Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Copyright (C) 1991, 1992  Linus Torvalds
  4 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  5 *  Copyright (C) 2011	Don Zickus Red Hat, Inc.
  6 *
  7 *  Pentium III FXSR, SSE support
  8 *	Gareth Hughes <gareth@valinux.com>, May 2000
  9 */
 10
 11/*
 12 * Handle hardware traps and faults.
 13 */
 14#include <linux/spinlock.h>
 15#include <linux/kprobes.h>
 16#include <linux/kdebug.h>
 17#include <linux/sched/debug.h>
 18#include <linux/nmi.h>
 19#include <linux/debugfs.h>
 20#include <linux/delay.h>
 21#include <linux/hardirq.h>
 22#include <linux/ratelimit.h>
 23#include <linux/slab.h>
 24#include <linux/export.h>
 25#include <linux/atomic.h>
 26#include <linux/sched/clock.h>
 27
 28#include <asm/cpu_entry_area.h>
 29#include <asm/traps.h>
 30#include <asm/mach_traps.h>
 31#include <asm/nmi.h>
 32#include <asm/x86_init.h>
 33#include <asm/reboot.h>
 34#include <asm/cache.h>
 35#include <asm/nospec-branch.h>
 36#include <asm/sev.h>
 37
 38#define CREATE_TRACE_POINTS
 39#include <trace/events/nmi.h>
 40
 41struct nmi_desc {
 42	raw_spinlock_t lock;
 43	struct list_head head;
 44};
 45
 46static struct nmi_desc nmi_desc[NMI_MAX] = 
 47{
 48	{
 49		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
 50		.head = LIST_HEAD_INIT(nmi_desc[0].head),
 51	},
 52	{
 53		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
 54		.head = LIST_HEAD_INIT(nmi_desc[1].head),
 55	},
 56	{
 57		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
 58		.head = LIST_HEAD_INIT(nmi_desc[2].head),
 59	},
 60	{
 61		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
 62		.head = LIST_HEAD_INIT(nmi_desc[3].head),
 63	},
 64
 65};
 66
 67struct nmi_stats {
 68	unsigned int normal;
 69	unsigned int unknown;
 70	unsigned int external;
 71	unsigned int swallow;
 72};
 73
 74static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
 75
 76static int ignore_nmis __read_mostly;
 77
 78int unknown_nmi_panic;
 79/*
 80 * Prevent NMI reason port (0x61) being accessed simultaneously, can
 81 * only be used in NMI handler.
 82 */
 83static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
 84
 85static int __init setup_unknown_nmi_panic(char *str)
 86{
 87	unknown_nmi_panic = 1;
 88	return 1;
 89}
 90__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
 91
 92#define nmi_to_desc(type) (&nmi_desc[type])
 93
 94static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
 95
 96static int __init nmi_warning_debugfs(void)
 97{
 98	debugfs_create_u64("nmi_longest_ns", 0644,
 99			arch_debugfs_dir, &nmi_longest_ns);
100	return 0;
101}
102fs_initcall(nmi_warning_debugfs);
103
104static void nmi_check_duration(struct nmiaction *action, u64 duration)
105{
106	int remainder_ns, decimal_msecs;
107
108	if (duration < nmi_longest_ns || duration < action->max_duration)
109		return;
110
111	action->max_duration = duration;
112
113	remainder_ns = do_div(duration, (1000 * 1000));
114	decimal_msecs = remainder_ns / 1000;
115
116	printk_ratelimited(KERN_INFO
117		"INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
118		action->handler, duration, decimal_msecs);
119}
120
121static int nmi_handle(unsigned int type, struct pt_regs *regs)
122{
123	struct nmi_desc *desc = nmi_to_desc(type);
124	struct nmiaction *a;
125	int handled=0;
126
127	rcu_read_lock();
128
129	/*
130	 * NMIs are edge-triggered, which means if you have enough
131	 * of them concurrently, you can lose some because only one
132	 * can be latched at any given time.  Walk the whole list
133	 * to handle those situations.
134	 */
135	list_for_each_entry_rcu(a, &desc->head, list) {
136		int thishandled;
137		u64 delta;
138
139		delta = sched_clock();
140		thishandled = a->handler(type, regs);
141		handled += thishandled;
142		delta = sched_clock() - delta;
143		trace_nmi_handler(a->handler, (int)delta, thishandled);
144
145		nmi_check_duration(a, delta);
146	}
147
148	rcu_read_unlock();
149
150	/* return total number of NMI events handled */
151	return handled;
152}
153NOKPROBE_SYMBOL(nmi_handle);
154
155int __register_nmi_handler(unsigned int type, struct nmiaction *action)
156{
157	struct nmi_desc *desc = nmi_to_desc(type);
158	unsigned long flags;
159
160	if (WARN_ON_ONCE(!action->handler || !list_empty(&action->list)))
161		return -EINVAL;
162
163	raw_spin_lock_irqsave(&desc->lock, flags);
164
165	/*
166	 * Indicate if there are multiple registrations on the
167	 * internal NMI handler call chains (SERR and IO_CHECK).
168	 */
169	WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
170	WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
171
172	/*
173	 * some handlers need to be executed first otherwise a fake
174	 * event confuses some handlers (kdump uses this flag)
175	 */
176	if (action->flags & NMI_FLAG_FIRST)
177		list_add_rcu(&action->list, &desc->head);
178	else
179		list_add_tail_rcu(&action->list, &desc->head);
180
181	raw_spin_unlock_irqrestore(&desc->lock, flags);
182	return 0;
183}
184EXPORT_SYMBOL(__register_nmi_handler);
185
186void unregister_nmi_handler(unsigned int type, const char *name)
187{
188	struct nmi_desc *desc = nmi_to_desc(type);
189	struct nmiaction *n, *found = NULL;
190	unsigned long flags;
191
192	raw_spin_lock_irqsave(&desc->lock, flags);
193
194	list_for_each_entry_rcu(n, &desc->head, list) {
195		/*
196		 * the name passed in to describe the nmi handler
197		 * is used as the lookup key
198		 */
199		if (!strcmp(n->name, name)) {
200			WARN(in_nmi(),
201				"Trying to free NMI (%s) from NMI context!\n", n->name);
202			list_del_rcu(&n->list);
203			found = n;
204			break;
205		}
206	}
207
208	raw_spin_unlock_irqrestore(&desc->lock, flags);
209	if (found) {
210		synchronize_rcu();
211		INIT_LIST_HEAD(&found->list);
212	}
213}
214EXPORT_SYMBOL_GPL(unregister_nmi_handler);
215
216static void
217pci_serr_error(unsigned char reason, struct pt_regs *regs)
218{
219	/* check to see if anyone registered against these types of errors */
220	if (nmi_handle(NMI_SERR, regs))
221		return;
222
223	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
224		 reason, smp_processor_id());
225
226	if (panic_on_unrecovered_nmi)
227		nmi_panic(regs, "NMI: Not continuing");
228
229	pr_emerg("Dazed and confused, but trying to continue\n");
230
231	/* Clear and disable the PCI SERR error line. */
232	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
233	outb(reason, NMI_REASON_PORT);
234}
235NOKPROBE_SYMBOL(pci_serr_error);
236
237static void
238io_check_error(unsigned char reason, struct pt_regs *regs)
239{
240	unsigned long i;
241
242	/* check to see if anyone registered against these types of errors */
243	if (nmi_handle(NMI_IO_CHECK, regs))
244		return;
245
246	pr_emerg(
247	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
248		 reason, smp_processor_id());
249	show_regs(regs);
250
251	if (panic_on_io_nmi) {
252		nmi_panic(regs, "NMI IOCK error: Not continuing");
253
254		/*
255		 * If we end up here, it means we have received an NMI while
256		 * processing panic(). Simply return without delaying and
257		 * re-enabling NMIs.
258		 */
259		return;
260	}
261
262	/* Re-enable the IOCK line, wait for a few seconds */
263	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
264	outb(reason, NMI_REASON_PORT);
265
266	i = 20000;
267	while (--i) {
268		touch_nmi_watchdog();
269		udelay(100);
270	}
271
272	reason &= ~NMI_REASON_CLEAR_IOCHK;
273	outb(reason, NMI_REASON_PORT);
274}
275NOKPROBE_SYMBOL(io_check_error);
276
277static void
278unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
279{
280	int handled;
281
282	/*
283	 * Use 'false' as back-to-back NMIs are dealt with one level up.
284	 * Of course this makes having multiple 'unknown' handlers useless
285	 * as only the first one is ever run (unless it can actually determine
286	 * if it caused the NMI)
287	 */
288	handled = nmi_handle(NMI_UNKNOWN, regs);
289	if (handled) {
290		__this_cpu_add(nmi_stats.unknown, handled);
291		return;
292	}
293
294	__this_cpu_add(nmi_stats.unknown, 1);
295
296	pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
297		 reason, smp_processor_id());
298
 
299	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
300		nmi_panic(regs, "NMI: Not continuing");
301
302	pr_emerg("Dazed and confused, but trying to continue\n");
303}
304NOKPROBE_SYMBOL(unknown_nmi_error);
305
306static DEFINE_PER_CPU(bool, swallow_nmi);
307static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
308
309static noinstr void default_do_nmi(struct pt_regs *regs)
310{
311	unsigned char reason = 0;
312	int handled;
313	bool b2b = false;
314
315	/*
316	 * CPU-specific NMI must be processed before non-CPU-specific
317	 * NMI, otherwise we may lose it, because the CPU-specific
318	 * NMI can not be detected/processed on other CPUs.
319	 */
320
321	/*
322	 * Back-to-back NMIs are interesting because they can either
323	 * be two NMI or more than two NMIs (any thing over two is dropped
324	 * due to NMI being edge-triggered).  If this is the second half
325	 * of the back-to-back NMI, assume we dropped things and process
326	 * more handlers.  Otherwise reset the 'swallow' NMI behaviour
327	 */
328	if (regs->ip == __this_cpu_read(last_nmi_rip))
329		b2b = true;
330	else
331		__this_cpu_write(swallow_nmi, false);
332
333	__this_cpu_write(last_nmi_rip, regs->ip);
334
335	instrumentation_begin();
336
337	handled = nmi_handle(NMI_LOCAL, regs);
338	__this_cpu_add(nmi_stats.normal, handled);
339	if (handled) {
340		/*
341		 * There are cases when a NMI handler handles multiple
342		 * events in the current NMI.  One of these events may
343		 * be queued for in the next NMI.  Because the event is
344		 * already handled, the next NMI will result in an unknown
345		 * NMI.  Instead lets flag this for a potential NMI to
346		 * swallow.
347		 */
348		if (handled > 1)
349			__this_cpu_write(swallow_nmi, true);
350		goto out;
351	}
352
353	/*
354	 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
355	 *
356	 * Another CPU may be processing panic routines while holding
357	 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
358	 * and if so, call its callback directly.  If there is no CPU preparing
359	 * crash dump, we simply loop here.
360	 */
361	while (!raw_spin_trylock(&nmi_reason_lock)) {
362		run_crash_ipi_callback(regs);
363		cpu_relax();
364	}
365
366	reason = x86_platform.get_nmi_reason();
367
368	if (reason & NMI_REASON_MASK) {
369		if (reason & NMI_REASON_SERR)
370			pci_serr_error(reason, regs);
371		else if (reason & NMI_REASON_IOCHK)
372			io_check_error(reason, regs);
373#ifdef CONFIG_X86_32
374		/*
375		 * Reassert NMI in case it became active
376		 * meanwhile as it's edge-triggered:
377		 */
378		reassert_nmi();
379#endif
380		__this_cpu_add(nmi_stats.external, 1);
381		raw_spin_unlock(&nmi_reason_lock);
382		goto out;
383	}
384	raw_spin_unlock(&nmi_reason_lock);
385
386	/*
387	 * Only one NMI can be latched at a time.  To handle
388	 * this we may process multiple nmi handlers at once to
389	 * cover the case where an NMI is dropped.  The downside
390	 * to this approach is we may process an NMI prematurely,
391	 * while its real NMI is sitting latched.  This will cause
392	 * an unknown NMI on the next run of the NMI processing.
393	 *
394	 * We tried to flag that condition above, by setting the
395	 * swallow_nmi flag when we process more than one event.
396	 * This condition is also only present on the second half
397	 * of a back-to-back NMI, so we flag that condition too.
398	 *
399	 * If both are true, we assume we already processed this
400	 * NMI previously and we swallow it.  Otherwise we reset
401	 * the logic.
402	 *
403	 * There are scenarios where we may accidentally swallow
404	 * a 'real' unknown NMI.  For example, while processing
405	 * a perf NMI another perf NMI comes in along with a
406	 * 'real' unknown NMI.  These two NMIs get combined into
407	 * one (as described above).  When the next NMI gets
408	 * processed, it will be flagged by perf as handled, but
409	 * no one will know that there was a 'real' unknown NMI sent
410	 * also.  As a result it gets swallowed.  Or if the first
411	 * perf NMI returns two events handled then the second
412	 * NMI will get eaten by the logic below, again losing a
413	 * 'real' unknown NMI.  But this is the best we can do
414	 * for now.
415	 */
416	if (b2b && __this_cpu_read(swallow_nmi))
417		__this_cpu_add(nmi_stats.swallow, 1);
418	else
419		unknown_nmi_error(reason, regs);
420
421out:
422	instrumentation_end();
423}
424
425/*
426 * NMIs can page fault or hit breakpoints which will cause it to lose
427 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
428 *
429 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
430 * NMI processing.  On x86_64, the asm glue protects us from nested NMIs
431 * if the outer NMI came from kernel mode, but we can still nest if the
432 * outer NMI came from user mode.
433 *
434 * To handle these nested NMIs, we have three states:
435 *
436 *  1) not running
437 *  2) executing
438 *  3) latched
439 *
440 * When no NMI is in progress, it is in the "not running" state.
441 * When an NMI comes in, it goes into the "executing" state.
442 * Normally, if another NMI is triggered, it does not interrupt
443 * the running NMI and the HW will simply latch it so that when
444 * the first NMI finishes, it will restart the second NMI.
445 * (Note, the latch is binary, thus multiple NMIs triggering,
446 *  when one is running, are ignored. Only one NMI is restarted.)
447 *
448 * If an NMI executes an iret, another NMI can preempt it. We do not
449 * want to allow this new NMI to run, but we want to execute it when the
450 * first one finishes.  We set the state to "latched", and the exit of
451 * the first NMI will perform a dec_return, if the result is zero
452 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
453 * dec_return would have set the state to NMI_EXECUTING (what we want it
454 * to be when we are running). In this case, we simply jump back to
455 * rerun the NMI handler again, and restart the 'latched' NMI.
456 *
457 * No trap (breakpoint or page fault) should be hit before nmi_restart,
458 * thus there is no race between the first check of state for NOT_RUNNING
459 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
460 * at this point.
461 *
462 * In case the NMI takes a page fault, we need to save off the CR2
463 * because the NMI could have preempted another page fault and corrupt
464 * the CR2 that is about to be read. As nested NMIs must be restarted
465 * and they can not take breakpoints or page faults, the update of the
466 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
467 * Otherwise, there would be a race of another nested NMI coming in
468 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
469 */
470enum nmi_states {
471	NMI_NOT_RUNNING = 0,
472	NMI_EXECUTING,
473	NMI_LATCHED,
474};
475static DEFINE_PER_CPU(enum nmi_states, nmi_state);
476static DEFINE_PER_CPU(unsigned long, nmi_cr2);
477static DEFINE_PER_CPU(unsigned long, nmi_dr7);
478
479DEFINE_IDTENTRY_RAW(exc_nmi)
480{
481	irqentry_state_t irq_state;
482
483	/*
484	 * Re-enable NMIs right here when running as an SEV-ES guest. This might
485	 * cause nested NMIs, but those can be handled safely.
486	 */
487	sev_es_nmi_complete();
488
489	if (IS_ENABLED(CONFIG_SMP) && arch_cpu_is_offline(smp_processor_id()))
490		return;
491
492	if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
493		this_cpu_write(nmi_state, NMI_LATCHED);
494		return;
495	}
496	this_cpu_write(nmi_state, NMI_EXECUTING);
497	this_cpu_write(nmi_cr2, read_cr2());
498nmi_restart:
499
500	/*
501	 * Needs to happen before DR7 is accessed, because the hypervisor can
502	 * intercept DR7 reads/writes, turning those into #VC exceptions.
503	 */
504	sev_es_ist_enter(regs);
505
506	this_cpu_write(nmi_dr7, local_db_save());
507
508	irq_state = irqentry_nmi_enter(regs);
509
510	inc_irq_stat(__nmi_count);
511
512	if (!ignore_nmis)
513		default_do_nmi(regs);
514
515	irqentry_nmi_exit(regs, irq_state);
516
517	local_db_restore(this_cpu_read(nmi_dr7));
518
519	sev_es_ist_exit();
520
521	if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
522		write_cr2(this_cpu_read(nmi_cr2));
523	if (this_cpu_dec_return(nmi_state))
524		goto nmi_restart;
525
526	if (user_mode(regs))
527		mds_user_clear_cpu_buffers();
528}
529
530#if defined(CONFIG_X86_64) && IS_ENABLED(CONFIG_KVM_INTEL)
531DEFINE_IDTENTRY_RAW(exc_nmi_noist)
532{
533	exc_nmi(regs);
534}
535#endif
536#if IS_MODULE(CONFIG_KVM_INTEL)
537EXPORT_SYMBOL_GPL(asm_exc_nmi_noist);
538#endif
539
540void stop_nmi(void)
541{
542	ignore_nmis++;
543}
544
545void restart_nmi(void)
546{
547	ignore_nmis--;
548}
549
550/* reset the back-to-back NMI logic */
551void local_touch_nmi(void)
552{
553	__this_cpu_write(last_nmi_rip, 0);
554}
555EXPORT_SYMBOL_GPL(local_touch_nmi);
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Copyright (C) 1991, 1992  Linus Torvalds
  4 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  5 *  Copyright (C) 2011	Don Zickus Red Hat, Inc.
  6 *
  7 *  Pentium III FXSR, SSE support
  8 *	Gareth Hughes <gareth@valinux.com>, May 2000
  9 */
 10
 11/*
 12 * Handle hardware traps and faults.
 13 */
 14#include <linux/spinlock.h>
 15#include <linux/kprobes.h>
 16#include <linux/kdebug.h>
 17#include <linux/sched/debug.h>
 18#include <linux/nmi.h>
 19#include <linux/debugfs.h>
 20#include <linux/delay.h>
 21#include <linux/hardirq.h>
 22#include <linux/ratelimit.h>
 23#include <linux/slab.h>
 24#include <linux/export.h>
 25#include <linux/atomic.h>
 26#include <linux/sched/clock.h>
 27
 28#include <asm/cpu_entry_area.h>
 29#include <asm/traps.h>
 30#include <asm/mach_traps.h>
 31#include <asm/nmi.h>
 32#include <asm/x86_init.h>
 33#include <asm/reboot.h>
 34#include <asm/cache.h>
 35#include <asm/nospec-branch.h>
 36#include <asm/sev.h>
 37
 38#define CREATE_TRACE_POINTS
 39#include <trace/events/nmi.h>
 40
 41struct nmi_desc {
 42	raw_spinlock_t lock;
 43	struct list_head head;
 44};
 45
 46static struct nmi_desc nmi_desc[NMI_MAX] = 
 47{
 48	{
 49		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
 50		.head = LIST_HEAD_INIT(nmi_desc[0].head),
 51	},
 52	{
 53		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
 54		.head = LIST_HEAD_INIT(nmi_desc[1].head),
 55	},
 56	{
 57		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
 58		.head = LIST_HEAD_INIT(nmi_desc[2].head),
 59	},
 60	{
 61		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
 62		.head = LIST_HEAD_INIT(nmi_desc[3].head),
 63	},
 64
 65};
 66
 67struct nmi_stats {
 68	unsigned int normal;
 69	unsigned int unknown;
 70	unsigned int external;
 71	unsigned int swallow;
 72};
 73
 74static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
 75
 76static int ignore_nmis __read_mostly;
 77
 78int unknown_nmi_panic;
 79/*
 80 * Prevent NMI reason port (0x61) being accessed simultaneously, can
 81 * only be used in NMI handler.
 82 */
 83static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
 84
 85static int __init setup_unknown_nmi_panic(char *str)
 86{
 87	unknown_nmi_panic = 1;
 88	return 1;
 89}
 90__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
 91
 92#define nmi_to_desc(type) (&nmi_desc[type])
 93
 94static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
 95
 96static int __init nmi_warning_debugfs(void)
 97{
 98	debugfs_create_u64("nmi_longest_ns", 0644,
 99			arch_debugfs_dir, &nmi_longest_ns);
100	return 0;
101}
102fs_initcall(nmi_warning_debugfs);
103
104static void nmi_check_duration(struct nmiaction *action, u64 duration)
105{
106	int remainder_ns, decimal_msecs;
107
108	if (duration < nmi_longest_ns || duration < action->max_duration)
109		return;
110
111	action->max_duration = duration;
112
113	remainder_ns = do_div(duration, (1000 * 1000));
114	decimal_msecs = remainder_ns / 1000;
115
116	printk_ratelimited(KERN_INFO
117		"INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
118		action->handler, duration, decimal_msecs);
119}
120
121static int nmi_handle(unsigned int type, struct pt_regs *regs)
122{
123	struct nmi_desc *desc = nmi_to_desc(type);
124	struct nmiaction *a;
125	int handled=0;
126
127	rcu_read_lock();
128
129	/*
130	 * NMIs are edge-triggered, which means if you have enough
131	 * of them concurrently, you can lose some because only one
132	 * can be latched at any given time.  Walk the whole list
133	 * to handle those situations.
134	 */
135	list_for_each_entry_rcu(a, &desc->head, list) {
136		int thishandled;
137		u64 delta;
138
139		delta = sched_clock();
140		thishandled = a->handler(type, regs);
141		handled += thishandled;
142		delta = sched_clock() - delta;
143		trace_nmi_handler(a->handler, (int)delta, thishandled);
144
145		nmi_check_duration(a, delta);
146	}
147
148	rcu_read_unlock();
149
150	/* return total number of NMI events handled */
151	return handled;
152}
153NOKPROBE_SYMBOL(nmi_handle);
154
155int __register_nmi_handler(unsigned int type, struct nmiaction *action)
156{
157	struct nmi_desc *desc = nmi_to_desc(type);
158	unsigned long flags;
159
160	if (!action->handler)
161		return -EINVAL;
162
163	raw_spin_lock_irqsave(&desc->lock, flags);
164
165	/*
166	 * Indicate if there are multiple registrations on the
167	 * internal NMI handler call chains (SERR and IO_CHECK).
168	 */
169	WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
170	WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
171
172	/*
173	 * some handlers need to be executed first otherwise a fake
174	 * event confuses some handlers (kdump uses this flag)
175	 */
176	if (action->flags & NMI_FLAG_FIRST)
177		list_add_rcu(&action->list, &desc->head);
178	else
179		list_add_tail_rcu(&action->list, &desc->head);
180	
181	raw_spin_unlock_irqrestore(&desc->lock, flags);
182	return 0;
183}
184EXPORT_SYMBOL(__register_nmi_handler);
185
186void unregister_nmi_handler(unsigned int type, const char *name)
187{
188	struct nmi_desc *desc = nmi_to_desc(type);
189	struct nmiaction *n;
190	unsigned long flags;
191
192	raw_spin_lock_irqsave(&desc->lock, flags);
193
194	list_for_each_entry_rcu(n, &desc->head, list) {
195		/*
196		 * the name passed in to describe the nmi handler
197		 * is used as the lookup key
198		 */
199		if (!strcmp(n->name, name)) {
200			WARN(in_nmi(),
201				"Trying to free NMI (%s) from NMI context!\n", n->name);
202			list_del_rcu(&n->list);
 
203			break;
204		}
205	}
206
207	raw_spin_unlock_irqrestore(&desc->lock, flags);
208	synchronize_rcu();
 
 
 
209}
210EXPORT_SYMBOL_GPL(unregister_nmi_handler);
211
212static void
213pci_serr_error(unsigned char reason, struct pt_regs *regs)
214{
215	/* check to see if anyone registered against these types of errors */
216	if (nmi_handle(NMI_SERR, regs))
217		return;
218
219	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
220		 reason, smp_processor_id());
221
222	if (panic_on_unrecovered_nmi)
223		nmi_panic(regs, "NMI: Not continuing");
224
225	pr_emerg("Dazed and confused, but trying to continue\n");
226
227	/* Clear and disable the PCI SERR error line. */
228	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
229	outb(reason, NMI_REASON_PORT);
230}
231NOKPROBE_SYMBOL(pci_serr_error);
232
233static void
234io_check_error(unsigned char reason, struct pt_regs *regs)
235{
236	unsigned long i;
237
238	/* check to see if anyone registered against these types of errors */
239	if (nmi_handle(NMI_IO_CHECK, regs))
240		return;
241
242	pr_emerg(
243	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
244		 reason, smp_processor_id());
245	show_regs(regs);
246
247	if (panic_on_io_nmi) {
248		nmi_panic(regs, "NMI IOCK error: Not continuing");
249
250		/*
251		 * If we end up here, it means we have received an NMI while
252		 * processing panic(). Simply return without delaying and
253		 * re-enabling NMIs.
254		 */
255		return;
256	}
257
258	/* Re-enable the IOCK line, wait for a few seconds */
259	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
260	outb(reason, NMI_REASON_PORT);
261
262	i = 20000;
263	while (--i) {
264		touch_nmi_watchdog();
265		udelay(100);
266	}
267
268	reason &= ~NMI_REASON_CLEAR_IOCHK;
269	outb(reason, NMI_REASON_PORT);
270}
271NOKPROBE_SYMBOL(io_check_error);
272
273static void
274unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
275{
276	int handled;
277
278	/*
279	 * Use 'false' as back-to-back NMIs are dealt with one level up.
280	 * Of course this makes having multiple 'unknown' handlers useless
281	 * as only the first one is ever run (unless it can actually determine
282	 * if it caused the NMI)
283	 */
284	handled = nmi_handle(NMI_UNKNOWN, regs);
285	if (handled) {
286		__this_cpu_add(nmi_stats.unknown, handled);
287		return;
288	}
289
290	__this_cpu_add(nmi_stats.unknown, 1);
291
292	pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
293		 reason, smp_processor_id());
294
295	pr_emerg("Do you have a strange power saving mode enabled?\n");
296	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
297		nmi_panic(regs, "NMI: Not continuing");
298
299	pr_emerg("Dazed and confused, but trying to continue\n");
300}
301NOKPROBE_SYMBOL(unknown_nmi_error);
302
303static DEFINE_PER_CPU(bool, swallow_nmi);
304static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
305
306static noinstr void default_do_nmi(struct pt_regs *regs)
307{
308	unsigned char reason = 0;
309	int handled;
310	bool b2b = false;
311
312	/*
313	 * CPU-specific NMI must be processed before non-CPU-specific
314	 * NMI, otherwise we may lose it, because the CPU-specific
315	 * NMI can not be detected/processed on other CPUs.
316	 */
317
318	/*
319	 * Back-to-back NMIs are interesting because they can either
320	 * be two NMI or more than two NMIs (any thing over two is dropped
321	 * due to NMI being edge-triggered).  If this is the second half
322	 * of the back-to-back NMI, assume we dropped things and process
323	 * more handlers.  Otherwise reset the 'swallow' NMI behaviour
324	 */
325	if (regs->ip == __this_cpu_read(last_nmi_rip))
326		b2b = true;
327	else
328		__this_cpu_write(swallow_nmi, false);
329
330	__this_cpu_write(last_nmi_rip, regs->ip);
331
332	instrumentation_begin();
333
334	handled = nmi_handle(NMI_LOCAL, regs);
335	__this_cpu_add(nmi_stats.normal, handled);
336	if (handled) {
337		/*
338		 * There are cases when a NMI handler handles multiple
339		 * events in the current NMI.  One of these events may
340		 * be queued for in the next NMI.  Because the event is
341		 * already handled, the next NMI will result in an unknown
342		 * NMI.  Instead lets flag this for a potential NMI to
343		 * swallow.
344		 */
345		if (handled > 1)
346			__this_cpu_write(swallow_nmi, true);
347		goto out;
348	}
349
350	/*
351	 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
352	 *
353	 * Another CPU may be processing panic routines while holding
354	 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
355	 * and if so, call its callback directly.  If there is no CPU preparing
356	 * crash dump, we simply loop here.
357	 */
358	while (!raw_spin_trylock(&nmi_reason_lock)) {
359		run_crash_ipi_callback(regs);
360		cpu_relax();
361	}
362
363	reason = x86_platform.get_nmi_reason();
364
365	if (reason & NMI_REASON_MASK) {
366		if (reason & NMI_REASON_SERR)
367			pci_serr_error(reason, regs);
368		else if (reason & NMI_REASON_IOCHK)
369			io_check_error(reason, regs);
370#ifdef CONFIG_X86_32
371		/*
372		 * Reassert NMI in case it became active
373		 * meanwhile as it's edge-triggered:
374		 */
375		reassert_nmi();
376#endif
377		__this_cpu_add(nmi_stats.external, 1);
378		raw_spin_unlock(&nmi_reason_lock);
379		goto out;
380	}
381	raw_spin_unlock(&nmi_reason_lock);
382
383	/*
384	 * Only one NMI can be latched at a time.  To handle
385	 * this we may process multiple nmi handlers at once to
386	 * cover the case where an NMI is dropped.  The downside
387	 * to this approach is we may process an NMI prematurely,
388	 * while its real NMI is sitting latched.  This will cause
389	 * an unknown NMI on the next run of the NMI processing.
390	 *
391	 * We tried to flag that condition above, by setting the
392	 * swallow_nmi flag when we process more than one event.
393	 * This condition is also only present on the second half
394	 * of a back-to-back NMI, so we flag that condition too.
395	 *
396	 * If both are true, we assume we already processed this
397	 * NMI previously and we swallow it.  Otherwise we reset
398	 * the logic.
399	 *
400	 * There are scenarios where we may accidentally swallow
401	 * a 'real' unknown NMI.  For example, while processing
402	 * a perf NMI another perf NMI comes in along with a
403	 * 'real' unknown NMI.  These two NMIs get combined into
404	 * one (as described above).  When the next NMI gets
405	 * processed, it will be flagged by perf as handled, but
406	 * no one will know that there was a 'real' unknown NMI sent
407	 * also.  As a result it gets swallowed.  Or if the first
408	 * perf NMI returns two events handled then the second
409	 * NMI will get eaten by the logic below, again losing a
410	 * 'real' unknown NMI.  But this is the best we can do
411	 * for now.
412	 */
413	if (b2b && __this_cpu_read(swallow_nmi))
414		__this_cpu_add(nmi_stats.swallow, 1);
415	else
416		unknown_nmi_error(reason, regs);
417
418out:
419	instrumentation_end();
420}
421
422/*
423 * NMIs can page fault or hit breakpoints which will cause it to lose
424 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
425 *
426 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
427 * NMI processing.  On x86_64, the asm glue protects us from nested NMIs
428 * if the outer NMI came from kernel mode, but we can still nest if the
429 * outer NMI came from user mode.
430 *
431 * To handle these nested NMIs, we have three states:
432 *
433 *  1) not running
434 *  2) executing
435 *  3) latched
436 *
437 * When no NMI is in progress, it is in the "not running" state.
438 * When an NMI comes in, it goes into the "executing" state.
439 * Normally, if another NMI is triggered, it does not interrupt
440 * the running NMI and the HW will simply latch it so that when
441 * the first NMI finishes, it will restart the second NMI.
442 * (Note, the latch is binary, thus multiple NMIs triggering,
443 *  when one is running, are ignored. Only one NMI is restarted.)
444 *
445 * If an NMI executes an iret, another NMI can preempt it. We do not
446 * want to allow this new NMI to run, but we want to execute it when the
447 * first one finishes.  We set the state to "latched", and the exit of
448 * the first NMI will perform a dec_return, if the result is zero
449 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
450 * dec_return would have set the state to NMI_EXECUTING (what we want it
451 * to be when we are running). In this case, we simply jump back to
452 * rerun the NMI handler again, and restart the 'latched' NMI.
453 *
454 * No trap (breakpoint or page fault) should be hit before nmi_restart,
455 * thus there is no race between the first check of state for NOT_RUNNING
456 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
457 * at this point.
458 *
459 * In case the NMI takes a page fault, we need to save off the CR2
460 * because the NMI could have preempted another page fault and corrupt
461 * the CR2 that is about to be read. As nested NMIs must be restarted
462 * and they can not take breakpoints or page faults, the update of the
463 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
464 * Otherwise, there would be a race of another nested NMI coming in
465 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
466 */
467enum nmi_states {
468	NMI_NOT_RUNNING = 0,
469	NMI_EXECUTING,
470	NMI_LATCHED,
471};
472static DEFINE_PER_CPU(enum nmi_states, nmi_state);
473static DEFINE_PER_CPU(unsigned long, nmi_cr2);
474static DEFINE_PER_CPU(unsigned long, nmi_dr7);
475
476DEFINE_IDTENTRY_RAW(exc_nmi)
477{
478	irqentry_state_t irq_state;
479
480	/*
481	 * Re-enable NMIs right here when running as an SEV-ES guest. This might
482	 * cause nested NMIs, but those can be handled safely.
483	 */
484	sev_es_nmi_complete();
485
486	if (IS_ENABLED(CONFIG_SMP) && arch_cpu_is_offline(smp_processor_id()))
487		return;
488
489	if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
490		this_cpu_write(nmi_state, NMI_LATCHED);
491		return;
492	}
493	this_cpu_write(nmi_state, NMI_EXECUTING);
494	this_cpu_write(nmi_cr2, read_cr2());
495nmi_restart:
496
497	/*
498	 * Needs to happen before DR7 is accessed, because the hypervisor can
499	 * intercept DR7 reads/writes, turning those into #VC exceptions.
500	 */
501	sev_es_ist_enter(regs);
502
503	this_cpu_write(nmi_dr7, local_db_save());
504
505	irq_state = irqentry_nmi_enter(regs);
506
507	inc_irq_stat(__nmi_count);
508
509	if (!ignore_nmis)
510		default_do_nmi(regs);
511
512	irqentry_nmi_exit(regs, irq_state);
513
514	local_db_restore(this_cpu_read(nmi_dr7));
515
516	sev_es_ist_exit();
517
518	if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
519		write_cr2(this_cpu_read(nmi_cr2));
520	if (this_cpu_dec_return(nmi_state))
521		goto nmi_restart;
522
523	if (user_mode(regs))
524		mds_user_clear_cpu_buffers();
525}
526
527#if defined(CONFIG_X86_64) && IS_ENABLED(CONFIG_KVM_INTEL)
528DEFINE_IDTENTRY_RAW(exc_nmi_noist)
529{
530	exc_nmi(regs);
531}
532#endif
533#if IS_MODULE(CONFIG_KVM_INTEL)
534EXPORT_SYMBOL_GPL(asm_exc_nmi_noist);
535#endif
536
537void stop_nmi(void)
538{
539	ignore_nmis++;
540}
541
542void restart_nmi(void)
543{
544	ignore_nmis--;
545}
546
547/* reset the back-to-back NMI logic */
548void local_touch_nmi(void)
549{
550	__this_cpu_write(last_nmi_rip, 0);
551}
552EXPORT_SYMBOL_GPL(local_touch_nmi);