Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v6.2
   1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
   2/* Copyright (c) 2018 Facebook */
   3
   4#include <byteswap.h>
   5#include <endian.h>
   6#include <stdio.h>
   7#include <stdlib.h>
   8#include <string.h>
   9#include <fcntl.h>
  10#include <unistd.h>
  11#include <errno.h>
  12#include <sys/utsname.h>
  13#include <sys/param.h>
  14#include <sys/stat.h>
  15#include <linux/kernel.h>
  16#include <linux/err.h>
  17#include <linux/btf.h>
  18#include <gelf.h>
  19#include "btf.h"
  20#include "bpf.h"
  21#include "libbpf.h"
  22#include "libbpf_internal.h"
  23#include "hashmap.h"
  24#include "strset.h"
  25
  26#define BTF_MAX_NR_TYPES 0x7fffffffU
  27#define BTF_MAX_STR_OFFSET 0x7fffffffU
  28
  29static struct btf_type btf_void;
  30
  31struct btf {
  32	/* raw BTF data in native endianness */
  33	void *raw_data;
  34	/* raw BTF data in non-native endianness */
  35	void *raw_data_swapped;
  36	__u32 raw_size;
  37	/* whether target endianness differs from the native one */
  38	bool swapped_endian;
  39
  40	/*
  41	 * When BTF is loaded from an ELF or raw memory it is stored
  42	 * in a contiguous memory block. The hdr, type_data, and, strs_data
  43	 * point inside that memory region to their respective parts of BTF
  44	 * representation:
  45	 *
  46	 * +--------------------------------+
  47	 * |  Header  |  Types  |  Strings  |
  48	 * +--------------------------------+
  49	 * ^          ^         ^
  50	 * |          |         |
  51	 * hdr        |         |
  52	 * types_data-+         |
  53	 * strs_data------------+
  54	 *
  55	 * If BTF data is later modified, e.g., due to types added or
  56	 * removed, BTF deduplication performed, etc, this contiguous
  57	 * representation is broken up into three independently allocated
  58	 * memory regions to be able to modify them independently.
  59	 * raw_data is nulled out at that point, but can be later allocated
  60	 * and cached again if user calls btf__raw_data(), at which point
  61	 * raw_data will contain a contiguous copy of header, types, and
  62	 * strings:
  63	 *
  64	 * +----------+  +---------+  +-----------+
  65	 * |  Header  |  |  Types  |  |  Strings  |
  66	 * +----------+  +---------+  +-----------+
  67	 * ^             ^            ^
  68	 * |             |            |
  69	 * hdr           |            |
  70	 * types_data----+            |
  71	 * strset__data(strs_set)-----+
  72	 *
  73	 *               +----------+---------+-----------+
  74	 *               |  Header  |  Types  |  Strings  |
  75	 * raw_data----->+----------+---------+-----------+
  76	 */
  77	struct btf_header *hdr;
  78
  79	void *types_data;
  80	size_t types_data_cap; /* used size stored in hdr->type_len */
  81
  82	/* type ID to `struct btf_type *` lookup index
  83	 * type_offs[0] corresponds to the first non-VOID type:
  84	 *   - for base BTF it's type [1];
  85	 *   - for split BTF it's the first non-base BTF type.
  86	 */
  87	__u32 *type_offs;
  88	size_t type_offs_cap;
  89	/* number of types in this BTF instance:
  90	 *   - doesn't include special [0] void type;
  91	 *   - for split BTF counts number of types added on top of base BTF.
  92	 */
  93	__u32 nr_types;
  94	/* if not NULL, points to the base BTF on top of which the current
  95	 * split BTF is based
  96	 */
  97	struct btf *base_btf;
  98	/* BTF type ID of the first type in this BTF instance:
  99	 *   - for base BTF it's equal to 1;
 100	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
 101	 */
 102	int start_id;
 103	/* logical string offset of this BTF instance:
 104	 *   - for base BTF it's equal to 0;
 105	 *   - for split BTF it's equal to total size of base BTF's string section size.
 106	 */
 107	int start_str_off;
 108
 109	/* only one of strs_data or strs_set can be non-NULL, depending on
 110	 * whether BTF is in a modifiable state (strs_set is used) or not
 111	 * (strs_data points inside raw_data)
 112	 */
 113	void *strs_data;
 114	/* a set of unique strings */
 115	struct strset *strs_set;
 116	/* whether strings are already deduplicated */
 117	bool strs_deduped;
 118
 119	/* BTF object FD, if loaded into kernel */
 120	int fd;
 121
 122	/* Pointer size (in bytes) for a target architecture of this BTF */
 123	int ptr_sz;
 124};
 125
 126static inline __u64 ptr_to_u64(const void *ptr)
 127{
 128	return (__u64) (unsigned long) ptr;
 129}
 130
 131/* Ensure given dynamically allocated memory region pointed to by *data* with
 132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
 133 * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements
 134 * are already used. At most *max_cnt* elements can be ever allocated.
 135 * If necessary, memory is reallocated and all existing data is copied over,
 136 * new pointer to the memory region is stored at *data, new memory region
 137 * capacity (in number of elements) is stored in *cap.
 138 * On success, memory pointer to the beginning of unused memory is returned.
 139 * On error, NULL is returned.
 140 */
 141void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
 142		     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
 143{
 144	size_t new_cnt;
 145	void *new_data;
 146
 147	if (cur_cnt + add_cnt <= *cap_cnt)
 148		return *data + cur_cnt * elem_sz;
 149
 150	/* requested more than the set limit */
 151	if (cur_cnt + add_cnt > max_cnt)
 152		return NULL;
 153
 154	new_cnt = *cap_cnt;
 155	new_cnt += new_cnt / 4;		  /* expand by 25% */
 156	if (new_cnt < 16)		  /* but at least 16 elements */
 157		new_cnt = 16;
 158	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
 159		new_cnt = max_cnt;
 160	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
 161		new_cnt = cur_cnt + add_cnt;
 162
 163	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
 164	if (!new_data)
 165		return NULL;
 166
 167	/* zero out newly allocated portion of memory */
 168	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
 169
 170	*data = new_data;
 171	*cap_cnt = new_cnt;
 172	return new_data + cur_cnt * elem_sz;
 173}
 174
 175/* Ensure given dynamically allocated memory region has enough allocated space
 176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each
 177 */
 178int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
 179{
 180	void *p;
 181
 182	if (need_cnt <= *cap_cnt)
 183		return 0;
 184
 185	p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
 186	if (!p)
 187		return -ENOMEM;
 188
 189	return 0;
 190}
 191
 192static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt)
 193{
 194	return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
 195			      btf->nr_types, BTF_MAX_NR_TYPES, add_cnt);
 196}
 197
 198static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
 199{
 200	__u32 *p;
 201
 202	p = btf_add_type_offs_mem(btf, 1);
 
 203	if (!p)
 204		return -ENOMEM;
 205
 206	*p = type_off;
 207	return 0;
 208}
 209
 210static void btf_bswap_hdr(struct btf_header *h)
 211{
 212	h->magic = bswap_16(h->magic);
 213	h->hdr_len = bswap_32(h->hdr_len);
 214	h->type_off = bswap_32(h->type_off);
 215	h->type_len = bswap_32(h->type_len);
 216	h->str_off = bswap_32(h->str_off);
 217	h->str_len = bswap_32(h->str_len);
 218}
 219
 220static int btf_parse_hdr(struct btf *btf)
 221{
 222	struct btf_header *hdr = btf->hdr;
 223	__u32 meta_left;
 224
 225	if (btf->raw_size < sizeof(struct btf_header)) {
 226		pr_debug("BTF header not found\n");
 227		return -EINVAL;
 228	}
 229
 230	if (hdr->magic == bswap_16(BTF_MAGIC)) {
 231		btf->swapped_endian = true;
 232		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
 233			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
 234				bswap_32(hdr->hdr_len));
 235			return -ENOTSUP;
 236		}
 237		btf_bswap_hdr(hdr);
 238	} else if (hdr->magic != BTF_MAGIC) {
 239		pr_debug("Invalid BTF magic: %x\n", hdr->magic);
 240		return -EINVAL;
 241	}
 242
 243	if (btf->raw_size < hdr->hdr_len) {
 244		pr_debug("BTF header len %u larger than data size %u\n",
 245			 hdr->hdr_len, btf->raw_size);
 246		return -EINVAL;
 247	}
 248
 249	meta_left = btf->raw_size - hdr->hdr_len;
 250	if (meta_left < (long long)hdr->str_off + hdr->str_len) {
 251		pr_debug("Invalid BTF total size: %u\n", btf->raw_size);
 252		return -EINVAL;
 253	}
 254
 255	if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) {
 256		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
 257			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
 258		return -EINVAL;
 259	}
 260
 261	if (hdr->type_off % 4) {
 262		pr_debug("BTF type section is not aligned to 4 bytes\n");
 263		return -EINVAL;
 264	}
 265
 266	return 0;
 267}
 268
 269static int btf_parse_str_sec(struct btf *btf)
 270{
 271	const struct btf_header *hdr = btf->hdr;
 272	const char *start = btf->strs_data;
 273	const char *end = start + btf->hdr->str_len;
 274
 275	if (btf->base_btf && hdr->str_len == 0)
 276		return 0;
 277	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
 278		pr_debug("Invalid BTF string section\n");
 279		return -EINVAL;
 280	}
 281	if (!btf->base_btf && start[0]) {
 282		pr_debug("Invalid BTF string section\n");
 283		return -EINVAL;
 284	}
 285	return 0;
 286}
 287
 288static int btf_type_size(const struct btf_type *t)
 289{
 290	const int base_size = sizeof(struct btf_type);
 291	__u16 vlen = btf_vlen(t);
 292
 293	switch (btf_kind(t)) {
 294	case BTF_KIND_FWD:
 295	case BTF_KIND_CONST:
 296	case BTF_KIND_VOLATILE:
 297	case BTF_KIND_RESTRICT:
 298	case BTF_KIND_PTR:
 299	case BTF_KIND_TYPEDEF:
 300	case BTF_KIND_FUNC:
 301	case BTF_KIND_FLOAT:
 302	case BTF_KIND_TYPE_TAG:
 303		return base_size;
 304	case BTF_KIND_INT:
 305		return base_size + sizeof(__u32);
 306	case BTF_KIND_ENUM:
 307		return base_size + vlen * sizeof(struct btf_enum);
 308	case BTF_KIND_ENUM64:
 309		return base_size + vlen * sizeof(struct btf_enum64);
 310	case BTF_KIND_ARRAY:
 311		return base_size + sizeof(struct btf_array);
 312	case BTF_KIND_STRUCT:
 313	case BTF_KIND_UNION:
 314		return base_size + vlen * sizeof(struct btf_member);
 315	case BTF_KIND_FUNC_PROTO:
 316		return base_size + vlen * sizeof(struct btf_param);
 317	case BTF_KIND_VAR:
 318		return base_size + sizeof(struct btf_var);
 319	case BTF_KIND_DATASEC:
 320		return base_size + vlen * sizeof(struct btf_var_secinfo);
 321	case BTF_KIND_DECL_TAG:
 322		return base_size + sizeof(struct btf_decl_tag);
 323	default:
 324		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 325		return -EINVAL;
 326	}
 327}
 328
 329static void btf_bswap_type_base(struct btf_type *t)
 330{
 331	t->name_off = bswap_32(t->name_off);
 332	t->info = bswap_32(t->info);
 333	t->type = bswap_32(t->type);
 334}
 335
 336static int btf_bswap_type_rest(struct btf_type *t)
 337{
 338	struct btf_var_secinfo *v;
 339	struct btf_enum64 *e64;
 340	struct btf_member *m;
 341	struct btf_array *a;
 342	struct btf_param *p;
 343	struct btf_enum *e;
 344	__u16 vlen = btf_vlen(t);
 345	int i;
 346
 347	switch (btf_kind(t)) {
 348	case BTF_KIND_FWD:
 349	case BTF_KIND_CONST:
 350	case BTF_KIND_VOLATILE:
 351	case BTF_KIND_RESTRICT:
 352	case BTF_KIND_PTR:
 353	case BTF_KIND_TYPEDEF:
 354	case BTF_KIND_FUNC:
 355	case BTF_KIND_FLOAT:
 356	case BTF_KIND_TYPE_TAG:
 357		return 0;
 358	case BTF_KIND_INT:
 359		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
 360		return 0;
 361	case BTF_KIND_ENUM:
 362		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
 363			e->name_off = bswap_32(e->name_off);
 364			e->val = bswap_32(e->val);
 365		}
 366		return 0;
 367	case BTF_KIND_ENUM64:
 368		for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) {
 369			e64->name_off = bswap_32(e64->name_off);
 370			e64->val_lo32 = bswap_32(e64->val_lo32);
 371			e64->val_hi32 = bswap_32(e64->val_hi32);
 372		}
 373		return 0;
 374	case BTF_KIND_ARRAY:
 375		a = btf_array(t);
 376		a->type = bswap_32(a->type);
 377		a->index_type = bswap_32(a->index_type);
 378		a->nelems = bswap_32(a->nelems);
 379		return 0;
 380	case BTF_KIND_STRUCT:
 381	case BTF_KIND_UNION:
 382		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
 383			m->name_off = bswap_32(m->name_off);
 384			m->type = bswap_32(m->type);
 385			m->offset = bswap_32(m->offset);
 386		}
 387		return 0;
 388	case BTF_KIND_FUNC_PROTO:
 389		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
 390			p->name_off = bswap_32(p->name_off);
 391			p->type = bswap_32(p->type);
 392		}
 393		return 0;
 394	case BTF_KIND_VAR:
 395		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
 396		return 0;
 397	case BTF_KIND_DATASEC:
 398		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
 399			v->type = bswap_32(v->type);
 400			v->offset = bswap_32(v->offset);
 401			v->size = bswap_32(v->size);
 402		}
 403		return 0;
 404	case BTF_KIND_DECL_TAG:
 405		btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx);
 406		return 0;
 407	default:
 408		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 409		return -EINVAL;
 410	}
 411}
 412
 413static int btf_parse_type_sec(struct btf *btf)
 414{
 415	struct btf_header *hdr = btf->hdr;
 416	void *next_type = btf->types_data;
 417	void *end_type = next_type + hdr->type_len;
 418	int err, type_size;
 419
 420	while (next_type + sizeof(struct btf_type) <= end_type) {
 421		if (btf->swapped_endian)
 422			btf_bswap_type_base(next_type);
 423
 424		type_size = btf_type_size(next_type);
 425		if (type_size < 0)
 426			return type_size;
 427		if (next_type + type_size > end_type) {
 428			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
 429			return -EINVAL;
 430		}
 431
 432		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
 433			return -EINVAL;
 434
 435		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
 436		if (err)
 437			return err;
 438
 439		next_type += type_size;
 440		btf->nr_types++;
 441	}
 442
 443	if (next_type != end_type) {
 444		pr_warn("BTF types data is malformed\n");
 445		return -EINVAL;
 446	}
 447
 448	return 0;
 449}
 450
 451__u32 btf__type_cnt(const struct btf *btf)
 452{
 453	return btf->start_id + btf->nr_types;
 454}
 455
 456const struct btf *btf__base_btf(const struct btf *btf)
 457{
 458	return btf->base_btf;
 459}
 460
 461/* internal helper returning non-const pointer to a type */
 462struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id)
 463{
 464	if (type_id == 0)
 465		return &btf_void;
 466	if (type_id < btf->start_id)
 467		return btf_type_by_id(btf->base_btf, type_id);
 468	return btf->types_data + btf->type_offs[type_id - btf->start_id];
 469}
 470
 471const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
 472{
 473	if (type_id >= btf->start_id + btf->nr_types)
 474		return errno = EINVAL, NULL;
 475	return btf_type_by_id((struct btf *)btf, type_id);
 476}
 477
 478static int determine_ptr_size(const struct btf *btf)
 479{
 480	static const char * const long_aliases[] = {
 481		"long",
 482		"long int",
 483		"int long",
 484		"unsigned long",
 485		"long unsigned",
 486		"unsigned long int",
 487		"unsigned int long",
 488		"long unsigned int",
 489		"long int unsigned",
 490		"int unsigned long",
 491		"int long unsigned",
 492	};
 493	const struct btf_type *t;
 494	const char *name;
 495	int i, j, n;
 496
 497	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
 498		return btf->base_btf->ptr_sz;
 499
 500	n = btf__type_cnt(btf);
 501	for (i = 1; i < n; i++) {
 502		t = btf__type_by_id(btf, i);
 503		if (!btf_is_int(t))
 504			continue;
 505
 506		if (t->size != 4 && t->size != 8)
 507			continue;
 508
 509		name = btf__name_by_offset(btf, t->name_off);
 510		if (!name)
 511			continue;
 512
 513		for (j = 0; j < ARRAY_SIZE(long_aliases); j++) {
 514			if (strcmp(name, long_aliases[j]) == 0)
 515				return t->size;
 
 
 516		}
 517	}
 518
 519	return -1;
 520}
 521
 522static size_t btf_ptr_sz(const struct btf *btf)
 523{
 524	if (!btf->ptr_sz)
 525		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 526	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
 527}
 528
 529/* Return pointer size this BTF instance assumes. The size is heuristically
 530 * determined by looking for 'long' or 'unsigned long' integer type and
 531 * recording its size in bytes. If BTF type information doesn't have any such
 532 * type, this function returns 0. In the latter case, native architecture's
 533 * pointer size is assumed, so will be either 4 or 8, depending on
 534 * architecture that libbpf was compiled for. It's possible to override
 535 * guessed value by using btf__set_pointer_size() API.
 536 */
 537size_t btf__pointer_size(const struct btf *btf)
 538{
 539	if (!btf->ptr_sz)
 540		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 541
 542	if (btf->ptr_sz < 0)
 543		/* not enough BTF type info to guess */
 544		return 0;
 545
 546	return btf->ptr_sz;
 547}
 548
 549/* Override or set pointer size in bytes. Only values of 4 and 8 are
 550 * supported.
 551 */
 552int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
 553{
 554	if (ptr_sz != 4 && ptr_sz != 8)
 555		return libbpf_err(-EINVAL);
 556	btf->ptr_sz = ptr_sz;
 557	return 0;
 558}
 559
 560static bool is_host_big_endian(void)
 561{
 562#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
 563	return false;
 564#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
 565	return true;
 566#else
 567# error "Unrecognized __BYTE_ORDER__"
 568#endif
 569}
 570
 571enum btf_endianness btf__endianness(const struct btf *btf)
 572{
 573	if (is_host_big_endian())
 574		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
 575	else
 576		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
 577}
 578
 579int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
 580{
 581	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
 582		return libbpf_err(-EINVAL);
 583
 584	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
 585	if (!btf->swapped_endian) {
 586		free(btf->raw_data_swapped);
 587		btf->raw_data_swapped = NULL;
 588	}
 589	return 0;
 590}
 591
 592static bool btf_type_is_void(const struct btf_type *t)
 593{
 594	return t == &btf_void || btf_is_fwd(t);
 595}
 596
 597static bool btf_type_is_void_or_null(const struct btf_type *t)
 598{
 599	return !t || btf_type_is_void(t);
 600}
 601
 602#define MAX_RESOLVE_DEPTH 32
 603
 604__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
 605{
 606	const struct btf_array *array;
 607	const struct btf_type *t;
 608	__u32 nelems = 1;
 609	__s64 size = -1;
 610	int i;
 611
 612	t = btf__type_by_id(btf, type_id);
 613	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
 614		switch (btf_kind(t)) {
 615		case BTF_KIND_INT:
 616		case BTF_KIND_STRUCT:
 617		case BTF_KIND_UNION:
 618		case BTF_KIND_ENUM:
 619		case BTF_KIND_ENUM64:
 620		case BTF_KIND_DATASEC:
 621		case BTF_KIND_FLOAT:
 622			size = t->size;
 623			goto done;
 624		case BTF_KIND_PTR:
 625			size = btf_ptr_sz(btf);
 626			goto done;
 627		case BTF_KIND_TYPEDEF:
 628		case BTF_KIND_VOLATILE:
 629		case BTF_KIND_CONST:
 630		case BTF_KIND_RESTRICT:
 631		case BTF_KIND_VAR:
 632		case BTF_KIND_DECL_TAG:
 633		case BTF_KIND_TYPE_TAG:
 634			type_id = t->type;
 635			break;
 636		case BTF_KIND_ARRAY:
 637			array = btf_array(t);
 638			if (nelems && array->nelems > UINT32_MAX / nelems)
 639				return libbpf_err(-E2BIG);
 640			nelems *= array->nelems;
 641			type_id = array->type;
 642			break;
 643		default:
 644			return libbpf_err(-EINVAL);
 645		}
 646
 647		t = btf__type_by_id(btf, type_id);
 648	}
 649
 650done:
 651	if (size < 0)
 652		return libbpf_err(-EINVAL);
 653	if (nelems && size > UINT32_MAX / nelems)
 654		return libbpf_err(-E2BIG);
 655
 656	return nelems * size;
 657}
 658
 659int btf__align_of(const struct btf *btf, __u32 id)
 660{
 661	const struct btf_type *t = btf__type_by_id(btf, id);
 662	__u16 kind = btf_kind(t);
 663
 664	switch (kind) {
 665	case BTF_KIND_INT:
 666	case BTF_KIND_ENUM:
 667	case BTF_KIND_ENUM64:
 668	case BTF_KIND_FLOAT:
 669		return min(btf_ptr_sz(btf), (size_t)t->size);
 670	case BTF_KIND_PTR:
 671		return btf_ptr_sz(btf);
 672	case BTF_KIND_TYPEDEF:
 673	case BTF_KIND_VOLATILE:
 674	case BTF_KIND_CONST:
 675	case BTF_KIND_RESTRICT:
 676	case BTF_KIND_TYPE_TAG:
 677		return btf__align_of(btf, t->type);
 678	case BTF_KIND_ARRAY:
 679		return btf__align_of(btf, btf_array(t)->type);
 680	case BTF_KIND_STRUCT:
 681	case BTF_KIND_UNION: {
 682		const struct btf_member *m = btf_members(t);
 683		__u16 vlen = btf_vlen(t);
 684		int i, max_align = 1, align;
 685
 686		for (i = 0; i < vlen; i++, m++) {
 687			align = btf__align_of(btf, m->type);
 688			if (align <= 0)
 689				return libbpf_err(align);
 690			max_align = max(max_align, align);
 691		}
 692
 693		return max_align;
 694	}
 695	default:
 696		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
 697		return errno = EINVAL, 0;
 698	}
 699}
 700
 701int btf__resolve_type(const struct btf *btf, __u32 type_id)
 702{
 703	const struct btf_type *t;
 704	int depth = 0;
 705
 706	t = btf__type_by_id(btf, type_id);
 707	while (depth < MAX_RESOLVE_DEPTH &&
 708	       !btf_type_is_void_or_null(t) &&
 709	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
 710		type_id = t->type;
 711		t = btf__type_by_id(btf, type_id);
 712		depth++;
 713	}
 714
 715	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
 716		return libbpf_err(-EINVAL);
 717
 718	return type_id;
 719}
 720
 721__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
 722{
 723	__u32 i, nr_types = btf__type_cnt(btf);
 724
 725	if (!strcmp(type_name, "void"))
 726		return 0;
 727
 728	for (i = 1; i < nr_types; i++) {
 729		const struct btf_type *t = btf__type_by_id(btf, i);
 730		const char *name = btf__name_by_offset(btf, t->name_off);
 731
 732		if (name && !strcmp(type_name, name))
 733			return i;
 734	}
 735
 736	return libbpf_err(-ENOENT);
 737}
 738
 739static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id,
 740				   const char *type_name, __u32 kind)
 741{
 742	__u32 i, nr_types = btf__type_cnt(btf);
 743
 744	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
 745		return 0;
 746
 747	for (i = start_id; i < nr_types; i++) {
 748		const struct btf_type *t = btf__type_by_id(btf, i);
 749		const char *name;
 750
 751		if (btf_kind(t) != kind)
 752			continue;
 753		name = btf__name_by_offset(btf, t->name_off);
 754		if (name && !strcmp(type_name, name))
 755			return i;
 756	}
 757
 758	return libbpf_err(-ENOENT);
 759}
 760
 761__s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name,
 762				 __u32 kind)
 763{
 764	return btf_find_by_name_kind(btf, btf->start_id, type_name, kind);
 765}
 766
 767__s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
 768			     __u32 kind)
 769{
 770	return btf_find_by_name_kind(btf, 1, type_name, kind);
 771}
 772
 773static bool btf_is_modifiable(const struct btf *btf)
 774{
 775	return (void *)btf->hdr != btf->raw_data;
 776}
 777
 778void btf__free(struct btf *btf)
 779{
 780	if (IS_ERR_OR_NULL(btf))
 781		return;
 782
 783	if (btf->fd >= 0)
 784		close(btf->fd);
 785
 786	if (btf_is_modifiable(btf)) {
 787		/* if BTF was modified after loading, it will have a split
 788		 * in-memory representation for header, types, and strings
 789		 * sections, so we need to free all of them individually. It
 790		 * might still have a cached contiguous raw data present,
 791		 * which will be unconditionally freed below.
 792		 */
 793		free(btf->hdr);
 794		free(btf->types_data);
 795		strset__free(btf->strs_set);
 796	}
 797	free(btf->raw_data);
 798	free(btf->raw_data_swapped);
 799	free(btf->type_offs);
 800	free(btf);
 801}
 802
 803static struct btf *btf_new_empty(struct btf *base_btf)
 804{
 805	struct btf *btf;
 806
 807	btf = calloc(1, sizeof(*btf));
 808	if (!btf)
 809		return ERR_PTR(-ENOMEM);
 810
 811	btf->nr_types = 0;
 812	btf->start_id = 1;
 813	btf->start_str_off = 0;
 814	btf->fd = -1;
 815	btf->ptr_sz = sizeof(void *);
 816	btf->swapped_endian = false;
 817
 818	if (base_btf) {
 819		btf->base_btf = base_btf;
 820		btf->start_id = btf__type_cnt(base_btf);
 821		btf->start_str_off = base_btf->hdr->str_len;
 822	}
 823
 824	/* +1 for empty string at offset 0 */
 825	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
 826	btf->raw_data = calloc(1, btf->raw_size);
 827	if (!btf->raw_data) {
 828		free(btf);
 829		return ERR_PTR(-ENOMEM);
 830	}
 831
 832	btf->hdr = btf->raw_data;
 833	btf->hdr->hdr_len = sizeof(struct btf_header);
 834	btf->hdr->magic = BTF_MAGIC;
 835	btf->hdr->version = BTF_VERSION;
 836
 837	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
 838	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
 839	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
 840
 841	return btf;
 842}
 843
 844struct btf *btf__new_empty(void)
 845{
 846	return libbpf_ptr(btf_new_empty(NULL));
 847}
 848
 849struct btf *btf__new_empty_split(struct btf *base_btf)
 850{
 851	return libbpf_ptr(btf_new_empty(base_btf));
 852}
 853
 854static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
 855{
 856	struct btf *btf;
 857	int err;
 858
 859	btf = calloc(1, sizeof(struct btf));
 860	if (!btf)
 861		return ERR_PTR(-ENOMEM);
 862
 863	btf->nr_types = 0;
 864	btf->start_id = 1;
 865	btf->start_str_off = 0;
 866	btf->fd = -1;
 867
 868	if (base_btf) {
 869		btf->base_btf = base_btf;
 870		btf->start_id = btf__type_cnt(base_btf);
 871		btf->start_str_off = base_btf->hdr->str_len;
 872	}
 873
 874	btf->raw_data = malloc(size);
 875	if (!btf->raw_data) {
 876		err = -ENOMEM;
 877		goto done;
 878	}
 879	memcpy(btf->raw_data, data, size);
 880	btf->raw_size = size;
 881
 882	btf->hdr = btf->raw_data;
 883	err = btf_parse_hdr(btf);
 884	if (err)
 885		goto done;
 886
 887	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
 888	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
 889
 890	err = btf_parse_str_sec(btf);
 891	err = err ?: btf_parse_type_sec(btf);
 892	if (err)
 893		goto done;
 894
 895done:
 896	if (err) {
 897		btf__free(btf);
 898		return ERR_PTR(err);
 899	}
 900
 901	return btf;
 902}
 903
 904struct btf *btf__new(const void *data, __u32 size)
 905{
 906	return libbpf_ptr(btf_new(data, size, NULL));
 907}
 908
 909static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
 910				 struct btf_ext **btf_ext)
 911{
 912	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
 913	int err = 0, fd = -1, idx = 0;
 914	struct btf *btf = NULL;
 915	Elf_Scn *scn = NULL;
 916	Elf *elf = NULL;
 917	GElf_Ehdr ehdr;
 918	size_t shstrndx;
 919
 920	if (elf_version(EV_CURRENT) == EV_NONE) {
 921		pr_warn("failed to init libelf for %s\n", path);
 922		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
 923	}
 924
 925	fd = open(path, O_RDONLY | O_CLOEXEC);
 926	if (fd < 0) {
 927		err = -errno;
 928		pr_warn("failed to open %s: %s\n", path, strerror(errno));
 929		return ERR_PTR(err);
 930	}
 931
 932	err = -LIBBPF_ERRNO__FORMAT;
 933
 934	elf = elf_begin(fd, ELF_C_READ, NULL);
 935	if (!elf) {
 936		pr_warn("failed to open %s as ELF file\n", path);
 937		goto done;
 938	}
 939	if (!gelf_getehdr(elf, &ehdr)) {
 940		pr_warn("failed to get EHDR from %s\n", path);
 941		goto done;
 942	}
 943
 944	if (elf_getshdrstrndx(elf, &shstrndx)) {
 945		pr_warn("failed to get section names section index for %s\n",
 946			path);
 947		goto done;
 948	}
 949
 950	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
 951		pr_warn("failed to get e_shstrndx from %s\n", path);
 952		goto done;
 953	}
 954
 955	while ((scn = elf_nextscn(elf, scn)) != NULL) {
 956		GElf_Shdr sh;
 957		char *name;
 958
 959		idx++;
 960		if (gelf_getshdr(scn, &sh) != &sh) {
 961			pr_warn("failed to get section(%d) header from %s\n",
 962				idx, path);
 963			goto done;
 964		}
 965		name = elf_strptr(elf, shstrndx, sh.sh_name);
 966		if (!name) {
 967			pr_warn("failed to get section(%d) name from %s\n",
 968				idx, path);
 969			goto done;
 970		}
 971		if (strcmp(name, BTF_ELF_SEC) == 0) {
 972			btf_data = elf_getdata(scn, 0);
 973			if (!btf_data) {
 974				pr_warn("failed to get section(%d, %s) data from %s\n",
 975					idx, name, path);
 976				goto done;
 977			}
 978			continue;
 979		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
 980			btf_ext_data = elf_getdata(scn, 0);
 981			if (!btf_ext_data) {
 982				pr_warn("failed to get section(%d, %s) data from %s\n",
 983					idx, name, path);
 984				goto done;
 985			}
 986			continue;
 987		}
 988	}
 989
 990	err = 0;
 991
 992	if (!btf_data) {
 993		err = -ENOENT;
 994		goto done;
 995	}
 996	btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
 997	err = libbpf_get_error(btf);
 998	if (err)
 999		goto done;
1000
1001	switch (gelf_getclass(elf)) {
1002	case ELFCLASS32:
1003		btf__set_pointer_size(btf, 4);
1004		break;
1005	case ELFCLASS64:
1006		btf__set_pointer_size(btf, 8);
1007		break;
1008	default:
1009		pr_warn("failed to get ELF class (bitness) for %s\n", path);
1010		break;
1011	}
1012
1013	if (btf_ext && btf_ext_data) {
1014		*btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
1015		err = libbpf_get_error(*btf_ext);
1016		if (err)
1017			goto done;
1018	} else if (btf_ext) {
1019		*btf_ext = NULL;
1020	}
1021done:
1022	if (elf)
1023		elf_end(elf);
1024	close(fd);
1025
1026	if (!err)
1027		return btf;
1028
1029	if (btf_ext)
1030		btf_ext__free(*btf_ext);
1031	btf__free(btf);
1032
1033	return ERR_PTR(err);
1034}
1035
1036struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
1037{
1038	return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
1039}
1040
1041struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
1042{
1043	return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
1044}
1045
1046static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
1047{
1048	struct btf *btf = NULL;
1049	void *data = NULL;
1050	FILE *f = NULL;
1051	__u16 magic;
1052	int err = 0;
1053	long sz;
1054
1055	f = fopen(path, "rb");
1056	if (!f) {
1057		err = -errno;
1058		goto err_out;
1059	}
1060
1061	/* check BTF magic */
1062	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1063		err = -EIO;
1064		goto err_out;
1065	}
1066	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1067		/* definitely not a raw BTF */
1068		err = -EPROTO;
1069		goto err_out;
1070	}
1071
1072	/* get file size */
1073	if (fseek(f, 0, SEEK_END)) {
1074		err = -errno;
1075		goto err_out;
1076	}
1077	sz = ftell(f);
1078	if (sz < 0) {
1079		err = -errno;
1080		goto err_out;
1081	}
1082	/* rewind to the start */
1083	if (fseek(f, 0, SEEK_SET)) {
1084		err = -errno;
1085		goto err_out;
1086	}
1087
1088	/* pre-alloc memory and read all of BTF data */
1089	data = malloc(sz);
1090	if (!data) {
1091		err = -ENOMEM;
1092		goto err_out;
1093	}
1094	if (fread(data, 1, sz, f) < sz) {
1095		err = -EIO;
1096		goto err_out;
1097	}
1098
1099	/* finally parse BTF data */
1100	btf = btf_new(data, sz, base_btf);
1101
1102err_out:
1103	free(data);
1104	if (f)
1105		fclose(f);
1106	return err ? ERR_PTR(err) : btf;
1107}
1108
1109struct btf *btf__parse_raw(const char *path)
1110{
1111	return libbpf_ptr(btf_parse_raw(path, NULL));
1112}
1113
1114struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1115{
1116	return libbpf_ptr(btf_parse_raw(path, base_btf));
1117}
1118
1119static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1120{
1121	struct btf *btf;
1122	int err;
1123
1124	if (btf_ext)
1125		*btf_ext = NULL;
1126
1127	btf = btf_parse_raw(path, base_btf);
1128	err = libbpf_get_error(btf);
1129	if (!err)
1130		return btf;
1131	if (err != -EPROTO)
1132		return ERR_PTR(err);
1133	return btf_parse_elf(path, base_btf, btf_ext);
1134}
1135
1136struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1137{
1138	return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1139}
1140
1141struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1142{
1143	return libbpf_ptr(btf_parse(path, base_btf, NULL));
1144}
1145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1146static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1147
1148int btf_load_into_kernel(struct btf *btf, char *log_buf, size_t log_sz, __u32 log_level)
1149{
1150	LIBBPF_OPTS(bpf_btf_load_opts, opts);
1151	__u32 buf_sz = 0, raw_size;
1152	char *buf = NULL, *tmp;
1153	void *raw_data;
1154	int err = 0;
1155
1156	if (btf->fd >= 0)
1157		return libbpf_err(-EEXIST);
1158	if (log_sz && !log_buf)
1159		return libbpf_err(-EINVAL);
1160
1161	/* cache native raw data representation */
 
 
 
 
 
 
 
 
1162	raw_data = btf_get_raw_data(btf, &raw_size, false);
1163	if (!raw_data) {
1164		err = -ENOMEM;
1165		goto done;
1166	}
 
1167	btf->raw_size = raw_size;
1168	btf->raw_data = raw_data;
1169
1170retry_load:
1171	/* if log_level is 0, we won't provide log_buf/log_size to the kernel,
1172	 * initially. Only if BTF loading fails, we bump log_level to 1 and
1173	 * retry, using either auto-allocated or custom log_buf. This way
1174	 * non-NULL custom log_buf provides a buffer just in case, but hopes
1175	 * for successful load and no need for log_buf.
1176	 */
1177	if (log_level) {
1178		/* if caller didn't provide custom log_buf, we'll keep
1179		 * allocating our own progressively bigger buffers for BTF
1180		 * verification log
1181		 */
1182		if (!log_buf) {
1183			buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2);
1184			tmp = realloc(buf, buf_sz);
1185			if (!tmp) {
1186				err = -ENOMEM;
1187				goto done;
1188			}
1189			buf = tmp;
1190			buf[0] = '\0';
1191		}
1192
1193		opts.log_buf = log_buf ? log_buf : buf;
1194		opts.log_size = log_buf ? log_sz : buf_sz;
1195		opts.log_level = log_level;
1196	}
1197
1198	btf->fd = bpf_btf_load(raw_data, raw_size, &opts);
1199	if (btf->fd < 0) {
1200		/* time to turn on verbose mode and try again */
1201		if (log_level == 0) {
1202			log_level = 1;
 
1203			goto retry_load;
1204		}
1205		/* only retry if caller didn't provide custom log_buf, but
1206		 * make sure we can never overflow buf_sz
1207		 */
1208		if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2)
1209			goto retry_load;
1210
1211		err = -errno;
1212		pr_warn("BTF loading error: %d\n", err);
1213		/* don't print out contents of custom log_buf */
1214		if (!log_buf && buf[0])
1215			pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf);
1216	}
1217
1218done:
1219	free(buf);
1220	return libbpf_err(err);
1221}
1222
1223int btf__load_into_kernel(struct btf *btf)
1224{
1225	return btf_load_into_kernel(btf, NULL, 0, 0);
1226}
1227
1228int btf__fd(const struct btf *btf)
1229{
1230	return btf->fd;
1231}
1232
1233void btf__set_fd(struct btf *btf, int fd)
1234{
1235	btf->fd = fd;
1236}
1237
1238static const void *btf_strs_data(const struct btf *btf)
1239{
1240	return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1241}
1242
1243static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1244{
1245	struct btf_header *hdr = btf->hdr;
1246	struct btf_type *t;
1247	void *data, *p;
1248	__u32 data_sz;
1249	int i;
1250
1251	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1252	if (data) {
1253		*size = btf->raw_size;
1254		return data;
1255	}
1256
1257	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1258	data = calloc(1, data_sz);
1259	if (!data)
1260		return NULL;
1261	p = data;
1262
1263	memcpy(p, hdr, hdr->hdr_len);
1264	if (swap_endian)
1265		btf_bswap_hdr(p);
1266	p += hdr->hdr_len;
1267
1268	memcpy(p, btf->types_data, hdr->type_len);
1269	if (swap_endian) {
1270		for (i = 0; i < btf->nr_types; i++) {
1271			t = p + btf->type_offs[i];
1272			/* btf_bswap_type_rest() relies on native t->info, so
1273			 * we swap base type info after we swapped all the
1274			 * additional information
1275			 */
1276			if (btf_bswap_type_rest(t))
1277				goto err_out;
1278			btf_bswap_type_base(t);
1279		}
1280	}
1281	p += hdr->type_len;
1282
1283	memcpy(p, btf_strs_data(btf), hdr->str_len);
1284	p += hdr->str_len;
1285
1286	*size = data_sz;
1287	return data;
1288err_out:
1289	free(data);
1290	return NULL;
1291}
1292
1293const void *btf__raw_data(const struct btf *btf_ro, __u32 *size)
1294{
1295	struct btf *btf = (struct btf *)btf_ro;
1296	__u32 data_sz;
1297	void *data;
1298
1299	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1300	if (!data)
1301		return errno = ENOMEM, NULL;
1302
1303	btf->raw_size = data_sz;
1304	if (btf->swapped_endian)
1305		btf->raw_data_swapped = data;
1306	else
1307		btf->raw_data = data;
1308	*size = data_sz;
1309	return data;
1310}
1311
1312__attribute__((alias("btf__raw_data")))
1313const void *btf__get_raw_data(const struct btf *btf, __u32 *size);
1314
1315const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1316{
1317	if (offset < btf->start_str_off)
1318		return btf__str_by_offset(btf->base_btf, offset);
1319	else if (offset - btf->start_str_off < btf->hdr->str_len)
1320		return btf_strs_data(btf) + (offset - btf->start_str_off);
1321	else
1322		return errno = EINVAL, NULL;
1323}
1324
1325const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1326{
1327	return btf__str_by_offset(btf, offset);
1328}
1329
1330struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1331{
1332	struct bpf_btf_info btf_info;
1333	__u32 len = sizeof(btf_info);
1334	__u32 last_size;
1335	struct btf *btf;
1336	void *ptr;
1337	int err;
1338
1339	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1340	 * let's start with a sane default - 4KiB here - and resize it only if
1341	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1342	 */
1343	last_size = 4096;
1344	ptr = malloc(last_size);
1345	if (!ptr)
1346		return ERR_PTR(-ENOMEM);
1347
1348	memset(&btf_info, 0, sizeof(btf_info));
1349	btf_info.btf = ptr_to_u64(ptr);
1350	btf_info.btf_size = last_size;
1351	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1352
1353	if (!err && btf_info.btf_size > last_size) {
1354		void *temp_ptr;
1355
1356		last_size = btf_info.btf_size;
1357		temp_ptr = realloc(ptr, last_size);
1358		if (!temp_ptr) {
1359			btf = ERR_PTR(-ENOMEM);
1360			goto exit_free;
1361		}
1362		ptr = temp_ptr;
1363
1364		len = sizeof(btf_info);
1365		memset(&btf_info, 0, sizeof(btf_info));
1366		btf_info.btf = ptr_to_u64(ptr);
1367		btf_info.btf_size = last_size;
1368
1369		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1370	}
1371
1372	if (err || btf_info.btf_size > last_size) {
1373		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1374		goto exit_free;
1375	}
1376
1377	btf = btf_new(ptr, btf_info.btf_size, base_btf);
1378
1379exit_free:
1380	free(ptr);
1381	return btf;
1382}
1383
1384struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf)
1385{
1386	struct btf *btf;
1387	int btf_fd;
1388
 
1389	btf_fd = bpf_btf_get_fd_by_id(id);
1390	if (btf_fd < 0)
1391		return libbpf_err_ptr(-errno);
 
 
 
1392
1393	btf = btf_get_from_fd(btf_fd, base_btf);
1394	close(btf_fd);
1395
1396	return libbpf_ptr(btf);
 
 
 
 
1397}
1398
1399struct btf *btf__load_from_kernel_by_id(__u32 id)
 
 
1400{
1401	return btf__load_from_kernel_by_id_split(id, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1402}
1403
1404static void btf_invalidate_raw_data(struct btf *btf)
1405{
1406	if (btf->raw_data) {
1407		free(btf->raw_data);
1408		btf->raw_data = NULL;
1409	}
1410	if (btf->raw_data_swapped) {
1411		free(btf->raw_data_swapped);
1412		btf->raw_data_swapped = NULL;
1413	}
1414}
1415
1416/* Ensure BTF is ready to be modified (by splitting into a three memory
1417 * regions for header, types, and strings). Also invalidate cached
1418 * raw_data, if any.
1419 */
1420static int btf_ensure_modifiable(struct btf *btf)
1421{
1422	void *hdr, *types;
1423	struct strset *set = NULL;
1424	int err = -ENOMEM;
1425
1426	if (btf_is_modifiable(btf)) {
1427		/* any BTF modification invalidates raw_data */
1428		btf_invalidate_raw_data(btf);
1429		return 0;
1430	}
1431
1432	/* split raw data into three memory regions */
1433	hdr = malloc(btf->hdr->hdr_len);
1434	types = malloc(btf->hdr->type_len);
1435	if (!hdr || !types)
1436		goto err_out;
1437
1438	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1439	memcpy(types, btf->types_data, btf->hdr->type_len);
1440
1441	/* build lookup index for all strings */
1442	set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1443	if (IS_ERR(set)) {
1444		err = PTR_ERR(set);
1445		goto err_out;
1446	}
1447
1448	/* only when everything was successful, update internal state */
1449	btf->hdr = hdr;
1450	btf->types_data = types;
1451	btf->types_data_cap = btf->hdr->type_len;
1452	btf->strs_data = NULL;
1453	btf->strs_set = set;
1454	/* if BTF was created from scratch, all strings are guaranteed to be
1455	 * unique and deduplicated
1456	 */
1457	if (btf->hdr->str_len == 0)
1458		btf->strs_deduped = true;
1459	if (!btf->base_btf && btf->hdr->str_len == 1)
1460		btf->strs_deduped = true;
1461
1462	/* invalidate raw_data representation */
1463	btf_invalidate_raw_data(btf);
1464
1465	return 0;
1466
1467err_out:
1468	strset__free(set);
1469	free(hdr);
1470	free(types);
1471	return err;
1472}
1473
1474/* Find an offset in BTF string section that corresponds to a given string *s*.
1475 * Returns:
1476 *   - >0 offset into string section, if string is found;
1477 *   - -ENOENT, if string is not in the string section;
1478 *   - <0, on any other error.
1479 */
1480int btf__find_str(struct btf *btf, const char *s)
1481{
1482	int off;
1483
1484	if (btf->base_btf) {
1485		off = btf__find_str(btf->base_btf, s);
1486		if (off != -ENOENT)
1487			return off;
1488	}
1489
1490	/* BTF needs to be in a modifiable state to build string lookup index */
1491	if (btf_ensure_modifiable(btf))
1492		return libbpf_err(-ENOMEM);
1493
1494	off = strset__find_str(btf->strs_set, s);
1495	if (off < 0)
1496		return libbpf_err(off);
1497
1498	return btf->start_str_off + off;
1499}
1500
1501/* Add a string s to the BTF string section.
1502 * Returns:
1503 *   - > 0 offset into string section, on success;
1504 *   - < 0, on error.
1505 */
1506int btf__add_str(struct btf *btf, const char *s)
1507{
1508	int off;
1509
1510	if (btf->base_btf) {
1511		off = btf__find_str(btf->base_btf, s);
1512		if (off != -ENOENT)
1513			return off;
1514	}
1515
1516	if (btf_ensure_modifiable(btf))
1517		return libbpf_err(-ENOMEM);
1518
1519	off = strset__add_str(btf->strs_set, s);
1520	if (off < 0)
1521		return libbpf_err(off);
1522
1523	btf->hdr->str_len = strset__data_size(btf->strs_set);
1524
1525	return btf->start_str_off + off;
1526}
1527
1528static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1529{
1530	return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1531			      btf->hdr->type_len, UINT_MAX, add_sz);
1532}
1533
1534static void btf_type_inc_vlen(struct btf_type *t)
1535{
1536	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1537}
1538
1539static int btf_commit_type(struct btf *btf, int data_sz)
1540{
1541	int err;
1542
1543	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1544	if (err)
1545		return libbpf_err(err);
1546
1547	btf->hdr->type_len += data_sz;
1548	btf->hdr->str_off += data_sz;
1549	btf->nr_types++;
1550	return btf->start_id + btf->nr_types - 1;
1551}
1552
1553struct btf_pipe {
1554	const struct btf *src;
1555	struct btf *dst;
1556	struct hashmap *str_off_map; /* map string offsets from src to dst */
1557};
1558
1559static int btf_rewrite_str(__u32 *str_off, void *ctx)
1560{
1561	struct btf_pipe *p = ctx;
1562	long mapped_off;
1563	int off, err;
1564
1565	if (!*str_off) /* nothing to do for empty strings */
1566		return 0;
1567
1568	if (p->str_off_map &&
1569	    hashmap__find(p->str_off_map, *str_off, &mapped_off)) {
1570		*str_off = mapped_off;
1571		return 0;
1572	}
1573
1574	off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1575	if (off < 0)
1576		return off;
1577
1578	/* Remember string mapping from src to dst.  It avoids
1579	 * performing expensive string comparisons.
1580	 */
1581	if (p->str_off_map) {
1582		err = hashmap__append(p->str_off_map, *str_off, off);
1583		if (err)
1584			return err;
1585	}
1586
1587	*str_off = off;
1588	return 0;
1589}
1590
1591int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1592{
1593	struct btf_pipe p = { .src = src_btf, .dst = btf };
1594	struct btf_type *t;
1595	int sz, err;
1596
1597	sz = btf_type_size(src_type);
1598	if (sz < 0)
1599		return libbpf_err(sz);
1600
1601	/* deconstruct BTF, if necessary, and invalidate raw_data */
1602	if (btf_ensure_modifiable(btf))
1603		return libbpf_err(-ENOMEM);
1604
1605	t = btf_add_type_mem(btf, sz);
1606	if (!t)
1607		return libbpf_err(-ENOMEM);
1608
1609	memcpy(t, src_type, sz);
1610
1611	err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1612	if (err)
1613		return libbpf_err(err);
1614
1615	return btf_commit_type(btf, sz);
1616}
1617
1618static int btf_rewrite_type_ids(__u32 *type_id, void *ctx)
1619{
1620	struct btf *btf = ctx;
1621
1622	if (!*type_id) /* nothing to do for VOID references */
1623		return 0;
1624
1625	/* we haven't updated btf's type count yet, so
1626	 * btf->start_id + btf->nr_types - 1 is the type ID offset we should
1627	 * add to all newly added BTF types
1628	 */
1629	*type_id += btf->start_id + btf->nr_types - 1;
1630	return 0;
1631}
1632
1633static size_t btf_dedup_identity_hash_fn(long key, void *ctx);
1634static bool btf_dedup_equal_fn(long k1, long k2, void *ctx);
1635
1636int btf__add_btf(struct btf *btf, const struct btf *src_btf)
1637{
1638	struct btf_pipe p = { .src = src_btf, .dst = btf };
1639	int data_sz, sz, cnt, i, err, old_strs_len;
1640	__u32 *off;
1641	void *t;
1642
1643	/* appending split BTF isn't supported yet */
1644	if (src_btf->base_btf)
1645		return libbpf_err(-ENOTSUP);
1646
1647	/* deconstruct BTF, if necessary, and invalidate raw_data */
1648	if (btf_ensure_modifiable(btf))
1649		return libbpf_err(-ENOMEM);
1650
1651	/* remember original strings section size if we have to roll back
1652	 * partial strings section changes
1653	 */
1654	old_strs_len = btf->hdr->str_len;
1655
1656	data_sz = src_btf->hdr->type_len;
1657	cnt = btf__type_cnt(src_btf) - 1;
1658
1659	/* pre-allocate enough memory for new types */
1660	t = btf_add_type_mem(btf, data_sz);
1661	if (!t)
1662		return libbpf_err(-ENOMEM);
1663
1664	/* pre-allocate enough memory for type offset index for new types */
1665	off = btf_add_type_offs_mem(btf, cnt);
1666	if (!off)
1667		return libbpf_err(-ENOMEM);
1668
1669	/* Map the string offsets from src_btf to the offsets from btf to improve performance */
1670	p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
1671	if (IS_ERR(p.str_off_map))
1672		return libbpf_err(-ENOMEM);
1673
1674	/* bulk copy types data for all types from src_btf */
1675	memcpy(t, src_btf->types_data, data_sz);
1676
1677	for (i = 0; i < cnt; i++) {
1678		sz = btf_type_size(t);
1679		if (sz < 0) {
1680			/* unlikely, has to be corrupted src_btf */
1681			err = sz;
1682			goto err_out;
1683		}
1684
1685		/* fill out type ID to type offset mapping for lookups by type ID */
1686		*off = t - btf->types_data;
1687
1688		/* add, dedup, and remap strings referenced by this BTF type */
1689		err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1690		if (err)
1691			goto err_out;
1692
1693		/* remap all type IDs referenced from this BTF type */
1694		err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf);
1695		if (err)
1696			goto err_out;
1697
1698		/* go to next type data and type offset index entry */
1699		t += sz;
1700		off++;
1701	}
1702
1703	/* Up until now any of the copied type data was effectively invisible,
1704	 * so if we exited early before this point due to error, BTF would be
1705	 * effectively unmodified. There would be extra internal memory
1706	 * pre-allocated, but it would not be available for querying.  But now
1707	 * that we've copied and rewritten all the data successfully, we can
1708	 * update type count and various internal offsets and sizes to
1709	 * "commit" the changes and made them visible to the outside world.
1710	 */
1711	btf->hdr->type_len += data_sz;
1712	btf->hdr->str_off += data_sz;
1713	btf->nr_types += cnt;
1714
1715	hashmap__free(p.str_off_map);
1716
1717	/* return type ID of the first added BTF type */
1718	return btf->start_id + btf->nr_types - cnt;
1719err_out:
1720	/* zero out preallocated memory as if it was just allocated with
1721	 * libbpf_add_mem()
1722	 */
1723	memset(btf->types_data + btf->hdr->type_len, 0, data_sz);
1724	memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len);
1725
1726	/* and now restore original strings section size; types data size
1727	 * wasn't modified, so doesn't need restoring, see big comment above
1728	 */
1729	btf->hdr->str_len = old_strs_len;
1730
1731	hashmap__free(p.str_off_map);
1732
1733	return libbpf_err(err);
1734}
1735
1736/*
1737 * Append new BTF_KIND_INT type with:
1738 *   - *name* - non-empty, non-NULL type name;
1739 *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1740 *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1741 * Returns:
1742 *   - >0, type ID of newly added BTF type;
1743 *   - <0, on error.
1744 */
1745int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1746{
1747	struct btf_type *t;
1748	int sz, name_off;
1749
1750	/* non-empty name */
1751	if (!name || !name[0])
1752		return libbpf_err(-EINVAL);
1753	/* byte_sz must be power of 2 */
1754	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1755		return libbpf_err(-EINVAL);
1756	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1757		return libbpf_err(-EINVAL);
1758
1759	/* deconstruct BTF, if necessary, and invalidate raw_data */
1760	if (btf_ensure_modifiable(btf))
1761		return libbpf_err(-ENOMEM);
1762
1763	sz = sizeof(struct btf_type) + sizeof(int);
1764	t = btf_add_type_mem(btf, sz);
1765	if (!t)
1766		return libbpf_err(-ENOMEM);
1767
1768	/* if something goes wrong later, we might end up with an extra string,
1769	 * but that shouldn't be a problem, because BTF can't be constructed
1770	 * completely anyway and will most probably be just discarded
1771	 */
1772	name_off = btf__add_str(btf, name);
1773	if (name_off < 0)
1774		return name_off;
1775
1776	t->name_off = name_off;
1777	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1778	t->size = byte_sz;
1779	/* set INT info, we don't allow setting legacy bit offset/size */
1780	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1781
1782	return btf_commit_type(btf, sz);
1783}
1784
1785/*
1786 * Append new BTF_KIND_FLOAT type with:
1787 *   - *name* - non-empty, non-NULL type name;
1788 *   - *sz* - size of the type, in bytes;
1789 * Returns:
1790 *   - >0, type ID of newly added BTF type;
1791 *   - <0, on error.
1792 */
1793int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1794{
1795	struct btf_type *t;
1796	int sz, name_off;
1797
1798	/* non-empty name */
1799	if (!name || !name[0])
1800		return libbpf_err(-EINVAL);
1801
1802	/* byte_sz must be one of the explicitly allowed values */
1803	if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1804	    byte_sz != 16)
1805		return libbpf_err(-EINVAL);
1806
1807	if (btf_ensure_modifiable(btf))
1808		return libbpf_err(-ENOMEM);
1809
1810	sz = sizeof(struct btf_type);
1811	t = btf_add_type_mem(btf, sz);
1812	if (!t)
1813		return libbpf_err(-ENOMEM);
1814
1815	name_off = btf__add_str(btf, name);
1816	if (name_off < 0)
1817		return name_off;
1818
1819	t->name_off = name_off;
1820	t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
1821	t->size = byte_sz;
1822
1823	return btf_commit_type(btf, sz);
1824}
1825
1826/* it's completely legal to append BTF types with type IDs pointing forward to
1827 * types that haven't been appended yet, so we only make sure that id looks
1828 * sane, we can't guarantee that ID will always be valid
1829 */
1830static int validate_type_id(int id)
1831{
1832	if (id < 0 || id > BTF_MAX_NR_TYPES)
1833		return -EINVAL;
1834	return 0;
1835}
1836
1837/* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1838static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1839{
1840	struct btf_type *t;
1841	int sz, name_off = 0;
1842
1843	if (validate_type_id(ref_type_id))
1844		return libbpf_err(-EINVAL);
1845
1846	if (btf_ensure_modifiable(btf))
1847		return libbpf_err(-ENOMEM);
1848
1849	sz = sizeof(struct btf_type);
1850	t = btf_add_type_mem(btf, sz);
1851	if (!t)
1852		return libbpf_err(-ENOMEM);
1853
1854	if (name && name[0]) {
1855		name_off = btf__add_str(btf, name);
1856		if (name_off < 0)
1857			return name_off;
1858	}
1859
1860	t->name_off = name_off;
1861	t->info = btf_type_info(kind, 0, 0);
1862	t->type = ref_type_id;
1863
1864	return btf_commit_type(btf, sz);
1865}
1866
1867/*
1868 * Append new BTF_KIND_PTR type with:
1869 *   - *ref_type_id* - referenced type ID, it might not exist yet;
1870 * Returns:
1871 *   - >0, type ID of newly added BTF type;
1872 *   - <0, on error.
1873 */
1874int btf__add_ptr(struct btf *btf, int ref_type_id)
1875{
1876	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1877}
1878
1879/*
1880 * Append new BTF_KIND_ARRAY type with:
1881 *   - *index_type_id* - type ID of the type describing array index;
1882 *   - *elem_type_id* - type ID of the type describing array element;
1883 *   - *nr_elems* - the size of the array;
1884 * Returns:
1885 *   - >0, type ID of newly added BTF type;
1886 *   - <0, on error.
1887 */
1888int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1889{
1890	struct btf_type *t;
1891	struct btf_array *a;
1892	int sz;
1893
1894	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1895		return libbpf_err(-EINVAL);
1896
1897	if (btf_ensure_modifiable(btf))
1898		return libbpf_err(-ENOMEM);
1899
1900	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1901	t = btf_add_type_mem(btf, sz);
1902	if (!t)
1903		return libbpf_err(-ENOMEM);
1904
1905	t->name_off = 0;
1906	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1907	t->size = 0;
1908
1909	a = btf_array(t);
1910	a->type = elem_type_id;
1911	a->index_type = index_type_id;
1912	a->nelems = nr_elems;
1913
1914	return btf_commit_type(btf, sz);
1915}
1916
1917/* generic STRUCT/UNION append function */
1918static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1919{
1920	struct btf_type *t;
1921	int sz, name_off = 0;
1922
1923	if (btf_ensure_modifiable(btf))
1924		return libbpf_err(-ENOMEM);
1925
1926	sz = sizeof(struct btf_type);
1927	t = btf_add_type_mem(btf, sz);
1928	if (!t)
1929		return libbpf_err(-ENOMEM);
1930
1931	if (name && name[0]) {
1932		name_off = btf__add_str(btf, name);
1933		if (name_off < 0)
1934			return name_off;
1935	}
1936
1937	/* start out with vlen=0 and no kflag; this will be adjusted when
1938	 * adding each member
1939	 */
1940	t->name_off = name_off;
1941	t->info = btf_type_info(kind, 0, 0);
1942	t->size = bytes_sz;
1943
1944	return btf_commit_type(btf, sz);
1945}
1946
1947/*
1948 * Append new BTF_KIND_STRUCT type with:
1949 *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
1950 *   - *byte_sz* - size of the struct, in bytes;
1951 *
1952 * Struct initially has no fields in it. Fields can be added by
1953 * btf__add_field() right after btf__add_struct() succeeds.
1954 *
1955 * Returns:
1956 *   - >0, type ID of newly added BTF type;
1957 *   - <0, on error.
1958 */
1959int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1960{
1961	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1962}
1963
1964/*
1965 * Append new BTF_KIND_UNION type with:
1966 *   - *name* - name of the union, can be NULL or empty for anonymous union;
1967 *   - *byte_sz* - size of the union, in bytes;
1968 *
1969 * Union initially has no fields in it. Fields can be added by
1970 * btf__add_field() right after btf__add_union() succeeds. All fields
1971 * should have *bit_offset* of 0.
1972 *
1973 * Returns:
1974 *   - >0, type ID of newly added BTF type;
1975 *   - <0, on error.
1976 */
1977int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1978{
1979	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1980}
1981
1982static struct btf_type *btf_last_type(struct btf *btf)
1983{
1984	return btf_type_by_id(btf, btf__type_cnt(btf) - 1);
1985}
1986
1987/*
1988 * Append new field for the current STRUCT/UNION type with:
1989 *   - *name* - name of the field, can be NULL or empty for anonymous field;
1990 *   - *type_id* - type ID for the type describing field type;
1991 *   - *bit_offset* - bit offset of the start of the field within struct/union;
1992 *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
1993 * Returns:
1994 *   -  0, on success;
1995 *   - <0, on error.
1996 */
1997int btf__add_field(struct btf *btf, const char *name, int type_id,
1998		   __u32 bit_offset, __u32 bit_size)
1999{
2000	struct btf_type *t;
2001	struct btf_member *m;
2002	bool is_bitfield;
2003	int sz, name_off = 0;
2004
2005	/* last type should be union/struct */
2006	if (btf->nr_types == 0)
2007		return libbpf_err(-EINVAL);
2008	t = btf_last_type(btf);
2009	if (!btf_is_composite(t))
2010		return libbpf_err(-EINVAL);
2011
2012	if (validate_type_id(type_id))
2013		return libbpf_err(-EINVAL);
2014	/* best-effort bit field offset/size enforcement */
2015	is_bitfield = bit_size || (bit_offset % 8 != 0);
2016	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
2017		return libbpf_err(-EINVAL);
2018
2019	/* only offset 0 is allowed for unions */
2020	if (btf_is_union(t) && bit_offset)
2021		return libbpf_err(-EINVAL);
2022
2023	/* decompose and invalidate raw data */
2024	if (btf_ensure_modifiable(btf))
2025		return libbpf_err(-ENOMEM);
2026
2027	sz = sizeof(struct btf_member);
2028	m = btf_add_type_mem(btf, sz);
2029	if (!m)
2030		return libbpf_err(-ENOMEM);
2031
2032	if (name && name[0]) {
2033		name_off = btf__add_str(btf, name);
2034		if (name_off < 0)
2035			return name_off;
2036	}
2037
2038	m->name_off = name_off;
2039	m->type = type_id;
2040	m->offset = bit_offset | (bit_size << 24);
2041
2042	/* btf_add_type_mem can invalidate t pointer */
2043	t = btf_last_type(btf);
2044	/* update parent type's vlen and kflag */
2045	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
2046
2047	btf->hdr->type_len += sz;
2048	btf->hdr->str_off += sz;
2049	return 0;
2050}
2051
2052static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz,
2053			       bool is_signed, __u8 kind)
 
 
 
 
 
 
 
 
 
 
 
 
2054{
2055	struct btf_type *t;
2056	int sz, name_off = 0;
2057
2058	/* byte_sz must be power of 2 */
2059	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2060		return libbpf_err(-EINVAL);
2061
2062	if (btf_ensure_modifiable(btf))
2063		return libbpf_err(-ENOMEM);
2064
2065	sz = sizeof(struct btf_type);
2066	t = btf_add_type_mem(btf, sz);
2067	if (!t)
2068		return libbpf_err(-ENOMEM);
2069
2070	if (name && name[0]) {
2071		name_off = btf__add_str(btf, name);
2072		if (name_off < 0)
2073			return name_off;
2074	}
2075
2076	/* start out with vlen=0; it will be adjusted when adding enum values */
2077	t->name_off = name_off;
2078	t->info = btf_type_info(kind, 0, is_signed);
2079	t->size = byte_sz;
2080
2081	return btf_commit_type(btf, sz);
2082}
2083
2084/*
2085 * Append new BTF_KIND_ENUM type with:
2086 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2087 *   - *byte_sz* - size of the enum, in bytes.
2088 *
2089 * Enum initially has no enum values in it (and corresponds to enum forward
2090 * declaration). Enumerator values can be added by btf__add_enum_value()
2091 * immediately after btf__add_enum() succeeds.
2092 *
2093 * Returns:
2094 *   - >0, type ID of newly added BTF type;
2095 *   - <0, on error.
2096 */
2097int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2098{
2099	/*
2100	 * set the signedness to be unsigned, it will change to signed
2101	 * if any later enumerator is negative.
2102	 */
2103	return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM);
2104}
2105
2106/*
2107 * Append new enum value for the current ENUM type with:
2108 *   - *name* - name of the enumerator value, can't be NULL or empty;
2109 *   - *value* - integer value corresponding to enum value *name*;
2110 * Returns:
2111 *   -  0, on success;
2112 *   - <0, on error.
2113 */
2114int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2115{
2116	struct btf_type *t;
2117	struct btf_enum *v;
2118	int sz, name_off;
2119
2120	/* last type should be BTF_KIND_ENUM */
2121	if (btf->nr_types == 0)
2122		return libbpf_err(-EINVAL);
2123	t = btf_last_type(btf);
2124	if (!btf_is_enum(t))
2125		return libbpf_err(-EINVAL);
2126
2127	/* non-empty name */
2128	if (!name || !name[0])
2129		return libbpf_err(-EINVAL);
2130	if (value < INT_MIN || value > UINT_MAX)
2131		return libbpf_err(-E2BIG);
2132
2133	/* decompose and invalidate raw data */
2134	if (btf_ensure_modifiable(btf))
2135		return libbpf_err(-ENOMEM);
2136
2137	sz = sizeof(struct btf_enum);
2138	v = btf_add_type_mem(btf, sz);
2139	if (!v)
2140		return libbpf_err(-ENOMEM);
2141
2142	name_off = btf__add_str(btf, name);
2143	if (name_off < 0)
2144		return name_off;
2145
2146	v->name_off = name_off;
2147	v->val = value;
2148
2149	/* update parent type's vlen */
2150	t = btf_last_type(btf);
2151	btf_type_inc_vlen(t);
2152
2153	/* if negative value, set signedness to signed */
2154	if (value < 0)
2155		t->info = btf_type_info(btf_kind(t), btf_vlen(t), true);
2156
2157	btf->hdr->type_len += sz;
2158	btf->hdr->str_off += sz;
2159	return 0;
2160}
2161
2162/*
2163 * Append new BTF_KIND_ENUM64 type with:
2164 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2165 *   - *byte_sz* - size of the enum, in bytes.
2166 *   - *is_signed* - whether the enum values are signed or not;
2167 *
2168 * Enum initially has no enum values in it (and corresponds to enum forward
2169 * declaration). Enumerator values can be added by btf__add_enum64_value()
2170 * immediately after btf__add_enum64() succeeds.
2171 *
2172 * Returns:
2173 *   - >0, type ID of newly added BTF type;
2174 *   - <0, on error.
2175 */
2176int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz,
2177		    bool is_signed)
2178{
2179	return btf_add_enum_common(btf, name, byte_sz, is_signed,
2180				   BTF_KIND_ENUM64);
2181}
2182
2183/*
2184 * Append new enum value for the current ENUM64 type with:
2185 *   - *name* - name of the enumerator value, can't be NULL or empty;
2186 *   - *value* - integer value corresponding to enum value *name*;
2187 * Returns:
2188 *   -  0, on success;
2189 *   - <0, on error.
2190 */
2191int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value)
2192{
2193	struct btf_enum64 *v;
2194	struct btf_type *t;
2195	int sz, name_off;
2196
2197	/* last type should be BTF_KIND_ENUM64 */
2198	if (btf->nr_types == 0)
2199		return libbpf_err(-EINVAL);
2200	t = btf_last_type(btf);
2201	if (!btf_is_enum64(t))
2202		return libbpf_err(-EINVAL);
2203
2204	/* non-empty name */
2205	if (!name || !name[0])
2206		return libbpf_err(-EINVAL);
2207
2208	/* decompose and invalidate raw data */
2209	if (btf_ensure_modifiable(btf))
2210		return libbpf_err(-ENOMEM);
2211
2212	sz = sizeof(struct btf_enum64);
2213	v = btf_add_type_mem(btf, sz);
2214	if (!v)
2215		return libbpf_err(-ENOMEM);
2216
2217	name_off = btf__add_str(btf, name);
2218	if (name_off < 0)
2219		return name_off;
2220
2221	v->name_off = name_off;
2222	v->val_lo32 = (__u32)value;
2223	v->val_hi32 = value >> 32;
2224
2225	/* update parent type's vlen */
2226	t = btf_last_type(btf);
2227	btf_type_inc_vlen(t);
2228
2229	btf->hdr->type_len += sz;
2230	btf->hdr->str_off += sz;
2231	return 0;
2232}
2233
2234/*
2235 * Append new BTF_KIND_FWD type with:
2236 *   - *name*, non-empty/non-NULL name;
2237 *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2238 *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2239 * Returns:
2240 *   - >0, type ID of newly added BTF type;
2241 *   - <0, on error.
2242 */
2243int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2244{
2245	if (!name || !name[0])
2246		return libbpf_err(-EINVAL);
2247
2248	switch (fwd_kind) {
2249	case BTF_FWD_STRUCT:
2250	case BTF_FWD_UNION: {
2251		struct btf_type *t;
2252		int id;
2253
2254		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2255		if (id <= 0)
2256			return id;
2257		t = btf_type_by_id(btf, id);
2258		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2259		return id;
2260	}
2261	case BTF_FWD_ENUM:
2262		/* enum forward in BTF currently is just an enum with no enum
2263		 * values; we also assume a standard 4-byte size for it
2264		 */
2265		return btf__add_enum(btf, name, sizeof(int));
2266	default:
2267		return libbpf_err(-EINVAL);
2268	}
2269}
2270
2271/*
2272 * Append new BTF_KING_TYPEDEF type with:
2273 *   - *name*, non-empty/non-NULL name;
2274 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2275 * Returns:
2276 *   - >0, type ID of newly added BTF type;
2277 *   - <0, on error.
2278 */
2279int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2280{
2281	if (!name || !name[0])
2282		return libbpf_err(-EINVAL);
2283
2284	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2285}
2286
2287/*
2288 * Append new BTF_KIND_VOLATILE type with:
2289 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2290 * Returns:
2291 *   - >0, type ID of newly added BTF type;
2292 *   - <0, on error.
2293 */
2294int btf__add_volatile(struct btf *btf, int ref_type_id)
2295{
2296	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2297}
2298
2299/*
2300 * Append new BTF_KIND_CONST type with:
2301 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2302 * Returns:
2303 *   - >0, type ID of newly added BTF type;
2304 *   - <0, on error.
2305 */
2306int btf__add_const(struct btf *btf, int ref_type_id)
2307{
2308	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2309}
2310
2311/*
2312 * Append new BTF_KIND_RESTRICT type with:
2313 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2314 * Returns:
2315 *   - >0, type ID of newly added BTF type;
2316 *   - <0, on error.
2317 */
2318int btf__add_restrict(struct btf *btf, int ref_type_id)
2319{
2320	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2321}
2322
2323/*
2324 * Append new BTF_KIND_TYPE_TAG type with:
2325 *   - *value*, non-empty/non-NULL tag value;
2326 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2327 * Returns:
2328 *   - >0, type ID of newly added BTF type;
2329 *   - <0, on error.
2330 */
2331int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id)
2332{
2333	if (!value || !value[0])
2334		return libbpf_err(-EINVAL);
2335
2336	return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id);
2337}
2338
2339/*
2340 * Append new BTF_KIND_FUNC type with:
2341 *   - *name*, non-empty/non-NULL name;
2342 *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2343 * Returns:
2344 *   - >0, type ID of newly added BTF type;
2345 *   - <0, on error.
2346 */
2347int btf__add_func(struct btf *btf, const char *name,
2348		  enum btf_func_linkage linkage, int proto_type_id)
2349{
2350	int id;
2351
2352	if (!name || !name[0])
2353		return libbpf_err(-EINVAL);
2354	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2355	    linkage != BTF_FUNC_EXTERN)
2356		return libbpf_err(-EINVAL);
2357
2358	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2359	if (id > 0) {
2360		struct btf_type *t = btf_type_by_id(btf, id);
2361
2362		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2363	}
2364	return libbpf_err(id);
2365}
2366
2367/*
2368 * Append new BTF_KIND_FUNC_PROTO with:
2369 *   - *ret_type_id* - type ID for return result of a function.
2370 *
2371 * Function prototype initially has no arguments, but they can be added by
2372 * btf__add_func_param() one by one, immediately after
2373 * btf__add_func_proto() succeeded.
2374 *
2375 * Returns:
2376 *   - >0, type ID of newly added BTF type;
2377 *   - <0, on error.
2378 */
2379int btf__add_func_proto(struct btf *btf, int ret_type_id)
2380{
2381	struct btf_type *t;
2382	int sz;
2383
2384	if (validate_type_id(ret_type_id))
2385		return libbpf_err(-EINVAL);
2386
2387	if (btf_ensure_modifiable(btf))
2388		return libbpf_err(-ENOMEM);
2389
2390	sz = sizeof(struct btf_type);
2391	t = btf_add_type_mem(btf, sz);
2392	if (!t)
2393		return libbpf_err(-ENOMEM);
2394
2395	/* start out with vlen=0; this will be adjusted when adding enum
2396	 * values, if necessary
2397	 */
2398	t->name_off = 0;
2399	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2400	t->type = ret_type_id;
2401
2402	return btf_commit_type(btf, sz);
2403}
2404
2405/*
2406 * Append new function parameter for current FUNC_PROTO type with:
2407 *   - *name* - parameter name, can be NULL or empty;
2408 *   - *type_id* - type ID describing the type of the parameter.
2409 * Returns:
2410 *   -  0, on success;
2411 *   - <0, on error.
2412 */
2413int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2414{
2415	struct btf_type *t;
2416	struct btf_param *p;
2417	int sz, name_off = 0;
2418
2419	if (validate_type_id(type_id))
2420		return libbpf_err(-EINVAL);
2421
2422	/* last type should be BTF_KIND_FUNC_PROTO */
2423	if (btf->nr_types == 0)
2424		return libbpf_err(-EINVAL);
2425	t = btf_last_type(btf);
2426	if (!btf_is_func_proto(t))
2427		return libbpf_err(-EINVAL);
2428
2429	/* decompose and invalidate raw data */
2430	if (btf_ensure_modifiable(btf))
2431		return libbpf_err(-ENOMEM);
2432
2433	sz = sizeof(struct btf_param);
2434	p = btf_add_type_mem(btf, sz);
2435	if (!p)
2436		return libbpf_err(-ENOMEM);
2437
2438	if (name && name[0]) {
2439		name_off = btf__add_str(btf, name);
2440		if (name_off < 0)
2441			return name_off;
2442	}
2443
2444	p->name_off = name_off;
2445	p->type = type_id;
2446
2447	/* update parent type's vlen */
2448	t = btf_last_type(btf);
2449	btf_type_inc_vlen(t);
2450
2451	btf->hdr->type_len += sz;
2452	btf->hdr->str_off += sz;
2453	return 0;
2454}
2455
2456/*
2457 * Append new BTF_KIND_VAR type with:
2458 *   - *name* - non-empty/non-NULL name;
2459 *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2460 *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2461 *   - *type_id* - type ID of the type describing the type of the variable.
2462 * Returns:
2463 *   - >0, type ID of newly added BTF type;
2464 *   - <0, on error.
2465 */
2466int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2467{
2468	struct btf_type *t;
2469	struct btf_var *v;
2470	int sz, name_off;
2471
2472	/* non-empty name */
2473	if (!name || !name[0])
2474		return libbpf_err(-EINVAL);
2475	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2476	    linkage != BTF_VAR_GLOBAL_EXTERN)
2477		return libbpf_err(-EINVAL);
2478	if (validate_type_id(type_id))
2479		return libbpf_err(-EINVAL);
2480
2481	/* deconstruct BTF, if necessary, and invalidate raw_data */
2482	if (btf_ensure_modifiable(btf))
2483		return libbpf_err(-ENOMEM);
2484
2485	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2486	t = btf_add_type_mem(btf, sz);
2487	if (!t)
2488		return libbpf_err(-ENOMEM);
2489
2490	name_off = btf__add_str(btf, name);
2491	if (name_off < 0)
2492		return name_off;
2493
2494	t->name_off = name_off;
2495	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2496	t->type = type_id;
2497
2498	v = btf_var(t);
2499	v->linkage = linkage;
2500
2501	return btf_commit_type(btf, sz);
2502}
2503
2504/*
2505 * Append new BTF_KIND_DATASEC type with:
2506 *   - *name* - non-empty/non-NULL name;
2507 *   - *byte_sz* - data section size, in bytes.
2508 *
2509 * Data section is initially empty. Variables info can be added with
2510 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2511 *
2512 * Returns:
2513 *   - >0, type ID of newly added BTF type;
2514 *   - <0, on error.
2515 */
2516int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2517{
2518	struct btf_type *t;
2519	int sz, name_off;
2520
2521	/* non-empty name */
2522	if (!name || !name[0])
2523		return libbpf_err(-EINVAL);
2524
2525	if (btf_ensure_modifiable(btf))
2526		return libbpf_err(-ENOMEM);
2527
2528	sz = sizeof(struct btf_type);
2529	t = btf_add_type_mem(btf, sz);
2530	if (!t)
2531		return libbpf_err(-ENOMEM);
2532
2533	name_off = btf__add_str(btf, name);
2534	if (name_off < 0)
2535		return name_off;
2536
2537	/* start with vlen=0, which will be update as var_secinfos are added */
2538	t->name_off = name_off;
2539	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2540	t->size = byte_sz;
2541
2542	return btf_commit_type(btf, sz);
2543}
2544
2545/*
2546 * Append new data section variable information entry for current DATASEC type:
2547 *   - *var_type_id* - type ID, describing type of the variable;
2548 *   - *offset* - variable offset within data section, in bytes;
2549 *   - *byte_sz* - variable size, in bytes.
2550 *
2551 * Returns:
2552 *   -  0, on success;
2553 *   - <0, on error.
2554 */
2555int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2556{
2557	struct btf_type *t;
2558	struct btf_var_secinfo *v;
2559	int sz;
2560
2561	/* last type should be BTF_KIND_DATASEC */
2562	if (btf->nr_types == 0)
2563		return libbpf_err(-EINVAL);
2564	t = btf_last_type(btf);
2565	if (!btf_is_datasec(t))
2566		return libbpf_err(-EINVAL);
2567
2568	if (validate_type_id(var_type_id))
2569		return libbpf_err(-EINVAL);
2570
2571	/* decompose and invalidate raw data */
2572	if (btf_ensure_modifiable(btf))
2573		return libbpf_err(-ENOMEM);
2574
2575	sz = sizeof(struct btf_var_secinfo);
2576	v = btf_add_type_mem(btf, sz);
2577	if (!v)
2578		return libbpf_err(-ENOMEM);
2579
2580	v->type = var_type_id;
2581	v->offset = offset;
2582	v->size = byte_sz;
2583
2584	/* update parent type's vlen */
2585	t = btf_last_type(btf);
2586	btf_type_inc_vlen(t);
2587
2588	btf->hdr->type_len += sz;
2589	btf->hdr->str_off += sz;
2590	return 0;
2591}
2592
2593/*
2594 * Append new BTF_KIND_DECL_TAG type with:
2595 *   - *value* - non-empty/non-NULL string;
2596 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2597 *   - *component_idx* - -1 for tagging reference type, otherwise struct/union
2598 *     member or function argument index;
2599 * Returns:
2600 *   - >0, type ID of newly added BTF type;
2601 *   - <0, on error.
2602 */
2603int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id,
2604		 int component_idx)
2605{
2606	struct btf_type *t;
2607	int sz, value_off;
2608
2609	if (!value || !value[0] || component_idx < -1)
2610		return libbpf_err(-EINVAL);
2611
2612	if (validate_type_id(ref_type_id))
2613		return libbpf_err(-EINVAL);
2614
2615	if (btf_ensure_modifiable(btf))
2616		return libbpf_err(-ENOMEM);
2617
2618	sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag);
2619	t = btf_add_type_mem(btf, sz);
2620	if (!t)
2621		return libbpf_err(-ENOMEM);
2622
2623	value_off = btf__add_str(btf, value);
2624	if (value_off < 0)
2625		return value_off;
2626
2627	t->name_off = value_off;
2628	t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false);
2629	t->type = ref_type_id;
2630	btf_decl_tag(t)->component_idx = component_idx;
2631
2632	return btf_commit_type(btf, sz);
2633}
2634
2635struct btf_ext_sec_setup_param {
2636	__u32 off;
2637	__u32 len;
2638	__u32 min_rec_size;
2639	struct btf_ext_info *ext_info;
2640	const char *desc;
2641};
2642
2643static int btf_ext_setup_info(struct btf_ext *btf_ext,
2644			      struct btf_ext_sec_setup_param *ext_sec)
2645{
2646	const struct btf_ext_info_sec *sinfo;
2647	struct btf_ext_info *ext_info;
2648	__u32 info_left, record_size;
2649	size_t sec_cnt = 0;
2650	/* The start of the info sec (including the __u32 record_size). */
2651	void *info;
2652
2653	if (ext_sec->len == 0)
2654		return 0;
2655
2656	if (ext_sec->off & 0x03) {
2657		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2658		     ext_sec->desc);
2659		return -EINVAL;
2660	}
2661
2662	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2663	info_left = ext_sec->len;
2664
2665	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2666		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2667			 ext_sec->desc, ext_sec->off, ext_sec->len);
2668		return -EINVAL;
2669	}
2670
2671	/* At least a record size */
2672	if (info_left < sizeof(__u32)) {
2673		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2674		return -EINVAL;
2675	}
2676
2677	/* The record size needs to meet the minimum standard */
2678	record_size = *(__u32 *)info;
2679	if (record_size < ext_sec->min_rec_size ||
2680	    record_size & 0x03) {
2681		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2682			 ext_sec->desc, record_size);
2683		return -EINVAL;
2684	}
2685
2686	sinfo = info + sizeof(__u32);
2687	info_left -= sizeof(__u32);
2688
2689	/* If no records, return failure now so .BTF.ext won't be used. */
2690	if (!info_left) {
2691		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2692		return -EINVAL;
2693	}
2694
2695	while (info_left) {
2696		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2697		__u64 total_record_size;
2698		__u32 num_records;
2699
2700		if (info_left < sec_hdrlen) {
2701			pr_debug("%s section header is not found in .BTF.ext\n",
2702			     ext_sec->desc);
2703			return -EINVAL;
2704		}
2705
2706		num_records = sinfo->num_info;
2707		if (num_records == 0) {
2708			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2709			     ext_sec->desc);
2710			return -EINVAL;
2711		}
2712
2713		total_record_size = sec_hdrlen + (__u64)num_records * record_size;
 
2714		if (info_left < total_record_size) {
2715			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2716			     ext_sec->desc);
2717			return -EINVAL;
2718		}
2719
2720		info_left -= total_record_size;
2721		sinfo = (void *)sinfo + total_record_size;
2722		sec_cnt++;
2723	}
2724
2725	ext_info = ext_sec->ext_info;
2726	ext_info->len = ext_sec->len - sizeof(__u32);
2727	ext_info->rec_size = record_size;
2728	ext_info->info = info + sizeof(__u32);
2729	ext_info->sec_cnt = sec_cnt;
2730
2731	return 0;
2732}
2733
2734static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2735{
2736	struct btf_ext_sec_setup_param param = {
2737		.off = btf_ext->hdr->func_info_off,
2738		.len = btf_ext->hdr->func_info_len,
2739		.min_rec_size = sizeof(struct bpf_func_info_min),
2740		.ext_info = &btf_ext->func_info,
2741		.desc = "func_info"
2742	};
2743
2744	return btf_ext_setup_info(btf_ext, &param);
2745}
2746
2747static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2748{
2749	struct btf_ext_sec_setup_param param = {
2750		.off = btf_ext->hdr->line_info_off,
2751		.len = btf_ext->hdr->line_info_len,
2752		.min_rec_size = sizeof(struct bpf_line_info_min),
2753		.ext_info = &btf_ext->line_info,
2754		.desc = "line_info",
2755	};
2756
2757	return btf_ext_setup_info(btf_ext, &param);
2758}
2759
2760static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2761{
2762	struct btf_ext_sec_setup_param param = {
2763		.off = btf_ext->hdr->core_relo_off,
2764		.len = btf_ext->hdr->core_relo_len,
2765		.min_rec_size = sizeof(struct bpf_core_relo),
2766		.ext_info = &btf_ext->core_relo_info,
2767		.desc = "core_relo",
2768	};
2769
2770	return btf_ext_setup_info(btf_ext, &param);
2771}
2772
2773static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2774{
2775	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2776
2777	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2778	    data_size < hdr->hdr_len) {
2779		pr_debug("BTF.ext header not found");
2780		return -EINVAL;
2781	}
2782
2783	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2784		pr_warn("BTF.ext in non-native endianness is not supported\n");
2785		return -ENOTSUP;
2786	} else if (hdr->magic != BTF_MAGIC) {
2787		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2788		return -EINVAL;
2789	}
2790
2791	if (hdr->version != BTF_VERSION) {
2792		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2793		return -ENOTSUP;
2794	}
2795
2796	if (hdr->flags) {
2797		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2798		return -ENOTSUP;
2799	}
2800
2801	if (data_size == hdr->hdr_len) {
2802		pr_debug("BTF.ext has no data\n");
2803		return -EINVAL;
2804	}
2805
2806	return 0;
2807}
2808
2809void btf_ext__free(struct btf_ext *btf_ext)
2810{
2811	if (IS_ERR_OR_NULL(btf_ext))
2812		return;
2813	free(btf_ext->func_info.sec_idxs);
2814	free(btf_ext->line_info.sec_idxs);
2815	free(btf_ext->core_relo_info.sec_idxs);
2816	free(btf_ext->data);
2817	free(btf_ext);
2818}
2819
2820struct btf_ext *btf_ext__new(const __u8 *data, __u32 size)
2821{
2822	struct btf_ext *btf_ext;
2823	int err;
2824
 
 
 
 
2825	btf_ext = calloc(1, sizeof(struct btf_ext));
2826	if (!btf_ext)
2827		return libbpf_err_ptr(-ENOMEM);
2828
2829	btf_ext->data_size = size;
2830	btf_ext->data = malloc(size);
2831	if (!btf_ext->data) {
2832		err = -ENOMEM;
2833		goto done;
2834	}
2835	memcpy(btf_ext->data, data, size);
2836
2837	err = btf_ext_parse_hdr(btf_ext->data, size);
2838	if (err)
2839		goto done;
2840
2841	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
2842		err = -EINVAL;
2843		goto done;
2844	}
2845
2846	err = btf_ext_setup_func_info(btf_ext);
2847	if (err)
2848		goto done;
2849
2850	err = btf_ext_setup_line_info(btf_ext);
2851	if (err)
2852		goto done;
2853
2854	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
2855		goto done; /* skip core relos parsing */
 
 
2856
2857	err = btf_ext_setup_core_relos(btf_ext);
2858	if (err)
2859		goto done;
2860
2861done:
2862	if (err) {
2863		btf_ext__free(btf_ext);
2864		return libbpf_err_ptr(err);
2865	}
2866
2867	return btf_ext;
2868}
2869
2870const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2871{
2872	*size = btf_ext->data_size;
2873	return btf_ext->data;
2874}
2875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2876struct btf_dedup;
2877
2878static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts);
 
2879static void btf_dedup_free(struct btf_dedup *d);
2880static int btf_dedup_prep(struct btf_dedup *d);
2881static int btf_dedup_strings(struct btf_dedup *d);
2882static int btf_dedup_prim_types(struct btf_dedup *d);
2883static int btf_dedup_struct_types(struct btf_dedup *d);
2884static int btf_dedup_ref_types(struct btf_dedup *d);
2885static int btf_dedup_resolve_fwds(struct btf_dedup *d);
2886static int btf_dedup_compact_types(struct btf_dedup *d);
2887static int btf_dedup_remap_types(struct btf_dedup *d);
2888
2889/*
2890 * Deduplicate BTF types and strings.
2891 *
2892 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2893 * section with all BTF type descriptors and string data. It overwrites that
2894 * memory in-place with deduplicated types and strings without any loss of
2895 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2896 * is provided, all the strings referenced from .BTF.ext section are honored
2897 * and updated to point to the right offsets after deduplication.
2898 *
2899 * If function returns with error, type/string data might be garbled and should
2900 * be discarded.
2901 *
2902 * More verbose and detailed description of both problem btf_dedup is solving,
2903 * as well as solution could be found at:
2904 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2905 *
2906 * Problem description and justification
2907 * =====================================
2908 *
2909 * BTF type information is typically emitted either as a result of conversion
2910 * from DWARF to BTF or directly by compiler. In both cases, each compilation
2911 * unit contains information about a subset of all the types that are used
2912 * in an application. These subsets are frequently overlapping and contain a lot
2913 * of duplicated information when later concatenated together into a single
2914 * binary. This algorithm ensures that each unique type is represented by single
2915 * BTF type descriptor, greatly reducing resulting size of BTF data.
2916 *
2917 * Compilation unit isolation and subsequent duplication of data is not the only
2918 * problem. The same type hierarchy (e.g., struct and all the type that struct
2919 * references) in different compilation units can be represented in BTF to
2920 * various degrees of completeness (or, rather, incompleteness) due to
2921 * struct/union forward declarations.
2922 *
2923 * Let's take a look at an example, that we'll use to better understand the
2924 * problem (and solution). Suppose we have two compilation units, each using
2925 * same `struct S`, but each of them having incomplete type information about
2926 * struct's fields:
2927 *
2928 * // CU #1:
2929 * struct S;
2930 * struct A {
2931 *	int a;
2932 *	struct A* self;
2933 *	struct S* parent;
2934 * };
2935 * struct B;
2936 * struct S {
2937 *	struct A* a_ptr;
2938 *	struct B* b_ptr;
2939 * };
2940 *
2941 * // CU #2:
2942 * struct S;
2943 * struct A;
2944 * struct B {
2945 *	int b;
2946 *	struct B* self;
2947 *	struct S* parent;
2948 * };
2949 * struct S {
2950 *	struct A* a_ptr;
2951 *	struct B* b_ptr;
2952 * };
2953 *
2954 * In case of CU #1, BTF data will know only that `struct B` exist (but no
2955 * more), but will know the complete type information about `struct A`. While
2956 * for CU #2, it will know full type information about `struct B`, but will
2957 * only know about forward declaration of `struct A` (in BTF terms, it will
2958 * have `BTF_KIND_FWD` type descriptor with name `B`).
2959 *
2960 * This compilation unit isolation means that it's possible that there is no
2961 * single CU with complete type information describing structs `S`, `A`, and
2962 * `B`. Also, we might get tons of duplicated and redundant type information.
2963 *
2964 * Additional complication we need to keep in mind comes from the fact that
2965 * types, in general, can form graphs containing cycles, not just DAGs.
2966 *
2967 * While algorithm does deduplication, it also merges and resolves type
2968 * information (unless disabled throught `struct btf_opts`), whenever possible.
2969 * E.g., in the example above with two compilation units having partial type
2970 * information for structs `A` and `B`, the output of algorithm will emit
2971 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2972 * (as well as type information for `int` and pointers), as if they were defined
2973 * in a single compilation unit as:
2974 *
2975 * struct A {
2976 *	int a;
2977 *	struct A* self;
2978 *	struct S* parent;
2979 * };
2980 * struct B {
2981 *	int b;
2982 *	struct B* self;
2983 *	struct S* parent;
2984 * };
2985 * struct S {
2986 *	struct A* a_ptr;
2987 *	struct B* b_ptr;
2988 * };
2989 *
2990 * Algorithm summary
2991 * =================
2992 *
2993 * Algorithm completes its work in 7 separate passes:
2994 *
2995 * 1. Strings deduplication.
2996 * 2. Primitive types deduplication (int, enum, fwd).
2997 * 3. Struct/union types deduplication.
2998 * 4. Resolve unambiguous forward declarations.
2999 * 5. Reference types deduplication (pointers, typedefs, arrays, funcs, func
3000 *    protos, and const/volatile/restrict modifiers).
3001 * 6. Types compaction.
3002 * 7. Types remapping.
3003 *
3004 * Algorithm determines canonical type descriptor, which is a single
3005 * representative type for each truly unique type. This canonical type is the
3006 * one that will go into final deduplicated BTF type information. For
3007 * struct/unions, it is also the type that algorithm will merge additional type
3008 * information into (while resolving FWDs), as it discovers it from data in
3009 * other CUs. Each input BTF type eventually gets either mapped to itself, if
3010 * that type is canonical, or to some other type, if that type is equivalent
3011 * and was chosen as canonical representative. This mapping is stored in
3012 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
3013 * FWD type got resolved to.
3014 *
3015 * To facilitate fast discovery of canonical types, we also maintain canonical
3016 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
3017 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
3018 * that match that signature. With sufficiently good choice of type signature
3019 * hashing function, we can limit number of canonical types for each unique type
3020 * signature to a very small number, allowing to find canonical type for any
3021 * duplicated type very quickly.
3022 *
3023 * Struct/union deduplication is the most critical part and algorithm for
3024 * deduplicating structs/unions is described in greater details in comments for
3025 * `btf_dedup_is_equiv` function.
3026 */
3027int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts)
 
3028{
3029	struct btf_dedup *d;
3030	int err;
3031
3032	if (!OPTS_VALID(opts, btf_dedup_opts))
3033		return libbpf_err(-EINVAL);
3034
3035	d = btf_dedup_new(btf, opts);
3036	if (IS_ERR(d)) {
3037		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
3038		return libbpf_err(-EINVAL);
3039	}
3040
3041	if (btf_ensure_modifiable(btf)) {
3042		err = -ENOMEM;
3043		goto done;
3044	}
3045
3046	err = btf_dedup_prep(d);
3047	if (err) {
3048		pr_debug("btf_dedup_prep failed:%d\n", err);
3049		goto done;
3050	}
3051	err = btf_dedup_strings(d);
3052	if (err < 0) {
3053		pr_debug("btf_dedup_strings failed:%d\n", err);
3054		goto done;
3055	}
3056	err = btf_dedup_prim_types(d);
3057	if (err < 0) {
3058		pr_debug("btf_dedup_prim_types failed:%d\n", err);
3059		goto done;
3060	}
3061	err = btf_dedup_struct_types(d);
3062	if (err < 0) {
3063		pr_debug("btf_dedup_struct_types failed:%d\n", err);
3064		goto done;
3065	}
3066	err = btf_dedup_resolve_fwds(d);
3067	if (err < 0) {
3068		pr_debug("btf_dedup_resolve_fwds failed:%d\n", err);
3069		goto done;
3070	}
3071	err = btf_dedup_ref_types(d);
3072	if (err < 0) {
3073		pr_debug("btf_dedup_ref_types failed:%d\n", err);
3074		goto done;
3075	}
3076	err = btf_dedup_compact_types(d);
3077	if (err < 0) {
3078		pr_debug("btf_dedup_compact_types failed:%d\n", err);
3079		goto done;
3080	}
3081	err = btf_dedup_remap_types(d);
3082	if (err < 0) {
3083		pr_debug("btf_dedup_remap_types failed:%d\n", err);
3084		goto done;
3085	}
3086
3087done:
3088	btf_dedup_free(d);
3089	return libbpf_err(err);
3090}
3091
3092#define BTF_UNPROCESSED_ID ((__u32)-1)
3093#define BTF_IN_PROGRESS_ID ((__u32)-2)
3094
3095struct btf_dedup {
3096	/* .BTF section to be deduped in-place */
3097	struct btf *btf;
3098	/*
3099	 * Optional .BTF.ext section. When provided, any strings referenced
3100	 * from it will be taken into account when deduping strings
3101	 */
3102	struct btf_ext *btf_ext;
3103	/*
3104	 * This is a map from any type's signature hash to a list of possible
3105	 * canonical representative type candidates. Hash collisions are
3106	 * ignored, so even types of various kinds can share same list of
3107	 * candidates, which is fine because we rely on subsequent
3108	 * btf_xxx_equal() checks to authoritatively verify type equality.
3109	 */
3110	struct hashmap *dedup_table;
3111	/* Canonical types map */
3112	__u32 *map;
3113	/* Hypothetical mapping, used during type graph equivalence checks */
3114	__u32 *hypot_map;
3115	__u32 *hypot_list;
3116	size_t hypot_cnt;
3117	size_t hypot_cap;
3118	/* Whether hypothetical mapping, if successful, would need to adjust
3119	 * already canonicalized types (due to a new forward declaration to
3120	 * concrete type resolution). In such case, during split BTF dedup
3121	 * candidate type would still be considered as different, because base
3122	 * BTF is considered to be immutable.
3123	 */
3124	bool hypot_adjust_canon;
3125	/* Various option modifying behavior of algorithm */
3126	struct btf_dedup_opts opts;
3127	/* temporary strings deduplication state */
3128	struct strset *strs_set;
3129};
3130
3131static long hash_combine(long h, long value)
3132{
3133	return h * 31 + value;
3134}
3135
3136#define for_each_dedup_cand(d, node, hash) \
3137	hashmap__for_each_key_entry(d->dedup_table, node, hash)
3138
3139static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3140{
3141	return hashmap__append(d->dedup_table, hash, type_id);
 
3142}
3143
3144static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3145				   __u32 from_id, __u32 to_id)
3146{
3147	if (d->hypot_cnt == d->hypot_cap) {
3148		__u32 *new_list;
3149
3150		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3151		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3152		if (!new_list)
3153			return -ENOMEM;
3154		d->hypot_list = new_list;
3155	}
3156	d->hypot_list[d->hypot_cnt++] = from_id;
3157	d->hypot_map[from_id] = to_id;
3158	return 0;
3159}
3160
3161static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3162{
3163	int i;
3164
3165	for (i = 0; i < d->hypot_cnt; i++)
3166		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3167	d->hypot_cnt = 0;
3168	d->hypot_adjust_canon = false;
3169}
3170
3171static void btf_dedup_free(struct btf_dedup *d)
3172{
3173	hashmap__free(d->dedup_table);
3174	d->dedup_table = NULL;
3175
3176	free(d->map);
3177	d->map = NULL;
3178
3179	free(d->hypot_map);
3180	d->hypot_map = NULL;
3181
3182	free(d->hypot_list);
3183	d->hypot_list = NULL;
3184
3185	free(d);
3186}
3187
3188static size_t btf_dedup_identity_hash_fn(long key, void *ctx)
3189{
3190	return key;
3191}
3192
3193static size_t btf_dedup_collision_hash_fn(long key, void *ctx)
3194{
3195	return 0;
3196}
3197
3198static bool btf_dedup_equal_fn(long k1, long k2, void *ctx)
3199{
3200	return k1 == k2;
3201}
3202
3203static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts)
 
3204{
3205	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3206	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3207	int i, err = 0, type_cnt;
3208
3209	if (!d)
3210		return ERR_PTR(-ENOMEM);
3211
3212	if (OPTS_GET(opts, force_collisions, false))
 
 
3213		hash_fn = btf_dedup_collision_hash_fn;
3214
3215	d->btf = btf;
3216	d->btf_ext = OPTS_GET(opts, btf_ext, NULL);
3217
3218	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3219	if (IS_ERR(d->dedup_table)) {
3220		err = PTR_ERR(d->dedup_table);
3221		d->dedup_table = NULL;
3222		goto done;
3223	}
3224
3225	type_cnt = btf__type_cnt(btf);
3226	d->map = malloc(sizeof(__u32) * type_cnt);
3227	if (!d->map) {
3228		err = -ENOMEM;
3229		goto done;
3230	}
3231	/* special BTF "void" type is made canonical immediately */
3232	d->map[0] = 0;
3233	for (i = 1; i < type_cnt; i++) {
3234		struct btf_type *t = btf_type_by_id(d->btf, i);
3235
3236		/* VAR and DATASEC are never deduped and are self-canonical */
3237		if (btf_is_var(t) || btf_is_datasec(t))
3238			d->map[i] = i;
3239		else
3240			d->map[i] = BTF_UNPROCESSED_ID;
3241	}
3242
3243	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3244	if (!d->hypot_map) {
3245		err = -ENOMEM;
3246		goto done;
3247	}
3248	for (i = 0; i < type_cnt; i++)
3249		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3250
3251done:
3252	if (err) {
3253		btf_dedup_free(d);
3254		return ERR_PTR(err);
3255	}
3256
3257	return d;
3258}
3259
3260/*
3261 * Iterate over all possible places in .BTF and .BTF.ext that can reference
3262 * string and pass pointer to it to a provided callback `fn`.
3263 */
3264static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3265{
3266	int i, r;
3267
3268	for (i = 0; i < d->btf->nr_types; i++) {
3269		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3270
3271		r = btf_type_visit_str_offs(t, fn, ctx);
3272		if (r)
3273			return r;
3274	}
3275
3276	if (!d->btf_ext)
3277		return 0;
3278
3279	r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3280	if (r)
3281		return r;
3282
3283	return 0;
3284}
3285
3286static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3287{
3288	struct btf_dedup *d = ctx;
3289	__u32 str_off = *str_off_ptr;
3290	const char *s;
3291	int off, err;
3292
3293	/* don't touch empty string or string in main BTF */
3294	if (str_off == 0 || str_off < d->btf->start_str_off)
3295		return 0;
3296
3297	s = btf__str_by_offset(d->btf, str_off);
3298	if (d->btf->base_btf) {
3299		err = btf__find_str(d->btf->base_btf, s);
3300		if (err >= 0) {
3301			*str_off_ptr = err;
3302			return 0;
3303		}
3304		if (err != -ENOENT)
3305			return err;
3306	}
3307
3308	off = strset__add_str(d->strs_set, s);
3309	if (off < 0)
3310		return off;
3311
3312	*str_off_ptr = d->btf->start_str_off + off;
3313	return 0;
3314}
3315
3316/*
3317 * Dedup string and filter out those that are not referenced from either .BTF
3318 * or .BTF.ext (if provided) sections.
3319 *
3320 * This is done by building index of all strings in BTF's string section,
3321 * then iterating over all entities that can reference strings (e.g., type
3322 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3323 * strings as used. After that all used strings are deduped and compacted into
3324 * sequential blob of memory and new offsets are calculated. Then all the string
3325 * references are iterated again and rewritten using new offsets.
3326 */
3327static int btf_dedup_strings(struct btf_dedup *d)
3328{
3329	int err;
3330
3331	if (d->btf->strs_deduped)
3332		return 0;
3333
3334	d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3335	if (IS_ERR(d->strs_set)) {
3336		err = PTR_ERR(d->strs_set);
3337		goto err_out;
3338	}
3339
3340	if (!d->btf->base_btf) {
3341		/* insert empty string; we won't be looking it up during strings
3342		 * dedup, but it's good to have it for generic BTF string lookups
3343		 */
3344		err = strset__add_str(d->strs_set, "");
3345		if (err < 0)
3346			goto err_out;
3347	}
3348
3349	/* remap string offsets */
3350	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3351	if (err)
3352		goto err_out;
3353
3354	/* replace BTF string data and hash with deduped ones */
3355	strset__free(d->btf->strs_set);
3356	d->btf->hdr->str_len = strset__data_size(d->strs_set);
3357	d->btf->strs_set = d->strs_set;
3358	d->strs_set = NULL;
3359	d->btf->strs_deduped = true;
3360	return 0;
3361
3362err_out:
3363	strset__free(d->strs_set);
3364	d->strs_set = NULL;
3365
3366	return err;
3367}
3368
3369static long btf_hash_common(struct btf_type *t)
3370{
3371	long h;
3372
3373	h = hash_combine(0, t->name_off);
3374	h = hash_combine(h, t->info);
3375	h = hash_combine(h, t->size);
3376	return h;
3377}
3378
3379static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3380{
3381	return t1->name_off == t2->name_off &&
3382	       t1->info == t2->info &&
3383	       t1->size == t2->size;
3384}
3385
3386/* Calculate type signature hash of INT or TAG. */
3387static long btf_hash_int_decl_tag(struct btf_type *t)
3388{
3389	__u32 info = *(__u32 *)(t + 1);
3390	long h;
3391
3392	h = btf_hash_common(t);
3393	h = hash_combine(h, info);
3394	return h;
3395}
3396
3397/* Check structural equality of two INTs or TAGs. */
3398static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2)
3399{
3400	__u32 info1, info2;
3401
3402	if (!btf_equal_common(t1, t2))
3403		return false;
3404	info1 = *(__u32 *)(t1 + 1);
3405	info2 = *(__u32 *)(t2 + 1);
3406	return info1 == info2;
3407}
3408
3409/* Calculate type signature hash of ENUM/ENUM64. */
3410static long btf_hash_enum(struct btf_type *t)
3411{
3412	long h;
3413
3414	/* don't hash vlen, enum members and size to support enum fwd resolving */
3415	h = hash_combine(0, t->name_off);
 
 
3416	return h;
3417}
3418
3419static bool btf_equal_enum_members(struct btf_type *t1, struct btf_type *t2)
 
3420{
3421	const struct btf_enum *m1, *m2;
3422	__u16 vlen;
3423	int i;
3424
 
 
 
3425	vlen = btf_vlen(t1);
3426	m1 = btf_enum(t1);
3427	m2 = btf_enum(t2);
3428	for (i = 0; i < vlen; i++) {
3429		if (m1->name_off != m2->name_off || m1->val != m2->val)
3430			return false;
3431		m1++;
3432		m2++;
3433	}
3434	return true;
3435}
3436
3437static bool btf_equal_enum64_members(struct btf_type *t1, struct btf_type *t2)
3438{
3439	const struct btf_enum64 *m1, *m2;
3440	__u16 vlen;
3441	int i;
3442
3443	vlen = btf_vlen(t1);
3444	m1 = btf_enum64(t1);
3445	m2 = btf_enum64(t2);
3446	for (i = 0; i < vlen; i++) {
3447		if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 ||
3448		    m1->val_hi32 != m2->val_hi32)
3449			return false;
3450		m1++;
3451		m2++;
3452	}
3453	return true;
3454}
3455
3456/* Check structural equality of two ENUMs or ENUM64s. */
3457static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3458{
3459	if (!btf_equal_common(t1, t2))
3460		return false;
3461
3462	/* t1 & t2 kinds are identical because of btf_equal_common */
3463	if (btf_kind(t1) == BTF_KIND_ENUM)
3464		return btf_equal_enum_members(t1, t2);
3465	else
3466		return btf_equal_enum64_members(t1, t2);
3467}
3468
3469static inline bool btf_is_enum_fwd(struct btf_type *t)
3470{
3471	return btf_is_any_enum(t) && btf_vlen(t) == 0;
3472}
3473
3474static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3475{
3476	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3477		return btf_equal_enum(t1, t2);
3478	/* At this point either t1 or t2 or both are forward declarations, thus:
3479	 * - skip comparing vlen because it is zero for forward declarations;
3480	 * - skip comparing size to allow enum forward declarations
3481	 *   to be compatible with enum64 full declarations;
3482	 * - skip comparing kind for the same reason.
3483	 */
3484	return t1->name_off == t2->name_off &&
3485	       btf_is_any_enum(t1) && btf_is_any_enum(t2);
 
3486}
3487
3488/*
3489 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3490 * as referenced type IDs equivalence is established separately during type
3491 * graph equivalence check algorithm.
3492 */
3493static long btf_hash_struct(struct btf_type *t)
3494{
3495	const struct btf_member *member = btf_members(t);
3496	__u32 vlen = btf_vlen(t);
3497	long h = btf_hash_common(t);
3498	int i;
3499
3500	for (i = 0; i < vlen; i++) {
3501		h = hash_combine(h, member->name_off);
3502		h = hash_combine(h, member->offset);
3503		/* no hashing of referenced type ID, it can be unresolved yet */
3504		member++;
3505	}
3506	return h;
3507}
3508
3509/*
3510 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced
3511 * type IDs. This check is performed during type graph equivalence check and
3512 * referenced types equivalence is checked separately.
3513 */
3514static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3515{
3516	const struct btf_member *m1, *m2;
3517	__u16 vlen;
3518	int i;
3519
3520	if (!btf_equal_common(t1, t2))
3521		return false;
3522
3523	vlen = btf_vlen(t1);
3524	m1 = btf_members(t1);
3525	m2 = btf_members(t2);
3526	for (i = 0; i < vlen; i++) {
3527		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3528			return false;
3529		m1++;
3530		m2++;
3531	}
3532	return true;
3533}
3534
3535/*
3536 * Calculate type signature hash of ARRAY, including referenced type IDs,
3537 * under assumption that they were already resolved to canonical type IDs and
3538 * are not going to change.
3539 */
3540static long btf_hash_array(struct btf_type *t)
3541{
3542	const struct btf_array *info = btf_array(t);
3543	long h = btf_hash_common(t);
3544
3545	h = hash_combine(h, info->type);
3546	h = hash_combine(h, info->index_type);
3547	h = hash_combine(h, info->nelems);
3548	return h;
3549}
3550
3551/*
3552 * Check exact equality of two ARRAYs, taking into account referenced
3553 * type IDs, under assumption that they were already resolved to canonical
3554 * type IDs and are not going to change.
3555 * This function is called during reference types deduplication to compare
3556 * ARRAY to potential canonical representative.
3557 */
3558static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3559{
3560	const struct btf_array *info1, *info2;
3561
3562	if (!btf_equal_common(t1, t2))
3563		return false;
3564
3565	info1 = btf_array(t1);
3566	info2 = btf_array(t2);
3567	return info1->type == info2->type &&
3568	       info1->index_type == info2->index_type &&
3569	       info1->nelems == info2->nelems;
3570}
3571
3572/*
3573 * Check structural compatibility of two ARRAYs, ignoring referenced type
3574 * IDs. This check is performed during type graph equivalence check and
3575 * referenced types equivalence is checked separately.
3576 */
3577static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3578{
3579	if (!btf_equal_common(t1, t2))
3580		return false;
3581
3582	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3583}
3584
3585/*
3586 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3587 * under assumption that they were already resolved to canonical type IDs and
3588 * are not going to change.
3589 */
3590static long btf_hash_fnproto(struct btf_type *t)
3591{
3592	const struct btf_param *member = btf_params(t);
3593	__u16 vlen = btf_vlen(t);
3594	long h = btf_hash_common(t);
3595	int i;
3596
3597	for (i = 0; i < vlen; i++) {
3598		h = hash_combine(h, member->name_off);
3599		h = hash_combine(h, member->type);
3600		member++;
3601	}
3602	return h;
3603}
3604
3605/*
3606 * Check exact equality of two FUNC_PROTOs, taking into account referenced
3607 * type IDs, under assumption that they were already resolved to canonical
3608 * type IDs and are not going to change.
3609 * This function is called during reference types deduplication to compare
3610 * FUNC_PROTO to potential canonical representative.
3611 */
3612static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3613{
3614	const struct btf_param *m1, *m2;
3615	__u16 vlen;
3616	int i;
3617
3618	if (!btf_equal_common(t1, t2))
3619		return false;
3620
3621	vlen = btf_vlen(t1);
3622	m1 = btf_params(t1);
3623	m2 = btf_params(t2);
3624	for (i = 0; i < vlen; i++) {
3625		if (m1->name_off != m2->name_off || m1->type != m2->type)
3626			return false;
3627		m1++;
3628		m2++;
3629	}
3630	return true;
3631}
3632
3633/*
3634 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3635 * IDs. This check is performed during type graph equivalence check and
3636 * referenced types equivalence is checked separately.
3637 */
3638static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3639{
3640	const struct btf_param *m1, *m2;
3641	__u16 vlen;
3642	int i;
3643
3644	/* skip return type ID */
3645	if (t1->name_off != t2->name_off || t1->info != t2->info)
3646		return false;
3647
3648	vlen = btf_vlen(t1);
3649	m1 = btf_params(t1);
3650	m2 = btf_params(t2);
3651	for (i = 0; i < vlen; i++) {
3652		if (m1->name_off != m2->name_off)
3653			return false;
3654		m1++;
3655		m2++;
3656	}
3657	return true;
3658}
3659
3660/* Prepare split BTF for deduplication by calculating hashes of base BTF's
3661 * types and initializing the rest of the state (canonical type mapping) for
3662 * the fixed base BTF part.
3663 */
3664static int btf_dedup_prep(struct btf_dedup *d)
3665{
3666	struct btf_type *t;
3667	int type_id;
3668	long h;
3669
3670	if (!d->btf->base_btf)
3671		return 0;
3672
3673	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3674		t = btf_type_by_id(d->btf, type_id);
3675
3676		/* all base BTF types are self-canonical by definition */
3677		d->map[type_id] = type_id;
3678
3679		switch (btf_kind(t)) {
3680		case BTF_KIND_VAR:
3681		case BTF_KIND_DATASEC:
3682			/* VAR and DATASEC are never hash/deduplicated */
3683			continue;
3684		case BTF_KIND_CONST:
3685		case BTF_KIND_VOLATILE:
3686		case BTF_KIND_RESTRICT:
3687		case BTF_KIND_PTR:
3688		case BTF_KIND_FWD:
3689		case BTF_KIND_TYPEDEF:
3690		case BTF_KIND_FUNC:
3691		case BTF_KIND_FLOAT:
3692		case BTF_KIND_TYPE_TAG:
3693			h = btf_hash_common(t);
3694			break;
3695		case BTF_KIND_INT:
3696		case BTF_KIND_DECL_TAG:
3697			h = btf_hash_int_decl_tag(t);
3698			break;
3699		case BTF_KIND_ENUM:
3700		case BTF_KIND_ENUM64:
3701			h = btf_hash_enum(t);
3702			break;
3703		case BTF_KIND_STRUCT:
3704		case BTF_KIND_UNION:
3705			h = btf_hash_struct(t);
3706			break;
3707		case BTF_KIND_ARRAY:
3708			h = btf_hash_array(t);
3709			break;
3710		case BTF_KIND_FUNC_PROTO:
3711			h = btf_hash_fnproto(t);
3712			break;
3713		default:
3714			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3715			return -EINVAL;
3716		}
3717		if (btf_dedup_table_add(d, h, type_id))
3718			return -ENOMEM;
3719	}
3720
3721	return 0;
3722}
3723
3724/*
3725 * Deduplicate primitive types, that can't reference other types, by calculating
3726 * their type signature hash and comparing them with any possible canonical
3727 * candidate. If no canonical candidate matches, type itself is marked as
3728 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3729 */
3730static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3731{
3732	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3733	struct hashmap_entry *hash_entry;
3734	struct btf_type *cand;
3735	/* if we don't find equivalent type, then we are canonical */
3736	__u32 new_id = type_id;
3737	__u32 cand_id;
3738	long h;
3739
3740	switch (btf_kind(t)) {
3741	case BTF_KIND_CONST:
3742	case BTF_KIND_VOLATILE:
3743	case BTF_KIND_RESTRICT:
3744	case BTF_KIND_PTR:
3745	case BTF_KIND_TYPEDEF:
3746	case BTF_KIND_ARRAY:
3747	case BTF_KIND_STRUCT:
3748	case BTF_KIND_UNION:
3749	case BTF_KIND_FUNC:
3750	case BTF_KIND_FUNC_PROTO:
3751	case BTF_KIND_VAR:
3752	case BTF_KIND_DATASEC:
3753	case BTF_KIND_DECL_TAG:
3754	case BTF_KIND_TYPE_TAG:
3755		return 0;
3756
3757	case BTF_KIND_INT:
3758		h = btf_hash_int_decl_tag(t);
3759		for_each_dedup_cand(d, hash_entry, h) {
3760			cand_id = hash_entry->value;
3761			cand = btf_type_by_id(d->btf, cand_id);
3762			if (btf_equal_int_tag(t, cand)) {
3763				new_id = cand_id;
3764				break;
3765			}
3766		}
3767		break;
3768
3769	case BTF_KIND_ENUM:
3770	case BTF_KIND_ENUM64:
3771		h = btf_hash_enum(t);
3772		for_each_dedup_cand(d, hash_entry, h) {
3773			cand_id = hash_entry->value;
3774			cand = btf_type_by_id(d->btf, cand_id);
3775			if (btf_equal_enum(t, cand)) {
3776				new_id = cand_id;
3777				break;
3778			}
 
 
3779			if (btf_compat_enum(t, cand)) {
3780				if (btf_is_enum_fwd(t)) {
3781					/* resolve fwd to full enum */
3782					new_id = cand_id;
3783					break;
3784				}
3785				/* resolve canonical enum fwd to full enum */
3786				d->map[cand_id] = type_id;
3787			}
3788		}
3789		break;
3790
3791	case BTF_KIND_FWD:
3792	case BTF_KIND_FLOAT:
3793		h = btf_hash_common(t);
3794		for_each_dedup_cand(d, hash_entry, h) {
3795			cand_id = hash_entry->value;
3796			cand = btf_type_by_id(d->btf, cand_id);
3797			if (btf_equal_common(t, cand)) {
3798				new_id = cand_id;
3799				break;
3800			}
3801		}
3802		break;
3803
3804	default:
3805		return -EINVAL;
3806	}
3807
3808	d->map[type_id] = new_id;
3809	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3810		return -ENOMEM;
3811
3812	return 0;
3813}
3814
3815static int btf_dedup_prim_types(struct btf_dedup *d)
3816{
3817	int i, err;
3818
3819	for (i = 0; i < d->btf->nr_types; i++) {
3820		err = btf_dedup_prim_type(d, d->btf->start_id + i);
3821		if (err)
3822			return err;
3823	}
3824	return 0;
3825}
3826
3827/*
3828 * Check whether type is already mapped into canonical one (could be to itself).
3829 */
3830static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3831{
3832	return d->map[type_id] <= BTF_MAX_NR_TYPES;
3833}
3834
3835/*
3836 * Resolve type ID into its canonical type ID, if any; otherwise return original
3837 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3838 * STRUCT/UNION link and resolve it into canonical type ID as well.
3839 */
3840static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3841{
3842	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3843		type_id = d->map[type_id];
3844	return type_id;
3845}
3846
3847/*
3848 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3849 * type ID.
3850 */
3851static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3852{
3853	__u32 orig_type_id = type_id;
3854
3855	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3856		return type_id;
3857
3858	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3859		type_id = d->map[type_id];
3860
3861	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3862		return type_id;
3863
3864	return orig_type_id;
3865}
3866
3867
3868static inline __u16 btf_fwd_kind(struct btf_type *t)
3869{
3870	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3871}
3872
3873/* Check if given two types are identical ARRAY definitions */
3874static bool btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3875{
3876	struct btf_type *t1, *t2;
3877
3878	t1 = btf_type_by_id(d->btf, id1);
3879	t2 = btf_type_by_id(d->btf, id2);
3880	if (!btf_is_array(t1) || !btf_is_array(t2))
3881		return false;
3882
3883	return btf_equal_array(t1, t2);
3884}
3885
3886/* Check if given two types are identical STRUCT/UNION definitions */
3887static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2)
3888{
3889	const struct btf_member *m1, *m2;
3890	struct btf_type *t1, *t2;
3891	int n, i;
3892
3893	t1 = btf_type_by_id(d->btf, id1);
3894	t2 = btf_type_by_id(d->btf, id2);
3895
3896	if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2))
3897		return false;
3898
3899	if (!btf_shallow_equal_struct(t1, t2))
3900		return false;
3901
3902	m1 = btf_members(t1);
3903	m2 = btf_members(t2);
3904	for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) {
3905		if (m1->type != m2->type &&
3906		    !btf_dedup_identical_arrays(d, m1->type, m2->type) &&
3907		    !btf_dedup_identical_structs(d, m1->type, m2->type))
3908			return false;
3909	}
3910	return true;
3911}
3912
3913/*
3914 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3915 * call it "candidate graph" in this description for brevity) to a type graph
3916 * formed by (potential) canonical struct/union ("canonical graph" for brevity
3917 * here, though keep in mind that not all types in canonical graph are
3918 * necessarily canonical representatives themselves, some of them might be
3919 * duplicates or its uniqueness might not have been established yet).
3920 * Returns:
3921 *  - >0, if type graphs are equivalent;
3922 *  -  0, if not equivalent;
3923 *  - <0, on error.
3924 *
3925 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3926 * equivalence of BTF types at each step. If at any point BTF types in candidate
3927 * and canonical graphs are not compatible structurally, whole graphs are
3928 * incompatible. If types are structurally equivalent (i.e., all information
3929 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3930 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3931 * If a type references other types, then those referenced types are checked
3932 * for equivalence recursively.
3933 *
3934 * During DFS traversal, if we find that for current `canon_id` type we
3935 * already have some mapping in hypothetical map, we check for two possible
3936 * situations:
3937 *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3938 *     happen when type graphs have cycles. In this case we assume those two
3939 *     types are equivalent.
3940 *   - `canon_id` is mapped to different type. This is contradiction in our
3941 *     hypothetical mapping, because same graph in canonical graph corresponds
3942 *     to two different types in candidate graph, which for equivalent type
3943 *     graphs shouldn't happen. This condition terminates equivalence check
3944 *     with negative result.
3945 *
3946 * If type graphs traversal exhausts types to check and find no contradiction,
3947 * then type graphs are equivalent.
3948 *
3949 * When checking types for equivalence, there is one special case: FWD types.
3950 * If FWD type resolution is allowed and one of the types (either from canonical
3951 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3952 * flag) and their names match, hypothetical mapping is updated to point from
3953 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3954 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3955 *
3956 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3957 * if there are two exactly named (or anonymous) structs/unions that are
3958 * compatible structurally, one of which has FWD field, while other is concrete
3959 * STRUCT/UNION, but according to C sources they are different structs/unions
3960 * that are referencing different types with the same name. This is extremely
3961 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3962 * this logic is causing problems.
3963 *
3964 * Doing FWD resolution means that both candidate and/or canonical graphs can
3965 * consists of portions of the graph that come from multiple compilation units.
3966 * This is due to the fact that types within single compilation unit are always
3967 * deduplicated and FWDs are already resolved, if referenced struct/union
3968 * definiton is available. So, if we had unresolved FWD and found corresponding
3969 * STRUCT/UNION, they will be from different compilation units. This
3970 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3971 * type graph will likely have at least two different BTF types that describe
3972 * same type (e.g., most probably there will be two different BTF types for the
3973 * same 'int' primitive type) and could even have "overlapping" parts of type
3974 * graph that describe same subset of types.
3975 *
3976 * This in turn means that our assumption that each type in canonical graph
3977 * must correspond to exactly one type in candidate graph might not hold
3978 * anymore and will make it harder to detect contradictions using hypothetical
3979 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3980 * resolution only in canonical graph. FWDs in candidate graphs are never
3981 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3982 * that can occur:
3983 *   - Both types in canonical and candidate graphs are FWDs. If they are
3984 *     structurally equivalent, then they can either be both resolved to the
3985 *     same STRUCT/UNION or not resolved at all. In both cases they are
3986 *     equivalent and there is no need to resolve FWD on candidate side.
3987 *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
3988 *     so nothing to resolve as well, algorithm will check equivalence anyway.
3989 *   - Type in canonical graph is FWD, while type in candidate is concrete
3990 *     STRUCT/UNION. In this case candidate graph comes from single compilation
3991 *     unit, so there is exactly one BTF type for each unique C type. After
3992 *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
3993 *     in canonical graph mapping to single BTF type in candidate graph, but
3994 *     because hypothetical mapping maps from canonical to candidate types, it's
3995 *     alright, and we still maintain the property of having single `canon_id`
3996 *     mapping to single `cand_id` (there could be two different `canon_id`
3997 *     mapped to the same `cand_id`, but it's not contradictory).
3998 *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
3999 *     graph is FWD. In this case we are just going to check compatibility of
4000 *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
4001 *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
4002 *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
4003 *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
4004 *     canonical graph.
4005 */
4006static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
4007			      __u32 canon_id)
4008{
4009	struct btf_type *cand_type;
4010	struct btf_type *canon_type;
4011	__u32 hypot_type_id;
4012	__u16 cand_kind;
4013	__u16 canon_kind;
4014	int i, eq;
4015
4016	/* if both resolve to the same canonical, they must be equivalent */
4017	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
4018		return 1;
4019
4020	canon_id = resolve_fwd_id(d, canon_id);
4021
4022	hypot_type_id = d->hypot_map[canon_id];
4023	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
4024		if (hypot_type_id == cand_id)
4025			return 1;
4026		/* In some cases compiler will generate different DWARF types
4027		 * for *identical* array type definitions and use them for
4028		 * different fields within the *same* struct. This breaks type
4029		 * equivalence check, which makes an assumption that candidate
4030		 * types sub-graph has a consistent and deduped-by-compiler
4031		 * types within a single CU. So work around that by explicitly
4032		 * allowing identical array types here.
4033		 */
4034		if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id))
4035			return 1;
4036		/* It turns out that similar situation can happen with
4037		 * struct/union sometimes, sigh... Handle the case where
4038		 * structs/unions are exactly the same, down to the referenced
4039		 * type IDs. Anything more complicated (e.g., if referenced
4040		 * types are different, but equivalent) is *way more*
4041		 * complicated and requires a many-to-many equivalence mapping.
4042		 */
4043		if (btf_dedup_identical_structs(d, hypot_type_id, cand_id))
4044			return 1;
4045		return 0;
4046	}
4047
4048	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
4049		return -ENOMEM;
4050
4051	cand_type = btf_type_by_id(d->btf, cand_id);
4052	canon_type = btf_type_by_id(d->btf, canon_id);
4053	cand_kind = btf_kind(cand_type);
4054	canon_kind = btf_kind(canon_type);
4055
4056	if (cand_type->name_off != canon_type->name_off)
4057		return 0;
4058
4059	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
4060	if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
 
4061	    && cand_kind != canon_kind) {
4062		__u16 real_kind;
4063		__u16 fwd_kind;
4064
4065		if (cand_kind == BTF_KIND_FWD) {
4066			real_kind = canon_kind;
4067			fwd_kind = btf_fwd_kind(cand_type);
4068		} else {
4069			real_kind = cand_kind;
4070			fwd_kind = btf_fwd_kind(canon_type);
4071			/* we'd need to resolve base FWD to STRUCT/UNION */
4072			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
4073				d->hypot_adjust_canon = true;
4074		}
4075		return fwd_kind == real_kind;
4076	}
4077
4078	if (cand_kind != canon_kind)
4079		return 0;
4080
4081	switch (cand_kind) {
4082	case BTF_KIND_INT:
4083		return btf_equal_int_tag(cand_type, canon_type);
4084
4085	case BTF_KIND_ENUM:
4086	case BTF_KIND_ENUM64:
4087		return btf_compat_enum(cand_type, canon_type);
 
 
4088
4089	case BTF_KIND_FWD:
4090	case BTF_KIND_FLOAT:
4091		return btf_equal_common(cand_type, canon_type);
4092
4093	case BTF_KIND_CONST:
4094	case BTF_KIND_VOLATILE:
4095	case BTF_KIND_RESTRICT:
4096	case BTF_KIND_PTR:
4097	case BTF_KIND_TYPEDEF:
4098	case BTF_KIND_FUNC:
4099	case BTF_KIND_TYPE_TAG:
4100		if (cand_type->info != canon_type->info)
4101			return 0;
4102		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4103
4104	case BTF_KIND_ARRAY: {
4105		const struct btf_array *cand_arr, *canon_arr;
4106
4107		if (!btf_compat_array(cand_type, canon_type))
4108			return 0;
4109		cand_arr = btf_array(cand_type);
4110		canon_arr = btf_array(canon_type);
4111		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
4112		if (eq <= 0)
4113			return eq;
4114		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
4115	}
4116
4117	case BTF_KIND_STRUCT:
4118	case BTF_KIND_UNION: {
4119		const struct btf_member *cand_m, *canon_m;
4120		__u16 vlen;
4121
4122		if (!btf_shallow_equal_struct(cand_type, canon_type))
4123			return 0;
4124		vlen = btf_vlen(cand_type);
4125		cand_m = btf_members(cand_type);
4126		canon_m = btf_members(canon_type);
4127		for (i = 0; i < vlen; i++) {
4128			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4129			if (eq <= 0)
4130				return eq;
4131			cand_m++;
4132			canon_m++;
4133		}
4134
4135		return 1;
4136	}
4137
4138	case BTF_KIND_FUNC_PROTO: {
4139		const struct btf_param *cand_p, *canon_p;
4140		__u16 vlen;
4141
4142		if (!btf_compat_fnproto(cand_type, canon_type))
4143			return 0;
4144		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4145		if (eq <= 0)
4146			return eq;
4147		vlen = btf_vlen(cand_type);
4148		cand_p = btf_params(cand_type);
4149		canon_p = btf_params(canon_type);
4150		for (i = 0; i < vlen; i++) {
4151			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4152			if (eq <= 0)
4153				return eq;
4154			cand_p++;
4155			canon_p++;
4156		}
4157		return 1;
4158	}
4159
4160	default:
4161		return -EINVAL;
4162	}
4163	return 0;
4164}
4165
4166/*
4167 * Use hypothetical mapping, produced by successful type graph equivalence
4168 * check, to augment existing struct/union canonical mapping, where possible.
4169 *
4170 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4171 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4172 * it doesn't matter if FWD type was part of canonical graph or candidate one,
4173 * we are recording the mapping anyway. As opposed to carefulness required
4174 * for struct/union correspondence mapping (described below), for FWD resolution
4175 * it's not important, as by the time that FWD type (reference type) will be
4176 * deduplicated all structs/unions will be deduped already anyway.
4177 *
4178 * Recording STRUCT/UNION mapping is purely a performance optimization and is
4179 * not required for correctness. It needs to be done carefully to ensure that
4180 * struct/union from candidate's type graph is not mapped into corresponding
4181 * struct/union from canonical type graph that itself hasn't been resolved into
4182 * canonical representative. The only guarantee we have is that canonical
4183 * struct/union was determined as canonical and that won't change. But any
4184 * types referenced through that struct/union fields could have been not yet
4185 * resolved, so in case like that it's too early to establish any kind of
4186 * correspondence between structs/unions.
4187 *
4188 * No canonical correspondence is derived for primitive types (they are already
4189 * deduplicated completely already anyway) or reference types (they rely on
4190 * stability of struct/union canonical relationship for equivalence checks).
4191 */
4192static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4193{
4194	__u32 canon_type_id, targ_type_id;
4195	__u16 t_kind, c_kind;
4196	__u32 t_id, c_id;
4197	int i;
4198
4199	for (i = 0; i < d->hypot_cnt; i++) {
4200		canon_type_id = d->hypot_list[i];
4201		targ_type_id = d->hypot_map[canon_type_id];
4202		t_id = resolve_type_id(d, targ_type_id);
4203		c_id = resolve_type_id(d, canon_type_id);
4204		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4205		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4206		/*
4207		 * Resolve FWD into STRUCT/UNION.
4208		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4209		 * mapped to canonical representative (as opposed to
4210		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4211		 * eventually that struct is going to be mapped and all resolved
4212		 * FWDs will automatically resolve to correct canonical
4213		 * representative. This will happen before ref type deduping,
4214		 * which critically depends on stability of these mapping. This
4215		 * stability is not a requirement for STRUCT/UNION equivalence
4216		 * checks, though.
4217		 */
4218
4219		/* if it's the split BTF case, we still need to point base FWD
4220		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4221		 * will be resolved against base FWD. If we don't point base
4222		 * canonical FWD to the resolved STRUCT/UNION, then all the
4223		 * FWDs in split BTF won't be correctly resolved to a proper
4224		 * STRUCT/UNION.
4225		 */
4226		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4227			d->map[c_id] = t_id;
4228
4229		/* if graph equivalence determined that we'd need to adjust
4230		 * base canonical types, then we need to only point base FWDs
4231		 * to STRUCTs/UNIONs and do no more modifications. For all
4232		 * other purposes the type graphs were not equivalent.
4233		 */
4234		if (d->hypot_adjust_canon)
4235			continue;
4236
4237		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4238			d->map[t_id] = c_id;
4239
4240		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4241		    c_kind != BTF_KIND_FWD &&
4242		    is_type_mapped(d, c_id) &&
4243		    !is_type_mapped(d, t_id)) {
4244			/*
4245			 * as a perf optimization, we can map struct/union
4246			 * that's part of type graph we just verified for
4247			 * equivalence. We can do that for struct/union that has
4248			 * canonical representative only, though.
4249			 */
4250			d->map[t_id] = c_id;
4251		}
4252	}
4253}
4254
4255/*
4256 * Deduplicate struct/union types.
4257 *
4258 * For each struct/union type its type signature hash is calculated, taking
4259 * into account type's name, size, number, order and names of fields, but
4260 * ignoring type ID's referenced from fields, because they might not be deduped
4261 * completely until after reference types deduplication phase. This type hash
4262 * is used to iterate over all potential canonical types, sharing same hash.
4263 * For each canonical candidate we check whether type graphs that they form
4264 * (through referenced types in fields and so on) are equivalent using algorithm
4265 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4266 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4267 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4268 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4269 * potentially map other structs/unions to their canonical representatives,
4270 * if such relationship hasn't yet been established. This speeds up algorithm
4271 * by eliminating some of the duplicate work.
4272 *
4273 * If no matching canonical representative was found, struct/union is marked
4274 * as canonical for itself and is added into btf_dedup->dedup_table hash map
4275 * for further look ups.
4276 */
4277static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4278{
4279	struct btf_type *cand_type, *t;
4280	struct hashmap_entry *hash_entry;
4281	/* if we don't find equivalent type, then we are canonical */
4282	__u32 new_id = type_id;
4283	__u16 kind;
4284	long h;
4285
4286	/* already deduped or is in process of deduping (loop detected) */
4287	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4288		return 0;
4289
4290	t = btf_type_by_id(d->btf, type_id);
4291	kind = btf_kind(t);
4292
4293	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4294		return 0;
4295
4296	h = btf_hash_struct(t);
4297	for_each_dedup_cand(d, hash_entry, h) {
4298		__u32 cand_id = hash_entry->value;
4299		int eq;
4300
4301		/*
4302		 * Even though btf_dedup_is_equiv() checks for
4303		 * btf_shallow_equal_struct() internally when checking two
4304		 * structs (unions) for equivalence, we need to guard here
4305		 * from picking matching FWD type as a dedup candidate.
4306		 * This can happen due to hash collision. In such case just
4307		 * relying on btf_dedup_is_equiv() would lead to potentially
4308		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4309		 * FWD and compatible STRUCT/UNION are considered equivalent.
4310		 */
4311		cand_type = btf_type_by_id(d->btf, cand_id);
4312		if (!btf_shallow_equal_struct(t, cand_type))
4313			continue;
4314
4315		btf_dedup_clear_hypot_map(d);
4316		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4317		if (eq < 0)
4318			return eq;
4319		if (!eq)
4320			continue;
4321		btf_dedup_merge_hypot_map(d);
4322		if (d->hypot_adjust_canon) /* not really equivalent */
4323			continue;
4324		new_id = cand_id;
4325		break;
4326	}
4327
4328	d->map[type_id] = new_id;
4329	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4330		return -ENOMEM;
4331
4332	return 0;
4333}
4334
4335static int btf_dedup_struct_types(struct btf_dedup *d)
4336{
4337	int i, err;
4338
4339	for (i = 0; i < d->btf->nr_types; i++) {
4340		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4341		if (err)
4342			return err;
4343	}
4344	return 0;
4345}
4346
4347/*
4348 * Deduplicate reference type.
4349 *
4350 * Once all primitive and struct/union types got deduplicated, we can easily
4351 * deduplicate all other (reference) BTF types. This is done in two steps:
4352 *
4353 * 1. Resolve all referenced type IDs into their canonical type IDs. This
4354 * resolution can be done either immediately for primitive or struct/union types
4355 * (because they were deduped in previous two phases) or recursively for
4356 * reference types. Recursion will always terminate at either primitive or
4357 * struct/union type, at which point we can "unwind" chain of reference types
4358 * one by one. There is no danger of encountering cycles because in C type
4359 * system the only way to form type cycle is through struct/union, so any chain
4360 * of reference types, even those taking part in a type cycle, will inevitably
4361 * reach struct/union at some point.
4362 *
4363 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4364 * becomes "stable", in the sense that no further deduplication will cause
4365 * any changes to it. With that, it's now possible to calculate type's signature
4366 * hash (this time taking into account referenced type IDs) and loop over all
4367 * potential canonical representatives. If no match was found, current type
4368 * will become canonical representative of itself and will be added into
4369 * btf_dedup->dedup_table as another possible canonical representative.
4370 */
4371static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4372{
4373	struct hashmap_entry *hash_entry;
4374	__u32 new_id = type_id, cand_id;
4375	struct btf_type *t, *cand;
4376	/* if we don't find equivalent type, then we are representative type */
4377	int ref_type_id;
4378	long h;
4379
4380	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4381		return -ELOOP;
4382	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4383		return resolve_type_id(d, type_id);
4384
4385	t = btf_type_by_id(d->btf, type_id);
4386	d->map[type_id] = BTF_IN_PROGRESS_ID;
4387
4388	switch (btf_kind(t)) {
4389	case BTF_KIND_CONST:
4390	case BTF_KIND_VOLATILE:
4391	case BTF_KIND_RESTRICT:
4392	case BTF_KIND_PTR:
4393	case BTF_KIND_TYPEDEF:
4394	case BTF_KIND_FUNC:
4395	case BTF_KIND_TYPE_TAG:
4396		ref_type_id = btf_dedup_ref_type(d, t->type);
4397		if (ref_type_id < 0)
4398			return ref_type_id;
4399		t->type = ref_type_id;
4400
4401		h = btf_hash_common(t);
4402		for_each_dedup_cand(d, hash_entry, h) {
4403			cand_id = hash_entry->value;
4404			cand = btf_type_by_id(d->btf, cand_id);
4405			if (btf_equal_common(t, cand)) {
4406				new_id = cand_id;
4407				break;
4408			}
4409		}
4410		break;
4411
4412	case BTF_KIND_DECL_TAG:
4413		ref_type_id = btf_dedup_ref_type(d, t->type);
4414		if (ref_type_id < 0)
4415			return ref_type_id;
4416		t->type = ref_type_id;
4417
4418		h = btf_hash_int_decl_tag(t);
4419		for_each_dedup_cand(d, hash_entry, h) {
4420			cand_id = hash_entry->value;
4421			cand = btf_type_by_id(d->btf, cand_id);
4422			if (btf_equal_int_tag(t, cand)) {
4423				new_id = cand_id;
4424				break;
4425			}
4426		}
4427		break;
4428
4429	case BTF_KIND_ARRAY: {
4430		struct btf_array *info = btf_array(t);
4431
4432		ref_type_id = btf_dedup_ref_type(d, info->type);
4433		if (ref_type_id < 0)
4434			return ref_type_id;
4435		info->type = ref_type_id;
4436
4437		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4438		if (ref_type_id < 0)
4439			return ref_type_id;
4440		info->index_type = ref_type_id;
4441
4442		h = btf_hash_array(t);
4443		for_each_dedup_cand(d, hash_entry, h) {
4444			cand_id = hash_entry->value;
4445			cand = btf_type_by_id(d->btf, cand_id);
4446			if (btf_equal_array(t, cand)) {
4447				new_id = cand_id;
4448				break;
4449			}
4450		}
4451		break;
4452	}
4453
4454	case BTF_KIND_FUNC_PROTO: {
4455		struct btf_param *param;
4456		__u16 vlen;
4457		int i;
4458
4459		ref_type_id = btf_dedup_ref_type(d, t->type);
4460		if (ref_type_id < 0)
4461			return ref_type_id;
4462		t->type = ref_type_id;
4463
4464		vlen = btf_vlen(t);
4465		param = btf_params(t);
4466		for (i = 0; i < vlen; i++) {
4467			ref_type_id = btf_dedup_ref_type(d, param->type);
4468			if (ref_type_id < 0)
4469				return ref_type_id;
4470			param->type = ref_type_id;
4471			param++;
4472		}
4473
4474		h = btf_hash_fnproto(t);
4475		for_each_dedup_cand(d, hash_entry, h) {
4476			cand_id = hash_entry->value;
4477			cand = btf_type_by_id(d->btf, cand_id);
4478			if (btf_equal_fnproto(t, cand)) {
4479				new_id = cand_id;
4480				break;
4481			}
4482		}
4483		break;
4484	}
4485
4486	default:
4487		return -EINVAL;
4488	}
4489
4490	d->map[type_id] = new_id;
4491	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4492		return -ENOMEM;
4493
4494	return new_id;
4495}
4496
4497static int btf_dedup_ref_types(struct btf_dedup *d)
4498{
4499	int i, err;
4500
4501	for (i = 0; i < d->btf->nr_types; i++) {
4502		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4503		if (err < 0)
4504			return err;
4505	}
4506	/* we won't need d->dedup_table anymore */
4507	hashmap__free(d->dedup_table);
4508	d->dedup_table = NULL;
4509	return 0;
4510}
4511
4512/*
4513 * Collect a map from type names to type ids for all canonical structs
4514 * and unions. If the same name is shared by several canonical types
4515 * use a special value 0 to indicate this fact.
4516 */
4517static int btf_dedup_fill_unique_names_map(struct btf_dedup *d, struct hashmap *names_map)
4518{
4519	__u32 nr_types = btf__type_cnt(d->btf);
4520	struct btf_type *t;
4521	__u32 type_id;
4522	__u16 kind;
4523	int err;
4524
4525	/*
4526	 * Iterate over base and split module ids in order to get all
4527	 * available structs in the map.
4528	 */
4529	for (type_id = 1; type_id < nr_types; ++type_id) {
4530		t = btf_type_by_id(d->btf, type_id);
4531		kind = btf_kind(t);
4532
4533		if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4534			continue;
4535
4536		/* Skip non-canonical types */
4537		if (type_id != d->map[type_id])
4538			continue;
4539
4540		err = hashmap__add(names_map, t->name_off, type_id);
4541		if (err == -EEXIST)
4542			err = hashmap__set(names_map, t->name_off, 0, NULL, NULL);
4543
4544		if (err)
4545			return err;
4546	}
4547
4548	return 0;
4549}
4550
4551static int btf_dedup_resolve_fwd(struct btf_dedup *d, struct hashmap *names_map, __u32 type_id)
4552{
4553	struct btf_type *t = btf_type_by_id(d->btf, type_id);
4554	enum btf_fwd_kind fwd_kind = btf_kflag(t);
4555	__u16 cand_kind, kind = btf_kind(t);
4556	struct btf_type *cand_t;
4557	uintptr_t cand_id;
4558
4559	if (kind != BTF_KIND_FWD)
4560		return 0;
4561
4562	/* Skip if this FWD already has a mapping */
4563	if (type_id != d->map[type_id])
4564		return 0;
4565
4566	if (!hashmap__find(names_map, t->name_off, &cand_id))
4567		return 0;
4568
4569	/* Zero is a special value indicating that name is not unique */
4570	if (!cand_id)
4571		return 0;
4572
4573	cand_t = btf_type_by_id(d->btf, cand_id);
4574	cand_kind = btf_kind(cand_t);
4575	if ((cand_kind == BTF_KIND_STRUCT && fwd_kind != BTF_FWD_STRUCT) ||
4576	    (cand_kind == BTF_KIND_UNION && fwd_kind != BTF_FWD_UNION))
4577		return 0;
4578
4579	d->map[type_id] = cand_id;
4580
4581	return 0;
4582}
4583
4584/*
4585 * Resolve unambiguous forward declarations.
4586 *
4587 * The lion's share of all FWD declarations is resolved during
4588 * `btf_dedup_struct_types` phase when different type graphs are
4589 * compared against each other. However, if in some compilation unit a
4590 * FWD declaration is not a part of a type graph compared against
4591 * another type graph that declaration's canonical type would not be
4592 * changed. Example:
4593 *
4594 * CU #1:
4595 *
4596 * struct foo;
4597 * struct foo *some_global;
4598 *
4599 * CU #2:
4600 *
4601 * struct foo { int u; };
4602 * struct foo *another_global;
4603 *
4604 * After `btf_dedup_struct_types` the BTF looks as follows:
4605 *
4606 * [1] STRUCT 'foo' size=4 vlen=1 ...
4607 * [2] INT 'int' size=4 ...
4608 * [3] PTR '(anon)' type_id=1
4609 * [4] FWD 'foo' fwd_kind=struct
4610 * [5] PTR '(anon)' type_id=4
4611 *
4612 * This pass assumes that such FWD declarations should be mapped to
4613 * structs or unions with identical name in case if the name is not
4614 * ambiguous.
4615 */
4616static int btf_dedup_resolve_fwds(struct btf_dedup *d)
4617{
4618	int i, err;
4619	struct hashmap *names_map;
4620
4621	names_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
4622	if (IS_ERR(names_map))
4623		return PTR_ERR(names_map);
4624
4625	err = btf_dedup_fill_unique_names_map(d, names_map);
4626	if (err < 0)
4627		goto exit;
4628
4629	for (i = 0; i < d->btf->nr_types; i++) {
4630		err = btf_dedup_resolve_fwd(d, names_map, d->btf->start_id + i);
4631		if (err < 0)
4632			break;
4633	}
4634
4635exit:
4636	hashmap__free(names_map);
4637	return err;
4638}
4639
4640/*
4641 * Compact types.
4642 *
4643 * After we established for each type its corresponding canonical representative
4644 * type, we now can eliminate types that are not canonical and leave only
4645 * canonical ones layed out sequentially in memory by copying them over
4646 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4647 * a map from original type ID to a new compacted type ID, which will be used
4648 * during next phase to "fix up" type IDs, referenced from struct/union and
4649 * reference types.
4650 */
4651static int btf_dedup_compact_types(struct btf_dedup *d)
4652{
4653	__u32 *new_offs;
4654	__u32 next_type_id = d->btf->start_id;
4655	const struct btf_type *t;
4656	void *p;
4657	int i, id, len;
4658
4659	/* we are going to reuse hypot_map to store compaction remapping */
4660	d->hypot_map[0] = 0;
4661	/* base BTF types are not renumbered */
4662	for (id = 1; id < d->btf->start_id; id++)
4663		d->hypot_map[id] = id;
4664	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4665		d->hypot_map[id] = BTF_UNPROCESSED_ID;
4666
4667	p = d->btf->types_data;
4668
4669	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4670		if (d->map[id] != id)
4671			continue;
4672
4673		t = btf__type_by_id(d->btf, id);
4674		len = btf_type_size(t);
4675		if (len < 0)
4676			return len;
4677
4678		memmove(p, t, len);
4679		d->hypot_map[id] = next_type_id;
4680		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4681		p += len;
4682		next_type_id++;
4683	}
4684
4685	/* shrink struct btf's internal types index and update btf_header */
4686	d->btf->nr_types = next_type_id - d->btf->start_id;
4687	d->btf->type_offs_cap = d->btf->nr_types;
4688	d->btf->hdr->type_len = p - d->btf->types_data;
4689	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4690				       sizeof(*new_offs));
4691	if (d->btf->type_offs_cap && !new_offs)
4692		return -ENOMEM;
4693	d->btf->type_offs = new_offs;
4694	d->btf->hdr->str_off = d->btf->hdr->type_len;
4695	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4696	return 0;
4697}
4698
4699/*
4700 * Figure out final (deduplicated and compacted) type ID for provided original
4701 * `type_id` by first resolving it into corresponding canonical type ID and
4702 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4703 * which is populated during compaction phase.
4704 */
4705static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4706{
4707	struct btf_dedup *d = ctx;
4708	__u32 resolved_type_id, new_type_id;
4709
4710	resolved_type_id = resolve_type_id(d, *type_id);
4711	new_type_id = d->hypot_map[resolved_type_id];
4712	if (new_type_id > BTF_MAX_NR_TYPES)
4713		return -EINVAL;
4714
4715	*type_id = new_type_id;
4716	return 0;
4717}
4718
4719/*
4720 * Remap referenced type IDs into deduped type IDs.
4721 *
4722 * After BTF types are deduplicated and compacted, their final type IDs may
4723 * differ from original ones. The map from original to a corresponding
4724 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4725 * compaction phase. During remapping phase we are rewriting all type IDs
4726 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4727 * their final deduped type IDs.
4728 */
4729static int btf_dedup_remap_types(struct btf_dedup *d)
4730{
4731	int i, r;
4732
4733	for (i = 0; i < d->btf->nr_types; i++) {
4734		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
4735
4736		r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4737		if (r)
4738			return r;
4739	}
4740
4741	if (!d->btf_ext)
4742		return 0;
4743
4744	r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4745	if (r)
4746		return r;
4747
4748	return 0;
4749}
4750
4751/*
4752 * Probe few well-known locations for vmlinux kernel image and try to load BTF
4753 * data out of it to use for target BTF.
4754 */
4755struct btf *btf__load_vmlinux_btf(void)
4756{
4757	const char *locations[] = {
 
 
 
4758		/* try canonical vmlinux BTF through sysfs first */
4759		"/sys/kernel/btf/vmlinux",
4760		/* fall back to trying to find vmlinux on disk otherwise */
4761		"/boot/vmlinux-%1$s",
4762		"/lib/modules/%1$s/vmlinux-%1$s",
4763		"/lib/modules/%1$s/build/vmlinux",
4764		"/usr/lib/modules/%1$s/kernel/vmlinux",
4765		"/usr/lib/debug/boot/vmlinux-%1$s",
4766		"/usr/lib/debug/boot/vmlinux-%1$s.debug",
4767		"/usr/lib/debug/lib/modules/%1$s/vmlinux",
4768	};
4769	char path[PATH_MAX + 1];
4770	struct utsname buf;
4771	struct btf *btf;
4772	int i, err;
4773
4774	uname(&buf);
4775
4776	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4777		snprintf(path, PATH_MAX, locations[i], buf.release);
4778
4779		if (faccessat(AT_FDCWD, path, R_OK, AT_EACCESS))
4780			continue;
4781
4782		btf = btf__parse(path, NULL);
 
 
 
4783		err = libbpf_get_error(btf);
4784		pr_debug("loading kernel BTF '%s': %d\n", path, err);
4785		if (err)
4786			continue;
4787
4788		return btf;
4789	}
4790
4791	pr_warn("failed to find valid kernel BTF\n");
4792	return libbpf_err_ptr(-ESRCH);
4793}
4794
4795struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf")));
4796
4797struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf)
4798{
4799	char path[80];
4800
4801	snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name);
4802	return btf__parse_split(path, vmlinux_btf);
4803}
4804
4805int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
4806{
4807	int i, n, err;
4808
4809	switch (btf_kind(t)) {
4810	case BTF_KIND_INT:
4811	case BTF_KIND_FLOAT:
4812	case BTF_KIND_ENUM:
4813	case BTF_KIND_ENUM64:
4814		return 0;
4815
4816	case BTF_KIND_FWD:
4817	case BTF_KIND_CONST:
4818	case BTF_KIND_VOLATILE:
4819	case BTF_KIND_RESTRICT:
4820	case BTF_KIND_PTR:
4821	case BTF_KIND_TYPEDEF:
4822	case BTF_KIND_FUNC:
4823	case BTF_KIND_VAR:
4824	case BTF_KIND_DECL_TAG:
4825	case BTF_KIND_TYPE_TAG:
4826		return visit(&t->type, ctx);
4827
4828	case BTF_KIND_ARRAY: {
4829		struct btf_array *a = btf_array(t);
4830
4831		err = visit(&a->type, ctx);
4832		err = err ?: visit(&a->index_type, ctx);
4833		return err;
4834	}
4835
4836	case BTF_KIND_STRUCT:
4837	case BTF_KIND_UNION: {
4838		struct btf_member *m = btf_members(t);
4839
4840		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4841			err = visit(&m->type, ctx);
4842			if (err)
4843				return err;
4844		}
4845		return 0;
4846	}
4847
4848	case BTF_KIND_FUNC_PROTO: {
4849		struct btf_param *m = btf_params(t);
4850
4851		err = visit(&t->type, ctx);
4852		if (err)
4853			return err;
4854		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4855			err = visit(&m->type, ctx);
4856			if (err)
4857				return err;
4858		}
4859		return 0;
4860	}
4861
4862	case BTF_KIND_DATASEC: {
4863		struct btf_var_secinfo *m = btf_var_secinfos(t);
4864
4865		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4866			err = visit(&m->type, ctx);
4867			if (err)
4868				return err;
4869		}
4870		return 0;
4871	}
4872
4873	default:
4874		return -EINVAL;
4875	}
4876}
4877
4878int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
4879{
4880	int i, n, err;
4881
4882	err = visit(&t->name_off, ctx);
4883	if (err)
4884		return err;
4885
4886	switch (btf_kind(t)) {
4887	case BTF_KIND_STRUCT:
4888	case BTF_KIND_UNION: {
4889		struct btf_member *m = btf_members(t);
4890
4891		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4892			err = visit(&m->name_off, ctx);
4893			if (err)
4894				return err;
4895		}
4896		break;
4897	}
4898	case BTF_KIND_ENUM: {
4899		struct btf_enum *m = btf_enum(t);
4900
4901		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4902			err = visit(&m->name_off, ctx);
4903			if (err)
4904				return err;
4905		}
4906		break;
4907	}
4908	case BTF_KIND_ENUM64: {
4909		struct btf_enum64 *m = btf_enum64(t);
4910
4911		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4912			err = visit(&m->name_off, ctx);
4913			if (err)
4914				return err;
4915		}
4916		break;
4917	}
4918	case BTF_KIND_FUNC_PROTO: {
4919		struct btf_param *m = btf_params(t);
4920
4921		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4922			err = visit(&m->name_off, ctx);
4923			if (err)
4924				return err;
4925		}
4926		break;
4927	}
4928	default:
4929		break;
4930	}
4931
4932	return 0;
4933}
4934
4935int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
4936{
4937	const struct btf_ext_info *seg;
4938	struct btf_ext_info_sec *sec;
4939	int i, err;
4940
4941	seg = &btf_ext->func_info;
4942	for_each_btf_ext_sec(seg, sec) {
4943		struct bpf_func_info_min *rec;
4944
4945		for_each_btf_ext_rec(seg, sec, i, rec) {
4946			err = visit(&rec->type_id, ctx);
4947			if (err < 0)
4948				return err;
4949		}
4950	}
4951
4952	seg = &btf_ext->core_relo_info;
4953	for_each_btf_ext_sec(seg, sec) {
4954		struct bpf_core_relo *rec;
4955
4956		for_each_btf_ext_rec(seg, sec, i, rec) {
4957			err = visit(&rec->type_id, ctx);
4958			if (err < 0)
4959				return err;
4960		}
4961	}
4962
4963	return 0;
4964}
4965
4966int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
4967{
4968	const struct btf_ext_info *seg;
4969	struct btf_ext_info_sec *sec;
4970	int i, err;
4971
4972	seg = &btf_ext->func_info;
4973	for_each_btf_ext_sec(seg, sec) {
4974		err = visit(&sec->sec_name_off, ctx);
4975		if (err)
4976			return err;
4977	}
4978
4979	seg = &btf_ext->line_info;
4980	for_each_btf_ext_sec(seg, sec) {
4981		struct bpf_line_info_min *rec;
4982
4983		err = visit(&sec->sec_name_off, ctx);
4984		if (err)
4985			return err;
4986
4987		for_each_btf_ext_rec(seg, sec, i, rec) {
4988			err = visit(&rec->file_name_off, ctx);
4989			if (err)
4990				return err;
4991			err = visit(&rec->line_off, ctx);
4992			if (err)
4993				return err;
4994		}
4995	}
4996
4997	seg = &btf_ext->core_relo_info;
4998	for_each_btf_ext_sec(seg, sec) {
4999		struct bpf_core_relo *rec;
5000
5001		err = visit(&sec->sec_name_off, ctx);
5002		if (err)
5003			return err;
5004
5005		for_each_btf_ext_rec(seg, sec, i, rec) {
5006			err = visit(&rec->access_str_off, ctx);
5007			if (err)
5008				return err;
5009		}
5010	}
5011
5012	return 0;
5013}
v5.14.15
   1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
   2/* Copyright (c) 2018 Facebook */
   3
   4#include <byteswap.h>
   5#include <endian.h>
   6#include <stdio.h>
   7#include <stdlib.h>
   8#include <string.h>
   9#include <fcntl.h>
  10#include <unistd.h>
  11#include <errno.h>
  12#include <sys/utsname.h>
  13#include <sys/param.h>
  14#include <sys/stat.h>
  15#include <linux/kernel.h>
  16#include <linux/err.h>
  17#include <linux/btf.h>
  18#include <gelf.h>
  19#include "btf.h"
  20#include "bpf.h"
  21#include "libbpf.h"
  22#include "libbpf_internal.h"
  23#include "hashmap.h"
  24#include "strset.h"
  25
  26#define BTF_MAX_NR_TYPES 0x7fffffffU
  27#define BTF_MAX_STR_OFFSET 0x7fffffffU
  28
  29static struct btf_type btf_void;
  30
  31struct btf {
  32	/* raw BTF data in native endianness */
  33	void *raw_data;
  34	/* raw BTF data in non-native endianness */
  35	void *raw_data_swapped;
  36	__u32 raw_size;
  37	/* whether target endianness differs from the native one */
  38	bool swapped_endian;
  39
  40	/*
  41	 * When BTF is loaded from an ELF or raw memory it is stored
  42	 * in a contiguous memory block. The hdr, type_data, and, strs_data
  43	 * point inside that memory region to their respective parts of BTF
  44	 * representation:
  45	 *
  46	 * +--------------------------------+
  47	 * |  Header  |  Types  |  Strings  |
  48	 * +--------------------------------+
  49	 * ^          ^         ^
  50	 * |          |         |
  51	 * hdr        |         |
  52	 * types_data-+         |
  53	 * strs_data------------+
  54	 *
  55	 * If BTF data is later modified, e.g., due to types added or
  56	 * removed, BTF deduplication performed, etc, this contiguous
  57	 * representation is broken up into three independently allocated
  58	 * memory regions to be able to modify them independently.
  59	 * raw_data is nulled out at that point, but can be later allocated
  60	 * and cached again if user calls btf__get_raw_data(), at which point
  61	 * raw_data will contain a contiguous copy of header, types, and
  62	 * strings:
  63	 *
  64	 * +----------+  +---------+  +-----------+
  65	 * |  Header  |  |  Types  |  |  Strings  |
  66	 * +----------+  +---------+  +-----------+
  67	 * ^             ^            ^
  68	 * |             |            |
  69	 * hdr           |            |
  70	 * types_data----+            |
  71	 * strset__data(strs_set)-----+
  72	 *
  73	 *               +----------+---------+-----------+
  74	 *               |  Header  |  Types  |  Strings  |
  75	 * raw_data----->+----------+---------+-----------+
  76	 */
  77	struct btf_header *hdr;
  78
  79	void *types_data;
  80	size_t types_data_cap; /* used size stored in hdr->type_len */
  81
  82	/* type ID to `struct btf_type *` lookup index
  83	 * type_offs[0] corresponds to the first non-VOID type:
  84	 *   - for base BTF it's type [1];
  85	 *   - for split BTF it's the first non-base BTF type.
  86	 */
  87	__u32 *type_offs;
  88	size_t type_offs_cap;
  89	/* number of types in this BTF instance:
  90	 *   - doesn't include special [0] void type;
  91	 *   - for split BTF counts number of types added on top of base BTF.
  92	 */
  93	__u32 nr_types;
  94	/* if not NULL, points to the base BTF on top of which the current
  95	 * split BTF is based
  96	 */
  97	struct btf *base_btf;
  98	/* BTF type ID of the first type in this BTF instance:
  99	 *   - for base BTF it's equal to 1;
 100	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
 101	 */
 102	int start_id;
 103	/* logical string offset of this BTF instance:
 104	 *   - for base BTF it's equal to 0;
 105	 *   - for split BTF it's equal to total size of base BTF's string section size.
 106	 */
 107	int start_str_off;
 108
 109	/* only one of strs_data or strs_set can be non-NULL, depending on
 110	 * whether BTF is in a modifiable state (strs_set is used) or not
 111	 * (strs_data points inside raw_data)
 112	 */
 113	void *strs_data;
 114	/* a set of unique strings */
 115	struct strset *strs_set;
 116	/* whether strings are already deduplicated */
 117	bool strs_deduped;
 118
 119	/* BTF object FD, if loaded into kernel */
 120	int fd;
 121
 122	/* Pointer size (in bytes) for a target architecture of this BTF */
 123	int ptr_sz;
 124};
 125
 126static inline __u64 ptr_to_u64(const void *ptr)
 127{
 128	return (__u64) (unsigned long) ptr;
 129}
 130
 131/* Ensure given dynamically allocated memory region pointed to by *data* with
 132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
 133 * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
 134 * are already used. At most *max_cnt* elements can be ever allocated.
 135 * If necessary, memory is reallocated and all existing data is copied over,
 136 * new pointer to the memory region is stored at *data, new memory region
 137 * capacity (in number of elements) is stored in *cap.
 138 * On success, memory pointer to the beginning of unused memory is returned.
 139 * On error, NULL is returned.
 140 */
 141void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
 142		     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
 143{
 144	size_t new_cnt;
 145	void *new_data;
 146
 147	if (cur_cnt + add_cnt <= *cap_cnt)
 148		return *data + cur_cnt * elem_sz;
 149
 150	/* requested more than the set limit */
 151	if (cur_cnt + add_cnt > max_cnt)
 152		return NULL;
 153
 154	new_cnt = *cap_cnt;
 155	new_cnt += new_cnt / 4;		  /* expand by 25% */
 156	if (new_cnt < 16)		  /* but at least 16 elements */
 157		new_cnt = 16;
 158	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
 159		new_cnt = max_cnt;
 160	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
 161		new_cnt = cur_cnt + add_cnt;
 162
 163	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
 164	if (!new_data)
 165		return NULL;
 166
 167	/* zero out newly allocated portion of memory */
 168	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
 169
 170	*data = new_data;
 171	*cap_cnt = new_cnt;
 172	return new_data + cur_cnt * elem_sz;
 173}
 174
 175/* Ensure given dynamically allocated memory region has enough allocated space
 176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each
 177 */
 178int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
 179{
 180	void *p;
 181
 182	if (need_cnt <= *cap_cnt)
 183		return 0;
 184
 185	p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
 186	if (!p)
 187		return -ENOMEM;
 188
 189	return 0;
 190}
 191
 
 
 
 
 
 
 192static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
 193{
 194	__u32 *p;
 195
 196	p = libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
 197			   btf->nr_types, BTF_MAX_NR_TYPES, 1);
 198	if (!p)
 199		return -ENOMEM;
 200
 201	*p = type_off;
 202	return 0;
 203}
 204
 205static void btf_bswap_hdr(struct btf_header *h)
 206{
 207	h->magic = bswap_16(h->magic);
 208	h->hdr_len = bswap_32(h->hdr_len);
 209	h->type_off = bswap_32(h->type_off);
 210	h->type_len = bswap_32(h->type_len);
 211	h->str_off = bswap_32(h->str_off);
 212	h->str_len = bswap_32(h->str_len);
 213}
 214
 215static int btf_parse_hdr(struct btf *btf)
 216{
 217	struct btf_header *hdr = btf->hdr;
 218	__u32 meta_left;
 219
 220	if (btf->raw_size < sizeof(struct btf_header)) {
 221		pr_debug("BTF header not found\n");
 222		return -EINVAL;
 223	}
 224
 225	if (hdr->magic == bswap_16(BTF_MAGIC)) {
 226		btf->swapped_endian = true;
 227		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
 228			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
 229				bswap_32(hdr->hdr_len));
 230			return -ENOTSUP;
 231		}
 232		btf_bswap_hdr(hdr);
 233	} else if (hdr->magic != BTF_MAGIC) {
 234		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
 
 
 
 
 
 
 235		return -EINVAL;
 236	}
 237
 238	meta_left = btf->raw_size - sizeof(*hdr);
 239	if (meta_left < hdr->str_off + hdr->str_len) {
 240		pr_debug("Invalid BTF total size:%u\n", btf->raw_size);
 241		return -EINVAL;
 242	}
 243
 244	if (hdr->type_off + hdr->type_len > hdr->str_off) {
 245		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
 246			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
 247		return -EINVAL;
 248	}
 249
 250	if (hdr->type_off % 4) {
 251		pr_debug("BTF type section is not aligned to 4 bytes\n");
 252		return -EINVAL;
 253	}
 254
 255	return 0;
 256}
 257
 258static int btf_parse_str_sec(struct btf *btf)
 259{
 260	const struct btf_header *hdr = btf->hdr;
 261	const char *start = btf->strs_data;
 262	const char *end = start + btf->hdr->str_len;
 263
 264	if (btf->base_btf && hdr->str_len == 0)
 265		return 0;
 266	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
 267		pr_debug("Invalid BTF string section\n");
 268		return -EINVAL;
 269	}
 270	if (!btf->base_btf && start[0]) {
 271		pr_debug("Invalid BTF string section\n");
 272		return -EINVAL;
 273	}
 274	return 0;
 275}
 276
 277static int btf_type_size(const struct btf_type *t)
 278{
 279	const int base_size = sizeof(struct btf_type);
 280	__u16 vlen = btf_vlen(t);
 281
 282	switch (btf_kind(t)) {
 283	case BTF_KIND_FWD:
 284	case BTF_KIND_CONST:
 285	case BTF_KIND_VOLATILE:
 286	case BTF_KIND_RESTRICT:
 287	case BTF_KIND_PTR:
 288	case BTF_KIND_TYPEDEF:
 289	case BTF_KIND_FUNC:
 290	case BTF_KIND_FLOAT:
 
 291		return base_size;
 292	case BTF_KIND_INT:
 293		return base_size + sizeof(__u32);
 294	case BTF_KIND_ENUM:
 295		return base_size + vlen * sizeof(struct btf_enum);
 
 
 296	case BTF_KIND_ARRAY:
 297		return base_size + sizeof(struct btf_array);
 298	case BTF_KIND_STRUCT:
 299	case BTF_KIND_UNION:
 300		return base_size + vlen * sizeof(struct btf_member);
 301	case BTF_KIND_FUNC_PROTO:
 302		return base_size + vlen * sizeof(struct btf_param);
 303	case BTF_KIND_VAR:
 304		return base_size + sizeof(struct btf_var);
 305	case BTF_KIND_DATASEC:
 306		return base_size + vlen * sizeof(struct btf_var_secinfo);
 
 
 307	default:
 308		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 309		return -EINVAL;
 310	}
 311}
 312
 313static void btf_bswap_type_base(struct btf_type *t)
 314{
 315	t->name_off = bswap_32(t->name_off);
 316	t->info = bswap_32(t->info);
 317	t->type = bswap_32(t->type);
 318}
 319
 320static int btf_bswap_type_rest(struct btf_type *t)
 321{
 322	struct btf_var_secinfo *v;
 
 323	struct btf_member *m;
 324	struct btf_array *a;
 325	struct btf_param *p;
 326	struct btf_enum *e;
 327	__u16 vlen = btf_vlen(t);
 328	int i;
 329
 330	switch (btf_kind(t)) {
 331	case BTF_KIND_FWD:
 332	case BTF_KIND_CONST:
 333	case BTF_KIND_VOLATILE:
 334	case BTF_KIND_RESTRICT:
 335	case BTF_KIND_PTR:
 336	case BTF_KIND_TYPEDEF:
 337	case BTF_KIND_FUNC:
 338	case BTF_KIND_FLOAT:
 
 339		return 0;
 340	case BTF_KIND_INT:
 341		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
 342		return 0;
 343	case BTF_KIND_ENUM:
 344		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
 345			e->name_off = bswap_32(e->name_off);
 346			e->val = bswap_32(e->val);
 347		}
 348		return 0;
 
 
 
 
 
 
 
 349	case BTF_KIND_ARRAY:
 350		a = btf_array(t);
 351		a->type = bswap_32(a->type);
 352		a->index_type = bswap_32(a->index_type);
 353		a->nelems = bswap_32(a->nelems);
 354		return 0;
 355	case BTF_KIND_STRUCT:
 356	case BTF_KIND_UNION:
 357		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
 358			m->name_off = bswap_32(m->name_off);
 359			m->type = bswap_32(m->type);
 360			m->offset = bswap_32(m->offset);
 361		}
 362		return 0;
 363	case BTF_KIND_FUNC_PROTO:
 364		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
 365			p->name_off = bswap_32(p->name_off);
 366			p->type = bswap_32(p->type);
 367		}
 368		return 0;
 369	case BTF_KIND_VAR:
 370		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
 371		return 0;
 372	case BTF_KIND_DATASEC:
 373		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
 374			v->type = bswap_32(v->type);
 375			v->offset = bswap_32(v->offset);
 376			v->size = bswap_32(v->size);
 377		}
 378		return 0;
 
 
 
 379	default:
 380		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 381		return -EINVAL;
 382	}
 383}
 384
 385static int btf_parse_type_sec(struct btf *btf)
 386{
 387	struct btf_header *hdr = btf->hdr;
 388	void *next_type = btf->types_data;
 389	void *end_type = next_type + hdr->type_len;
 390	int err, type_size;
 391
 392	while (next_type + sizeof(struct btf_type) <= end_type) {
 393		if (btf->swapped_endian)
 394			btf_bswap_type_base(next_type);
 395
 396		type_size = btf_type_size(next_type);
 397		if (type_size < 0)
 398			return type_size;
 399		if (next_type + type_size > end_type) {
 400			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
 401			return -EINVAL;
 402		}
 403
 404		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
 405			return -EINVAL;
 406
 407		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
 408		if (err)
 409			return err;
 410
 411		next_type += type_size;
 412		btf->nr_types++;
 413	}
 414
 415	if (next_type != end_type) {
 416		pr_warn("BTF types data is malformed\n");
 417		return -EINVAL;
 418	}
 419
 420	return 0;
 421}
 422
 423__u32 btf__get_nr_types(const struct btf *btf)
 424{
 425	return btf->start_id + btf->nr_types - 1;
 426}
 427
 428const struct btf *btf__base_btf(const struct btf *btf)
 429{
 430	return btf->base_btf;
 431}
 432
 433/* internal helper returning non-const pointer to a type */
 434struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id)
 435{
 436	if (type_id == 0)
 437		return &btf_void;
 438	if (type_id < btf->start_id)
 439		return btf_type_by_id(btf->base_btf, type_id);
 440	return btf->types_data + btf->type_offs[type_id - btf->start_id];
 441}
 442
 443const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
 444{
 445	if (type_id >= btf->start_id + btf->nr_types)
 446		return errno = EINVAL, NULL;
 447	return btf_type_by_id((struct btf *)btf, type_id);
 448}
 449
 450static int determine_ptr_size(const struct btf *btf)
 451{
 
 
 
 
 
 
 
 
 
 
 
 
 
 452	const struct btf_type *t;
 453	const char *name;
 454	int i, n;
 455
 456	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
 457		return btf->base_btf->ptr_sz;
 458
 459	n = btf__get_nr_types(btf);
 460	for (i = 1; i <= n; i++) {
 461		t = btf__type_by_id(btf, i);
 462		if (!btf_is_int(t))
 463			continue;
 464
 
 
 
 465		name = btf__name_by_offset(btf, t->name_off);
 466		if (!name)
 467			continue;
 468
 469		if (strcmp(name, "long int") == 0 ||
 470		    strcmp(name, "long unsigned int") == 0) {
 471			if (t->size != 4 && t->size != 8)
 472				continue;
 473			return t->size;
 474		}
 475	}
 476
 477	return -1;
 478}
 479
 480static size_t btf_ptr_sz(const struct btf *btf)
 481{
 482	if (!btf->ptr_sz)
 483		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 484	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
 485}
 486
 487/* Return pointer size this BTF instance assumes. The size is heuristically
 488 * determined by looking for 'long' or 'unsigned long' integer type and
 489 * recording its size in bytes. If BTF type information doesn't have any such
 490 * type, this function returns 0. In the latter case, native architecture's
 491 * pointer size is assumed, so will be either 4 or 8, depending on
 492 * architecture that libbpf was compiled for. It's possible to override
 493 * guessed value by using btf__set_pointer_size() API.
 494 */
 495size_t btf__pointer_size(const struct btf *btf)
 496{
 497	if (!btf->ptr_sz)
 498		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 499
 500	if (btf->ptr_sz < 0)
 501		/* not enough BTF type info to guess */
 502		return 0;
 503
 504	return btf->ptr_sz;
 505}
 506
 507/* Override or set pointer size in bytes. Only values of 4 and 8 are
 508 * supported.
 509 */
 510int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
 511{
 512	if (ptr_sz != 4 && ptr_sz != 8)
 513		return libbpf_err(-EINVAL);
 514	btf->ptr_sz = ptr_sz;
 515	return 0;
 516}
 517
 518static bool is_host_big_endian(void)
 519{
 520#if __BYTE_ORDER == __LITTLE_ENDIAN
 521	return false;
 522#elif __BYTE_ORDER == __BIG_ENDIAN
 523	return true;
 524#else
 525# error "Unrecognized __BYTE_ORDER__"
 526#endif
 527}
 528
 529enum btf_endianness btf__endianness(const struct btf *btf)
 530{
 531	if (is_host_big_endian())
 532		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
 533	else
 534		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
 535}
 536
 537int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
 538{
 539	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
 540		return libbpf_err(-EINVAL);
 541
 542	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
 543	if (!btf->swapped_endian) {
 544		free(btf->raw_data_swapped);
 545		btf->raw_data_swapped = NULL;
 546	}
 547	return 0;
 548}
 549
 550static bool btf_type_is_void(const struct btf_type *t)
 551{
 552	return t == &btf_void || btf_is_fwd(t);
 553}
 554
 555static bool btf_type_is_void_or_null(const struct btf_type *t)
 556{
 557	return !t || btf_type_is_void(t);
 558}
 559
 560#define MAX_RESOLVE_DEPTH 32
 561
 562__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
 563{
 564	const struct btf_array *array;
 565	const struct btf_type *t;
 566	__u32 nelems = 1;
 567	__s64 size = -1;
 568	int i;
 569
 570	t = btf__type_by_id(btf, type_id);
 571	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
 572		switch (btf_kind(t)) {
 573		case BTF_KIND_INT:
 574		case BTF_KIND_STRUCT:
 575		case BTF_KIND_UNION:
 576		case BTF_KIND_ENUM:
 
 577		case BTF_KIND_DATASEC:
 578		case BTF_KIND_FLOAT:
 579			size = t->size;
 580			goto done;
 581		case BTF_KIND_PTR:
 582			size = btf_ptr_sz(btf);
 583			goto done;
 584		case BTF_KIND_TYPEDEF:
 585		case BTF_KIND_VOLATILE:
 586		case BTF_KIND_CONST:
 587		case BTF_KIND_RESTRICT:
 588		case BTF_KIND_VAR:
 
 
 589			type_id = t->type;
 590			break;
 591		case BTF_KIND_ARRAY:
 592			array = btf_array(t);
 593			if (nelems && array->nelems > UINT32_MAX / nelems)
 594				return libbpf_err(-E2BIG);
 595			nelems *= array->nelems;
 596			type_id = array->type;
 597			break;
 598		default:
 599			return libbpf_err(-EINVAL);
 600		}
 601
 602		t = btf__type_by_id(btf, type_id);
 603	}
 604
 605done:
 606	if (size < 0)
 607		return libbpf_err(-EINVAL);
 608	if (nelems && size > UINT32_MAX / nelems)
 609		return libbpf_err(-E2BIG);
 610
 611	return nelems * size;
 612}
 613
 614int btf__align_of(const struct btf *btf, __u32 id)
 615{
 616	const struct btf_type *t = btf__type_by_id(btf, id);
 617	__u16 kind = btf_kind(t);
 618
 619	switch (kind) {
 620	case BTF_KIND_INT:
 621	case BTF_KIND_ENUM:
 
 622	case BTF_KIND_FLOAT:
 623		return min(btf_ptr_sz(btf), (size_t)t->size);
 624	case BTF_KIND_PTR:
 625		return btf_ptr_sz(btf);
 626	case BTF_KIND_TYPEDEF:
 627	case BTF_KIND_VOLATILE:
 628	case BTF_KIND_CONST:
 629	case BTF_KIND_RESTRICT:
 
 630		return btf__align_of(btf, t->type);
 631	case BTF_KIND_ARRAY:
 632		return btf__align_of(btf, btf_array(t)->type);
 633	case BTF_KIND_STRUCT:
 634	case BTF_KIND_UNION: {
 635		const struct btf_member *m = btf_members(t);
 636		__u16 vlen = btf_vlen(t);
 637		int i, max_align = 1, align;
 638
 639		for (i = 0; i < vlen; i++, m++) {
 640			align = btf__align_of(btf, m->type);
 641			if (align <= 0)
 642				return libbpf_err(align);
 643			max_align = max(max_align, align);
 644		}
 645
 646		return max_align;
 647	}
 648	default:
 649		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
 650		return errno = EINVAL, 0;
 651	}
 652}
 653
 654int btf__resolve_type(const struct btf *btf, __u32 type_id)
 655{
 656	const struct btf_type *t;
 657	int depth = 0;
 658
 659	t = btf__type_by_id(btf, type_id);
 660	while (depth < MAX_RESOLVE_DEPTH &&
 661	       !btf_type_is_void_or_null(t) &&
 662	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
 663		type_id = t->type;
 664		t = btf__type_by_id(btf, type_id);
 665		depth++;
 666	}
 667
 668	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
 669		return libbpf_err(-EINVAL);
 670
 671	return type_id;
 672}
 673
 674__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
 675{
 676	__u32 i, nr_types = btf__get_nr_types(btf);
 677
 678	if (!strcmp(type_name, "void"))
 679		return 0;
 680
 681	for (i = 1; i <= nr_types; i++) {
 682		const struct btf_type *t = btf__type_by_id(btf, i);
 683		const char *name = btf__name_by_offset(btf, t->name_off);
 684
 685		if (name && !strcmp(type_name, name))
 686			return i;
 687	}
 688
 689	return libbpf_err(-ENOENT);
 690}
 691
 692__s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
 693			     __u32 kind)
 694{
 695	__u32 i, nr_types = btf__get_nr_types(btf);
 696
 697	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
 698		return 0;
 699
 700	for (i = 1; i <= nr_types; i++) {
 701		const struct btf_type *t = btf__type_by_id(btf, i);
 702		const char *name;
 703
 704		if (btf_kind(t) != kind)
 705			continue;
 706		name = btf__name_by_offset(btf, t->name_off);
 707		if (name && !strcmp(type_name, name))
 708			return i;
 709	}
 710
 711	return libbpf_err(-ENOENT);
 712}
 713
 
 
 
 
 
 
 
 
 
 
 
 
 714static bool btf_is_modifiable(const struct btf *btf)
 715{
 716	return (void *)btf->hdr != btf->raw_data;
 717}
 718
 719void btf__free(struct btf *btf)
 720{
 721	if (IS_ERR_OR_NULL(btf))
 722		return;
 723
 724	if (btf->fd >= 0)
 725		close(btf->fd);
 726
 727	if (btf_is_modifiable(btf)) {
 728		/* if BTF was modified after loading, it will have a split
 729		 * in-memory representation for header, types, and strings
 730		 * sections, so we need to free all of them individually. It
 731		 * might still have a cached contiguous raw data present,
 732		 * which will be unconditionally freed below.
 733		 */
 734		free(btf->hdr);
 735		free(btf->types_data);
 736		strset__free(btf->strs_set);
 737	}
 738	free(btf->raw_data);
 739	free(btf->raw_data_swapped);
 740	free(btf->type_offs);
 741	free(btf);
 742}
 743
 744static struct btf *btf_new_empty(struct btf *base_btf)
 745{
 746	struct btf *btf;
 747
 748	btf = calloc(1, sizeof(*btf));
 749	if (!btf)
 750		return ERR_PTR(-ENOMEM);
 751
 752	btf->nr_types = 0;
 753	btf->start_id = 1;
 754	btf->start_str_off = 0;
 755	btf->fd = -1;
 756	btf->ptr_sz = sizeof(void *);
 757	btf->swapped_endian = false;
 758
 759	if (base_btf) {
 760		btf->base_btf = base_btf;
 761		btf->start_id = btf__get_nr_types(base_btf) + 1;
 762		btf->start_str_off = base_btf->hdr->str_len;
 763	}
 764
 765	/* +1 for empty string at offset 0 */
 766	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
 767	btf->raw_data = calloc(1, btf->raw_size);
 768	if (!btf->raw_data) {
 769		free(btf);
 770		return ERR_PTR(-ENOMEM);
 771	}
 772
 773	btf->hdr = btf->raw_data;
 774	btf->hdr->hdr_len = sizeof(struct btf_header);
 775	btf->hdr->magic = BTF_MAGIC;
 776	btf->hdr->version = BTF_VERSION;
 777
 778	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
 779	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
 780	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
 781
 782	return btf;
 783}
 784
 785struct btf *btf__new_empty(void)
 786{
 787	return libbpf_ptr(btf_new_empty(NULL));
 788}
 789
 790struct btf *btf__new_empty_split(struct btf *base_btf)
 791{
 792	return libbpf_ptr(btf_new_empty(base_btf));
 793}
 794
 795static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
 796{
 797	struct btf *btf;
 798	int err;
 799
 800	btf = calloc(1, sizeof(struct btf));
 801	if (!btf)
 802		return ERR_PTR(-ENOMEM);
 803
 804	btf->nr_types = 0;
 805	btf->start_id = 1;
 806	btf->start_str_off = 0;
 807	btf->fd = -1;
 808
 809	if (base_btf) {
 810		btf->base_btf = base_btf;
 811		btf->start_id = btf__get_nr_types(base_btf) + 1;
 812		btf->start_str_off = base_btf->hdr->str_len;
 813	}
 814
 815	btf->raw_data = malloc(size);
 816	if (!btf->raw_data) {
 817		err = -ENOMEM;
 818		goto done;
 819	}
 820	memcpy(btf->raw_data, data, size);
 821	btf->raw_size = size;
 822
 823	btf->hdr = btf->raw_data;
 824	err = btf_parse_hdr(btf);
 825	if (err)
 826		goto done;
 827
 828	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
 829	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
 830
 831	err = btf_parse_str_sec(btf);
 832	err = err ?: btf_parse_type_sec(btf);
 833	if (err)
 834		goto done;
 835
 836done:
 837	if (err) {
 838		btf__free(btf);
 839		return ERR_PTR(err);
 840	}
 841
 842	return btf;
 843}
 844
 845struct btf *btf__new(const void *data, __u32 size)
 846{
 847	return libbpf_ptr(btf_new(data, size, NULL));
 848}
 849
 850static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
 851				 struct btf_ext **btf_ext)
 852{
 853	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
 854	int err = 0, fd = -1, idx = 0;
 855	struct btf *btf = NULL;
 856	Elf_Scn *scn = NULL;
 857	Elf *elf = NULL;
 858	GElf_Ehdr ehdr;
 859	size_t shstrndx;
 860
 861	if (elf_version(EV_CURRENT) == EV_NONE) {
 862		pr_warn("failed to init libelf for %s\n", path);
 863		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
 864	}
 865
 866	fd = open(path, O_RDONLY);
 867	if (fd < 0) {
 868		err = -errno;
 869		pr_warn("failed to open %s: %s\n", path, strerror(errno));
 870		return ERR_PTR(err);
 871	}
 872
 873	err = -LIBBPF_ERRNO__FORMAT;
 874
 875	elf = elf_begin(fd, ELF_C_READ, NULL);
 876	if (!elf) {
 877		pr_warn("failed to open %s as ELF file\n", path);
 878		goto done;
 879	}
 880	if (!gelf_getehdr(elf, &ehdr)) {
 881		pr_warn("failed to get EHDR from %s\n", path);
 882		goto done;
 883	}
 884
 885	if (elf_getshdrstrndx(elf, &shstrndx)) {
 886		pr_warn("failed to get section names section index for %s\n",
 887			path);
 888		goto done;
 889	}
 890
 891	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
 892		pr_warn("failed to get e_shstrndx from %s\n", path);
 893		goto done;
 894	}
 895
 896	while ((scn = elf_nextscn(elf, scn)) != NULL) {
 897		GElf_Shdr sh;
 898		char *name;
 899
 900		idx++;
 901		if (gelf_getshdr(scn, &sh) != &sh) {
 902			pr_warn("failed to get section(%d) header from %s\n",
 903				idx, path);
 904			goto done;
 905		}
 906		name = elf_strptr(elf, shstrndx, sh.sh_name);
 907		if (!name) {
 908			pr_warn("failed to get section(%d) name from %s\n",
 909				idx, path);
 910			goto done;
 911		}
 912		if (strcmp(name, BTF_ELF_SEC) == 0) {
 913			btf_data = elf_getdata(scn, 0);
 914			if (!btf_data) {
 915				pr_warn("failed to get section(%d, %s) data from %s\n",
 916					idx, name, path);
 917				goto done;
 918			}
 919			continue;
 920		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
 921			btf_ext_data = elf_getdata(scn, 0);
 922			if (!btf_ext_data) {
 923				pr_warn("failed to get section(%d, %s) data from %s\n",
 924					idx, name, path);
 925				goto done;
 926			}
 927			continue;
 928		}
 929	}
 930
 931	err = 0;
 932
 933	if (!btf_data) {
 934		err = -ENOENT;
 935		goto done;
 936	}
 937	btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
 938	err = libbpf_get_error(btf);
 939	if (err)
 940		goto done;
 941
 942	switch (gelf_getclass(elf)) {
 943	case ELFCLASS32:
 944		btf__set_pointer_size(btf, 4);
 945		break;
 946	case ELFCLASS64:
 947		btf__set_pointer_size(btf, 8);
 948		break;
 949	default:
 950		pr_warn("failed to get ELF class (bitness) for %s\n", path);
 951		break;
 952	}
 953
 954	if (btf_ext && btf_ext_data) {
 955		*btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
 956		err = libbpf_get_error(*btf_ext);
 957		if (err)
 958			goto done;
 959	} else if (btf_ext) {
 960		*btf_ext = NULL;
 961	}
 962done:
 963	if (elf)
 964		elf_end(elf);
 965	close(fd);
 966
 967	if (!err)
 968		return btf;
 969
 970	if (btf_ext)
 971		btf_ext__free(*btf_ext);
 972	btf__free(btf);
 973
 974	return ERR_PTR(err);
 975}
 976
 977struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
 978{
 979	return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
 980}
 981
 982struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
 983{
 984	return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
 985}
 986
 987static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
 988{
 989	struct btf *btf = NULL;
 990	void *data = NULL;
 991	FILE *f = NULL;
 992	__u16 magic;
 993	int err = 0;
 994	long sz;
 995
 996	f = fopen(path, "rb");
 997	if (!f) {
 998		err = -errno;
 999		goto err_out;
1000	}
1001
1002	/* check BTF magic */
1003	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1004		err = -EIO;
1005		goto err_out;
1006	}
1007	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1008		/* definitely not a raw BTF */
1009		err = -EPROTO;
1010		goto err_out;
1011	}
1012
1013	/* get file size */
1014	if (fseek(f, 0, SEEK_END)) {
1015		err = -errno;
1016		goto err_out;
1017	}
1018	sz = ftell(f);
1019	if (sz < 0) {
1020		err = -errno;
1021		goto err_out;
1022	}
1023	/* rewind to the start */
1024	if (fseek(f, 0, SEEK_SET)) {
1025		err = -errno;
1026		goto err_out;
1027	}
1028
1029	/* pre-alloc memory and read all of BTF data */
1030	data = malloc(sz);
1031	if (!data) {
1032		err = -ENOMEM;
1033		goto err_out;
1034	}
1035	if (fread(data, 1, sz, f) < sz) {
1036		err = -EIO;
1037		goto err_out;
1038	}
1039
1040	/* finally parse BTF data */
1041	btf = btf_new(data, sz, base_btf);
1042
1043err_out:
1044	free(data);
1045	if (f)
1046		fclose(f);
1047	return err ? ERR_PTR(err) : btf;
1048}
1049
1050struct btf *btf__parse_raw(const char *path)
1051{
1052	return libbpf_ptr(btf_parse_raw(path, NULL));
1053}
1054
1055struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1056{
1057	return libbpf_ptr(btf_parse_raw(path, base_btf));
1058}
1059
1060static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1061{
1062	struct btf *btf;
1063	int err;
1064
1065	if (btf_ext)
1066		*btf_ext = NULL;
1067
1068	btf = btf_parse_raw(path, base_btf);
1069	err = libbpf_get_error(btf);
1070	if (!err)
1071		return btf;
1072	if (err != -EPROTO)
1073		return ERR_PTR(err);
1074	return btf_parse_elf(path, base_btf, btf_ext);
1075}
1076
1077struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1078{
1079	return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1080}
1081
1082struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1083{
1084	return libbpf_ptr(btf_parse(path, base_btf, NULL));
1085}
1086
1087static int compare_vsi_off(const void *_a, const void *_b)
1088{
1089	const struct btf_var_secinfo *a = _a;
1090	const struct btf_var_secinfo *b = _b;
1091
1092	return a->offset - b->offset;
1093}
1094
1095static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
1096			     struct btf_type *t)
1097{
1098	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
1099	const char *name = btf__name_by_offset(btf, t->name_off);
1100	const struct btf_type *t_var;
1101	struct btf_var_secinfo *vsi;
1102	const struct btf_var *var;
1103	int ret;
1104
1105	if (!name) {
1106		pr_debug("No name found in string section for DATASEC kind.\n");
1107		return -ENOENT;
1108	}
1109
1110	/* .extern datasec size and var offsets were set correctly during
1111	 * extern collection step, so just skip straight to sorting variables
1112	 */
1113	if (t->size)
1114		goto sort_vars;
1115
1116	ret = bpf_object__section_size(obj, name, &size);
1117	if (ret || !size || (t->size && t->size != size)) {
1118		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
1119		return -ENOENT;
1120	}
1121
1122	t->size = size;
1123
1124	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
1125		t_var = btf__type_by_id(btf, vsi->type);
1126		var = btf_var(t_var);
1127
1128		if (!btf_is_var(t_var)) {
1129			pr_debug("Non-VAR type seen in section %s\n", name);
1130			return -EINVAL;
1131		}
1132
1133		if (var->linkage == BTF_VAR_STATIC)
1134			continue;
1135
1136		name = btf__name_by_offset(btf, t_var->name_off);
1137		if (!name) {
1138			pr_debug("No name found in string section for VAR kind\n");
1139			return -ENOENT;
1140		}
1141
1142		ret = bpf_object__variable_offset(obj, name, &off);
1143		if (ret) {
1144			pr_debug("No offset found in symbol table for VAR %s\n",
1145				 name);
1146			return -ENOENT;
1147		}
1148
1149		vsi->offset = off;
1150	}
1151
1152sort_vars:
1153	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
1154	return 0;
1155}
1156
1157int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
1158{
1159	int err = 0;
1160	__u32 i;
1161
1162	for (i = 1; i <= btf->nr_types; i++) {
1163		struct btf_type *t = btf_type_by_id(btf, i);
1164
1165		/* Loader needs to fix up some of the things compiler
1166		 * couldn't get its hands on while emitting BTF. This
1167		 * is section size and global variable offset. We use
1168		 * the info from the ELF itself for this purpose.
1169		 */
1170		if (btf_is_datasec(t)) {
1171			err = btf_fixup_datasec(obj, btf, t);
1172			if (err)
1173				break;
1174		}
1175	}
1176
1177	return libbpf_err(err);
1178}
1179
1180static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1181
1182int btf__load(struct btf *btf)
1183{
1184	__u32 log_buf_size = 0, raw_size;
1185	char *log_buf = NULL;
 
1186	void *raw_data;
1187	int err = 0;
1188
1189	if (btf->fd >= 0)
1190		return libbpf_err(-EEXIST);
 
 
1191
1192retry_load:
1193	if (log_buf_size) {
1194		log_buf = malloc(log_buf_size);
1195		if (!log_buf)
1196			return libbpf_err(-ENOMEM);
1197
1198		*log_buf = 0;
1199	}
1200
1201	raw_data = btf_get_raw_data(btf, &raw_size, false);
1202	if (!raw_data) {
1203		err = -ENOMEM;
1204		goto done;
1205	}
1206	/* cache native raw data representation */
1207	btf->raw_size = raw_size;
1208	btf->raw_data = raw_data;
1209
1210	btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1211	if (btf->fd < 0) {
1212		if (!log_buf || errno == ENOSPC) {
1213			log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
1214					   log_buf_size << 1);
1215			free(log_buf);
1216			goto retry_load;
1217		}
 
 
 
 
 
1218
1219		err = -errno;
1220		pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
1221		if (*log_buf)
1222			pr_warn("%s\n", log_buf);
1223		goto done;
1224	}
1225
1226done:
1227	free(log_buf);
1228	return libbpf_err(err);
1229}
1230
 
 
 
 
 
1231int btf__fd(const struct btf *btf)
1232{
1233	return btf->fd;
1234}
1235
1236void btf__set_fd(struct btf *btf, int fd)
1237{
1238	btf->fd = fd;
1239}
1240
1241static const void *btf_strs_data(const struct btf *btf)
1242{
1243	return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1244}
1245
1246static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1247{
1248	struct btf_header *hdr = btf->hdr;
1249	struct btf_type *t;
1250	void *data, *p;
1251	__u32 data_sz;
1252	int i;
1253
1254	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1255	if (data) {
1256		*size = btf->raw_size;
1257		return data;
1258	}
1259
1260	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1261	data = calloc(1, data_sz);
1262	if (!data)
1263		return NULL;
1264	p = data;
1265
1266	memcpy(p, hdr, hdr->hdr_len);
1267	if (swap_endian)
1268		btf_bswap_hdr(p);
1269	p += hdr->hdr_len;
1270
1271	memcpy(p, btf->types_data, hdr->type_len);
1272	if (swap_endian) {
1273		for (i = 0; i < btf->nr_types; i++) {
1274			t = p + btf->type_offs[i];
1275			/* btf_bswap_type_rest() relies on native t->info, so
1276			 * we swap base type info after we swapped all the
1277			 * additional information
1278			 */
1279			if (btf_bswap_type_rest(t))
1280				goto err_out;
1281			btf_bswap_type_base(t);
1282		}
1283	}
1284	p += hdr->type_len;
1285
1286	memcpy(p, btf_strs_data(btf), hdr->str_len);
1287	p += hdr->str_len;
1288
1289	*size = data_sz;
1290	return data;
1291err_out:
1292	free(data);
1293	return NULL;
1294}
1295
1296const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size)
1297{
1298	struct btf *btf = (struct btf *)btf_ro;
1299	__u32 data_sz;
1300	void *data;
1301
1302	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1303	if (!data)
1304		return errno = -ENOMEM, NULL;
1305
1306	btf->raw_size = data_sz;
1307	if (btf->swapped_endian)
1308		btf->raw_data_swapped = data;
1309	else
1310		btf->raw_data = data;
1311	*size = data_sz;
1312	return data;
1313}
1314
 
 
 
1315const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1316{
1317	if (offset < btf->start_str_off)
1318		return btf__str_by_offset(btf->base_btf, offset);
1319	else if (offset - btf->start_str_off < btf->hdr->str_len)
1320		return btf_strs_data(btf) + (offset - btf->start_str_off);
1321	else
1322		return errno = EINVAL, NULL;
1323}
1324
1325const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1326{
1327	return btf__str_by_offset(btf, offset);
1328}
1329
1330struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1331{
1332	struct bpf_btf_info btf_info;
1333	__u32 len = sizeof(btf_info);
1334	__u32 last_size;
1335	struct btf *btf;
1336	void *ptr;
1337	int err;
1338
1339	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1340	 * let's start with a sane default - 4KiB here - and resize it only if
1341	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1342	 */
1343	last_size = 4096;
1344	ptr = malloc(last_size);
1345	if (!ptr)
1346		return ERR_PTR(-ENOMEM);
1347
1348	memset(&btf_info, 0, sizeof(btf_info));
1349	btf_info.btf = ptr_to_u64(ptr);
1350	btf_info.btf_size = last_size;
1351	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1352
1353	if (!err && btf_info.btf_size > last_size) {
1354		void *temp_ptr;
1355
1356		last_size = btf_info.btf_size;
1357		temp_ptr = realloc(ptr, last_size);
1358		if (!temp_ptr) {
1359			btf = ERR_PTR(-ENOMEM);
1360			goto exit_free;
1361		}
1362		ptr = temp_ptr;
1363
1364		len = sizeof(btf_info);
1365		memset(&btf_info, 0, sizeof(btf_info));
1366		btf_info.btf = ptr_to_u64(ptr);
1367		btf_info.btf_size = last_size;
1368
1369		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1370	}
1371
1372	if (err || btf_info.btf_size > last_size) {
1373		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1374		goto exit_free;
1375	}
1376
1377	btf = btf_new(ptr, btf_info.btf_size, base_btf);
1378
1379exit_free:
1380	free(ptr);
1381	return btf;
1382}
1383
1384int btf__get_from_id(__u32 id, struct btf **btf)
1385{
1386	struct btf *res;
1387	int err, btf_fd;
1388
1389	*btf = NULL;
1390	btf_fd = bpf_btf_get_fd_by_id(id);
1391	if (btf_fd < 0)
1392		return libbpf_err(-errno);
1393
1394	res = btf_get_from_fd(btf_fd, NULL);
1395	err = libbpf_get_error(res);
1396
 
1397	close(btf_fd);
1398
1399	if (err)
1400		return libbpf_err(err);
1401
1402	*btf = res;
1403	return 0;
1404}
1405
1406int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
1407			 __u32 expected_key_size, __u32 expected_value_size,
1408			 __u32 *key_type_id, __u32 *value_type_id)
1409{
1410	const struct btf_type *container_type;
1411	const struct btf_member *key, *value;
1412	const size_t max_name = 256;
1413	char container_name[max_name];
1414	__s64 key_size, value_size;
1415	__s32 container_id;
1416
1417	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == max_name) {
1418		pr_warn("map:%s length of '____btf_map_%s' is too long\n",
1419			map_name, map_name);
1420		return libbpf_err(-EINVAL);
1421	}
1422
1423	container_id = btf__find_by_name(btf, container_name);
1424	if (container_id < 0) {
1425		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
1426			 map_name, container_name);
1427		return libbpf_err(container_id);
1428	}
1429
1430	container_type = btf__type_by_id(btf, container_id);
1431	if (!container_type) {
1432		pr_warn("map:%s cannot find BTF type for container_id:%u\n",
1433			map_name, container_id);
1434		return libbpf_err(-EINVAL);
1435	}
1436
1437	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
1438		pr_warn("map:%s container_name:%s is an invalid container struct\n",
1439			map_name, container_name);
1440		return libbpf_err(-EINVAL);
1441	}
1442
1443	key = btf_members(container_type);
1444	value = key + 1;
1445
1446	key_size = btf__resolve_size(btf, key->type);
1447	if (key_size < 0) {
1448		pr_warn("map:%s invalid BTF key_type_size\n", map_name);
1449		return libbpf_err(key_size);
1450	}
1451
1452	if (expected_key_size != key_size) {
1453		pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
1454			map_name, (__u32)key_size, expected_key_size);
1455		return libbpf_err(-EINVAL);
1456	}
1457
1458	value_size = btf__resolve_size(btf, value->type);
1459	if (value_size < 0) {
1460		pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1461		return libbpf_err(value_size);
1462	}
1463
1464	if (expected_value_size != value_size) {
1465		pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1466			map_name, (__u32)value_size, expected_value_size);
1467		return libbpf_err(-EINVAL);
1468	}
1469
1470	*key_type_id = key->type;
1471	*value_type_id = value->type;
1472
1473	return 0;
1474}
1475
1476static void btf_invalidate_raw_data(struct btf *btf)
1477{
1478	if (btf->raw_data) {
1479		free(btf->raw_data);
1480		btf->raw_data = NULL;
1481	}
1482	if (btf->raw_data_swapped) {
1483		free(btf->raw_data_swapped);
1484		btf->raw_data_swapped = NULL;
1485	}
1486}
1487
1488/* Ensure BTF is ready to be modified (by splitting into a three memory
1489 * regions for header, types, and strings). Also invalidate cached
1490 * raw_data, if any.
1491 */
1492static int btf_ensure_modifiable(struct btf *btf)
1493{
1494	void *hdr, *types;
1495	struct strset *set = NULL;
1496	int err = -ENOMEM;
1497
1498	if (btf_is_modifiable(btf)) {
1499		/* any BTF modification invalidates raw_data */
1500		btf_invalidate_raw_data(btf);
1501		return 0;
1502	}
1503
1504	/* split raw data into three memory regions */
1505	hdr = malloc(btf->hdr->hdr_len);
1506	types = malloc(btf->hdr->type_len);
1507	if (!hdr || !types)
1508		goto err_out;
1509
1510	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1511	memcpy(types, btf->types_data, btf->hdr->type_len);
1512
1513	/* build lookup index for all strings */
1514	set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1515	if (IS_ERR(set)) {
1516		err = PTR_ERR(set);
1517		goto err_out;
1518	}
1519
1520	/* only when everything was successful, update internal state */
1521	btf->hdr = hdr;
1522	btf->types_data = types;
1523	btf->types_data_cap = btf->hdr->type_len;
1524	btf->strs_data = NULL;
1525	btf->strs_set = set;
1526	/* if BTF was created from scratch, all strings are guaranteed to be
1527	 * unique and deduplicated
1528	 */
1529	if (btf->hdr->str_len == 0)
1530		btf->strs_deduped = true;
1531	if (!btf->base_btf && btf->hdr->str_len == 1)
1532		btf->strs_deduped = true;
1533
1534	/* invalidate raw_data representation */
1535	btf_invalidate_raw_data(btf);
1536
1537	return 0;
1538
1539err_out:
1540	strset__free(set);
1541	free(hdr);
1542	free(types);
1543	return err;
1544}
1545
1546/* Find an offset in BTF string section that corresponds to a given string *s*.
1547 * Returns:
1548 *   - >0 offset into string section, if string is found;
1549 *   - -ENOENT, if string is not in the string section;
1550 *   - <0, on any other error.
1551 */
1552int btf__find_str(struct btf *btf, const char *s)
1553{
1554	int off;
1555
1556	if (btf->base_btf) {
1557		off = btf__find_str(btf->base_btf, s);
1558		if (off != -ENOENT)
1559			return off;
1560	}
1561
1562	/* BTF needs to be in a modifiable state to build string lookup index */
1563	if (btf_ensure_modifiable(btf))
1564		return libbpf_err(-ENOMEM);
1565
1566	off = strset__find_str(btf->strs_set, s);
1567	if (off < 0)
1568		return libbpf_err(off);
1569
1570	return btf->start_str_off + off;
1571}
1572
1573/* Add a string s to the BTF string section.
1574 * Returns:
1575 *   - > 0 offset into string section, on success;
1576 *   - < 0, on error.
1577 */
1578int btf__add_str(struct btf *btf, const char *s)
1579{
1580	int off;
1581
1582	if (btf->base_btf) {
1583		off = btf__find_str(btf->base_btf, s);
1584		if (off != -ENOENT)
1585			return off;
1586	}
1587
1588	if (btf_ensure_modifiable(btf))
1589		return libbpf_err(-ENOMEM);
1590
1591	off = strset__add_str(btf->strs_set, s);
1592	if (off < 0)
1593		return libbpf_err(off);
1594
1595	btf->hdr->str_len = strset__data_size(btf->strs_set);
1596
1597	return btf->start_str_off + off;
1598}
1599
1600static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1601{
1602	return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1603			      btf->hdr->type_len, UINT_MAX, add_sz);
1604}
1605
1606static void btf_type_inc_vlen(struct btf_type *t)
1607{
1608	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1609}
1610
1611static int btf_commit_type(struct btf *btf, int data_sz)
1612{
1613	int err;
1614
1615	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1616	if (err)
1617		return libbpf_err(err);
1618
1619	btf->hdr->type_len += data_sz;
1620	btf->hdr->str_off += data_sz;
1621	btf->nr_types++;
1622	return btf->start_id + btf->nr_types - 1;
1623}
1624
1625struct btf_pipe {
1626	const struct btf *src;
1627	struct btf *dst;
 
1628};
1629
1630static int btf_rewrite_str(__u32 *str_off, void *ctx)
1631{
1632	struct btf_pipe *p = ctx;
1633	int off;
 
1634
1635	if (!*str_off) /* nothing to do for empty strings */
1636		return 0;
1637
 
 
 
 
 
 
1638	off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1639	if (off < 0)
1640		return off;
1641
 
 
 
 
 
 
 
 
 
1642	*str_off = off;
1643	return 0;
1644}
1645
1646int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1647{
1648	struct btf_pipe p = { .src = src_btf, .dst = btf };
1649	struct btf_type *t;
1650	int sz, err;
1651
1652	sz = btf_type_size(src_type);
1653	if (sz < 0)
1654		return libbpf_err(sz);
1655
1656	/* deconstruct BTF, if necessary, and invalidate raw_data */
1657	if (btf_ensure_modifiable(btf))
1658		return libbpf_err(-ENOMEM);
1659
1660	t = btf_add_type_mem(btf, sz);
1661	if (!t)
1662		return libbpf_err(-ENOMEM);
1663
1664	memcpy(t, src_type, sz);
1665
1666	err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1667	if (err)
1668		return libbpf_err(err);
1669
1670	return btf_commit_type(btf, sz);
1671}
1672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1673/*
1674 * Append new BTF_KIND_INT type with:
1675 *   - *name* - non-empty, non-NULL type name;
1676 *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1677 *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1678 * Returns:
1679 *   - >0, type ID of newly added BTF type;
1680 *   - <0, on error.
1681 */
1682int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1683{
1684	struct btf_type *t;
1685	int sz, name_off;
1686
1687	/* non-empty name */
1688	if (!name || !name[0])
1689		return libbpf_err(-EINVAL);
1690	/* byte_sz must be power of 2 */
1691	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1692		return libbpf_err(-EINVAL);
1693	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1694		return libbpf_err(-EINVAL);
1695
1696	/* deconstruct BTF, if necessary, and invalidate raw_data */
1697	if (btf_ensure_modifiable(btf))
1698		return libbpf_err(-ENOMEM);
1699
1700	sz = sizeof(struct btf_type) + sizeof(int);
1701	t = btf_add_type_mem(btf, sz);
1702	if (!t)
1703		return libbpf_err(-ENOMEM);
1704
1705	/* if something goes wrong later, we might end up with an extra string,
1706	 * but that shouldn't be a problem, because BTF can't be constructed
1707	 * completely anyway and will most probably be just discarded
1708	 */
1709	name_off = btf__add_str(btf, name);
1710	if (name_off < 0)
1711		return name_off;
1712
1713	t->name_off = name_off;
1714	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1715	t->size = byte_sz;
1716	/* set INT info, we don't allow setting legacy bit offset/size */
1717	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1718
1719	return btf_commit_type(btf, sz);
1720}
1721
1722/*
1723 * Append new BTF_KIND_FLOAT type with:
1724 *   - *name* - non-empty, non-NULL type name;
1725 *   - *sz* - size of the type, in bytes;
1726 * Returns:
1727 *   - >0, type ID of newly added BTF type;
1728 *   - <0, on error.
1729 */
1730int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1731{
1732	struct btf_type *t;
1733	int sz, name_off;
1734
1735	/* non-empty name */
1736	if (!name || !name[0])
1737		return libbpf_err(-EINVAL);
1738
1739	/* byte_sz must be one of the explicitly allowed values */
1740	if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1741	    byte_sz != 16)
1742		return libbpf_err(-EINVAL);
1743
1744	if (btf_ensure_modifiable(btf))
1745		return libbpf_err(-ENOMEM);
1746
1747	sz = sizeof(struct btf_type);
1748	t = btf_add_type_mem(btf, sz);
1749	if (!t)
1750		return libbpf_err(-ENOMEM);
1751
1752	name_off = btf__add_str(btf, name);
1753	if (name_off < 0)
1754		return name_off;
1755
1756	t->name_off = name_off;
1757	t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
1758	t->size = byte_sz;
1759
1760	return btf_commit_type(btf, sz);
1761}
1762
1763/* it's completely legal to append BTF types with type IDs pointing forward to
1764 * types that haven't been appended yet, so we only make sure that id looks
1765 * sane, we can't guarantee that ID will always be valid
1766 */
1767static int validate_type_id(int id)
1768{
1769	if (id < 0 || id > BTF_MAX_NR_TYPES)
1770		return -EINVAL;
1771	return 0;
1772}
1773
1774/* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1775static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1776{
1777	struct btf_type *t;
1778	int sz, name_off = 0;
1779
1780	if (validate_type_id(ref_type_id))
1781		return libbpf_err(-EINVAL);
1782
1783	if (btf_ensure_modifiable(btf))
1784		return libbpf_err(-ENOMEM);
1785
1786	sz = sizeof(struct btf_type);
1787	t = btf_add_type_mem(btf, sz);
1788	if (!t)
1789		return libbpf_err(-ENOMEM);
1790
1791	if (name && name[0]) {
1792		name_off = btf__add_str(btf, name);
1793		if (name_off < 0)
1794			return name_off;
1795	}
1796
1797	t->name_off = name_off;
1798	t->info = btf_type_info(kind, 0, 0);
1799	t->type = ref_type_id;
1800
1801	return btf_commit_type(btf, sz);
1802}
1803
1804/*
1805 * Append new BTF_KIND_PTR type with:
1806 *   - *ref_type_id* - referenced type ID, it might not exist yet;
1807 * Returns:
1808 *   - >0, type ID of newly added BTF type;
1809 *   - <0, on error.
1810 */
1811int btf__add_ptr(struct btf *btf, int ref_type_id)
1812{
1813	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1814}
1815
1816/*
1817 * Append new BTF_KIND_ARRAY type with:
1818 *   - *index_type_id* - type ID of the type describing array index;
1819 *   - *elem_type_id* - type ID of the type describing array element;
1820 *   - *nr_elems* - the size of the array;
1821 * Returns:
1822 *   - >0, type ID of newly added BTF type;
1823 *   - <0, on error.
1824 */
1825int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1826{
1827	struct btf_type *t;
1828	struct btf_array *a;
1829	int sz;
1830
1831	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1832		return libbpf_err(-EINVAL);
1833
1834	if (btf_ensure_modifiable(btf))
1835		return libbpf_err(-ENOMEM);
1836
1837	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1838	t = btf_add_type_mem(btf, sz);
1839	if (!t)
1840		return libbpf_err(-ENOMEM);
1841
1842	t->name_off = 0;
1843	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1844	t->size = 0;
1845
1846	a = btf_array(t);
1847	a->type = elem_type_id;
1848	a->index_type = index_type_id;
1849	a->nelems = nr_elems;
1850
1851	return btf_commit_type(btf, sz);
1852}
1853
1854/* generic STRUCT/UNION append function */
1855static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1856{
1857	struct btf_type *t;
1858	int sz, name_off = 0;
1859
1860	if (btf_ensure_modifiable(btf))
1861		return libbpf_err(-ENOMEM);
1862
1863	sz = sizeof(struct btf_type);
1864	t = btf_add_type_mem(btf, sz);
1865	if (!t)
1866		return libbpf_err(-ENOMEM);
1867
1868	if (name && name[0]) {
1869		name_off = btf__add_str(btf, name);
1870		if (name_off < 0)
1871			return name_off;
1872	}
1873
1874	/* start out with vlen=0 and no kflag; this will be adjusted when
1875	 * adding each member
1876	 */
1877	t->name_off = name_off;
1878	t->info = btf_type_info(kind, 0, 0);
1879	t->size = bytes_sz;
1880
1881	return btf_commit_type(btf, sz);
1882}
1883
1884/*
1885 * Append new BTF_KIND_STRUCT type with:
1886 *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
1887 *   - *byte_sz* - size of the struct, in bytes;
1888 *
1889 * Struct initially has no fields in it. Fields can be added by
1890 * btf__add_field() right after btf__add_struct() succeeds.
1891 *
1892 * Returns:
1893 *   - >0, type ID of newly added BTF type;
1894 *   - <0, on error.
1895 */
1896int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1897{
1898	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1899}
1900
1901/*
1902 * Append new BTF_KIND_UNION type with:
1903 *   - *name* - name of the union, can be NULL or empty for anonymous union;
1904 *   - *byte_sz* - size of the union, in bytes;
1905 *
1906 * Union initially has no fields in it. Fields can be added by
1907 * btf__add_field() right after btf__add_union() succeeds. All fields
1908 * should have *bit_offset* of 0.
1909 *
1910 * Returns:
1911 *   - >0, type ID of newly added BTF type;
1912 *   - <0, on error.
1913 */
1914int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1915{
1916	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1917}
1918
1919static struct btf_type *btf_last_type(struct btf *btf)
1920{
1921	return btf_type_by_id(btf, btf__get_nr_types(btf));
1922}
1923
1924/*
1925 * Append new field for the current STRUCT/UNION type with:
1926 *   - *name* - name of the field, can be NULL or empty for anonymous field;
1927 *   - *type_id* - type ID for the type describing field type;
1928 *   - *bit_offset* - bit offset of the start of the field within struct/union;
1929 *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
1930 * Returns:
1931 *   -  0, on success;
1932 *   - <0, on error.
1933 */
1934int btf__add_field(struct btf *btf, const char *name, int type_id,
1935		   __u32 bit_offset, __u32 bit_size)
1936{
1937	struct btf_type *t;
1938	struct btf_member *m;
1939	bool is_bitfield;
1940	int sz, name_off = 0;
1941
1942	/* last type should be union/struct */
1943	if (btf->nr_types == 0)
1944		return libbpf_err(-EINVAL);
1945	t = btf_last_type(btf);
1946	if (!btf_is_composite(t))
1947		return libbpf_err(-EINVAL);
1948
1949	if (validate_type_id(type_id))
1950		return libbpf_err(-EINVAL);
1951	/* best-effort bit field offset/size enforcement */
1952	is_bitfield = bit_size || (bit_offset % 8 != 0);
1953	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
1954		return libbpf_err(-EINVAL);
1955
1956	/* only offset 0 is allowed for unions */
1957	if (btf_is_union(t) && bit_offset)
1958		return libbpf_err(-EINVAL);
1959
1960	/* decompose and invalidate raw data */
1961	if (btf_ensure_modifiable(btf))
1962		return libbpf_err(-ENOMEM);
1963
1964	sz = sizeof(struct btf_member);
1965	m = btf_add_type_mem(btf, sz);
1966	if (!m)
1967		return libbpf_err(-ENOMEM);
1968
1969	if (name && name[0]) {
1970		name_off = btf__add_str(btf, name);
1971		if (name_off < 0)
1972			return name_off;
1973	}
1974
1975	m->name_off = name_off;
1976	m->type = type_id;
1977	m->offset = bit_offset | (bit_size << 24);
1978
1979	/* btf_add_type_mem can invalidate t pointer */
1980	t = btf_last_type(btf);
1981	/* update parent type's vlen and kflag */
1982	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
1983
1984	btf->hdr->type_len += sz;
1985	btf->hdr->str_off += sz;
1986	return 0;
1987}
1988
1989/*
1990 * Append new BTF_KIND_ENUM type with:
1991 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
1992 *   - *byte_sz* - size of the enum, in bytes.
1993 *
1994 * Enum initially has no enum values in it (and corresponds to enum forward
1995 * declaration). Enumerator values can be added by btf__add_enum_value()
1996 * immediately after btf__add_enum() succeeds.
1997 *
1998 * Returns:
1999 *   - >0, type ID of newly added BTF type;
2000 *   - <0, on error.
2001 */
2002int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2003{
2004	struct btf_type *t;
2005	int sz, name_off = 0;
2006
2007	/* byte_sz must be power of 2 */
2008	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2009		return libbpf_err(-EINVAL);
2010
2011	if (btf_ensure_modifiable(btf))
2012		return libbpf_err(-ENOMEM);
2013
2014	sz = sizeof(struct btf_type);
2015	t = btf_add_type_mem(btf, sz);
2016	if (!t)
2017		return libbpf_err(-ENOMEM);
2018
2019	if (name && name[0]) {
2020		name_off = btf__add_str(btf, name);
2021		if (name_off < 0)
2022			return name_off;
2023	}
2024
2025	/* start out with vlen=0; it will be adjusted when adding enum values */
2026	t->name_off = name_off;
2027	t->info = btf_type_info(BTF_KIND_ENUM, 0, 0);
2028	t->size = byte_sz;
2029
2030	return btf_commit_type(btf, sz);
2031}
2032
2033/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2034 * Append new enum value for the current ENUM type with:
2035 *   - *name* - name of the enumerator value, can't be NULL or empty;
2036 *   - *value* - integer value corresponding to enum value *name*;
2037 * Returns:
2038 *   -  0, on success;
2039 *   - <0, on error.
2040 */
2041int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2042{
2043	struct btf_type *t;
2044	struct btf_enum *v;
2045	int sz, name_off;
2046
2047	/* last type should be BTF_KIND_ENUM */
2048	if (btf->nr_types == 0)
2049		return libbpf_err(-EINVAL);
2050	t = btf_last_type(btf);
2051	if (!btf_is_enum(t))
2052		return libbpf_err(-EINVAL);
2053
2054	/* non-empty name */
2055	if (!name || !name[0])
2056		return libbpf_err(-EINVAL);
2057	if (value < INT_MIN || value > UINT_MAX)
2058		return libbpf_err(-E2BIG);
2059
2060	/* decompose and invalidate raw data */
2061	if (btf_ensure_modifiable(btf))
2062		return libbpf_err(-ENOMEM);
2063
2064	sz = sizeof(struct btf_enum);
2065	v = btf_add_type_mem(btf, sz);
2066	if (!v)
2067		return libbpf_err(-ENOMEM);
2068
2069	name_off = btf__add_str(btf, name);
2070	if (name_off < 0)
2071		return name_off;
2072
2073	v->name_off = name_off;
2074	v->val = value;
2075
2076	/* update parent type's vlen */
2077	t = btf_last_type(btf);
2078	btf_type_inc_vlen(t);
2079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2080	btf->hdr->type_len += sz;
2081	btf->hdr->str_off += sz;
2082	return 0;
2083}
2084
2085/*
2086 * Append new BTF_KIND_FWD type with:
2087 *   - *name*, non-empty/non-NULL name;
2088 *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2089 *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2090 * Returns:
2091 *   - >0, type ID of newly added BTF type;
2092 *   - <0, on error.
2093 */
2094int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2095{
2096	if (!name || !name[0])
2097		return libbpf_err(-EINVAL);
2098
2099	switch (fwd_kind) {
2100	case BTF_FWD_STRUCT:
2101	case BTF_FWD_UNION: {
2102		struct btf_type *t;
2103		int id;
2104
2105		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2106		if (id <= 0)
2107			return id;
2108		t = btf_type_by_id(btf, id);
2109		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2110		return id;
2111	}
2112	case BTF_FWD_ENUM:
2113		/* enum forward in BTF currently is just an enum with no enum
2114		 * values; we also assume a standard 4-byte size for it
2115		 */
2116		return btf__add_enum(btf, name, sizeof(int));
2117	default:
2118		return libbpf_err(-EINVAL);
2119	}
2120}
2121
2122/*
2123 * Append new BTF_KING_TYPEDEF type with:
2124 *   - *name*, non-empty/non-NULL name;
2125 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2126 * Returns:
2127 *   - >0, type ID of newly added BTF type;
2128 *   - <0, on error.
2129 */
2130int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2131{
2132	if (!name || !name[0])
2133		return libbpf_err(-EINVAL);
2134
2135	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2136}
2137
2138/*
2139 * Append new BTF_KIND_VOLATILE type with:
2140 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2141 * Returns:
2142 *   - >0, type ID of newly added BTF type;
2143 *   - <0, on error.
2144 */
2145int btf__add_volatile(struct btf *btf, int ref_type_id)
2146{
2147	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2148}
2149
2150/*
2151 * Append new BTF_KIND_CONST type with:
2152 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2153 * Returns:
2154 *   - >0, type ID of newly added BTF type;
2155 *   - <0, on error.
2156 */
2157int btf__add_const(struct btf *btf, int ref_type_id)
2158{
2159	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2160}
2161
2162/*
2163 * Append new BTF_KIND_RESTRICT type with:
2164 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2165 * Returns:
2166 *   - >0, type ID of newly added BTF type;
2167 *   - <0, on error.
2168 */
2169int btf__add_restrict(struct btf *btf, int ref_type_id)
2170{
2171	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2172}
2173
2174/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2175 * Append new BTF_KIND_FUNC type with:
2176 *   - *name*, non-empty/non-NULL name;
2177 *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2178 * Returns:
2179 *   - >0, type ID of newly added BTF type;
2180 *   - <0, on error.
2181 */
2182int btf__add_func(struct btf *btf, const char *name,
2183		  enum btf_func_linkage linkage, int proto_type_id)
2184{
2185	int id;
2186
2187	if (!name || !name[0])
2188		return libbpf_err(-EINVAL);
2189	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2190	    linkage != BTF_FUNC_EXTERN)
2191		return libbpf_err(-EINVAL);
2192
2193	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2194	if (id > 0) {
2195		struct btf_type *t = btf_type_by_id(btf, id);
2196
2197		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2198	}
2199	return libbpf_err(id);
2200}
2201
2202/*
2203 * Append new BTF_KIND_FUNC_PROTO with:
2204 *   - *ret_type_id* - type ID for return result of a function.
2205 *
2206 * Function prototype initially has no arguments, but they can be added by
2207 * btf__add_func_param() one by one, immediately after
2208 * btf__add_func_proto() succeeded.
2209 *
2210 * Returns:
2211 *   - >0, type ID of newly added BTF type;
2212 *   - <0, on error.
2213 */
2214int btf__add_func_proto(struct btf *btf, int ret_type_id)
2215{
2216	struct btf_type *t;
2217	int sz;
2218
2219	if (validate_type_id(ret_type_id))
2220		return libbpf_err(-EINVAL);
2221
2222	if (btf_ensure_modifiable(btf))
2223		return libbpf_err(-ENOMEM);
2224
2225	sz = sizeof(struct btf_type);
2226	t = btf_add_type_mem(btf, sz);
2227	if (!t)
2228		return libbpf_err(-ENOMEM);
2229
2230	/* start out with vlen=0; this will be adjusted when adding enum
2231	 * values, if necessary
2232	 */
2233	t->name_off = 0;
2234	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2235	t->type = ret_type_id;
2236
2237	return btf_commit_type(btf, sz);
2238}
2239
2240/*
2241 * Append new function parameter for current FUNC_PROTO type with:
2242 *   - *name* - parameter name, can be NULL or empty;
2243 *   - *type_id* - type ID describing the type of the parameter.
2244 * Returns:
2245 *   -  0, on success;
2246 *   - <0, on error.
2247 */
2248int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2249{
2250	struct btf_type *t;
2251	struct btf_param *p;
2252	int sz, name_off = 0;
2253
2254	if (validate_type_id(type_id))
2255		return libbpf_err(-EINVAL);
2256
2257	/* last type should be BTF_KIND_FUNC_PROTO */
2258	if (btf->nr_types == 0)
2259		return libbpf_err(-EINVAL);
2260	t = btf_last_type(btf);
2261	if (!btf_is_func_proto(t))
2262		return libbpf_err(-EINVAL);
2263
2264	/* decompose and invalidate raw data */
2265	if (btf_ensure_modifiable(btf))
2266		return libbpf_err(-ENOMEM);
2267
2268	sz = sizeof(struct btf_param);
2269	p = btf_add_type_mem(btf, sz);
2270	if (!p)
2271		return libbpf_err(-ENOMEM);
2272
2273	if (name && name[0]) {
2274		name_off = btf__add_str(btf, name);
2275		if (name_off < 0)
2276			return name_off;
2277	}
2278
2279	p->name_off = name_off;
2280	p->type = type_id;
2281
2282	/* update parent type's vlen */
2283	t = btf_last_type(btf);
2284	btf_type_inc_vlen(t);
2285
2286	btf->hdr->type_len += sz;
2287	btf->hdr->str_off += sz;
2288	return 0;
2289}
2290
2291/*
2292 * Append new BTF_KIND_VAR type with:
2293 *   - *name* - non-empty/non-NULL name;
2294 *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2295 *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2296 *   - *type_id* - type ID of the type describing the type of the variable.
2297 * Returns:
2298 *   - >0, type ID of newly added BTF type;
2299 *   - <0, on error.
2300 */
2301int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2302{
2303	struct btf_type *t;
2304	struct btf_var *v;
2305	int sz, name_off;
2306
2307	/* non-empty name */
2308	if (!name || !name[0])
2309		return libbpf_err(-EINVAL);
2310	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2311	    linkage != BTF_VAR_GLOBAL_EXTERN)
2312		return libbpf_err(-EINVAL);
2313	if (validate_type_id(type_id))
2314		return libbpf_err(-EINVAL);
2315
2316	/* deconstruct BTF, if necessary, and invalidate raw_data */
2317	if (btf_ensure_modifiable(btf))
2318		return libbpf_err(-ENOMEM);
2319
2320	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2321	t = btf_add_type_mem(btf, sz);
2322	if (!t)
2323		return libbpf_err(-ENOMEM);
2324
2325	name_off = btf__add_str(btf, name);
2326	if (name_off < 0)
2327		return name_off;
2328
2329	t->name_off = name_off;
2330	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2331	t->type = type_id;
2332
2333	v = btf_var(t);
2334	v->linkage = linkage;
2335
2336	return btf_commit_type(btf, sz);
2337}
2338
2339/*
2340 * Append new BTF_KIND_DATASEC type with:
2341 *   - *name* - non-empty/non-NULL name;
2342 *   - *byte_sz* - data section size, in bytes.
2343 *
2344 * Data section is initially empty. Variables info can be added with
2345 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2346 *
2347 * Returns:
2348 *   - >0, type ID of newly added BTF type;
2349 *   - <0, on error.
2350 */
2351int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2352{
2353	struct btf_type *t;
2354	int sz, name_off;
2355
2356	/* non-empty name */
2357	if (!name || !name[0])
2358		return libbpf_err(-EINVAL);
2359
2360	if (btf_ensure_modifiable(btf))
2361		return libbpf_err(-ENOMEM);
2362
2363	sz = sizeof(struct btf_type);
2364	t = btf_add_type_mem(btf, sz);
2365	if (!t)
2366		return libbpf_err(-ENOMEM);
2367
2368	name_off = btf__add_str(btf, name);
2369	if (name_off < 0)
2370		return name_off;
2371
2372	/* start with vlen=0, which will be update as var_secinfos are added */
2373	t->name_off = name_off;
2374	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2375	t->size = byte_sz;
2376
2377	return btf_commit_type(btf, sz);
2378}
2379
2380/*
2381 * Append new data section variable information entry for current DATASEC type:
2382 *   - *var_type_id* - type ID, describing type of the variable;
2383 *   - *offset* - variable offset within data section, in bytes;
2384 *   - *byte_sz* - variable size, in bytes.
2385 *
2386 * Returns:
2387 *   -  0, on success;
2388 *   - <0, on error.
2389 */
2390int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2391{
2392	struct btf_type *t;
2393	struct btf_var_secinfo *v;
2394	int sz;
2395
2396	/* last type should be BTF_KIND_DATASEC */
2397	if (btf->nr_types == 0)
2398		return libbpf_err(-EINVAL);
2399	t = btf_last_type(btf);
2400	if (!btf_is_datasec(t))
2401		return libbpf_err(-EINVAL);
2402
2403	if (validate_type_id(var_type_id))
2404		return libbpf_err(-EINVAL);
2405
2406	/* decompose and invalidate raw data */
2407	if (btf_ensure_modifiable(btf))
2408		return libbpf_err(-ENOMEM);
2409
2410	sz = sizeof(struct btf_var_secinfo);
2411	v = btf_add_type_mem(btf, sz);
2412	if (!v)
2413		return libbpf_err(-ENOMEM);
2414
2415	v->type = var_type_id;
2416	v->offset = offset;
2417	v->size = byte_sz;
2418
2419	/* update parent type's vlen */
2420	t = btf_last_type(btf);
2421	btf_type_inc_vlen(t);
2422
2423	btf->hdr->type_len += sz;
2424	btf->hdr->str_off += sz;
2425	return 0;
2426}
2427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2428struct btf_ext_sec_setup_param {
2429	__u32 off;
2430	__u32 len;
2431	__u32 min_rec_size;
2432	struct btf_ext_info *ext_info;
2433	const char *desc;
2434};
2435
2436static int btf_ext_setup_info(struct btf_ext *btf_ext,
2437			      struct btf_ext_sec_setup_param *ext_sec)
2438{
2439	const struct btf_ext_info_sec *sinfo;
2440	struct btf_ext_info *ext_info;
2441	__u32 info_left, record_size;
 
2442	/* The start of the info sec (including the __u32 record_size). */
2443	void *info;
2444
2445	if (ext_sec->len == 0)
2446		return 0;
2447
2448	if (ext_sec->off & 0x03) {
2449		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2450		     ext_sec->desc);
2451		return -EINVAL;
2452	}
2453
2454	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2455	info_left = ext_sec->len;
2456
2457	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2458		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2459			 ext_sec->desc, ext_sec->off, ext_sec->len);
2460		return -EINVAL;
2461	}
2462
2463	/* At least a record size */
2464	if (info_left < sizeof(__u32)) {
2465		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2466		return -EINVAL;
2467	}
2468
2469	/* The record size needs to meet the minimum standard */
2470	record_size = *(__u32 *)info;
2471	if (record_size < ext_sec->min_rec_size ||
2472	    record_size & 0x03) {
2473		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2474			 ext_sec->desc, record_size);
2475		return -EINVAL;
2476	}
2477
2478	sinfo = info + sizeof(__u32);
2479	info_left -= sizeof(__u32);
2480
2481	/* If no records, return failure now so .BTF.ext won't be used. */
2482	if (!info_left) {
2483		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2484		return -EINVAL;
2485	}
2486
2487	while (info_left) {
2488		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2489		__u64 total_record_size;
2490		__u32 num_records;
2491
2492		if (info_left < sec_hdrlen) {
2493			pr_debug("%s section header is not found in .BTF.ext\n",
2494			     ext_sec->desc);
2495			return -EINVAL;
2496		}
2497
2498		num_records = sinfo->num_info;
2499		if (num_records == 0) {
2500			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2501			     ext_sec->desc);
2502			return -EINVAL;
2503		}
2504
2505		total_record_size = sec_hdrlen +
2506				    (__u64)num_records * record_size;
2507		if (info_left < total_record_size) {
2508			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2509			     ext_sec->desc);
2510			return -EINVAL;
2511		}
2512
2513		info_left -= total_record_size;
2514		sinfo = (void *)sinfo + total_record_size;
 
2515	}
2516
2517	ext_info = ext_sec->ext_info;
2518	ext_info->len = ext_sec->len - sizeof(__u32);
2519	ext_info->rec_size = record_size;
2520	ext_info->info = info + sizeof(__u32);
 
2521
2522	return 0;
2523}
2524
2525static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2526{
2527	struct btf_ext_sec_setup_param param = {
2528		.off = btf_ext->hdr->func_info_off,
2529		.len = btf_ext->hdr->func_info_len,
2530		.min_rec_size = sizeof(struct bpf_func_info_min),
2531		.ext_info = &btf_ext->func_info,
2532		.desc = "func_info"
2533	};
2534
2535	return btf_ext_setup_info(btf_ext, &param);
2536}
2537
2538static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2539{
2540	struct btf_ext_sec_setup_param param = {
2541		.off = btf_ext->hdr->line_info_off,
2542		.len = btf_ext->hdr->line_info_len,
2543		.min_rec_size = sizeof(struct bpf_line_info_min),
2544		.ext_info = &btf_ext->line_info,
2545		.desc = "line_info",
2546	};
2547
2548	return btf_ext_setup_info(btf_ext, &param);
2549}
2550
2551static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2552{
2553	struct btf_ext_sec_setup_param param = {
2554		.off = btf_ext->hdr->core_relo_off,
2555		.len = btf_ext->hdr->core_relo_len,
2556		.min_rec_size = sizeof(struct bpf_core_relo),
2557		.ext_info = &btf_ext->core_relo_info,
2558		.desc = "core_relo",
2559	};
2560
2561	return btf_ext_setup_info(btf_ext, &param);
2562}
2563
2564static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2565{
2566	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2567
2568	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2569	    data_size < hdr->hdr_len) {
2570		pr_debug("BTF.ext header not found");
2571		return -EINVAL;
2572	}
2573
2574	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2575		pr_warn("BTF.ext in non-native endianness is not supported\n");
2576		return -ENOTSUP;
2577	} else if (hdr->magic != BTF_MAGIC) {
2578		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2579		return -EINVAL;
2580	}
2581
2582	if (hdr->version != BTF_VERSION) {
2583		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2584		return -ENOTSUP;
2585	}
2586
2587	if (hdr->flags) {
2588		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2589		return -ENOTSUP;
2590	}
2591
2592	if (data_size == hdr->hdr_len) {
2593		pr_debug("BTF.ext has no data\n");
2594		return -EINVAL;
2595	}
2596
2597	return 0;
2598}
2599
2600void btf_ext__free(struct btf_ext *btf_ext)
2601{
2602	if (IS_ERR_OR_NULL(btf_ext))
2603		return;
 
 
 
2604	free(btf_ext->data);
2605	free(btf_ext);
2606}
2607
2608struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
2609{
2610	struct btf_ext *btf_ext;
2611	int err;
2612
2613	err = btf_ext_parse_hdr(data, size);
2614	if (err)
2615		return libbpf_err_ptr(err);
2616
2617	btf_ext = calloc(1, sizeof(struct btf_ext));
2618	if (!btf_ext)
2619		return libbpf_err_ptr(-ENOMEM);
2620
2621	btf_ext->data_size = size;
2622	btf_ext->data = malloc(size);
2623	if (!btf_ext->data) {
2624		err = -ENOMEM;
2625		goto done;
2626	}
2627	memcpy(btf_ext->data, data, size);
2628
 
 
 
 
2629	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
2630		err = -EINVAL;
2631		goto done;
2632	}
2633
2634	err = btf_ext_setup_func_info(btf_ext);
2635	if (err)
2636		goto done;
2637
2638	err = btf_ext_setup_line_info(btf_ext);
2639	if (err)
2640		goto done;
2641
2642	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) {
2643		err = -EINVAL;
2644		goto done;
2645	}
2646
2647	err = btf_ext_setup_core_relos(btf_ext);
2648	if (err)
2649		goto done;
2650
2651done:
2652	if (err) {
2653		btf_ext__free(btf_ext);
2654		return libbpf_err_ptr(err);
2655	}
2656
2657	return btf_ext;
2658}
2659
2660const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2661{
2662	*size = btf_ext->data_size;
2663	return btf_ext->data;
2664}
2665
2666static int btf_ext_reloc_info(const struct btf *btf,
2667			      const struct btf_ext_info *ext_info,
2668			      const char *sec_name, __u32 insns_cnt,
2669			      void **info, __u32 *cnt)
2670{
2671	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
2672	__u32 i, record_size, existing_len, records_len;
2673	struct btf_ext_info_sec *sinfo;
2674	const char *info_sec_name;
2675	__u64 remain_len;
2676	void *data;
2677
2678	record_size = ext_info->rec_size;
2679	sinfo = ext_info->info;
2680	remain_len = ext_info->len;
2681	while (remain_len > 0) {
2682		records_len = sinfo->num_info * record_size;
2683		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
2684		if (strcmp(info_sec_name, sec_name)) {
2685			remain_len -= sec_hdrlen + records_len;
2686			sinfo = (void *)sinfo + sec_hdrlen + records_len;
2687			continue;
2688		}
2689
2690		existing_len = (*cnt) * record_size;
2691		data = realloc(*info, existing_len + records_len);
2692		if (!data)
2693			return libbpf_err(-ENOMEM);
2694
2695		memcpy(data + existing_len, sinfo->data, records_len);
2696		/* adjust insn_off only, the rest data will be passed
2697		 * to the kernel.
2698		 */
2699		for (i = 0; i < sinfo->num_info; i++) {
2700			__u32 *insn_off;
2701
2702			insn_off = data + existing_len + (i * record_size);
2703			*insn_off = *insn_off / sizeof(struct bpf_insn) + insns_cnt;
2704		}
2705		*info = data;
2706		*cnt += sinfo->num_info;
2707		return 0;
2708	}
2709
2710	return libbpf_err(-ENOENT);
2711}
2712
2713int btf_ext__reloc_func_info(const struct btf *btf,
2714			     const struct btf_ext *btf_ext,
2715			     const char *sec_name, __u32 insns_cnt,
2716			     void **func_info, __u32 *cnt)
2717{
2718	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
2719				  insns_cnt, func_info, cnt);
2720}
2721
2722int btf_ext__reloc_line_info(const struct btf *btf,
2723			     const struct btf_ext *btf_ext,
2724			     const char *sec_name, __u32 insns_cnt,
2725			     void **line_info, __u32 *cnt)
2726{
2727	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
2728				  insns_cnt, line_info, cnt);
2729}
2730
2731__u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
2732{
2733	return btf_ext->func_info.rec_size;
2734}
2735
2736__u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
2737{
2738	return btf_ext->line_info.rec_size;
2739}
2740
2741struct btf_dedup;
2742
2743static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
2744				       const struct btf_dedup_opts *opts);
2745static void btf_dedup_free(struct btf_dedup *d);
2746static int btf_dedup_prep(struct btf_dedup *d);
2747static int btf_dedup_strings(struct btf_dedup *d);
2748static int btf_dedup_prim_types(struct btf_dedup *d);
2749static int btf_dedup_struct_types(struct btf_dedup *d);
2750static int btf_dedup_ref_types(struct btf_dedup *d);
 
2751static int btf_dedup_compact_types(struct btf_dedup *d);
2752static int btf_dedup_remap_types(struct btf_dedup *d);
2753
2754/*
2755 * Deduplicate BTF types and strings.
2756 *
2757 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2758 * section with all BTF type descriptors and string data. It overwrites that
2759 * memory in-place with deduplicated types and strings without any loss of
2760 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2761 * is provided, all the strings referenced from .BTF.ext section are honored
2762 * and updated to point to the right offsets after deduplication.
2763 *
2764 * If function returns with error, type/string data might be garbled and should
2765 * be discarded.
2766 *
2767 * More verbose and detailed description of both problem btf_dedup is solving,
2768 * as well as solution could be found at:
2769 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2770 *
2771 * Problem description and justification
2772 * =====================================
2773 *
2774 * BTF type information is typically emitted either as a result of conversion
2775 * from DWARF to BTF or directly by compiler. In both cases, each compilation
2776 * unit contains information about a subset of all the types that are used
2777 * in an application. These subsets are frequently overlapping and contain a lot
2778 * of duplicated information when later concatenated together into a single
2779 * binary. This algorithm ensures that each unique type is represented by single
2780 * BTF type descriptor, greatly reducing resulting size of BTF data.
2781 *
2782 * Compilation unit isolation and subsequent duplication of data is not the only
2783 * problem. The same type hierarchy (e.g., struct and all the type that struct
2784 * references) in different compilation units can be represented in BTF to
2785 * various degrees of completeness (or, rather, incompleteness) due to
2786 * struct/union forward declarations.
2787 *
2788 * Let's take a look at an example, that we'll use to better understand the
2789 * problem (and solution). Suppose we have two compilation units, each using
2790 * same `struct S`, but each of them having incomplete type information about
2791 * struct's fields:
2792 *
2793 * // CU #1:
2794 * struct S;
2795 * struct A {
2796 *	int a;
2797 *	struct A* self;
2798 *	struct S* parent;
2799 * };
2800 * struct B;
2801 * struct S {
2802 *	struct A* a_ptr;
2803 *	struct B* b_ptr;
2804 * };
2805 *
2806 * // CU #2:
2807 * struct S;
2808 * struct A;
2809 * struct B {
2810 *	int b;
2811 *	struct B* self;
2812 *	struct S* parent;
2813 * };
2814 * struct S {
2815 *	struct A* a_ptr;
2816 *	struct B* b_ptr;
2817 * };
2818 *
2819 * In case of CU #1, BTF data will know only that `struct B` exist (but no
2820 * more), but will know the complete type information about `struct A`. While
2821 * for CU #2, it will know full type information about `struct B`, but will
2822 * only know about forward declaration of `struct A` (in BTF terms, it will
2823 * have `BTF_KIND_FWD` type descriptor with name `B`).
2824 *
2825 * This compilation unit isolation means that it's possible that there is no
2826 * single CU with complete type information describing structs `S`, `A`, and
2827 * `B`. Also, we might get tons of duplicated and redundant type information.
2828 *
2829 * Additional complication we need to keep in mind comes from the fact that
2830 * types, in general, can form graphs containing cycles, not just DAGs.
2831 *
2832 * While algorithm does deduplication, it also merges and resolves type
2833 * information (unless disabled throught `struct btf_opts`), whenever possible.
2834 * E.g., in the example above with two compilation units having partial type
2835 * information for structs `A` and `B`, the output of algorithm will emit
2836 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2837 * (as well as type information for `int` and pointers), as if they were defined
2838 * in a single compilation unit as:
2839 *
2840 * struct A {
2841 *	int a;
2842 *	struct A* self;
2843 *	struct S* parent;
2844 * };
2845 * struct B {
2846 *	int b;
2847 *	struct B* self;
2848 *	struct S* parent;
2849 * };
2850 * struct S {
2851 *	struct A* a_ptr;
2852 *	struct B* b_ptr;
2853 * };
2854 *
2855 * Algorithm summary
2856 * =================
2857 *
2858 * Algorithm completes its work in 6 separate passes:
2859 *
2860 * 1. Strings deduplication.
2861 * 2. Primitive types deduplication (int, enum, fwd).
2862 * 3. Struct/union types deduplication.
2863 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
 
2864 *    protos, and const/volatile/restrict modifiers).
2865 * 5. Types compaction.
2866 * 6. Types remapping.
2867 *
2868 * Algorithm determines canonical type descriptor, which is a single
2869 * representative type for each truly unique type. This canonical type is the
2870 * one that will go into final deduplicated BTF type information. For
2871 * struct/unions, it is also the type that algorithm will merge additional type
2872 * information into (while resolving FWDs), as it discovers it from data in
2873 * other CUs. Each input BTF type eventually gets either mapped to itself, if
2874 * that type is canonical, or to some other type, if that type is equivalent
2875 * and was chosen as canonical representative. This mapping is stored in
2876 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
2877 * FWD type got resolved to.
2878 *
2879 * To facilitate fast discovery of canonical types, we also maintain canonical
2880 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
2881 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
2882 * that match that signature. With sufficiently good choice of type signature
2883 * hashing function, we can limit number of canonical types for each unique type
2884 * signature to a very small number, allowing to find canonical type for any
2885 * duplicated type very quickly.
2886 *
2887 * Struct/union deduplication is the most critical part and algorithm for
2888 * deduplicating structs/unions is described in greater details in comments for
2889 * `btf_dedup_is_equiv` function.
2890 */
2891int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
2892	       const struct btf_dedup_opts *opts)
2893{
2894	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
2895	int err;
2896
 
 
 
 
2897	if (IS_ERR(d)) {
2898		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
2899		return libbpf_err(-EINVAL);
2900	}
2901
2902	if (btf_ensure_modifiable(btf))
2903		return libbpf_err(-ENOMEM);
 
 
2904
2905	err = btf_dedup_prep(d);
2906	if (err) {
2907		pr_debug("btf_dedup_prep failed:%d\n", err);
2908		goto done;
2909	}
2910	err = btf_dedup_strings(d);
2911	if (err < 0) {
2912		pr_debug("btf_dedup_strings failed:%d\n", err);
2913		goto done;
2914	}
2915	err = btf_dedup_prim_types(d);
2916	if (err < 0) {
2917		pr_debug("btf_dedup_prim_types failed:%d\n", err);
2918		goto done;
2919	}
2920	err = btf_dedup_struct_types(d);
2921	if (err < 0) {
2922		pr_debug("btf_dedup_struct_types failed:%d\n", err);
2923		goto done;
2924	}
 
 
 
 
 
2925	err = btf_dedup_ref_types(d);
2926	if (err < 0) {
2927		pr_debug("btf_dedup_ref_types failed:%d\n", err);
2928		goto done;
2929	}
2930	err = btf_dedup_compact_types(d);
2931	if (err < 0) {
2932		pr_debug("btf_dedup_compact_types failed:%d\n", err);
2933		goto done;
2934	}
2935	err = btf_dedup_remap_types(d);
2936	if (err < 0) {
2937		pr_debug("btf_dedup_remap_types failed:%d\n", err);
2938		goto done;
2939	}
2940
2941done:
2942	btf_dedup_free(d);
2943	return libbpf_err(err);
2944}
2945
2946#define BTF_UNPROCESSED_ID ((__u32)-1)
2947#define BTF_IN_PROGRESS_ID ((__u32)-2)
2948
2949struct btf_dedup {
2950	/* .BTF section to be deduped in-place */
2951	struct btf *btf;
2952	/*
2953	 * Optional .BTF.ext section. When provided, any strings referenced
2954	 * from it will be taken into account when deduping strings
2955	 */
2956	struct btf_ext *btf_ext;
2957	/*
2958	 * This is a map from any type's signature hash to a list of possible
2959	 * canonical representative type candidates. Hash collisions are
2960	 * ignored, so even types of various kinds can share same list of
2961	 * candidates, which is fine because we rely on subsequent
2962	 * btf_xxx_equal() checks to authoritatively verify type equality.
2963	 */
2964	struct hashmap *dedup_table;
2965	/* Canonical types map */
2966	__u32 *map;
2967	/* Hypothetical mapping, used during type graph equivalence checks */
2968	__u32 *hypot_map;
2969	__u32 *hypot_list;
2970	size_t hypot_cnt;
2971	size_t hypot_cap;
2972	/* Whether hypothetical mapping, if successful, would need to adjust
2973	 * already canonicalized types (due to a new forward declaration to
2974	 * concrete type resolution). In such case, during split BTF dedup
2975	 * candidate type would still be considered as different, because base
2976	 * BTF is considered to be immutable.
2977	 */
2978	bool hypot_adjust_canon;
2979	/* Various option modifying behavior of algorithm */
2980	struct btf_dedup_opts opts;
2981	/* temporary strings deduplication state */
2982	struct strset *strs_set;
2983};
2984
2985static long hash_combine(long h, long value)
2986{
2987	return h * 31 + value;
2988}
2989
2990#define for_each_dedup_cand(d, node, hash) \
2991	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
2992
2993static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
2994{
2995	return hashmap__append(d->dedup_table,
2996			       (void *)hash, (void *)(long)type_id);
2997}
2998
2999static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3000				   __u32 from_id, __u32 to_id)
3001{
3002	if (d->hypot_cnt == d->hypot_cap) {
3003		__u32 *new_list;
3004
3005		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3006		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3007		if (!new_list)
3008			return -ENOMEM;
3009		d->hypot_list = new_list;
3010	}
3011	d->hypot_list[d->hypot_cnt++] = from_id;
3012	d->hypot_map[from_id] = to_id;
3013	return 0;
3014}
3015
3016static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3017{
3018	int i;
3019
3020	for (i = 0; i < d->hypot_cnt; i++)
3021		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3022	d->hypot_cnt = 0;
3023	d->hypot_adjust_canon = false;
3024}
3025
3026static void btf_dedup_free(struct btf_dedup *d)
3027{
3028	hashmap__free(d->dedup_table);
3029	d->dedup_table = NULL;
3030
3031	free(d->map);
3032	d->map = NULL;
3033
3034	free(d->hypot_map);
3035	d->hypot_map = NULL;
3036
3037	free(d->hypot_list);
3038	d->hypot_list = NULL;
3039
3040	free(d);
3041}
3042
3043static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
3044{
3045	return (size_t)key;
3046}
3047
3048static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
3049{
3050	return 0;
3051}
3052
3053static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
3054{
3055	return k1 == k2;
3056}
3057
3058static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
3059				       const struct btf_dedup_opts *opts)
3060{
3061	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3062	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3063	int i, err = 0, type_cnt;
3064
3065	if (!d)
3066		return ERR_PTR(-ENOMEM);
3067
3068	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
3069	/* dedup_table_size is now used only to force collisions in tests */
3070	if (opts && opts->dedup_table_size == 1)
3071		hash_fn = btf_dedup_collision_hash_fn;
3072
3073	d->btf = btf;
3074	d->btf_ext = btf_ext;
3075
3076	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3077	if (IS_ERR(d->dedup_table)) {
3078		err = PTR_ERR(d->dedup_table);
3079		d->dedup_table = NULL;
3080		goto done;
3081	}
3082
3083	type_cnt = btf__get_nr_types(btf) + 1;
3084	d->map = malloc(sizeof(__u32) * type_cnt);
3085	if (!d->map) {
3086		err = -ENOMEM;
3087		goto done;
3088	}
3089	/* special BTF "void" type is made canonical immediately */
3090	d->map[0] = 0;
3091	for (i = 1; i < type_cnt; i++) {
3092		struct btf_type *t = btf_type_by_id(d->btf, i);
3093
3094		/* VAR and DATASEC are never deduped and are self-canonical */
3095		if (btf_is_var(t) || btf_is_datasec(t))
3096			d->map[i] = i;
3097		else
3098			d->map[i] = BTF_UNPROCESSED_ID;
3099	}
3100
3101	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3102	if (!d->hypot_map) {
3103		err = -ENOMEM;
3104		goto done;
3105	}
3106	for (i = 0; i < type_cnt; i++)
3107		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3108
3109done:
3110	if (err) {
3111		btf_dedup_free(d);
3112		return ERR_PTR(err);
3113	}
3114
3115	return d;
3116}
3117
3118/*
3119 * Iterate over all possible places in .BTF and .BTF.ext that can reference
3120 * string and pass pointer to it to a provided callback `fn`.
3121 */
3122static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3123{
3124	int i, r;
3125
3126	for (i = 0; i < d->btf->nr_types; i++) {
3127		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3128
3129		r = btf_type_visit_str_offs(t, fn, ctx);
3130		if (r)
3131			return r;
3132	}
3133
3134	if (!d->btf_ext)
3135		return 0;
3136
3137	r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3138	if (r)
3139		return r;
3140
3141	return 0;
3142}
3143
3144static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3145{
3146	struct btf_dedup *d = ctx;
3147	__u32 str_off = *str_off_ptr;
3148	const char *s;
3149	int off, err;
3150
3151	/* don't touch empty string or string in main BTF */
3152	if (str_off == 0 || str_off < d->btf->start_str_off)
3153		return 0;
3154
3155	s = btf__str_by_offset(d->btf, str_off);
3156	if (d->btf->base_btf) {
3157		err = btf__find_str(d->btf->base_btf, s);
3158		if (err >= 0) {
3159			*str_off_ptr = err;
3160			return 0;
3161		}
3162		if (err != -ENOENT)
3163			return err;
3164	}
3165
3166	off = strset__add_str(d->strs_set, s);
3167	if (off < 0)
3168		return off;
3169
3170	*str_off_ptr = d->btf->start_str_off + off;
3171	return 0;
3172}
3173
3174/*
3175 * Dedup string and filter out those that are not referenced from either .BTF
3176 * or .BTF.ext (if provided) sections.
3177 *
3178 * This is done by building index of all strings in BTF's string section,
3179 * then iterating over all entities that can reference strings (e.g., type
3180 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3181 * strings as used. After that all used strings are deduped and compacted into
3182 * sequential blob of memory and new offsets are calculated. Then all the string
3183 * references are iterated again and rewritten using new offsets.
3184 */
3185static int btf_dedup_strings(struct btf_dedup *d)
3186{
3187	int err;
3188
3189	if (d->btf->strs_deduped)
3190		return 0;
3191
3192	d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3193	if (IS_ERR(d->strs_set)) {
3194		err = PTR_ERR(d->strs_set);
3195		goto err_out;
3196	}
3197
3198	if (!d->btf->base_btf) {
3199		/* insert empty string; we won't be looking it up during strings
3200		 * dedup, but it's good to have it for generic BTF string lookups
3201		 */
3202		err = strset__add_str(d->strs_set, "");
3203		if (err < 0)
3204			goto err_out;
3205	}
3206
3207	/* remap string offsets */
3208	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3209	if (err)
3210		goto err_out;
3211
3212	/* replace BTF string data and hash with deduped ones */
3213	strset__free(d->btf->strs_set);
3214	d->btf->hdr->str_len = strset__data_size(d->strs_set);
3215	d->btf->strs_set = d->strs_set;
3216	d->strs_set = NULL;
3217	d->btf->strs_deduped = true;
3218	return 0;
3219
3220err_out:
3221	strset__free(d->strs_set);
3222	d->strs_set = NULL;
3223
3224	return err;
3225}
3226
3227static long btf_hash_common(struct btf_type *t)
3228{
3229	long h;
3230
3231	h = hash_combine(0, t->name_off);
3232	h = hash_combine(h, t->info);
3233	h = hash_combine(h, t->size);
3234	return h;
3235}
3236
3237static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3238{
3239	return t1->name_off == t2->name_off &&
3240	       t1->info == t2->info &&
3241	       t1->size == t2->size;
3242}
3243
3244/* Calculate type signature hash of INT. */
3245static long btf_hash_int(struct btf_type *t)
3246{
3247	__u32 info = *(__u32 *)(t + 1);
3248	long h;
3249
3250	h = btf_hash_common(t);
3251	h = hash_combine(h, info);
3252	return h;
3253}
3254
3255/* Check structural equality of two INTs. */
3256static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
3257{
3258	__u32 info1, info2;
3259
3260	if (!btf_equal_common(t1, t2))
3261		return false;
3262	info1 = *(__u32 *)(t1 + 1);
3263	info2 = *(__u32 *)(t2 + 1);
3264	return info1 == info2;
3265}
3266
3267/* Calculate type signature hash of ENUM. */
3268static long btf_hash_enum(struct btf_type *t)
3269{
3270	long h;
3271
3272	/* don't hash vlen and enum members to support enum fwd resolving */
3273	h = hash_combine(0, t->name_off);
3274	h = hash_combine(h, t->info & ~0xffff);
3275	h = hash_combine(h, t->size);
3276	return h;
3277}
3278
3279/* Check structural equality of two ENUMs. */
3280static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3281{
3282	const struct btf_enum *m1, *m2;
3283	__u16 vlen;
3284	int i;
3285
3286	if (!btf_equal_common(t1, t2))
3287		return false;
3288
3289	vlen = btf_vlen(t1);
3290	m1 = btf_enum(t1);
3291	m2 = btf_enum(t2);
3292	for (i = 0; i < vlen; i++) {
3293		if (m1->name_off != m2->name_off || m1->val != m2->val)
3294			return false;
3295		m1++;
3296		m2++;
3297	}
3298	return true;
3299}
3300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3301static inline bool btf_is_enum_fwd(struct btf_type *t)
3302{
3303	return btf_is_enum(t) && btf_vlen(t) == 0;
3304}
3305
3306static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3307{
3308	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3309		return btf_equal_enum(t1, t2);
3310	/* ignore vlen when comparing */
 
 
 
 
 
3311	return t1->name_off == t2->name_off &&
3312	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3313	       t1->size == t2->size;
3314}
3315
3316/*
3317 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3318 * as referenced type IDs equivalence is established separately during type
3319 * graph equivalence check algorithm.
3320 */
3321static long btf_hash_struct(struct btf_type *t)
3322{
3323	const struct btf_member *member = btf_members(t);
3324	__u32 vlen = btf_vlen(t);
3325	long h = btf_hash_common(t);
3326	int i;
3327
3328	for (i = 0; i < vlen; i++) {
3329		h = hash_combine(h, member->name_off);
3330		h = hash_combine(h, member->offset);
3331		/* no hashing of referenced type ID, it can be unresolved yet */
3332		member++;
3333	}
3334	return h;
3335}
3336
3337/*
3338 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3339 * IDs. This check is performed during type graph equivalence check and
3340 * referenced types equivalence is checked separately.
3341 */
3342static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3343{
3344	const struct btf_member *m1, *m2;
3345	__u16 vlen;
3346	int i;
3347
3348	if (!btf_equal_common(t1, t2))
3349		return false;
3350
3351	vlen = btf_vlen(t1);
3352	m1 = btf_members(t1);
3353	m2 = btf_members(t2);
3354	for (i = 0; i < vlen; i++) {
3355		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3356			return false;
3357		m1++;
3358		m2++;
3359	}
3360	return true;
3361}
3362
3363/*
3364 * Calculate type signature hash of ARRAY, including referenced type IDs,
3365 * under assumption that they were already resolved to canonical type IDs and
3366 * are not going to change.
3367 */
3368static long btf_hash_array(struct btf_type *t)
3369{
3370	const struct btf_array *info = btf_array(t);
3371	long h = btf_hash_common(t);
3372
3373	h = hash_combine(h, info->type);
3374	h = hash_combine(h, info->index_type);
3375	h = hash_combine(h, info->nelems);
3376	return h;
3377}
3378
3379/*
3380 * Check exact equality of two ARRAYs, taking into account referenced
3381 * type IDs, under assumption that they were already resolved to canonical
3382 * type IDs and are not going to change.
3383 * This function is called during reference types deduplication to compare
3384 * ARRAY to potential canonical representative.
3385 */
3386static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3387{
3388	const struct btf_array *info1, *info2;
3389
3390	if (!btf_equal_common(t1, t2))
3391		return false;
3392
3393	info1 = btf_array(t1);
3394	info2 = btf_array(t2);
3395	return info1->type == info2->type &&
3396	       info1->index_type == info2->index_type &&
3397	       info1->nelems == info2->nelems;
3398}
3399
3400/*
3401 * Check structural compatibility of two ARRAYs, ignoring referenced type
3402 * IDs. This check is performed during type graph equivalence check and
3403 * referenced types equivalence is checked separately.
3404 */
3405static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3406{
3407	if (!btf_equal_common(t1, t2))
3408		return false;
3409
3410	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3411}
3412
3413/*
3414 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3415 * under assumption that they were already resolved to canonical type IDs and
3416 * are not going to change.
3417 */
3418static long btf_hash_fnproto(struct btf_type *t)
3419{
3420	const struct btf_param *member = btf_params(t);
3421	__u16 vlen = btf_vlen(t);
3422	long h = btf_hash_common(t);
3423	int i;
3424
3425	for (i = 0; i < vlen; i++) {
3426		h = hash_combine(h, member->name_off);
3427		h = hash_combine(h, member->type);
3428		member++;
3429	}
3430	return h;
3431}
3432
3433/*
3434 * Check exact equality of two FUNC_PROTOs, taking into account referenced
3435 * type IDs, under assumption that they were already resolved to canonical
3436 * type IDs and are not going to change.
3437 * This function is called during reference types deduplication to compare
3438 * FUNC_PROTO to potential canonical representative.
3439 */
3440static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3441{
3442	const struct btf_param *m1, *m2;
3443	__u16 vlen;
3444	int i;
3445
3446	if (!btf_equal_common(t1, t2))
3447		return false;
3448
3449	vlen = btf_vlen(t1);
3450	m1 = btf_params(t1);
3451	m2 = btf_params(t2);
3452	for (i = 0; i < vlen; i++) {
3453		if (m1->name_off != m2->name_off || m1->type != m2->type)
3454			return false;
3455		m1++;
3456		m2++;
3457	}
3458	return true;
3459}
3460
3461/*
3462 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3463 * IDs. This check is performed during type graph equivalence check and
3464 * referenced types equivalence is checked separately.
3465 */
3466static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3467{
3468	const struct btf_param *m1, *m2;
3469	__u16 vlen;
3470	int i;
3471
3472	/* skip return type ID */
3473	if (t1->name_off != t2->name_off || t1->info != t2->info)
3474		return false;
3475
3476	vlen = btf_vlen(t1);
3477	m1 = btf_params(t1);
3478	m2 = btf_params(t2);
3479	for (i = 0; i < vlen; i++) {
3480		if (m1->name_off != m2->name_off)
3481			return false;
3482		m1++;
3483		m2++;
3484	}
3485	return true;
3486}
3487
3488/* Prepare split BTF for deduplication by calculating hashes of base BTF's
3489 * types and initializing the rest of the state (canonical type mapping) for
3490 * the fixed base BTF part.
3491 */
3492static int btf_dedup_prep(struct btf_dedup *d)
3493{
3494	struct btf_type *t;
3495	int type_id;
3496	long h;
3497
3498	if (!d->btf->base_btf)
3499		return 0;
3500
3501	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3502		t = btf_type_by_id(d->btf, type_id);
3503
3504		/* all base BTF types are self-canonical by definition */
3505		d->map[type_id] = type_id;
3506
3507		switch (btf_kind(t)) {
3508		case BTF_KIND_VAR:
3509		case BTF_KIND_DATASEC:
3510			/* VAR and DATASEC are never hash/deduplicated */
3511			continue;
3512		case BTF_KIND_CONST:
3513		case BTF_KIND_VOLATILE:
3514		case BTF_KIND_RESTRICT:
3515		case BTF_KIND_PTR:
3516		case BTF_KIND_FWD:
3517		case BTF_KIND_TYPEDEF:
3518		case BTF_KIND_FUNC:
3519		case BTF_KIND_FLOAT:
 
3520			h = btf_hash_common(t);
3521			break;
3522		case BTF_KIND_INT:
3523			h = btf_hash_int(t);
 
3524			break;
3525		case BTF_KIND_ENUM:
 
3526			h = btf_hash_enum(t);
3527			break;
3528		case BTF_KIND_STRUCT:
3529		case BTF_KIND_UNION:
3530			h = btf_hash_struct(t);
3531			break;
3532		case BTF_KIND_ARRAY:
3533			h = btf_hash_array(t);
3534			break;
3535		case BTF_KIND_FUNC_PROTO:
3536			h = btf_hash_fnproto(t);
3537			break;
3538		default:
3539			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3540			return -EINVAL;
3541		}
3542		if (btf_dedup_table_add(d, h, type_id))
3543			return -ENOMEM;
3544	}
3545
3546	return 0;
3547}
3548
3549/*
3550 * Deduplicate primitive types, that can't reference other types, by calculating
3551 * their type signature hash and comparing them with any possible canonical
3552 * candidate. If no canonical candidate matches, type itself is marked as
3553 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3554 */
3555static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3556{
3557	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3558	struct hashmap_entry *hash_entry;
3559	struct btf_type *cand;
3560	/* if we don't find equivalent type, then we are canonical */
3561	__u32 new_id = type_id;
3562	__u32 cand_id;
3563	long h;
3564
3565	switch (btf_kind(t)) {
3566	case BTF_KIND_CONST:
3567	case BTF_KIND_VOLATILE:
3568	case BTF_KIND_RESTRICT:
3569	case BTF_KIND_PTR:
3570	case BTF_KIND_TYPEDEF:
3571	case BTF_KIND_ARRAY:
3572	case BTF_KIND_STRUCT:
3573	case BTF_KIND_UNION:
3574	case BTF_KIND_FUNC:
3575	case BTF_KIND_FUNC_PROTO:
3576	case BTF_KIND_VAR:
3577	case BTF_KIND_DATASEC:
 
 
3578		return 0;
3579
3580	case BTF_KIND_INT:
3581		h = btf_hash_int(t);
3582		for_each_dedup_cand(d, hash_entry, h) {
3583			cand_id = (__u32)(long)hash_entry->value;
3584			cand = btf_type_by_id(d->btf, cand_id);
3585			if (btf_equal_int(t, cand)) {
3586				new_id = cand_id;
3587				break;
3588			}
3589		}
3590		break;
3591
3592	case BTF_KIND_ENUM:
 
3593		h = btf_hash_enum(t);
3594		for_each_dedup_cand(d, hash_entry, h) {
3595			cand_id = (__u32)(long)hash_entry->value;
3596			cand = btf_type_by_id(d->btf, cand_id);
3597			if (btf_equal_enum(t, cand)) {
3598				new_id = cand_id;
3599				break;
3600			}
3601			if (d->opts.dont_resolve_fwds)
3602				continue;
3603			if (btf_compat_enum(t, cand)) {
3604				if (btf_is_enum_fwd(t)) {
3605					/* resolve fwd to full enum */
3606					new_id = cand_id;
3607					break;
3608				}
3609				/* resolve canonical enum fwd to full enum */
3610				d->map[cand_id] = type_id;
3611			}
3612		}
3613		break;
3614
3615	case BTF_KIND_FWD:
3616	case BTF_KIND_FLOAT:
3617		h = btf_hash_common(t);
3618		for_each_dedup_cand(d, hash_entry, h) {
3619			cand_id = (__u32)(long)hash_entry->value;
3620			cand = btf_type_by_id(d->btf, cand_id);
3621			if (btf_equal_common(t, cand)) {
3622				new_id = cand_id;
3623				break;
3624			}
3625		}
3626		break;
3627
3628	default:
3629		return -EINVAL;
3630	}
3631
3632	d->map[type_id] = new_id;
3633	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3634		return -ENOMEM;
3635
3636	return 0;
3637}
3638
3639static int btf_dedup_prim_types(struct btf_dedup *d)
3640{
3641	int i, err;
3642
3643	for (i = 0; i < d->btf->nr_types; i++) {
3644		err = btf_dedup_prim_type(d, d->btf->start_id + i);
3645		if (err)
3646			return err;
3647	}
3648	return 0;
3649}
3650
3651/*
3652 * Check whether type is already mapped into canonical one (could be to itself).
3653 */
3654static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3655{
3656	return d->map[type_id] <= BTF_MAX_NR_TYPES;
3657}
3658
3659/*
3660 * Resolve type ID into its canonical type ID, if any; otherwise return original
3661 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3662 * STRUCT/UNION link and resolve it into canonical type ID as well.
3663 */
3664static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3665{
3666	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3667		type_id = d->map[type_id];
3668	return type_id;
3669}
3670
3671/*
3672 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3673 * type ID.
3674 */
3675static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3676{
3677	__u32 orig_type_id = type_id;
3678
3679	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3680		return type_id;
3681
3682	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3683		type_id = d->map[type_id];
3684
3685	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3686		return type_id;
3687
3688	return orig_type_id;
3689}
3690
3691
3692static inline __u16 btf_fwd_kind(struct btf_type *t)
3693{
3694	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3695}
3696
3697/* Check if given two types are identical ARRAY definitions */
3698static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3699{
3700	struct btf_type *t1, *t2;
3701
3702	t1 = btf_type_by_id(d->btf, id1);
3703	t2 = btf_type_by_id(d->btf, id2);
3704	if (!btf_is_array(t1) || !btf_is_array(t2))
3705		return 0;
3706
3707	return btf_equal_array(t1, t2);
3708}
3709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3710/*
3711 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3712 * call it "candidate graph" in this description for brevity) to a type graph
3713 * formed by (potential) canonical struct/union ("canonical graph" for brevity
3714 * here, though keep in mind that not all types in canonical graph are
3715 * necessarily canonical representatives themselves, some of them might be
3716 * duplicates or its uniqueness might not have been established yet).
3717 * Returns:
3718 *  - >0, if type graphs are equivalent;
3719 *  -  0, if not equivalent;
3720 *  - <0, on error.
3721 *
3722 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3723 * equivalence of BTF types at each step. If at any point BTF types in candidate
3724 * and canonical graphs are not compatible structurally, whole graphs are
3725 * incompatible. If types are structurally equivalent (i.e., all information
3726 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3727 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3728 * If a type references other types, then those referenced types are checked
3729 * for equivalence recursively.
3730 *
3731 * During DFS traversal, if we find that for current `canon_id` type we
3732 * already have some mapping in hypothetical map, we check for two possible
3733 * situations:
3734 *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3735 *     happen when type graphs have cycles. In this case we assume those two
3736 *     types are equivalent.
3737 *   - `canon_id` is mapped to different type. This is contradiction in our
3738 *     hypothetical mapping, because same graph in canonical graph corresponds
3739 *     to two different types in candidate graph, which for equivalent type
3740 *     graphs shouldn't happen. This condition terminates equivalence check
3741 *     with negative result.
3742 *
3743 * If type graphs traversal exhausts types to check and find no contradiction,
3744 * then type graphs are equivalent.
3745 *
3746 * When checking types for equivalence, there is one special case: FWD types.
3747 * If FWD type resolution is allowed and one of the types (either from canonical
3748 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3749 * flag) and their names match, hypothetical mapping is updated to point from
3750 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3751 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3752 *
3753 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3754 * if there are two exactly named (or anonymous) structs/unions that are
3755 * compatible structurally, one of which has FWD field, while other is concrete
3756 * STRUCT/UNION, but according to C sources they are different structs/unions
3757 * that are referencing different types with the same name. This is extremely
3758 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3759 * this logic is causing problems.
3760 *
3761 * Doing FWD resolution means that both candidate and/or canonical graphs can
3762 * consists of portions of the graph that come from multiple compilation units.
3763 * This is due to the fact that types within single compilation unit are always
3764 * deduplicated and FWDs are already resolved, if referenced struct/union
3765 * definiton is available. So, if we had unresolved FWD and found corresponding
3766 * STRUCT/UNION, they will be from different compilation units. This
3767 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3768 * type graph will likely have at least two different BTF types that describe
3769 * same type (e.g., most probably there will be two different BTF types for the
3770 * same 'int' primitive type) and could even have "overlapping" parts of type
3771 * graph that describe same subset of types.
3772 *
3773 * This in turn means that our assumption that each type in canonical graph
3774 * must correspond to exactly one type in candidate graph might not hold
3775 * anymore and will make it harder to detect contradictions using hypothetical
3776 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3777 * resolution only in canonical graph. FWDs in candidate graphs are never
3778 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3779 * that can occur:
3780 *   - Both types in canonical and candidate graphs are FWDs. If they are
3781 *     structurally equivalent, then they can either be both resolved to the
3782 *     same STRUCT/UNION or not resolved at all. In both cases they are
3783 *     equivalent and there is no need to resolve FWD on candidate side.
3784 *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
3785 *     so nothing to resolve as well, algorithm will check equivalence anyway.
3786 *   - Type in canonical graph is FWD, while type in candidate is concrete
3787 *     STRUCT/UNION. In this case candidate graph comes from single compilation
3788 *     unit, so there is exactly one BTF type for each unique C type. After
3789 *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
3790 *     in canonical graph mapping to single BTF type in candidate graph, but
3791 *     because hypothetical mapping maps from canonical to candidate types, it's
3792 *     alright, and we still maintain the property of having single `canon_id`
3793 *     mapping to single `cand_id` (there could be two different `canon_id`
3794 *     mapped to the same `cand_id`, but it's not contradictory).
3795 *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
3796 *     graph is FWD. In this case we are just going to check compatibility of
3797 *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
3798 *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
3799 *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
3800 *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
3801 *     canonical graph.
3802 */
3803static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
3804			      __u32 canon_id)
3805{
3806	struct btf_type *cand_type;
3807	struct btf_type *canon_type;
3808	__u32 hypot_type_id;
3809	__u16 cand_kind;
3810	__u16 canon_kind;
3811	int i, eq;
3812
3813	/* if both resolve to the same canonical, they must be equivalent */
3814	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
3815		return 1;
3816
3817	canon_id = resolve_fwd_id(d, canon_id);
3818
3819	hypot_type_id = d->hypot_map[canon_id];
3820	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
 
 
3821		/* In some cases compiler will generate different DWARF types
3822		 * for *identical* array type definitions and use them for
3823		 * different fields within the *same* struct. This breaks type
3824		 * equivalence check, which makes an assumption that candidate
3825		 * types sub-graph has a consistent and deduped-by-compiler
3826		 * types within a single CU. So work around that by explicitly
3827		 * allowing identical array types here.
3828		 */
3829		return hypot_type_id == cand_id ||
3830		       btf_dedup_identical_arrays(d, hypot_type_id, cand_id);
 
 
 
 
 
 
 
 
 
 
3831	}
3832
3833	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
3834		return -ENOMEM;
3835
3836	cand_type = btf_type_by_id(d->btf, cand_id);
3837	canon_type = btf_type_by_id(d->btf, canon_id);
3838	cand_kind = btf_kind(cand_type);
3839	canon_kind = btf_kind(canon_type);
3840
3841	if (cand_type->name_off != canon_type->name_off)
3842		return 0;
3843
3844	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
3845	if (!d->opts.dont_resolve_fwds
3846	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
3847	    && cand_kind != canon_kind) {
3848		__u16 real_kind;
3849		__u16 fwd_kind;
3850
3851		if (cand_kind == BTF_KIND_FWD) {
3852			real_kind = canon_kind;
3853			fwd_kind = btf_fwd_kind(cand_type);
3854		} else {
3855			real_kind = cand_kind;
3856			fwd_kind = btf_fwd_kind(canon_type);
3857			/* we'd need to resolve base FWD to STRUCT/UNION */
3858			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
3859				d->hypot_adjust_canon = true;
3860		}
3861		return fwd_kind == real_kind;
3862	}
3863
3864	if (cand_kind != canon_kind)
3865		return 0;
3866
3867	switch (cand_kind) {
3868	case BTF_KIND_INT:
3869		return btf_equal_int(cand_type, canon_type);
3870
3871	case BTF_KIND_ENUM:
3872		if (d->opts.dont_resolve_fwds)
3873			return btf_equal_enum(cand_type, canon_type);
3874		else
3875			return btf_compat_enum(cand_type, canon_type);
3876
3877	case BTF_KIND_FWD:
3878	case BTF_KIND_FLOAT:
3879		return btf_equal_common(cand_type, canon_type);
3880
3881	case BTF_KIND_CONST:
3882	case BTF_KIND_VOLATILE:
3883	case BTF_KIND_RESTRICT:
3884	case BTF_KIND_PTR:
3885	case BTF_KIND_TYPEDEF:
3886	case BTF_KIND_FUNC:
 
3887		if (cand_type->info != canon_type->info)
3888			return 0;
3889		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3890
3891	case BTF_KIND_ARRAY: {
3892		const struct btf_array *cand_arr, *canon_arr;
3893
3894		if (!btf_compat_array(cand_type, canon_type))
3895			return 0;
3896		cand_arr = btf_array(cand_type);
3897		canon_arr = btf_array(canon_type);
3898		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
3899		if (eq <= 0)
3900			return eq;
3901		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
3902	}
3903
3904	case BTF_KIND_STRUCT:
3905	case BTF_KIND_UNION: {
3906		const struct btf_member *cand_m, *canon_m;
3907		__u16 vlen;
3908
3909		if (!btf_shallow_equal_struct(cand_type, canon_type))
3910			return 0;
3911		vlen = btf_vlen(cand_type);
3912		cand_m = btf_members(cand_type);
3913		canon_m = btf_members(canon_type);
3914		for (i = 0; i < vlen; i++) {
3915			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
3916			if (eq <= 0)
3917				return eq;
3918			cand_m++;
3919			canon_m++;
3920		}
3921
3922		return 1;
3923	}
3924
3925	case BTF_KIND_FUNC_PROTO: {
3926		const struct btf_param *cand_p, *canon_p;
3927		__u16 vlen;
3928
3929		if (!btf_compat_fnproto(cand_type, canon_type))
3930			return 0;
3931		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3932		if (eq <= 0)
3933			return eq;
3934		vlen = btf_vlen(cand_type);
3935		cand_p = btf_params(cand_type);
3936		canon_p = btf_params(canon_type);
3937		for (i = 0; i < vlen; i++) {
3938			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
3939			if (eq <= 0)
3940				return eq;
3941			cand_p++;
3942			canon_p++;
3943		}
3944		return 1;
3945	}
3946
3947	default:
3948		return -EINVAL;
3949	}
3950	return 0;
3951}
3952
3953/*
3954 * Use hypothetical mapping, produced by successful type graph equivalence
3955 * check, to augment existing struct/union canonical mapping, where possible.
3956 *
3957 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
3958 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
3959 * it doesn't matter if FWD type was part of canonical graph or candidate one,
3960 * we are recording the mapping anyway. As opposed to carefulness required
3961 * for struct/union correspondence mapping (described below), for FWD resolution
3962 * it's not important, as by the time that FWD type (reference type) will be
3963 * deduplicated all structs/unions will be deduped already anyway.
3964 *
3965 * Recording STRUCT/UNION mapping is purely a performance optimization and is
3966 * not required for correctness. It needs to be done carefully to ensure that
3967 * struct/union from candidate's type graph is not mapped into corresponding
3968 * struct/union from canonical type graph that itself hasn't been resolved into
3969 * canonical representative. The only guarantee we have is that canonical
3970 * struct/union was determined as canonical and that won't change. But any
3971 * types referenced through that struct/union fields could have been not yet
3972 * resolved, so in case like that it's too early to establish any kind of
3973 * correspondence between structs/unions.
3974 *
3975 * No canonical correspondence is derived for primitive types (they are already
3976 * deduplicated completely already anyway) or reference types (they rely on
3977 * stability of struct/union canonical relationship for equivalence checks).
3978 */
3979static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
3980{
3981	__u32 canon_type_id, targ_type_id;
3982	__u16 t_kind, c_kind;
3983	__u32 t_id, c_id;
3984	int i;
3985
3986	for (i = 0; i < d->hypot_cnt; i++) {
3987		canon_type_id = d->hypot_list[i];
3988		targ_type_id = d->hypot_map[canon_type_id];
3989		t_id = resolve_type_id(d, targ_type_id);
3990		c_id = resolve_type_id(d, canon_type_id);
3991		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
3992		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
3993		/*
3994		 * Resolve FWD into STRUCT/UNION.
3995		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
3996		 * mapped to canonical representative (as opposed to
3997		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
3998		 * eventually that struct is going to be mapped and all resolved
3999		 * FWDs will automatically resolve to correct canonical
4000		 * representative. This will happen before ref type deduping,
4001		 * which critically depends on stability of these mapping. This
4002		 * stability is not a requirement for STRUCT/UNION equivalence
4003		 * checks, though.
4004		 */
4005
4006		/* if it's the split BTF case, we still need to point base FWD
4007		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4008		 * will be resolved against base FWD. If we don't point base
4009		 * canonical FWD to the resolved STRUCT/UNION, then all the
4010		 * FWDs in split BTF won't be correctly resolved to a proper
4011		 * STRUCT/UNION.
4012		 */
4013		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4014			d->map[c_id] = t_id;
4015
4016		/* if graph equivalence determined that we'd need to adjust
4017		 * base canonical types, then we need to only point base FWDs
4018		 * to STRUCTs/UNIONs and do no more modifications. For all
4019		 * other purposes the type graphs were not equivalent.
4020		 */
4021		if (d->hypot_adjust_canon)
4022			continue;
4023		
4024		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4025			d->map[t_id] = c_id;
4026
4027		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4028		    c_kind != BTF_KIND_FWD &&
4029		    is_type_mapped(d, c_id) &&
4030		    !is_type_mapped(d, t_id)) {
4031			/*
4032			 * as a perf optimization, we can map struct/union
4033			 * that's part of type graph we just verified for
4034			 * equivalence. We can do that for struct/union that has
4035			 * canonical representative only, though.
4036			 */
4037			d->map[t_id] = c_id;
4038		}
4039	}
4040}
4041
4042/*
4043 * Deduplicate struct/union types.
4044 *
4045 * For each struct/union type its type signature hash is calculated, taking
4046 * into account type's name, size, number, order and names of fields, but
4047 * ignoring type ID's referenced from fields, because they might not be deduped
4048 * completely until after reference types deduplication phase. This type hash
4049 * is used to iterate over all potential canonical types, sharing same hash.
4050 * For each canonical candidate we check whether type graphs that they form
4051 * (through referenced types in fields and so on) are equivalent using algorithm
4052 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4053 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4054 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4055 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4056 * potentially map other structs/unions to their canonical representatives,
4057 * if such relationship hasn't yet been established. This speeds up algorithm
4058 * by eliminating some of the duplicate work.
4059 *
4060 * If no matching canonical representative was found, struct/union is marked
4061 * as canonical for itself and is added into btf_dedup->dedup_table hash map
4062 * for further look ups.
4063 */
4064static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4065{
4066	struct btf_type *cand_type, *t;
4067	struct hashmap_entry *hash_entry;
4068	/* if we don't find equivalent type, then we are canonical */
4069	__u32 new_id = type_id;
4070	__u16 kind;
4071	long h;
4072
4073	/* already deduped or is in process of deduping (loop detected) */
4074	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4075		return 0;
4076
4077	t = btf_type_by_id(d->btf, type_id);
4078	kind = btf_kind(t);
4079
4080	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4081		return 0;
4082
4083	h = btf_hash_struct(t);
4084	for_each_dedup_cand(d, hash_entry, h) {
4085		__u32 cand_id = (__u32)(long)hash_entry->value;
4086		int eq;
4087
4088		/*
4089		 * Even though btf_dedup_is_equiv() checks for
4090		 * btf_shallow_equal_struct() internally when checking two
4091		 * structs (unions) for equivalence, we need to guard here
4092		 * from picking matching FWD type as a dedup candidate.
4093		 * This can happen due to hash collision. In such case just
4094		 * relying on btf_dedup_is_equiv() would lead to potentially
4095		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4096		 * FWD and compatible STRUCT/UNION are considered equivalent.
4097		 */
4098		cand_type = btf_type_by_id(d->btf, cand_id);
4099		if (!btf_shallow_equal_struct(t, cand_type))
4100			continue;
4101
4102		btf_dedup_clear_hypot_map(d);
4103		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4104		if (eq < 0)
4105			return eq;
4106		if (!eq)
4107			continue;
4108		btf_dedup_merge_hypot_map(d);
4109		if (d->hypot_adjust_canon) /* not really equivalent */
4110			continue;
4111		new_id = cand_id;
4112		break;
4113	}
4114
4115	d->map[type_id] = new_id;
4116	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4117		return -ENOMEM;
4118
4119	return 0;
4120}
4121
4122static int btf_dedup_struct_types(struct btf_dedup *d)
4123{
4124	int i, err;
4125
4126	for (i = 0; i < d->btf->nr_types; i++) {
4127		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4128		if (err)
4129			return err;
4130	}
4131	return 0;
4132}
4133
4134/*
4135 * Deduplicate reference type.
4136 *
4137 * Once all primitive and struct/union types got deduplicated, we can easily
4138 * deduplicate all other (reference) BTF types. This is done in two steps:
4139 *
4140 * 1. Resolve all referenced type IDs into their canonical type IDs. This
4141 * resolution can be done either immediately for primitive or struct/union types
4142 * (because they were deduped in previous two phases) or recursively for
4143 * reference types. Recursion will always terminate at either primitive or
4144 * struct/union type, at which point we can "unwind" chain of reference types
4145 * one by one. There is no danger of encountering cycles because in C type
4146 * system the only way to form type cycle is through struct/union, so any chain
4147 * of reference types, even those taking part in a type cycle, will inevitably
4148 * reach struct/union at some point.
4149 *
4150 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4151 * becomes "stable", in the sense that no further deduplication will cause
4152 * any changes to it. With that, it's now possible to calculate type's signature
4153 * hash (this time taking into account referenced type IDs) and loop over all
4154 * potential canonical representatives. If no match was found, current type
4155 * will become canonical representative of itself and will be added into
4156 * btf_dedup->dedup_table as another possible canonical representative.
4157 */
4158static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4159{
4160	struct hashmap_entry *hash_entry;
4161	__u32 new_id = type_id, cand_id;
4162	struct btf_type *t, *cand;
4163	/* if we don't find equivalent type, then we are representative type */
4164	int ref_type_id;
4165	long h;
4166
4167	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4168		return -ELOOP;
4169	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4170		return resolve_type_id(d, type_id);
4171
4172	t = btf_type_by_id(d->btf, type_id);
4173	d->map[type_id] = BTF_IN_PROGRESS_ID;
4174
4175	switch (btf_kind(t)) {
4176	case BTF_KIND_CONST:
4177	case BTF_KIND_VOLATILE:
4178	case BTF_KIND_RESTRICT:
4179	case BTF_KIND_PTR:
4180	case BTF_KIND_TYPEDEF:
4181	case BTF_KIND_FUNC:
 
4182		ref_type_id = btf_dedup_ref_type(d, t->type);
4183		if (ref_type_id < 0)
4184			return ref_type_id;
4185		t->type = ref_type_id;
4186
4187		h = btf_hash_common(t);
4188		for_each_dedup_cand(d, hash_entry, h) {
4189			cand_id = (__u32)(long)hash_entry->value;
4190			cand = btf_type_by_id(d->btf, cand_id);
4191			if (btf_equal_common(t, cand)) {
4192				new_id = cand_id;
4193				break;
4194			}
4195		}
4196		break;
4197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4198	case BTF_KIND_ARRAY: {
4199		struct btf_array *info = btf_array(t);
4200
4201		ref_type_id = btf_dedup_ref_type(d, info->type);
4202		if (ref_type_id < 0)
4203			return ref_type_id;
4204		info->type = ref_type_id;
4205
4206		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4207		if (ref_type_id < 0)
4208			return ref_type_id;
4209		info->index_type = ref_type_id;
4210
4211		h = btf_hash_array(t);
4212		for_each_dedup_cand(d, hash_entry, h) {
4213			cand_id = (__u32)(long)hash_entry->value;
4214			cand = btf_type_by_id(d->btf, cand_id);
4215			if (btf_equal_array(t, cand)) {
4216				new_id = cand_id;
4217				break;
4218			}
4219		}
4220		break;
4221	}
4222
4223	case BTF_KIND_FUNC_PROTO: {
4224		struct btf_param *param;
4225		__u16 vlen;
4226		int i;
4227
4228		ref_type_id = btf_dedup_ref_type(d, t->type);
4229		if (ref_type_id < 0)
4230			return ref_type_id;
4231		t->type = ref_type_id;
4232
4233		vlen = btf_vlen(t);
4234		param = btf_params(t);
4235		for (i = 0; i < vlen; i++) {
4236			ref_type_id = btf_dedup_ref_type(d, param->type);
4237			if (ref_type_id < 0)
4238				return ref_type_id;
4239			param->type = ref_type_id;
4240			param++;
4241		}
4242
4243		h = btf_hash_fnproto(t);
4244		for_each_dedup_cand(d, hash_entry, h) {
4245			cand_id = (__u32)(long)hash_entry->value;
4246			cand = btf_type_by_id(d->btf, cand_id);
4247			if (btf_equal_fnproto(t, cand)) {
4248				new_id = cand_id;
4249				break;
4250			}
4251		}
4252		break;
4253	}
4254
4255	default:
4256		return -EINVAL;
4257	}
4258
4259	d->map[type_id] = new_id;
4260	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4261		return -ENOMEM;
4262
4263	return new_id;
4264}
4265
4266static int btf_dedup_ref_types(struct btf_dedup *d)
4267{
4268	int i, err;
4269
4270	for (i = 0; i < d->btf->nr_types; i++) {
4271		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4272		if (err < 0)
4273			return err;
4274	}
4275	/* we won't need d->dedup_table anymore */
4276	hashmap__free(d->dedup_table);
4277	d->dedup_table = NULL;
4278	return 0;
4279}
4280
4281/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4282 * Compact types.
4283 *
4284 * After we established for each type its corresponding canonical representative
4285 * type, we now can eliminate types that are not canonical and leave only
4286 * canonical ones layed out sequentially in memory by copying them over
4287 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4288 * a map from original type ID to a new compacted type ID, which will be used
4289 * during next phase to "fix up" type IDs, referenced from struct/union and
4290 * reference types.
4291 */
4292static int btf_dedup_compact_types(struct btf_dedup *d)
4293{
4294	__u32 *new_offs;
4295	__u32 next_type_id = d->btf->start_id;
4296	const struct btf_type *t;
4297	void *p;
4298	int i, id, len;
4299
4300	/* we are going to reuse hypot_map to store compaction remapping */
4301	d->hypot_map[0] = 0;
4302	/* base BTF types are not renumbered */
4303	for (id = 1; id < d->btf->start_id; id++)
4304		d->hypot_map[id] = id;
4305	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4306		d->hypot_map[id] = BTF_UNPROCESSED_ID;
4307
4308	p = d->btf->types_data;
4309
4310	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4311		if (d->map[id] != id)
4312			continue;
4313
4314		t = btf__type_by_id(d->btf, id);
4315		len = btf_type_size(t);
4316		if (len < 0)
4317			return len;
4318
4319		memmove(p, t, len);
4320		d->hypot_map[id] = next_type_id;
4321		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4322		p += len;
4323		next_type_id++;
4324	}
4325
4326	/* shrink struct btf's internal types index and update btf_header */
4327	d->btf->nr_types = next_type_id - d->btf->start_id;
4328	d->btf->type_offs_cap = d->btf->nr_types;
4329	d->btf->hdr->type_len = p - d->btf->types_data;
4330	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4331				       sizeof(*new_offs));
4332	if (d->btf->type_offs_cap && !new_offs)
4333		return -ENOMEM;
4334	d->btf->type_offs = new_offs;
4335	d->btf->hdr->str_off = d->btf->hdr->type_len;
4336	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4337	return 0;
4338}
4339
4340/*
4341 * Figure out final (deduplicated and compacted) type ID for provided original
4342 * `type_id` by first resolving it into corresponding canonical type ID and
4343 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4344 * which is populated during compaction phase.
4345 */
4346static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4347{
4348	struct btf_dedup *d = ctx;
4349	__u32 resolved_type_id, new_type_id;
4350
4351	resolved_type_id = resolve_type_id(d, *type_id);
4352	new_type_id = d->hypot_map[resolved_type_id];
4353	if (new_type_id > BTF_MAX_NR_TYPES)
4354		return -EINVAL;
4355
4356	*type_id = new_type_id;
4357	return 0;
4358}
4359
4360/*
4361 * Remap referenced type IDs into deduped type IDs.
4362 *
4363 * After BTF types are deduplicated and compacted, their final type IDs may
4364 * differ from original ones. The map from original to a corresponding
4365 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4366 * compaction phase. During remapping phase we are rewriting all type IDs
4367 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4368 * their final deduped type IDs.
4369 */
4370static int btf_dedup_remap_types(struct btf_dedup *d)
4371{
4372	int i, r;
4373
4374	for (i = 0; i < d->btf->nr_types; i++) {
4375		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
4376
4377		r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4378		if (r)
4379			return r;
4380	}
4381
4382	if (!d->btf_ext)
4383		return 0;
4384
4385	r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4386	if (r)
4387		return r;
4388
4389	return 0;
4390}
4391
4392/*
4393 * Probe few well-known locations for vmlinux kernel image and try to load BTF
4394 * data out of it to use for target BTF.
4395 */
4396struct btf *libbpf_find_kernel_btf(void)
4397{
4398	struct {
4399		const char *path_fmt;
4400		bool raw_btf;
4401	} locations[] = {
4402		/* try canonical vmlinux BTF through sysfs first */
4403		{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
4404		/* fall back to trying to find vmlinux ELF on disk otherwise */
4405		{ "/boot/vmlinux-%1$s" },
4406		{ "/lib/modules/%1$s/vmlinux-%1$s" },
4407		{ "/lib/modules/%1$s/build/vmlinux" },
4408		{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
4409		{ "/usr/lib/debug/boot/vmlinux-%1$s" },
4410		{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
4411		{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
4412	};
4413	char path[PATH_MAX + 1];
4414	struct utsname buf;
4415	struct btf *btf;
4416	int i, err;
4417
4418	uname(&buf);
4419
4420	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4421		snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
4422
4423		if (access(path, R_OK))
4424			continue;
4425
4426		if (locations[i].raw_btf)
4427			btf = btf__parse_raw(path);
4428		else
4429			btf = btf__parse_elf(path, NULL);
4430		err = libbpf_get_error(btf);
4431		pr_debug("loading kernel BTF '%s': %d\n", path, err);
4432		if (err)
4433			continue;
4434
4435		return btf;
4436	}
4437
4438	pr_warn("failed to find valid kernel BTF\n");
4439	return libbpf_err_ptr(-ESRCH);
4440}
4441
 
 
 
 
 
 
 
 
 
 
4442int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
4443{
4444	int i, n, err;
4445
4446	switch (btf_kind(t)) {
4447	case BTF_KIND_INT:
4448	case BTF_KIND_FLOAT:
4449	case BTF_KIND_ENUM:
 
4450		return 0;
4451
4452	case BTF_KIND_FWD:
4453	case BTF_KIND_CONST:
4454	case BTF_KIND_VOLATILE:
4455	case BTF_KIND_RESTRICT:
4456	case BTF_KIND_PTR:
4457	case BTF_KIND_TYPEDEF:
4458	case BTF_KIND_FUNC:
4459	case BTF_KIND_VAR:
 
 
4460		return visit(&t->type, ctx);
4461
4462	case BTF_KIND_ARRAY: {
4463		struct btf_array *a = btf_array(t);
4464
4465		err = visit(&a->type, ctx);
4466		err = err ?: visit(&a->index_type, ctx);
4467		return err;
4468	}
4469
4470	case BTF_KIND_STRUCT:
4471	case BTF_KIND_UNION: {
4472		struct btf_member *m = btf_members(t);
4473
4474		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4475			err = visit(&m->type, ctx);
4476			if (err)
4477				return err;
4478		}
4479		return 0;
4480	}
4481
4482	case BTF_KIND_FUNC_PROTO: {
4483		struct btf_param *m = btf_params(t);
4484
4485		err = visit(&t->type, ctx);
4486		if (err)
4487			return err;
4488		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4489			err = visit(&m->type, ctx);
4490			if (err)
4491				return err;
4492		}
4493		return 0;
4494	}
4495
4496	case BTF_KIND_DATASEC: {
4497		struct btf_var_secinfo *m = btf_var_secinfos(t);
4498
4499		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4500			err = visit(&m->type, ctx);
4501			if (err)
4502				return err;
4503		}
4504		return 0;
4505	}
4506
4507	default:
4508		return -EINVAL;
4509	}
4510}
4511
4512int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
4513{
4514	int i, n, err;
4515
4516	err = visit(&t->name_off, ctx);
4517	if (err)
4518		return err;
4519
4520	switch (btf_kind(t)) {
4521	case BTF_KIND_STRUCT:
4522	case BTF_KIND_UNION: {
4523		struct btf_member *m = btf_members(t);
4524
4525		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4526			err = visit(&m->name_off, ctx);
4527			if (err)
4528				return err;
4529		}
4530		break;
4531	}
4532	case BTF_KIND_ENUM: {
4533		struct btf_enum *m = btf_enum(t);
 
 
 
 
 
 
 
 
 
 
4534
4535		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4536			err = visit(&m->name_off, ctx);
4537			if (err)
4538				return err;
4539		}
4540		break;
4541	}
4542	case BTF_KIND_FUNC_PROTO: {
4543		struct btf_param *m = btf_params(t);
4544
4545		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4546			err = visit(&m->name_off, ctx);
4547			if (err)
4548				return err;
4549		}
4550		break;
4551	}
4552	default:
4553		break;
4554	}
4555
4556	return 0;
4557}
4558
4559int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
4560{
4561	const struct btf_ext_info *seg;
4562	struct btf_ext_info_sec *sec;
4563	int i, err;
4564
4565	seg = &btf_ext->func_info;
4566	for_each_btf_ext_sec(seg, sec) {
4567		struct bpf_func_info_min *rec;
4568
4569		for_each_btf_ext_rec(seg, sec, i, rec) {
4570			err = visit(&rec->type_id, ctx);
4571			if (err < 0)
4572				return err;
4573		}
4574	}
4575
4576	seg = &btf_ext->core_relo_info;
4577	for_each_btf_ext_sec(seg, sec) {
4578		struct bpf_core_relo *rec;
4579
4580		for_each_btf_ext_rec(seg, sec, i, rec) {
4581			err = visit(&rec->type_id, ctx);
4582			if (err < 0)
4583				return err;
4584		}
4585	}
4586
4587	return 0;
4588}
4589
4590int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
4591{
4592	const struct btf_ext_info *seg;
4593	struct btf_ext_info_sec *sec;
4594	int i, err;
4595
4596	seg = &btf_ext->func_info;
4597	for_each_btf_ext_sec(seg, sec) {
4598		err = visit(&sec->sec_name_off, ctx);
4599		if (err)
4600			return err;
4601	}
4602
4603	seg = &btf_ext->line_info;
4604	for_each_btf_ext_sec(seg, sec) {
4605		struct bpf_line_info_min *rec;
4606
4607		err = visit(&sec->sec_name_off, ctx);
4608		if (err)
4609			return err;
4610
4611		for_each_btf_ext_rec(seg, sec, i, rec) {
4612			err = visit(&rec->file_name_off, ctx);
4613			if (err)
4614				return err;
4615			err = visit(&rec->line_off, ctx);
4616			if (err)
4617				return err;
4618		}
4619	}
4620
4621	seg = &btf_ext->core_relo_info;
4622	for_each_btf_ext_sec(seg, sec) {
4623		struct bpf_core_relo *rec;
4624
4625		err = visit(&sec->sec_name_off, ctx);
4626		if (err)
4627			return err;
4628
4629		for_each_btf_ext_rec(seg, sec, i, rec) {
4630			err = visit(&rec->access_str_off, ctx);
4631			if (err)
4632				return err;
4633		}
4634	}
4635
4636	return 0;
4637}