Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
   4 */
   5#include <linux/mm.h>
   6#include <linux/swap.h>
   7#include <linux/bio.h>
   8#include <linux/blkdev.h>
   9#include <linux/uio.h>
  10#include <linux/iocontext.h>
  11#include <linux/slab.h>
  12#include <linux/init.h>
  13#include <linux/kernel.h>
  14#include <linux/export.h>
  15#include <linux/mempool.h>
  16#include <linux/workqueue.h>
  17#include <linux/cgroup.h>
 
  18#include <linux/highmem.h>
  19#include <linux/sched/sysctl.h>
  20#include <linux/blk-crypto.h>
  21#include <linux/xarray.h>
  22
  23#include <trace/events/block.h>
  24#include "blk.h"
  25#include "blk-rq-qos.h"
  26#include "blk-cgroup.h"
  27
  28#define ALLOC_CACHE_THRESHOLD	16
  29#define ALLOC_CACHE_SLACK	64
  30#define ALLOC_CACHE_MAX		256
  31
  32struct bio_alloc_cache {
  33	struct bio		*free_list;
  34	struct bio		*free_list_irq;
  35	unsigned int		nr;
  36	unsigned int		nr_irq;
  37};
  38
  39static struct biovec_slab {
  40	int nr_vecs;
  41	char *name;
  42	struct kmem_cache *slab;
  43} bvec_slabs[] __read_mostly = {
  44	{ .nr_vecs = 16, .name = "biovec-16" },
  45	{ .nr_vecs = 64, .name = "biovec-64" },
  46	{ .nr_vecs = 128, .name = "biovec-128" },
  47	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
  48};
  49
  50static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
  51{
  52	switch (nr_vecs) {
  53	/* smaller bios use inline vecs */
  54	case 5 ... 16:
  55		return &bvec_slabs[0];
  56	case 17 ... 64:
  57		return &bvec_slabs[1];
  58	case 65 ... 128:
  59		return &bvec_slabs[2];
  60	case 129 ... BIO_MAX_VECS:
  61		return &bvec_slabs[3];
  62	default:
  63		BUG();
  64		return NULL;
  65	}
  66}
  67
  68/*
  69 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  70 * IO code that does not need private memory pools.
  71 */
  72struct bio_set fs_bio_set;
  73EXPORT_SYMBOL(fs_bio_set);
  74
  75/*
  76 * Our slab pool management
  77 */
  78struct bio_slab {
  79	struct kmem_cache *slab;
  80	unsigned int slab_ref;
  81	unsigned int slab_size;
  82	char name[8];
  83};
  84static DEFINE_MUTEX(bio_slab_lock);
  85static DEFINE_XARRAY(bio_slabs);
  86
  87static struct bio_slab *create_bio_slab(unsigned int size)
  88{
  89	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
  90
  91	if (!bslab)
  92		return NULL;
  93
  94	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
  95	bslab->slab = kmem_cache_create(bslab->name, size,
  96			ARCH_KMALLOC_MINALIGN,
  97			SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
  98	if (!bslab->slab)
  99		goto fail_alloc_slab;
 100
 101	bslab->slab_ref = 1;
 102	bslab->slab_size = size;
 103
 104	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
 105		return bslab;
 106
 107	kmem_cache_destroy(bslab->slab);
 108
 109fail_alloc_slab:
 110	kfree(bslab);
 111	return NULL;
 112}
 113
 114static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
 115{
 116	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
 117}
 118
 119static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
 120{
 121	unsigned int size = bs_bio_slab_size(bs);
 122	struct bio_slab *bslab;
 123
 124	mutex_lock(&bio_slab_lock);
 125	bslab = xa_load(&bio_slabs, size);
 126	if (bslab)
 127		bslab->slab_ref++;
 128	else
 129		bslab = create_bio_slab(size);
 130	mutex_unlock(&bio_slab_lock);
 131
 132	if (bslab)
 133		return bslab->slab;
 134	return NULL;
 135}
 136
 137static void bio_put_slab(struct bio_set *bs)
 138{
 139	struct bio_slab *bslab = NULL;
 140	unsigned int slab_size = bs_bio_slab_size(bs);
 141
 142	mutex_lock(&bio_slab_lock);
 143
 144	bslab = xa_load(&bio_slabs, slab_size);
 145	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
 146		goto out;
 147
 148	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
 149
 150	WARN_ON(!bslab->slab_ref);
 151
 152	if (--bslab->slab_ref)
 153		goto out;
 154
 155	xa_erase(&bio_slabs, slab_size);
 156
 157	kmem_cache_destroy(bslab->slab);
 158	kfree(bslab);
 159
 160out:
 161	mutex_unlock(&bio_slab_lock);
 162}
 163
 164void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
 165{
 166	BUG_ON(nr_vecs > BIO_MAX_VECS);
 167
 168	if (nr_vecs == BIO_MAX_VECS)
 169		mempool_free(bv, pool);
 170	else if (nr_vecs > BIO_INLINE_VECS)
 171		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
 172}
 173
 174/*
 175 * Make the first allocation restricted and don't dump info on allocation
 176 * failures, since we'll fall back to the mempool in case of failure.
 177 */
 178static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
 179{
 180	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
 181		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
 182}
 183
 184struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
 185		gfp_t gfp_mask)
 186{
 187	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
 188
 189	if (WARN_ON_ONCE(!bvs))
 190		return NULL;
 191
 192	/*
 193	 * Upgrade the nr_vecs request to take full advantage of the allocation.
 194	 * We also rely on this in the bvec_free path.
 195	 */
 196	*nr_vecs = bvs->nr_vecs;
 197
 198	/*
 199	 * Try a slab allocation first for all smaller allocations.  If that
 200	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
 201	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
 202	 */
 203	if (*nr_vecs < BIO_MAX_VECS) {
 204		struct bio_vec *bvl;
 205
 206		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
 207		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
 208			return bvl;
 209		*nr_vecs = BIO_MAX_VECS;
 210	}
 211
 212	return mempool_alloc(pool, gfp_mask);
 213}
 214
 215void bio_uninit(struct bio *bio)
 216{
 217#ifdef CONFIG_BLK_CGROUP
 218	if (bio->bi_blkg) {
 219		blkg_put(bio->bi_blkg);
 220		bio->bi_blkg = NULL;
 221	}
 222#endif
 223	if (bio_integrity(bio))
 224		bio_integrity_free(bio);
 225
 226	bio_crypt_free_ctx(bio);
 227}
 228EXPORT_SYMBOL(bio_uninit);
 229
 230static void bio_free(struct bio *bio)
 231{
 232	struct bio_set *bs = bio->bi_pool;
 233	void *p = bio;
 234
 235	WARN_ON_ONCE(!bs);
 236
 237	bio_uninit(bio);
 238	bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
 239	mempool_free(p - bs->front_pad, &bs->bio_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 240}
 241
 242/*
 243 * Users of this function have their own bio allocation. Subsequently,
 244 * they must remember to pair any call to bio_init() with bio_uninit()
 245 * when IO has completed, or when the bio is released.
 246 */
 247void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
 248	      unsigned short max_vecs, blk_opf_t opf)
 249{
 250	bio->bi_next = NULL;
 251	bio->bi_bdev = bdev;
 252	bio->bi_opf = opf;
 253	bio->bi_flags = 0;
 254	bio->bi_ioprio = 0;
 255	bio->bi_status = 0;
 256	bio->bi_iter.bi_sector = 0;
 257	bio->bi_iter.bi_size = 0;
 258	bio->bi_iter.bi_idx = 0;
 259	bio->bi_iter.bi_bvec_done = 0;
 260	bio->bi_end_io = NULL;
 261	bio->bi_private = NULL;
 262#ifdef CONFIG_BLK_CGROUP
 263	bio->bi_blkg = NULL;
 264	bio->bi_issue.value = 0;
 265	if (bdev)
 266		bio_associate_blkg(bio);
 267#ifdef CONFIG_BLK_CGROUP_IOCOST
 268	bio->bi_iocost_cost = 0;
 269#endif
 270#endif
 271#ifdef CONFIG_BLK_INLINE_ENCRYPTION
 272	bio->bi_crypt_context = NULL;
 273#endif
 274#ifdef CONFIG_BLK_DEV_INTEGRITY
 275	bio->bi_integrity = NULL;
 276#endif
 277	bio->bi_vcnt = 0;
 278
 279	atomic_set(&bio->__bi_remaining, 1);
 280	atomic_set(&bio->__bi_cnt, 1);
 281	bio->bi_cookie = BLK_QC_T_NONE;
 282
 283	bio->bi_max_vecs = max_vecs;
 284	bio->bi_io_vec = table;
 285	bio->bi_pool = NULL;
 286}
 287EXPORT_SYMBOL(bio_init);
 288
 289/**
 290 * bio_reset - reinitialize a bio
 291 * @bio:	bio to reset
 292 * @bdev:	block device to use the bio for
 293 * @opf:	operation and flags for bio
 294 *
 295 * Description:
 296 *   After calling bio_reset(), @bio will be in the same state as a freshly
 297 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
 298 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
 299 *   comment in struct bio.
 300 */
 301void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
 302{
 303	bio_uninit(bio);
 304	memset(bio, 0, BIO_RESET_BYTES);
 305	atomic_set(&bio->__bi_remaining, 1);
 306	bio->bi_bdev = bdev;
 307	if (bio->bi_bdev)
 308		bio_associate_blkg(bio);
 309	bio->bi_opf = opf;
 310}
 311EXPORT_SYMBOL(bio_reset);
 312
 313static struct bio *__bio_chain_endio(struct bio *bio)
 314{
 315	struct bio *parent = bio->bi_private;
 316
 317	if (bio->bi_status && !parent->bi_status)
 318		parent->bi_status = bio->bi_status;
 319	bio_put(bio);
 320	return parent;
 321}
 322
 323static void bio_chain_endio(struct bio *bio)
 324{
 325	bio_endio(__bio_chain_endio(bio));
 326}
 327
 328/**
 329 * bio_chain - chain bio completions
 330 * @bio: the target bio
 331 * @parent: the parent bio of @bio
 332 *
 333 * The caller won't have a bi_end_io called when @bio completes - instead,
 334 * @parent's bi_end_io won't be called until both @parent and @bio have
 335 * completed; the chained bio will also be freed when it completes.
 336 *
 337 * The caller must not set bi_private or bi_end_io in @bio.
 338 */
 339void bio_chain(struct bio *bio, struct bio *parent)
 340{
 341	BUG_ON(bio->bi_private || bio->bi_end_io);
 342
 343	bio->bi_private = parent;
 344	bio->bi_end_io	= bio_chain_endio;
 345	bio_inc_remaining(parent);
 346}
 347EXPORT_SYMBOL(bio_chain);
 348
 349struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
 350		unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
 351{
 352	struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
 353
 354	if (bio) {
 355		bio_chain(bio, new);
 356		submit_bio(bio);
 357	}
 358
 359	return new;
 360}
 361EXPORT_SYMBOL_GPL(blk_next_bio);
 362
 363static void bio_alloc_rescue(struct work_struct *work)
 364{
 365	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
 366	struct bio *bio;
 367
 368	while (1) {
 369		spin_lock(&bs->rescue_lock);
 370		bio = bio_list_pop(&bs->rescue_list);
 371		spin_unlock(&bs->rescue_lock);
 372
 373		if (!bio)
 374			break;
 375
 376		submit_bio_noacct(bio);
 377	}
 378}
 379
 380static void punt_bios_to_rescuer(struct bio_set *bs)
 381{
 382	struct bio_list punt, nopunt;
 383	struct bio *bio;
 384
 385	if (WARN_ON_ONCE(!bs->rescue_workqueue))
 386		return;
 387	/*
 388	 * In order to guarantee forward progress we must punt only bios that
 389	 * were allocated from this bio_set; otherwise, if there was a bio on
 390	 * there for a stacking driver higher up in the stack, processing it
 391	 * could require allocating bios from this bio_set, and doing that from
 392	 * our own rescuer would be bad.
 393	 *
 394	 * Since bio lists are singly linked, pop them all instead of trying to
 395	 * remove from the middle of the list:
 396	 */
 397
 398	bio_list_init(&punt);
 399	bio_list_init(&nopunt);
 400
 401	while ((bio = bio_list_pop(&current->bio_list[0])))
 402		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
 403	current->bio_list[0] = nopunt;
 404
 405	bio_list_init(&nopunt);
 406	while ((bio = bio_list_pop(&current->bio_list[1])))
 407		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
 408	current->bio_list[1] = nopunt;
 409
 410	spin_lock(&bs->rescue_lock);
 411	bio_list_merge(&bs->rescue_list, &punt);
 412	spin_unlock(&bs->rescue_lock);
 413
 414	queue_work(bs->rescue_workqueue, &bs->rescue_work);
 415}
 416
 417static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
 418{
 419	unsigned long flags;
 420
 421	/* cache->free_list must be empty */
 422	if (WARN_ON_ONCE(cache->free_list))
 423		return;
 424
 425	local_irq_save(flags);
 426	cache->free_list = cache->free_list_irq;
 427	cache->free_list_irq = NULL;
 428	cache->nr += cache->nr_irq;
 429	cache->nr_irq = 0;
 430	local_irq_restore(flags);
 431}
 432
 433static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
 434		unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
 435		struct bio_set *bs)
 436{
 437	struct bio_alloc_cache *cache;
 438	struct bio *bio;
 439
 440	cache = per_cpu_ptr(bs->cache, get_cpu());
 441	if (!cache->free_list) {
 442		if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
 443			bio_alloc_irq_cache_splice(cache);
 444		if (!cache->free_list) {
 445			put_cpu();
 446			return NULL;
 447		}
 448	}
 449	bio = cache->free_list;
 450	cache->free_list = bio->bi_next;
 451	cache->nr--;
 452	put_cpu();
 453
 454	bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
 455	bio->bi_pool = bs;
 456	return bio;
 457}
 458
 459/**
 460 * bio_alloc_bioset - allocate a bio for I/O
 461 * @bdev:	block device to allocate the bio for (can be %NULL)
 462 * @nr_vecs:	number of bvecs to pre-allocate
 463 * @opf:	operation and flags for bio
 464 * @gfp_mask:   the GFP_* mask given to the slab allocator
 
 465 * @bs:		the bio_set to allocate from.
 466 *
 467 * Allocate a bio from the mempools in @bs.
 468 *
 469 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
 470 * allocate a bio.  This is due to the mempool guarantees.  To make this work,
 471 * callers must never allocate more than 1 bio at a time from the general pool.
 472 * Callers that need to allocate more than 1 bio must always submit the
 473 * previously allocated bio for IO before attempting to allocate a new one.
 474 * Failure to do so can cause deadlocks under memory pressure.
 475 *
 476 * Note that when running under submit_bio_noacct() (i.e. any block driver),
 477 * bios are not submitted until after you return - see the code in
 478 * submit_bio_noacct() that converts recursion into iteration, to prevent
 479 * stack overflows.
 480 *
 481 * This would normally mean allocating multiple bios under submit_bio_noacct()
 482 * would be susceptible to deadlocks, but we have
 483 * deadlock avoidance code that resubmits any blocked bios from a rescuer
 484 * thread.
 485 *
 486 * However, we do not guarantee forward progress for allocations from other
 487 * mempools. Doing multiple allocations from the same mempool under
 488 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
 489 * for per bio allocations.
 490 *
 491 * Returns: Pointer to new bio on success, NULL on failure.
 492 */
 493struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
 494			     blk_opf_t opf, gfp_t gfp_mask,
 495			     struct bio_set *bs)
 496{
 497	gfp_t saved_gfp = gfp_mask;
 498	struct bio *bio;
 499	void *p;
 500
 501	/* should not use nobvec bioset for nr_vecs > 0 */
 502	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
 503		return NULL;
 504
 505	if (opf & REQ_ALLOC_CACHE) {
 506		if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
 507			bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
 508						     gfp_mask, bs);
 509			if (bio)
 510				return bio;
 511			/*
 512			 * No cached bio available, bio returned below marked with
 513			 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
 514			 */
 515		} else {
 516			opf &= ~REQ_ALLOC_CACHE;
 517		}
 518	}
 519
 520	/*
 521	 * submit_bio_noacct() converts recursion to iteration; this means if
 522	 * we're running beneath it, any bios we allocate and submit will not be
 523	 * submitted (and thus freed) until after we return.
 524	 *
 525	 * This exposes us to a potential deadlock if we allocate multiple bios
 526	 * from the same bio_set() while running underneath submit_bio_noacct().
 527	 * If we were to allocate multiple bios (say a stacking block driver
 528	 * that was splitting bios), we would deadlock if we exhausted the
 529	 * mempool's reserve.
 530	 *
 531	 * We solve this, and guarantee forward progress, with a rescuer
 532	 * workqueue per bio_set. If we go to allocate and there are bios on
 533	 * current->bio_list, we first try the allocation without
 534	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
 535	 * blocking to the rescuer workqueue before we retry with the original
 536	 * gfp_flags.
 537	 */
 538	if (current->bio_list &&
 539	    (!bio_list_empty(&current->bio_list[0]) ||
 540	     !bio_list_empty(&current->bio_list[1])) &&
 541	    bs->rescue_workqueue)
 542		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
 543
 544	p = mempool_alloc(&bs->bio_pool, gfp_mask);
 545	if (!p && gfp_mask != saved_gfp) {
 546		punt_bios_to_rescuer(bs);
 547		gfp_mask = saved_gfp;
 548		p = mempool_alloc(&bs->bio_pool, gfp_mask);
 549	}
 550	if (unlikely(!p))
 551		return NULL;
 552	if (!mempool_is_saturated(&bs->bio_pool))
 553		opf &= ~REQ_ALLOC_CACHE;
 554
 555	bio = p + bs->front_pad;
 556	if (nr_vecs > BIO_INLINE_VECS) {
 557		struct bio_vec *bvl = NULL;
 558
 559		bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
 560		if (!bvl && gfp_mask != saved_gfp) {
 561			punt_bios_to_rescuer(bs);
 562			gfp_mask = saved_gfp;
 563			bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
 564		}
 565		if (unlikely(!bvl))
 566			goto err_free;
 567
 568		bio_init(bio, bdev, bvl, nr_vecs, opf);
 569	} else if (nr_vecs) {
 570		bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
 571	} else {
 572		bio_init(bio, bdev, NULL, 0, opf);
 573	}
 574
 575	bio->bi_pool = bs;
 576	return bio;
 577
 578err_free:
 579	mempool_free(p, &bs->bio_pool);
 580	return NULL;
 581}
 582EXPORT_SYMBOL(bio_alloc_bioset);
 583
 584/**
 585 * bio_kmalloc - kmalloc a bio
 586 * @nr_vecs:	number of bio_vecs to allocate
 587 * @gfp_mask:   the GFP_* mask given to the slab allocator
 
 588 *
 589 * Use kmalloc to allocate a bio (including bvecs).  The bio must be initialized
 590 * using bio_init() before use.  To free a bio returned from this function use
 591 * kfree() after calling bio_uninit().  A bio returned from this function can
 592 * be reused by calling bio_uninit() before calling bio_init() again.
 593 *
 594 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
 595 * function are not backed by a mempool can fail.  Do not use this function
 596 * for allocations in the file system I/O path.
 597 *
 598 * Returns: Pointer to new bio on success, NULL on failure.
 599 */
 600struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
 601{
 602	struct bio *bio;
 603
 604	if (nr_vecs > UIO_MAXIOV)
 
 
 
 
 605		return NULL;
 606	return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
 
 
 607}
 608EXPORT_SYMBOL(bio_kmalloc);
 609
 610void zero_fill_bio(struct bio *bio)
 611{
 
 612	struct bio_vec bv;
 613	struct bvec_iter iter;
 614
 615	bio_for_each_segment(bv, bio, iter)
 616		memzero_bvec(&bv);
 
 
 
 
 617}
 618EXPORT_SYMBOL(zero_fill_bio);
 619
 620/**
 621 * bio_truncate - truncate the bio to small size of @new_size
 622 * @bio:	the bio to be truncated
 623 * @new_size:	new size for truncating the bio
 624 *
 625 * Description:
 626 *   Truncate the bio to new size of @new_size. If bio_op(bio) is
 627 *   REQ_OP_READ, zero the truncated part. This function should only
 628 *   be used for handling corner cases, such as bio eod.
 629 */
 630static void bio_truncate(struct bio *bio, unsigned new_size)
 631{
 632	struct bio_vec bv;
 633	struct bvec_iter iter;
 634	unsigned int done = 0;
 635	bool truncated = false;
 636
 637	if (new_size >= bio->bi_iter.bi_size)
 638		return;
 639
 640	if (bio_op(bio) != REQ_OP_READ)
 641		goto exit;
 642
 643	bio_for_each_segment(bv, bio, iter) {
 644		if (done + bv.bv_len > new_size) {
 645			unsigned offset;
 646
 647			if (!truncated)
 648				offset = new_size - done;
 649			else
 650				offset = 0;
 651			zero_user(bv.bv_page, bv.bv_offset + offset,
 652				  bv.bv_len - offset);
 653			truncated = true;
 654		}
 655		done += bv.bv_len;
 656	}
 657
 658 exit:
 659	/*
 660	 * Don't touch bvec table here and make it really immutable, since
 661	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
 662	 * in its .end_bio() callback.
 663	 *
 664	 * It is enough to truncate bio by updating .bi_size since we can make
 665	 * correct bvec with the updated .bi_size for drivers.
 666	 */
 667	bio->bi_iter.bi_size = new_size;
 668}
 669
 670/**
 671 * guard_bio_eod - truncate a BIO to fit the block device
 672 * @bio:	bio to truncate
 673 *
 674 * This allows us to do IO even on the odd last sectors of a device, even if the
 675 * block size is some multiple of the physical sector size.
 676 *
 677 * We'll just truncate the bio to the size of the device, and clear the end of
 678 * the buffer head manually.  Truly out-of-range accesses will turn into actual
 679 * I/O errors, this only handles the "we need to be able to do I/O at the final
 680 * sector" case.
 681 */
 682void guard_bio_eod(struct bio *bio)
 683{
 684	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
 685
 686	if (!maxsector)
 687		return;
 688
 689	/*
 690	 * If the *whole* IO is past the end of the device,
 691	 * let it through, and the IO layer will turn it into
 692	 * an EIO.
 693	 */
 694	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
 695		return;
 696
 697	maxsector -= bio->bi_iter.bi_sector;
 698	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
 699		return;
 700
 701	bio_truncate(bio, maxsector << 9);
 702}
 703
 704static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
 705				   unsigned int nr)
 706{
 707	unsigned int i = 0;
 708	struct bio *bio;
 709
 710	while ((bio = cache->free_list) != NULL) {
 711		cache->free_list = bio->bi_next;
 712		cache->nr--;
 713		bio_free(bio);
 714		if (++i == nr)
 715			break;
 716	}
 717	return i;
 718}
 719
 720static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
 721				  unsigned int nr)
 722{
 723	nr -= __bio_alloc_cache_prune(cache, nr);
 724	if (!READ_ONCE(cache->free_list)) {
 725		bio_alloc_irq_cache_splice(cache);
 726		__bio_alloc_cache_prune(cache, nr);
 727	}
 728}
 729
 730static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
 731{
 732	struct bio_set *bs;
 733
 734	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
 735	if (bs->cache) {
 736		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
 737
 738		bio_alloc_cache_prune(cache, -1U);
 739	}
 740	return 0;
 741}
 742
 743static void bio_alloc_cache_destroy(struct bio_set *bs)
 744{
 745	int cpu;
 746
 747	if (!bs->cache)
 748		return;
 749
 750	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
 751	for_each_possible_cpu(cpu) {
 752		struct bio_alloc_cache *cache;
 753
 754		cache = per_cpu_ptr(bs->cache, cpu);
 755		bio_alloc_cache_prune(cache, -1U);
 756	}
 757	free_percpu(bs->cache);
 758	bs->cache = NULL;
 759}
 760
 761static inline void bio_put_percpu_cache(struct bio *bio)
 762{
 763	struct bio_alloc_cache *cache;
 764
 765	cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
 766	if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX) {
 767		put_cpu();
 768		bio_free(bio);
 769		return;
 770	}
 771
 772	bio_uninit(bio);
 773
 774	if ((bio->bi_opf & REQ_POLLED) && !WARN_ON_ONCE(in_interrupt())) {
 775		bio->bi_next = cache->free_list;
 776		cache->free_list = bio;
 777		cache->nr++;
 778	} else {
 779		unsigned long flags;
 780
 781		local_irq_save(flags);
 782		bio->bi_next = cache->free_list_irq;
 783		cache->free_list_irq = bio;
 784		cache->nr_irq++;
 785		local_irq_restore(flags);
 786	}
 787	put_cpu();
 788}
 789
 790/**
 791 * bio_put - release a reference to a bio
 792 * @bio:   bio to release reference to
 793 *
 794 * Description:
 795 *   Put a reference to a &struct bio, either one you have gotten with
 796 *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
 797 **/
 798void bio_put(struct bio *bio)
 799{
 800	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
 801		BUG_ON(!atomic_read(&bio->__bi_cnt));
 802		if (!atomic_dec_and_test(&bio->__bi_cnt))
 803			return;
 804	}
 805	if (bio->bi_opf & REQ_ALLOC_CACHE)
 806		bio_put_percpu_cache(bio);
 807	else
 808		bio_free(bio);
 
 
 
 
 
 
 
 
 
 809}
 810EXPORT_SYMBOL(bio_put);
 811
 812static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
 
 
 
 
 
 
 
 
 
 
 
 813{
 
 
 
 
 
 
 
 814	bio_set_flag(bio, BIO_CLONED);
 
 
 
 
 
 815	bio->bi_ioprio = bio_src->bi_ioprio;
 
 816	bio->bi_iter = bio_src->bi_iter;
 
 817
 818	if (bio->bi_bdev) {
 819		if (bio->bi_bdev == bio_src->bi_bdev &&
 820		    bio_flagged(bio_src, BIO_REMAPPED))
 821			bio_set_flag(bio, BIO_REMAPPED);
 822		bio_clone_blkg_association(bio, bio_src);
 823	}
 824
 825	if (bio_crypt_clone(bio, bio_src, gfp) < 0)
 826		return -ENOMEM;
 827	if (bio_integrity(bio_src) &&
 828	    bio_integrity_clone(bio, bio_src, gfp) < 0)
 829		return -ENOMEM;
 830	return 0;
 831}
 
 832
 833/**
 834 * bio_alloc_clone - clone a bio that shares the original bio's biovec
 835 * @bdev: block_device to clone onto
 836 * @bio_src: bio to clone from
 837 * @gfp: allocation priority
 838 * @bs: bio_set to allocate from
 839 *
 840 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
 841 * bio, but not the actual data it points to.
 842 *
 843 * The caller must ensure that the return bio is not freed before @bio_src.
 844 */
 845struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
 846		gfp_t gfp, struct bio_set *bs)
 847{
 848	struct bio *bio;
 849
 850	bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
 851	if (!bio)
 852		return NULL;
 853
 854	if (__bio_clone(bio, bio_src, gfp) < 0) {
 855		bio_put(bio);
 856		return NULL;
 857	}
 858	bio->bi_io_vec = bio_src->bi_io_vec;
 859
 860	return bio;
 861}
 862EXPORT_SYMBOL(bio_alloc_clone);
 863
 864/**
 865 * bio_init_clone - clone a bio that shares the original bio's biovec
 866 * @bdev: block_device to clone onto
 867 * @bio: bio to clone into
 868 * @bio_src: bio to clone from
 869 * @gfp: allocation priority
 870 *
 871 * Initialize a new bio in caller provided memory that is a clone of @bio_src.
 872 * The caller owns the returned bio, but not the actual data it points to.
 873 *
 874 * The caller must ensure that @bio_src is not freed before @bio.
 875 */
 876int bio_init_clone(struct block_device *bdev, struct bio *bio,
 877		struct bio *bio_src, gfp_t gfp)
 878{
 879	int ret;
 880
 881	bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
 882	ret = __bio_clone(bio, bio_src, gfp);
 883	if (ret)
 884		bio_uninit(bio);
 885	return ret;
 886}
 887EXPORT_SYMBOL(bio_init_clone);
 888
 889/**
 890 * bio_full - check if the bio is full
 891 * @bio:	bio to check
 892 * @len:	length of one segment to be added
 893 *
 894 * Return true if @bio is full and one segment with @len bytes can't be
 895 * added to the bio, otherwise return false
 896 */
 897static inline bool bio_full(struct bio *bio, unsigned len)
 898{
 899	if (bio->bi_vcnt >= bio->bi_max_vecs)
 900		return true;
 901	if (bio->bi_iter.bi_size > UINT_MAX - len)
 902		return true;
 903	return false;
 904}
 
 905
 906static inline bool page_is_mergeable(const struct bio_vec *bv,
 907		struct page *page, unsigned int len, unsigned int off,
 908		bool *same_page)
 909{
 910	size_t bv_end = bv->bv_offset + bv->bv_len;
 911	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
 912	phys_addr_t page_addr = page_to_phys(page);
 913
 914	if (vec_end_addr + 1 != page_addr + off)
 915		return false;
 916	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
 917		return false;
 918	if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
 919		return false;
 920
 921	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
 922	if (*same_page)
 923		return true;
 924	else if (IS_ENABLED(CONFIG_KMSAN))
 925		return false;
 926	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
 927}
 928
 929/**
 930 * __bio_try_merge_page - try appending data to an existing bvec.
 931 * @bio: destination bio
 932 * @page: start page to add
 933 * @len: length of the data to add
 934 * @off: offset of the data relative to @page
 935 * @same_page: return if the segment has been merged inside the same page
 936 *
 937 * Try to add the data at @page + @off to the last bvec of @bio.  This is a
 938 * useful optimisation for file systems with a block size smaller than the
 939 * page size.
 940 *
 941 * Warn if (@len, @off) crosses pages in case that @same_page is true.
 942 *
 943 * Return %true on success or %false on failure.
 944 */
 945static bool __bio_try_merge_page(struct bio *bio, struct page *page,
 946		unsigned int len, unsigned int off, bool *same_page)
 947{
 948	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
 949		return false;
 950
 951	if (bio->bi_vcnt > 0) {
 952		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
 953
 954		if (page_is_mergeable(bv, page, len, off, same_page)) {
 955			if (bio->bi_iter.bi_size > UINT_MAX - len) {
 956				*same_page = false;
 957				return false;
 958			}
 959			bv->bv_len += len;
 960			bio->bi_iter.bi_size += len;
 961			return true;
 962		}
 963	}
 964	return false;
 965}
 966
 967/*
 968 * Try to merge a page into a segment, while obeying the hardware segment
 969 * size limit.  This is not for normal read/write bios, but for passthrough
 970 * or Zone Append operations that we can't split.
 971 */
 972static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
 973				 struct page *page, unsigned len,
 974				 unsigned offset, bool *same_page)
 975{
 976	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
 977	unsigned long mask = queue_segment_boundary(q);
 978	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
 979	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
 980
 981	if ((addr1 | mask) != (addr2 | mask))
 982		return false;
 983	if (bv->bv_len + len > queue_max_segment_size(q))
 984		return false;
 985	return __bio_try_merge_page(bio, page, len, offset, same_page);
 986}
 987
 988/**
 989 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
 990 * @q: the target queue
 991 * @bio: destination bio
 992 * @page: page to add
 993 * @len: vec entry length
 994 * @offset: vec entry offset
 995 * @max_sectors: maximum number of sectors that can be added
 996 * @same_page: return if the segment has been merged inside the same page
 997 *
 998 * Add a page to a bio while respecting the hardware max_sectors, max_segment
 999 * and gap limitations.
1000 */
1001int bio_add_hw_page(struct request_queue *q, struct bio *bio,
1002		struct page *page, unsigned int len, unsigned int offset,
1003		unsigned int max_sectors, bool *same_page)
1004{
1005	struct bio_vec *bvec;
1006
1007	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1008		return 0;
1009
1010	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1011		return 0;
1012
1013	if (bio->bi_vcnt > 0) {
1014		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
1015			return len;
1016
1017		/*
1018		 * If the queue doesn't support SG gaps and adding this segment
1019		 * would create a gap, disallow it.
1020		 */
1021		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
1022		if (bvec_gap_to_prev(&q->limits, bvec, offset))
1023			return 0;
1024	}
1025
1026	if (bio_full(bio, len))
1027		return 0;
1028
1029	if (bio->bi_vcnt >= queue_max_segments(q))
1030		return 0;
1031
1032	bvec = &bio->bi_io_vec[bio->bi_vcnt];
1033	bvec->bv_page = page;
1034	bvec->bv_len = len;
1035	bvec->bv_offset = offset;
1036	bio->bi_vcnt++;
1037	bio->bi_iter.bi_size += len;
1038	return len;
1039}
1040
1041/**
1042 * bio_add_pc_page	- attempt to add page to passthrough bio
1043 * @q: the target queue
1044 * @bio: destination bio
1045 * @page: page to add
1046 * @len: vec entry length
1047 * @offset: vec entry offset
1048 *
1049 * Attempt to add a page to the bio_vec maplist. This can fail for a
1050 * number of reasons, such as the bio being full or target block device
1051 * limitations. The target block device must allow bio's up to PAGE_SIZE,
1052 * so it is always possible to add a single page to an empty bio.
1053 *
1054 * This should only be used by passthrough bios.
1055 */
1056int bio_add_pc_page(struct request_queue *q, struct bio *bio,
1057		struct page *page, unsigned int len, unsigned int offset)
1058{
1059	bool same_page = false;
1060	return bio_add_hw_page(q, bio, page, len, offset,
1061			queue_max_hw_sectors(q), &same_page);
1062}
1063EXPORT_SYMBOL(bio_add_pc_page);
1064
1065/**
1066 * bio_add_zone_append_page - attempt to add page to zone-append bio
1067 * @bio: destination bio
1068 * @page: page to add
1069 * @len: vec entry length
1070 * @offset: vec entry offset
1071 *
1072 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
1073 * for a zone-append request. This can fail for a number of reasons, such as the
1074 * bio being full or the target block device is not a zoned block device or
1075 * other limitations of the target block device. The target block device must
1076 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
1077 * to an empty bio.
1078 *
1079 * Returns: number of bytes added to the bio, or 0 in case of a failure.
1080 */
1081int bio_add_zone_append_page(struct bio *bio, struct page *page,
1082			     unsigned int len, unsigned int offset)
1083{
1084	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1085	bool same_page = false;
1086
1087	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
1088		return 0;
1089
1090	if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev)))
1091		return 0;
1092
1093	return bio_add_hw_page(q, bio, page, len, offset,
1094			       queue_max_zone_append_sectors(q), &same_page);
1095}
1096EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
1097
1098/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1099 * __bio_add_page - add page(s) to a bio in a new segment
1100 * @bio: destination bio
1101 * @page: start page to add
1102 * @len: length of the data to add, may cross pages
1103 * @off: offset of the data relative to @page, may cross pages
1104 *
1105 * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
1106 * that @bio has space for another bvec.
1107 */
1108void __bio_add_page(struct bio *bio, struct page *page,
1109		unsigned int len, unsigned int off)
1110{
1111	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
1112
1113	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
1114	WARN_ON_ONCE(bio_full(bio, len));
1115
1116	bv->bv_page = page;
1117	bv->bv_offset = off;
1118	bv->bv_len = len;
1119
1120	bio->bi_iter.bi_size += len;
1121	bio->bi_vcnt++;
 
 
 
1122}
1123EXPORT_SYMBOL_GPL(__bio_add_page);
1124
1125/**
1126 *	bio_add_page	-	attempt to add page(s) to bio
1127 *	@bio: destination bio
1128 *	@page: start page to add
1129 *	@len: vec entry length, may cross pages
1130 *	@offset: vec entry offset relative to @page, may cross pages
1131 *
1132 *	Attempt to add page(s) to the bio_vec maplist. This will only fail
1133 *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1134 */
1135int bio_add_page(struct bio *bio, struct page *page,
1136		 unsigned int len, unsigned int offset)
1137{
1138	bool same_page = false;
1139
1140	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1141		if (bio_full(bio, len))
1142			return 0;
1143		__bio_add_page(bio, page, len, offset);
1144	}
1145	return len;
1146}
1147EXPORT_SYMBOL(bio_add_page);
1148
1149/**
1150 * bio_add_folio - Attempt to add part of a folio to a bio.
1151 * @bio: BIO to add to.
1152 * @folio: Folio to add.
1153 * @len: How many bytes from the folio to add.
1154 * @off: First byte in this folio to add.
1155 *
1156 * Filesystems that use folios can call this function instead of calling
1157 * bio_add_page() for each page in the folio.  If @off is bigger than
1158 * PAGE_SIZE, this function can create a bio_vec that starts in a page
1159 * after the bv_page.  BIOs do not support folios that are 4GiB or larger.
1160 *
1161 * Return: Whether the addition was successful.
1162 */
1163bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1164		   size_t off)
1165{
1166	if (len > UINT_MAX || off > UINT_MAX)
1167		return false;
1168	return bio_add_page(bio, &folio->page, len, off) > 0;
1169}
1170
1171void __bio_release_pages(struct bio *bio, bool mark_dirty)
1172{
1173	struct bvec_iter_all iter_all;
1174	struct bio_vec *bvec;
1175
 
 
 
1176	bio_for_each_segment_all(bvec, bio, iter_all) {
1177		if (mark_dirty && !PageCompound(bvec->bv_page))
1178			set_page_dirty_lock(bvec->bv_page);
1179		put_page(bvec->bv_page);
1180	}
1181}
1182EXPORT_SYMBOL_GPL(__bio_release_pages);
1183
1184void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1185{
1186	size_t size = iov_iter_count(iter);
1187
1188	WARN_ON_ONCE(bio->bi_max_vecs);
1189
1190	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1191		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1192		size_t max_sectors = queue_max_zone_append_sectors(q);
1193
1194		size = min(size, max_sectors << SECTOR_SHIFT);
1195	}
1196
1197	bio->bi_vcnt = iter->nr_segs;
1198	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1199	bio->bi_iter.bi_bvec_done = iter->iov_offset;
1200	bio->bi_iter.bi_size = size;
1201	bio_set_flag(bio, BIO_NO_PAGE_REF);
1202	bio_set_flag(bio, BIO_CLONED);
1203}
1204
1205static int bio_iov_add_page(struct bio *bio, struct page *page,
1206		unsigned int len, unsigned int offset)
1207{
1208	bool same_page = false;
 
 
 
1209
1210	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1211		__bio_add_page(bio, page, len, offset);
1212		return 0;
1213	}
1214
1215	if (same_page)
1216		put_page(page);
 
1217	return 0;
1218}
1219
1220static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page,
1221		unsigned int len, unsigned int offset)
1222{
1223	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1224	bool same_page = false;
1225
1226	if (bio_add_hw_page(q, bio, page, len, offset,
1227			queue_max_zone_append_sectors(q), &same_page) != len)
1228		return -EINVAL;
1229	if (same_page)
1230		put_page(page);
1231	return 0;
1232}
1233
1234#define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
1235
1236/**
1237 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1238 * @bio: bio to add pages to
1239 * @iter: iov iterator describing the region to be mapped
1240 *
1241 * Pins pages from *iter and appends them to @bio's bvec array. The
1242 * pages will have to be released using put_page() when done.
1243 * For multi-segment *iter, this function only adds pages from the
1244 * next non-empty segment of the iov iterator.
1245 */
1246static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1247{
1248	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1249	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1250	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1251	struct page **pages = (struct page **)bv;
1252	unsigned int gup_flags = 0;
1253	ssize_t size, left;
1254	unsigned len, i = 0;
1255	size_t offset, trim;
1256	int ret = 0;
1257
1258	/*
1259	 * Move page array up in the allocated memory for the bio vecs as far as
1260	 * possible so that we can start filling biovecs from the beginning
1261	 * without overwriting the temporary page array.
1262	 */
1263	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1264	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1265
1266	if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
1267		gup_flags |= FOLL_PCI_P2PDMA;
1268
1269	/*
1270	 * Each segment in the iov is required to be a block size multiple.
1271	 * However, we may not be able to get the entire segment if it spans
1272	 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
1273	 * result to ensure the bio's total size is correct. The remainder of
1274	 * the iov data will be picked up in the next bio iteration.
1275	 */
1276	size = iov_iter_get_pages(iter, pages,
1277				  UINT_MAX - bio->bi_iter.bi_size,
1278				  nr_pages, &offset, gup_flags);
1279	if (unlikely(size <= 0))
1280		return size ? size : -EFAULT;
1281
1282	nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
 
1283
1284	trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
1285	iov_iter_revert(iter, trim);
1286
1287	size -= trim;
1288	if (unlikely(!size)) {
1289		ret = -EFAULT;
1290		goto out;
 
 
 
 
 
 
 
1291	}
1292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1293	for (left = size, i = 0; left > 0; left -= len, i++) {
1294		struct page *page = pages[i];
 
1295
1296		len = min_t(size_t, PAGE_SIZE - offset, left);
1297		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1298			ret = bio_iov_add_zone_append_page(bio, page, len,
1299					offset);
1300			if (ret)
1301				break;
1302		} else
1303			bio_iov_add_page(bio, page, len, offset);
1304
1305		offset = 0;
1306	}
1307
1308	iov_iter_revert(iter, left);
1309out:
1310	while (i < nr_pages)
1311		put_page(pages[i++]);
1312
1313	return ret;
1314}
1315
1316/**
1317 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1318 * @bio: bio to add pages to
1319 * @iter: iov iterator describing the region to be added
1320 *
1321 * This takes either an iterator pointing to user memory, or one pointing to
1322 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1323 * map them into the kernel. On IO completion, the caller should put those
1324 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1325 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1326 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1327 * completed by a call to ->ki_complete() or returns with an error other than
1328 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1329 * on IO completion. If it isn't, then pages should be released.
1330 *
1331 * The function tries, but does not guarantee, to pin as many pages as
1332 * fit into the bio, or are requested in @iter, whatever is smaller. If
1333 * MM encounters an error pinning the requested pages, it stops. Error
1334 * is returned only if 0 pages could be pinned.
 
 
 
1335 */
1336int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1337{
1338	int ret = 0;
1339
1340	if (iov_iter_is_bvec(iter)) {
1341		bio_iov_bvec_set(bio, iter);
1342		iov_iter_advance(iter, bio->bi_iter.bi_size);
1343		return 0;
1344	}
1345
1346	do {
1347		ret = __bio_iov_iter_get_pages(bio, iter);
 
 
 
1348	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1349
 
 
1350	return bio->bi_vcnt ? 0 : ret;
1351}
1352EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1353
1354static void submit_bio_wait_endio(struct bio *bio)
1355{
1356	complete(bio->bi_private);
1357}
1358
1359/**
1360 * submit_bio_wait - submit a bio, and wait until it completes
1361 * @bio: The &struct bio which describes the I/O
1362 *
1363 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1364 * bio_endio() on failure.
1365 *
1366 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1367 * result in bio reference to be consumed. The caller must drop the reference
1368 * on his own.
1369 */
1370int submit_bio_wait(struct bio *bio)
1371{
1372	DECLARE_COMPLETION_ONSTACK_MAP(done,
1373			bio->bi_bdev->bd_disk->lockdep_map);
1374	unsigned long hang_check;
1375
1376	bio->bi_private = &done;
1377	bio->bi_end_io = submit_bio_wait_endio;
1378	bio->bi_opf |= REQ_SYNC;
1379	submit_bio(bio);
1380
1381	/* Prevent hang_check timer from firing at us during very long I/O */
1382	hang_check = sysctl_hung_task_timeout_secs;
1383	if (hang_check)
1384		while (!wait_for_completion_io_timeout(&done,
1385					hang_check * (HZ/2)))
1386			;
1387	else
1388		wait_for_completion_io(&done);
1389
1390	return blk_status_to_errno(bio->bi_status);
1391}
1392EXPORT_SYMBOL(submit_bio_wait);
1393
1394void __bio_advance(struct bio *bio, unsigned bytes)
 
 
 
 
 
 
 
 
 
 
 
1395{
1396	if (bio_integrity(bio))
1397		bio_integrity_advance(bio, bytes);
1398
1399	bio_crypt_advance(bio, bytes);
1400	bio_advance_iter(bio, &bio->bi_iter, bytes);
1401}
1402EXPORT_SYMBOL(__bio_advance);
1403
1404void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1405			struct bio *src, struct bvec_iter *src_iter)
1406{
 
 
 
 
1407	while (src_iter->bi_size && dst_iter->bi_size) {
1408		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1409		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1410		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1411		void *src_buf = bvec_kmap_local(&src_bv);
1412		void *dst_buf = bvec_kmap_local(&dst_bv);
1413
1414		memcpy(dst_buf, src_buf, bytes);
1415
1416		kunmap_local(dst_buf);
1417		kunmap_local(src_buf);
 
 
 
 
 
 
 
 
 
1418
1419		bio_advance_iter_single(src, src_iter, bytes);
1420		bio_advance_iter_single(dst, dst_iter, bytes);
1421	}
1422}
1423EXPORT_SYMBOL(bio_copy_data_iter);
1424
1425/**
1426 * bio_copy_data - copy contents of data buffers from one bio to another
1427 * @src: source bio
1428 * @dst: destination bio
1429 *
1430 * Stops when it reaches the end of either @src or @dst - that is, copies
1431 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1432 */
1433void bio_copy_data(struct bio *dst, struct bio *src)
1434{
1435	struct bvec_iter src_iter = src->bi_iter;
1436	struct bvec_iter dst_iter = dst->bi_iter;
1437
1438	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1439}
1440EXPORT_SYMBOL(bio_copy_data);
1441
1442void bio_free_pages(struct bio *bio)
1443{
1444	struct bio_vec *bvec;
1445	struct bvec_iter_all iter_all;
1446
1447	bio_for_each_segment_all(bvec, bio, iter_all)
1448		__free_page(bvec->bv_page);
1449}
1450EXPORT_SYMBOL(bio_free_pages);
1451
1452/*
1453 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1454 * for performing direct-IO in BIOs.
1455 *
1456 * The problem is that we cannot run set_page_dirty() from interrupt context
1457 * because the required locks are not interrupt-safe.  So what we can do is to
1458 * mark the pages dirty _before_ performing IO.  And in interrupt context,
1459 * check that the pages are still dirty.   If so, fine.  If not, redirty them
1460 * in process context.
1461 *
1462 * We special-case compound pages here: normally this means reads into hugetlb
1463 * pages.  The logic in here doesn't really work right for compound pages
1464 * because the VM does not uniformly chase down the head page in all cases.
1465 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1466 * handle them at all.  So we skip compound pages here at an early stage.
1467 *
1468 * Note that this code is very hard to test under normal circumstances because
1469 * direct-io pins the pages with get_user_pages().  This makes
1470 * is_page_cache_freeable return false, and the VM will not clean the pages.
1471 * But other code (eg, flusher threads) could clean the pages if they are mapped
1472 * pagecache.
1473 *
1474 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1475 * deferred bio dirtying paths.
1476 */
1477
1478/*
1479 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1480 */
1481void bio_set_pages_dirty(struct bio *bio)
1482{
1483	struct bio_vec *bvec;
1484	struct bvec_iter_all iter_all;
1485
1486	bio_for_each_segment_all(bvec, bio, iter_all) {
1487		if (!PageCompound(bvec->bv_page))
1488			set_page_dirty_lock(bvec->bv_page);
1489	}
1490}
1491
1492/*
1493 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1494 * If they are, then fine.  If, however, some pages are clean then they must
1495 * have been written out during the direct-IO read.  So we take another ref on
1496 * the BIO and re-dirty the pages in process context.
1497 *
1498 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1499 * here on.  It will run one put_page() against each page and will run one
1500 * bio_put() against the BIO.
1501 */
1502
1503static void bio_dirty_fn(struct work_struct *work);
1504
1505static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1506static DEFINE_SPINLOCK(bio_dirty_lock);
1507static struct bio *bio_dirty_list;
1508
1509/*
1510 * This runs in process context
1511 */
1512static void bio_dirty_fn(struct work_struct *work)
1513{
1514	struct bio *bio, *next;
1515
1516	spin_lock_irq(&bio_dirty_lock);
1517	next = bio_dirty_list;
1518	bio_dirty_list = NULL;
1519	spin_unlock_irq(&bio_dirty_lock);
1520
1521	while ((bio = next) != NULL) {
1522		next = bio->bi_private;
1523
1524		bio_release_pages(bio, true);
1525		bio_put(bio);
1526	}
1527}
1528
1529void bio_check_pages_dirty(struct bio *bio)
1530{
1531	struct bio_vec *bvec;
1532	unsigned long flags;
1533	struct bvec_iter_all iter_all;
1534
1535	bio_for_each_segment_all(bvec, bio, iter_all) {
1536		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1537			goto defer;
1538	}
1539
1540	bio_release_pages(bio, false);
1541	bio_put(bio);
1542	return;
1543defer:
1544	spin_lock_irqsave(&bio_dirty_lock, flags);
1545	bio->bi_private = bio_dirty_list;
1546	bio_dirty_list = bio;
1547	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1548	schedule_work(&bio_dirty_work);
1549}
1550
1551static inline bool bio_remaining_done(struct bio *bio)
1552{
1553	/*
1554	 * If we're not chaining, then ->__bi_remaining is always 1 and
1555	 * we always end io on the first invocation.
1556	 */
1557	if (!bio_flagged(bio, BIO_CHAIN))
1558		return true;
1559
1560	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1561
1562	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1563		bio_clear_flag(bio, BIO_CHAIN);
1564		return true;
1565	}
1566
1567	return false;
1568}
1569
1570/**
1571 * bio_endio - end I/O on a bio
1572 * @bio:	bio
1573 *
1574 * Description:
1575 *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1576 *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1577 *   bio unless they own it and thus know that it has an end_io function.
1578 *
1579 *   bio_endio() can be called several times on a bio that has been chained
1580 *   using bio_chain().  The ->bi_end_io() function will only be called the
1581 *   last time.
1582 **/
1583void bio_endio(struct bio *bio)
1584{
1585again:
1586	if (!bio_remaining_done(bio))
1587		return;
1588	if (!bio_integrity_endio(bio))
1589		return;
1590
1591	rq_qos_done_bio(bio);
 
1592
1593	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1594		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1595		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1596	}
1597
1598	/*
1599	 * Need to have a real endio function for chained bios, otherwise
1600	 * various corner cases will break (like stacking block devices that
1601	 * save/restore bi_end_io) - however, we want to avoid unbounded
1602	 * recursion and blowing the stack. Tail call optimization would
1603	 * handle this, but compiling with frame pointers also disables
1604	 * gcc's sibling call optimization.
1605	 */
1606	if (bio->bi_end_io == bio_chain_endio) {
1607		bio = __bio_chain_endio(bio);
1608		goto again;
1609	}
1610
1611	blk_throtl_bio_endio(bio);
1612	/* release cgroup info */
1613	bio_uninit(bio);
1614	if (bio->bi_end_io)
1615		bio->bi_end_io(bio);
1616}
1617EXPORT_SYMBOL(bio_endio);
1618
1619/**
1620 * bio_split - split a bio
1621 * @bio:	bio to split
1622 * @sectors:	number of sectors to split from the front of @bio
1623 * @gfp:	gfp mask
1624 * @bs:		bio set to allocate from
1625 *
1626 * Allocates and returns a new bio which represents @sectors from the start of
1627 * @bio, and updates @bio to represent the remaining sectors.
1628 *
1629 * Unless this is a discard request the newly allocated bio will point
1630 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1631 * neither @bio nor @bs are freed before the split bio.
1632 */
1633struct bio *bio_split(struct bio *bio, int sectors,
1634		      gfp_t gfp, struct bio_set *bs)
1635{
1636	struct bio *split;
1637
1638	BUG_ON(sectors <= 0);
1639	BUG_ON(sectors >= bio_sectors(bio));
1640
1641	/* Zone append commands cannot be split */
1642	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1643		return NULL;
1644
1645	split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1646	if (!split)
1647		return NULL;
1648
1649	split->bi_iter.bi_size = sectors << 9;
1650
1651	if (bio_integrity(split))
1652		bio_integrity_trim(split);
1653
1654	bio_advance(bio, split->bi_iter.bi_size);
1655
1656	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1657		bio_set_flag(split, BIO_TRACE_COMPLETION);
1658
1659	return split;
1660}
1661EXPORT_SYMBOL(bio_split);
1662
1663/**
1664 * bio_trim - trim a bio
1665 * @bio:	bio to trim
1666 * @offset:	number of sectors to trim from the front of @bio
1667 * @size:	size we want to trim @bio to, in sectors
1668 *
1669 * This function is typically used for bios that are cloned and submitted
1670 * to the underlying device in parts.
1671 */
1672void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1673{
1674	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1675			 offset + size > bio_sectors(bio)))
1676		return;
1677
1678	size <<= 9;
1679	if (offset == 0 && size == bio->bi_iter.bi_size)
1680		return;
1681
1682	bio_advance(bio, offset << 9);
1683	bio->bi_iter.bi_size = size;
1684
1685	if (bio_integrity(bio))
1686		bio_integrity_trim(bio);
 
1687}
1688EXPORT_SYMBOL_GPL(bio_trim);
1689
1690/*
1691 * create memory pools for biovec's in a bio_set.
1692 * use the global biovec slabs created for general use.
1693 */
1694int biovec_init_pool(mempool_t *pool, int pool_entries)
1695{
1696	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1697
1698	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1699}
1700
1701/*
1702 * bioset_exit - exit a bioset initialized with bioset_init()
1703 *
1704 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1705 * kzalloc()).
1706 */
1707void bioset_exit(struct bio_set *bs)
1708{
1709	bio_alloc_cache_destroy(bs);
1710	if (bs->rescue_workqueue)
1711		destroy_workqueue(bs->rescue_workqueue);
1712	bs->rescue_workqueue = NULL;
1713
1714	mempool_exit(&bs->bio_pool);
1715	mempool_exit(&bs->bvec_pool);
1716
1717	bioset_integrity_free(bs);
1718	if (bs->bio_slab)
1719		bio_put_slab(bs);
1720	bs->bio_slab = NULL;
1721}
1722EXPORT_SYMBOL(bioset_exit);
1723
1724/**
1725 * bioset_init - Initialize a bio_set
1726 * @bs:		pool to initialize
1727 * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1728 * @front_pad:	Number of bytes to allocate in front of the returned bio
1729 * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1730 *              and %BIOSET_NEED_RESCUER
1731 *
1732 * Description:
1733 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1734 *    to ask for a number of bytes to be allocated in front of the bio.
1735 *    Front pad allocation is useful for embedding the bio inside
1736 *    another structure, to avoid allocating extra data to go with the bio.
1737 *    Note that the bio must be embedded at the END of that structure always,
1738 *    or things will break badly.
1739 *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1740 *    for allocating iovecs.  This pool is not needed e.g. for bio_init_clone().
1741 *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1742 *    to dispatch queued requests when the mempool runs out of space.
1743 *
1744 */
1745int bioset_init(struct bio_set *bs,
1746		unsigned int pool_size,
1747		unsigned int front_pad,
1748		int flags)
1749{
1750	bs->front_pad = front_pad;
1751	if (flags & BIOSET_NEED_BVECS)
1752		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1753	else
1754		bs->back_pad = 0;
1755
1756	spin_lock_init(&bs->rescue_lock);
1757	bio_list_init(&bs->rescue_list);
1758	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1759
1760	bs->bio_slab = bio_find_or_create_slab(bs);
1761	if (!bs->bio_slab)
1762		return -ENOMEM;
1763
1764	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1765		goto bad;
1766
1767	if ((flags & BIOSET_NEED_BVECS) &&
1768	    biovec_init_pool(&bs->bvec_pool, pool_size))
1769		goto bad;
1770
1771	if (flags & BIOSET_NEED_RESCUER) {
1772		bs->rescue_workqueue = alloc_workqueue("bioset",
1773							WQ_MEM_RECLAIM, 0);
1774		if (!bs->rescue_workqueue)
1775			goto bad;
1776	}
1777	if (flags & BIOSET_PERCPU_CACHE) {
1778		bs->cache = alloc_percpu(struct bio_alloc_cache);
1779		if (!bs->cache)
1780			goto bad;
1781		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1782	}
1783
1784	return 0;
1785bad:
1786	bioset_exit(bs);
1787	return -ENOMEM;
1788}
1789EXPORT_SYMBOL(bioset_init);
1790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1791static int __init init_bio(void)
1792{
1793	int i;
1794
1795	bio_integrity_init();
1796
1797	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1798		struct biovec_slab *bvs = bvec_slabs + i;
1799
1800		bvs->slab = kmem_cache_create(bvs->name,
1801				bvs->nr_vecs * sizeof(struct bio_vec), 0,
1802				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1803	}
1804
1805	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1806					bio_cpu_dead);
1807
1808	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1809			BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1810		panic("bio: can't allocate bios\n");
1811
1812	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1813		panic("bio: can't create integrity pool\n");
1814
1815	return 0;
1816}
1817subsys_initcall(init_bio);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
   4 */
   5#include <linux/mm.h>
   6#include <linux/swap.h>
   7#include <linux/bio.h>
   8#include <linux/blkdev.h>
   9#include <linux/uio.h>
  10#include <linux/iocontext.h>
  11#include <linux/slab.h>
  12#include <linux/init.h>
  13#include <linux/kernel.h>
  14#include <linux/export.h>
  15#include <linux/mempool.h>
  16#include <linux/workqueue.h>
  17#include <linux/cgroup.h>
  18#include <linux/blk-cgroup.h>
  19#include <linux/highmem.h>
  20#include <linux/sched/sysctl.h>
  21#include <linux/blk-crypto.h>
  22#include <linux/xarray.h>
  23
  24#include <trace/events/block.h>
  25#include "blk.h"
  26#include "blk-rq-qos.h"
 
 
 
 
 
 
 
 
 
 
 
 
  27
  28static struct biovec_slab {
  29	int nr_vecs;
  30	char *name;
  31	struct kmem_cache *slab;
  32} bvec_slabs[] __read_mostly = {
  33	{ .nr_vecs = 16, .name = "biovec-16" },
  34	{ .nr_vecs = 64, .name = "biovec-64" },
  35	{ .nr_vecs = 128, .name = "biovec-128" },
  36	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
  37};
  38
  39static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
  40{
  41	switch (nr_vecs) {
  42	/* smaller bios use inline vecs */
  43	case 5 ... 16:
  44		return &bvec_slabs[0];
  45	case 17 ... 64:
  46		return &bvec_slabs[1];
  47	case 65 ... 128:
  48		return &bvec_slabs[2];
  49	case 129 ... BIO_MAX_VECS:
  50		return &bvec_slabs[3];
  51	default:
  52		BUG();
  53		return NULL;
  54	}
  55}
  56
  57/*
  58 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  59 * IO code that does not need private memory pools.
  60 */
  61struct bio_set fs_bio_set;
  62EXPORT_SYMBOL(fs_bio_set);
  63
  64/*
  65 * Our slab pool management
  66 */
  67struct bio_slab {
  68	struct kmem_cache *slab;
  69	unsigned int slab_ref;
  70	unsigned int slab_size;
  71	char name[8];
  72};
  73static DEFINE_MUTEX(bio_slab_lock);
  74static DEFINE_XARRAY(bio_slabs);
  75
  76static struct bio_slab *create_bio_slab(unsigned int size)
  77{
  78	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
  79
  80	if (!bslab)
  81		return NULL;
  82
  83	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
  84	bslab->slab = kmem_cache_create(bslab->name, size,
  85			ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
 
  86	if (!bslab->slab)
  87		goto fail_alloc_slab;
  88
  89	bslab->slab_ref = 1;
  90	bslab->slab_size = size;
  91
  92	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
  93		return bslab;
  94
  95	kmem_cache_destroy(bslab->slab);
  96
  97fail_alloc_slab:
  98	kfree(bslab);
  99	return NULL;
 100}
 101
 102static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
 103{
 104	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
 105}
 106
 107static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
 108{
 109	unsigned int size = bs_bio_slab_size(bs);
 110	struct bio_slab *bslab;
 111
 112	mutex_lock(&bio_slab_lock);
 113	bslab = xa_load(&bio_slabs, size);
 114	if (bslab)
 115		bslab->slab_ref++;
 116	else
 117		bslab = create_bio_slab(size);
 118	mutex_unlock(&bio_slab_lock);
 119
 120	if (bslab)
 121		return bslab->slab;
 122	return NULL;
 123}
 124
 125static void bio_put_slab(struct bio_set *bs)
 126{
 127	struct bio_slab *bslab = NULL;
 128	unsigned int slab_size = bs_bio_slab_size(bs);
 129
 130	mutex_lock(&bio_slab_lock);
 131
 132	bslab = xa_load(&bio_slabs, slab_size);
 133	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
 134		goto out;
 135
 136	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
 137
 138	WARN_ON(!bslab->slab_ref);
 139
 140	if (--bslab->slab_ref)
 141		goto out;
 142
 143	xa_erase(&bio_slabs, slab_size);
 144
 145	kmem_cache_destroy(bslab->slab);
 146	kfree(bslab);
 147
 148out:
 149	mutex_unlock(&bio_slab_lock);
 150}
 151
 152void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
 153{
 154	BIO_BUG_ON(nr_vecs > BIO_MAX_VECS);
 155
 156	if (nr_vecs == BIO_MAX_VECS)
 157		mempool_free(bv, pool);
 158	else if (nr_vecs > BIO_INLINE_VECS)
 159		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
 160}
 161
 162/*
 163 * Make the first allocation restricted and don't dump info on allocation
 164 * failures, since we'll fall back to the mempool in case of failure.
 165 */
 166static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
 167{
 168	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
 169		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
 170}
 171
 172struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
 173		gfp_t gfp_mask)
 174{
 175	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
 176
 177	if (WARN_ON_ONCE(!bvs))
 178		return NULL;
 179
 180	/*
 181	 * Upgrade the nr_vecs request to take full advantage of the allocation.
 182	 * We also rely on this in the bvec_free path.
 183	 */
 184	*nr_vecs = bvs->nr_vecs;
 185
 186	/*
 187	 * Try a slab allocation first for all smaller allocations.  If that
 188	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
 189	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
 190	 */
 191	if (*nr_vecs < BIO_MAX_VECS) {
 192		struct bio_vec *bvl;
 193
 194		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
 195		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
 196			return bvl;
 197		*nr_vecs = BIO_MAX_VECS;
 198	}
 199
 200	return mempool_alloc(pool, gfp_mask);
 201}
 202
 203void bio_uninit(struct bio *bio)
 204{
 205#ifdef CONFIG_BLK_CGROUP
 206	if (bio->bi_blkg) {
 207		blkg_put(bio->bi_blkg);
 208		bio->bi_blkg = NULL;
 209	}
 210#endif
 211	if (bio_integrity(bio))
 212		bio_integrity_free(bio);
 213
 214	bio_crypt_free_ctx(bio);
 215}
 216EXPORT_SYMBOL(bio_uninit);
 217
 218static void bio_free(struct bio *bio)
 219{
 220	struct bio_set *bs = bio->bi_pool;
 221	void *p;
 
 
 222
 223	bio_uninit(bio);
 224
 225	if (bs) {
 226		bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
 227
 228		/*
 229		 * If we have front padding, adjust the bio pointer before freeing
 230		 */
 231		p = bio;
 232		p -= bs->front_pad;
 233
 234		mempool_free(p, &bs->bio_pool);
 235	} else {
 236		/* Bio was allocated by bio_kmalloc() */
 237		kfree(bio);
 238	}
 239}
 240
 241/*
 242 * Users of this function have their own bio allocation. Subsequently,
 243 * they must remember to pair any call to bio_init() with bio_uninit()
 244 * when IO has completed, or when the bio is released.
 245 */
 246void bio_init(struct bio *bio, struct bio_vec *table,
 247	      unsigned short max_vecs)
 248{
 249	memset(bio, 0, sizeof(*bio));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 250	atomic_set(&bio->__bi_remaining, 1);
 251	atomic_set(&bio->__bi_cnt, 1);
 
 252
 
 253	bio->bi_io_vec = table;
 254	bio->bi_max_vecs = max_vecs;
 255}
 256EXPORT_SYMBOL(bio_init);
 257
 258/**
 259 * bio_reset - reinitialize a bio
 260 * @bio:	bio to reset
 
 
 261 *
 262 * Description:
 263 *   After calling bio_reset(), @bio will be in the same state as a freshly
 264 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
 265 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
 266 *   comment in struct bio.
 267 */
 268void bio_reset(struct bio *bio)
 269{
 270	bio_uninit(bio);
 271	memset(bio, 0, BIO_RESET_BYTES);
 272	atomic_set(&bio->__bi_remaining, 1);
 
 
 
 
 273}
 274EXPORT_SYMBOL(bio_reset);
 275
 276static struct bio *__bio_chain_endio(struct bio *bio)
 277{
 278	struct bio *parent = bio->bi_private;
 279
 280	if (bio->bi_status && !parent->bi_status)
 281		parent->bi_status = bio->bi_status;
 282	bio_put(bio);
 283	return parent;
 284}
 285
 286static void bio_chain_endio(struct bio *bio)
 287{
 288	bio_endio(__bio_chain_endio(bio));
 289}
 290
 291/**
 292 * bio_chain - chain bio completions
 293 * @bio: the target bio
 294 * @parent: the parent bio of @bio
 295 *
 296 * The caller won't have a bi_end_io called when @bio completes - instead,
 297 * @parent's bi_end_io won't be called until both @parent and @bio have
 298 * completed; the chained bio will also be freed when it completes.
 299 *
 300 * The caller must not set bi_private or bi_end_io in @bio.
 301 */
 302void bio_chain(struct bio *bio, struct bio *parent)
 303{
 304	BUG_ON(bio->bi_private || bio->bi_end_io);
 305
 306	bio->bi_private = parent;
 307	bio->bi_end_io	= bio_chain_endio;
 308	bio_inc_remaining(parent);
 309}
 310EXPORT_SYMBOL(bio_chain);
 311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 312static void bio_alloc_rescue(struct work_struct *work)
 313{
 314	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
 315	struct bio *bio;
 316
 317	while (1) {
 318		spin_lock(&bs->rescue_lock);
 319		bio = bio_list_pop(&bs->rescue_list);
 320		spin_unlock(&bs->rescue_lock);
 321
 322		if (!bio)
 323			break;
 324
 325		submit_bio_noacct(bio);
 326	}
 327}
 328
 329static void punt_bios_to_rescuer(struct bio_set *bs)
 330{
 331	struct bio_list punt, nopunt;
 332	struct bio *bio;
 333
 334	if (WARN_ON_ONCE(!bs->rescue_workqueue))
 335		return;
 336	/*
 337	 * In order to guarantee forward progress we must punt only bios that
 338	 * were allocated from this bio_set; otherwise, if there was a bio on
 339	 * there for a stacking driver higher up in the stack, processing it
 340	 * could require allocating bios from this bio_set, and doing that from
 341	 * our own rescuer would be bad.
 342	 *
 343	 * Since bio lists are singly linked, pop them all instead of trying to
 344	 * remove from the middle of the list:
 345	 */
 346
 347	bio_list_init(&punt);
 348	bio_list_init(&nopunt);
 349
 350	while ((bio = bio_list_pop(&current->bio_list[0])))
 351		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
 352	current->bio_list[0] = nopunt;
 353
 354	bio_list_init(&nopunt);
 355	while ((bio = bio_list_pop(&current->bio_list[1])))
 356		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
 357	current->bio_list[1] = nopunt;
 358
 359	spin_lock(&bs->rescue_lock);
 360	bio_list_merge(&bs->rescue_list, &punt);
 361	spin_unlock(&bs->rescue_lock);
 362
 363	queue_work(bs->rescue_workqueue, &bs->rescue_work);
 364}
 365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366/**
 367 * bio_alloc_bioset - allocate a bio for I/O
 
 
 
 368 * @gfp_mask:   the GFP_* mask given to the slab allocator
 369 * @nr_iovecs:	number of iovecs to pre-allocate
 370 * @bs:		the bio_set to allocate from.
 371 *
 372 * Allocate a bio from the mempools in @bs.
 373 *
 374 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
 375 * allocate a bio.  This is due to the mempool guarantees.  To make this work,
 376 * callers must never allocate more than 1 bio at a time from the general pool.
 377 * Callers that need to allocate more than 1 bio must always submit the
 378 * previously allocated bio for IO before attempting to allocate a new one.
 379 * Failure to do so can cause deadlocks under memory pressure.
 380 *
 381 * Note that when running under submit_bio_noacct() (i.e. any block driver),
 382 * bios are not submitted until after you return - see the code in
 383 * submit_bio_noacct() that converts recursion into iteration, to prevent
 384 * stack overflows.
 385 *
 386 * This would normally mean allocating multiple bios under submit_bio_noacct()
 387 * would be susceptible to deadlocks, but we have
 388 * deadlock avoidance code that resubmits any blocked bios from a rescuer
 389 * thread.
 390 *
 391 * However, we do not guarantee forward progress for allocations from other
 392 * mempools. Doing multiple allocations from the same mempool under
 393 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
 394 * for per bio allocations.
 395 *
 396 * Returns: Pointer to new bio on success, NULL on failure.
 397 */
 398struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
 
 399			     struct bio_set *bs)
 400{
 401	gfp_t saved_gfp = gfp_mask;
 402	struct bio *bio;
 403	void *p;
 404
 405	/* should not use nobvec bioset for nr_iovecs > 0 */
 406	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
 407		return NULL;
 408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 409	/*
 410	 * submit_bio_noacct() converts recursion to iteration; this means if
 411	 * we're running beneath it, any bios we allocate and submit will not be
 412	 * submitted (and thus freed) until after we return.
 413	 *
 414	 * This exposes us to a potential deadlock if we allocate multiple bios
 415	 * from the same bio_set() while running underneath submit_bio_noacct().
 416	 * If we were to allocate multiple bios (say a stacking block driver
 417	 * that was splitting bios), we would deadlock if we exhausted the
 418	 * mempool's reserve.
 419	 *
 420	 * We solve this, and guarantee forward progress, with a rescuer
 421	 * workqueue per bio_set. If we go to allocate and there are bios on
 422	 * current->bio_list, we first try the allocation without
 423	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
 424	 * blocking to the rescuer workqueue before we retry with the original
 425	 * gfp_flags.
 426	 */
 427	if (current->bio_list &&
 428	    (!bio_list_empty(&current->bio_list[0]) ||
 429	     !bio_list_empty(&current->bio_list[1])) &&
 430	    bs->rescue_workqueue)
 431		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
 432
 433	p = mempool_alloc(&bs->bio_pool, gfp_mask);
 434	if (!p && gfp_mask != saved_gfp) {
 435		punt_bios_to_rescuer(bs);
 436		gfp_mask = saved_gfp;
 437		p = mempool_alloc(&bs->bio_pool, gfp_mask);
 438	}
 439	if (unlikely(!p))
 440		return NULL;
 
 
 441
 442	bio = p + bs->front_pad;
 443	if (nr_iovecs > BIO_INLINE_VECS) {
 444		struct bio_vec *bvl = NULL;
 445
 446		bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
 447		if (!bvl && gfp_mask != saved_gfp) {
 448			punt_bios_to_rescuer(bs);
 449			gfp_mask = saved_gfp;
 450			bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
 451		}
 452		if (unlikely(!bvl))
 453			goto err_free;
 454
 455		bio_init(bio, bvl, nr_iovecs);
 456	} else if (nr_iovecs) {
 457		bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
 458	} else {
 459		bio_init(bio, NULL, 0);
 460	}
 461
 462	bio->bi_pool = bs;
 463	return bio;
 464
 465err_free:
 466	mempool_free(p, &bs->bio_pool);
 467	return NULL;
 468}
 469EXPORT_SYMBOL(bio_alloc_bioset);
 470
 471/**
 472 * bio_kmalloc - kmalloc a bio for I/O
 
 473 * @gfp_mask:   the GFP_* mask given to the slab allocator
 474 * @nr_iovecs:	number of iovecs to pre-allocate
 475 *
 476 * Use kmalloc to allocate and initialize a bio.
 
 
 
 
 
 
 
 477 *
 478 * Returns: Pointer to new bio on success, NULL on failure.
 479 */
 480struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
 481{
 482	struct bio *bio;
 483
 484	if (nr_iovecs > UIO_MAXIOV)
 485		return NULL;
 486
 487	bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
 488	if (unlikely(!bio))
 489		return NULL;
 490	bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
 491	bio->bi_pool = NULL;
 492	return bio;
 493}
 494EXPORT_SYMBOL(bio_kmalloc);
 495
 496void zero_fill_bio(struct bio *bio)
 497{
 498	unsigned long flags;
 499	struct bio_vec bv;
 500	struct bvec_iter iter;
 501
 502	bio_for_each_segment(bv, bio, iter) {
 503		char *data = bvec_kmap_irq(&bv, &flags);
 504		memset(data, 0, bv.bv_len);
 505		flush_dcache_page(bv.bv_page);
 506		bvec_kunmap_irq(data, &flags);
 507	}
 508}
 509EXPORT_SYMBOL(zero_fill_bio);
 510
 511/**
 512 * bio_truncate - truncate the bio to small size of @new_size
 513 * @bio:	the bio to be truncated
 514 * @new_size:	new size for truncating the bio
 515 *
 516 * Description:
 517 *   Truncate the bio to new size of @new_size. If bio_op(bio) is
 518 *   REQ_OP_READ, zero the truncated part. This function should only
 519 *   be used for handling corner cases, such as bio eod.
 520 */
 521void bio_truncate(struct bio *bio, unsigned new_size)
 522{
 523	struct bio_vec bv;
 524	struct bvec_iter iter;
 525	unsigned int done = 0;
 526	bool truncated = false;
 527
 528	if (new_size >= bio->bi_iter.bi_size)
 529		return;
 530
 531	if (bio_op(bio) != REQ_OP_READ)
 532		goto exit;
 533
 534	bio_for_each_segment(bv, bio, iter) {
 535		if (done + bv.bv_len > new_size) {
 536			unsigned offset;
 537
 538			if (!truncated)
 539				offset = new_size - done;
 540			else
 541				offset = 0;
 542			zero_user(bv.bv_page, offset, bv.bv_len - offset);
 
 543			truncated = true;
 544		}
 545		done += bv.bv_len;
 546	}
 547
 548 exit:
 549	/*
 550	 * Don't touch bvec table here and make it really immutable, since
 551	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
 552	 * in its .end_bio() callback.
 553	 *
 554	 * It is enough to truncate bio by updating .bi_size since we can make
 555	 * correct bvec with the updated .bi_size for drivers.
 556	 */
 557	bio->bi_iter.bi_size = new_size;
 558}
 559
 560/**
 561 * guard_bio_eod - truncate a BIO to fit the block device
 562 * @bio:	bio to truncate
 563 *
 564 * This allows us to do IO even on the odd last sectors of a device, even if the
 565 * block size is some multiple of the physical sector size.
 566 *
 567 * We'll just truncate the bio to the size of the device, and clear the end of
 568 * the buffer head manually.  Truly out-of-range accesses will turn into actual
 569 * I/O errors, this only handles the "we need to be able to do I/O at the final
 570 * sector" case.
 571 */
 572void guard_bio_eod(struct bio *bio)
 573{
 574	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
 575
 576	if (!maxsector)
 577		return;
 578
 579	/*
 580	 * If the *whole* IO is past the end of the device,
 581	 * let it through, and the IO layer will turn it into
 582	 * an EIO.
 583	 */
 584	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
 585		return;
 586
 587	maxsector -= bio->bi_iter.bi_sector;
 588	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
 589		return;
 590
 591	bio_truncate(bio, maxsector << 9);
 592}
 593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 594/**
 595 * bio_put - release a reference to a bio
 596 * @bio:   bio to release reference to
 597 *
 598 * Description:
 599 *   Put a reference to a &struct bio, either one you have gotten with
 600 *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
 601 **/
 602void bio_put(struct bio *bio)
 603{
 604	if (!bio_flagged(bio, BIO_REFFED))
 
 
 
 
 
 
 
 605		bio_free(bio);
 606	else {
 607		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
 608
 609		/*
 610		 * last put frees it
 611		 */
 612		if (atomic_dec_and_test(&bio->__bi_cnt))
 613			bio_free(bio);
 614	}
 615}
 616EXPORT_SYMBOL(bio_put);
 617
 618/**
 619 * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
 620 * 	@bio: destination bio
 621 * 	@bio_src: bio to clone
 622 *
 623 *	Clone a &bio. Caller will own the returned bio, but not
 624 *	the actual data it points to. Reference count of returned
 625 * 	bio will be one.
 626 *
 627 * 	Caller must ensure that @bio_src is not freed before @bio.
 628 */
 629void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
 630{
 631	WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
 632
 633	/*
 634	 * most users will be overriding ->bi_bdev with a new target,
 635	 * so we don't set nor calculate new physical/hw segment counts here
 636	 */
 637	bio->bi_bdev = bio_src->bi_bdev;
 638	bio_set_flag(bio, BIO_CLONED);
 639	if (bio_flagged(bio_src, BIO_THROTTLED))
 640		bio_set_flag(bio, BIO_THROTTLED);
 641	if (bio_flagged(bio_src, BIO_REMAPPED))
 642		bio_set_flag(bio, BIO_REMAPPED);
 643	bio->bi_opf = bio_src->bi_opf;
 644	bio->bi_ioprio = bio_src->bi_ioprio;
 645	bio->bi_write_hint = bio_src->bi_write_hint;
 646	bio->bi_iter = bio_src->bi_iter;
 647	bio->bi_io_vec = bio_src->bi_io_vec;
 648
 649	bio_clone_blkg_association(bio, bio_src);
 650	blkcg_bio_issue_init(bio);
 
 
 
 
 
 
 
 
 
 
 
 651}
 652EXPORT_SYMBOL(__bio_clone_fast);
 653
 654/**
 655 *	bio_clone_fast - clone a bio that shares the original bio's biovec
 656 *	@bio: bio to clone
 657 *	@gfp_mask: allocation priority
 658 *	@bs: bio_set to allocate from
 
 659 *
 660 * 	Like __bio_clone_fast, only also allocates the returned bio
 
 
 
 661 */
 662struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
 
 663{
 664	struct bio *b;
 665
 666	b = bio_alloc_bioset(gfp_mask, 0, bs);
 667	if (!b)
 668		return NULL;
 669
 670	__bio_clone_fast(b, bio);
 
 
 
 
 671
 672	if (bio_crypt_clone(b, bio, gfp_mask) < 0)
 673		goto err_put;
 
 674
 675	if (bio_integrity(bio) &&
 676	    bio_integrity_clone(b, bio, gfp_mask) < 0)
 677		goto err_put;
 
 
 
 
 
 
 
 
 
 
 
 
 
 678
 679	return b;
 680
 681err_put:
 682	bio_put(b);
 683	return NULL;
 684}
 685EXPORT_SYMBOL(bio_clone_fast);
 686
 687const char *bio_devname(struct bio *bio, char *buf)
 
 
 
 
 
 
 
 
 688{
 689	return bdevname(bio->bi_bdev, buf);
 
 
 
 
 690}
 691EXPORT_SYMBOL(bio_devname);
 692
 693static inline bool page_is_mergeable(const struct bio_vec *bv,
 694		struct page *page, unsigned int len, unsigned int off,
 695		bool *same_page)
 696{
 697	size_t bv_end = bv->bv_offset + bv->bv_len;
 698	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
 699	phys_addr_t page_addr = page_to_phys(page);
 700
 701	if (vec_end_addr + 1 != page_addr + off)
 702		return false;
 703	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
 704		return false;
 
 
 705
 706	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
 707	if (*same_page)
 708		return true;
 
 
 709	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
 710}
 711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 712/*
 713 * Try to merge a page into a segment, while obeying the hardware segment
 714 * size limit.  This is not for normal read/write bios, but for passthrough
 715 * or Zone Append operations that we can't split.
 716 */
 717static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
 718				 struct page *page, unsigned len,
 719				 unsigned offset, bool *same_page)
 720{
 721	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
 722	unsigned long mask = queue_segment_boundary(q);
 723	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
 724	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
 725
 726	if ((addr1 | mask) != (addr2 | mask))
 727		return false;
 728	if (bv->bv_len + len > queue_max_segment_size(q))
 729		return false;
 730	return __bio_try_merge_page(bio, page, len, offset, same_page);
 731}
 732
 733/**
 734 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
 735 * @q: the target queue
 736 * @bio: destination bio
 737 * @page: page to add
 738 * @len: vec entry length
 739 * @offset: vec entry offset
 740 * @max_sectors: maximum number of sectors that can be added
 741 * @same_page: return if the segment has been merged inside the same page
 742 *
 743 * Add a page to a bio while respecting the hardware max_sectors, max_segment
 744 * and gap limitations.
 745 */
 746int bio_add_hw_page(struct request_queue *q, struct bio *bio,
 747		struct page *page, unsigned int len, unsigned int offset,
 748		unsigned int max_sectors, bool *same_page)
 749{
 750	struct bio_vec *bvec;
 751
 752	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
 753		return 0;
 754
 755	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
 756		return 0;
 757
 758	if (bio->bi_vcnt > 0) {
 759		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
 760			return len;
 761
 762		/*
 763		 * If the queue doesn't support SG gaps and adding this segment
 764		 * would create a gap, disallow it.
 765		 */
 766		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
 767		if (bvec_gap_to_prev(q, bvec, offset))
 768			return 0;
 769	}
 770
 771	if (bio_full(bio, len))
 772		return 0;
 773
 774	if (bio->bi_vcnt >= queue_max_segments(q))
 775		return 0;
 776
 777	bvec = &bio->bi_io_vec[bio->bi_vcnt];
 778	bvec->bv_page = page;
 779	bvec->bv_len = len;
 780	bvec->bv_offset = offset;
 781	bio->bi_vcnt++;
 782	bio->bi_iter.bi_size += len;
 783	return len;
 784}
 785
 786/**
 787 * bio_add_pc_page	- attempt to add page to passthrough bio
 788 * @q: the target queue
 789 * @bio: destination bio
 790 * @page: page to add
 791 * @len: vec entry length
 792 * @offset: vec entry offset
 793 *
 794 * Attempt to add a page to the bio_vec maplist. This can fail for a
 795 * number of reasons, such as the bio being full or target block device
 796 * limitations. The target block device must allow bio's up to PAGE_SIZE,
 797 * so it is always possible to add a single page to an empty bio.
 798 *
 799 * This should only be used by passthrough bios.
 800 */
 801int bio_add_pc_page(struct request_queue *q, struct bio *bio,
 802		struct page *page, unsigned int len, unsigned int offset)
 803{
 804	bool same_page = false;
 805	return bio_add_hw_page(q, bio, page, len, offset,
 806			queue_max_hw_sectors(q), &same_page);
 807}
 808EXPORT_SYMBOL(bio_add_pc_page);
 809
 810/**
 811 * bio_add_zone_append_page - attempt to add page to zone-append bio
 812 * @bio: destination bio
 813 * @page: page to add
 814 * @len: vec entry length
 815 * @offset: vec entry offset
 816 *
 817 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
 818 * for a zone-append request. This can fail for a number of reasons, such as the
 819 * bio being full or the target block device is not a zoned block device or
 820 * other limitations of the target block device. The target block device must
 821 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
 822 * to an empty bio.
 823 *
 824 * Returns: number of bytes added to the bio, or 0 in case of a failure.
 825 */
 826int bio_add_zone_append_page(struct bio *bio, struct page *page,
 827			     unsigned int len, unsigned int offset)
 828{
 829	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
 830	bool same_page = false;
 831
 832	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
 833		return 0;
 834
 835	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
 836		return 0;
 837
 838	return bio_add_hw_page(q, bio, page, len, offset,
 839			       queue_max_zone_append_sectors(q), &same_page);
 840}
 841EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
 842
 843/**
 844 * __bio_try_merge_page - try appending data to an existing bvec.
 845 * @bio: destination bio
 846 * @page: start page to add
 847 * @len: length of the data to add
 848 * @off: offset of the data relative to @page
 849 * @same_page: return if the segment has been merged inside the same page
 850 *
 851 * Try to add the data at @page + @off to the last bvec of @bio.  This is a
 852 * useful optimisation for file systems with a block size smaller than the
 853 * page size.
 854 *
 855 * Warn if (@len, @off) crosses pages in case that @same_page is true.
 856 *
 857 * Return %true on success or %false on failure.
 858 */
 859bool __bio_try_merge_page(struct bio *bio, struct page *page,
 860		unsigned int len, unsigned int off, bool *same_page)
 861{
 862	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
 863		return false;
 864
 865	if (bio->bi_vcnt > 0) {
 866		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
 867
 868		if (page_is_mergeable(bv, page, len, off, same_page)) {
 869			if (bio->bi_iter.bi_size > UINT_MAX - len) {
 870				*same_page = false;
 871				return false;
 872			}
 873			bv->bv_len += len;
 874			bio->bi_iter.bi_size += len;
 875			return true;
 876		}
 877	}
 878	return false;
 879}
 880EXPORT_SYMBOL_GPL(__bio_try_merge_page);
 881
 882/**
 883 * __bio_add_page - add page(s) to a bio in a new segment
 884 * @bio: destination bio
 885 * @page: start page to add
 886 * @len: length of the data to add, may cross pages
 887 * @off: offset of the data relative to @page, may cross pages
 888 *
 889 * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
 890 * that @bio has space for another bvec.
 891 */
 892void __bio_add_page(struct bio *bio, struct page *page,
 893		unsigned int len, unsigned int off)
 894{
 895	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
 896
 897	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
 898	WARN_ON_ONCE(bio_full(bio, len));
 899
 900	bv->bv_page = page;
 901	bv->bv_offset = off;
 902	bv->bv_len = len;
 903
 904	bio->bi_iter.bi_size += len;
 905	bio->bi_vcnt++;
 906
 907	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
 908		bio_set_flag(bio, BIO_WORKINGSET);
 909}
 910EXPORT_SYMBOL_GPL(__bio_add_page);
 911
 912/**
 913 *	bio_add_page	-	attempt to add page(s) to bio
 914 *	@bio: destination bio
 915 *	@page: start page to add
 916 *	@len: vec entry length, may cross pages
 917 *	@offset: vec entry offset relative to @page, may cross pages
 918 *
 919 *	Attempt to add page(s) to the bio_vec maplist. This will only fail
 920 *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
 921 */
 922int bio_add_page(struct bio *bio, struct page *page,
 923		 unsigned int len, unsigned int offset)
 924{
 925	bool same_page = false;
 926
 927	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
 928		if (bio_full(bio, len))
 929			return 0;
 930		__bio_add_page(bio, page, len, offset);
 931	}
 932	return len;
 933}
 934EXPORT_SYMBOL(bio_add_page);
 935
 936void bio_release_pages(struct bio *bio, bool mark_dirty)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 937{
 938	struct bvec_iter_all iter_all;
 939	struct bio_vec *bvec;
 940
 941	if (bio_flagged(bio, BIO_NO_PAGE_REF))
 942		return;
 943
 944	bio_for_each_segment_all(bvec, bio, iter_all) {
 945		if (mark_dirty && !PageCompound(bvec->bv_page))
 946			set_page_dirty_lock(bvec->bv_page);
 947		put_page(bvec->bv_page);
 948	}
 949}
 950EXPORT_SYMBOL_GPL(bio_release_pages);
 951
 952static void __bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
 953{
 
 
 954	WARN_ON_ONCE(bio->bi_max_vecs);
 955
 
 
 
 
 
 
 
 956	bio->bi_vcnt = iter->nr_segs;
 957	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
 958	bio->bi_iter.bi_bvec_done = iter->iov_offset;
 959	bio->bi_iter.bi_size = iter->count;
 960	bio_set_flag(bio, BIO_NO_PAGE_REF);
 961	bio_set_flag(bio, BIO_CLONED);
 962}
 963
 964static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
 
 965{
 966	__bio_iov_bvec_set(bio, iter);
 967	iov_iter_advance(iter, iter->count);
 968	return 0;
 969}
 970
 971static int bio_iov_bvec_set_append(struct bio *bio, struct iov_iter *iter)
 972{
 973	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
 974	struct iov_iter i = *iter;
 975
 976	iov_iter_truncate(&i, queue_max_zone_append_sectors(q) << 9);
 977	__bio_iov_bvec_set(bio, &i);
 978	iov_iter_advance(iter, i.count);
 979	return 0;
 980}
 981
 982static void bio_put_pages(struct page **pages, size_t size, size_t off)
 
 983{
 984	size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
 
 985
 986	for (i = 0; i < nr; i++)
 987		put_page(pages[i]);
 
 
 
 
 988}
 989
 990#define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
 991
 992/**
 993 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
 994 * @bio: bio to add pages to
 995 * @iter: iov iterator describing the region to be mapped
 996 *
 997 * Pins pages from *iter and appends them to @bio's bvec array. The
 998 * pages will have to be released using put_page() when done.
 999 * For multi-segment *iter, this function only adds pages from the
1000 * next non-empty segment of the iov iterator.
1001 */
1002static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1003{
1004	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1005	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1006	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1007	struct page **pages = (struct page **)bv;
1008	bool same_page = false;
1009	ssize_t size, left;
1010	unsigned len, i;
1011	size_t offset;
 
1012
1013	/*
1014	 * Move page array up in the allocated memory for the bio vecs as far as
1015	 * possible so that we can start filling biovecs from the beginning
1016	 * without overwriting the temporary page array.
1017	*/
1018	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1019	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1020
1021	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
 
 
 
 
 
 
 
 
 
 
 
 
1022	if (unlikely(size <= 0))
1023		return size ? size : -EFAULT;
1024
1025	for (left = size, i = 0; left > 0; left -= len, i++) {
1026		struct page *page = pages[i];
1027
1028		len = min_t(size_t, PAGE_SIZE - offset, left);
 
1029
1030		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1031			if (same_page)
1032				put_page(page);
1033		} else {
1034			if (WARN_ON_ONCE(bio_full(bio, len))) {
1035				bio_put_pages(pages + i, left, offset);
1036				return -EINVAL;
1037			}
1038			__bio_add_page(bio, page, len, offset);
1039		}
1040		offset = 0;
1041	}
1042
1043	iov_iter_advance(iter, size);
1044	return 0;
1045}
1046
1047static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1048{
1049	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1050	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1051	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1052	unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1053	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1054	struct page **pages = (struct page **)bv;
1055	ssize_t size, left;
1056	unsigned len, i;
1057	size_t offset;
1058	int ret = 0;
1059
1060	if (WARN_ON_ONCE(!max_append_sectors))
1061		return 0;
1062
1063	/*
1064	 * Move page array up in the allocated memory for the bio vecs as far as
1065	 * possible so that we can start filling biovecs from the beginning
1066	 * without overwriting the temporary page array.
1067	 */
1068	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1069	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1070
1071	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1072	if (unlikely(size <= 0))
1073		return size ? size : -EFAULT;
1074
1075	for (left = size, i = 0; left > 0; left -= len, i++) {
1076		struct page *page = pages[i];
1077		bool same_page = false;
1078
1079		len = min_t(size_t, PAGE_SIZE - offset, left);
1080		if (bio_add_hw_page(q, bio, page, len, offset,
1081				max_append_sectors, &same_page) != len) {
1082			bio_put_pages(pages + i, left, offset);
1083			ret = -EINVAL;
1084			break;
1085		}
1086		if (same_page)
1087			put_page(page);
1088		offset = 0;
1089	}
1090
1091	iov_iter_advance(iter, size - left);
 
 
 
 
1092	return ret;
1093}
1094
1095/**
1096 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1097 * @bio: bio to add pages to
1098 * @iter: iov iterator describing the region to be added
1099 *
1100 * This takes either an iterator pointing to user memory, or one pointing to
1101 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1102 * map them into the kernel. On IO completion, the caller should put those
1103 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1104 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1105 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1106 * completed by a call to ->ki_complete() or returns with an error other than
1107 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1108 * on IO completion. If it isn't, then pages should be released.
1109 *
1110 * The function tries, but does not guarantee, to pin as many pages as
1111 * fit into the bio, or are requested in @iter, whatever is smaller. If
1112 * MM encounters an error pinning the requested pages, it stops. Error
1113 * is returned only if 0 pages could be pinned.
1114 *
1115 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1116 * responsible for setting BIO_WORKINGSET if necessary.
1117 */
1118int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1119{
1120	int ret = 0;
1121
1122	if (iov_iter_is_bvec(iter)) {
1123		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1124			return bio_iov_bvec_set_append(bio, iter);
1125		return bio_iov_bvec_set(bio, iter);
1126	}
1127
1128	do {
1129		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1130			ret = __bio_iov_append_get_pages(bio, iter);
1131		else
1132			ret = __bio_iov_iter_get_pages(bio, iter);
1133	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1134
1135	/* don't account direct I/O as memory stall */
1136	bio_clear_flag(bio, BIO_WORKINGSET);
1137	return bio->bi_vcnt ? 0 : ret;
1138}
1139EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1140
1141static void submit_bio_wait_endio(struct bio *bio)
1142{
1143	complete(bio->bi_private);
1144}
1145
1146/**
1147 * submit_bio_wait - submit a bio, and wait until it completes
1148 * @bio: The &struct bio which describes the I/O
1149 *
1150 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1151 * bio_endio() on failure.
1152 *
1153 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1154 * result in bio reference to be consumed. The caller must drop the reference
1155 * on his own.
1156 */
1157int submit_bio_wait(struct bio *bio)
1158{
1159	DECLARE_COMPLETION_ONSTACK_MAP(done,
1160			bio->bi_bdev->bd_disk->lockdep_map);
1161	unsigned long hang_check;
1162
1163	bio->bi_private = &done;
1164	bio->bi_end_io = submit_bio_wait_endio;
1165	bio->bi_opf |= REQ_SYNC;
1166	submit_bio(bio);
1167
1168	/* Prevent hang_check timer from firing at us during very long I/O */
1169	hang_check = sysctl_hung_task_timeout_secs;
1170	if (hang_check)
1171		while (!wait_for_completion_io_timeout(&done,
1172					hang_check * (HZ/2)))
1173			;
1174	else
1175		wait_for_completion_io(&done);
1176
1177	return blk_status_to_errno(bio->bi_status);
1178}
1179EXPORT_SYMBOL(submit_bio_wait);
1180
1181/**
1182 * bio_advance - increment/complete a bio by some number of bytes
1183 * @bio:	bio to advance
1184 * @bytes:	number of bytes to complete
1185 *
1186 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1187 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1188 * be updated on the last bvec as well.
1189 *
1190 * @bio will then represent the remaining, uncompleted portion of the io.
1191 */
1192void bio_advance(struct bio *bio, unsigned bytes)
1193{
1194	if (bio_integrity(bio))
1195		bio_integrity_advance(bio, bytes);
1196
1197	bio_crypt_advance(bio, bytes);
1198	bio_advance_iter(bio, &bio->bi_iter, bytes);
1199}
1200EXPORT_SYMBOL(bio_advance);
1201
1202void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1203			struct bio *src, struct bvec_iter *src_iter)
1204{
1205	struct bio_vec src_bv, dst_bv;
1206	void *src_p, *dst_p;
1207	unsigned bytes;
1208
1209	while (src_iter->bi_size && dst_iter->bi_size) {
1210		src_bv = bio_iter_iovec(src, *src_iter);
1211		dst_bv = bio_iter_iovec(dst, *dst_iter);
 
 
 
1212
1213		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1214
1215		src_p = kmap_atomic(src_bv.bv_page);
1216		dst_p = kmap_atomic(dst_bv.bv_page);
1217
1218		memcpy(dst_p + dst_bv.bv_offset,
1219		       src_p + src_bv.bv_offset,
1220		       bytes);
1221
1222		kunmap_atomic(dst_p);
1223		kunmap_atomic(src_p);
1224
1225		flush_dcache_page(dst_bv.bv_page);
1226
1227		bio_advance_iter_single(src, src_iter, bytes);
1228		bio_advance_iter_single(dst, dst_iter, bytes);
1229	}
1230}
1231EXPORT_SYMBOL(bio_copy_data_iter);
1232
1233/**
1234 * bio_copy_data - copy contents of data buffers from one bio to another
1235 * @src: source bio
1236 * @dst: destination bio
1237 *
1238 * Stops when it reaches the end of either @src or @dst - that is, copies
1239 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1240 */
1241void bio_copy_data(struct bio *dst, struct bio *src)
1242{
1243	struct bvec_iter src_iter = src->bi_iter;
1244	struct bvec_iter dst_iter = dst->bi_iter;
1245
1246	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1247}
1248EXPORT_SYMBOL(bio_copy_data);
1249
1250void bio_free_pages(struct bio *bio)
1251{
1252	struct bio_vec *bvec;
1253	struct bvec_iter_all iter_all;
1254
1255	bio_for_each_segment_all(bvec, bio, iter_all)
1256		__free_page(bvec->bv_page);
1257}
1258EXPORT_SYMBOL(bio_free_pages);
1259
1260/*
1261 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1262 * for performing direct-IO in BIOs.
1263 *
1264 * The problem is that we cannot run set_page_dirty() from interrupt context
1265 * because the required locks are not interrupt-safe.  So what we can do is to
1266 * mark the pages dirty _before_ performing IO.  And in interrupt context,
1267 * check that the pages are still dirty.   If so, fine.  If not, redirty them
1268 * in process context.
1269 *
1270 * We special-case compound pages here: normally this means reads into hugetlb
1271 * pages.  The logic in here doesn't really work right for compound pages
1272 * because the VM does not uniformly chase down the head page in all cases.
1273 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1274 * handle them at all.  So we skip compound pages here at an early stage.
1275 *
1276 * Note that this code is very hard to test under normal circumstances because
1277 * direct-io pins the pages with get_user_pages().  This makes
1278 * is_page_cache_freeable return false, and the VM will not clean the pages.
1279 * But other code (eg, flusher threads) could clean the pages if they are mapped
1280 * pagecache.
1281 *
1282 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1283 * deferred bio dirtying paths.
1284 */
1285
1286/*
1287 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1288 */
1289void bio_set_pages_dirty(struct bio *bio)
1290{
1291	struct bio_vec *bvec;
1292	struct bvec_iter_all iter_all;
1293
1294	bio_for_each_segment_all(bvec, bio, iter_all) {
1295		if (!PageCompound(bvec->bv_page))
1296			set_page_dirty_lock(bvec->bv_page);
1297	}
1298}
1299
1300/*
1301 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1302 * If they are, then fine.  If, however, some pages are clean then they must
1303 * have been written out during the direct-IO read.  So we take another ref on
1304 * the BIO and re-dirty the pages in process context.
1305 *
1306 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1307 * here on.  It will run one put_page() against each page and will run one
1308 * bio_put() against the BIO.
1309 */
1310
1311static void bio_dirty_fn(struct work_struct *work);
1312
1313static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1314static DEFINE_SPINLOCK(bio_dirty_lock);
1315static struct bio *bio_dirty_list;
1316
1317/*
1318 * This runs in process context
1319 */
1320static void bio_dirty_fn(struct work_struct *work)
1321{
1322	struct bio *bio, *next;
1323
1324	spin_lock_irq(&bio_dirty_lock);
1325	next = bio_dirty_list;
1326	bio_dirty_list = NULL;
1327	spin_unlock_irq(&bio_dirty_lock);
1328
1329	while ((bio = next) != NULL) {
1330		next = bio->bi_private;
1331
1332		bio_release_pages(bio, true);
1333		bio_put(bio);
1334	}
1335}
1336
1337void bio_check_pages_dirty(struct bio *bio)
1338{
1339	struct bio_vec *bvec;
1340	unsigned long flags;
1341	struct bvec_iter_all iter_all;
1342
1343	bio_for_each_segment_all(bvec, bio, iter_all) {
1344		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1345			goto defer;
1346	}
1347
1348	bio_release_pages(bio, false);
1349	bio_put(bio);
1350	return;
1351defer:
1352	spin_lock_irqsave(&bio_dirty_lock, flags);
1353	bio->bi_private = bio_dirty_list;
1354	bio_dirty_list = bio;
1355	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1356	schedule_work(&bio_dirty_work);
1357}
1358
1359static inline bool bio_remaining_done(struct bio *bio)
1360{
1361	/*
1362	 * If we're not chaining, then ->__bi_remaining is always 1 and
1363	 * we always end io on the first invocation.
1364	 */
1365	if (!bio_flagged(bio, BIO_CHAIN))
1366		return true;
1367
1368	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1369
1370	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1371		bio_clear_flag(bio, BIO_CHAIN);
1372		return true;
1373	}
1374
1375	return false;
1376}
1377
1378/**
1379 * bio_endio - end I/O on a bio
1380 * @bio:	bio
1381 *
1382 * Description:
1383 *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1384 *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1385 *   bio unless they own it and thus know that it has an end_io function.
1386 *
1387 *   bio_endio() can be called several times on a bio that has been chained
1388 *   using bio_chain().  The ->bi_end_io() function will only be called the
1389 *   last time.
1390 **/
1391void bio_endio(struct bio *bio)
1392{
1393again:
1394	if (!bio_remaining_done(bio))
1395		return;
1396	if (!bio_integrity_endio(bio))
1397		return;
1398
1399	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACKED))
1400		rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
1401
1402	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1403		trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
1404		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1405	}
1406
1407	/*
1408	 * Need to have a real endio function for chained bios, otherwise
1409	 * various corner cases will break (like stacking block devices that
1410	 * save/restore bi_end_io) - however, we want to avoid unbounded
1411	 * recursion and blowing the stack. Tail call optimization would
1412	 * handle this, but compiling with frame pointers also disables
1413	 * gcc's sibling call optimization.
1414	 */
1415	if (bio->bi_end_io == bio_chain_endio) {
1416		bio = __bio_chain_endio(bio);
1417		goto again;
1418	}
1419
1420	blk_throtl_bio_endio(bio);
1421	/* release cgroup info */
1422	bio_uninit(bio);
1423	if (bio->bi_end_io)
1424		bio->bi_end_io(bio);
1425}
1426EXPORT_SYMBOL(bio_endio);
1427
1428/**
1429 * bio_split - split a bio
1430 * @bio:	bio to split
1431 * @sectors:	number of sectors to split from the front of @bio
1432 * @gfp:	gfp mask
1433 * @bs:		bio set to allocate from
1434 *
1435 * Allocates and returns a new bio which represents @sectors from the start of
1436 * @bio, and updates @bio to represent the remaining sectors.
1437 *
1438 * Unless this is a discard request the newly allocated bio will point
1439 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1440 * neither @bio nor @bs are freed before the split bio.
1441 */
1442struct bio *bio_split(struct bio *bio, int sectors,
1443		      gfp_t gfp, struct bio_set *bs)
1444{
1445	struct bio *split;
1446
1447	BUG_ON(sectors <= 0);
1448	BUG_ON(sectors >= bio_sectors(bio));
1449
1450	/* Zone append commands cannot be split */
1451	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1452		return NULL;
1453
1454	split = bio_clone_fast(bio, gfp, bs);
1455	if (!split)
1456		return NULL;
1457
1458	split->bi_iter.bi_size = sectors << 9;
1459
1460	if (bio_integrity(split))
1461		bio_integrity_trim(split);
1462
1463	bio_advance(bio, split->bi_iter.bi_size);
1464
1465	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1466		bio_set_flag(split, BIO_TRACE_COMPLETION);
1467
1468	return split;
1469}
1470EXPORT_SYMBOL(bio_split);
1471
1472/**
1473 * bio_trim - trim a bio
1474 * @bio:	bio to trim
1475 * @offset:	number of sectors to trim from the front of @bio
1476 * @size:	size we want to trim @bio to, in sectors
 
 
 
1477 */
1478void bio_trim(struct bio *bio, int offset, int size)
1479{
1480	/* 'bio' is a cloned bio which we need to trim to match
1481	 * the given offset and size.
1482	 */
1483
1484	size <<= 9;
1485	if (offset == 0 && size == bio->bi_iter.bi_size)
1486		return;
1487
1488	bio_advance(bio, offset << 9);
1489	bio->bi_iter.bi_size = size;
1490
1491	if (bio_integrity(bio))
1492		bio_integrity_trim(bio);
1493
1494}
1495EXPORT_SYMBOL_GPL(bio_trim);
1496
1497/*
1498 * create memory pools for biovec's in a bio_set.
1499 * use the global biovec slabs created for general use.
1500 */
1501int biovec_init_pool(mempool_t *pool, int pool_entries)
1502{
1503	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1504
1505	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1506}
1507
1508/*
1509 * bioset_exit - exit a bioset initialized with bioset_init()
1510 *
1511 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1512 * kzalloc()).
1513 */
1514void bioset_exit(struct bio_set *bs)
1515{
 
1516	if (bs->rescue_workqueue)
1517		destroy_workqueue(bs->rescue_workqueue);
1518	bs->rescue_workqueue = NULL;
1519
1520	mempool_exit(&bs->bio_pool);
1521	mempool_exit(&bs->bvec_pool);
1522
1523	bioset_integrity_free(bs);
1524	if (bs->bio_slab)
1525		bio_put_slab(bs);
1526	bs->bio_slab = NULL;
1527}
1528EXPORT_SYMBOL(bioset_exit);
1529
1530/**
1531 * bioset_init - Initialize a bio_set
1532 * @bs:		pool to initialize
1533 * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1534 * @front_pad:	Number of bytes to allocate in front of the returned bio
1535 * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1536 *              and %BIOSET_NEED_RESCUER
1537 *
1538 * Description:
1539 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1540 *    to ask for a number of bytes to be allocated in front of the bio.
1541 *    Front pad allocation is useful for embedding the bio inside
1542 *    another structure, to avoid allocating extra data to go with the bio.
1543 *    Note that the bio must be embedded at the END of that structure always,
1544 *    or things will break badly.
1545 *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1546 *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1547 *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1548 *    dispatch queued requests when the mempool runs out of space.
1549 *
1550 */
1551int bioset_init(struct bio_set *bs,
1552		unsigned int pool_size,
1553		unsigned int front_pad,
1554		int flags)
1555{
1556	bs->front_pad = front_pad;
1557	if (flags & BIOSET_NEED_BVECS)
1558		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1559	else
1560		bs->back_pad = 0;
1561
1562	spin_lock_init(&bs->rescue_lock);
1563	bio_list_init(&bs->rescue_list);
1564	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1565
1566	bs->bio_slab = bio_find_or_create_slab(bs);
1567	if (!bs->bio_slab)
1568		return -ENOMEM;
1569
1570	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1571		goto bad;
1572
1573	if ((flags & BIOSET_NEED_BVECS) &&
1574	    biovec_init_pool(&bs->bvec_pool, pool_size))
1575		goto bad;
1576
1577	if (!(flags & BIOSET_NEED_RESCUER))
1578		return 0;
1579
1580	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1581	if (!bs->rescue_workqueue)
1582		goto bad;
 
 
 
 
 
 
1583
1584	return 0;
1585bad:
1586	bioset_exit(bs);
1587	return -ENOMEM;
1588}
1589EXPORT_SYMBOL(bioset_init);
1590
1591/*
1592 * Initialize and setup a new bio_set, based on the settings from
1593 * another bio_set.
1594 */
1595int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1596{
1597	int flags;
1598
1599	flags = 0;
1600	if (src->bvec_pool.min_nr)
1601		flags |= BIOSET_NEED_BVECS;
1602	if (src->rescue_workqueue)
1603		flags |= BIOSET_NEED_RESCUER;
1604
1605	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1606}
1607EXPORT_SYMBOL(bioset_init_from_src);
1608
1609static int __init init_bio(void)
1610{
1611	int i;
1612
1613	bio_integrity_init();
1614
1615	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1616		struct biovec_slab *bvs = bvec_slabs + i;
1617
1618		bvs->slab = kmem_cache_create(bvs->name,
1619				bvs->nr_vecs * sizeof(struct bio_vec), 0,
1620				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1621	}
1622
1623	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
 
 
 
 
1624		panic("bio: can't allocate bios\n");
1625
1626	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1627		panic("bio: can't create integrity pool\n");
1628
1629	return 0;
1630}
1631subsys_initcall(init_bio);