Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/net/sunrpc/sched.c
   4 *
   5 * Scheduling for synchronous and asynchronous RPC requests.
   6 *
   7 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
   8 *
   9 * TCP NFS related read + write fixes
  10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
  11 */
  12
  13#include <linux/module.h>
  14
  15#include <linux/sched.h>
  16#include <linux/interrupt.h>
  17#include <linux/slab.h>
  18#include <linux/mempool.h>
  19#include <linux/smp.h>
  20#include <linux/spinlock.h>
  21#include <linux/mutex.h>
  22#include <linux/freezer.h>
  23#include <linux/sched/mm.h>
  24
  25#include <linux/sunrpc/clnt.h>
  26#include <linux/sunrpc/metrics.h>
  27
  28#include "sunrpc.h"
  29
  30#define CREATE_TRACE_POINTS
  31#include <trace/events/sunrpc.h>
  32
  33/*
  34 * RPC slabs and memory pools
  35 */
  36#define RPC_BUFFER_MAXSIZE	(2048)
  37#define RPC_BUFFER_POOLSIZE	(8)
  38#define RPC_TASK_POOLSIZE	(8)
  39static struct kmem_cache	*rpc_task_slabp __read_mostly;
  40static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
  41static mempool_t	*rpc_task_mempool __read_mostly;
  42static mempool_t	*rpc_buffer_mempool __read_mostly;
  43
  44static void			rpc_async_schedule(struct work_struct *);
  45static void			 rpc_release_task(struct rpc_task *task);
  46static void __rpc_queue_timer_fn(struct work_struct *);
  47
  48/*
  49 * RPC tasks sit here while waiting for conditions to improve.
  50 */
  51static struct rpc_wait_queue delay_queue;
  52
  53/*
  54 * rpciod-related stuff
  55 */
  56struct workqueue_struct *rpciod_workqueue __read_mostly;
  57struct workqueue_struct *xprtiod_workqueue __read_mostly;
  58EXPORT_SYMBOL_GPL(xprtiod_workqueue);
  59
  60gfp_t rpc_task_gfp_mask(void)
  61{
  62	if (current->flags & PF_WQ_WORKER)
  63		return GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
  64	return GFP_KERNEL;
  65}
  66EXPORT_SYMBOL_GPL(rpc_task_gfp_mask);
  67
  68bool rpc_task_set_rpc_status(struct rpc_task *task, int rpc_status)
  69{
  70	if (cmpxchg(&task->tk_rpc_status, 0, rpc_status) == 0)
  71		return true;
  72	return false;
  73}
  74
  75unsigned long
  76rpc_task_timeout(const struct rpc_task *task)
  77{
  78	unsigned long timeout = READ_ONCE(task->tk_timeout);
  79
  80	if (timeout != 0) {
  81		unsigned long now = jiffies;
  82		if (time_before(now, timeout))
  83			return timeout - now;
  84	}
  85	return 0;
  86}
  87EXPORT_SYMBOL_GPL(rpc_task_timeout);
  88
  89/*
  90 * Disable the timer for a given RPC task. Should be called with
  91 * queue->lock and bh_disabled in order to avoid races within
  92 * rpc_run_timer().
  93 */
  94static void
  95__rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  96{
  97	if (list_empty(&task->u.tk_wait.timer_list))
  98		return;
  99	task->tk_timeout = 0;
 100	list_del(&task->u.tk_wait.timer_list);
 101	if (list_empty(&queue->timer_list.list))
 102		cancel_delayed_work(&queue->timer_list.dwork);
 103}
 104
 105static void
 106rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
 107{
 108	unsigned long now = jiffies;
 109	queue->timer_list.expires = expires;
 110	if (time_before_eq(expires, now))
 111		expires = 0;
 112	else
 113		expires -= now;
 114	mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
 115}
 116
 117/*
 118 * Set up a timer for the current task.
 119 */
 120static void
 121__rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
 122		unsigned long timeout)
 123{
 124	task->tk_timeout = timeout;
 125	if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
 126		rpc_set_queue_timer(queue, timeout);
 127	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
 128}
 129
 130static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
 131{
 132	if (queue->priority != priority) {
 133		queue->priority = priority;
 134		queue->nr = 1U << priority;
 135	}
 136}
 137
 138static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
 139{
 140	rpc_set_waitqueue_priority(queue, queue->maxpriority);
 141}
 142
 143/*
 144 * Add a request to a queue list
 145 */
 146static void
 147__rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
 148{
 149	struct rpc_task *t;
 150
 151	list_for_each_entry(t, q, u.tk_wait.list) {
 152		if (t->tk_owner == task->tk_owner) {
 153			list_add_tail(&task->u.tk_wait.links,
 154					&t->u.tk_wait.links);
 155			/* Cache the queue head in task->u.tk_wait.list */
 156			task->u.tk_wait.list.next = q;
 157			task->u.tk_wait.list.prev = NULL;
 158			return;
 159		}
 160	}
 161	INIT_LIST_HEAD(&task->u.tk_wait.links);
 162	list_add_tail(&task->u.tk_wait.list, q);
 163}
 164
 165/*
 166 * Remove request from a queue list
 167 */
 168static void
 169__rpc_list_dequeue_task(struct rpc_task *task)
 170{
 171	struct list_head *q;
 172	struct rpc_task *t;
 173
 174	if (task->u.tk_wait.list.prev == NULL) {
 175		list_del(&task->u.tk_wait.links);
 176		return;
 177	}
 178	if (!list_empty(&task->u.tk_wait.links)) {
 179		t = list_first_entry(&task->u.tk_wait.links,
 180				struct rpc_task,
 181				u.tk_wait.links);
 182		/* Assume __rpc_list_enqueue_task() cached the queue head */
 183		q = t->u.tk_wait.list.next;
 184		list_add_tail(&t->u.tk_wait.list, q);
 185		list_del(&task->u.tk_wait.links);
 186	}
 187	list_del(&task->u.tk_wait.list);
 188}
 189
 190/*
 191 * Add new request to a priority queue.
 192 */
 193static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
 194		struct rpc_task *task,
 195		unsigned char queue_priority)
 196{
 197	if (unlikely(queue_priority > queue->maxpriority))
 198		queue_priority = queue->maxpriority;
 199	__rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
 200}
 201
 202/*
 203 * Add new request to wait queue.
 
 
 
 
 
 204 */
 205static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
 206		struct rpc_task *task,
 207		unsigned char queue_priority)
 208{
 209	INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
 210	if (RPC_IS_PRIORITY(queue))
 211		__rpc_add_wait_queue_priority(queue, task, queue_priority);
 
 
 212	else
 213		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
 214	task->tk_waitqueue = queue;
 215	queue->qlen++;
 216	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
 217	smp_wmb();
 218	rpc_set_queued(task);
 219}
 220
 221/*
 222 * Remove request from a priority queue.
 223 */
 224static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
 225{
 226	__rpc_list_dequeue_task(task);
 227}
 228
 229/*
 230 * Remove request from queue.
 231 * Note: must be called with spin lock held.
 232 */
 233static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
 234{
 235	__rpc_disable_timer(queue, task);
 236	if (RPC_IS_PRIORITY(queue))
 237		__rpc_remove_wait_queue_priority(task);
 238	else
 239		list_del(&task->u.tk_wait.list);
 240	queue->qlen--;
 241}
 242
 243static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
 244{
 245	int i;
 246
 247	spin_lock_init(&queue->lock);
 248	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
 249		INIT_LIST_HEAD(&queue->tasks[i]);
 250	queue->maxpriority = nr_queues - 1;
 251	rpc_reset_waitqueue_priority(queue);
 252	queue->qlen = 0;
 253	queue->timer_list.expires = 0;
 254	INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
 255	INIT_LIST_HEAD(&queue->timer_list.list);
 256	rpc_assign_waitqueue_name(queue, qname);
 257}
 258
 259void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 260{
 261	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
 262}
 263EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
 264
 265void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 266{
 267	__rpc_init_priority_wait_queue(queue, qname, 1);
 268}
 269EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
 270
 271void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
 272{
 273	cancel_delayed_work_sync(&queue->timer_list.dwork);
 274}
 275EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
 276
 277static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
 278{
 279	schedule();
 280	if (signal_pending_state(mode, current))
 281		return -ERESTARTSYS;
 282	return 0;
 283}
 284
 285#if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
 286static void rpc_task_set_debuginfo(struct rpc_task *task)
 287{
 288	struct rpc_clnt *clnt = task->tk_client;
 289
 290	/* Might be a task carrying a reverse-direction operation */
 291	if (!clnt) {
 292		static atomic_t rpc_pid;
 293
 294		task->tk_pid = atomic_inc_return(&rpc_pid);
 295		return;
 296	}
 297
 298	task->tk_pid = atomic_inc_return(&clnt->cl_pid);
 299}
 300#else
 301static inline void rpc_task_set_debuginfo(struct rpc_task *task)
 302{
 303}
 304#endif
 305
 306static void rpc_set_active(struct rpc_task *task)
 307{
 308	rpc_task_set_debuginfo(task);
 309	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 310	trace_rpc_task_begin(task, NULL);
 311}
 312
 313/*
 314 * Mark an RPC call as having completed by clearing the 'active' bit
 315 * and then waking up all tasks that were sleeping.
 316 */
 317static int rpc_complete_task(struct rpc_task *task)
 318{
 319	void *m = &task->tk_runstate;
 320	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
 321	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
 322	unsigned long flags;
 323	int ret;
 324
 325	trace_rpc_task_complete(task, NULL);
 326
 327	spin_lock_irqsave(&wq->lock, flags);
 328	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 329	ret = atomic_dec_and_test(&task->tk_count);
 330	if (waitqueue_active(wq))
 331		__wake_up_locked_key(wq, TASK_NORMAL, &k);
 332	spin_unlock_irqrestore(&wq->lock, flags);
 333	return ret;
 334}
 335
 336/*
 337 * Allow callers to wait for completion of an RPC call
 338 *
 339 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
 340 * to enforce taking of the wq->lock and hence avoid races with
 341 * rpc_complete_task().
 342 */
 343int rpc_wait_for_completion_task(struct rpc_task *task)
 344{
 
 
 345	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
 346			rpc_wait_bit_killable, TASK_KILLABLE|TASK_FREEZABLE_UNSAFE);
 347}
 348EXPORT_SYMBOL_GPL(rpc_wait_for_completion_task);
 349
 350/*
 351 * Make an RPC task runnable.
 352 *
 353 * Note: If the task is ASYNC, and is being made runnable after sitting on an
 354 * rpc_wait_queue, this must be called with the queue spinlock held to protect
 355 * the wait queue operation.
 356 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
 357 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
 358 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
 359 * the RPC_TASK_RUNNING flag.
 360 */
 361static void rpc_make_runnable(struct workqueue_struct *wq,
 362		struct rpc_task *task)
 363{
 364	bool need_wakeup = !rpc_test_and_set_running(task);
 365
 366	rpc_clear_queued(task);
 367	if (!need_wakeup)
 368		return;
 369	if (RPC_IS_ASYNC(task)) {
 370		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
 371		queue_work(wq, &task->u.tk_work);
 372	} else
 373		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
 374}
 375
 376/*
 377 * Prepare for sleeping on a wait queue.
 378 * By always appending tasks to the list we ensure FIFO behavior.
 379 * NB: An RPC task will only receive interrupt-driven events as long
 380 * as it's on a wait queue.
 381 */
 382static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q,
 383		struct rpc_task *task,
 384		unsigned char queue_priority)
 385{
 386	trace_rpc_task_sleep(task, q);
 387
 388	__rpc_add_wait_queue(q, task, queue_priority);
 389}
 390
 391static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
 392		struct rpc_task *task,
 393		unsigned char queue_priority)
 394{
 395	if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
 396		return;
 397	__rpc_do_sleep_on_priority(q, task, queue_priority);
 398}
 399
 400static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
 401		struct rpc_task *task, unsigned long timeout,
 402		unsigned char queue_priority)
 403{
 404	if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
 405		return;
 406	if (time_is_after_jiffies(timeout)) {
 407		__rpc_do_sleep_on_priority(q, task, queue_priority);
 408		__rpc_add_timer(q, task, timeout);
 409	} else
 410		task->tk_status = -ETIMEDOUT;
 411}
 412
 413static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
 414{
 415	if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
 416		task->tk_callback = action;
 417}
 418
 419static bool rpc_sleep_check_activated(struct rpc_task *task)
 420{
 421	/* We shouldn't ever put an inactive task to sleep */
 422	if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
 423		task->tk_status = -EIO;
 424		rpc_put_task_async(task);
 425		return false;
 426	}
 427	return true;
 428}
 429
 430void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
 431				rpc_action action, unsigned long timeout)
 432{
 433	if (!rpc_sleep_check_activated(task))
 434		return;
 435
 436	rpc_set_tk_callback(task, action);
 437
 438	/*
 439	 * Protect the queue operations.
 440	 */
 441	spin_lock(&q->lock);
 442	__rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
 443	spin_unlock(&q->lock);
 444}
 445EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
 446
 447void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
 448				rpc_action action)
 449{
 450	if (!rpc_sleep_check_activated(task))
 451		return;
 452
 453	rpc_set_tk_callback(task, action);
 454
 455	WARN_ON_ONCE(task->tk_timeout != 0);
 456	/*
 457	 * Protect the queue operations.
 458	 */
 459	spin_lock(&q->lock);
 460	__rpc_sleep_on_priority(q, task, task->tk_priority);
 461	spin_unlock(&q->lock);
 462}
 463EXPORT_SYMBOL_GPL(rpc_sleep_on);
 464
 465void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
 466		struct rpc_task *task, unsigned long timeout, int priority)
 467{
 468	if (!rpc_sleep_check_activated(task))
 469		return;
 470
 471	priority -= RPC_PRIORITY_LOW;
 472	/*
 473	 * Protect the queue operations.
 474	 */
 475	spin_lock(&q->lock);
 476	__rpc_sleep_on_priority_timeout(q, task, timeout, priority);
 477	spin_unlock(&q->lock);
 478}
 479EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
 480
 481void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
 482		int priority)
 483{
 484	if (!rpc_sleep_check_activated(task))
 485		return;
 486
 487	WARN_ON_ONCE(task->tk_timeout != 0);
 488	priority -= RPC_PRIORITY_LOW;
 489	/*
 490	 * Protect the queue operations.
 491	 */
 492	spin_lock(&q->lock);
 493	__rpc_sleep_on_priority(q, task, priority);
 494	spin_unlock(&q->lock);
 495}
 496EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
 497
 498/**
 499 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
 500 * @wq: workqueue on which to run task
 501 * @queue: wait queue
 502 * @task: task to be woken up
 503 *
 504 * Caller must hold queue->lock, and have cleared the task queued flag.
 505 */
 506static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
 507		struct rpc_wait_queue *queue,
 508		struct rpc_task *task)
 509{
 510	/* Has the task been executed yet? If not, we cannot wake it up! */
 511	if (!RPC_IS_ACTIVATED(task)) {
 512		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
 513		return;
 514	}
 515
 516	trace_rpc_task_wakeup(task, queue);
 517
 518	__rpc_remove_wait_queue(queue, task);
 519
 520	rpc_make_runnable(wq, task);
 521}
 522
 523/*
 524 * Wake up a queued task while the queue lock is being held
 525 */
 526static struct rpc_task *
 527rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
 528		struct rpc_wait_queue *queue, struct rpc_task *task,
 529		bool (*action)(struct rpc_task *, void *), void *data)
 530{
 531	if (RPC_IS_QUEUED(task)) {
 532		smp_rmb();
 533		if (task->tk_waitqueue == queue) {
 534			if (action == NULL || action(task, data)) {
 535				__rpc_do_wake_up_task_on_wq(wq, queue, task);
 536				return task;
 537			}
 538		}
 539	}
 540	return NULL;
 541}
 542
 543/*
 544 * Wake up a queued task while the queue lock is being held
 545 */
 546static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
 547					  struct rpc_task *task)
 548{
 549	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
 550						   task, NULL, NULL);
 551}
 552
 553/*
 554 * Wake up a task on a specific queue
 555 */
 556void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
 557{
 558	if (!RPC_IS_QUEUED(task))
 559		return;
 560	spin_lock(&queue->lock);
 561	rpc_wake_up_task_queue_locked(queue, task);
 562	spin_unlock(&queue->lock);
 563}
 564EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
 565
 566static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
 567{
 568	task->tk_status = *(int *)status;
 569	return true;
 570}
 571
 572static void
 573rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
 574		struct rpc_task *task, int status)
 575{
 576	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
 577			task, rpc_task_action_set_status, &status);
 578}
 579
 580/**
 581 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
 582 * @queue: pointer to rpc_wait_queue
 583 * @task: pointer to rpc_task
 584 * @status: integer error value
 585 *
 586 * If @task is queued on @queue, then it is woken up, and @task->tk_status is
 587 * set to the value of @status.
 588 */
 589void
 590rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
 591		struct rpc_task *task, int status)
 592{
 593	if (!RPC_IS_QUEUED(task))
 594		return;
 595	spin_lock(&queue->lock);
 596	rpc_wake_up_task_queue_set_status_locked(queue, task, status);
 597	spin_unlock(&queue->lock);
 598}
 599
 600/*
 601 * Wake up the next task on a priority queue.
 602 */
 603static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
 604{
 605	struct list_head *q;
 606	struct rpc_task *task;
 607
 608	/*
 609	 * Service the privileged queue.
 610	 */
 611	q = &queue->tasks[RPC_NR_PRIORITY - 1];
 612	if (queue->maxpriority > RPC_PRIORITY_PRIVILEGED && !list_empty(q)) {
 613		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
 614		goto out;
 615	}
 616
 617	/*
 618	 * Service a batch of tasks from a single owner.
 619	 */
 620	q = &queue->tasks[queue->priority];
 621	if (!list_empty(q) && queue->nr) {
 622		queue->nr--;
 623		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
 624		goto out;
 625	}
 626
 627	/*
 628	 * Service the next queue.
 629	 */
 630	do {
 631		if (q == &queue->tasks[0])
 632			q = &queue->tasks[queue->maxpriority];
 633		else
 634			q = q - 1;
 635		if (!list_empty(q)) {
 636			task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
 637			goto new_queue;
 638		}
 639	} while (q != &queue->tasks[queue->priority]);
 640
 641	rpc_reset_waitqueue_priority(queue);
 642	return NULL;
 643
 644new_queue:
 645	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
 646out:
 647	return task;
 648}
 649
 650static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
 651{
 652	if (RPC_IS_PRIORITY(queue))
 653		return __rpc_find_next_queued_priority(queue);
 654	if (!list_empty(&queue->tasks[0]))
 655		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
 656	return NULL;
 657}
 658
 659/*
 660 * Wake up the first task on the wait queue.
 661 */
 662struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
 663		struct rpc_wait_queue *queue,
 664		bool (*func)(struct rpc_task *, void *), void *data)
 665{
 666	struct rpc_task	*task = NULL;
 667
 668	spin_lock(&queue->lock);
 669	task = __rpc_find_next_queued(queue);
 670	if (task != NULL)
 671		task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
 672				task, func, data);
 673	spin_unlock(&queue->lock);
 674
 675	return task;
 676}
 677
 678/*
 679 * Wake up the first task on the wait queue.
 680 */
 681struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
 682		bool (*func)(struct rpc_task *, void *), void *data)
 683{
 684	return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
 685}
 686EXPORT_SYMBOL_GPL(rpc_wake_up_first);
 687
 688static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
 689{
 690	return true;
 691}
 692
 693/*
 694 * Wake up the next task on the wait queue.
 695*/
 696struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
 697{
 698	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
 699}
 700EXPORT_SYMBOL_GPL(rpc_wake_up_next);
 701
 702/**
 703 * rpc_wake_up_locked - wake up all rpc_tasks
 704 * @queue: rpc_wait_queue on which the tasks are sleeping
 705 *
 706 */
 707static void rpc_wake_up_locked(struct rpc_wait_queue *queue)
 708{
 709	struct rpc_task *task;
 710
 711	for (;;) {
 712		task = __rpc_find_next_queued(queue);
 713		if (task == NULL)
 714			break;
 715		rpc_wake_up_task_queue_locked(queue, task);
 716	}
 717}
 718
 719/**
 720 * rpc_wake_up - wake up all rpc_tasks
 721 * @queue: rpc_wait_queue on which the tasks are sleeping
 722 *
 723 * Grabs queue->lock
 724 */
 725void rpc_wake_up(struct rpc_wait_queue *queue)
 726{
 727	spin_lock(&queue->lock);
 728	rpc_wake_up_locked(queue);
 729	spin_unlock(&queue->lock);
 730}
 731EXPORT_SYMBOL_GPL(rpc_wake_up);
 732
 733/**
 734 * rpc_wake_up_status_locked - wake up all rpc_tasks and set their status value.
 735 * @queue: rpc_wait_queue on which the tasks are sleeping
 736 * @status: status value to set
 737 */
 738static void rpc_wake_up_status_locked(struct rpc_wait_queue *queue, int status)
 739{
 740	struct rpc_task *task;
 741
 742	for (;;) {
 743		task = __rpc_find_next_queued(queue);
 744		if (task == NULL)
 745			break;
 746		rpc_wake_up_task_queue_set_status_locked(queue, task, status);
 747	}
 748}
 749
 750/**
 751 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
 752 * @queue: rpc_wait_queue on which the tasks are sleeping
 753 * @status: status value to set
 754 *
 755 * Grabs queue->lock
 756 */
 757void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
 758{
 759	spin_lock(&queue->lock);
 760	rpc_wake_up_status_locked(queue, status);
 761	spin_unlock(&queue->lock);
 762}
 763EXPORT_SYMBOL_GPL(rpc_wake_up_status);
 764
 765static void __rpc_queue_timer_fn(struct work_struct *work)
 766{
 767	struct rpc_wait_queue *queue = container_of(work,
 768			struct rpc_wait_queue,
 769			timer_list.dwork.work);
 770	struct rpc_task *task, *n;
 771	unsigned long expires, now, timeo;
 772
 773	spin_lock(&queue->lock);
 774	expires = now = jiffies;
 775	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
 776		timeo = task->tk_timeout;
 777		if (time_after_eq(now, timeo)) {
 778			trace_rpc_task_timeout(task, task->tk_action);
 779			task->tk_status = -ETIMEDOUT;
 780			rpc_wake_up_task_queue_locked(queue, task);
 781			continue;
 782		}
 783		if (expires == now || time_after(expires, timeo))
 784			expires = timeo;
 785	}
 786	if (!list_empty(&queue->timer_list.list))
 787		rpc_set_queue_timer(queue, expires);
 788	spin_unlock(&queue->lock);
 789}
 790
 791static void __rpc_atrun(struct rpc_task *task)
 792{
 793	if (task->tk_status == -ETIMEDOUT)
 794		task->tk_status = 0;
 795}
 796
 797/*
 798 * Run a task at a later time
 799 */
 800void rpc_delay(struct rpc_task *task, unsigned long delay)
 801{
 802	rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
 803}
 804EXPORT_SYMBOL_GPL(rpc_delay);
 805
 806/*
 807 * Helper to call task->tk_ops->rpc_call_prepare
 808 */
 809void rpc_prepare_task(struct rpc_task *task)
 810{
 811	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
 812}
 813
 814static void
 815rpc_init_task_statistics(struct rpc_task *task)
 816{
 817	/* Initialize retry counters */
 818	task->tk_garb_retry = 2;
 819	task->tk_cred_retry = 2;
 820	task->tk_rebind_retry = 2;
 821
 822	/* starting timestamp */
 823	task->tk_start = ktime_get();
 824}
 825
 826static void
 827rpc_reset_task_statistics(struct rpc_task *task)
 828{
 829	task->tk_timeouts = 0;
 830	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
 831	rpc_init_task_statistics(task);
 832}
 833
 834/*
 835 * Helper that calls task->tk_ops->rpc_call_done if it exists
 836 */
 837void rpc_exit_task(struct rpc_task *task)
 838{
 839	trace_rpc_task_end(task, task->tk_action);
 840	task->tk_action = NULL;
 841	if (task->tk_ops->rpc_count_stats)
 842		task->tk_ops->rpc_count_stats(task, task->tk_calldata);
 843	else if (task->tk_client)
 844		rpc_count_iostats(task, task->tk_client->cl_metrics);
 845	if (task->tk_ops->rpc_call_done != NULL) {
 846		trace_rpc_task_call_done(task, task->tk_ops->rpc_call_done);
 847		task->tk_ops->rpc_call_done(task, task->tk_calldata);
 848		if (task->tk_action != NULL) {
 849			/* Always release the RPC slot and buffer memory */
 850			xprt_release(task);
 851			rpc_reset_task_statistics(task);
 852		}
 853	}
 854}
 855
 856void rpc_signal_task(struct rpc_task *task)
 857{
 858	struct rpc_wait_queue *queue;
 859
 860	if (!RPC_IS_ACTIVATED(task))
 861		return;
 862
 863	if (!rpc_task_set_rpc_status(task, -ERESTARTSYS))
 864		return;
 865	trace_rpc_task_signalled(task, task->tk_action);
 866	set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
 867	smp_mb__after_atomic();
 868	queue = READ_ONCE(task->tk_waitqueue);
 869	if (queue)
 870		rpc_wake_up_queued_task(queue, task);
 871}
 872
 873void rpc_task_try_cancel(struct rpc_task *task, int error)
 874{
 875	struct rpc_wait_queue *queue;
 876
 877	if (!rpc_task_set_rpc_status(task, error))
 878		return;
 879	queue = READ_ONCE(task->tk_waitqueue);
 880	if (queue)
 881		rpc_wake_up_queued_task(queue, task);
 882}
 883
 884void rpc_exit(struct rpc_task *task, int status)
 885{
 886	task->tk_status = status;
 887	task->tk_action = rpc_exit_task;
 888	rpc_wake_up_queued_task(task->tk_waitqueue, task);
 889}
 890EXPORT_SYMBOL_GPL(rpc_exit);
 891
 892void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
 893{
 894	if (ops->rpc_release != NULL)
 895		ops->rpc_release(calldata);
 896}
 897
 898static bool xprt_needs_memalloc(struct rpc_xprt *xprt, struct rpc_task *tk)
 899{
 900	if (!xprt)
 901		return false;
 902	if (!atomic_read(&xprt->swapper))
 903		return false;
 904	return test_bit(XPRT_LOCKED, &xprt->state) && xprt->snd_task == tk;
 905}
 906
 907/*
 908 * This is the RPC `scheduler' (or rather, the finite state machine).
 909 */
 910static void __rpc_execute(struct rpc_task *task)
 911{
 912	struct rpc_wait_queue *queue;
 913	int task_is_async = RPC_IS_ASYNC(task);
 914	int status = 0;
 915	unsigned long pflags = current->flags;
 916
 917	WARN_ON_ONCE(RPC_IS_QUEUED(task));
 918	if (RPC_IS_QUEUED(task))
 919		return;
 920
 921	for (;;) {
 922		void (*do_action)(struct rpc_task *);
 923
 924		/*
 925		 * Perform the next FSM step or a pending callback.
 926		 *
 927		 * tk_action may be NULL if the task has been killed.
 
 
 928		 */
 929		do_action = task->tk_action;
 930		/* Tasks with an RPC error status should exit */
 931		if (do_action != rpc_exit_task &&
 932		    (status = READ_ONCE(task->tk_rpc_status)) != 0) {
 933			task->tk_status = status;
 934			if (do_action != NULL)
 935				do_action = rpc_exit_task;
 936		}
 937		/* Callbacks override all actions */
 938		if (task->tk_callback) {
 939			do_action = task->tk_callback;
 940			task->tk_callback = NULL;
 941		}
 942		if (!do_action)
 943			break;
 944		if (RPC_IS_SWAPPER(task) ||
 945		    xprt_needs_memalloc(task->tk_xprt, task))
 946			current->flags |= PF_MEMALLOC;
 947
 948		trace_rpc_task_run_action(task, do_action);
 949		do_action(task);
 950
 951		/*
 952		 * Lockless check for whether task is sleeping or not.
 953		 */
 954		if (!RPC_IS_QUEUED(task)) {
 955			cond_resched();
 956			continue;
 
 
 
 
 
 
 
 957		}
 958
 959		/*
 960		 * The queue->lock protects against races with
 961		 * rpc_make_runnable().
 962		 *
 963		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
 964		 * rpc_task, rpc_make_runnable() can assign it to a
 965		 * different workqueue. We therefore cannot assume that the
 966		 * rpc_task pointer may still be dereferenced.
 967		 */
 968		queue = task->tk_waitqueue;
 969		spin_lock(&queue->lock);
 970		if (!RPC_IS_QUEUED(task)) {
 971			spin_unlock(&queue->lock);
 972			continue;
 973		}
 974		/* Wake up any task that has an exit status */
 975		if (READ_ONCE(task->tk_rpc_status) != 0) {
 976			rpc_wake_up_task_queue_locked(queue, task);
 977			spin_unlock(&queue->lock);
 978			continue;
 979		}
 980		rpc_clear_running(task);
 981		spin_unlock(&queue->lock);
 982		if (task_is_async)
 983			goto out;
 984
 985		/* sync task: sleep here */
 986		trace_rpc_task_sync_sleep(task, task->tk_action);
 987		status = out_of_line_wait_on_bit(&task->tk_runstate,
 988				RPC_TASK_QUEUED, rpc_wait_bit_killable,
 989				TASK_KILLABLE|TASK_FREEZABLE);
 990		if (status < 0) {
 991			/*
 992			 * When a sync task receives a signal, it exits with
 993			 * -ERESTARTSYS. In order to catch any callbacks that
 994			 * clean up after sleeping on some queue, we don't
 995			 * break the loop here, but go around once more.
 996			 */
 997			rpc_signal_task(task);
 
 
 
 998		}
 999		trace_rpc_task_sync_wake(task, task->tk_action);
1000	}
1001
1002	/* Release all resources associated with the task */
1003	rpc_release_task(task);
1004out:
1005	current_restore_flags(pflags, PF_MEMALLOC);
1006}
1007
1008/*
1009 * User-visible entry point to the scheduler.
1010 *
1011 * This may be called recursively if e.g. an async NFS task updates
1012 * the attributes and finds that dirty pages must be flushed.
1013 * NOTE: Upon exit of this function the task is guaranteed to be
1014 *	 released. In particular note that tk_release() will have
1015 *	 been called, so your task memory may have been freed.
1016 */
1017void rpc_execute(struct rpc_task *task)
1018{
1019	bool is_async = RPC_IS_ASYNC(task);
1020
1021	rpc_set_active(task);
1022	rpc_make_runnable(rpciod_workqueue, task);
1023	if (!is_async) {
1024		unsigned int pflags = memalloc_nofs_save();
1025		__rpc_execute(task);
1026		memalloc_nofs_restore(pflags);
1027	}
1028}
1029
1030static void rpc_async_schedule(struct work_struct *work)
1031{
1032	unsigned int pflags = memalloc_nofs_save();
1033
1034	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
1035	memalloc_nofs_restore(pflags);
1036}
1037
1038/**
1039 * rpc_malloc - allocate RPC buffer resources
1040 * @task: RPC task
1041 *
1042 * A single memory region is allocated, which is split between the
1043 * RPC call and RPC reply that this task is being used for. When
1044 * this RPC is retired, the memory is released by calling rpc_free.
1045 *
1046 * To prevent rpciod from hanging, this allocator never sleeps,
1047 * returning -ENOMEM and suppressing warning if the request cannot
1048 * be serviced immediately. The caller can arrange to sleep in a
1049 * way that is safe for rpciod.
1050 *
1051 * Most requests are 'small' (under 2KiB) and can be serviced from a
1052 * mempool, ensuring that NFS reads and writes can always proceed,
1053 * and that there is good locality of reference for these buffers.
1054 */
1055int rpc_malloc(struct rpc_task *task)
1056{
1057	struct rpc_rqst *rqst = task->tk_rqstp;
1058	size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1059	struct rpc_buffer *buf;
1060	gfp_t gfp = rpc_task_gfp_mask();
 
 
 
1061
1062	size += sizeof(struct rpc_buffer);
1063	if (size <= RPC_BUFFER_MAXSIZE) {
1064		buf = kmem_cache_alloc(rpc_buffer_slabp, gfp);
1065		/* Reach for the mempool if dynamic allocation fails */
1066		if (!buf && RPC_IS_ASYNC(task))
1067			buf = mempool_alloc(rpc_buffer_mempool, GFP_NOWAIT);
1068	} else
1069		buf = kmalloc(size, gfp);
1070
1071	if (!buf)
1072		return -ENOMEM;
1073
1074	buf->len = size;
1075	rqst->rq_buffer = buf->data;
1076	rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1077	return 0;
1078}
1079EXPORT_SYMBOL_GPL(rpc_malloc);
1080
1081/**
1082 * rpc_free - free RPC buffer resources allocated via rpc_malloc
1083 * @task: RPC task
1084 *
1085 */
1086void rpc_free(struct rpc_task *task)
1087{
1088	void *buffer = task->tk_rqstp->rq_buffer;
1089	size_t size;
1090	struct rpc_buffer *buf;
1091
1092	buf = container_of(buffer, struct rpc_buffer, data);
1093	size = buf->len;
1094
1095	if (size <= RPC_BUFFER_MAXSIZE)
1096		mempool_free(buf, rpc_buffer_mempool);
1097	else
1098		kfree(buf);
1099}
1100EXPORT_SYMBOL_GPL(rpc_free);
1101
1102/*
1103 * Creation and deletion of RPC task structures
1104 */
1105static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1106{
1107	memset(task, 0, sizeof(*task));
1108	atomic_set(&task->tk_count, 1);
1109	task->tk_flags  = task_setup_data->flags;
1110	task->tk_ops = task_setup_data->callback_ops;
1111	task->tk_calldata = task_setup_data->callback_data;
1112	INIT_LIST_HEAD(&task->tk_task);
1113
1114	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1115	task->tk_owner = current->tgid;
1116
1117	/* Initialize workqueue for async tasks */
1118	task->tk_workqueue = task_setup_data->workqueue;
1119
1120	task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1121			xprt_get(task_setup_data->rpc_xprt));
1122
1123	task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1124
1125	if (task->tk_ops->rpc_call_prepare != NULL)
1126		task->tk_action = rpc_prepare_task;
1127
1128	rpc_init_task_statistics(task);
1129}
1130
1131static struct rpc_task *rpc_alloc_task(void)
 
1132{
1133	struct rpc_task *task;
1134
1135	task = kmem_cache_alloc(rpc_task_slabp, rpc_task_gfp_mask());
1136	if (task)
1137		return task;
1138	return mempool_alloc(rpc_task_mempool, GFP_NOWAIT);
1139}
1140
1141/*
1142 * Create a new task for the specified client.
1143 */
1144struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1145{
1146	struct rpc_task	*task = setup_data->task;
1147	unsigned short flags = 0;
1148
1149	if (task == NULL) {
1150		task = rpc_alloc_task();
1151		if (task == NULL) {
1152			rpc_release_calldata(setup_data->callback_ops,
1153					     setup_data->callback_data);
1154			return ERR_PTR(-ENOMEM);
1155		}
1156		flags = RPC_TASK_DYNAMIC;
1157	}
1158
1159	rpc_init_task(task, setup_data);
1160	task->tk_flags |= flags;
1161	return task;
1162}
1163
1164/*
1165 * rpc_free_task - release rpc task and perform cleanups
1166 *
1167 * Note that we free up the rpc_task _after_ rpc_release_calldata()
1168 * in order to work around a workqueue dependency issue.
1169 *
1170 * Tejun Heo states:
1171 * "Workqueue currently considers two work items to be the same if they're
1172 * on the same address and won't execute them concurrently - ie. it
1173 * makes a work item which is queued again while being executed wait
1174 * for the previous execution to complete.
1175 *
1176 * If a work function frees the work item, and then waits for an event
1177 * which should be performed by another work item and *that* work item
1178 * recycles the freed work item, it can create a false dependency loop.
1179 * There really is no reliable way to detect this short of verifying
1180 * every memory free."
1181 *
1182 */
1183static void rpc_free_task(struct rpc_task *task)
1184{
1185	unsigned short tk_flags = task->tk_flags;
1186
1187	put_rpccred(task->tk_op_cred);
1188	rpc_release_calldata(task->tk_ops, task->tk_calldata);
1189
1190	if (tk_flags & RPC_TASK_DYNAMIC)
1191		mempool_free(task, rpc_task_mempool);
1192}
1193
1194static void rpc_async_release(struct work_struct *work)
1195{
1196	unsigned int pflags = memalloc_nofs_save();
1197
1198	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1199	memalloc_nofs_restore(pflags);
1200}
1201
1202static void rpc_release_resources_task(struct rpc_task *task)
1203{
1204	xprt_release(task);
1205	if (task->tk_msg.rpc_cred) {
1206		if (!(task->tk_flags & RPC_TASK_CRED_NOREF))
1207			put_cred(task->tk_msg.rpc_cred);
1208		task->tk_msg.rpc_cred = NULL;
1209	}
1210	rpc_task_release_client(task);
1211}
1212
1213static void rpc_final_put_task(struct rpc_task *task,
1214		struct workqueue_struct *q)
1215{
1216	if (q != NULL) {
1217		INIT_WORK(&task->u.tk_work, rpc_async_release);
1218		queue_work(q, &task->u.tk_work);
1219	} else
1220		rpc_free_task(task);
1221}
1222
1223static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1224{
1225	if (atomic_dec_and_test(&task->tk_count)) {
1226		rpc_release_resources_task(task);
1227		rpc_final_put_task(task, q);
1228	}
1229}
1230
1231void rpc_put_task(struct rpc_task *task)
1232{
1233	rpc_do_put_task(task, NULL);
1234}
1235EXPORT_SYMBOL_GPL(rpc_put_task);
1236
1237void rpc_put_task_async(struct rpc_task *task)
1238{
1239	rpc_do_put_task(task, task->tk_workqueue);
1240}
1241EXPORT_SYMBOL_GPL(rpc_put_task_async);
1242
1243static void rpc_release_task(struct rpc_task *task)
1244{
1245	WARN_ON_ONCE(RPC_IS_QUEUED(task));
1246
1247	rpc_release_resources_task(task);
1248
1249	/*
1250	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1251	 * so it should be safe to use task->tk_count as a test for whether
1252	 * or not any other processes still hold references to our rpc_task.
1253	 */
1254	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1255		/* Wake up anyone who may be waiting for task completion */
1256		if (!rpc_complete_task(task))
1257			return;
1258	} else {
1259		if (!atomic_dec_and_test(&task->tk_count))
1260			return;
1261	}
1262	rpc_final_put_task(task, task->tk_workqueue);
1263}
1264
1265int rpciod_up(void)
1266{
1267	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1268}
1269
1270void rpciod_down(void)
1271{
1272	module_put(THIS_MODULE);
1273}
1274
1275/*
1276 * Start up the rpciod workqueue.
1277 */
1278static int rpciod_start(void)
1279{
1280	struct workqueue_struct *wq;
1281
1282	/*
1283	 * Create the rpciod thread and wait for it to start.
1284	 */
1285	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1286	if (!wq)
1287		goto out_failed;
1288	rpciod_workqueue = wq;
1289	wq = alloc_workqueue("xprtiod", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
 
1290	if (!wq)
1291		goto free_rpciod;
1292	xprtiod_workqueue = wq;
1293	return 1;
1294free_rpciod:
1295	wq = rpciod_workqueue;
1296	rpciod_workqueue = NULL;
1297	destroy_workqueue(wq);
1298out_failed:
1299	return 0;
1300}
1301
1302static void rpciod_stop(void)
1303{
1304	struct workqueue_struct *wq = NULL;
1305
1306	if (rpciod_workqueue == NULL)
1307		return;
1308
1309	wq = rpciod_workqueue;
1310	rpciod_workqueue = NULL;
1311	destroy_workqueue(wq);
1312	wq = xprtiod_workqueue;
1313	xprtiod_workqueue = NULL;
1314	destroy_workqueue(wq);
1315}
1316
1317void
1318rpc_destroy_mempool(void)
1319{
1320	rpciod_stop();
1321	mempool_destroy(rpc_buffer_mempool);
1322	mempool_destroy(rpc_task_mempool);
1323	kmem_cache_destroy(rpc_task_slabp);
1324	kmem_cache_destroy(rpc_buffer_slabp);
1325	rpc_destroy_wait_queue(&delay_queue);
1326}
1327
1328int
1329rpc_init_mempool(void)
1330{
1331	/*
1332	 * The following is not strictly a mempool initialisation,
1333	 * but there is no harm in doing it here
1334	 */
1335	rpc_init_wait_queue(&delay_queue, "delayq");
1336	if (!rpciod_start())
1337		goto err_nomem;
1338
1339	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1340					     sizeof(struct rpc_task),
1341					     0, SLAB_HWCACHE_ALIGN,
1342					     NULL);
1343	if (!rpc_task_slabp)
1344		goto err_nomem;
1345	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1346					     RPC_BUFFER_MAXSIZE,
1347					     0, SLAB_HWCACHE_ALIGN,
1348					     NULL);
1349	if (!rpc_buffer_slabp)
1350		goto err_nomem;
1351	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1352						    rpc_task_slabp);
1353	if (!rpc_task_mempool)
1354		goto err_nomem;
1355	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1356						      rpc_buffer_slabp);
1357	if (!rpc_buffer_mempool)
1358		goto err_nomem;
1359	return 0;
1360err_nomem:
1361	rpc_destroy_mempool();
1362	return -ENOMEM;
1363}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/net/sunrpc/sched.c
   4 *
   5 * Scheduling for synchronous and asynchronous RPC requests.
   6 *
   7 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
   8 *
   9 * TCP NFS related read + write fixes
  10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
  11 */
  12
  13#include <linux/module.h>
  14
  15#include <linux/sched.h>
  16#include <linux/interrupt.h>
  17#include <linux/slab.h>
  18#include <linux/mempool.h>
  19#include <linux/smp.h>
  20#include <linux/spinlock.h>
  21#include <linux/mutex.h>
  22#include <linux/freezer.h>
  23#include <linux/sched/mm.h>
  24
  25#include <linux/sunrpc/clnt.h>
  26#include <linux/sunrpc/metrics.h>
  27
  28#include "sunrpc.h"
  29
  30#define CREATE_TRACE_POINTS
  31#include <trace/events/sunrpc.h>
  32
  33/*
  34 * RPC slabs and memory pools
  35 */
  36#define RPC_BUFFER_MAXSIZE	(2048)
  37#define RPC_BUFFER_POOLSIZE	(8)
  38#define RPC_TASK_POOLSIZE	(8)
  39static struct kmem_cache	*rpc_task_slabp __read_mostly;
  40static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
  41static mempool_t	*rpc_task_mempool __read_mostly;
  42static mempool_t	*rpc_buffer_mempool __read_mostly;
  43
  44static void			rpc_async_schedule(struct work_struct *);
  45static void			 rpc_release_task(struct rpc_task *task);
  46static void __rpc_queue_timer_fn(struct work_struct *);
  47
  48/*
  49 * RPC tasks sit here while waiting for conditions to improve.
  50 */
  51static struct rpc_wait_queue delay_queue;
  52
  53/*
  54 * rpciod-related stuff
  55 */
  56struct workqueue_struct *rpciod_workqueue __read_mostly;
  57struct workqueue_struct *xprtiod_workqueue __read_mostly;
  58EXPORT_SYMBOL_GPL(xprtiod_workqueue);
  59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60unsigned long
  61rpc_task_timeout(const struct rpc_task *task)
  62{
  63	unsigned long timeout = READ_ONCE(task->tk_timeout);
  64
  65	if (timeout != 0) {
  66		unsigned long now = jiffies;
  67		if (time_before(now, timeout))
  68			return timeout - now;
  69	}
  70	return 0;
  71}
  72EXPORT_SYMBOL_GPL(rpc_task_timeout);
  73
  74/*
  75 * Disable the timer for a given RPC task. Should be called with
  76 * queue->lock and bh_disabled in order to avoid races within
  77 * rpc_run_timer().
  78 */
  79static void
  80__rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  81{
  82	if (list_empty(&task->u.tk_wait.timer_list))
  83		return;
  84	task->tk_timeout = 0;
  85	list_del(&task->u.tk_wait.timer_list);
  86	if (list_empty(&queue->timer_list.list))
  87		cancel_delayed_work(&queue->timer_list.dwork);
  88}
  89
  90static void
  91rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
  92{
  93	unsigned long now = jiffies;
  94	queue->timer_list.expires = expires;
  95	if (time_before_eq(expires, now))
  96		expires = 0;
  97	else
  98		expires -= now;
  99	mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
 100}
 101
 102/*
 103 * Set up a timer for the current task.
 104 */
 105static void
 106__rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
 107		unsigned long timeout)
 108{
 109	task->tk_timeout = timeout;
 110	if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
 111		rpc_set_queue_timer(queue, timeout);
 112	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
 113}
 114
 115static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
 116{
 117	if (queue->priority != priority) {
 118		queue->priority = priority;
 119		queue->nr = 1U << priority;
 120	}
 121}
 122
 123static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
 124{
 125	rpc_set_waitqueue_priority(queue, queue->maxpriority);
 126}
 127
 128/*
 129 * Add a request to a queue list
 130 */
 131static void
 132__rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
 133{
 134	struct rpc_task *t;
 135
 136	list_for_each_entry(t, q, u.tk_wait.list) {
 137		if (t->tk_owner == task->tk_owner) {
 138			list_add_tail(&task->u.tk_wait.links,
 139					&t->u.tk_wait.links);
 140			/* Cache the queue head in task->u.tk_wait.list */
 141			task->u.tk_wait.list.next = q;
 142			task->u.tk_wait.list.prev = NULL;
 143			return;
 144		}
 145	}
 146	INIT_LIST_HEAD(&task->u.tk_wait.links);
 147	list_add_tail(&task->u.tk_wait.list, q);
 148}
 149
 150/*
 151 * Remove request from a queue list
 152 */
 153static void
 154__rpc_list_dequeue_task(struct rpc_task *task)
 155{
 156	struct list_head *q;
 157	struct rpc_task *t;
 158
 159	if (task->u.tk_wait.list.prev == NULL) {
 160		list_del(&task->u.tk_wait.links);
 161		return;
 162	}
 163	if (!list_empty(&task->u.tk_wait.links)) {
 164		t = list_first_entry(&task->u.tk_wait.links,
 165				struct rpc_task,
 166				u.tk_wait.links);
 167		/* Assume __rpc_list_enqueue_task() cached the queue head */
 168		q = t->u.tk_wait.list.next;
 169		list_add_tail(&t->u.tk_wait.list, q);
 170		list_del(&task->u.tk_wait.links);
 171	}
 172	list_del(&task->u.tk_wait.list);
 173}
 174
 175/*
 176 * Add new request to a priority queue.
 177 */
 178static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
 179		struct rpc_task *task,
 180		unsigned char queue_priority)
 181{
 182	if (unlikely(queue_priority > queue->maxpriority))
 183		queue_priority = queue->maxpriority;
 184	__rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
 185}
 186
 187/*
 188 * Add new request to wait queue.
 189 *
 190 * Swapper tasks always get inserted at the head of the queue.
 191 * This should avoid many nasty memory deadlocks and hopefully
 192 * improve overall performance.
 193 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
 194 */
 195static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
 196		struct rpc_task *task,
 197		unsigned char queue_priority)
 198{
 199	INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
 200	if (RPC_IS_PRIORITY(queue))
 201		__rpc_add_wait_queue_priority(queue, task, queue_priority);
 202	else if (RPC_IS_SWAPPER(task))
 203		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
 204	else
 205		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
 206	task->tk_waitqueue = queue;
 207	queue->qlen++;
 208	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
 209	smp_wmb();
 210	rpc_set_queued(task);
 211}
 212
 213/*
 214 * Remove request from a priority queue.
 215 */
 216static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
 217{
 218	__rpc_list_dequeue_task(task);
 219}
 220
 221/*
 222 * Remove request from queue.
 223 * Note: must be called with spin lock held.
 224 */
 225static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
 226{
 227	__rpc_disable_timer(queue, task);
 228	if (RPC_IS_PRIORITY(queue))
 229		__rpc_remove_wait_queue_priority(task);
 230	else
 231		list_del(&task->u.tk_wait.list);
 232	queue->qlen--;
 233}
 234
 235static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
 236{
 237	int i;
 238
 239	spin_lock_init(&queue->lock);
 240	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
 241		INIT_LIST_HEAD(&queue->tasks[i]);
 242	queue->maxpriority = nr_queues - 1;
 243	rpc_reset_waitqueue_priority(queue);
 244	queue->qlen = 0;
 245	queue->timer_list.expires = 0;
 246	INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
 247	INIT_LIST_HEAD(&queue->timer_list.list);
 248	rpc_assign_waitqueue_name(queue, qname);
 249}
 250
 251void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 252{
 253	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
 254}
 255EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
 256
 257void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 258{
 259	__rpc_init_priority_wait_queue(queue, qname, 1);
 260}
 261EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
 262
 263void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
 264{
 265	cancel_delayed_work_sync(&queue->timer_list.dwork);
 266}
 267EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
 268
 269static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
 270{
 271	freezable_schedule_unsafe();
 272	if (signal_pending_state(mode, current))
 273		return -ERESTARTSYS;
 274	return 0;
 275}
 276
 277#if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
 278static void rpc_task_set_debuginfo(struct rpc_task *task)
 279{
 280	static atomic_t rpc_pid;
 
 
 
 
 
 
 
 
 281
 282	task->tk_pid = atomic_inc_return(&rpc_pid);
 283}
 284#else
 285static inline void rpc_task_set_debuginfo(struct rpc_task *task)
 286{
 287}
 288#endif
 289
 290static void rpc_set_active(struct rpc_task *task)
 291{
 292	rpc_task_set_debuginfo(task);
 293	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 294	trace_rpc_task_begin(task, NULL);
 295}
 296
 297/*
 298 * Mark an RPC call as having completed by clearing the 'active' bit
 299 * and then waking up all tasks that were sleeping.
 300 */
 301static int rpc_complete_task(struct rpc_task *task)
 302{
 303	void *m = &task->tk_runstate;
 304	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
 305	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
 306	unsigned long flags;
 307	int ret;
 308
 309	trace_rpc_task_complete(task, NULL);
 310
 311	spin_lock_irqsave(&wq->lock, flags);
 312	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 313	ret = atomic_dec_and_test(&task->tk_count);
 314	if (waitqueue_active(wq))
 315		__wake_up_locked_key(wq, TASK_NORMAL, &k);
 316	spin_unlock_irqrestore(&wq->lock, flags);
 317	return ret;
 318}
 319
 320/*
 321 * Allow callers to wait for completion of an RPC call
 322 *
 323 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
 324 * to enforce taking of the wq->lock and hence avoid races with
 325 * rpc_complete_task().
 326 */
 327int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
 328{
 329	if (action == NULL)
 330		action = rpc_wait_bit_killable;
 331	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
 332			action, TASK_KILLABLE);
 333}
 334EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
 335
 336/*
 337 * Make an RPC task runnable.
 338 *
 339 * Note: If the task is ASYNC, and is being made runnable after sitting on an
 340 * rpc_wait_queue, this must be called with the queue spinlock held to protect
 341 * the wait queue operation.
 342 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
 343 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
 344 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
 345 * the RPC_TASK_RUNNING flag.
 346 */
 347static void rpc_make_runnable(struct workqueue_struct *wq,
 348		struct rpc_task *task)
 349{
 350	bool need_wakeup = !rpc_test_and_set_running(task);
 351
 352	rpc_clear_queued(task);
 353	if (!need_wakeup)
 354		return;
 355	if (RPC_IS_ASYNC(task)) {
 356		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
 357		queue_work(wq, &task->u.tk_work);
 358	} else
 359		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
 360}
 361
 362/*
 363 * Prepare for sleeping on a wait queue.
 364 * By always appending tasks to the list we ensure FIFO behavior.
 365 * NB: An RPC task will only receive interrupt-driven events as long
 366 * as it's on a wait queue.
 367 */
 368static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q,
 369		struct rpc_task *task,
 370		unsigned char queue_priority)
 371{
 372	trace_rpc_task_sleep(task, q);
 373
 374	__rpc_add_wait_queue(q, task, queue_priority);
 375}
 376
 377static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
 378		struct rpc_task *task,
 379		unsigned char queue_priority)
 380{
 381	if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
 382		return;
 383	__rpc_do_sleep_on_priority(q, task, queue_priority);
 384}
 385
 386static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
 387		struct rpc_task *task, unsigned long timeout,
 388		unsigned char queue_priority)
 389{
 390	if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
 391		return;
 392	if (time_is_after_jiffies(timeout)) {
 393		__rpc_do_sleep_on_priority(q, task, queue_priority);
 394		__rpc_add_timer(q, task, timeout);
 395	} else
 396		task->tk_status = -ETIMEDOUT;
 397}
 398
 399static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
 400{
 401	if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
 402		task->tk_callback = action;
 403}
 404
 405static bool rpc_sleep_check_activated(struct rpc_task *task)
 406{
 407	/* We shouldn't ever put an inactive task to sleep */
 408	if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
 409		task->tk_status = -EIO;
 410		rpc_put_task_async(task);
 411		return false;
 412	}
 413	return true;
 414}
 415
 416void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
 417				rpc_action action, unsigned long timeout)
 418{
 419	if (!rpc_sleep_check_activated(task))
 420		return;
 421
 422	rpc_set_tk_callback(task, action);
 423
 424	/*
 425	 * Protect the queue operations.
 426	 */
 427	spin_lock(&q->lock);
 428	__rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
 429	spin_unlock(&q->lock);
 430}
 431EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
 432
 433void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
 434				rpc_action action)
 435{
 436	if (!rpc_sleep_check_activated(task))
 437		return;
 438
 439	rpc_set_tk_callback(task, action);
 440
 441	WARN_ON_ONCE(task->tk_timeout != 0);
 442	/*
 443	 * Protect the queue operations.
 444	 */
 445	spin_lock(&q->lock);
 446	__rpc_sleep_on_priority(q, task, task->tk_priority);
 447	spin_unlock(&q->lock);
 448}
 449EXPORT_SYMBOL_GPL(rpc_sleep_on);
 450
 451void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
 452		struct rpc_task *task, unsigned long timeout, int priority)
 453{
 454	if (!rpc_sleep_check_activated(task))
 455		return;
 456
 457	priority -= RPC_PRIORITY_LOW;
 458	/*
 459	 * Protect the queue operations.
 460	 */
 461	spin_lock(&q->lock);
 462	__rpc_sleep_on_priority_timeout(q, task, timeout, priority);
 463	spin_unlock(&q->lock);
 464}
 465EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
 466
 467void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
 468		int priority)
 469{
 470	if (!rpc_sleep_check_activated(task))
 471		return;
 472
 473	WARN_ON_ONCE(task->tk_timeout != 0);
 474	priority -= RPC_PRIORITY_LOW;
 475	/*
 476	 * Protect the queue operations.
 477	 */
 478	spin_lock(&q->lock);
 479	__rpc_sleep_on_priority(q, task, priority);
 480	spin_unlock(&q->lock);
 481}
 482EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
 483
 484/**
 485 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
 486 * @wq: workqueue on which to run task
 487 * @queue: wait queue
 488 * @task: task to be woken up
 489 *
 490 * Caller must hold queue->lock, and have cleared the task queued flag.
 491 */
 492static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
 493		struct rpc_wait_queue *queue,
 494		struct rpc_task *task)
 495{
 496	/* Has the task been executed yet? If not, we cannot wake it up! */
 497	if (!RPC_IS_ACTIVATED(task)) {
 498		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
 499		return;
 500	}
 501
 502	trace_rpc_task_wakeup(task, queue);
 503
 504	__rpc_remove_wait_queue(queue, task);
 505
 506	rpc_make_runnable(wq, task);
 507}
 508
 509/*
 510 * Wake up a queued task while the queue lock is being held
 511 */
 512static struct rpc_task *
 513rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
 514		struct rpc_wait_queue *queue, struct rpc_task *task,
 515		bool (*action)(struct rpc_task *, void *), void *data)
 516{
 517	if (RPC_IS_QUEUED(task)) {
 518		smp_rmb();
 519		if (task->tk_waitqueue == queue) {
 520			if (action == NULL || action(task, data)) {
 521				__rpc_do_wake_up_task_on_wq(wq, queue, task);
 522				return task;
 523			}
 524		}
 525	}
 526	return NULL;
 527}
 528
 529/*
 530 * Wake up a queued task while the queue lock is being held
 531 */
 532static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
 533					  struct rpc_task *task)
 534{
 535	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
 536						   task, NULL, NULL);
 537}
 538
 539/*
 540 * Wake up a task on a specific queue
 541 */
 542void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
 543{
 544	if (!RPC_IS_QUEUED(task))
 545		return;
 546	spin_lock(&queue->lock);
 547	rpc_wake_up_task_queue_locked(queue, task);
 548	spin_unlock(&queue->lock);
 549}
 550EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
 551
 552static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
 553{
 554	task->tk_status = *(int *)status;
 555	return true;
 556}
 557
 558static void
 559rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
 560		struct rpc_task *task, int status)
 561{
 562	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
 563			task, rpc_task_action_set_status, &status);
 564}
 565
 566/**
 567 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
 568 * @queue: pointer to rpc_wait_queue
 569 * @task: pointer to rpc_task
 570 * @status: integer error value
 571 *
 572 * If @task is queued on @queue, then it is woken up, and @task->tk_status is
 573 * set to the value of @status.
 574 */
 575void
 576rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
 577		struct rpc_task *task, int status)
 578{
 579	if (!RPC_IS_QUEUED(task))
 580		return;
 581	spin_lock(&queue->lock);
 582	rpc_wake_up_task_queue_set_status_locked(queue, task, status);
 583	spin_unlock(&queue->lock);
 584}
 585
 586/*
 587 * Wake up the next task on a priority queue.
 588 */
 589static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
 590{
 591	struct list_head *q;
 592	struct rpc_task *task;
 593
 594	/*
 595	 * Service the privileged queue.
 596	 */
 597	q = &queue->tasks[RPC_NR_PRIORITY - 1];
 598	if (queue->maxpriority > RPC_PRIORITY_PRIVILEGED && !list_empty(q)) {
 599		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
 600		goto out;
 601	}
 602
 603	/*
 604	 * Service a batch of tasks from a single owner.
 605	 */
 606	q = &queue->tasks[queue->priority];
 607	if (!list_empty(q) && queue->nr) {
 608		queue->nr--;
 609		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
 610		goto out;
 611	}
 612
 613	/*
 614	 * Service the next queue.
 615	 */
 616	do {
 617		if (q == &queue->tasks[0])
 618			q = &queue->tasks[queue->maxpriority];
 619		else
 620			q = q - 1;
 621		if (!list_empty(q)) {
 622			task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
 623			goto new_queue;
 624		}
 625	} while (q != &queue->tasks[queue->priority]);
 626
 627	rpc_reset_waitqueue_priority(queue);
 628	return NULL;
 629
 630new_queue:
 631	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
 632out:
 633	return task;
 634}
 635
 636static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
 637{
 638	if (RPC_IS_PRIORITY(queue))
 639		return __rpc_find_next_queued_priority(queue);
 640	if (!list_empty(&queue->tasks[0]))
 641		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
 642	return NULL;
 643}
 644
 645/*
 646 * Wake up the first task on the wait queue.
 647 */
 648struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
 649		struct rpc_wait_queue *queue,
 650		bool (*func)(struct rpc_task *, void *), void *data)
 651{
 652	struct rpc_task	*task = NULL;
 653
 654	spin_lock(&queue->lock);
 655	task = __rpc_find_next_queued(queue);
 656	if (task != NULL)
 657		task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
 658				task, func, data);
 659	spin_unlock(&queue->lock);
 660
 661	return task;
 662}
 663
 664/*
 665 * Wake up the first task on the wait queue.
 666 */
 667struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
 668		bool (*func)(struct rpc_task *, void *), void *data)
 669{
 670	return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
 671}
 672EXPORT_SYMBOL_GPL(rpc_wake_up_first);
 673
 674static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
 675{
 676	return true;
 677}
 678
 679/*
 680 * Wake up the next task on the wait queue.
 681*/
 682struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
 683{
 684	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
 685}
 686EXPORT_SYMBOL_GPL(rpc_wake_up_next);
 687
 688/**
 689 * rpc_wake_up_locked - wake up all rpc_tasks
 690 * @queue: rpc_wait_queue on which the tasks are sleeping
 691 *
 692 */
 693static void rpc_wake_up_locked(struct rpc_wait_queue *queue)
 694{
 695	struct rpc_task *task;
 696
 697	for (;;) {
 698		task = __rpc_find_next_queued(queue);
 699		if (task == NULL)
 700			break;
 701		rpc_wake_up_task_queue_locked(queue, task);
 702	}
 703}
 704
 705/**
 706 * rpc_wake_up - wake up all rpc_tasks
 707 * @queue: rpc_wait_queue on which the tasks are sleeping
 708 *
 709 * Grabs queue->lock
 710 */
 711void rpc_wake_up(struct rpc_wait_queue *queue)
 712{
 713	spin_lock(&queue->lock);
 714	rpc_wake_up_locked(queue);
 715	spin_unlock(&queue->lock);
 716}
 717EXPORT_SYMBOL_GPL(rpc_wake_up);
 718
 719/**
 720 * rpc_wake_up_status_locked - wake up all rpc_tasks and set their status value.
 721 * @queue: rpc_wait_queue on which the tasks are sleeping
 722 * @status: status value to set
 723 */
 724static void rpc_wake_up_status_locked(struct rpc_wait_queue *queue, int status)
 725{
 726	struct rpc_task *task;
 727
 728	for (;;) {
 729		task = __rpc_find_next_queued(queue);
 730		if (task == NULL)
 731			break;
 732		rpc_wake_up_task_queue_set_status_locked(queue, task, status);
 733	}
 734}
 735
 736/**
 737 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
 738 * @queue: rpc_wait_queue on which the tasks are sleeping
 739 * @status: status value to set
 740 *
 741 * Grabs queue->lock
 742 */
 743void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
 744{
 745	spin_lock(&queue->lock);
 746	rpc_wake_up_status_locked(queue, status);
 747	spin_unlock(&queue->lock);
 748}
 749EXPORT_SYMBOL_GPL(rpc_wake_up_status);
 750
 751static void __rpc_queue_timer_fn(struct work_struct *work)
 752{
 753	struct rpc_wait_queue *queue = container_of(work,
 754			struct rpc_wait_queue,
 755			timer_list.dwork.work);
 756	struct rpc_task *task, *n;
 757	unsigned long expires, now, timeo;
 758
 759	spin_lock(&queue->lock);
 760	expires = now = jiffies;
 761	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
 762		timeo = task->tk_timeout;
 763		if (time_after_eq(now, timeo)) {
 764			trace_rpc_task_timeout(task, task->tk_action);
 765			task->tk_status = -ETIMEDOUT;
 766			rpc_wake_up_task_queue_locked(queue, task);
 767			continue;
 768		}
 769		if (expires == now || time_after(expires, timeo))
 770			expires = timeo;
 771	}
 772	if (!list_empty(&queue->timer_list.list))
 773		rpc_set_queue_timer(queue, expires);
 774	spin_unlock(&queue->lock);
 775}
 776
 777static void __rpc_atrun(struct rpc_task *task)
 778{
 779	if (task->tk_status == -ETIMEDOUT)
 780		task->tk_status = 0;
 781}
 782
 783/*
 784 * Run a task at a later time
 785 */
 786void rpc_delay(struct rpc_task *task, unsigned long delay)
 787{
 788	rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
 789}
 790EXPORT_SYMBOL_GPL(rpc_delay);
 791
 792/*
 793 * Helper to call task->tk_ops->rpc_call_prepare
 794 */
 795void rpc_prepare_task(struct rpc_task *task)
 796{
 797	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
 798}
 799
 800static void
 801rpc_init_task_statistics(struct rpc_task *task)
 802{
 803	/* Initialize retry counters */
 804	task->tk_garb_retry = 2;
 805	task->tk_cred_retry = 2;
 806	task->tk_rebind_retry = 2;
 807
 808	/* starting timestamp */
 809	task->tk_start = ktime_get();
 810}
 811
 812static void
 813rpc_reset_task_statistics(struct rpc_task *task)
 814{
 815	task->tk_timeouts = 0;
 816	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
 817	rpc_init_task_statistics(task);
 818}
 819
 820/*
 821 * Helper that calls task->tk_ops->rpc_call_done if it exists
 822 */
 823void rpc_exit_task(struct rpc_task *task)
 824{
 825	trace_rpc_task_end(task, task->tk_action);
 826	task->tk_action = NULL;
 827	if (task->tk_ops->rpc_count_stats)
 828		task->tk_ops->rpc_count_stats(task, task->tk_calldata);
 829	else if (task->tk_client)
 830		rpc_count_iostats(task, task->tk_client->cl_metrics);
 831	if (task->tk_ops->rpc_call_done != NULL) {
 
 832		task->tk_ops->rpc_call_done(task, task->tk_calldata);
 833		if (task->tk_action != NULL) {
 834			/* Always release the RPC slot and buffer memory */
 835			xprt_release(task);
 836			rpc_reset_task_statistics(task);
 837		}
 838	}
 839}
 840
 841void rpc_signal_task(struct rpc_task *task)
 842{
 843	struct rpc_wait_queue *queue;
 844
 845	if (!RPC_IS_ACTIVATED(task))
 846		return;
 847
 
 
 848	trace_rpc_task_signalled(task, task->tk_action);
 849	set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
 850	smp_mb__after_atomic();
 851	queue = READ_ONCE(task->tk_waitqueue);
 852	if (queue)
 853		rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
 
 
 
 
 
 
 
 
 
 
 
 854}
 855
 856void rpc_exit(struct rpc_task *task, int status)
 857{
 858	task->tk_status = status;
 859	task->tk_action = rpc_exit_task;
 860	rpc_wake_up_queued_task(task->tk_waitqueue, task);
 861}
 862EXPORT_SYMBOL_GPL(rpc_exit);
 863
 864void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
 865{
 866	if (ops->rpc_release != NULL)
 867		ops->rpc_release(calldata);
 868}
 869
 
 
 
 
 
 
 
 
 
 870/*
 871 * This is the RPC `scheduler' (or rather, the finite state machine).
 872 */
 873static void __rpc_execute(struct rpc_task *task)
 874{
 875	struct rpc_wait_queue *queue;
 876	int task_is_async = RPC_IS_ASYNC(task);
 877	int status = 0;
 
 878
 879	WARN_ON_ONCE(RPC_IS_QUEUED(task));
 880	if (RPC_IS_QUEUED(task))
 881		return;
 882
 883	for (;;) {
 884		void (*do_action)(struct rpc_task *);
 885
 886		/*
 887		 * Perform the next FSM step or a pending callback.
 888		 *
 889		 * tk_action may be NULL if the task has been killed.
 890		 * In particular, note that rpc_killall_tasks may
 891		 * do this at any time, so beware when dereferencing.
 892		 */
 893		do_action = task->tk_action;
 
 
 
 
 
 
 
 
 894		if (task->tk_callback) {
 895			do_action = task->tk_callback;
 896			task->tk_callback = NULL;
 897		}
 898		if (!do_action)
 899			break;
 
 
 
 
 900		trace_rpc_task_run_action(task, do_action);
 901		do_action(task);
 902
 903		/*
 904		 * Lockless check for whether task is sleeping or not.
 905		 */
 906		if (!RPC_IS_QUEUED(task))
 
 907			continue;
 908
 909		/*
 910		 * Signalled tasks should exit rather than sleep.
 911		 */
 912		if (RPC_SIGNALLED(task)) {
 913			task->tk_rpc_status = -ERESTARTSYS;
 914			rpc_exit(task, -ERESTARTSYS);
 915		}
 916
 917		/*
 918		 * The queue->lock protects against races with
 919		 * rpc_make_runnable().
 920		 *
 921		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
 922		 * rpc_task, rpc_make_runnable() can assign it to a
 923		 * different workqueue. We therefore cannot assume that the
 924		 * rpc_task pointer may still be dereferenced.
 925		 */
 926		queue = task->tk_waitqueue;
 927		spin_lock(&queue->lock);
 928		if (!RPC_IS_QUEUED(task)) {
 929			spin_unlock(&queue->lock);
 930			continue;
 931		}
 
 
 
 
 
 
 932		rpc_clear_running(task);
 933		spin_unlock(&queue->lock);
 934		if (task_is_async)
 935			return;
 936
 937		/* sync task: sleep here */
 938		trace_rpc_task_sync_sleep(task, task->tk_action);
 939		status = out_of_line_wait_on_bit(&task->tk_runstate,
 940				RPC_TASK_QUEUED, rpc_wait_bit_killable,
 941				TASK_KILLABLE);
 942		if (status < 0) {
 943			/*
 944			 * When a sync task receives a signal, it exits with
 945			 * -ERESTARTSYS. In order to catch any callbacks that
 946			 * clean up after sleeping on some queue, we don't
 947			 * break the loop here, but go around once more.
 948			 */
 949			trace_rpc_task_signalled(task, task->tk_action);
 950			set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
 951			task->tk_rpc_status = -ERESTARTSYS;
 952			rpc_exit(task, -ERESTARTSYS);
 953		}
 954		trace_rpc_task_sync_wake(task, task->tk_action);
 955	}
 956
 957	/* Release all resources associated with the task */
 958	rpc_release_task(task);
 
 
 959}
 960
 961/*
 962 * User-visible entry point to the scheduler.
 963 *
 964 * This may be called recursively if e.g. an async NFS task updates
 965 * the attributes and finds that dirty pages must be flushed.
 966 * NOTE: Upon exit of this function the task is guaranteed to be
 967 *	 released. In particular note that tk_release() will have
 968 *	 been called, so your task memory may have been freed.
 969 */
 970void rpc_execute(struct rpc_task *task)
 971{
 972	bool is_async = RPC_IS_ASYNC(task);
 973
 974	rpc_set_active(task);
 975	rpc_make_runnable(rpciod_workqueue, task);
 976	if (!is_async) {
 977		unsigned int pflags = memalloc_nofs_save();
 978		__rpc_execute(task);
 979		memalloc_nofs_restore(pflags);
 980	}
 981}
 982
 983static void rpc_async_schedule(struct work_struct *work)
 984{
 985	unsigned int pflags = memalloc_nofs_save();
 986
 987	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
 988	memalloc_nofs_restore(pflags);
 989}
 990
 991/**
 992 * rpc_malloc - allocate RPC buffer resources
 993 * @task: RPC task
 994 *
 995 * A single memory region is allocated, which is split between the
 996 * RPC call and RPC reply that this task is being used for. When
 997 * this RPC is retired, the memory is released by calling rpc_free.
 998 *
 999 * To prevent rpciod from hanging, this allocator never sleeps,
1000 * returning -ENOMEM and suppressing warning if the request cannot
1001 * be serviced immediately. The caller can arrange to sleep in a
1002 * way that is safe for rpciod.
1003 *
1004 * Most requests are 'small' (under 2KiB) and can be serviced from a
1005 * mempool, ensuring that NFS reads and writes can always proceed,
1006 * and that there is good locality of reference for these buffers.
1007 */
1008int rpc_malloc(struct rpc_task *task)
1009{
1010	struct rpc_rqst *rqst = task->tk_rqstp;
1011	size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1012	struct rpc_buffer *buf;
1013	gfp_t gfp = GFP_NOFS;
1014
1015	if (RPC_IS_SWAPPER(task))
1016		gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
1017
1018	size += sizeof(struct rpc_buffer);
1019	if (size <= RPC_BUFFER_MAXSIZE)
1020		buf = mempool_alloc(rpc_buffer_mempool, gfp);
1021	else
 
 
 
1022		buf = kmalloc(size, gfp);
1023
1024	if (!buf)
1025		return -ENOMEM;
1026
1027	buf->len = size;
1028	rqst->rq_buffer = buf->data;
1029	rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1030	return 0;
1031}
1032EXPORT_SYMBOL_GPL(rpc_malloc);
1033
1034/**
1035 * rpc_free - free RPC buffer resources allocated via rpc_malloc
1036 * @task: RPC task
1037 *
1038 */
1039void rpc_free(struct rpc_task *task)
1040{
1041	void *buffer = task->tk_rqstp->rq_buffer;
1042	size_t size;
1043	struct rpc_buffer *buf;
1044
1045	buf = container_of(buffer, struct rpc_buffer, data);
1046	size = buf->len;
1047
1048	if (size <= RPC_BUFFER_MAXSIZE)
1049		mempool_free(buf, rpc_buffer_mempool);
1050	else
1051		kfree(buf);
1052}
1053EXPORT_SYMBOL_GPL(rpc_free);
1054
1055/*
1056 * Creation and deletion of RPC task structures
1057 */
1058static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1059{
1060	memset(task, 0, sizeof(*task));
1061	atomic_set(&task->tk_count, 1);
1062	task->tk_flags  = task_setup_data->flags;
1063	task->tk_ops = task_setup_data->callback_ops;
1064	task->tk_calldata = task_setup_data->callback_data;
1065	INIT_LIST_HEAD(&task->tk_task);
1066
1067	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1068	task->tk_owner = current->tgid;
1069
1070	/* Initialize workqueue for async tasks */
1071	task->tk_workqueue = task_setup_data->workqueue;
1072
1073	task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1074			xprt_get(task_setup_data->rpc_xprt));
1075
1076	task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1077
1078	if (task->tk_ops->rpc_call_prepare != NULL)
1079		task->tk_action = rpc_prepare_task;
1080
1081	rpc_init_task_statistics(task);
1082}
1083
1084static struct rpc_task *
1085rpc_alloc_task(void)
1086{
1087	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
 
 
 
 
 
1088}
1089
1090/*
1091 * Create a new task for the specified client.
1092 */
1093struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1094{
1095	struct rpc_task	*task = setup_data->task;
1096	unsigned short flags = 0;
1097
1098	if (task == NULL) {
1099		task = rpc_alloc_task();
 
 
 
 
 
1100		flags = RPC_TASK_DYNAMIC;
1101	}
1102
1103	rpc_init_task(task, setup_data);
1104	task->tk_flags |= flags;
1105	return task;
1106}
1107
1108/*
1109 * rpc_free_task - release rpc task and perform cleanups
1110 *
1111 * Note that we free up the rpc_task _after_ rpc_release_calldata()
1112 * in order to work around a workqueue dependency issue.
1113 *
1114 * Tejun Heo states:
1115 * "Workqueue currently considers two work items to be the same if they're
1116 * on the same address and won't execute them concurrently - ie. it
1117 * makes a work item which is queued again while being executed wait
1118 * for the previous execution to complete.
1119 *
1120 * If a work function frees the work item, and then waits for an event
1121 * which should be performed by another work item and *that* work item
1122 * recycles the freed work item, it can create a false dependency loop.
1123 * There really is no reliable way to detect this short of verifying
1124 * every memory free."
1125 *
1126 */
1127static void rpc_free_task(struct rpc_task *task)
1128{
1129	unsigned short tk_flags = task->tk_flags;
1130
1131	put_rpccred(task->tk_op_cred);
1132	rpc_release_calldata(task->tk_ops, task->tk_calldata);
1133
1134	if (tk_flags & RPC_TASK_DYNAMIC)
1135		mempool_free(task, rpc_task_mempool);
1136}
1137
1138static void rpc_async_release(struct work_struct *work)
1139{
1140	unsigned int pflags = memalloc_nofs_save();
1141
1142	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1143	memalloc_nofs_restore(pflags);
1144}
1145
1146static void rpc_release_resources_task(struct rpc_task *task)
1147{
1148	xprt_release(task);
1149	if (task->tk_msg.rpc_cred) {
1150		if (!(task->tk_flags & RPC_TASK_CRED_NOREF))
1151			put_cred(task->tk_msg.rpc_cred);
1152		task->tk_msg.rpc_cred = NULL;
1153	}
1154	rpc_task_release_client(task);
1155}
1156
1157static void rpc_final_put_task(struct rpc_task *task,
1158		struct workqueue_struct *q)
1159{
1160	if (q != NULL) {
1161		INIT_WORK(&task->u.tk_work, rpc_async_release);
1162		queue_work(q, &task->u.tk_work);
1163	} else
1164		rpc_free_task(task);
1165}
1166
1167static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1168{
1169	if (atomic_dec_and_test(&task->tk_count)) {
1170		rpc_release_resources_task(task);
1171		rpc_final_put_task(task, q);
1172	}
1173}
1174
1175void rpc_put_task(struct rpc_task *task)
1176{
1177	rpc_do_put_task(task, NULL);
1178}
1179EXPORT_SYMBOL_GPL(rpc_put_task);
1180
1181void rpc_put_task_async(struct rpc_task *task)
1182{
1183	rpc_do_put_task(task, task->tk_workqueue);
1184}
1185EXPORT_SYMBOL_GPL(rpc_put_task_async);
1186
1187static void rpc_release_task(struct rpc_task *task)
1188{
1189	WARN_ON_ONCE(RPC_IS_QUEUED(task));
1190
1191	rpc_release_resources_task(task);
1192
1193	/*
1194	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1195	 * so it should be safe to use task->tk_count as a test for whether
1196	 * or not any other processes still hold references to our rpc_task.
1197	 */
1198	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1199		/* Wake up anyone who may be waiting for task completion */
1200		if (!rpc_complete_task(task))
1201			return;
1202	} else {
1203		if (!atomic_dec_and_test(&task->tk_count))
1204			return;
1205	}
1206	rpc_final_put_task(task, task->tk_workqueue);
1207}
1208
1209int rpciod_up(void)
1210{
1211	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1212}
1213
1214void rpciod_down(void)
1215{
1216	module_put(THIS_MODULE);
1217}
1218
1219/*
1220 * Start up the rpciod workqueue.
1221 */
1222static int rpciod_start(void)
1223{
1224	struct workqueue_struct *wq;
1225
1226	/*
1227	 * Create the rpciod thread and wait for it to start.
1228	 */
1229	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1230	if (!wq)
1231		goto out_failed;
1232	rpciod_workqueue = wq;
1233	/* Note: highpri because network receive is latency sensitive */
1234	wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1235	if (!wq)
1236		goto free_rpciod;
1237	xprtiod_workqueue = wq;
1238	return 1;
1239free_rpciod:
1240	wq = rpciod_workqueue;
1241	rpciod_workqueue = NULL;
1242	destroy_workqueue(wq);
1243out_failed:
1244	return 0;
1245}
1246
1247static void rpciod_stop(void)
1248{
1249	struct workqueue_struct *wq = NULL;
1250
1251	if (rpciod_workqueue == NULL)
1252		return;
1253
1254	wq = rpciod_workqueue;
1255	rpciod_workqueue = NULL;
1256	destroy_workqueue(wq);
1257	wq = xprtiod_workqueue;
1258	xprtiod_workqueue = NULL;
1259	destroy_workqueue(wq);
1260}
1261
1262void
1263rpc_destroy_mempool(void)
1264{
1265	rpciod_stop();
1266	mempool_destroy(rpc_buffer_mempool);
1267	mempool_destroy(rpc_task_mempool);
1268	kmem_cache_destroy(rpc_task_slabp);
1269	kmem_cache_destroy(rpc_buffer_slabp);
1270	rpc_destroy_wait_queue(&delay_queue);
1271}
1272
1273int
1274rpc_init_mempool(void)
1275{
1276	/*
1277	 * The following is not strictly a mempool initialisation,
1278	 * but there is no harm in doing it here
1279	 */
1280	rpc_init_wait_queue(&delay_queue, "delayq");
1281	if (!rpciod_start())
1282		goto err_nomem;
1283
1284	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1285					     sizeof(struct rpc_task),
1286					     0, SLAB_HWCACHE_ALIGN,
1287					     NULL);
1288	if (!rpc_task_slabp)
1289		goto err_nomem;
1290	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1291					     RPC_BUFFER_MAXSIZE,
1292					     0, SLAB_HWCACHE_ALIGN,
1293					     NULL);
1294	if (!rpc_buffer_slabp)
1295		goto err_nomem;
1296	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1297						    rpc_task_slabp);
1298	if (!rpc_task_mempool)
1299		goto err_nomem;
1300	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1301						      rpc_buffer_slabp);
1302	if (!rpc_buffer_mempool)
1303		goto err_nomem;
1304	return 0;
1305err_nomem:
1306	rpc_destroy_mempool();
1307	return -ENOMEM;
1308}