX);
633	} else {
634		queue_for_each_hw_ctx(q, hctx, i) {
635			if (hctx->sched_tags)
636				blk_mq_free_rqs(q->tag_set,
637						hctx->sched_tags, i);
638		}
639	}
640}
641
642void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
643{
644	struct blk_mq_hw_ctx *hctx;
645	unsigned long i;
646	unsigned int flags = 0;
647
648	queue_for_each_hw_ctx(q, hctx, i) {
649		mutex_lock(&q->debugfs_mutex);
650		blk_mq_debugfs_unregister_sched_hctx(hctx);
651		mutex_unlock(&q->debugfs_mutex);
652
653		if (e->type->ops.exit_hctx && hctx->sched_data) {
654			e->type->ops.exit_hctx(hctx, i);
655			hctx->sched_data = NULL;
656		}
657		flags = hctx->flags;
658	}
659
660	mutex_lock(&q->debugfs_mutex);
661	blk_mq_debugfs_unregister_sched(q);
662	mutex_unlock(&q->debugfs_mutex);
663
664	if (e->type->ops.exit_sched)
665		e->type->ops.exit_sched(e);
666	blk_mq_sched_tags_teardown(q, flags);
 
 
667	q->elevator = NULL;
668}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * blk-mq scheduling framework
  4 *
  5 * Copyright (C) 2016 Jens Axboe
  6 */
  7#include <linux/kernel.h>
  8#include <linux/module.h>
  9#include <linux/blk-mq.h>
 10#include <linux/list_sort.h>
 11
 12#include <trace/events/block.h>
 13
 14#include "blk.h"
 15#include "blk-mq.h"
 16#include "blk-mq-debugfs.h"
 17#include "blk-mq-sched.h"
 18#include "blk-mq-tag.h"
 19#include "blk-wbt.h"
 20
 21void blk_mq_sched_assign_ioc(struct request *rq)
 22{
 23	struct request_queue *q = rq->q;
 24	struct io_context *ioc;
 25	struct io_cq *icq;
 26
 27	/*
 28	 * May not have an IO context if it's a passthrough request
 29	 */
 30	ioc = current->io_context;
 31	if (!ioc)
 32		return;
 33
 34	spin_lock_irq(&q->queue_lock);
 35	icq = ioc_lookup_icq(ioc, q);
 36	spin_unlock_irq(&q->queue_lock);
 37
 38	if (!icq) {
 39		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
 40		if (!icq)
 41			return;
 42	}
 43	get_io_context(icq->ioc);
 44	rq->elv.icq = icq;
 45}
 46
 47/*
 48 * Mark a hardware queue as needing a restart. For shared queues, maintain
 49 * a count of how many hardware queues are marked for restart.
 50 */
 51void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
 52{
 53	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
 54		return;
 55
 56	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
 57}
 58EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
 59
 60void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
 61{
 62	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
 63		return;
 64	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
 65
 66	/*
 67	 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
 68	 * in blk_mq_run_hw_queue(). Its pair is the barrier in
 69	 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
 70	 * meantime new request added to hctx->dispatch is missed to check in
 71	 * blk_mq_run_hw_queue().
 72	 */
 73	smp_mb();
 74
 75	blk_mq_run_hw_queue(hctx, true);
 76}
 77
 78static int sched_rq_cmp(void *priv, const struct list_head *a,
 79			const struct list_head *b)
 80{
 81	struct request *rqa = container_of(a, struct request, queuelist);
 82	struct request *rqb = container_of(b, struct request, queuelist);
 83
 84	return rqa->mq_hctx > rqb->mq_hctx;
 85}
 86
 87static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
 88{
 89	struct blk_mq_hw_ctx *hctx =
 90		list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
 91	struct request *rq;
 92	LIST_HEAD(hctx_list);
 93	unsigned int count = 0;
 94
 95	list_for_each_entry(rq, rq_list, queuelist) {
 96		if (rq->mq_hctx != hctx) {
 97			list_cut_before(&hctx_list, rq_list, &rq->queuelist);
 98			goto dispatch;
 99		}
100		count++;
101	}
102	list_splice_tail_init(rq_list, &hctx_list);
103
104dispatch:
105	return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
106}
107
108#define BLK_MQ_BUDGET_DELAY	3		/* ms units */
109
110/*
111 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
112 * its queue by itself in its completion handler, so we don't need to
113 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
114 *
115 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
116 * be run again.  This is necessary to avoid starving flushes.
117 */
118static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
119{
120	struct request_queue *q = hctx->queue;
121	struct elevator_queue *e = q->elevator;
122	bool multi_hctxs = false, run_queue = false;
123	bool dispatched = false, busy = false;
124	unsigned int max_dispatch;
125	LIST_HEAD(rq_list);
126	int count = 0;
127
128	if (hctx->dispatch_busy)
129		max_dispatch = 1;
130	else
131		max_dispatch = hctx->queue->nr_requests;
132
133	do {
134		struct request *rq;
135		int budget_token;
136
137		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
138			break;
139
140		if (!list_empty_careful(&hctx->dispatch)) {
141			busy = true;
142			break;
143		}
144
145		budget_token = blk_mq_get_dispatch_budget(q);
146		if (budget_token < 0)
147			break;
148
149		rq = e->type->ops.dispatch_request(hctx);
150		if (!rq) {
151			blk_mq_put_dispatch_budget(q, budget_token);
152			/*
153			 * We're releasing without dispatching. Holding the
154			 * budget could have blocked any "hctx"s with the
155			 * same queue and if we didn't dispatch then there's
156			 * no guarantee anyone will kick the queue.  Kick it
157			 * ourselves.
158			 */
159			run_queue = true;
160			break;
161		}
162
163		blk_mq_set_rq_budget_token(rq, budget_token);
164
165		/*
166		 * Now this rq owns the budget which has to be released
167		 * if this rq won't be queued to driver via .queue_rq()
168		 * in blk_mq_dispatch_rq_list().
169		 */
170		list_add_tail(&rq->queuelist, &rq_list);
171		count++;
172		if (rq->mq_hctx != hctx)
173			multi_hctxs = true;
174
175		/*
176		 * If we cannot get tag for the request, stop dequeueing
177		 * requests from the IO scheduler. We are unlikely to be able
178		 * to submit them anyway and it creates false impression for
179		 * scheduling heuristics that the device can take more IO.
180		 */
181		if (!blk_mq_get_driver_tag(rq))
182			break;
183	} while (count < max_dispatch);
184
185	if (!count) {
186		if (run_queue)
187			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
188	} else if (multi_hctxs) {
189		/*
190		 * Requests from different hctx may be dequeued from some
191		 * schedulers, such as bfq and deadline.
192		 *
193		 * Sort the requests in the list according to their hctx,
194		 * dispatch batching requests from same hctx at a time.
195		 */
196		list_sort(NULL, &rq_list, sched_rq_cmp);
197		do {
198			dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
199		} while (!list_empty(&rq_list));
200	} else {
201		dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
202	}
203
204	if (busy)
205		return -EAGAIN;
206	return !!dispatched;
207}
208
209static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
210{
 
211	int ret;
212
213	do {
214		ret = __blk_mq_do_dispatch_sched(hctx);
215	} while (ret == 1);
 
 
 
 
 
 
216
217	return ret;
218}
219
220static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
221					  struct blk_mq_ctx *ctx)
222{
223	unsigned short idx = ctx->index_hw[hctx->type];
224
225	if (++idx == hctx->nr_ctx)
226		idx = 0;
227
228	return hctx->ctxs[idx];
229}
230
231/*
232 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
233 * its queue by itself in its completion handler, so we don't need to
234 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
235 *
236 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
237 * be run again.  This is necessary to avoid starving flushes.
238 */
239static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
240{
241	struct request_queue *q = hctx->queue;
242	LIST_HEAD(rq_list);
243	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
244	int ret = 0;
245	struct request *rq;
246
247	do {
248		int budget_token;
249
250		if (!list_empty_careful(&hctx->dispatch)) {
251			ret = -EAGAIN;
252			break;
253		}
254
255		if (!sbitmap_any_bit_set(&hctx->ctx_map))
256			break;
257
258		budget_token = blk_mq_get_dispatch_budget(q);
259		if (budget_token < 0)
260			break;
261
262		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
263		if (!rq) {
264			blk_mq_put_dispatch_budget(q, budget_token);
265			/*
266			 * We're releasing without dispatching. Holding the
267			 * budget could have blocked any "hctx"s with the
268			 * same queue and if we didn't dispatch then there's
269			 * no guarantee anyone will kick the queue.  Kick it
270			 * ourselves.
271			 */
272			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
273			break;
274		}
275
276		blk_mq_set_rq_budget_token(rq, budget_token);
277
278		/*
279		 * Now this rq owns the budget which has to be released
280		 * if this rq won't be queued to driver via .queue_rq()
281		 * in blk_mq_dispatch_rq_list().
282		 */
283		list_add(&rq->queuelist, &rq_list);
284
285		/* round robin for fair dispatch */
286		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
287
288	} while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
289
290	WRITE_ONCE(hctx->dispatch_from, ctx);
291	return ret;
292}
293
294static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
295{
296	struct request_queue *q = hctx->queue;
297	const bool has_sched = q->elevator;
298	int ret = 0;
299	LIST_HEAD(rq_list);
300
301	/*
302	 * If we have previous entries on our dispatch list, grab them first for
303	 * more fair dispatch.
304	 */
305	if (!list_empty_careful(&hctx->dispatch)) {
306		spin_lock(&hctx->lock);
307		if (!list_empty(&hctx->dispatch))
308			list_splice_init(&hctx->dispatch, &rq_list);
309		spin_unlock(&hctx->lock);
310	}
311
312	/*
313	 * Only ask the scheduler for requests, if we didn't have residual
314	 * requests from the dispatch list. This is to avoid the case where
315	 * we only ever dispatch a fraction of the requests available because
316	 * of low device queue depth. Once we pull requests out of the IO
317	 * scheduler, we can no longer merge or sort them. So it's best to
318	 * leave them there for as long as we can. Mark the hw queue as
319	 * needing a restart in that case.
320	 *
321	 * We want to dispatch from the scheduler if there was nothing
322	 * on the dispatch list or we were able to dispatch from the
323	 * dispatch list.
324	 */
325	if (!list_empty(&rq_list)) {
326		blk_mq_sched_mark_restart_hctx(hctx);
327		if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) {
328			if (has_sched)
329				ret = blk_mq_do_dispatch_sched(hctx);
330			else
331				ret = blk_mq_do_dispatch_ctx(hctx);
332		}
333	} else if (has_sched) {
334		ret = blk_mq_do_dispatch_sched(hctx);
335	} else if (hctx->dispatch_busy) {
336		/* dequeue request one by one from sw queue if queue is busy */
337		ret = blk_mq_do_dispatch_ctx(hctx);
338	} else {
339		blk_mq_flush_busy_ctxs(hctx, &rq_list);
340		blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
341	}
342
343	return ret;
344}
345
346void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
347{
348	struct request_queue *q = hctx->queue;
349
350	/* RCU or SRCU read lock is needed before checking quiesced flag */
351	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
352		return;
353
354	hctx->run++;
355
356	/*
357	 * A return of -EAGAIN is an indication that hctx->dispatch is not
358	 * empty and we must run again in order to avoid starving flushes.
359	 */
360	if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
361		if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
362			blk_mq_run_hw_queue(hctx, true);
363	}
364}
365
366bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
367		unsigned int nr_segs)
368{
369	struct elevator_queue *e = q->elevator;
370	struct blk_mq_ctx *ctx;
371	struct blk_mq_hw_ctx *hctx;
372	bool ret = false;
373	enum hctx_type type;
374
375	if (e && e->type->ops.bio_merge)
376		return e->type->ops.bio_merge(q, bio, nr_segs);
 
 
377
378	ctx = blk_mq_get_ctx(q);
379	hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
380	type = hctx->type;
381	if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) ||
382	    list_empty_careful(&ctx->rq_lists[type]))
383		return false;
384
385	/* default per sw-queue merge */
386	spin_lock(&ctx->lock);
387	/*
388	 * Reverse check our software queue for entries that we could
389	 * potentially merge with. Currently includes a hand-wavy stop
390	 * count of 8, to not spend too much time checking for merges.
391	 */
392	if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
393		ctx->rq_merged++;
394		ret = true;
395	}
396
397	spin_unlock(&ctx->lock);
398
399	return ret;
400}
401
402bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq,
403				   struct list_head *free)
404{
405	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free);
406}
407EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
408
409static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
410				       struct request *rq)
411{
412	/*
413	 * dispatch flush and passthrough rq directly
414	 *
415	 * passthrough request has to be added to hctx->dispatch directly.
416	 * For some reason, device may be in one situation which can't
417	 * handle FS request, so STS_RESOURCE is always returned and the
418	 * FS request will be added to hctx->dispatch. However passthrough
419	 * request may be required at that time for fixing the problem. If
420	 * passthrough request is added to scheduler queue, there isn't any
421	 * chance to dispatch it given we prioritize requests in hctx->dispatch.
422	 */
423	if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
424		return true;
425
426	return false;
427}
428
429void blk_mq_sched_insert_request(struct request *rq, bool at_head,
430				 bool run_queue, bool async)
431{
432	struct request_queue *q = rq->q;
433	struct elevator_queue *e = q->elevator;
434	struct blk_mq_ctx *ctx = rq->mq_ctx;
435	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
436
437	WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG));
438
439	if (blk_mq_sched_bypass_insert(hctx, rq)) {
440		/*
441		 * Firstly normal IO request is inserted to scheduler queue or
442		 * sw queue, meantime we add flush request to dispatch queue(
443		 * hctx->dispatch) directly and there is at most one in-flight
444		 * flush request for each hw queue, so it doesn't matter to add
445		 * flush request to tail or front of the dispatch queue.
446		 *
447		 * Secondly in case of NCQ, flush request belongs to non-NCQ
448		 * command, and queueing it will fail when there is any
449		 * in-flight normal IO request(NCQ command). When adding flush
450		 * rq to the front of hctx->dispatch, it is easier to introduce
451		 * extra time to flush rq's latency because of S_SCHED_RESTART
452		 * compared with adding to the tail of dispatch queue, then
453		 * chance of flush merge is increased, and less flush requests
454		 * will be issued to controller. It is observed that ~10% time
455		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
456		 * drive when adding flush rq to the front of hctx->dispatch.
457		 *
458		 * Simply queue flush rq to the front of hctx->dispatch so that
459		 * intensive flush workloads can benefit in case of NCQ HW.
460		 */
461		at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
462		blk_mq_request_bypass_insert(rq, at_head, false);
463		goto run;
464	}
465
466	if (e) {
467		LIST_HEAD(list);
468
469		list_add(&rq->queuelist, &list);
470		e->type->ops.insert_requests(hctx, &list, at_head);
471	} else {
472		spin_lock(&ctx->lock);
473		__blk_mq_insert_request(hctx, rq, at_head);
474		spin_unlock(&ctx->lock);
475	}
476
477run:
478	if (run_queue)
479		blk_mq_run_hw_queue(hctx, async);
480}
481
482void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
483				  struct blk_mq_ctx *ctx,
484				  struct list_head *list, bool run_queue_async)
485{
486	struct elevator_queue *e;
487	struct request_queue *q = hctx->queue;
488
489	/*
490	 * blk_mq_sched_insert_requests() is called from flush plug
491	 * context only, and hold one usage counter to prevent queue
492	 * from being released.
493	 */
494	percpu_ref_get(&q->q_usage_counter);
495
496	e = hctx->queue->elevator;
497	if (e) {
498		e->type->ops.insert_requests(hctx, list, false);
499	} else {
500		/*
501		 * try to issue requests directly if the hw queue isn't
502		 * busy in case of 'none' scheduler, and this way may save
503		 * us one extra enqueue & dequeue to sw queue.
504		 */
505		if (!hctx->dispatch_busy && !e && !run_queue_async) {
506			blk_mq_try_issue_list_directly(hctx, list);
 
507			if (list_empty(list))
508				goto out;
509		}
510		blk_mq_insert_requests(hctx, ctx, list);
511	}
512
513	blk_mq_run_hw_queue(hctx, run_queue_async);
514 out:
515	percpu_ref_put(&q->q_usage_counter);
516}
517
518static int blk_mq_sched_alloc_tags(struct request_queue *q,
519				   struct blk_mq_hw_ctx *hctx,
520				   unsigned int hctx_idx)
521{
522	struct blk_mq_tag_set *set = q->tag_set;
523	int ret;
 
 
 
 
 
524
525	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
526					       set->reserved_tags, set->flags);
527	if (!hctx->sched_tags)
528		return -ENOMEM;
 
 
529
530	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
531	if (ret) {
532		blk_mq_free_rq_map(hctx->sched_tags, set->flags);
533		hctx->sched_tags = NULL;
534	}
535
536	return ret;
537}
538
539/* called in queue's release handler, tagset has gone away */
540static void blk_mq_sched_tags_teardown(struct request_queue *q)
541{
542	struct blk_mq_hw_ctx *hctx;
543	int i;
544
545	queue_for_each_hw_ctx(q, hctx, i) {
546		if (hctx->sched_tags) {
547			blk_mq_free_rq_map(hctx->sched_tags, hctx->flags);
 
548			hctx->sched_tags = NULL;
549		}
550	}
 
 
 
551}
552
553static int blk_mq_init_sched_shared_sbitmap(struct request_queue *queue)
554{
555	struct blk_mq_tag_set *set = queue->tag_set;
556	int alloc_policy = BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags);
557	struct blk_mq_hw_ctx *hctx;
558	int ret, i;
559
560	/*
561	 * Set initial depth at max so that we don't need to reallocate for
562	 * updating nr_requests.
563	 */
564	ret = blk_mq_init_bitmaps(&queue->sched_bitmap_tags,
565				  &queue->sched_breserved_tags,
566				  MAX_SCHED_RQ, set->reserved_tags,
567				  set->numa_node, alloc_policy);
568	if (ret)
569		return ret;
570
571	queue_for_each_hw_ctx(queue, hctx, i) {
572		hctx->sched_tags->bitmap_tags =
573					&queue->sched_bitmap_tags;
574		hctx->sched_tags->breserved_tags =
575					&queue->sched_breserved_tags;
576	}
577
578	sbitmap_queue_resize(&queue->sched_bitmap_tags,
579			     queue->nr_requests - set->reserved_tags);
580
581	return 0;
582}
583
584static void blk_mq_exit_sched_shared_sbitmap(struct request_queue *queue)
585{
586	sbitmap_queue_free(&queue->sched_bitmap_tags);
587	sbitmap_queue_free(&queue->sched_breserved_tags);
588}
589
590int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
591{
 
592	struct blk_mq_hw_ctx *hctx;
593	struct elevator_queue *eq;
594	unsigned int i;
595	int ret;
596
597	if (!e) {
598		q->elevator = NULL;
599		q->nr_requests = q->tag_set->queue_depth;
600		return 0;
601	}
602
603	/*
604	 * Default to double of smaller one between hw queue_depth and 128,
605	 * since we don't split into sync/async like the old code did.
606	 * Additionally, this is a per-hw queue depth.
607	 */
608	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
609				   BLKDEV_MAX_RQ);
610
611	queue_for_each_hw_ctx(q, hctx, i) {
612		ret = blk_mq_sched_alloc_tags(q, hctx, i);
613		if (ret)
614			goto err_free_tags;
615	}
616
617	if (blk_mq_is_sbitmap_shared(q->tag_set->flags)) {
618		ret = blk_mq_init_sched_shared_sbitmap(q);
619		if (ret)
620			goto err_free_tags;
621	}
622
623	ret = e->ops.init_sched(q, e);
624	if (ret)
625		goto err_free_sbitmap;
626
 
627	blk_mq_debugfs_register_sched(q);
 
628
629	queue_for_each_hw_ctx(q, hctx, i) {
630		if (e->ops.init_hctx) {
631			ret = e->ops.init_hctx(hctx, i);
632			if (ret) {
633				eq = q->elevator;
634				blk_mq_sched_free_requests(q);
635				blk_mq_exit_sched(q, eq);
636				kobject_put(&eq->kobj);
637				return ret;
638			}
639		}
 
640		blk_mq_debugfs_register_sched_hctx(q, hctx);
 
641	}
642
643	return 0;
644
645err_free_sbitmap:
646	if (blk_mq_is_sbitmap_shared(q->tag_set->flags))
647		blk_mq_exit_sched_shared_sbitmap(q);
648err_free_tags:
649	blk_mq_sched_free_requests(q);
650	blk_mq_sched_tags_teardown(q);
651	q->elevator = NULL;
652	return ret;
653}
654
655/*
656 * called in either blk_queue_cleanup or elevator_switch, tagset
657 * is required for freeing requests
658 */
659void blk_mq_sched_free_requests(struct request_queue *q)
660{
661	struct blk_mq_hw_ctx *hctx;
662	int i;
663
664	queue_for_each_hw_ctx(q, hctx, i) {
665		if (hctx->sched_tags)
666			blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
 
 
 
 
 
 
667	}
668}
669
670void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
671{
672	struct blk_mq_hw_ctx *hctx;
673	unsigned int i;
674	unsigned int flags = 0;
675
676	queue_for_each_hw_ctx(q, hctx, i) {
 
677		blk_mq_debugfs_unregister_sched_hctx(hctx);
 
 
678		if (e->type->ops.exit_hctx && hctx->sched_data) {
679			e->type->ops.exit_hctx(hctx, i);
680			hctx->sched_data = NULL;
681		}
682		flags = hctx->flags;
683	}
 
 
684	blk_mq_debugfs_unregister_sched(q);
 
 
685	if (e->type->ops.exit_sched)
686		e->type->ops.exit_sched(e);
687	blk_mq_sched_tags_teardown(q);
688	if (blk_mq_is_sbitmap_shared(flags))
689		blk_mq_exit_sched_shared_sbitmap(q);
690	q->elevator = NULL;
691}