Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	linux/mm/filemap.c
   4 *
   5 * Copyright (C) 1994-1999  Linus Torvalds
   6 */
   7
   8/*
   9 * This file handles the generic file mmap semantics used by
  10 * most "normal" filesystems (but you don't /have/ to use this:
  11 * the NFS filesystem used to do this differently, for example)
  12 */
  13#include <linux/export.h>
  14#include <linux/compiler.h>
  15#include <linux/dax.h>
  16#include <linux/fs.h>
  17#include <linux/sched/signal.h>
  18#include <linux/uaccess.h>
  19#include <linux/capability.h>
  20#include <linux/kernel_stat.h>
  21#include <linux/gfp.h>
  22#include <linux/mm.h>
  23#include <linux/swap.h>
  24#include <linux/swapops.h>
  25#include <linux/mman.h>
  26#include <linux/pagemap.h>
  27#include <linux/file.h>
  28#include <linux/uio.h>
  29#include <linux/error-injection.h>
  30#include <linux/hash.h>
  31#include <linux/writeback.h>
  32#include <linux/backing-dev.h>
  33#include <linux/pagevec.h>
 
  34#include <linux/security.h>
  35#include <linux/cpuset.h>
  36#include <linux/hugetlb.h>
  37#include <linux/memcontrol.h>
 
  38#include <linux/shmem_fs.h>
  39#include <linux/rmap.h>
  40#include <linux/delayacct.h>
  41#include <linux/psi.h>
  42#include <linux/ramfs.h>
  43#include <linux/page_idle.h>
  44#include <linux/migrate.h>
  45#include <asm/pgalloc.h>
  46#include <asm/tlbflush.h>
  47#include "internal.h"
  48
  49#define CREATE_TRACE_POINTS
  50#include <trace/events/filemap.h>
  51
  52/*
  53 * FIXME: remove all knowledge of the buffer layer from the core VM
  54 */
  55#include <linux/buffer_head.h> /* for try_to_free_buffers */
  56
  57#include <asm/mman.h>
  58
  59/*
  60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  61 * though.
  62 *
  63 * Shared mappings now work. 15.8.1995  Bruno.
  64 *
  65 * finished 'unifying' the page and buffer cache and SMP-threaded the
  66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  67 *
  68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  69 */
  70
  71/*
  72 * Lock ordering:
  73 *
  74 *  ->i_mmap_rwsem		(truncate_pagecache)
  75 *    ->private_lock		(__free_pte->block_dirty_folio)
  76 *      ->swap_lock		(exclusive_swap_page, others)
  77 *        ->i_pages lock
  78 *
  79 *  ->i_rwsem
  80 *    ->invalidate_lock		(acquired by fs in truncate path)
  81 *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
  82 *
  83 *  ->mmap_lock
  84 *    ->i_mmap_rwsem
  85 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  86 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
  87 *
  88 *  ->mmap_lock
  89 *    ->invalidate_lock		(filemap_fault)
  90 *      ->lock_page		(filemap_fault, access_process_vm)
  91 *
  92 *  ->i_rwsem			(generic_perform_write)
  93 *    ->mmap_lock		(fault_in_readable->do_page_fault)
  94 *
  95 *  bdi->wb.list_lock
  96 *    sb_lock			(fs/fs-writeback.c)
  97 *    ->i_pages lock		(__sync_single_inode)
  98 *
  99 *  ->i_mmap_rwsem
 100 *    ->anon_vma.lock		(vma_adjust)
 101 *
 102 *  ->anon_vma.lock
 103 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
 104 *
 105 *  ->page_table_lock or pte_lock
 106 *    ->swap_lock		(try_to_unmap_one)
 107 *    ->private_lock		(try_to_unmap_one)
 108 *    ->i_pages lock		(try_to_unmap_one)
 109 *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
 110 *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
 111 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 112 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
 113 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 114 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 115 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
 116 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 117 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 118 *    ->private_lock		(zap_pte_range->block_dirty_folio)
 119 *
 120 * ->i_mmap_rwsem
 121 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 122 */
 123
 124static void page_cache_delete(struct address_space *mapping,
 125				   struct folio *folio, void *shadow)
 126{
 127	XA_STATE(xas, &mapping->i_pages, folio->index);
 128	long nr = 1;
 129
 130	mapping_set_update(&xas, mapping);
 131
 132	/* hugetlb pages are represented by a single entry in the xarray */
 133	if (!folio_test_hugetlb(folio)) {
 134		xas_set_order(&xas, folio->index, folio_order(folio));
 135		nr = folio_nr_pages(folio);
 136	}
 137
 138	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 
 
 139
 140	xas_store(&xas, shadow);
 141	xas_init_marks(&xas);
 142
 143	folio->mapping = NULL;
 144	/* Leave page->index set: truncation lookup relies upon it */
 145	mapping->nrpages -= nr;
 146}
 147
 148static void filemap_unaccount_folio(struct address_space *mapping,
 149		struct folio *folio)
 150{
 151	long nr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152
 153	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
 154	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
 155		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 156			 current->comm, folio_pfn(folio));
 157		dump_page(&folio->page, "still mapped when deleted");
 158		dump_stack();
 159		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 160
 161		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
 162			int mapcount = page_mapcount(&folio->page);
 163
 164			if (folio_ref_count(folio) >= mapcount + 2) {
 165				/*
 166				 * All vmas have already been torn down, so it's
 167				 * a good bet that actually the page is unmapped
 168				 * and we'd rather not leak it: if we're wrong,
 169				 * another bad page check should catch it later.
 170				 */
 171				page_mapcount_reset(&folio->page);
 172				folio_ref_sub(folio, mapcount);
 173			}
 174		}
 175	}
 176
 177	/* hugetlb folios do not participate in page cache accounting. */
 178	if (folio_test_hugetlb(folio))
 179		return;
 180
 181	nr = folio_nr_pages(folio);
 182
 183	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
 184	if (folio_test_swapbacked(folio)) {
 185		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
 186		if (folio_test_pmd_mappable(folio))
 187			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
 188	} else if (folio_test_pmd_mappable(folio)) {
 189		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
 190		filemap_nr_thps_dec(mapping);
 191	}
 192
 193	/*
 194	 * At this point folio must be either written or cleaned by
 195	 * truncate.  Dirty folio here signals a bug and loss of
 196	 * unwritten data - on ordinary filesystems.
 197	 *
 198	 * But it's harmless on in-memory filesystems like tmpfs; and can
 199	 * occur when a driver which did get_user_pages() sets page dirty
 200	 * before putting it, while the inode is being finally evicted.
 201	 *
 202	 * Below fixes dirty accounting after removing the folio entirely
 203	 * but leaves the dirty flag set: it has no effect for truncated
 204	 * folio and anyway will be cleared before returning folio to
 205	 * buddy allocator.
 206	 */
 207	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
 208			 mapping_can_writeback(mapping)))
 209		folio_account_cleaned(folio, inode_to_wb(mapping->host));
 210}
 211
 212/*
 213 * Delete a page from the page cache and free it. Caller has to make
 214 * sure the page is locked and that nobody else uses it - or that usage
 215 * is safe.  The caller must hold the i_pages lock.
 216 */
 217void __filemap_remove_folio(struct folio *folio, void *shadow)
 218{
 219	struct address_space *mapping = folio->mapping;
 220
 221	trace_mm_filemap_delete_from_page_cache(folio);
 222	filemap_unaccount_folio(mapping, folio);
 223	page_cache_delete(mapping, folio, shadow);
 
 224}
 225
 226void filemap_free_folio(struct address_space *mapping, struct folio *folio)
 
 227{
 228	void (*free_folio)(struct folio *);
 229	int refs = 1;
 230
 231	free_folio = mapping->a_ops->free_folio;
 232	if (free_folio)
 233		free_folio(folio);
 234
 235	if (folio_test_large(folio) && !folio_test_hugetlb(folio))
 236		refs = folio_nr_pages(folio);
 237	folio_put_refs(folio, refs);
 
 
 
 238}
 239
 240/**
 241 * filemap_remove_folio - Remove folio from page cache.
 242 * @folio: The folio.
 243 *
 244 * This must be called only on folios that are locked and have been
 245 * verified to be in the page cache.  It will never put the folio into
 246 * the free list because the caller has a reference on the page.
 247 */
 248void filemap_remove_folio(struct folio *folio)
 249{
 250	struct address_space *mapping = folio->mapping;
 251
 252	BUG_ON(!folio_test_locked(folio));
 253	spin_lock(&mapping->host->i_lock);
 254	xa_lock_irq(&mapping->i_pages);
 255	__filemap_remove_folio(folio, NULL);
 256	xa_unlock_irq(&mapping->i_pages);
 257	if (mapping_shrinkable(mapping))
 258		inode_add_lru(mapping->host);
 259	spin_unlock(&mapping->host->i_lock);
 260
 261	filemap_free_folio(mapping, folio);
 262}
 263
 264/*
 265 * page_cache_delete_batch - delete several folios from page cache
 266 * @mapping: the mapping to which folios belong
 267 * @fbatch: batch of folios to delete
 268 *
 269 * The function walks over mapping->i_pages and removes folios passed in
 270 * @fbatch from the mapping. The function expects @fbatch to be sorted
 271 * by page index and is optimised for it to be dense.
 272 * It tolerates holes in @fbatch (mapping entries at those indices are not
 273 * modified).
 
 
 
 
 
 
 
 
 
 
 274 *
 275 * The function expects the i_pages lock to be held.
 276 */
 277static void page_cache_delete_batch(struct address_space *mapping,
 278			     struct folio_batch *fbatch)
 279{
 280	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
 281	long total_pages = 0;
 282	int i = 0;
 283	struct folio *folio;
 284
 285	mapping_set_update(&xas, mapping);
 286	xas_for_each(&xas, folio, ULONG_MAX) {
 287		if (i >= folio_batch_count(fbatch))
 288			break;
 289
 290		/* A swap/dax/shadow entry got inserted? Skip it. */
 291		if (xa_is_value(folio))
 292			continue;
 293		/*
 294		 * A page got inserted in our range? Skip it. We have our
 295		 * pages locked so they are protected from being removed.
 296		 * If we see a page whose index is higher than ours, it
 297		 * means our page has been removed, which shouldn't be
 298		 * possible because we're holding the PageLock.
 299		 */
 300		if (folio != fbatch->folios[i]) {
 301			VM_BUG_ON_FOLIO(folio->index >
 302					fbatch->folios[i]->index, folio);
 303			continue;
 304		}
 305
 306		WARN_ON_ONCE(!folio_test_locked(folio));
 307
 308		folio->mapping = NULL;
 309		/* Leave folio->index set: truncation lookup relies on it */
 
 310
 311		i++;
 
 
 
 
 
 
 312		xas_store(&xas, NULL);
 313		total_pages += folio_nr_pages(folio);
 314	}
 315	mapping->nrpages -= total_pages;
 316}
 317
 318void delete_from_page_cache_batch(struct address_space *mapping,
 319				  struct folio_batch *fbatch)
 320{
 321	int i;
 
 322
 323	if (!folio_batch_count(fbatch))
 324		return;
 325
 326	spin_lock(&mapping->host->i_lock);
 327	xa_lock_irq(&mapping->i_pages);
 328	for (i = 0; i < folio_batch_count(fbatch); i++) {
 329		struct folio *folio = fbatch->folios[i];
 330
 331		trace_mm_filemap_delete_from_page_cache(folio);
 332		filemap_unaccount_folio(mapping, folio);
 333	}
 334	page_cache_delete_batch(mapping, fbatch);
 335	xa_unlock_irq(&mapping->i_pages);
 336	if (mapping_shrinkable(mapping))
 337		inode_add_lru(mapping->host);
 338	spin_unlock(&mapping->host->i_lock);
 339
 340	for (i = 0; i < folio_batch_count(fbatch); i++)
 341		filemap_free_folio(mapping, fbatch->folios[i]);
 
 
 
 
 
 342}
 343
 344int filemap_check_errors(struct address_space *mapping)
 345{
 346	int ret = 0;
 347	/* Check for outstanding write errors */
 348	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 349	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 350		ret = -ENOSPC;
 351	if (test_bit(AS_EIO, &mapping->flags) &&
 352	    test_and_clear_bit(AS_EIO, &mapping->flags))
 353		ret = -EIO;
 354	return ret;
 355}
 356EXPORT_SYMBOL(filemap_check_errors);
 357
 358static int filemap_check_and_keep_errors(struct address_space *mapping)
 359{
 360	/* Check for outstanding write errors */
 361	if (test_bit(AS_EIO, &mapping->flags))
 362		return -EIO;
 363	if (test_bit(AS_ENOSPC, &mapping->flags))
 364		return -ENOSPC;
 365	return 0;
 366}
 367
 368/**
 369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
 370 * @mapping:	address space structure to write
 371 * @wbc:	the writeback_control controlling the writeout
 372 *
 373 * Call writepages on the mapping using the provided wbc to control the
 374 * writeout.
 375 *
 376 * Return: %0 on success, negative error code otherwise.
 377 */
 378int filemap_fdatawrite_wbc(struct address_space *mapping,
 379			   struct writeback_control *wbc)
 380{
 381	int ret;
 382
 383	if (!mapping_can_writeback(mapping) ||
 384	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
 385		return 0;
 386
 387	wbc_attach_fdatawrite_inode(wbc, mapping->host);
 388	ret = do_writepages(mapping, wbc);
 389	wbc_detach_inode(wbc);
 390	return ret;
 391}
 392EXPORT_SYMBOL(filemap_fdatawrite_wbc);
 393
 394/**
 395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 396 * @mapping:	address space structure to write
 397 * @start:	offset in bytes where the range starts
 398 * @end:	offset in bytes where the range ends (inclusive)
 399 * @sync_mode:	enable synchronous operation
 400 *
 401 * Start writeback against all of a mapping's dirty pages that lie
 402 * within the byte offsets <start, end> inclusive.
 403 *
 404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 405 * opposed to a regular memory cleansing writeback.  The difference between
 406 * these two operations is that if a dirty page/buffer is encountered, it must
 407 * be waited upon, and not just skipped over.
 408 *
 409 * Return: %0 on success, negative error code otherwise.
 410 */
 411int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 412				loff_t end, int sync_mode)
 413{
 
 414	struct writeback_control wbc = {
 415		.sync_mode = sync_mode,
 416		.nr_to_write = LONG_MAX,
 417		.range_start = start,
 418		.range_end = end,
 419	};
 420
 421	return filemap_fdatawrite_wbc(mapping, &wbc);
 
 
 
 
 
 
 
 422}
 423
 424static inline int __filemap_fdatawrite(struct address_space *mapping,
 425	int sync_mode)
 426{
 427	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 428}
 429
 430int filemap_fdatawrite(struct address_space *mapping)
 431{
 432	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 433}
 434EXPORT_SYMBOL(filemap_fdatawrite);
 435
 436int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 437				loff_t end)
 438{
 439	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 440}
 441EXPORT_SYMBOL(filemap_fdatawrite_range);
 442
 443/**
 444 * filemap_flush - mostly a non-blocking flush
 445 * @mapping:	target address_space
 446 *
 447 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 448 * purposes - I/O may not be started against all dirty pages.
 449 *
 450 * Return: %0 on success, negative error code otherwise.
 451 */
 452int filemap_flush(struct address_space *mapping)
 453{
 454	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 455}
 456EXPORT_SYMBOL(filemap_flush);
 457
 458/**
 459 * filemap_range_has_page - check if a page exists in range.
 460 * @mapping:           address space within which to check
 461 * @start_byte:        offset in bytes where the range starts
 462 * @end_byte:          offset in bytes where the range ends (inclusive)
 463 *
 464 * Find at least one page in the range supplied, usually used to check if
 465 * direct writing in this range will trigger a writeback.
 466 *
 467 * Return: %true if at least one page exists in the specified range,
 468 * %false otherwise.
 469 */
 470bool filemap_range_has_page(struct address_space *mapping,
 471			   loff_t start_byte, loff_t end_byte)
 472{
 473	struct page *page;
 474	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 475	pgoff_t max = end_byte >> PAGE_SHIFT;
 476
 477	if (end_byte < start_byte)
 478		return false;
 479
 480	rcu_read_lock();
 481	for (;;) {
 482		page = xas_find(&xas, max);
 483		if (xas_retry(&xas, page))
 484			continue;
 485		/* Shadow entries don't count */
 486		if (xa_is_value(page))
 487			continue;
 488		/*
 489		 * We don't need to try to pin this page; we're about to
 490		 * release the RCU lock anyway.  It is enough to know that
 491		 * there was a page here recently.
 492		 */
 493		break;
 494	}
 495	rcu_read_unlock();
 496
 497	return page != NULL;
 498}
 499EXPORT_SYMBOL(filemap_range_has_page);
 500
 501static void __filemap_fdatawait_range(struct address_space *mapping,
 502				     loff_t start_byte, loff_t end_byte)
 503{
 504	pgoff_t index = start_byte >> PAGE_SHIFT;
 505	pgoff_t end = end_byte >> PAGE_SHIFT;
 506	struct pagevec pvec;
 507	int nr_pages;
 508
 
 
 
 509	pagevec_init(&pvec);
 510	while (index <= end) {
 511		unsigned i;
 512
 513		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
 514				end, PAGECACHE_TAG_WRITEBACK);
 515		if (!nr_pages)
 516			break;
 517
 518		for (i = 0; i < nr_pages; i++) {
 519			struct page *page = pvec.pages[i];
 520
 521			wait_on_page_writeback(page);
 522			ClearPageError(page);
 523		}
 524		pagevec_release(&pvec);
 525		cond_resched();
 526	}
 527}
 528
 529/**
 530 * filemap_fdatawait_range - wait for writeback to complete
 531 * @mapping:		address space structure to wait for
 532 * @start_byte:		offset in bytes where the range starts
 533 * @end_byte:		offset in bytes where the range ends (inclusive)
 534 *
 535 * Walk the list of under-writeback pages of the given address space
 536 * in the given range and wait for all of them.  Check error status of
 537 * the address space and return it.
 538 *
 539 * Since the error status of the address space is cleared by this function,
 540 * callers are responsible for checking the return value and handling and/or
 541 * reporting the error.
 542 *
 543 * Return: error status of the address space.
 544 */
 545int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 546			    loff_t end_byte)
 547{
 548	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 549	return filemap_check_errors(mapping);
 550}
 551EXPORT_SYMBOL(filemap_fdatawait_range);
 552
 553/**
 554 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 555 * @mapping:		address space structure to wait for
 556 * @start_byte:		offset in bytes where the range starts
 557 * @end_byte:		offset in bytes where the range ends (inclusive)
 558 *
 559 * Walk the list of under-writeback pages of the given address space in the
 560 * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 561 * this function does not clear error status of the address space.
 562 *
 563 * Use this function if callers don't handle errors themselves.  Expected
 564 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 565 * fsfreeze(8)
 566 */
 567int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
 568		loff_t start_byte, loff_t end_byte)
 569{
 570	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 571	return filemap_check_and_keep_errors(mapping);
 572}
 573EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
 574
 575/**
 576 * file_fdatawait_range - wait for writeback to complete
 577 * @file:		file pointing to address space structure to wait for
 578 * @start_byte:		offset in bytes where the range starts
 579 * @end_byte:		offset in bytes where the range ends (inclusive)
 580 *
 581 * Walk the list of under-writeback pages of the address space that file
 582 * refers to, in the given range and wait for all of them.  Check error
 583 * status of the address space vs. the file->f_wb_err cursor and return it.
 584 *
 585 * Since the error status of the file is advanced by this function,
 586 * callers are responsible for checking the return value and handling and/or
 587 * reporting the error.
 588 *
 589 * Return: error status of the address space vs. the file->f_wb_err cursor.
 590 */
 591int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 592{
 593	struct address_space *mapping = file->f_mapping;
 594
 595	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 596	return file_check_and_advance_wb_err(file);
 597}
 598EXPORT_SYMBOL(file_fdatawait_range);
 599
 600/**
 601 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 602 * @mapping: address space structure to wait for
 603 *
 604 * Walk the list of under-writeback pages of the given address space
 605 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 606 * does not clear error status of the address space.
 607 *
 608 * Use this function if callers don't handle errors themselves.  Expected
 609 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 610 * fsfreeze(8)
 611 *
 612 * Return: error status of the address space.
 613 */
 614int filemap_fdatawait_keep_errors(struct address_space *mapping)
 615{
 616	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 617	return filemap_check_and_keep_errors(mapping);
 618}
 619EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 620
 621/* Returns true if writeback might be needed or already in progress. */
 622static bool mapping_needs_writeback(struct address_space *mapping)
 623{
 624	return mapping->nrpages;
 625}
 626
 627bool filemap_range_has_writeback(struct address_space *mapping,
 628				 loff_t start_byte, loff_t end_byte)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 629{
 630	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 631	pgoff_t max = end_byte >> PAGE_SHIFT;
 632	struct folio *folio;
 633
 
 
 
 
 
 634	if (end_byte < start_byte)
 635		return false;
 636
 637	rcu_read_lock();
 638	xas_for_each(&xas, folio, max) {
 639		if (xas_retry(&xas, folio))
 640			continue;
 641		if (xa_is_value(folio))
 642			continue;
 643		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
 644				folio_test_writeback(folio))
 645			break;
 646	}
 647	rcu_read_unlock();
 648	return folio != NULL;
 649}
 650EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
 651
 652/**
 653 * filemap_write_and_wait_range - write out & wait on a file range
 654 * @mapping:	the address_space for the pages
 655 * @lstart:	offset in bytes where the range starts
 656 * @lend:	offset in bytes where the range ends (inclusive)
 657 *
 658 * Write out and wait upon file offsets lstart->lend, inclusive.
 659 *
 660 * Note that @lend is inclusive (describes the last byte to be written) so
 661 * that this function can be used to write to the very end-of-file (end = -1).
 662 *
 663 * Return: error status of the address space.
 664 */
 665int filemap_write_and_wait_range(struct address_space *mapping,
 666				 loff_t lstart, loff_t lend)
 667{
 668	int err = 0, err2;
 669
 670	if (lend < lstart)
 671		return 0;
 672
 673	if (mapping_needs_writeback(mapping)) {
 674		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 675						 WB_SYNC_ALL);
 676		/*
 677		 * Even if the above returned error, the pages may be
 678		 * written partially (e.g. -ENOSPC), so we wait for it.
 679		 * But the -EIO is special case, it may indicate the worst
 680		 * thing (e.g. bug) happened, so we avoid waiting for it.
 681		 */
 682		if (err != -EIO)
 683			__filemap_fdatawait_range(mapping, lstart, lend);
 
 
 
 
 
 
 
 
 
 684	}
 685	err2 = filemap_check_errors(mapping);
 686	if (!err)
 687		err = err2;
 688	return err;
 689}
 690EXPORT_SYMBOL(filemap_write_and_wait_range);
 691
 692void __filemap_set_wb_err(struct address_space *mapping, int err)
 693{
 694	errseq_t eseq = errseq_set(&mapping->wb_err, err);
 695
 696	trace_filemap_set_wb_err(mapping, eseq);
 697}
 698EXPORT_SYMBOL(__filemap_set_wb_err);
 699
 700/**
 701 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 702 * 				   and advance wb_err to current one
 703 * @file: struct file on which the error is being reported
 704 *
 705 * When userland calls fsync (or something like nfsd does the equivalent), we
 706 * want to report any writeback errors that occurred since the last fsync (or
 707 * since the file was opened if there haven't been any).
 708 *
 709 * Grab the wb_err from the mapping. If it matches what we have in the file,
 710 * then just quickly return 0. The file is all caught up.
 711 *
 712 * If it doesn't match, then take the mapping value, set the "seen" flag in
 713 * it and try to swap it into place. If it works, or another task beat us
 714 * to it with the new value, then update the f_wb_err and return the error
 715 * portion. The error at this point must be reported via proper channels
 716 * (a'la fsync, or NFS COMMIT operation, etc.).
 717 *
 718 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 719 * value is protected by the f_lock since we must ensure that it reflects
 720 * the latest value swapped in for this file descriptor.
 721 *
 722 * Return: %0 on success, negative error code otherwise.
 723 */
 724int file_check_and_advance_wb_err(struct file *file)
 725{
 726	int err = 0;
 727	errseq_t old = READ_ONCE(file->f_wb_err);
 728	struct address_space *mapping = file->f_mapping;
 729
 730	/* Locklessly handle the common case where nothing has changed */
 731	if (errseq_check(&mapping->wb_err, old)) {
 732		/* Something changed, must use slow path */
 733		spin_lock(&file->f_lock);
 734		old = file->f_wb_err;
 735		err = errseq_check_and_advance(&mapping->wb_err,
 736						&file->f_wb_err);
 737		trace_file_check_and_advance_wb_err(file, old);
 738		spin_unlock(&file->f_lock);
 739	}
 740
 741	/*
 742	 * We're mostly using this function as a drop in replacement for
 743	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 744	 * that the legacy code would have had on these flags.
 745	 */
 746	clear_bit(AS_EIO, &mapping->flags);
 747	clear_bit(AS_ENOSPC, &mapping->flags);
 748	return err;
 749}
 750EXPORT_SYMBOL(file_check_and_advance_wb_err);
 751
 752/**
 753 * file_write_and_wait_range - write out & wait on a file range
 754 * @file:	file pointing to address_space with pages
 755 * @lstart:	offset in bytes where the range starts
 756 * @lend:	offset in bytes where the range ends (inclusive)
 757 *
 758 * Write out and wait upon file offsets lstart->lend, inclusive.
 759 *
 760 * Note that @lend is inclusive (describes the last byte to be written) so
 761 * that this function can be used to write to the very end-of-file (end = -1).
 762 *
 763 * After writing out and waiting on the data, we check and advance the
 764 * f_wb_err cursor to the latest value, and return any errors detected there.
 765 *
 766 * Return: %0 on success, negative error code otherwise.
 767 */
 768int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 769{
 770	int err = 0, err2;
 771	struct address_space *mapping = file->f_mapping;
 772
 773	if (lend < lstart)
 774		return 0;
 775
 776	if (mapping_needs_writeback(mapping)) {
 777		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 778						 WB_SYNC_ALL);
 779		/* See comment of filemap_write_and_wait() */
 780		if (err != -EIO)
 781			__filemap_fdatawait_range(mapping, lstart, lend);
 782	}
 783	err2 = file_check_and_advance_wb_err(file);
 784	if (!err)
 785		err = err2;
 786	return err;
 787}
 788EXPORT_SYMBOL(file_write_and_wait_range);
 789
 790/**
 791 * replace_page_cache_folio - replace a pagecache folio with a new one
 792 * @old:	folio to be replaced
 793 * @new:	folio to replace with
 794 *
 795 * This function replaces a folio in the pagecache with a new one.  On
 796 * success it acquires the pagecache reference for the new folio and
 797 * drops it for the old folio.  Both the old and new folios must be
 798 * locked.  This function does not add the new folio to the LRU, the
 799 * caller must do that.
 800 *
 801 * The remove + add is atomic.  This function cannot fail.
 802 */
 803void replace_page_cache_folio(struct folio *old, struct folio *new)
 804{
 805	struct address_space *mapping = old->mapping;
 806	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
 807	pgoff_t offset = old->index;
 808	XA_STATE(xas, &mapping->i_pages, offset);
 
 809
 810	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
 811	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
 812	VM_BUG_ON_FOLIO(new->mapping, new);
 813
 814	folio_get(new);
 815	new->mapping = mapping;
 816	new->index = offset;
 817
 818	mem_cgroup_migrate(old, new);
 819
 820	xas_lock_irq(&xas);
 821	xas_store(&xas, new);
 822
 823	old->mapping = NULL;
 824	/* hugetlb pages do not participate in page cache accounting. */
 825	if (!folio_test_hugetlb(old))
 826		__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
 827	if (!folio_test_hugetlb(new))
 828		__lruvec_stat_add_folio(new, NR_FILE_PAGES);
 829	if (folio_test_swapbacked(old))
 830		__lruvec_stat_sub_folio(old, NR_SHMEM);
 831	if (folio_test_swapbacked(new))
 832		__lruvec_stat_add_folio(new, NR_SHMEM);
 833	xas_unlock_irq(&xas);
 834	if (free_folio)
 835		free_folio(old);
 836	folio_put(old);
 837}
 838EXPORT_SYMBOL_GPL(replace_page_cache_folio);
 839
 840noinline int __filemap_add_folio(struct address_space *mapping,
 841		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
 
 
 842{
 843	XA_STATE(xas, &mapping->i_pages, index);
 844	int huge = folio_test_hugetlb(folio);
 
 845	bool charged = false;
 846	long nr = 1;
 847
 848	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 849	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
 850	mapping_set_update(&xas, mapping);
 851
 
 
 
 
 852	if (!huge) {
 853		int error = mem_cgroup_charge(folio, NULL, gfp);
 854		VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
 855		if (error)
 856			return error;
 857		charged = true;
 858		xas_set_order(&xas, index, folio_order(folio));
 859		nr = folio_nr_pages(folio);
 860	}
 861
 862	gfp &= GFP_RECLAIM_MASK;
 863	folio_ref_add(folio, nr);
 864	folio->mapping = mapping;
 865	folio->index = xas.xa_index;
 866
 867	do {
 868		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
 869		void *entry, *old = NULL;
 870
 871		if (order > folio_order(folio))
 872			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
 873					order, gfp);
 874		xas_lock_irq(&xas);
 875		xas_for_each_conflict(&xas, entry) {
 876			old = entry;
 877			if (!xa_is_value(entry)) {
 878				xas_set_err(&xas, -EEXIST);
 879				goto unlock;
 880			}
 881		}
 882
 883		if (old) {
 884			if (shadowp)
 885				*shadowp = old;
 886			/* entry may have been split before we acquired lock */
 887			order = xa_get_order(xas.xa, xas.xa_index);
 888			if (order > folio_order(folio)) {
 889				/* How to handle large swap entries? */
 890				BUG_ON(shmem_mapping(mapping));
 891				xas_split(&xas, old, order);
 892				xas_reset(&xas);
 893			}
 894		}
 895
 896		xas_store(&xas, folio);
 897		if (xas_error(&xas))
 898			goto unlock;
 899
 900		mapping->nrpages += nr;
 901
 902		/* hugetlb pages do not participate in page cache accounting */
 903		if (!huge) {
 904			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
 905			if (folio_test_pmd_mappable(folio))
 906				__lruvec_stat_mod_folio(folio,
 907						NR_FILE_THPS, nr);
 908		}
 909unlock:
 910		xas_unlock_irq(&xas);
 911	} while (xas_nomem(&xas, gfp));
 912
 913	if (xas_error(&xas))
 
 
 
 914		goto error;
 
 915
 916	trace_mm_filemap_add_to_page_cache(folio);
 917	return 0;
 918error:
 919	if (charged)
 920		mem_cgroup_uncharge(folio);
 921	folio->mapping = NULL;
 922	/* Leave page->index set: truncation relies upon it */
 923	folio_put_refs(folio, nr);
 924	return xas_error(&xas);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 925}
 926ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
 927
 928int filemap_add_folio(struct address_space *mapping, struct folio *folio,
 929				pgoff_t index, gfp_t gfp)
 930{
 931	void *shadow = NULL;
 932	int ret;
 933
 934	__folio_set_locked(folio);
 935	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
 
 936	if (unlikely(ret))
 937		__folio_clear_locked(folio);
 938	else {
 939		/*
 940		 * The folio might have been evicted from cache only
 941		 * recently, in which case it should be activated like
 942		 * any other repeatedly accessed folio.
 943		 * The exception is folios getting rewritten; evicting other
 944		 * data from the working set, only to cache data that will
 945		 * get overwritten with something else, is a waste of memory.
 946		 */
 947		WARN_ON_ONCE(folio_test_active(folio));
 948		if (!(gfp & __GFP_WRITE) && shadow)
 949			workingset_refault(folio, shadow);
 950		folio_add_lru(folio);
 951	}
 952	return ret;
 953}
 954EXPORT_SYMBOL_GPL(filemap_add_folio);
 955
 956#ifdef CONFIG_NUMA
 957struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
 958{
 959	int n;
 960	struct folio *folio;
 961
 962	if (cpuset_do_page_mem_spread()) {
 963		unsigned int cpuset_mems_cookie;
 964		do {
 965			cpuset_mems_cookie = read_mems_allowed_begin();
 966			n = cpuset_mem_spread_node();
 967			folio = __folio_alloc_node(gfp, order, n);
 968		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
 969
 970		return folio;
 971	}
 972	return folio_alloc(gfp, order);
 973}
 974EXPORT_SYMBOL(filemap_alloc_folio);
 975#endif
 976
 977/*
 978 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
 979 *
 980 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
 981 *
 982 * @mapping1: the first mapping to lock
 983 * @mapping2: the second mapping to lock
 984 */
 985void filemap_invalidate_lock_two(struct address_space *mapping1,
 986				 struct address_space *mapping2)
 987{
 988	if (mapping1 > mapping2)
 989		swap(mapping1, mapping2);
 990	if (mapping1)
 991		down_write(&mapping1->invalidate_lock);
 992	if (mapping2 && mapping1 != mapping2)
 993		down_write_nested(&mapping2->invalidate_lock, 1);
 994}
 995EXPORT_SYMBOL(filemap_invalidate_lock_two);
 996
 997/*
 998 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
 999 *
1000 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1001 *
1002 * @mapping1: the first mapping to unlock
1003 * @mapping2: the second mapping to unlock
1004 */
1005void filemap_invalidate_unlock_two(struct address_space *mapping1,
1006				   struct address_space *mapping2)
1007{
1008	if (mapping1)
1009		up_write(&mapping1->invalidate_lock);
1010	if (mapping2 && mapping1 != mapping2)
1011		up_write(&mapping2->invalidate_lock);
1012}
1013EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1014
1015/*
1016 * In order to wait for pages to become available there must be
1017 * waitqueues associated with pages. By using a hash table of
1018 * waitqueues where the bucket discipline is to maintain all
1019 * waiters on the same queue and wake all when any of the pages
1020 * become available, and for the woken contexts to check to be
1021 * sure the appropriate page became available, this saves space
1022 * at a cost of "thundering herd" phenomena during rare hash
1023 * collisions.
1024 */
1025#define PAGE_WAIT_TABLE_BITS 8
1026#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1027static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1028
1029static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1030{
1031	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1032}
1033
1034void __init pagecache_init(void)
1035{
1036	int i;
1037
1038	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1039		init_waitqueue_head(&folio_wait_table[i]);
1040
1041	page_writeback_init();
1042}
1043
1044/*
1045 * The page wait code treats the "wait->flags" somewhat unusually, because
1046 * we have multiple different kinds of waits, not just the usual "exclusive"
1047 * one.
1048 *
1049 * We have:
1050 *
1051 *  (a) no special bits set:
1052 *
1053 *	We're just waiting for the bit to be released, and when a waker
1054 *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1055 *	and remove it from the wait queue.
1056 *
1057 *	Simple and straightforward.
1058 *
1059 *  (b) WQ_FLAG_EXCLUSIVE:
1060 *
1061 *	The waiter is waiting to get the lock, and only one waiter should
1062 *	be woken up to avoid any thundering herd behavior. We'll set the
1063 *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1064 *
1065 *	This is the traditional exclusive wait.
1066 *
1067 *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1068 *
1069 *	The waiter is waiting to get the bit, and additionally wants the
1070 *	lock to be transferred to it for fair lock behavior. If the lock
1071 *	cannot be taken, we stop walking the wait queue without waking
1072 *	the waiter.
1073 *
1074 *	This is the "fair lock handoff" case, and in addition to setting
1075 *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1076 *	that it now has the lock.
1077 */
1078static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1079{
1080	unsigned int flags;
1081	struct wait_page_key *key = arg;
1082	struct wait_page_queue *wait_page
1083		= container_of(wait, struct wait_page_queue, wait);
1084
1085	if (!wake_page_match(wait_page, key))
1086		return 0;
1087
1088	/*
1089	 * If it's a lock handoff wait, we get the bit for it, and
1090	 * stop walking (and do not wake it up) if we can't.
1091	 */
1092	flags = wait->flags;
1093	if (flags & WQ_FLAG_EXCLUSIVE) {
1094		if (test_bit(key->bit_nr, &key->folio->flags))
1095			return -1;
1096		if (flags & WQ_FLAG_CUSTOM) {
1097			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1098				return -1;
1099			flags |= WQ_FLAG_DONE;
1100		}
1101	}
1102
1103	/*
1104	 * We are holding the wait-queue lock, but the waiter that
1105	 * is waiting for this will be checking the flags without
1106	 * any locking.
1107	 *
1108	 * So update the flags atomically, and wake up the waiter
1109	 * afterwards to avoid any races. This store-release pairs
1110	 * with the load-acquire in folio_wait_bit_common().
1111	 */
1112	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1113	wake_up_state(wait->private, mode);
1114
1115	/*
1116	 * Ok, we have successfully done what we're waiting for,
1117	 * and we can unconditionally remove the wait entry.
1118	 *
1119	 * Note that this pairs with the "finish_wait()" in the
1120	 * waiter, and has to be the absolute last thing we do.
1121	 * After this list_del_init(&wait->entry) the wait entry
1122	 * might be de-allocated and the process might even have
1123	 * exited.
1124	 */
1125	list_del_init_careful(&wait->entry);
1126	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1127}
1128
1129static void folio_wake_bit(struct folio *folio, int bit_nr)
1130{
1131	wait_queue_head_t *q = folio_waitqueue(folio);
1132	struct wait_page_key key;
1133	unsigned long flags;
1134	wait_queue_entry_t bookmark;
1135
1136	key.folio = folio;
1137	key.bit_nr = bit_nr;
1138	key.page_match = 0;
1139
1140	bookmark.flags = 0;
1141	bookmark.private = NULL;
1142	bookmark.func = NULL;
1143	INIT_LIST_HEAD(&bookmark.entry);
1144
1145	spin_lock_irqsave(&q->lock, flags);
1146	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1147
1148	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1149		/*
1150		 * Take a breather from holding the lock,
1151		 * allow pages that finish wake up asynchronously
1152		 * to acquire the lock and remove themselves
1153		 * from wait queue
1154		 */
1155		spin_unlock_irqrestore(&q->lock, flags);
1156		cpu_relax();
1157		spin_lock_irqsave(&q->lock, flags);
1158		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1159	}
1160
1161	/*
1162	 * It's possible to miss clearing waiters here, when we woke our page
1163	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1164	 * That's okay, it's a rare case. The next waker will clear it.
1165	 *
1166	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1167	 * other), the flag may be cleared in the course of freeing the page;
1168	 * but that is not required for correctness.
1169	 */
1170	if (!waitqueue_active(q) || !key.page_match)
1171		folio_clear_waiters(folio);
1172
 
 
 
 
 
 
 
1173	spin_unlock_irqrestore(&q->lock, flags);
1174}
1175
1176static void folio_wake(struct folio *folio, int bit)
1177{
1178	if (!folio_test_waiters(folio))
1179		return;
1180	folio_wake_bit(folio, bit);
1181}
1182
1183/*
1184 * A choice of three behaviors for folio_wait_bit_common():
1185 */
1186enum behavior {
1187	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1188			 * __folio_lock() waiting on then setting PG_locked.
1189			 */
1190	SHARED,		/* Hold ref to page and check the bit when woken, like
1191			 * folio_wait_writeback() waiting on PG_writeback.
1192			 */
1193	DROP,		/* Drop ref to page before wait, no check when woken,
1194			 * like folio_put_wait_locked() on PG_locked.
1195			 */
1196};
1197
1198/*
1199 * Attempt to check (or get) the folio flag, and mark us done
1200 * if successful.
1201 */
1202static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1203					struct wait_queue_entry *wait)
1204{
1205	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1206		if (test_and_set_bit(bit_nr, &folio->flags))
1207			return false;
1208	} else if (test_bit(bit_nr, &folio->flags))
1209		return false;
1210
1211	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1212	return true;
1213}
1214
1215/* How many times do we accept lock stealing from under a waiter? */
1216int sysctl_page_lock_unfairness = 5;
1217
1218static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1219		int state, enum behavior behavior)
1220{
1221	wait_queue_head_t *q = folio_waitqueue(folio);
1222	int unfairness = sysctl_page_lock_unfairness;
1223	struct wait_page_queue wait_page;
1224	wait_queue_entry_t *wait = &wait_page.wait;
1225	bool thrashing = false;
 
1226	unsigned long pflags;
1227	bool in_thrashing;
1228
1229	if (bit_nr == PG_locked &&
1230	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1231		delayacct_thrashing_start(&in_thrashing);
 
 
 
1232		psi_memstall_enter(&pflags);
1233		thrashing = true;
1234	}
1235
1236	init_wait(wait);
1237	wait->func = wake_page_function;
1238	wait_page.folio = folio;
1239	wait_page.bit_nr = bit_nr;
1240
1241repeat:
1242	wait->flags = 0;
1243	if (behavior == EXCLUSIVE) {
1244		wait->flags = WQ_FLAG_EXCLUSIVE;
1245		if (--unfairness < 0)
1246			wait->flags |= WQ_FLAG_CUSTOM;
1247	}
1248
1249	/*
1250	 * Do one last check whether we can get the
1251	 * page bit synchronously.
1252	 *
1253	 * Do the folio_set_waiters() marking before that
1254	 * to let any waker we _just_ missed know they
1255	 * need to wake us up (otherwise they'll never
1256	 * even go to the slow case that looks at the
1257	 * page queue), and add ourselves to the wait
1258	 * queue if we need to sleep.
1259	 *
1260	 * This part needs to be done under the queue
1261	 * lock to avoid races.
1262	 */
1263	spin_lock_irq(&q->lock);
1264	folio_set_waiters(folio);
1265	if (!folio_trylock_flag(folio, bit_nr, wait))
1266		__add_wait_queue_entry_tail(q, wait);
1267	spin_unlock_irq(&q->lock);
1268
1269	/*
1270	 * From now on, all the logic will be based on
1271	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1272	 * see whether the page bit testing has already
1273	 * been done by the wake function.
1274	 *
1275	 * We can drop our reference to the folio.
1276	 */
1277	if (behavior == DROP)
1278		folio_put(folio);
1279
1280	/*
1281	 * Note that until the "finish_wait()", or until
1282	 * we see the WQ_FLAG_WOKEN flag, we need to
1283	 * be very careful with the 'wait->flags', because
1284	 * we may race with a waker that sets them.
1285	 */
1286	for (;;) {
1287		unsigned int flags;
1288
1289		set_current_state(state);
1290
1291		/* Loop until we've been woken or interrupted */
1292		flags = smp_load_acquire(&wait->flags);
1293		if (!(flags & WQ_FLAG_WOKEN)) {
1294			if (signal_pending_state(state, current))
1295				break;
1296
1297			io_schedule();
1298			continue;
1299		}
1300
1301		/* If we were non-exclusive, we're done */
1302		if (behavior != EXCLUSIVE)
1303			break;
1304
1305		/* If the waker got the lock for us, we're done */
1306		if (flags & WQ_FLAG_DONE)
1307			break;
1308
1309		/*
1310		 * Otherwise, if we're getting the lock, we need to
1311		 * try to get it ourselves.
1312		 *
1313		 * And if that fails, we'll have to retry this all.
1314		 */
1315		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1316			goto repeat;
1317
1318		wait->flags |= WQ_FLAG_DONE;
1319		break;
1320	}
1321
1322	/*
1323	 * If a signal happened, this 'finish_wait()' may remove the last
1324	 * waiter from the wait-queues, but the folio waiters bit will remain
1325	 * set. That's ok. The next wakeup will take care of it, and trying
1326	 * to do it here would be difficult and prone to races.
1327	 */
1328	finish_wait(q, wait);
1329
1330	if (thrashing) {
1331		delayacct_thrashing_end(&in_thrashing);
 
1332		psi_memstall_leave(&pflags);
1333	}
1334
1335	/*
1336	 * NOTE! The wait->flags weren't stable until we've done the
1337	 * 'finish_wait()', and we could have exited the loop above due
1338	 * to a signal, and had a wakeup event happen after the signal
1339	 * test but before the 'finish_wait()'.
1340	 *
1341	 * So only after the finish_wait() can we reliably determine
1342	 * if we got woken up or not, so we can now figure out the final
1343	 * return value based on that state without races.
1344	 *
1345	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1346	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1347	 */
1348	if (behavior == EXCLUSIVE)
1349		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1350
1351	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1352}
1353
1354#ifdef CONFIG_MIGRATION
1355/**
1356 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1357 * @entry: migration swap entry.
1358 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1359 *        for pte entries, pass NULL for pmd entries.
1360 * @ptl: already locked ptl. This function will drop the lock.
1361 *
1362 * Wait for a migration entry referencing the given page to be removed. This is
1363 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1364 * this can be called without taking a reference on the page. Instead this
1365 * should be called while holding the ptl for the migration entry referencing
1366 * the page.
1367 *
1368 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1369 *
1370 * This follows the same logic as folio_wait_bit_common() so see the comments
1371 * there.
1372 */
1373void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1374				spinlock_t *ptl)
1375{
1376	struct wait_page_queue wait_page;
1377	wait_queue_entry_t *wait = &wait_page.wait;
1378	bool thrashing = false;
1379	unsigned long pflags;
1380	bool in_thrashing;
1381	wait_queue_head_t *q;
1382	struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1383
1384	q = folio_waitqueue(folio);
1385	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1386		delayacct_thrashing_start(&in_thrashing);
1387		psi_memstall_enter(&pflags);
1388		thrashing = true;
1389	}
1390
1391	init_wait(wait);
1392	wait->func = wake_page_function;
1393	wait_page.folio = folio;
1394	wait_page.bit_nr = PG_locked;
1395	wait->flags = 0;
1396
1397	spin_lock_irq(&q->lock);
1398	folio_set_waiters(folio);
1399	if (!folio_trylock_flag(folio, PG_locked, wait))
1400		__add_wait_queue_entry_tail(q, wait);
1401	spin_unlock_irq(&q->lock);
1402
1403	/*
1404	 * If a migration entry exists for the page the migration path must hold
1405	 * a valid reference to the page, and it must take the ptl to remove the
1406	 * migration entry. So the page is valid until the ptl is dropped.
1407	 */
1408	if (ptep)
1409		pte_unmap_unlock(ptep, ptl);
1410	else
1411		spin_unlock(ptl);
1412
1413	for (;;) {
1414		unsigned int flags;
1415
1416		set_current_state(TASK_UNINTERRUPTIBLE);
1417
1418		/* Loop until we've been woken or interrupted */
1419		flags = smp_load_acquire(&wait->flags);
1420		if (!(flags & WQ_FLAG_WOKEN)) {
1421			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1422				break;
1423
1424			io_schedule();
1425			continue;
1426		}
1427		break;
1428	}
1429
1430	finish_wait(q, wait);
1431
1432	if (thrashing) {
1433		delayacct_thrashing_end(&in_thrashing);
1434		psi_memstall_leave(&pflags);
1435	}
1436}
1437#endif
1438
1439void folio_wait_bit(struct folio *folio, int bit_nr)
1440{
1441	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1442}
1443EXPORT_SYMBOL(folio_wait_bit);
1444
1445int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1446{
1447	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
 
1448}
1449EXPORT_SYMBOL(folio_wait_bit_killable);
1450
1451/**
1452 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1453 * @folio: The folio to wait for.
1454 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1455 *
1456 * The caller should hold a reference on @folio.  They expect the page to
1457 * become unlocked relatively soon, but do not wish to hold up migration
1458 * (for example) by holding the reference while waiting for the folio to
1459 * come unlocked.  After this function returns, the caller should not
1460 * dereference @folio.
1461 *
1462 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1463 */
1464static int folio_put_wait_locked(struct folio *folio, int state)
1465{
1466	return folio_wait_bit_common(folio, PG_locked, state, DROP);
 
 
 
 
1467}
1468
1469/**
1470 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1471 * @folio: Folio defining the wait queue of interest
1472 * @waiter: Waiter to add to the queue
1473 *
1474 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1475 */
1476void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1477{
1478	wait_queue_head_t *q = folio_waitqueue(folio);
1479	unsigned long flags;
1480
1481	spin_lock_irqsave(&q->lock, flags);
1482	__add_wait_queue_entry_tail(q, waiter);
1483	folio_set_waiters(folio);
1484	spin_unlock_irqrestore(&q->lock, flags);
1485}
1486EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1487
1488#ifndef clear_bit_unlock_is_negative_byte
1489
1490/*
1491 * PG_waiters is the high bit in the same byte as PG_lock.
1492 *
1493 * On x86 (and on many other architectures), we can clear PG_lock and
1494 * test the sign bit at the same time. But if the architecture does
1495 * not support that special operation, we just do this all by hand
1496 * instead.
1497 *
1498 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1499 * being cleared, but a memory barrier should be unnecessary since it is
1500 * in the same byte as PG_locked.
1501 */
1502static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1503{
1504	clear_bit_unlock(nr, mem);
1505	/* smp_mb__after_atomic(); */
1506	return test_bit(PG_waiters, mem);
1507}
1508
1509#endif
1510
1511/**
1512 * folio_unlock - Unlock a locked folio.
1513 * @folio: The folio.
1514 *
1515 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1516 *
1517 * Context: May be called from interrupt or process context.  May not be
1518 * called from NMI context.
 
 
 
 
 
 
1519 */
1520void folio_unlock(struct folio *folio)
1521{
1522	/* Bit 7 allows x86 to check the byte's sign bit */
1523	BUILD_BUG_ON(PG_waiters != 7);
1524	BUILD_BUG_ON(PG_locked > 7);
1525	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1526	if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1527		folio_wake_bit(folio, PG_locked);
1528}
1529EXPORT_SYMBOL(folio_unlock);
1530
1531/**
1532 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1533 * @folio: The folio.
1534 *
1535 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1536 * it.  The folio reference held for PG_private_2 being set is released.
1537 *
1538 * This is, for example, used when a netfs folio is being written to a local
1539 * disk cache, thereby allowing writes to the cache for the same folio to be
1540 * serialised.
1541 */
1542void folio_end_private_2(struct folio *folio)
1543{
1544	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1545	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1546	folio_wake_bit(folio, PG_private_2);
1547	folio_put(folio);
 
1548}
1549EXPORT_SYMBOL(folio_end_private_2);
1550
1551/**
1552 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1553 * @folio: The folio to wait on.
1554 *
1555 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1556 */
1557void folio_wait_private_2(struct folio *folio)
1558{
1559	while (folio_test_private_2(folio))
1560		folio_wait_bit(folio, PG_private_2);
 
1561}
1562EXPORT_SYMBOL(folio_wait_private_2);
1563
1564/**
1565 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1566 * @folio: The folio to wait on.
1567 *
1568 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1569 * fatal signal is received by the calling task.
1570 *
1571 * Return:
1572 * - 0 if successful.
1573 * - -EINTR if a fatal signal was encountered.
1574 */
1575int folio_wait_private_2_killable(struct folio *folio)
1576{
1577	int ret = 0;
1578
1579	while (folio_test_private_2(folio)) {
1580		ret = folio_wait_bit_killable(folio, PG_private_2);
 
1581		if (ret < 0)
1582			break;
1583	}
1584
1585	return ret;
1586}
1587EXPORT_SYMBOL(folio_wait_private_2_killable);
1588
1589/**
1590 * folio_end_writeback - End writeback against a folio.
1591 * @folio: The folio.
1592 */
1593void folio_end_writeback(struct folio *folio)
1594{
1595	/*
1596	 * folio_test_clear_reclaim() could be used here but it is an
1597	 * atomic operation and overkill in this particular case. Failing
1598	 * to shuffle a folio marked for immediate reclaim is too mild
1599	 * a gain to justify taking an atomic operation penalty at the
1600	 * end of every folio writeback.
1601	 */
1602	if (folio_test_reclaim(folio)) {
1603		folio_clear_reclaim(folio);
1604		folio_rotate_reclaimable(folio);
1605	}
1606
1607	/*
1608	 * Writeback does not hold a folio reference of its own, relying
1609	 * on truncation to wait for the clearing of PG_writeback.
1610	 * But here we must make sure that the folio is not freed and
1611	 * reused before the folio_wake().
1612	 */
1613	folio_get(folio);
1614	if (!__folio_end_writeback(folio))
1615		BUG();
1616
1617	smp_mb__after_atomic();
1618	folio_wake(folio, PG_writeback);
1619	acct_reclaim_writeback(folio);
1620	folio_put(folio);
1621}
1622EXPORT_SYMBOL(folio_end_writeback);
1623
1624/*
1625 * After completing I/O on a page, call this routine to update the page
1626 * flags appropriately
1627 */
1628void page_endio(struct page *page, bool is_write, int err)
1629{
1630	struct folio *folio = page_folio(page);
1631
1632	if (!is_write) {
1633		if (!err) {
1634			folio_mark_uptodate(folio);
1635		} else {
1636			folio_clear_uptodate(folio);
1637			folio_set_error(folio);
1638		}
1639		folio_unlock(folio);
1640	} else {
1641		if (err) {
1642			struct address_space *mapping;
1643
1644			folio_set_error(folio);
1645			mapping = folio_mapping(folio);
1646			if (mapping)
1647				mapping_set_error(mapping, err);
1648		}
1649		folio_end_writeback(folio);
1650	}
1651}
1652EXPORT_SYMBOL_GPL(page_endio);
1653
1654/**
1655 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1656 * @folio: The folio to lock
1657 */
1658void __folio_lock(struct folio *folio)
1659{
1660	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
 
 
1661				EXCLUSIVE);
1662}
1663EXPORT_SYMBOL(__folio_lock);
1664
1665int __folio_lock_killable(struct folio *folio)
1666{
1667	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
 
 
1668					EXCLUSIVE);
1669}
1670EXPORT_SYMBOL_GPL(__folio_lock_killable);
1671
1672static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1673{
1674	struct wait_queue_head *q = folio_waitqueue(folio);
1675	int ret = 0;
1676
1677	wait->folio = folio;
1678	wait->bit_nr = PG_locked;
1679
1680	spin_lock_irq(&q->lock);
1681	__add_wait_queue_entry_tail(q, &wait->wait);
1682	folio_set_waiters(folio);
1683	ret = !folio_trylock(folio);
1684	/*
1685	 * If we were successful now, we know we're still on the
1686	 * waitqueue as we're still under the lock. This means it's
1687	 * safe to remove and return success, we know the callback
1688	 * isn't going to trigger.
1689	 */
1690	if (!ret)
1691		__remove_wait_queue(q, &wait->wait);
1692	else
1693		ret = -EIOCBQUEUED;
1694	spin_unlock_irq(&q->lock);
1695	return ret;
1696}
1697
1698/*
1699 * Return values:
1700 * true - folio is locked; mmap_lock is still held.
1701 * false - folio is not locked.
1702 *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1703 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1704 *     which case mmap_lock is still held.
1705 *
1706 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1707 * with the folio locked and the mmap_lock unperturbed.
1708 */
1709bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
1710			 unsigned int flags)
1711{
1712	if (fault_flag_allow_retry_first(flags)) {
1713		/*
1714		 * CAUTION! In this case, mmap_lock is not released
1715		 * even though return 0.
1716		 */
1717		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1718			return false;
1719
1720		mmap_read_unlock(mm);
1721		if (flags & FAULT_FLAG_KILLABLE)
1722			folio_wait_locked_killable(folio);
1723		else
1724			folio_wait_locked(folio);
1725		return false;
1726	}
1727	if (flags & FAULT_FLAG_KILLABLE) {
1728		bool ret;
1729
1730		ret = __folio_lock_killable(folio);
1731		if (ret) {
1732			mmap_read_unlock(mm);
1733			return false;
1734		}
1735	} else {
1736		__folio_lock(folio);
1737	}
 
1738
1739	return true;
1740}
1741
1742/**
1743 * page_cache_next_miss() - Find the next gap in the page cache.
1744 * @mapping: Mapping.
1745 * @index: Index.
1746 * @max_scan: Maximum range to search.
1747 *
1748 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1749 * gap with the lowest index.
1750 *
1751 * This function may be called under the rcu_read_lock.  However, this will
1752 * not atomically search a snapshot of the cache at a single point in time.
1753 * For example, if a gap is created at index 5, then subsequently a gap is
1754 * created at index 10, page_cache_next_miss covering both indices may
1755 * return 10 if called under the rcu_read_lock.
1756 *
1757 * Return: The index of the gap if found, otherwise an index outside the
1758 * range specified (in which case 'return - index >= max_scan' will be true).
1759 * In the rare case of index wrap-around, 0 will be returned.
1760 */
1761pgoff_t page_cache_next_miss(struct address_space *mapping,
1762			     pgoff_t index, unsigned long max_scan)
1763{
1764	XA_STATE(xas, &mapping->i_pages, index);
1765
1766	while (max_scan--) {
1767		void *entry = xas_next(&xas);
1768		if (!entry || xa_is_value(entry))
1769			break;
1770		if (xas.xa_index == 0)
1771			break;
1772	}
1773
1774	return xas.xa_index;
1775}
1776EXPORT_SYMBOL(page_cache_next_miss);
1777
1778/**
1779 * page_cache_prev_miss() - Find the previous gap in the page cache.
1780 * @mapping: Mapping.
1781 * @index: Index.
1782 * @max_scan: Maximum range to search.
1783 *
1784 * Search the range [max(index - max_scan + 1, 0), index] for the
1785 * gap with the highest index.
1786 *
1787 * This function may be called under the rcu_read_lock.  However, this will
1788 * not atomically search a snapshot of the cache at a single point in time.
1789 * For example, if a gap is created at index 10, then subsequently a gap is
1790 * created at index 5, page_cache_prev_miss() covering both indices may
1791 * return 5 if called under the rcu_read_lock.
1792 *
1793 * Return: The index of the gap if found, otherwise an index outside the
1794 * range specified (in which case 'index - return >= max_scan' will be true).
1795 * In the rare case of wrap-around, ULONG_MAX will be returned.
1796 */
1797pgoff_t page_cache_prev_miss(struct address_space *mapping,
1798			     pgoff_t index, unsigned long max_scan)
1799{
1800	XA_STATE(xas, &mapping->i_pages, index);
1801
1802	while (max_scan--) {
1803		void *entry = xas_prev(&xas);
1804		if (!entry || xa_is_value(entry))
1805			break;
1806		if (xas.xa_index == ULONG_MAX)
1807			break;
1808	}
1809
1810	return xas.xa_index;
1811}
1812EXPORT_SYMBOL(page_cache_prev_miss);
1813
1814/*
1815 * Lockless page cache protocol:
1816 * On the lookup side:
1817 * 1. Load the folio from i_pages
1818 * 2. Increment the refcount if it's not zero
1819 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1820 *
1821 * On the removal side:
1822 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1823 * B. Remove the page from i_pages
1824 * C. Return the page to the page allocator
1825 *
1826 * This means that any page may have its reference count temporarily
1827 * increased by a speculative page cache (or fast GUP) lookup as it can
1828 * be allocated by another user before the RCU grace period expires.
1829 * Because the refcount temporarily acquired here may end up being the
1830 * last refcount on the page, any page allocation must be freeable by
1831 * folio_put().
1832 */
1833
1834/*
1835 * mapping_get_entry - Get a page cache entry.
1836 * @mapping: the address_space to search
1837 * @index: The page cache index.
1838 *
1839 * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1840 * it is returned with an increased refcount.  If it is a shadow entry
1841 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1842 * it is returned without further action.
 
1843 *
1844 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1845 */
1846static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
 
1847{
1848	XA_STATE(xas, &mapping->i_pages, index);
1849	struct folio *folio;
1850
1851	rcu_read_lock();
1852repeat:
1853	xas_reset(&xas);
1854	folio = xas_load(&xas);
1855	if (xas_retry(&xas, folio))
1856		goto repeat;
1857	/*
1858	 * A shadow entry of a recently evicted page, or a swap entry from
1859	 * shmem/tmpfs.  Return it without attempting to raise page count.
1860	 */
1861	if (!folio || xa_is_value(folio))
1862		goto out;
1863
1864	if (!folio_try_get_rcu(folio))
1865		goto repeat;
1866
1867	if (unlikely(folio != xas_reload(&xas))) {
1868		folio_put(folio);
 
 
 
 
 
1869		goto repeat;
1870	}
1871out:
1872	rcu_read_unlock();
1873
1874	return folio;
1875}
1876
1877/**
1878 * __filemap_get_folio - Find and get a reference to a folio.
1879 * @mapping: The address_space to search.
1880 * @index: The page index.
1881 * @fgp_flags: %FGP flags modify how the folio is returned.
1882 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1883 *
1884 * Looks up the page cache entry at @mapping & @index.
1885 *
1886 * @fgp_flags can be zero or more of these flags:
1887 *
1888 * * %FGP_ACCESSED - The folio will be marked accessed.
1889 * * %FGP_LOCK - The folio is returned locked.
 
 
1890 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1891 *   instead of allocating a new folio to replace it.
1892 * * %FGP_CREAT - If no page is present then a new page is allocated using
1893 *   @gfp and added to the page cache and the VM's LRU list.
1894 *   The page is returned locked and with an increased refcount.
1895 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1896 *   page is already in cache.  If the page was allocated, unlock it before
1897 *   returning so the caller can do the same dance.
1898 * * %FGP_WRITE - The page will be written to by the caller.
1899 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1900 * * %FGP_NOWAIT - Don't get blocked by page lock.
1901 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1902 *
1903 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1904 * if the %GFP flags specified for %FGP_CREAT are atomic.
1905 *
1906 * If there is a page cache page, it is returned with an increased refcount.
1907 *
1908 * Return: The found folio or %NULL otherwise.
1909 */
1910struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1911		int fgp_flags, gfp_t gfp)
1912{
1913	struct folio *folio;
1914
1915repeat:
1916	folio = mapping_get_entry(mapping, index);
1917	if (xa_is_value(folio)) {
1918		if (fgp_flags & FGP_ENTRY)
1919			return folio;
1920		folio = NULL;
1921	}
1922	if (!folio)
1923		goto no_page;
1924
1925	if (fgp_flags & FGP_LOCK) {
1926		if (fgp_flags & FGP_NOWAIT) {
1927			if (!folio_trylock(folio)) {
1928				folio_put(folio);
1929				return NULL;
1930			}
1931		} else {
1932			folio_lock(folio);
1933		}
1934
1935		/* Has the page been truncated? */
1936		if (unlikely(folio->mapping != mapping)) {
1937			folio_unlock(folio);
1938			folio_put(folio);
1939			goto repeat;
1940		}
1941		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1942	}
1943
1944	if (fgp_flags & FGP_ACCESSED)
1945		folio_mark_accessed(folio);
1946	else if (fgp_flags & FGP_WRITE) {
1947		/* Clear idle flag for buffer write */
1948		if (folio_test_idle(folio))
1949			folio_clear_idle(folio);
1950	}
 
 
1951
1952	if (fgp_flags & FGP_STABLE)
1953		folio_wait_stable(folio);
1954no_page:
1955	if (!folio && (fgp_flags & FGP_CREAT)) {
1956		int err;
1957		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1958			gfp |= __GFP_WRITE;
1959		if (fgp_flags & FGP_NOFS)
1960			gfp &= ~__GFP_FS;
1961		if (fgp_flags & FGP_NOWAIT) {
1962			gfp &= ~GFP_KERNEL;
1963			gfp |= GFP_NOWAIT | __GFP_NOWARN;
1964		}
1965
1966		folio = filemap_alloc_folio(gfp, 0);
1967		if (!folio)
1968			return NULL;
1969
1970		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1971			fgp_flags |= FGP_LOCK;
1972
1973		/* Init accessed so avoid atomic mark_page_accessed later */
1974		if (fgp_flags & FGP_ACCESSED)
1975			__folio_set_referenced(folio);
1976
1977		err = filemap_add_folio(mapping, folio, index, gfp);
1978		if (unlikely(err)) {
1979			folio_put(folio);
1980			folio = NULL;
1981			if (err == -EEXIST)
1982				goto repeat;
1983		}
1984
1985		/*
1986		 * filemap_add_folio locks the page, and for mmap
1987		 * we expect an unlocked page.
1988		 */
1989		if (folio && (fgp_flags & FGP_FOR_MMAP))
1990			folio_unlock(folio);
1991	}
1992
1993	return folio;
1994}
1995EXPORT_SYMBOL(__filemap_get_folio);
1996
1997static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1998		xa_mark_t mark)
1999{
2000	struct folio *folio;
2001
2002retry:
2003	if (mark == XA_PRESENT)
2004		folio = xas_find(xas, max);
2005	else
2006		folio = xas_find_marked(xas, max, mark);
2007
2008	if (xas_retry(xas, folio))
2009		goto retry;
2010	/*
2011	 * A shadow entry of a recently evicted page, a swap
2012	 * entry from shmem/tmpfs or a DAX entry.  Return it
2013	 * without attempting to raise page count.
2014	 */
2015	if (!folio || xa_is_value(folio))
2016		return folio;
2017
2018	if (!folio_try_get_rcu(folio))
2019		goto reset;
2020
2021	if (unlikely(folio != xas_reload(xas))) {
2022		folio_put(folio);
 
2023		goto reset;
2024	}
2025
2026	return folio;
2027reset:
2028	xas_reset(xas);
2029	goto retry;
2030}
2031
2032/**
2033 * find_get_entries - gang pagecache lookup
2034 * @mapping:	The address_space to search
2035 * @start:	The starting page cache index
2036 * @end:	The final page index (inclusive).
2037 * @fbatch:	Where the resulting entries are placed.
2038 * @indices:	The cache indices corresponding to the entries in @entries
2039 *
2040 * find_get_entries() will search for and return a batch of entries in
2041 * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2042 * takes a reference on any actual folios it returns.
2043 *
2044 * The entries have ascending indexes.  The indices may not be consecutive
2045 * due to not-present entries or large folios.
 
2046 *
2047 * Any shadow entries of evicted folios, or swap entries from
2048 * shmem/tmpfs, are included in the returned array.
2049 *
2050 * Return: The number of entries which were found.
 
 
 
 
 
2051 */
2052unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2053		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2054{
2055	XA_STATE(xas, &mapping->i_pages, *start);
2056	struct folio *folio;
 
 
2057
2058	rcu_read_lock();
2059	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2060		indices[fbatch->nr] = xas.xa_index;
2061		if (!folio_batch_add(fbatch, folio))
 
 
 
 
 
 
 
 
 
 
 
2062			break;
2063	}
2064	rcu_read_unlock();
2065
2066	if (folio_batch_count(fbatch)) {
2067		unsigned long nr = 1;
2068		int idx = folio_batch_count(fbatch) - 1;
2069
2070		folio = fbatch->folios[idx];
2071		if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2072			nr = folio_nr_pages(folio);
2073		*start = indices[idx] + nr;
2074	}
2075	return folio_batch_count(fbatch);
2076}
2077
2078/**
2079 * find_lock_entries - Find a batch of pagecache entries.
2080 * @mapping:	The address_space to search.
2081 * @start:	The starting page cache index.
2082 * @end:	The final page index (inclusive).
2083 * @fbatch:	Where the resulting entries are placed.
2084 * @indices:	The cache indices of the entries in @fbatch.
2085 *
2086 * find_lock_entries() will return a batch of entries from @mapping.
2087 * Swap, shadow and DAX entries are included.  Folios are returned
2088 * locked and with an incremented refcount.  Folios which are locked
2089 * by somebody else or under writeback are skipped.  Folios which are
2090 * partially outside the range are not returned.
 
2091 *
2092 * The entries have ascending indexes.  The indices may not be consecutive
2093 * due to not-present entries, large folios, folios which could not be
2094 * locked or folios under writeback.
2095 *
2096 * Return: The number of entries which were found.
2097 */
2098unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2099		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2100{
2101	XA_STATE(xas, &mapping->i_pages, *start);
2102	struct folio *folio;
2103
2104	rcu_read_lock();
2105	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2106		if (!xa_is_value(folio)) {
2107			if (folio->index < *start)
2108				goto put;
2109			if (folio->index + folio_nr_pages(folio) - 1 > end)
 
2110				goto put;
2111			if (!folio_trylock(folio))
2112				goto put;
2113			if (folio->mapping != mapping ||
2114			    folio_test_writeback(folio))
2115				goto unlock;
2116			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2117					folio);
2118		}
2119		indices[fbatch->nr] = xas.xa_index;
2120		if (!folio_batch_add(fbatch, folio))
2121			break;
2122		continue;
2123unlock:
2124		folio_unlock(folio);
2125put:
2126		folio_put(folio);
 
 
 
 
 
 
 
 
 
2127	}
2128	rcu_read_unlock();
2129
2130	if (folio_batch_count(fbatch)) {
2131		unsigned long nr = 1;
2132		int idx = folio_batch_count(fbatch) - 1;
2133
2134		folio = fbatch->folios[idx];
2135		if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2136			nr = folio_nr_pages(folio);
2137		*start = indices[idx] + nr;
2138	}
2139	return folio_batch_count(fbatch);
2140}
2141
2142/**
2143 * filemap_get_folios - Get a batch of folios
2144 * @mapping:	The address_space to search
2145 * @start:	The starting page index
2146 * @end:	The final page index (inclusive)
2147 * @fbatch:	The batch to fill.
 
2148 *
2149 * Search for and return a batch of folios in the mapping starting at
2150 * index @start and up to index @end (inclusive).  The folios are returned
2151 * in @fbatch with an elevated reference count.
2152 *
2153 * The first folio may start before @start; if it does, it will contain
2154 * @start.  The final folio may extend beyond @end; if it does, it will
2155 * contain @end.  The folios have ascending indices.  There may be gaps
2156 * between the folios if there are indices which have no folio in the
2157 * page cache.  If folios are added to or removed from the page cache
2158 * while this is running, they may or may not be found by this call.
2159 *
2160 * Return: The number of folios which were found.
2161 * We also update @start to index the next folio for the traversal.
2162 */
2163unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2164		pgoff_t end, struct folio_batch *fbatch)
2165{
2166	XA_STATE(xas, &mapping->i_pages, *start);
2167	struct folio *folio;
 
 
 
 
2168
2169	rcu_read_lock();
2170	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2171		/* Skip over shadow, swap and DAX entries */
2172		if (xa_is_value(folio))
2173			continue;
2174		if (!folio_batch_add(fbatch, folio)) {
2175			unsigned long nr = folio_nr_pages(folio);
2176
2177			if (folio_test_hugetlb(folio))
2178				nr = 1;
2179			*start = folio->index + nr;
2180			goto out;
2181		}
2182	}
2183
2184	/*
2185	 * We come here when there is no page beyond @end. We take care to not
2186	 * overflow the index @start as it confuses some of the callers. This
2187	 * breaks the iteration when there is a page at index -1 but that is
2188	 * already broken anyway.
2189	 */
2190	if (end == (pgoff_t)-1)
2191		*start = (pgoff_t)-1;
2192	else
2193		*start = end + 1;
2194out:
2195	rcu_read_unlock();
2196
2197	return folio_batch_count(fbatch);
2198}
2199EXPORT_SYMBOL(filemap_get_folios);
2200
2201static inline
2202bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2203{
2204	if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2205		return false;
2206	if (index >= max)
2207		return false;
2208	return index < folio->index + folio_nr_pages(folio) - 1;
2209}
2210
2211/**
2212 * filemap_get_folios_contig - Get a batch of contiguous folios
2213 * @mapping:	The address_space to search
2214 * @start:	The starting page index
2215 * @end:	The final page index (inclusive)
2216 * @fbatch:	The batch to fill
2217 *
2218 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2219 * except the returned folios are guaranteed to be contiguous. This may
2220 * not return all contiguous folios if the batch gets filled up.
2221 *
2222 * Return: The number of folios found.
2223 * Also update @start to be positioned for traversal of the next folio.
2224 */
2225
2226unsigned filemap_get_folios_contig(struct address_space *mapping,
2227		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2228{
2229	XA_STATE(xas, &mapping->i_pages, *start);
2230	unsigned long nr;
2231	struct folio *folio;
2232
2233	rcu_read_lock();
 
2234
2235	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2236			folio = xas_next(&xas)) {
2237		if (xas_retry(&xas, folio))
2238			continue;
2239		/*
2240		 * If the entry has been swapped out, we can stop looking.
2241		 * No current caller is looking for DAX entries.
2242		 */
2243		if (xa_is_value(folio))
2244			goto update_start;
2245
2246		if (!folio_try_get_rcu(folio))
2247			goto retry;
2248
2249		if (unlikely(folio != xas_reload(&xas)))
2250			goto put_folio;
2251
2252		if (!folio_batch_add(fbatch, folio)) {
2253			nr = folio_nr_pages(folio);
2254
2255			if (folio_test_hugetlb(folio))
2256				nr = 1;
2257			*start = folio->index + nr;
2258			goto out;
2259		}
2260		continue;
2261put_folio:
2262		folio_put(folio);
2263
2264retry:
2265		xas_reset(&xas);
2266	}
2267
2268update_start:
2269	nr = folio_batch_count(fbatch);
2270
2271	if (nr) {
2272		folio = fbatch->folios[nr - 1];
2273		if (folio_test_hugetlb(folio))
2274			*start = folio->index + 1;
2275		else
2276			*start = folio->index + folio_nr_pages(folio);
2277	}
2278out:
2279	rcu_read_unlock();
2280	return folio_batch_count(fbatch);
2281}
2282EXPORT_SYMBOL(filemap_get_folios_contig);
2283
2284/**
2285 * find_get_pages_range_tag - Find and return head pages matching @tag.
2286 * @mapping:	the address_space to search
2287 * @index:	the starting page index
2288 * @end:	The final page index (inclusive)
2289 * @tag:	the tag index
2290 * @nr_pages:	the maximum number of pages
2291 * @pages:	where the resulting pages are placed
2292 *
2293 * Like find_get_pages_range(), except we only return head pages which are
2294 * tagged with @tag.  @index is updated to the index immediately after the
2295 * last page we return, ready for the next iteration.
2296 *
2297 * Return: the number of pages which were found.
2298 */
2299unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2300			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2301			struct page **pages)
2302{
2303	XA_STATE(xas, &mapping->i_pages, *index);
2304	struct folio *folio;
2305	unsigned ret = 0;
2306
2307	if (unlikely(!nr_pages))
2308		return 0;
2309
2310	rcu_read_lock();
2311	while ((folio = find_get_entry(&xas, end, tag))) {
2312		/*
2313		 * Shadow entries should never be tagged, but this iteration
2314		 * is lockless so there is a window for page reclaim to evict
2315		 * a page we saw tagged.  Skip over it.
2316		 */
2317		if (xa_is_value(folio))
2318			continue;
2319
2320		pages[ret] = &folio->page;
2321		if (++ret == nr_pages) {
2322			*index = folio->index + folio_nr_pages(folio);
2323			goto out;
2324		}
2325	}
2326
2327	/*
2328	 * We come here when we got to @end. We take care to not overflow the
2329	 * index @index as it confuses some of the callers. This breaks the
2330	 * iteration when there is a page at index -1 but that is already
2331	 * broken anyway.
2332	 */
2333	if (end == (pgoff_t)-1)
2334		*index = (pgoff_t)-1;
2335	else
2336		*index = end + 1;
2337out:
2338	rcu_read_unlock();
2339
2340	return ret;
2341}
2342EXPORT_SYMBOL(find_get_pages_range_tag);
2343
2344/*
2345 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2346 * a _large_ part of the i/o request. Imagine the worst scenario:
2347 *
2348 *      ---R__________________________________________B__________
2349 *         ^ reading here                             ^ bad block(assume 4k)
2350 *
2351 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2352 * => failing the whole request => read(R) => read(R+1) =>
2353 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2354 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2355 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2356 *
2357 * It is going insane. Fix it by quickly scaling down the readahead size.
2358 */
2359static void shrink_readahead_size_eio(struct file_ra_state *ra)
2360{
2361	ra->ra_pages /= 4;
2362}
2363
2364/*
2365 * filemap_get_read_batch - Get a batch of folios for read
2366 *
2367 * Get a batch of folios which represent a contiguous range of bytes in
2368 * the file.  No exceptional entries will be returned.  If @index is in
2369 * the middle of a folio, the entire folio will be returned.  The last
2370 * folio in the batch may have the readahead flag set or the uptodate flag
2371 * clear so that the caller can take the appropriate action.
2372 */
2373static void filemap_get_read_batch(struct address_space *mapping,
2374		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2375{
2376	XA_STATE(xas, &mapping->i_pages, index);
2377	struct folio *folio;
2378
2379	rcu_read_lock();
2380	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2381		if (xas_retry(&xas, folio))
2382			continue;
2383		if (xas.xa_index > max || xa_is_value(folio))
2384			break;
2385		if (xa_is_sibling(folio))
2386			break;
2387		if (!folio_try_get_rcu(folio))
2388			goto retry;
2389
2390		if (unlikely(folio != xas_reload(&xas)))
2391			goto put_folio;
 
2392
2393		if (!folio_batch_add(fbatch, folio))
2394			break;
2395		if (!folio_test_uptodate(folio))
2396			break;
2397		if (folio_test_readahead(folio))
2398			break;
2399		xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
 
2400		continue;
2401put_folio:
2402		folio_put(folio);
2403retry:
2404		xas_reset(&xas);
2405	}
2406	rcu_read_unlock();
2407}
2408
2409static int filemap_read_folio(struct file *file, filler_t filler,
2410		struct folio *folio)
2411{
2412	bool workingset = folio_test_workingset(folio);
2413	unsigned long pflags;
2414	int error;
2415
2416	/*
2417	 * A previous I/O error may have been due to temporary failures,
2418	 * eg. multipath errors.  PG_error will be set again if read_folio
2419	 * fails.
2420	 */
2421	folio_clear_error(folio);
2422
2423	/* Start the actual read. The read will unlock the page. */
2424	if (unlikely(workingset))
2425		psi_memstall_enter(&pflags);
2426	error = filler(file, folio);
2427	if (unlikely(workingset))
2428		psi_memstall_leave(&pflags);
2429	if (error)
2430		return error;
2431
2432	error = folio_wait_locked_killable(folio);
2433	if (error)
2434		return error;
2435	if (folio_test_uptodate(folio))
2436		return 0;
2437	if (file)
2438		shrink_readahead_size_eio(&file->f_ra);
2439	return -EIO;
2440}
2441
2442static bool filemap_range_uptodate(struct address_space *mapping,
2443		loff_t pos, struct iov_iter *iter, struct folio *folio)
2444{
2445	int count;
2446
2447	if (folio_test_uptodate(folio))
2448		return true;
2449	/* pipes can't handle partially uptodate pages */
2450	if (iov_iter_is_pipe(iter))
2451		return false;
2452	if (!mapping->a_ops->is_partially_uptodate)
2453		return false;
2454	if (mapping->host->i_blkbits >= folio_shift(folio))
2455		return false;
2456
2457	count = iter->count;
2458	if (folio_pos(folio) > pos) {
2459		count -= folio_pos(folio) - pos;
2460		pos = 0;
2461	} else {
2462		pos -= folio_pos(folio);
2463	}
2464
2465	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2466}
2467
2468static int filemap_update_page(struct kiocb *iocb,
2469		struct address_space *mapping, struct iov_iter *iter,
2470		struct folio *folio)
2471{
2472	int error;
2473
2474	if (iocb->ki_flags & IOCB_NOWAIT) {
2475		if (!filemap_invalidate_trylock_shared(mapping))
2476			return -EAGAIN;
2477	} else {
2478		filemap_invalidate_lock_shared(mapping);
2479	}
2480
2481	if (!folio_trylock(folio)) {
2482		error = -EAGAIN;
2483		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2484			goto unlock_mapping;
2485		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2486			filemap_invalidate_unlock_shared(mapping);
2487			/*
2488			 * This is where we usually end up waiting for a
2489			 * previously submitted readahead to finish.
2490			 */
2491			folio_put_wait_locked(folio, TASK_KILLABLE);
2492			return AOP_TRUNCATED_PAGE;
2493		}
2494		error = __folio_lock_async(folio, iocb->ki_waitq);
2495		if (error)
2496			goto unlock_mapping;
2497	}
2498
2499	error = AOP_TRUNCATED_PAGE;
2500	if (!folio->mapping)
2501		goto unlock;
2502
2503	error = 0;
2504	if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio))
2505		goto unlock;
2506
2507	error = -EAGAIN;
2508	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2509		goto unlock;
2510
2511	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2512			folio);
2513	goto unlock_mapping;
2514unlock:
2515	folio_unlock(folio);
2516unlock_mapping:
2517	filemap_invalidate_unlock_shared(mapping);
2518	if (error == AOP_TRUNCATED_PAGE)
2519		folio_put(folio);
 
 
 
 
 
 
 
2520	return error;
2521}
2522
2523static int filemap_create_folio(struct file *file,
2524		struct address_space *mapping, pgoff_t index,
2525		struct folio_batch *fbatch)
2526{
2527	struct folio *folio;
2528	int error;
2529
2530	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2531	if (!folio)
2532		return -ENOMEM;
2533
2534	/*
2535	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2536	 * here assures we cannot instantiate and bring uptodate new
2537	 * pagecache folios after evicting page cache during truncate
2538	 * and before actually freeing blocks.	Note that we could
2539	 * release invalidate_lock after inserting the folio into
2540	 * the page cache as the locked folio would then be enough to
2541	 * synchronize with hole punching. But there are code paths
2542	 * such as filemap_update_page() filling in partially uptodate
2543	 * pages or ->readahead() that need to hold invalidate_lock
2544	 * while mapping blocks for IO so let's hold the lock here as
2545	 * well to keep locking rules simple.
2546	 */
2547	filemap_invalidate_lock_shared(mapping);
2548	error = filemap_add_folio(mapping, folio, index,
2549			mapping_gfp_constraint(mapping, GFP_KERNEL));
2550	if (error == -EEXIST)
2551		error = AOP_TRUNCATED_PAGE;
2552	if (error)
2553		goto error;
2554
2555	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2556	if (error)
2557		goto error;
2558
2559	filemap_invalidate_unlock_shared(mapping);
2560	folio_batch_add(fbatch, folio);
2561	return 0;
2562error:
2563	filemap_invalidate_unlock_shared(mapping);
2564	folio_put(folio);
2565	return error;
2566}
2567
2568static int filemap_readahead(struct kiocb *iocb, struct file *file,
2569		struct address_space *mapping, struct folio *folio,
2570		pgoff_t last_index)
2571{
2572	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2573
2574	if (iocb->ki_flags & IOCB_NOIO)
2575		return -EAGAIN;
2576	page_cache_async_ra(&ractl, folio, last_index - folio->index);
 
2577	return 0;
2578}
2579
2580static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2581		struct folio_batch *fbatch)
2582{
2583	struct file *filp = iocb->ki_filp;
2584	struct address_space *mapping = filp->f_mapping;
2585	struct file_ra_state *ra = &filp->f_ra;
2586	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2587	pgoff_t last_index;
2588	struct folio *folio;
2589	int err = 0;
2590
2591	/* "last_index" is the index of the page beyond the end of the read */
2592	last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2593retry:
2594	if (fatal_signal_pending(current))
2595		return -EINTR;
2596
2597	filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2598	if (!folio_batch_count(fbatch)) {
2599		if (iocb->ki_flags & IOCB_NOIO)
2600			return -EAGAIN;
2601		page_cache_sync_readahead(mapping, ra, filp, index,
2602				last_index - index);
2603		filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2604	}
2605	if (!folio_batch_count(fbatch)) {
2606		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2607			return -EAGAIN;
2608		err = filemap_create_folio(filp, mapping,
2609				iocb->ki_pos >> PAGE_SHIFT, fbatch);
2610		if (err == AOP_TRUNCATED_PAGE)
2611			goto retry;
2612		return err;
2613	}
2614
2615	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2616	if (folio_test_readahead(folio)) {
2617		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2618		if (err)
2619			goto err;
2620	}
2621	if (!folio_test_uptodate(folio)) {
2622		if ((iocb->ki_flags & IOCB_WAITQ) &&
2623		    folio_batch_count(fbatch) > 1)
2624			iocb->ki_flags |= IOCB_NOWAIT;
2625		err = filemap_update_page(iocb, mapping, iter, folio);
2626		if (err)
2627			goto err;
2628	}
2629
2630	return 0;
2631err:
2632	if (err < 0)
2633		folio_put(folio);
2634	if (likely(--fbatch->nr))
2635		return 0;
2636	if (err == AOP_TRUNCATED_PAGE)
2637		goto retry;
2638	return err;
2639}
2640
2641static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2642{
2643	unsigned int shift = folio_shift(folio);
2644
2645	return (pos1 >> shift == pos2 >> shift);
2646}
2647
2648/**
2649 * filemap_read - Read data from the page cache.
2650 * @iocb: The iocb to read.
2651 * @iter: Destination for the data.
2652 * @already_read: Number of bytes already read by the caller.
2653 *
2654 * Copies data from the page cache.  If the data is not currently present,
2655 * uses the readahead and read_folio address_space operations to fetch it.
2656 *
2657 * Return: Total number of bytes copied, including those already read by
2658 * the caller.  If an error happens before any bytes are copied, returns
2659 * a negative error number.
2660 */
2661ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2662		ssize_t already_read)
2663{
2664	struct file *filp = iocb->ki_filp;
2665	struct file_ra_state *ra = &filp->f_ra;
2666	struct address_space *mapping = filp->f_mapping;
2667	struct inode *inode = mapping->host;
2668	struct folio_batch fbatch;
2669	int i, error = 0;
2670	bool writably_mapped;
2671	loff_t isize, end_offset;
2672
2673	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2674		return 0;
2675	if (unlikely(!iov_iter_count(iter)))
2676		return 0;
2677
2678	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2679	folio_batch_init(&fbatch);
2680
2681	do {
2682		cond_resched();
2683
2684		/*
2685		 * If we've already successfully copied some data, then we
2686		 * can no longer safely return -EIOCBQUEUED. Hence mark
2687		 * an async read NOWAIT at that point.
2688		 */
2689		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2690			iocb->ki_flags |= IOCB_NOWAIT;
2691
2692		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2693			break;
2694
2695		error = filemap_get_pages(iocb, iter, &fbatch);
2696		if (error < 0)
2697			break;
2698
2699		/*
2700		 * i_size must be checked after we know the pages are Uptodate.
2701		 *
2702		 * Checking i_size after the check allows us to calculate
2703		 * the correct value for "nr", which means the zero-filled
2704		 * part of the page is not copied back to userspace (unless
2705		 * another truncate extends the file - this is desired though).
2706		 */
2707		isize = i_size_read(inode);
2708		if (unlikely(iocb->ki_pos >= isize))
2709			goto put_folios;
2710		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2711
2712		/*
2713		 * Once we start copying data, we don't want to be touching any
2714		 * cachelines that might be contended:
2715		 */
2716		writably_mapped = mapping_writably_mapped(mapping);
2717
2718		/*
2719		 * When a read accesses the same folio several times, only
2720		 * mark it as accessed the first time.
2721		 */
2722		if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1,
2723							fbatch.folios[0]))
2724			folio_mark_accessed(fbatch.folios[0]);
2725
2726		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2727			struct folio *folio = fbatch.folios[i];
2728			size_t fsize = folio_size(folio);
2729			size_t offset = iocb->ki_pos & (fsize - 1);
2730			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2731					     fsize - offset);
2732			size_t copied;
2733
2734			if (end_offset < folio_pos(folio))
2735				break;
2736			if (i > 0)
2737				folio_mark_accessed(folio);
2738			/*
2739			 * If users can be writing to this folio using arbitrary
2740			 * virtual addresses, take care of potential aliasing
2741			 * before reading the folio on the kernel side.
2742			 */
2743			if (writably_mapped)
2744				flush_dcache_folio(folio);
2745
2746			copied = copy_folio_to_iter(folio, offset, bytes, iter);
 
 
 
 
2747
2748			already_read += copied;
2749			iocb->ki_pos += copied;
2750			ra->prev_pos = iocb->ki_pos;
2751
2752			if (copied < bytes) {
2753				error = -EFAULT;
2754				break;
2755			}
2756		}
2757put_folios:
2758		for (i = 0; i < folio_batch_count(&fbatch); i++)
2759			folio_put(fbatch.folios[i]);
2760		folio_batch_init(&fbatch);
2761	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2762
2763	file_accessed(filp);
2764
2765	return already_read ? already_read : error;
2766}
2767EXPORT_SYMBOL_GPL(filemap_read);
2768
2769/**
2770 * generic_file_read_iter - generic filesystem read routine
2771 * @iocb:	kernel I/O control block
2772 * @iter:	destination for the data read
2773 *
2774 * This is the "read_iter()" routine for all filesystems
2775 * that can use the page cache directly.
2776 *
2777 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2778 * be returned when no data can be read without waiting for I/O requests
2779 * to complete; it doesn't prevent readahead.
2780 *
2781 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2782 * requests shall be made for the read or for readahead.  When no data
2783 * can be read, -EAGAIN shall be returned.  When readahead would be
2784 * triggered, a partial, possibly empty read shall be returned.
2785 *
2786 * Return:
2787 * * number of bytes copied, even for partial reads
2788 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2789 */
2790ssize_t
2791generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2792{
2793	size_t count = iov_iter_count(iter);
2794	ssize_t retval = 0;
2795
2796	if (!count)
2797		return 0; /* skip atime */
2798
2799	if (iocb->ki_flags & IOCB_DIRECT) {
2800		struct file *file = iocb->ki_filp;
2801		struct address_space *mapping = file->f_mapping;
2802		struct inode *inode = mapping->host;
 
2803
 
2804		if (iocb->ki_flags & IOCB_NOWAIT) {
2805			if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2806						iocb->ki_pos + count - 1))
2807				return -EAGAIN;
2808		} else {
2809			retval = filemap_write_and_wait_range(mapping,
2810						iocb->ki_pos,
2811					        iocb->ki_pos + count - 1);
2812			if (retval < 0)
2813				return retval;
2814		}
2815
2816		file_accessed(file);
2817
2818		retval = mapping->a_ops->direct_IO(iocb, iter);
2819		if (retval >= 0) {
2820			iocb->ki_pos += retval;
2821			count -= retval;
2822		}
2823		if (retval != -EIOCBQUEUED)
2824			iov_iter_revert(iter, count - iov_iter_count(iter));
2825
2826		/*
2827		 * Btrfs can have a short DIO read if we encounter
2828		 * compressed extents, so if there was an error, or if
2829		 * we've already read everything we wanted to, or if
2830		 * there was a short read because we hit EOF, go ahead
2831		 * and return.  Otherwise fallthrough to buffered io for
2832		 * the rest of the read.  Buffered reads will not work for
2833		 * DAX files, so don't bother trying.
2834		 */
2835		if (retval < 0 || !count || IS_DAX(inode))
2836			return retval;
2837		if (iocb->ki_pos >= i_size_read(inode))
2838			return retval;
2839	}
2840
2841	return filemap_read(iocb, iter, retval);
2842}
2843EXPORT_SYMBOL(generic_file_read_iter);
2844
2845static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2846		struct address_space *mapping, struct folio *folio,
2847		loff_t start, loff_t end, bool seek_data)
2848{
2849	const struct address_space_operations *ops = mapping->a_ops;
2850	size_t offset, bsz = i_blocksize(mapping->host);
2851
2852	if (xa_is_value(folio) || folio_test_uptodate(folio))
2853		return seek_data ? start : end;
2854	if (!ops->is_partially_uptodate)
2855		return seek_data ? end : start;
2856
2857	xas_pause(xas);
2858	rcu_read_unlock();
2859	folio_lock(folio);
2860	if (unlikely(folio->mapping != mapping))
2861		goto unlock;
2862
2863	offset = offset_in_folio(folio, start) & ~(bsz - 1);
2864
2865	do {
2866		if (ops->is_partially_uptodate(folio, offset, bsz) ==
2867							seek_data)
2868			break;
2869		start = (start + bsz) & ~(bsz - 1);
2870		offset += bsz;
2871	} while (offset < folio_size(folio));
2872unlock:
2873	folio_unlock(folio);
2874	rcu_read_lock();
2875	return start;
2876}
2877
2878static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
 
2879{
2880	if (xa_is_value(folio))
2881		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2882	return folio_size(folio);
2883}
2884
2885/**
2886 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2887 * @mapping: Address space to search.
2888 * @start: First byte to consider.
2889 * @end: Limit of search (exclusive).
2890 * @whence: Either SEEK_HOLE or SEEK_DATA.
2891 *
2892 * If the page cache knows which blocks contain holes and which blocks
2893 * contain data, your filesystem can use this function to implement
2894 * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2895 * entirely memory-based such as tmpfs, and filesystems which support
2896 * unwritten extents.
2897 *
2898 * Return: The requested offset on success, or -ENXIO if @whence specifies
2899 * SEEK_DATA and there is no data after @start.  There is an implicit hole
2900 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2901 * and @end contain data.
2902 */
2903loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2904		loff_t end, int whence)
2905{
2906	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2907	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2908	bool seek_data = (whence == SEEK_DATA);
2909	struct folio *folio;
2910
2911	if (end <= start)
2912		return -ENXIO;
2913
2914	rcu_read_lock();
2915	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
2916		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2917		size_t seek_size;
2918
2919		if (start < pos) {
2920			if (!seek_data)
2921				goto unlock;
2922			start = pos;
2923		}
2924
2925		seek_size = seek_folio_size(&xas, folio);
2926		pos = round_up((u64)pos + 1, seek_size);
2927		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
2928				seek_data);
2929		if (start < pos)
2930			goto unlock;
2931		if (start >= end)
2932			break;
2933		if (seek_size > PAGE_SIZE)
2934			xas_set(&xas, pos >> PAGE_SHIFT);
2935		if (!xa_is_value(folio))
2936			folio_put(folio);
2937	}
2938	if (seek_data)
2939		start = -ENXIO;
2940unlock:
2941	rcu_read_unlock();
2942	if (folio && !xa_is_value(folio))
2943		folio_put(folio);
2944	if (start > end)
2945		return end;
2946	return start;
2947}
2948
2949#ifdef CONFIG_MMU
2950#define MMAP_LOTSAMISS  (100)
2951/*
2952 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2953 * @vmf - the vm_fault for this fault.
2954 * @folio - the folio to lock.
2955 * @fpin - the pointer to the file we may pin (or is already pinned).
2956 *
2957 * This works similar to lock_folio_or_retry in that it can drop the
2958 * mmap_lock.  It differs in that it actually returns the folio locked
2959 * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
2960 * to drop the mmap_lock then fpin will point to the pinned file and
2961 * needs to be fput()'ed at a later point.
2962 */
2963static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
2964				     struct file **fpin)
2965{
2966	if (folio_trylock(folio))
2967		return 1;
2968
2969	/*
2970	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2971	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2972	 * is supposed to work. We have way too many special cases..
2973	 */
2974	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2975		return 0;
2976
2977	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2978	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2979		if (__folio_lock_killable(folio)) {
2980			/*
2981			 * We didn't have the right flags to drop the mmap_lock,
2982			 * but all fault_handlers only check for fatal signals
2983			 * if we return VM_FAULT_RETRY, so we need to drop the
2984			 * mmap_lock here and return 0 if we don't have a fpin.
2985			 */
2986			if (*fpin == NULL)
2987				mmap_read_unlock(vmf->vma->vm_mm);
2988			return 0;
2989		}
2990	} else
2991		__folio_lock(folio);
2992
2993	return 1;
2994}
2995
 
2996/*
2997 * Synchronous readahead happens when we don't even find a page in the page
2998 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2999 * to drop the mmap sem we return the file that was pinned in order for us to do
3000 * that.  If we didn't pin a file then we return NULL.  The file that is
3001 * returned needs to be fput()'ed when we're done with it.
3002 */
3003static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3004{
3005	struct file *file = vmf->vma->vm_file;
3006	struct file_ra_state *ra = &file->f_ra;
3007	struct address_space *mapping = file->f_mapping;
3008	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3009	struct file *fpin = NULL;
3010	unsigned long vm_flags = vmf->vma->vm_flags;
3011	unsigned int mmap_miss;
3012
3013#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3014	/* Use the readahead code, even if readahead is disabled */
3015	if (vm_flags & VM_HUGEPAGE) {
3016		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3017		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3018		ra->size = HPAGE_PMD_NR;
3019		/*
3020		 * Fetch two PMD folios, so we get the chance to actually
3021		 * readahead, unless we've been told not to.
3022		 */
3023		if (!(vm_flags & VM_RAND_READ))
3024			ra->size *= 2;
3025		ra->async_size = HPAGE_PMD_NR;
3026		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3027		return fpin;
3028	}
3029#endif
3030
3031	/* If we don't want any read-ahead, don't bother */
3032	if (vm_flags & VM_RAND_READ)
3033		return fpin;
3034	if (!ra->ra_pages)
3035		return fpin;
3036
3037	if (vm_flags & VM_SEQ_READ) {
3038		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3039		page_cache_sync_ra(&ractl, ra->ra_pages);
3040		return fpin;
3041	}
3042
3043	/* Avoid banging the cache line if not needed */
3044	mmap_miss = READ_ONCE(ra->mmap_miss);
3045	if (mmap_miss < MMAP_LOTSAMISS * 10)
3046		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3047
3048	/*
3049	 * Do we miss much more than hit in this file? If so,
3050	 * stop bothering with read-ahead. It will only hurt.
3051	 */
3052	if (mmap_miss > MMAP_LOTSAMISS)
3053		return fpin;
3054
3055	/*
3056	 * mmap read-around
3057	 */
3058	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3059	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3060	ra->size = ra->ra_pages;
3061	ra->async_size = ra->ra_pages / 4;
3062	ractl._index = ra->start;
3063	page_cache_ra_order(&ractl, ra, 0);
3064	return fpin;
3065}
3066
3067/*
3068 * Asynchronous readahead happens when we find the page and PG_readahead,
3069 * so we want to possibly extend the readahead further.  We return the file that
3070 * was pinned if we have to drop the mmap_lock in order to do IO.
3071 */
3072static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3073					    struct folio *folio)
3074{
3075	struct file *file = vmf->vma->vm_file;
3076	struct file_ra_state *ra = &file->f_ra;
3077	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3078	struct file *fpin = NULL;
3079	unsigned int mmap_miss;
 
3080
3081	/* If we don't want any read-ahead, don't bother */
3082	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3083		return fpin;
3084
3085	mmap_miss = READ_ONCE(ra->mmap_miss);
3086	if (mmap_miss)
3087		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3088
3089	if (folio_test_readahead(folio)) {
3090		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3091		page_cache_async_ra(&ractl, folio, ra->ra_pages);
 
3092	}
3093	return fpin;
3094}
3095
3096/**
3097 * filemap_fault - read in file data for page fault handling
3098 * @vmf:	struct vm_fault containing details of the fault
3099 *
3100 * filemap_fault() is invoked via the vma operations vector for a
3101 * mapped memory region to read in file data during a page fault.
3102 *
3103 * The goto's are kind of ugly, but this streamlines the normal case of having
3104 * it in the page cache, and handles the special cases reasonably without
3105 * having a lot of duplicated code.
3106 *
3107 * vma->vm_mm->mmap_lock must be held on entry.
3108 *
3109 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3110 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3111 *
3112 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3113 * has not been released.
3114 *
3115 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3116 *
3117 * Return: bitwise-OR of %VM_FAULT_ codes.
3118 */
3119vm_fault_t filemap_fault(struct vm_fault *vmf)
3120{
3121	int error;
3122	struct file *file = vmf->vma->vm_file;
3123	struct file *fpin = NULL;
3124	struct address_space *mapping = file->f_mapping;
3125	struct inode *inode = mapping->host;
3126	pgoff_t max_idx, index = vmf->pgoff;
3127	struct folio *folio;
 
3128	vm_fault_t ret = 0;
3129	bool mapping_locked = false;
3130
3131	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3132	if (unlikely(index >= max_idx))
3133		return VM_FAULT_SIGBUS;
3134
3135	/*
3136	 * Do we have something in the page cache already?
3137	 */
3138	folio = filemap_get_folio(mapping, index);
3139	if (likely(folio)) {
3140		/*
3141		 * We found the page, so try async readahead before waiting for
3142		 * the lock.
3143		 */
3144		if (!(vmf->flags & FAULT_FLAG_TRIED))
3145			fpin = do_async_mmap_readahead(vmf, folio);
3146		if (unlikely(!folio_test_uptodate(folio))) {
3147			filemap_invalidate_lock_shared(mapping);
3148			mapping_locked = true;
3149		}
3150	} else {
3151		/* No page in the page cache at all */
3152		count_vm_event(PGMAJFAULT);
3153		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3154		ret = VM_FAULT_MAJOR;
3155		fpin = do_sync_mmap_readahead(vmf);
3156retry_find:
3157		/*
3158		 * See comment in filemap_create_folio() why we need
3159		 * invalidate_lock
3160		 */
3161		if (!mapping_locked) {
3162			filemap_invalidate_lock_shared(mapping);
3163			mapping_locked = true;
3164		}
3165		folio = __filemap_get_folio(mapping, index,
3166					  FGP_CREAT|FGP_FOR_MMAP,
3167					  vmf->gfp_mask);
3168		if (!folio) {
3169			if (fpin)
3170				goto out_retry;
3171			filemap_invalidate_unlock_shared(mapping);
3172			return VM_FAULT_OOM;
3173		}
3174	}
3175
3176	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3177		goto out_retry;
3178
3179	/* Did it get truncated? */
3180	if (unlikely(folio->mapping != mapping)) {
3181		folio_unlock(folio);
3182		folio_put(folio);
3183		goto retry_find;
3184	}
3185	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3186
3187	/*
3188	 * We have a locked page in the page cache, now we need to check
3189	 * that it's up-to-date. If not, it is going to be due to an error.
3190	 */
3191	if (unlikely(!folio_test_uptodate(folio))) {
3192		/*
3193		 * The page was in cache and uptodate and now it is not.
3194		 * Strange but possible since we didn't hold the page lock all
3195		 * the time. Let's drop everything get the invalidate lock and
3196		 * try again.
3197		 */
3198		if (!mapping_locked) {
3199			folio_unlock(folio);
3200			folio_put(folio);
3201			goto retry_find;
3202		}
3203		goto page_not_uptodate;
3204	}
3205
3206	/*
3207	 * We've made it this far and we had to drop our mmap_lock, now is the
3208	 * time to return to the upper layer and have it re-find the vma and
3209	 * redo the fault.
3210	 */
3211	if (fpin) {
3212		folio_unlock(folio);
3213		goto out_retry;
3214	}
3215	if (mapping_locked)
3216		filemap_invalidate_unlock_shared(mapping);
3217
3218	/*
3219	 * Found the page and have a reference on it.
3220	 * We must recheck i_size under page lock.
3221	 */
3222	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3223	if (unlikely(index >= max_idx)) {
3224		folio_unlock(folio);
3225		folio_put(folio);
3226		return VM_FAULT_SIGBUS;
3227	}
3228
3229	vmf->page = folio_file_page(folio, index);
3230	return ret | VM_FAULT_LOCKED;
3231
3232page_not_uptodate:
3233	/*
3234	 * Umm, take care of errors if the page isn't up-to-date.
3235	 * Try to re-read it _once_. We do this synchronously,
3236	 * because there really aren't any performance issues here
3237	 * and we need to check for errors.
3238	 */
3239	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3240	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3241	if (fpin)
3242		goto out_retry;
3243	folio_put(folio);
3244
3245	if (!error || error == AOP_TRUNCATED_PAGE)
3246		goto retry_find;
3247	filemap_invalidate_unlock_shared(mapping);
3248
3249	return VM_FAULT_SIGBUS;
3250
3251out_retry:
3252	/*
3253	 * We dropped the mmap_lock, we need to return to the fault handler to
3254	 * re-find the vma and come back and find our hopefully still populated
3255	 * page.
3256	 */
3257	if (folio)
3258		folio_put(folio);
3259	if (mapping_locked)
3260		filemap_invalidate_unlock_shared(mapping);
3261	if (fpin)
3262		fput(fpin);
3263	return ret | VM_FAULT_RETRY;
3264}
3265EXPORT_SYMBOL(filemap_fault);
3266
3267static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3268{
3269	struct mm_struct *mm = vmf->vma->vm_mm;
3270
3271	/* Huge page is mapped? No need to proceed. */
3272	if (pmd_trans_huge(*vmf->pmd)) {
3273		unlock_page(page);
3274		put_page(page);
3275		return true;
3276	}
3277
3278	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3279		vm_fault_t ret = do_set_pmd(vmf, page);
3280		if (!ret) {
3281			/* The page is mapped successfully, reference consumed. */
3282			unlock_page(page);
3283			return true;
 
 
 
 
 
 
 
 
 
3284		}
 
3285	}
3286
3287	if (pmd_none(*vmf->pmd))
3288		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3289
3290	/* See comment in handle_pte_fault() */
3291	if (pmd_devmap_trans_unstable(vmf->pmd)) {
3292		unlock_page(page);
3293		put_page(page);
3294		return true;
3295	}
3296
3297	return false;
3298}
3299
3300static struct folio *next_uptodate_page(struct folio *folio,
3301				       struct address_space *mapping,
3302				       struct xa_state *xas, pgoff_t end_pgoff)
3303{
3304	unsigned long max_idx;
3305
3306	do {
3307		if (!folio)
3308			return NULL;
3309		if (xas_retry(xas, folio))
3310			continue;
3311		if (xa_is_value(folio))
3312			continue;
3313		if (folio_test_locked(folio))
3314			continue;
3315		if (!folio_try_get_rcu(folio))
3316			continue;
3317		/* Has the page moved or been split? */
3318		if (unlikely(folio != xas_reload(xas)))
3319			goto skip;
3320		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3321			goto skip;
3322		if (!folio_trylock(folio))
3323			goto skip;
3324		if (folio->mapping != mapping)
 
 
3325			goto unlock;
3326		if (!folio_test_uptodate(folio))
3327			goto unlock;
3328		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3329		if (xas->xa_index >= max_idx)
3330			goto unlock;
3331		return folio;
3332unlock:
3333		folio_unlock(folio);
3334skip:
3335		folio_put(folio);
3336	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3337
3338	return NULL;
3339}
3340
3341static inline struct folio *first_map_page(struct address_space *mapping,
3342					  struct xa_state *xas,
3343					  pgoff_t end_pgoff)
3344{
3345	return next_uptodate_page(xas_find(xas, end_pgoff),
3346				  mapping, xas, end_pgoff);
3347}
3348
3349static inline struct folio *next_map_page(struct address_space *mapping,
3350					 struct xa_state *xas,
3351					 pgoff_t end_pgoff)
3352{
3353	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3354				  mapping, xas, end_pgoff);
3355}
3356
3357vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3358			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3359{
3360	struct vm_area_struct *vma = vmf->vma;
3361	struct file *file = vma->vm_file;
3362	struct address_space *mapping = file->f_mapping;
3363	pgoff_t last_pgoff = start_pgoff;
3364	unsigned long addr;
3365	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3366	struct folio *folio;
3367	struct page *page;
3368	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3369	vm_fault_t ret = 0;
3370
3371	rcu_read_lock();
3372	folio = first_map_page(mapping, &xas, end_pgoff);
3373	if (!folio)
3374		goto out;
3375
3376	if (filemap_map_pmd(vmf, &folio->page)) {
3377		ret = VM_FAULT_NOPAGE;
3378		goto out;
3379	}
3380
3381	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3382	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3383	do {
3384again:
3385		page = folio_file_page(folio, xas.xa_index);
3386		if (PageHWPoison(page))
3387			goto unlock;
3388
3389		if (mmap_miss > 0)
3390			mmap_miss--;
3391
3392		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3393		vmf->pte += xas.xa_index - last_pgoff;
3394		last_pgoff = xas.xa_index;
3395
3396		/*
3397		 * NOTE: If there're PTE markers, we'll leave them to be
3398		 * handled in the specific fault path, and it'll prohibit the
3399		 * fault-around logic.
3400		 */
3401		if (!pte_none(*vmf->pte))
3402			goto unlock;
3403
3404		/* We're about to handle the fault */
3405		if (vmf->address == addr)
3406			ret = VM_FAULT_NOPAGE;
3407
3408		do_set_pte(vmf, page, addr);
3409		/* no need to invalidate: a not-present page won't be cached */
3410		update_mmu_cache(vma, addr, vmf->pte);
3411		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3412			xas.xa_index++;
3413			folio_ref_inc(folio);
3414			goto again;
3415		}
3416		folio_unlock(folio);
3417		continue;
3418unlock:
3419		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3420			xas.xa_index++;
3421			goto again;
3422		}
3423		folio_unlock(folio);
3424		folio_put(folio);
3425	} while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3426	pte_unmap_unlock(vmf->pte, vmf->ptl);
3427out:
3428	rcu_read_unlock();
3429	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3430	return ret;
3431}
3432EXPORT_SYMBOL(filemap_map_pages);
3433
3434vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3435{
3436	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3437	struct folio *folio = page_folio(vmf->page);
3438	vm_fault_t ret = VM_FAULT_LOCKED;
3439
3440	sb_start_pagefault(mapping->host->i_sb);
3441	file_update_time(vmf->vma->vm_file);
3442	folio_lock(folio);
3443	if (folio->mapping != mapping) {
3444		folio_unlock(folio);
3445		ret = VM_FAULT_NOPAGE;
3446		goto out;
3447	}
3448	/*
3449	 * We mark the folio dirty already here so that when freeze is in
3450	 * progress, we are guaranteed that writeback during freezing will
3451	 * see the dirty folio and writeprotect it again.
3452	 */
3453	folio_mark_dirty(folio);
3454	folio_wait_stable(folio);
3455out:
3456	sb_end_pagefault(mapping->host->i_sb);
3457	return ret;
3458}
3459
3460const struct vm_operations_struct generic_file_vm_ops = {
3461	.fault		= filemap_fault,
3462	.map_pages	= filemap_map_pages,
3463	.page_mkwrite	= filemap_page_mkwrite,
3464};
3465
3466/* This is used for a general mmap of a disk file */
3467
3468int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3469{
3470	struct address_space *mapping = file->f_mapping;
3471
3472	if (!mapping->a_ops->read_folio)
3473		return -ENOEXEC;
3474	file_accessed(file);
3475	vma->vm_ops = &generic_file_vm_ops;
3476	return 0;
3477}
3478
3479/*
3480 * This is for filesystems which do not implement ->writepage.
3481 */
3482int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3483{
3484	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3485		return -EINVAL;
3486	return generic_file_mmap(file, vma);
3487}
3488#else
3489vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3490{
3491	return VM_FAULT_SIGBUS;
3492}
3493int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3494{
3495	return -ENOSYS;
3496}
3497int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3498{
3499	return -ENOSYS;
3500}
3501#endif /* CONFIG_MMU */
3502
3503EXPORT_SYMBOL(filemap_page_mkwrite);
3504EXPORT_SYMBOL(generic_file_mmap);
3505EXPORT_SYMBOL(generic_file_readonly_mmap);
3506
3507static struct folio *do_read_cache_folio(struct address_space *mapping,
3508		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3509{
3510	struct folio *folio;
3511	int err;
 
 
 
 
 
 
 
3512
3513	if (!filler)
3514		filler = mapping->a_ops->read_folio;
 
 
 
 
 
 
3515repeat:
3516	folio = filemap_get_folio(mapping, index);
3517	if (!folio) {
3518		folio = filemap_alloc_folio(gfp, 0);
3519		if (!folio)
3520			return ERR_PTR(-ENOMEM);
3521		err = filemap_add_folio(mapping, folio, index, gfp);
3522		if (unlikely(err)) {
3523			folio_put(folio);
3524			if (err == -EEXIST)
3525				goto repeat;
3526			/* Presumably ENOMEM for xarray node */
3527			return ERR_PTR(err);
3528		}
3529
3530		goto filler;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3531	}
3532	if (folio_test_uptodate(folio))
3533		goto out;
3534
3535	if (!folio_trylock(folio)) {
3536		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3537		goto repeat;
3538	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3539
3540	/* Folio was truncated from mapping */
3541	if (!folio->mapping) {
3542		folio_unlock(folio);
3543		folio_put(folio);
 
 
 
3544		goto repeat;
3545	}
3546
3547	/* Someone else locked and filled the page in a very small window */
3548	if (folio_test_uptodate(folio)) {
3549		folio_unlock(folio);
3550		goto out;
3551	}
3552
3553filler:
3554	err = filemap_read_folio(file, filler, folio);
3555	if (err) {
3556		folio_put(folio);
3557		if (err == AOP_TRUNCATED_PAGE)
3558			goto repeat;
3559		return ERR_PTR(err);
3560	}
3561
3562out:
3563	folio_mark_accessed(folio);
3564	return folio;
3565}
3566
3567/**
3568 * read_cache_folio - Read into page cache, fill it if needed.
3569 * @mapping: The address_space to read from.
3570 * @index: The index to read.
3571 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3572 * @file: Passed to filler function, may be NULL if not required.
3573 *
3574 * Read one page into the page cache.  If it succeeds, the folio returned
3575 * will contain @index, but it may not be the first page of the folio.
3576 *
3577 * If the filler function returns an error, it will be returned to the
3578 * caller.
3579 *
3580 * Context: May sleep.  Expects mapping->invalidate_lock to be held.
3581 * Return: An uptodate folio on success, ERR_PTR() on failure.
3582 */
3583struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3584		filler_t filler, struct file *file)
3585{
3586	return do_read_cache_folio(mapping, index, filler, file,
3587			mapping_gfp_mask(mapping));
3588}
3589EXPORT_SYMBOL(read_cache_folio);
3590
3591static struct page *do_read_cache_page(struct address_space *mapping,
3592		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3593{
3594	struct folio *folio;
3595
3596	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3597	if (IS_ERR(folio))
3598		return &folio->page;
3599	return folio_file_page(folio, index);
3600}
3601
3602struct page *read_cache_page(struct address_space *mapping,
3603			pgoff_t index, filler_t *filler, struct file *file)
 
 
3604{
3605	return do_read_cache_page(mapping, index, filler, file,
3606			mapping_gfp_mask(mapping));
3607}
3608EXPORT_SYMBOL(read_cache_page);
3609
3610/**
3611 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3612 * @mapping:	the page's address_space
3613 * @index:	the page index
3614 * @gfp:	the page allocator flags to use if allocating
3615 *
3616 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3617 * any new page allocations done using the specified allocation flags.
3618 *
3619 * If the page does not get brought uptodate, return -EIO.
3620 *
3621 * The function expects mapping->invalidate_lock to be already held.
3622 *
3623 * Return: up to date page on success, ERR_PTR() on failure.
3624 */
3625struct page *read_cache_page_gfp(struct address_space *mapping,
3626				pgoff_t index,
3627				gfp_t gfp)
3628{
3629	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3630}
3631EXPORT_SYMBOL(read_cache_page_gfp);
3632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3633/*
3634 * Warn about a page cache invalidation failure during a direct I/O write.
3635 */
3636void dio_warn_stale_pagecache(struct file *filp)
3637{
3638	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3639	char pathname[128];
3640	char *path;
3641
3642	errseq_set(&filp->f_mapping->wb_err, -EIO);
3643	if (__ratelimit(&_rs)) {
3644		path = file_path(filp, pathname, sizeof(pathname));
3645		if (IS_ERR(path))
3646			path = "(unknown)";
3647		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3648		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3649			current->comm);
3650	}
3651}
3652
3653ssize_t
3654generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3655{
3656	struct file	*file = iocb->ki_filp;
3657	struct address_space *mapping = file->f_mapping;
3658	struct inode	*inode = mapping->host;
3659	loff_t		pos = iocb->ki_pos;
3660	ssize_t		written;
3661	size_t		write_len;
3662	pgoff_t		end;
3663
3664	write_len = iov_iter_count(from);
3665	end = (pos + write_len - 1) >> PAGE_SHIFT;
3666
3667	if (iocb->ki_flags & IOCB_NOWAIT) {
3668		/* If there are pages to writeback, return */
3669		if (filemap_range_has_page(file->f_mapping, pos,
3670					   pos + write_len - 1))
3671			return -EAGAIN;
3672	} else {
3673		written = filemap_write_and_wait_range(mapping, pos,
3674							pos + write_len - 1);
3675		if (written)
3676			goto out;
3677	}
3678
3679	/*
3680	 * After a write we want buffered reads to be sure to go to disk to get
3681	 * the new data.  We invalidate clean cached page from the region we're
3682	 * about to write.  We do this *before* the write so that we can return
3683	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3684	 */
3685	written = invalidate_inode_pages2_range(mapping,
3686					pos >> PAGE_SHIFT, end);
3687	/*
3688	 * If a page can not be invalidated, return 0 to fall back
3689	 * to buffered write.
3690	 */
3691	if (written) {
3692		if (written == -EBUSY)
3693			return 0;
3694		goto out;
3695	}
3696
3697	written = mapping->a_ops->direct_IO(iocb, from);
3698
3699	/*
3700	 * Finally, try again to invalidate clean pages which might have been
3701	 * cached by non-direct readahead, or faulted in by get_user_pages()
3702	 * if the source of the write was an mmap'ed region of the file
3703	 * we're writing.  Either one is a pretty crazy thing to do,
3704	 * so we don't support it 100%.  If this invalidation
3705	 * fails, tough, the write still worked...
3706	 *
3707	 * Most of the time we do not need this since dio_complete() will do
3708	 * the invalidation for us. However there are some file systems that
3709	 * do not end up with dio_complete() being called, so let's not break
3710	 * them by removing it completely.
3711	 *
3712	 * Noticeable example is a blkdev_direct_IO().
3713	 *
3714	 * Skip invalidation for async writes or if mapping has no pages.
3715	 */
3716	if (written > 0 && mapping->nrpages &&
3717	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3718		dio_warn_stale_pagecache(file);
3719
3720	if (written > 0) {
3721		pos += written;
3722		write_len -= written;
3723		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3724			i_size_write(inode, pos);
3725			mark_inode_dirty(inode);
3726		}
3727		iocb->ki_pos = pos;
3728	}
3729	if (written != -EIOCBQUEUED)
3730		iov_iter_revert(from, write_len - iov_iter_count(from));
3731out:
3732	return written;
3733}
3734EXPORT_SYMBOL(generic_file_direct_write);
3735
3736ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3737{
3738	struct file *file = iocb->ki_filp;
3739	loff_t pos = iocb->ki_pos;
3740	struct address_space *mapping = file->f_mapping;
3741	const struct address_space_operations *a_ops = mapping->a_ops;
3742	long status = 0;
3743	ssize_t written = 0;
 
3744
3745	do {
3746		struct page *page;
3747		unsigned long offset;	/* Offset into pagecache page */
3748		unsigned long bytes;	/* Bytes to write to page */
3749		size_t copied;		/* Bytes copied from user */
3750		void *fsdata = NULL;
3751
3752		offset = (pos & (PAGE_SIZE - 1));
3753		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3754						iov_iter_count(i));
3755
3756again:
3757		/*
3758		 * Bring in the user page that we will copy from _first_.
3759		 * Otherwise there's a nasty deadlock on copying from the
3760		 * same page as we're writing to, without it being marked
3761		 * up-to-date.
3762		 */
3763		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3764			status = -EFAULT;
3765			break;
3766		}
3767
3768		if (fatal_signal_pending(current)) {
3769			status = -EINTR;
3770			break;
3771		}
3772
3773		status = a_ops->write_begin(file, mapping, pos, bytes,
3774						&page, &fsdata);
3775		if (unlikely(status < 0))
3776			break;
3777
3778		if (mapping_writably_mapped(mapping))
3779			flush_dcache_page(page);
3780
3781		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3782		flush_dcache_page(page);
3783
3784		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3785						page, fsdata);
3786		if (unlikely(status != copied)) {
3787			iov_iter_revert(i, copied - max(status, 0L));
3788			if (unlikely(status < 0))
3789				break;
3790		}
3791		cond_resched();
3792
3793		if (unlikely(status == 0)) {
3794			/*
3795			 * A short copy made ->write_end() reject the
3796			 * thing entirely.  Might be memory poisoning
3797			 * halfway through, might be a race with munmap,
3798			 * might be severe memory pressure.
3799			 */
3800			if (copied)
3801				bytes = copied;
3802			goto again;
3803		}
3804		pos += status;
3805		written += status;
3806
3807		balance_dirty_pages_ratelimited(mapping);
3808	} while (iov_iter_count(i));
3809
3810	return written ? written : status;
3811}
3812EXPORT_SYMBOL(generic_perform_write);
3813
3814/**
3815 * __generic_file_write_iter - write data to a file
3816 * @iocb:	IO state structure (file, offset, etc.)
3817 * @from:	iov_iter with data to write
3818 *
3819 * This function does all the work needed for actually writing data to a
3820 * file. It does all basic checks, removes SUID from the file, updates
3821 * modification times and calls proper subroutines depending on whether we
3822 * do direct IO or a standard buffered write.
3823 *
3824 * It expects i_rwsem to be grabbed unless we work on a block device or similar
3825 * object which does not need locking at all.
3826 *
3827 * This function does *not* take care of syncing data in case of O_SYNC write.
3828 * A caller has to handle it. This is mainly due to the fact that we want to
3829 * avoid syncing under i_rwsem.
3830 *
3831 * Return:
3832 * * number of bytes written, even for truncated writes
3833 * * negative error code if no data has been written at all
3834 */
3835ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3836{
3837	struct file *file = iocb->ki_filp;
3838	struct address_space *mapping = file->f_mapping;
3839	struct inode 	*inode = mapping->host;
3840	ssize_t		written = 0;
3841	ssize_t		err;
3842	ssize_t		status;
3843
3844	/* We can write back this queue in page reclaim */
3845	current->backing_dev_info = inode_to_bdi(inode);
3846	err = file_remove_privs(file);
3847	if (err)
3848		goto out;
3849
3850	err = file_update_time(file);
3851	if (err)
3852		goto out;
3853
3854	if (iocb->ki_flags & IOCB_DIRECT) {
3855		loff_t pos, endbyte;
3856
3857		written = generic_file_direct_write(iocb, from);
3858		/*
3859		 * If the write stopped short of completing, fall back to
3860		 * buffered writes.  Some filesystems do this for writes to
3861		 * holes, for example.  For DAX files, a buffered write will
3862		 * not succeed (even if it did, DAX does not handle dirty
3863		 * page-cache pages correctly).
3864		 */
3865		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3866			goto out;
3867
3868		pos = iocb->ki_pos;
3869		status = generic_perform_write(iocb, from);
3870		/*
3871		 * If generic_perform_write() returned a synchronous error
3872		 * then we want to return the number of bytes which were
3873		 * direct-written, or the error code if that was zero.  Note
3874		 * that this differs from normal direct-io semantics, which
3875		 * will return -EFOO even if some bytes were written.
3876		 */
3877		if (unlikely(status < 0)) {
3878			err = status;
3879			goto out;
3880		}
3881		/*
3882		 * We need to ensure that the page cache pages are written to
3883		 * disk and invalidated to preserve the expected O_DIRECT
3884		 * semantics.
3885		 */
3886		endbyte = pos + status - 1;
3887		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3888		if (err == 0) {
3889			iocb->ki_pos = endbyte + 1;
3890			written += status;
3891			invalidate_mapping_pages(mapping,
3892						 pos >> PAGE_SHIFT,
3893						 endbyte >> PAGE_SHIFT);
3894		} else {
3895			/*
3896			 * We don't know how much we wrote, so just return
3897			 * the number of bytes which were direct-written
3898			 */
3899		}
3900	} else {
3901		written = generic_perform_write(iocb, from);
3902		if (likely(written > 0))
3903			iocb->ki_pos += written;
3904	}
3905out:
3906	current->backing_dev_info = NULL;
3907	return written ? written : err;
3908}
3909EXPORT_SYMBOL(__generic_file_write_iter);
3910
3911/**
3912 * generic_file_write_iter - write data to a file
3913 * @iocb:	IO state structure
3914 * @from:	iov_iter with data to write
3915 *
3916 * This is a wrapper around __generic_file_write_iter() to be used by most
3917 * filesystems. It takes care of syncing the file in case of O_SYNC file
3918 * and acquires i_rwsem as needed.
3919 * Return:
3920 * * negative error code if no data has been written at all of
3921 *   vfs_fsync_range() failed for a synchronous write
3922 * * number of bytes written, even for truncated writes
3923 */
3924ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3925{
3926	struct file *file = iocb->ki_filp;
3927	struct inode *inode = file->f_mapping->host;
3928	ssize_t ret;
3929
3930	inode_lock(inode);
3931	ret = generic_write_checks(iocb, from);
3932	if (ret > 0)
3933		ret = __generic_file_write_iter(iocb, from);
3934	inode_unlock(inode);
3935
3936	if (ret > 0)
3937		ret = generic_write_sync(iocb, ret);
3938	return ret;
3939}
3940EXPORT_SYMBOL(generic_file_write_iter);
3941
3942/**
3943 * filemap_release_folio() - Release fs-specific metadata on a folio.
3944 * @folio: The folio which the kernel is trying to free.
3945 * @gfp: Memory allocation flags (and I/O mode).
 
3946 *
3947 * The address_space is trying to release any data attached to a folio
3948 * (presumably at folio->private).
3949 *
3950 * This will also be called if the private_2 flag is set on a page,
3951 * indicating that the folio has other metadata associated with it.
3952 *
3953 * The @gfp argument specifies whether I/O may be performed to release
3954 * this page (__GFP_IO), and whether the call may block
3955 * (__GFP_RECLAIM & __GFP_FS).
3956 *
3957 * Return: %true if the release was successful, otherwise %false.
3958 */
3959bool filemap_release_folio(struct folio *folio, gfp_t gfp)
3960{
3961	struct address_space * const mapping = folio->mapping;
3962
3963	BUG_ON(!folio_test_locked(folio));
3964	if (folio_test_writeback(folio))
3965		return false;
3966
3967	if (mapping && mapping->a_ops->release_folio)
3968		return mapping->a_ops->release_folio(folio, gfp);
3969	return try_to_free_buffers(folio);
3970}
3971EXPORT_SYMBOL(filemap_release_folio);
 
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	linux/mm/filemap.c
   4 *
   5 * Copyright (C) 1994-1999  Linus Torvalds
   6 */
   7
   8/*
   9 * This file handles the generic file mmap semantics used by
  10 * most "normal" filesystems (but you don't /have/ to use this:
  11 * the NFS filesystem used to do this differently, for example)
  12 */
  13#include <linux/export.h>
  14#include <linux/compiler.h>
  15#include <linux/dax.h>
  16#include <linux/fs.h>
  17#include <linux/sched/signal.h>
  18#include <linux/uaccess.h>
  19#include <linux/capability.h>
  20#include <linux/kernel_stat.h>
  21#include <linux/gfp.h>
  22#include <linux/mm.h>
  23#include <linux/swap.h>
 
  24#include <linux/mman.h>
  25#include <linux/pagemap.h>
  26#include <linux/file.h>
  27#include <linux/uio.h>
  28#include <linux/error-injection.h>
  29#include <linux/hash.h>
  30#include <linux/writeback.h>
  31#include <linux/backing-dev.h>
  32#include <linux/pagevec.h>
  33#include <linux/blkdev.h>
  34#include <linux/security.h>
  35#include <linux/cpuset.h>
  36#include <linux/hugetlb.h>
  37#include <linux/memcontrol.h>
  38#include <linux/cleancache.h>
  39#include <linux/shmem_fs.h>
  40#include <linux/rmap.h>
  41#include <linux/delayacct.h>
  42#include <linux/psi.h>
  43#include <linux/ramfs.h>
  44#include <linux/page_idle.h>
 
  45#include <asm/pgalloc.h>
  46#include <asm/tlbflush.h>
  47#include "internal.h"
  48
  49#define CREATE_TRACE_POINTS
  50#include <trace/events/filemap.h>
  51
  52/*
  53 * FIXME: remove all knowledge of the buffer layer from the core VM
  54 */
  55#include <linux/buffer_head.h> /* for try_to_free_buffers */
  56
  57#include <asm/mman.h>
  58
  59/*
  60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  61 * though.
  62 *
  63 * Shared mappings now work. 15.8.1995  Bruno.
  64 *
  65 * finished 'unifying' the page and buffer cache and SMP-threaded the
  66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  67 *
  68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  69 */
  70
  71/*
  72 * Lock ordering:
  73 *
  74 *  ->i_mmap_rwsem		(truncate_pagecache)
  75 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  76 *      ->swap_lock		(exclusive_swap_page, others)
  77 *        ->i_pages lock
  78 *
  79 *  ->i_mutex
  80 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
 
  81 *
  82 *  ->mmap_lock
  83 *    ->i_mmap_rwsem
  84 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  85 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
  86 *
  87 *  ->mmap_lock
  88 *    ->lock_page		(access_process_vm)
 
  89 *
  90 *  ->i_mutex			(generic_perform_write)
  91 *    ->mmap_lock		(fault_in_pages_readable->do_page_fault)
  92 *
  93 *  bdi->wb.list_lock
  94 *    sb_lock			(fs/fs-writeback.c)
  95 *    ->i_pages lock		(__sync_single_inode)
  96 *
  97 *  ->i_mmap_rwsem
  98 *    ->anon_vma.lock		(vma_adjust)
  99 *
 100 *  ->anon_vma.lock
 101 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
 102 *
 103 *  ->page_table_lock or pte_lock
 104 *    ->swap_lock		(try_to_unmap_one)
 105 *    ->private_lock		(try_to_unmap_one)
 106 *    ->i_pages lock		(try_to_unmap_one)
 107 *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
 108 *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
 109 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 110 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
 111 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 112 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 113 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
 114 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 115 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 116 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 117 *
 118 * ->i_mmap_rwsem
 119 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 120 */
 121
 122static void page_cache_delete(struct address_space *mapping,
 123				   struct page *page, void *shadow)
 124{
 125	XA_STATE(xas, &mapping->i_pages, page->index);
 126	unsigned int nr = 1;
 127
 128	mapping_set_update(&xas, mapping);
 129
 130	/* hugetlb pages are represented by a single entry in the xarray */
 131	if (!PageHuge(page)) {
 132		xas_set_order(&xas, page->index, compound_order(page));
 133		nr = compound_nr(page);
 134	}
 135
 136	VM_BUG_ON_PAGE(!PageLocked(page), page);
 137	VM_BUG_ON_PAGE(PageTail(page), page);
 138	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
 139
 140	xas_store(&xas, shadow);
 141	xas_init_marks(&xas);
 142
 143	page->mapping = NULL;
 144	/* Leave page->index set: truncation lookup relies upon it */
 145	mapping->nrpages -= nr;
 146}
 147
 148static void unaccount_page_cache_page(struct address_space *mapping,
 149				      struct page *page)
 150{
 151	int nr;
 152
 153	/*
 154	 * if we're uptodate, flush out into the cleancache, otherwise
 155	 * invalidate any existing cleancache entries.  We can't leave
 156	 * stale data around in the cleancache once our page is gone
 157	 */
 158	if (PageUptodate(page) && PageMappedToDisk(page))
 159		cleancache_put_page(page);
 160	else
 161		cleancache_invalidate_page(mapping, page);
 162
 163	VM_BUG_ON_PAGE(PageTail(page), page);
 164	VM_BUG_ON_PAGE(page_mapped(page), page);
 165	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 166		int mapcount;
 167
 
 
 168		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 169			 current->comm, page_to_pfn(page));
 170		dump_page(page, "still mapped when deleted");
 171		dump_stack();
 172		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 173
 174		mapcount = page_mapcount(page);
 175		if (mapping_exiting(mapping) &&
 176		    page_count(page) >= mapcount + 2) {
 177			/*
 178			 * All vmas have already been torn down, so it's
 179			 * a good bet that actually the page is unmapped,
 180			 * and we'd prefer not to leak it: if we're wrong,
 181			 * some other bad page check should catch it later.
 182			 */
 183			page_mapcount_reset(page);
 184			page_ref_sub(page, mapcount);
 
 
 185		}
 186	}
 187
 188	/* hugetlb pages do not participate in page cache accounting. */
 189	if (PageHuge(page))
 190		return;
 191
 192	nr = thp_nr_pages(page);
 193
 194	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
 195	if (PageSwapBacked(page)) {
 196		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
 197		if (PageTransHuge(page))
 198			__mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
 199	} else if (PageTransHuge(page)) {
 200		__mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
 201		filemap_nr_thps_dec(mapping);
 202	}
 203
 204	/*
 205	 * At this point page must be either written or cleaned by
 206	 * truncate.  Dirty page here signals a bug and loss of
 207	 * unwritten data.
 
 
 
 
 208	 *
 209	 * This fixes dirty accounting after removing the page entirely
 210	 * but leaves PageDirty set: it has no effect for truncated
 211	 * page and anyway will be cleared before returning page into
 212	 * buddy allocator.
 213	 */
 214	if (WARN_ON_ONCE(PageDirty(page)))
 215		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 
 216}
 217
 218/*
 219 * Delete a page from the page cache and free it. Caller has to make
 220 * sure the page is locked and that nobody else uses it - or that usage
 221 * is safe.  The caller must hold the i_pages lock.
 222 */
 223void __delete_from_page_cache(struct page *page, void *shadow)
 224{
 225	struct address_space *mapping = page->mapping;
 226
 227	trace_mm_filemap_delete_from_page_cache(page);
 228
 229	unaccount_page_cache_page(mapping, page);
 230	page_cache_delete(mapping, page, shadow);
 231}
 232
 233static void page_cache_free_page(struct address_space *mapping,
 234				struct page *page)
 235{
 236	void (*freepage)(struct page *);
 
 237
 238	freepage = mapping->a_ops->freepage;
 239	if (freepage)
 240		freepage(page);
 241
 242	if (PageTransHuge(page) && !PageHuge(page)) {
 243		page_ref_sub(page, thp_nr_pages(page));
 244		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
 245	} else {
 246		put_page(page);
 247	}
 248}
 249
 250/**
 251 * delete_from_page_cache - delete page from page cache
 252 * @page: the page which the kernel is trying to remove from page cache
 253 *
 254 * This must be called only on pages that have been verified to be in the page
 255 * cache and locked.  It will never put the page into the free list, the caller
 256 * has a reference on the page.
 257 */
 258void delete_from_page_cache(struct page *page)
 259{
 260	struct address_space *mapping = page_mapping(page);
 261	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 262
 263	BUG_ON(!PageLocked(page));
 264	xa_lock_irqsave(&mapping->i_pages, flags);
 265	__delete_from_page_cache(page, NULL);
 266	xa_unlock_irqrestore(&mapping->i_pages, flags);
 267
 268	page_cache_free_page(mapping, page);
 269}
 270EXPORT_SYMBOL(delete_from_page_cache);
 271
 272/*
 273 * page_cache_delete_batch - delete several pages from page cache
 274 * @mapping: the mapping to which pages belong
 275 * @pvec: pagevec with pages to delete
 276 *
 277 * The function walks over mapping->i_pages and removes pages passed in @pvec
 278 * from the mapping. The function expects @pvec to be sorted by page index
 279 * and is optimised for it to be dense.
 280 * It tolerates holes in @pvec (mapping entries at those indices are not
 281 * modified). The function expects only THP head pages to be present in the
 282 * @pvec.
 283 *
 284 * The function expects the i_pages lock to be held.
 285 */
 286static void page_cache_delete_batch(struct address_space *mapping,
 287			     struct pagevec *pvec)
 288{
 289	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
 290	int total_pages = 0;
 291	int i = 0;
 292	struct page *page;
 293
 294	mapping_set_update(&xas, mapping);
 295	xas_for_each(&xas, page, ULONG_MAX) {
 296		if (i >= pagevec_count(pvec))
 297			break;
 298
 299		/* A swap/dax/shadow entry got inserted? Skip it. */
 300		if (xa_is_value(page))
 301			continue;
 302		/*
 303		 * A page got inserted in our range? Skip it. We have our
 304		 * pages locked so they are protected from being removed.
 305		 * If we see a page whose index is higher than ours, it
 306		 * means our page has been removed, which shouldn't be
 307		 * possible because we're holding the PageLock.
 308		 */
 309		if (page != pvec->pages[i]) {
 310			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
 311					page);
 312			continue;
 313		}
 314
 315		WARN_ON_ONCE(!PageLocked(page));
 316
 317		if (page->index == xas.xa_index)
 318			page->mapping = NULL;
 319		/* Leave page->index set: truncation lookup relies on it */
 320
 321		/*
 322		 * Move to the next page in the vector if this is a regular
 323		 * page or the index is of the last sub-page of this compound
 324		 * page.
 325		 */
 326		if (page->index + compound_nr(page) - 1 == xas.xa_index)
 327			i++;
 328		xas_store(&xas, NULL);
 329		total_pages++;
 330	}
 331	mapping->nrpages -= total_pages;
 332}
 333
 334void delete_from_page_cache_batch(struct address_space *mapping,
 335				  struct pagevec *pvec)
 336{
 337	int i;
 338	unsigned long flags;
 339
 340	if (!pagevec_count(pvec))
 341		return;
 342
 343	xa_lock_irqsave(&mapping->i_pages, flags);
 344	for (i = 0; i < pagevec_count(pvec); i++) {
 345		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
 
 
 
 
 
 
 
 
 
 
 346
 347		unaccount_page_cache_page(mapping, pvec->pages[i]);
 348	}
 349	page_cache_delete_batch(mapping, pvec);
 350	xa_unlock_irqrestore(&mapping->i_pages, flags);
 351
 352	for (i = 0; i < pagevec_count(pvec); i++)
 353		page_cache_free_page(mapping, pvec->pages[i]);
 354}
 355
 356int filemap_check_errors(struct address_space *mapping)
 357{
 358	int ret = 0;
 359	/* Check for outstanding write errors */
 360	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 361	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 362		ret = -ENOSPC;
 363	if (test_bit(AS_EIO, &mapping->flags) &&
 364	    test_and_clear_bit(AS_EIO, &mapping->flags))
 365		ret = -EIO;
 366	return ret;
 367}
 368EXPORT_SYMBOL(filemap_check_errors);
 369
 370static int filemap_check_and_keep_errors(struct address_space *mapping)
 371{
 372	/* Check for outstanding write errors */
 373	if (test_bit(AS_EIO, &mapping->flags))
 374		return -EIO;
 375	if (test_bit(AS_ENOSPC, &mapping->flags))
 376		return -ENOSPC;
 377	return 0;
 378}
 379
 380/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 381 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 382 * @mapping:	address space structure to write
 383 * @start:	offset in bytes where the range starts
 384 * @end:	offset in bytes where the range ends (inclusive)
 385 * @sync_mode:	enable synchronous operation
 386 *
 387 * Start writeback against all of a mapping's dirty pages that lie
 388 * within the byte offsets <start, end> inclusive.
 389 *
 390 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 391 * opposed to a regular memory cleansing writeback.  The difference between
 392 * these two operations is that if a dirty page/buffer is encountered, it must
 393 * be waited upon, and not just skipped over.
 394 *
 395 * Return: %0 on success, negative error code otherwise.
 396 */
 397int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 398				loff_t end, int sync_mode)
 399{
 400	int ret;
 401	struct writeback_control wbc = {
 402		.sync_mode = sync_mode,
 403		.nr_to_write = LONG_MAX,
 404		.range_start = start,
 405		.range_end = end,
 406	};
 407
 408	if (!mapping_can_writeback(mapping) ||
 409	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
 410		return 0;
 411
 412	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 413	ret = do_writepages(mapping, &wbc);
 414	wbc_detach_inode(&wbc);
 415	return ret;
 416}
 417
 418static inline int __filemap_fdatawrite(struct address_space *mapping,
 419	int sync_mode)
 420{
 421	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 422}
 423
 424int filemap_fdatawrite(struct address_space *mapping)
 425{
 426	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 427}
 428EXPORT_SYMBOL(filemap_fdatawrite);
 429
 430int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 431				loff_t end)
 432{
 433	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 434}
 435EXPORT_SYMBOL(filemap_fdatawrite_range);
 436
 437/**
 438 * filemap_flush - mostly a non-blocking flush
 439 * @mapping:	target address_space
 440 *
 441 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 442 * purposes - I/O may not be started against all dirty pages.
 443 *
 444 * Return: %0 on success, negative error code otherwise.
 445 */
 446int filemap_flush(struct address_space *mapping)
 447{
 448	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 449}
 450EXPORT_SYMBOL(filemap_flush);
 451
 452/**
 453 * filemap_range_has_page - check if a page exists in range.
 454 * @mapping:           address space within which to check
 455 * @start_byte:        offset in bytes where the range starts
 456 * @end_byte:          offset in bytes where the range ends (inclusive)
 457 *
 458 * Find at least one page in the range supplied, usually used to check if
 459 * direct writing in this range will trigger a writeback.
 460 *
 461 * Return: %true if at least one page exists in the specified range,
 462 * %false otherwise.
 463 */
 464bool filemap_range_has_page(struct address_space *mapping,
 465			   loff_t start_byte, loff_t end_byte)
 466{
 467	struct page *page;
 468	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 469	pgoff_t max = end_byte >> PAGE_SHIFT;
 470
 471	if (end_byte < start_byte)
 472		return false;
 473
 474	rcu_read_lock();
 475	for (;;) {
 476		page = xas_find(&xas, max);
 477		if (xas_retry(&xas, page))
 478			continue;
 479		/* Shadow entries don't count */
 480		if (xa_is_value(page))
 481			continue;
 482		/*
 483		 * We don't need to try to pin this page; we're about to
 484		 * release the RCU lock anyway.  It is enough to know that
 485		 * there was a page here recently.
 486		 */
 487		break;
 488	}
 489	rcu_read_unlock();
 490
 491	return page != NULL;
 492}
 493EXPORT_SYMBOL(filemap_range_has_page);
 494
 495static void __filemap_fdatawait_range(struct address_space *mapping,
 496				     loff_t start_byte, loff_t end_byte)
 497{
 498	pgoff_t index = start_byte >> PAGE_SHIFT;
 499	pgoff_t end = end_byte >> PAGE_SHIFT;
 500	struct pagevec pvec;
 501	int nr_pages;
 502
 503	if (end_byte < start_byte)
 504		return;
 505
 506	pagevec_init(&pvec);
 507	while (index <= end) {
 508		unsigned i;
 509
 510		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
 511				end, PAGECACHE_TAG_WRITEBACK);
 512		if (!nr_pages)
 513			break;
 514
 515		for (i = 0; i < nr_pages; i++) {
 516			struct page *page = pvec.pages[i];
 517
 518			wait_on_page_writeback(page);
 519			ClearPageError(page);
 520		}
 521		pagevec_release(&pvec);
 522		cond_resched();
 523	}
 524}
 525
 526/**
 527 * filemap_fdatawait_range - wait for writeback to complete
 528 * @mapping:		address space structure to wait for
 529 * @start_byte:		offset in bytes where the range starts
 530 * @end_byte:		offset in bytes where the range ends (inclusive)
 531 *
 532 * Walk the list of under-writeback pages of the given address space
 533 * in the given range and wait for all of them.  Check error status of
 534 * the address space and return it.
 535 *
 536 * Since the error status of the address space is cleared by this function,
 537 * callers are responsible for checking the return value and handling and/or
 538 * reporting the error.
 539 *
 540 * Return: error status of the address space.
 541 */
 542int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 543			    loff_t end_byte)
 544{
 545	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 546	return filemap_check_errors(mapping);
 547}
 548EXPORT_SYMBOL(filemap_fdatawait_range);
 549
 550/**
 551 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 552 * @mapping:		address space structure to wait for
 553 * @start_byte:		offset in bytes where the range starts
 554 * @end_byte:		offset in bytes where the range ends (inclusive)
 555 *
 556 * Walk the list of under-writeback pages of the given address space in the
 557 * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 558 * this function does not clear error status of the address space.
 559 *
 560 * Use this function if callers don't handle errors themselves.  Expected
 561 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 562 * fsfreeze(8)
 563 */
 564int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
 565		loff_t start_byte, loff_t end_byte)
 566{
 567	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 568	return filemap_check_and_keep_errors(mapping);
 569}
 570EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
 571
 572/**
 573 * file_fdatawait_range - wait for writeback to complete
 574 * @file:		file pointing to address space structure to wait for
 575 * @start_byte:		offset in bytes where the range starts
 576 * @end_byte:		offset in bytes where the range ends (inclusive)
 577 *
 578 * Walk the list of under-writeback pages of the address space that file
 579 * refers to, in the given range and wait for all of them.  Check error
 580 * status of the address space vs. the file->f_wb_err cursor and return it.
 581 *
 582 * Since the error status of the file is advanced by this function,
 583 * callers are responsible for checking the return value and handling and/or
 584 * reporting the error.
 585 *
 586 * Return: error status of the address space vs. the file->f_wb_err cursor.
 587 */
 588int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 589{
 590	struct address_space *mapping = file->f_mapping;
 591
 592	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 593	return file_check_and_advance_wb_err(file);
 594}
 595EXPORT_SYMBOL(file_fdatawait_range);
 596
 597/**
 598 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 599 * @mapping: address space structure to wait for
 600 *
 601 * Walk the list of under-writeback pages of the given address space
 602 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 603 * does not clear error status of the address space.
 604 *
 605 * Use this function if callers don't handle errors themselves.  Expected
 606 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 607 * fsfreeze(8)
 608 *
 609 * Return: error status of the address space.
 610 */
 611int filemap_fdatawait_keep_errors(struct address_space *mapping)
 612{
 613	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 614	return filemap_check_and_keep_errors(mapping);
 615}
 616EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 617
 618/* Returns true if writeback might be needed or already in progress. */
 619static bool mapping_needs_writeback(struct address_space *mapping)
 620{
 621	return mapping->nrpages;
 622}
 623
 624/**
 625 * filemap_range_needs_writeback - check if range potentially needs writeback
 626 * @mapping:           address space within which to check
 627 * @start_byte:        offset in bytes where the range starts
 628 * @end_byte:          offset in bytes where the range ends (inclusive)
 629 *
 630 * Find at least one page in the range supplied, usually used to check if
 631 * direct writing in this range will trigger a writeback. Used by O_DIRECT
 632 * read/write with IOCB_NOWAIT, to see if the caller needs to do
 633 * filemap_write_and_wait_range() before proceeding.
 634 *
 635 * Return: %true if the caller should do filemap_write_and_wait_range() before
 636 * doing O_DIRECT to a page in this range, %false otherwise.
 637 */
 638bool filemap_range_needs_writeback(struct address_space *mapping,
 639				   loff_t start_byte, loff_t end_byte)
 640{
 641	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 642	pgoff_t max = end_byte >> PAGE_SHIFT;
 643	struct page *page;
 644
 645	if (!mapping_needs_writeback(mapping))
 646		return false;
 647	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
 648	    !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
 649		return false;
 650	if (end_byte < start_byte)
 651		return false;
 652
 653	rcu_read_lock();
 654	xas_for_each(&xas, page, max) {
 655		if (xas_retry(&xas, page))
 656			continue;
 657		if (xa_is_value(page))
 658			continue;
 659		if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
 
 660			break;
 661	}
 662	rcu_read_unlock();
 663	return page != NULL;
 664}
 665EXPORT_SYMBOL_GPL(filemap_range_needs_writeback);
 666
 667/**
 668 * filemap_write_and_wait_range - write out & wait on a file range
 669 * @mapping:	the address_space for the pages
 670 * @lstart:	offset in bytes where the range starts
 671 * @lend:	offset in bytes where the range ends (inclusive)
 672 *
 673 * Write out and wait upon file offsets lstart->lend, inclusive.
 674 *
 675 * Note that @lend is inclusive (describes the last byte to be written) so
 676 * that this function can be used to write to the very end-of-file (end = -1).
 677 *
 678 * Return: error status of the address space.
 679 */
 680int filemap_write_and_wait_range(struct address_space *mapping,
 681				 loff_t lstart, loff_t lend)
 682{
 683	int err = 0;
 
 
 
 684
 685	if (mapping_needs_writeback(mapping)) {
 686		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 687						 WB_SYNC_ALL);
 688		/*
 689		 * Even if the above returned error, the pages may be
 690		 * written partially (e.g. -ENOSPC), so we wait for it.
 691		 * But the -EIO is special case, it may indicate the worst
 692		 * thing (e.g. bug) happened, so we avoid waiting for it.
 693		 */
 694		if (err != -EIO) {
 695			int err2 = filemap_fdatawait_range(mapping,
 696						lstart, lend);
 697			if (!err)
 698				err = err2;
 699		} else {
 700			/* Clear any previously stored errors */
 701			filemap_check_errors(mapping);
 702		}
 703	} else {
 704		err = filemap_check_errors(mapping);
 705	}
 
 
 
 706	return err;
 707}
 708EXPORT_SYMBOL(filemap_write_and_wait_range);
 709
 710void __filemap_set_wb_err(struct address_space *mapping, int err)
 711{
 712	errseq_t eseq = errseq_set(&mapping->wb_err, err);
 713
 714	trace_filemap_set_wb_err(mapping, eseq);
 715}
 716EXPORT_SYMBOL(__filemap_set_wb_err);
 717
 718/**
 719 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 720 * 				   and advance wb_err to current one
 721 * @file: struct file on which the error is being reported
 722 *
 723 * When userland calls fsync (or something like nfsd does the equivalent), we
 724 * want to report any writeback errors that occurred since the last fsync (or
 725 * since the file was opened if there haven't been any).
 726 *
 727 * Grab the wb_err from the mapping. If it matches what we have in the file,
 728 * then just quickly return 0. The file is all caught up.
 729 *
 730 * If it doesn't match, then take the mapping value, set the "seen" flag in
 731 * it and try to swap it into place. If it works, or another task beat us
 732 * to it with the new value, then update the f_wb_err and return the error
 733 * portion. The error at this point must be reported via proper channels
 734 * (a'la fsync, or NFS COMMIT operation, etc.).
 735 *
 736 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 737 * value is protected by the f_lock since we must ensure that it reflects
 738 * the latest value swapped in for this file descriptor.
 739 *
 740 * Return: %0 on success, negative error code otherwise.
 741 */
 742int file_check_and_advance_wb_err(struct file *file)
 743{
 744	int err = 0;
 745	errseq_t old = READ_ONCE(file->f_wb_err);
 746	struct address_space *mapping = file->f_mapping;
 747
 748	/* Locklessly handle the common case where nothing has changed */
 749	if (errseq_check(&mapping->wb_err, old)) {
 750		/* Something changed, must use slow path */
 751		spin_lock(&file->f_lock);
 752		old = file->f_wb_err;
 753		err = errseq_check_and_advance(&mapping->wb_err,
 754						&file->f_wb_err);
 755		trace_file_check_and_advance_wb_err(file, old);
 756		spin_unlock(&file->f_lock);
 757	}
 758
 759	/*
 760	 * We're mostly using this function as a drop in replacement for
 761	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 762	 * that the legacy code would have had on these flags.
 763	 */
 764	clear_bit(AS_EIO, &mapping->flags);
 765	clear_bit(AS_ENOSPC, &mapping->flags);
 766	return err;
 767}
 768EXPORT_SYMBOL(file_check_and_advance_wb_err);
 769
 770/**
 771 * file_write_and_wait_range - write out & wait on a file range
 772 * @file:	file pointing to address_space with pages
 773 * @lstart:	offset in bytes where the range starts
 774 * @lend:	offset in bytes where the range ends (inclusive)
 775 *
 776 * Write out and wait upon file offsets lstart->lend, inclusive.
 777 *
 778 * Note that @lend is inclusive (describes the last byte to be written) so
 779 * that this function can be used to write to the very end-of-file (end = -1).
 780 *
 781 * After writing out and waiting on the data, we check and advance the
 782 * f_wb_err cursor to the latest value, and return any errors detected there.
 783 *
 784 * Return: %0 on success, negative error code otherwise.
 785 */
 786int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 787{
 788	int err = 0, err2;
 789	struct address_space *mapping = file->f_mapping;
 790
 
 
 
 791	if (mapping_needs_writeback(mapping)) {
 792		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 793						 WB_SYNC_ALL);
 794		/* See comment of filemap_write_and_wait() */
 795		if (err != -EIO)
 796			__filemap_fdatawait_range(mapping, lstart, lend);
 797	}
 798	err2 = file_check_and_advance_wb_err(file);
 799	if (!err)
 800		err = err2;
 801	return err;
 802}
 803EXPORT_SYMBOL(file_write_and_wait_range);
 804
 805/**
 806 * replace_page_cache_page - replace a pagecache page with a new one
 807 * @old:	page to be replaced
 808 * @new:	page to replace with
 809 *
 810 * This function replaces a page in the pagecache with a new one.  On
 811 * success it acquires the pagecache reference for the new page and
 812 * drops it for the old page.  Both the old and new pages must be
 813 * locked.  This function does not add the new page to the LRU, the
 814 * caller must do that.
 815 *
 816 * The remove + add is atomic.  This function cannot fail.
 817 */
 818void replace_page_cache_page(struct page *old, struct page *new)
 819{
 820	struct address_space *mapping = old->mapping;
 821	void (*freepage)(struct page *) = mapping->a_ops->freepage;
 822	pgoff_t offset = old->index;
 823	XA_STATE(xas, &mapping->i_pages, offset);
 824	unsigned long flags;
 825
 826	VM_BUG_ON_PAGE(!PageLocked(old), old);
 827	VM_BUG_ON_PAGE(!PageLocked(new), new);
 828	VM_BUG_ON_PAGE(new->mapping, new);
 829
 830	get_page(new);
 831	new->mapping = mapping;
 832	new->index = offset;
 833
 834	mem_cgroup_migrate(old, new);
 835
 836	xas_lock_irqsave(&xas, flags);
 837	xas_store(&xas, new);
 838
 839	old->mapping = NULL;
 840	/* hugetlb pages do not participate in page cache accounting. */
 841	if (!PageHuge(old))
 842		__dec_lruvec_page_state(old, NR_FILE_PAGES);
 843	if (!PageHuge(new))
 844		__inc_lruvec_page_state(new, NR_FILE_PAGES);
 845	if (PageSwapBacked(old))
 846		__dec_lruvec_page_state(old, NR_SHMEM);
 847	if (PageSwapBacked(new))
 848		__inc_lruvec_page_state(new, NR_SHMEM);
 849	xas_unlock_irqrestore(&xas, flags);
 850	if (freepage)
 851		freepage(old);
 852	put_page(old);
 853}
 854EXPORT_SYMBOL_GPL(replace_page_cache_page);
 855
 856noinline int __add_to_page_cache_locked(struct page *page,
 857					struct address_space *mapping,
 858					pgoff_t offset, gfp_t gfp,
 859					void **shadowp)
 860{
 861	XA_STATE(xas, &mapping->i_pages, offset);
 862	int huge = PageHuge(page);
 863	int error;
 864	bool charged = false;
 
 865
 866	VM_BUG_ON_PAGE(!PageLocked(page), page);
 867	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 868	mapping_set_update(&xas, mapping);
 869
 870	get_page(page);
 871	page->mapping = mapping;
 872	page->index = offset;
 873
 874	if (!huge) {
 875		error = mem_cgroup_charge(page, NULL, gfp);
 
 876		if (error)
 877			goto error;
 878		charged = true;
 
 
 879	}
 880
 881	gfp &= GFP_RECLAIM_MASK;
 
 
 
 882
 883	do {
 884		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
 885		void *entry, *old = NULL;
 886
 887		if (order > thp_order(page))
 888			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
 889					order, gfp);
 890		xas_lock_irq(&xas);
 891		xas_for_each_conflict(&xas, entry) {
 892			old = entry;
 893			if (!xa_is_value(entry)) {
 894				xas_set_err(&xas, -EEXIST);
 895				goto unlock;
 896			}
 897		}
 898
 899		if (old) {
 900			if (shadowp)
 901				*shadowp = old;
 902			/* entry may have been split before we acquired lock */
 903			order = xa_get_order(xas.xa, xas.xa_index);
 904			if (order > thp_order(page)) {
 
 
 905				xas_split(&xas, old, order);
 906				xas_reset(&xas);
 907			}
 908		}
 909
 910		xas_store(&xas, page);
 911		if (xas_error(&xas))
 912			goto unlock;
 913
 914		mapping->nrpages++;
 915
 916		/* hugetlb pages do not participate in page cache accounting */
 917		if (!huge)
 918			__inc_lruvec_page_state(page, NR_FILE_PAGES);
 
 
 
 
 919unlock:
 920		xas_unlock_irq(&xas);
 921	} while (xas_nomem(&xas, gfp));
 922
 923	if (xas_error(&xas)) {
 924		error = xas_error(&xas);
 925		if (charged)
 926			mem_cgroup_uncharge(page);
 927		goto error;
 928	}
 929
 930	trace_mm_filemap_add_to_page_cache(page);
 931	return 0;
 932error:
 933	page->mapping = NULL;
 
 
 934	/* Leave page->index set: truncation relies upon it */
 935	put_page(page);
 936	return error;
 937}
 938ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
 939
 940/**
 941 * add_to_page_cache_locked - add a locked page to the pagecache
 942 * @page:	page to add
 943 * @mapping:	the page's address_space
 944 * @offset:	page index
 945 * @gfp_mask:	page allocation mode
 946 *
 947 * This function is used to add a page to the pagecache. It must be locked.
 948 * This function does not add the page to the LRU.  The caller must do that.
 949 *
 950 * Return: %0 on success, negative error code otherwise.
 951 */
 952int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 953		pgoff_t offset, gfp_t gfp_mask)
 954{
 955	return __add_to_page_cache_locked(page, mapping, offset,
 956					  gfp_mask, NULL);
 957}
 958EXPORT_SYMBOL(add_to_page_cache_locked);
 959
 960int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 961				pgoff_t offset, gfp_t gfp_mask)
 962{
 963	void *shadow = NULL;
 964	int ret;
 965
 966	__SetPageLocked(page);
 967	ret = __add_to_page_cache_locked(page, mapping, offset,
 968					 gfp_mask, &shadow);
 969	if (unlikely(ret))
 970		__ClearPageLocked(page);
 971	else {
 972		/*
 973		 * The page might have been evicted from cache only
 974		 * recently, in which case it should be activated like
 975		 * any other repeatedly accessed page.
 976		 * The exception is pages getting rewritten; evicting other
 977		 * data from the working set, only to cache data that will
 978		 * get overwritten with something else, is a waste of memory.
 979		 */
 980		WARN_ON_ONCE(PageActive(page));
 981		if (!(gfp_mask & __GFP_WRITE) && shadow)
 982			workingset_refault(page, shadow);
 983		lru_cache_add(page);
 984	}
 985	return ret;
 986}
 987EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 988
 989#ifdef CONFIG_NUMA
 990struct page *__page_cache_alloc(gfp_t gfp)
 991{
 992	int n;
 993	struct page *page;
 994
 995	if (cpuset_do_page_mem_spread()) {
 996		unsigned int cpuset_mems_cookie;
 997		do {
 998			cpuset_mems_cookie = read_mems_allowed_begin();
 999			n = cpuset_mem_spread_node();
1000			page = __alloc_pages_node(n, gfp, 0);
1001		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
1002
1003		return page;
1004	}
1005	return alloc_pages(gfp, 0);
1006}
1007EXPORT_SYMBOL(__page_cache_alloc);
1008#endif
1009
1010/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011 * In order to wait for pages to become available there must be
1012 * waitqueues associated with pages. By using a hash table of
1013 * waitqueues where the bucket discipline is to maintain all
1014 * waiters on the same queue and wake all when any of the pages
1015 * become available, and for the woken contexts to check to be
1016 * sure the appropriate page became available, this saves space
1017 * at a cost of "thundering herd" phenomena during rare hash
1018 * collisions.
1019 */
1020#define PAGE_WAIT_TABLE_BITS 8
1021#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1022static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1023
1024static wait_queue_head_t *page_waitqueue(struct page *page)
1025{
1026	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1027}
1028
1029void __init pagecache_init(void)
1030{
1031	int i;
1032
1033	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1034		init_waitqueue_head(&page_wait_table[i]);
1035
1036	page_writeback_init();
1037}
1038
1039/*
1040 * The page wait code treats the "wait->flags" somewhat unusually, because
1041 * we have multiple different kinds of waits, not just the usual "exclusive"
1042 * one.
1043 *
1044 * We have:
1045 *
1046 *  (a) no special bits set:
1047 *
1048 *	We're just waiting for the bit to be released, and when a waker
1049 *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1050 *	and remove it from the wait queue.
1051 *
1052 *	Simple and straightforward.
1053 *
1054 *  (b) WQ_FLAG_EXCLUSIVE:
1055 *
1056 *	The waiter is waiting to get the lock, and only one waiter should
1057 *	be woken up to avoid any thundering herd behavior. We'll set the
1058 *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1059 *
1060 *	This is the traditional exclusive wait.
1061 *
1062 *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1063 *
1064 *	The waiter is waiting to get the bit, and additionally wants the
1065 *	lock to be transferred to it for fair lock behavior. If the lock
1066 *	cannot be taken, we stop walking the wait queue without waking
1067 *	the waiter.
1068 *
1069 *	This is the "fair lock handoff" case, and in addition to setting
1070 *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1071 *	that it now has the lock.
1072 */
1073static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1074{
1075	unsigned int flags;
1076	struct wait_page_key *key = arg;
1077	struct wait_page_queue *wait_page
1078		= container_of(wait, struct wait_page_queue, wait);
1079
1080	if (!wake_page_match(wait_page, key))
1081		return 0;
1082
1083	/*
1084	 * If it's a lock handoff wait, we get the bit for it, and
1085	 * stop walking (and do not wake it up) if we can't.
1086	 */
1087	flags = wait->flags;
1088	if (flags & WQ_FLAG_EXCLUSIVE) {
1089		if (test_bit(key->bit_nr, &key->page->flags))
1090			return -1;
1091		if (flags & WQ_FLAG_CUSTOM) {
1092			if (test_and_set_bit(key->bit_nr, &key->page->flags))
1093				return -1;
1094			flags |= WQ_FLAG_DONE;
1095		}
1096	}
1097
1098	/*
1099	 * We are holding the wait-queue lock, but the waiter that
1100	 * is waiting for this will be checking the flags without
1101	 * any locking.
1102	 *
1103	 * So update the flags atomically, and wake up the waiter
1104	 * afterwards to avoid any races. This store-release pairs
1105	 * with the load-acquire in wait_on_page_bit_common().
1106	 */
1107	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1108	wake_up_state(wait->private, mode);
1109
1110	/*
1111	 * Ok, we have successfully done what we're waiting for,
1112	 * and we can unconditionally remove the wait entry.
1113	 *
1114	 * Note that this pairs with the "finish_wait()" in the
1115	 * waiter, and has to be the absolute last thing we do.
1116	 * After this list_del_init(&wait->entry) the wait entry
1117	 * might be de-allocated and the process might even have
1118	 * exited.
1119	 */
1120	list_del_init_careful(&wait->entry);
1121	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1122}
1123
1124static void wake_up_page_bit(struct page *page, int bit_nr)
1125{
1126	wait_queue_head_t *q = page_waitqueue(page);
1127	struct wait_page_key key;
1128	unsigned long flags;
1129	wait_queue_entry_t bookmark;
1130
1131	key.page = page;
1132	key.bit_nr = bit_nr;
1133	key.page_match = 0;
1134
1135	bookmark.flags = 0;
1136	bookmark.private = NULL;
1137	bookmark.func = NULL;
1138	INIT_LIST_HEAD(&bookmark.entry);
1139
1140	spin_lock_irqsave(&q->lock, flags);
1141	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1142
1143	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1144		/*
1145		 * Take a breather from holding the lock,
1146		 * allow pages that finish wake up asynchronously
1147		 * to acquire the lock and remove themselves
1148		 * from wait queue
1149		 */
1150		spin_unlock_irqrestore(&q->lock, flags);
1151		cpu_relax();
1152		spin_lock_irqsave(&q->lock, flags);
1153		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1154	}
1155
1156	/*
1157	 * It is possible for other pages to have collided on the waitqueue
1158	 * hash, so in that case check for a page match. That prevents a long-
1159	 * term waiter
1160	 *
1161	 * It is still possible to miss a case here, when we woke page waiters
1162	 * and removed them from the waitqueue, but there are still other
1163	 * page waiters.
1164	 */
1165	if (!waitqueue_active(q) || !key.page_match) {
1166		ClearPageWaiters(page);
1167		/*
1168		 * It's possible to miss clearing Waiters here, when we woke
1169		 * our page waiters, but the hashed waitqueue has waiters for
1170		 * other pages on it.
1171		 *
1172		 * That's okay, it's a rare case. The next waker will clear it.
1173		 */
1174	}
1175	spin_unlock_irqrestore(&q->lock, flags);
1176}
1177
1178static void wake_up_page(struct page *page, int bit)
1179{
1180	if (!PageWaiters(page))
1181		return;
1182	wake_up_page_bit(page, bit);
1183}
1184
1185/*
1186 * A choice of three behaviors for wait_on_page_bit_common():
1187 */
1188enum behavior {
1189	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1190			 * __lock_page() waiting on then setting PG_locked.
1191			 */
1192	SHARED,		/* Hold ref to page and check the bit when woken, like
1193			 * wait_on_page_writeback() waiting on PG_writeback.
1194			 */
1195	DROP,		/* Drop ref to page before wait, no check when woken,
1196			 * like put_and_wait_on_page_locked() on PG_locked.
1197			 */
1198};
1199
1200/*
1201 * Attempt to check (or get) the page bit, and mark us done
1202 * if successful.
1203 */
1204static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1205					struct wait_queue_entry *wait)
1206{
1207	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1208		if (test_and_set_bit(bit_nr, &page->flags))
1209			return false;
1210	} else if (test_bit(bit_nr, &page->flags))
1211		return false;
1212
1213	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1214	return true;
1215}
1216
1217/* How many times do we accept lock stealing from under a waiter? */
1218int sysctl_page_lock_unfairness = 5;
1219
1220static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1221	struct page *page, int bit_nr, int state, enum behavior behavior)
1222{
 
1223	int unfairness = sysctl_page_lock_unfairness;
1224	struct wait_page_queue wait_page;
1225	wait_queue_entry_t *wait = &wait_page.wait;
1226	bool thrashing = false;
1227	bool delayacct = false;
1228	unsigned long pflags;
 
1229
1230	if (bit_nr == PG_locked &&
1231	    !PageUptodate(page) && PageWorkingset(page)) {
1232		if (!PageSwapBacked(page)) {
1233			delayacct_thrashing_start();
1234			delayacct = true;
1235		}
1236		psi_memstall_enter(&pflags);
1237		thrashing = true;
1238	}
1239
1240	init_wait(wait);
1241	wait->func = wake_page_function;
1242	wait_page.page = page;
1243	wait_page.bit_nr = bit_nr;
1244
1245repeat:
1246	wait->flags = 0;
1247	if (behavior == EXCLUSIVE) {
1248		wait->flags = WQ_FLAG_EXCLUSIVE;
1249		if (--unfairness < 0)
1250			wait->flags |= WQ_FLAG_CUSTOM;
1251	}
1252
1253	/*
1254	 * Do one last check whether we can get the
1255	 * page bit synchronously.
1256	 *
1257	 * Do the SetPageWaiters() marking before that
1258	 * to let any waker we _just_ missed know they
1259	 * need to wake us up (otherwise they'll never
1260	 * even go to the slow case that looks at the
1261	 * page queue), and add ourselves to the wait
1262	 * queue if we need to sleep.
1263	 *
1264	 * This part needs to be done under the queue
1265	 * lock to avoid races.
1266	 */
1267	spin_lock_irq(&q->lock);
1268	SetPageWaiters(page);
1269	if (!trylock_page_bit_common(page, bit_nr, wait))
1270		__add_wait_queue_entry_tail(q, wait);
1271	spin_unlock_irq(&q->lock);
1272
1273	/*
1274	 * From now on, all the logic will be based on
1275	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1276	 * see whether the page bit testing has already
1277	 * been done by the wake function.
1278	 *
1279	 * We can drop our reference to the page.
1280	 */
1281	if (behavior == DROP)
1282		put_page(page);
1283
1284	/*
1285	 * Note that until the "finish_wait()", or until
1286	 * we see the WQ_FLAG_WOKEN flag, we need to
1287	 * be very careful with the 'wait->flags', because
1288	 * we may race with a waker that sets them.
1289	 */
1290	for (;;) {
1291		unsigned int flags;
1292
1293		set_current_state(state);
1294
1295		/* Loop until we've been woken or interrupted */
1296		flags = smp_load_acquire(&wait->flags);
1297		if (!(flags & WQ_FLAG_WOKEN)) {
1298			if (signal_pending_state(state, current))
1299				break;
1300
1301			io_schedule();
1302			continue;
1303		}
1304
1305		/* If we were non-exclusive, we're done */
1306		if (behavior != EXCLUSIVE)
1307			break;
1308
1309		/* If the waker got the lock for us, we're done */
1310		if (flags & WQ_FLAG_DONE)
1311			break;
1312
1313		/*
1314		 * Otherwise, if we're getting the lock, we need to
1315		 * try to get it ourselves.
1316		 *
1317		 * And if that fails, we'll have to retry this all.
1318		 */
1319		if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1320			goto repeat;
1321
1322		wait->flags |= WQ_FLAG_DONE;
1323		break;
1324	}
1325
1326	/*
1327	 * If a signal happened, this 'finish_wait()' may remove the last
1328	 * waiter from the wait-queues, but the PageWaiters bit will remain
1329	 * set. That's ok. The next wakeup will take care of it, and trying
1330	 * to do it here would be difficult and prone to races.
1331	 */
1332	finish_wait(q, wait);
1333
1334	if (thrashing) {
1335		if (delayacct)
1336			delayacct_thrashing_end();
1337		psi_memstall_leave(&pflags);
1338	}
1339
1340	/*
1341	 * NOTE! The wait->flags weren't stable until we've done the
1342	 * 'finish_wait()', and we could have exited the loop above due
1343	 * to a signal, and had a wakeup event happen after the signal
1344	 * test but before the 'finish_wait()'.
1345	 *
1346	 * So only after the finish_wait() can we reliably determine
1347	 * if we got woken up or not, so we can now figure out the final
1348	 * return value based on that state without races.
1349	 *
1350	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1351	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1352	 */
1353	if (behavior == EXCLUSIVE)
1354		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1355
1356	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1357}
1358
1359void wait_on_page_bit(struct page *page, int bit_nr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1360{
1361	wait_queue_head_t *q = page_waitqueue(page);
1362	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1363}
1364EXPORT_SYMBOL(wait_on_page_bit);
1365
1366int wait_on_page_bit_killable(struct page *page, int bit_nr)
1367{
1368	wait_queue_head_t *q = page_waitqueue(page);
1369	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1370}
1371EXPORT_SYMBOL(wait_on_page_bit_killable);
1372
1373/**
1374 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1375 * @page: The page to wait for.
1376 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1377 *
1378 * The caller should hold a reference on @page.  They expect the page to
1379 * become unlocked relatively soon, but do not wish to hold up migration
1380 * (for example) by holding the reference while waiting for the page to
1381 * come unlocked.  After this function returns, the caller should not
1382 * dereference @page.
1383 *
1384 * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
1385 */
1386int put_and_wait_on_page_locked(struct page *page, int state)
1387{
1388	wait_queue_head_t *q;
1389
1390	page = compound_head(page);
1391	q = page_waitqueue(page);
1392	return wait_on_page_bit_common(q, page, PG_locked, state, DROP);
1393}
1394
1395/**
1396 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1397 * @page: Page defining the wait queue of interest
1398 * @waiter: Waiter to add to the queue
1399 *
1400 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1401 */
1402void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1403{
1404	wait_queue_head_t *q = page_waitqueue(page);
1405	unsigned long flags;
1406
1407	spin_lock_irqsave(&q->lock, flags);
1408	__add_wait_queue_entry_tail(q, waiter);
1409	SetPageWaiters(page);
1410	spin_unlock_irqrestore(&q->lock, flags);
1411}
1412EXPORT_SYMBOL_GPL(add_page_wait_queue);
1413
1414#ifndef clear_bit_unlock_is_negative_byte
1415
1416/*
1417 * PG_waiters is the high bit in the same byte as PG_lock.
1418 *
1419 * On x86 (and on many other architectures), we can clear PG_lock and
1420 * test the sign bit at the same time. But if the architecture does
1421 * not support that special operation, we just do this all by hand
1422 * instead.
1423 *
1424 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1425 * being cleared, but a memory barrier should be unnecessary since it is
1426 * in the same byte as PG_locked.
1427 */
1428static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1429{
1430	clear_bit_unlock(nr, mem);
1431	/* smp_mb__after_atomic(); */
1432	return test_bit(PG_waiters, mem);
1433}
1434
1435#endif
1436
1437/**
1438 * unlock_page - unlock a locked page
1439 * @page: the page
1440 *
1441 * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1442 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1443 * mechanism between PageLocked pages and PageWriteback pages is shared.
1444 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1445 *
1446 * Note that this depends on PG_waiters being the sign bit in the byte
1447 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1448 * clear the PG_locked bit and test PG_waiters at the same time fairly
1449 * portably (architectures that do LL/SC can test any bit, while x86 can
1450 * test the sign bit).
1451 */
1452void unlock_page(struct page *page)
1453{
 
1454	BUILD_BUG_ON(PG_waiters != 7);
1455	page = compound_head(page);
1456	VM_BUG_ON_PAGE(!PageLocked(page), page);
1457	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1458		wake_up_page_bit(page, PG_locked);
1459}
1460EXPORT_SYMBOL(unlock_page);
1461
1462/**
1463 * end_page_private_2 - Clear PG_private_2 and release any waiters
1464 * @page: The page
1465 *
1466 * Clear the PG_private_2 bit on a page and wake up any sleepers waiting for
1467 * this.  The page ref held for PG_private_2 being set is released.
1468 *
1469 * This is, for example, used when a netfs page is being written to a local
1470 * disk cache, thereby allowing writes to the cache for the same page to be
1471 * serialised.
1472 */
1473void end_page_private_2(struct page *page)
1474{
1475	page = compound_head(page);
1476	VM_BUG_ON_PAGE(!PagePrivate2(page), page);
1477	clear_bit_unlock(PG_private_2, &page->flags);
1478	wake_up_page_bit(page, PG_private_2);
1479	put_page(page);
1480}
1481EXPORT_SYMBOL(end_page_private_2);
1482
1483/**
1484 * wait_on_page_private_2 - Wait for PG_private_2 to be cleared on a page
1485 * @page: The page to wait on
1486 *
1487 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page.
1488 */
1489void wait_on_page_private_2(struct page *page)
1490{
1491	page = compound_head(page);
1492	while (PagePrivate2(page))
1493		wait_on_page_bit(page, PG_private_2);
1494}
1495EXPORT_SYMBOL(wait_on_page_private_2);
1496
1497/**
1498 * wait_on_page_private_2_killable - Wait for PG_private_2 to be cleared on a page
1499 * @page: The page to wait on
1500 *
1501 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page or until a
1502 * fatal signal is received by the calling task.
1503 *
1504 * Return:
1505 * - 0 if successful.
1506 * - -EINTR if a fatal signal was encountered.
1507 */
1508int wait_on_page_private_2_killable(struct page *page)
1509{
1510	int ret = 0;
1511
1512	page = compound_head(page);
1513	while (PagePrivate2(page)) {
1514		ret = wait_on_page_bit_killable(page, PG_private_2);
1515		if (ret < 0)
1516			break;
1517	}
1518
1519	return ret;
1520}
1521EXPORT_SYMBOL(wait_on_page_private_2_killable);
1522
1523/**
1524 * end_page_writeback - end writeback against a page
1525 * @page: the page
1526 */
1527void end_page_writeback(struct page *page)
1528{
1529	/*
1530	 * TestClearPageReclaim could be used here but it is an atomic
1531	 * operation and overkill in this particular case. Failing to
1532	 * shuffle a page marked for immediate reclaim is too mild to
1533	 * justify taking an atomic operation penalty at the end of
1534	 * ever page writeback.
1535	 */
1536	if (PageReclaim(page)) {
1537		ClearPageReclaim(page);
1538		rotate_reclaimable_page(page);
1539	}
1540
1541	/*
1542	 * Writeback does not hold a page reference of its own, relying
1543	 * on truncation to wait for the clearing of PG_writeback.
1544	 * But here we must make sure that the page is not freed and
1545	 * reused before the wake_up_page().
1546	 */
1547	get_page(page);
1548	if (!test_clear_page_writeback(page))
1549		BUG();
1550
1551	smp_mb__after_atomic();
1552	wake_up_page(page, PG_writeback);
1553	put_page(page);
 
1554}
1555EXPORT_SYMBOL(end_page_writeback);
1556
1557/*
1558 * After completing I/O on a page, call this routine to update the page
1559 * flags appropriately
1560 */
1561void page_endio(struct page *page, bool is_write, int err)
1562{
 
 
1563	if (!is_write) {
1564		if (!err) {
1565			SetPageUptodate(page);
1566		} else {
1567			ClearPageUptodate(page);
1568			SetPageError(page);
1569		}
1570		unlock_page(page);
1571	} else {
1572		if (err) {
1573			struct address_space *mapping;
1574
1575			SetPageError(page);
1576			mapping = page_mapping(page);
1577			if (mapping)
1578				mapping_set_error(mapping, err);
1579		}
1580		end_page_writeback(page);
1581	}
1582}
1583EXPORT_SYMBOL_GPL(page_endio);
1584
1585/**
1586 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1587 * @__page: the page to lock
1588 */
1589void __lock_page(struct page *__page)
1590{
1591	struct page *page = compound_head(__page);
1592	wait_queue_head_t *q = page_waitqueue(page);
1593	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1594				EXCLUSIVE);
1595}
1596EXPORT_SYMBOL(__lock_page);
1597
1598int __lock_page_killable(struct page *__page)
1599{
1600	struct page *page = compound_head(__page);
1601	wait_queue_head_t *q = page_waitqueue(page);
1602	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1603					EXCLUSIVE);
1604}
1605EXPORT_SYMBOL_GPL(__lock_page_killable);
1606
1607int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1608{
1609	struct wait_queue_head *q = page_waitqueue(page);
1610	int ret = 0;
1611
1612	wait->page = page;
1613	wait->bit_nr = PG_locked;
1614
1615	spin_lock_irq(&q->lock);
1616	__add_wait_queue_entry_tail(q, &wait->wait);
1617	SetPageWaiters(page);
1618	ret = !trylock_page(page);
1619	/*
1620	 * If we were successful now, we know we're still on the
1621	 * waitqueue as we're still under the lock. This means it's
1622	 * safe to remove and return success, we know the callback
1623	 * isn't going to trigger.
1624	 */
1625	if (!ret)
1626		__remove_wait_queue(q, &wait->wait);
1627	else
1628		ret = -EIOCBQUEUED;
1629	spin_unlock_irq(&q->lock);
1630	return ret;
1631}
1632
1633/*
1634 * Return values:
1635 * 1 - page is locked; mmap_lock is still held.
1636 * 0 - page is not locked.
1637 *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1638 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1639 *     which case mmap_lock is still held.
1640 *
1641 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1642 * with the page locked and the mmap_lock unperturbed.
1643 */
1644int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1645			 unsigned int flags)
1646{
1647	if (fault_flag_allow_retry_first(flags)) {
1648		/*
1649		 * CAUTION! In this case, mmap_lock is not released
1650		 * even though return 0.
1651		 */
1652		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1653			return 0;
1654
1655		mmap_read_unlock(mm);
1656		if (flags & FAULT_FLAG_KILLABLE)
1657			wait_on_page_locked_killable(page);
1658		else
1659			wait_on_page_locked(page);
1660		return 0;
1661	}
1662	if (flags & FAULT_FLAG_KILLABLE) {
1663		int ret;
1664
1665		ret = __lock_page_killable(page);
1666		if (ret) {
1667			mmap_read_unlock(mm);
1668			return 0;
1669		}
1670	} else {
1671		__lock_page(page);
1672	}
1673	return 1;
1674
 
1675}
1676
1677/**
1678 * page_cache_next_miss() - Find the next gap in the page cache.
1679 * @mapping: Mapping.
1680 * @index: Index.
1681 * @max_scan: Maximum range to search.
1682 *
1683 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1684 * gap with the lowest index.
1685 *
1686 * This function may be called under the rcu_read_lock.  However, this will
1687 * not atomically search a snapshot of the cache at a single point in time.
1688 * For example, if a gap is created at index 5, then subsequently a gap is
1689 * created at index 10, page_cache_next_miss covering both indices may
1690 * return 10 if called under the rcu_read_lock.
1691 *
1692 * Return: The index of the gap if found, otherwise an index outside the
1693 * range specified (in which case 'return - index >= max_scan' will be true).
1694 * In the rare case of index wrap-around, 0 will be returned.
1695 */
1696pgoff_t page_cache_next_miss(struct address_space *mapping,
1697			     pgoff_t index, unsigned long max_scan)
1698{
1699	XA_STATE(xas, &mapping->i_pages, index);
1700
1701	while (max_scan--) {
1702		void *entry = xas_next(&xas);
1703		if (!entry || xa_is_value(entry))
1704			break;
1705		if (xas.xa_index == 0)
1706			break;
1707	}
1708
1709	return xas.xa_index;
1710}
1711EXPORT_SYMBOL(page_cache_next_miss);
1712
1713/**
1714 * page_cache_prev_miss() - Find the previous gap in the page cache.
1715 * @mapping: Mapping.
1716 * @index: Index.
1717 * @max_scan: Maximum range to search.
1718 *
1719 * Search the range [max(index - max_scan + 1, 0), index] for the
1720 * gap with the highest index.
1721 *
1722 * This function may be called under the rcu_read_lock.  However, this will
1723 * not atomically search a snapshot of the cache at a single point in time.
1724 * For example, if a gap is created at index 10, then subsequently a gap is
1725 * created at index 5, page_cache_prev_miss() covering both indices may
1726 * return 5 if called under the rcu_read_lock.
1727 *
1728 * Return: The index of the gap if found, otherwise an index outside the
1729 * range specified (in which case 'index - return >= max_scan' will be true).
1730 * In the rare case of wrap-around, ULONG_MAX will be returned.
1731 */
1732pgoff_t page_cache_prev_miss(struct address_space *mapping,
1733			     pgoff_t index, unsigned long max_scan)
1734{
1735	XA_STATE(xas, &mapping->i_pages, index);
1736
1737	while (max_scan--) {
1738		void *entry = xas_prev(&xas);
1739		if (!entry || xa_is_value(entry))
1740			break;
1741		if (xas.xa_index == ULONG_MAX)
1742			break;
1743	}
1744
1745	return xas.xa_index;
1746}
1747EXPORT_SYMBOL(page_cache_prev_miss);
1748
1749/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1750 * mapping_get_entry - Get a page cache entry.
1751 * @mapping: the address_space to search
1752 * @index: The page cache index.
1753 *
1754 * Looks up the page cache slot at @mapping & @index.  If there is a
1755 * page cache page, the head page is returned with an increased refcount.
1756 *
1757 * If the slot holds a shadow entry of a previously evicted page, or a
1758 * swap entry from shmem/tmpfs, it is returned.
1759 *
1760 * Return: The head page or shadow entry, %NULL if nothing is found.
1761 */
1762static struct page *mapping_get_entry(struct address_space *mapping,
1763		pgoff_t index)
1764{
1765	XA_STATE(xas, &mapping->i_pages, index);
1766	struct page *page;
1767
1768	rcu_read_lock();
1769repeat:
1770	xas_reset(&xas);
1771	page = xas_load(&xas);
1772	if (xas_retry(&xas, page))
1773		goto repeat;
1774	/*
1775	 * A shadow entry of a recently evicted page, or a swap entry from
1776	 * shmem/tmpfs.  Return it without attempting to raise page count.
1777	 */
1778	if (!page || xa_is_value(page))
1779		goto out;
1780
1781	if (!page_cache_get_speculative(page))
1782		goto repeat;
1783
1784	/*
1785	 * Has the page moved or been split?
1786	 * This is part of the lockless pagecache protocol. See
1787	 * include/linux/pagemap.h for details.
1788	 */
1789	if (unlikely(page != xas_reload(&xas))) {
1790		put_page(page);
1791		goto repeat;
1792	}
1793out:
1794	rcu_read_unlock();
1795
1796	return page;
1797}
1798
1799/**
1800 * pagecache_get_page - Find and get a reference to a page.
1801 * @mapping: The address_space to search.
1802 * @index: The page index.
1803 * @fgp_flags: %FGP flags modify how the page is returned.
1804 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1805 *
1806 * Looks up the page cache entry at @mapping & @index.
1807 *
1808 * @fgp_flags can be zero or more of these flags:
1809 *
1810 * * %FGP_ACCESSED - The page will be marked accessed.
1811 * * %FGP_LOCK - The page is returned locked.
1812 * * %FGP_HEAD - If the page is present and a THP, return the head page
1813 *   rather than the exact page specified by the index.
1814 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1815 *   instead of allocating a new page to replace it.
1816 * * %FGP_CREAT - If no page is present then a new page is allocated using
1817 *   @gfp_mask and added to the page cache and the VM's LRU list.
1818 *   The page is returned locked and with an increased refcount.
1819 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1820 *   page is already in cache.  If the page was allocated, unlock it before
1821 *   returning so the caller can do the same dance.
1822 * * %FGP_WRITE - The page will be written
1823 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1824 * * %FGP_NOWAIT - Don't get blocked by page lock
 
1825 *
1826 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1827 * if the %GFP flags specified for %FGP_CREAT are atomic.
1828 *
1829 * If there is a page cache page, it is returned with an increased refcount.
1830 *
1831 * Return: The found page or %NULL otherwise.
1832 */
1833struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1834		int fgp_flags, gfp_t gfp_mask)
1835{
1836	struct page *page;
1837
1838repeat:
1839	page = mapping_get_entry(mapping, index);
1840	if (xa_is_value(page)) {
1841		if (fgp_flags & FGP_ENTRY)
1842			return page;
1843		page = NULL;
1844	}
1845	if (!page)
1846		goto no_page;
1847
1848	if (fgp_flags & FGP_LOCK) {
1849		if (fgp_flags & FGP_NOWAIT) {
1850			if (!trylock_page(page)) {
1851				put_page(page);
1852				return NULL;
1853			}
1854		} else {
1855			lock_page(page);
1856		}
1857
1858		/* Has the page been truncated? */
1859		if (unlikely(page->mapping != mapping)) {
1860			unlock_page(page);
1861			put_page(page);
1862			goto repeat;
1863		}
1864		VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1865	}
1866
1867	if (fgp_flags & FGP_ACCESSED)
1868		mark_page_accessed(page);
1869	else if (fgp_flags & FGP_WRITE) {
1870		/* Clear idle flag for buffer write */
1871		if (page_is_idle(page))
1872			clear_page_idle(page);
1873	}
1874	if (!(fgp_flags & FGP_HEAD))
1875		page = find_subpage(page, index);
1876
 
 
1877no_page:
1878	if (!page && (fgp_flags & FGP_CREAT)) {
1879		int err;
1880		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1881			gfp_mask |= __GFP_WRITE;
1882		if (fgp_flags & FGP_NOFS)
1883			gfp_mask &= ~__GFP_FS;
 
 
 
 
1884
1885		page = __page_cache_alloc(gfp_mask);
1886		if (!page)
1887			return NULL;
1888
1889		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1890			fgp_flags |= FGP_LOCK;
1891
1892		/* Init accessed so avoid atomic mark_page_accessed later */
1893		if (fgp_flags & FGP_ACCESSED)
1894			__SetPageReferenced(page);
1895
1896		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1897		if (unlikely(err)) {
1898			put_page(page);
1899			page = NULL;
1900			if (err == -EEXIST)
1901				goto repeat;
1902		}
1903
1904		/*
1905		 * add_to_page_cache_lru locks the page, and for mmap we expect
1906		 * an unlocked page.
1907		 */
1908		if (page && (fgp_flags & FGP_FOR_MMAP))
1909			unlock_page(page);
1910	}
1911
1912	return page;
1913}
1914EXPORT_SYMBOL(pagecache_get_page);
1915
1916static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
1917		xa_mark_t mark)
1918{
1919	struct page *page;
1920
1921retry:
1922	if (mark == XA_PRESENT)
1923		page = xas_find(xas, max);
1924	else
1925		page = xas_find_marked(xas, max, mark);
1926
1927	if (xas_retry(xas, page))
1928		goto retry;
1929	/*
1930	 * A shadow entry of a recently evicted page, a swap
1931	 * entry from shmem/tmpfs or a DAX entry.  Return it
1932	 * without attempting to raise page count.
1933	 */
1934	if (!page || xa_is_value(page))
1935		return page;
1936
1937	if (!page_cache_get_speculative(page))
1938		goto reset;
1939
1940	/* Has the page moved or been split? */
1941	if (unlikely(page != xas_reload(xas))) {
1942		put_page(page);
1943		goto reset;
1944	}
1945
1946	return page;
1947reset:
1948	xas_reset(xas);
1949	goto retry;
1950}
1951
1952/**
1953 * find_get_entries - gang pagecache lookup
1954 * @mapping:	The address_space to search
1955 * @start:	The starting page cache index
1956 * @end:	The final page index (inclusive).
1957 * @pvec:	Where the resulting entries are placed.
1958 * @indices:	The cache indices corresponding to the entries in @entries
1959 *
1960 * find_get_entries() will search for and return a batch of entries in
1961 * the mapping.  The entries are placed in @pvec.  find_get_entries()
1962 * takes a reference on any actual pages it returns.
1963 *
1964 * The search returns a group of mapping-contiguous page cache entries
1965 * with ascending indexes.  There may be holes in the indices due to
1966 * not-present pages.
1967 *
1968 * Any shadow entries of evicted pages, or swap entries from
1969 * shmem/tmpfs, are included in the returned array.
1970 *
1971 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1972 * stops at that page: the caller is likely to have a better way to handle
1973 * the compound page as a whole, and then skip its extent, than repeatedly
1974 * calling find_get_entries() to return all its tails.
1975 *
1976 * Return: the number of pages and shadow entries which were found.
1977 */
1978unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
1979		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
1980{
1981	XA_STATE(xas, &mapping->i_pages, start);
1982	struct page *page;
1983	unsigned int ret = 0;
1984	unsigned nr_entries = PAGEVEC_SIZE;
1985
1986	rcu_read_lock();
1987	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
1988		/*
1989		 * Terminate early on finding a THP, to allow the caller to
1990		 * handle it all at once; but continue if this is hugetlbfs.
1991		 */
1992		if (!xa_is_value(page) && PageTransHuge(page) &&
1993				!PageHuge(page)) {
1994			page = find_subpage(page, xas.xa_index);
1995			nr_entries = ret + 1;
1996		}
1997
1998		indices[ret] = xas.xa_index;
1999		pvec->pages[ret] = page;
2000		if (++ret == nr_entries)
2001			break;
2002	}
2003	rcu_read_unlock();
2004
2005	pvec->nr = ret;
2006	return ret;
 
 
 
 
 
 
 
 
2007}
2008
2009/**
2010 * find_lock_entries - Find a batch of pagecache entries.
2011 * @mapping:	The address_space to search.
2012 * @start:	The starting page cache index.
2013 * @end:	The final page index (inclusive).
2014 * @pvec:	Where the resulting entries are placed.
2015 * @indices:	The cache indices of the entries in @pvec.
2016 *
2017 * find_lock_entries() will return a batch of entries from @mapping.
2018 * Swap, shadow and DAX entries are included.  Pages are returned
2019 * locked and with an incremented refcount.  Pages which are locked by
2020 * somebody else or under writeback are skipped.  Only the head page of
2021 * a THP is returned.  Pages which are partially outside the range are
2022 * not returned.
2023 *
2024 * The entries have ascending indexes.  The indices may not be consecutive
2025 * due to not-present entries, THP pages, pages which could not be locked
2026 * or pages under writeback.
2027 *
2028 * Return: The number of entries which were found.
2029 */
2030unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2031		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2032{
2033	XA_STATE(xas, &mapping->i_pages, start);
2034	struct page *page;
2035
2036	rcu_read_lock();
2037	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2038		if (!xa_is_value(page)) {
2039			if (page->index < start)
2040				goto put;
2041			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2042			if (page->index + thp_nr_pages(page) - 1 > end)
2043				goto put;
2044			if (!trylock_page(page))
2045				goto put;
2046			if (page->mapping != mapping || PageWriteback(page))
 
2047				goto unlock;
2048			VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index),
2049					page);
2050		}
2051		indices[pvec->nr] = xas.xa_index;
2052		if (!pagevec_add(pvec, page))
2053			break;
2054		goto next;
2055unlock:
2056		unlock_page(page);
2057put:
2058		put_page(page);
2059next:
2060		if (!xa_is_value(page) && PageTransHuge(page)) {
2061			unsigned int nr_pages = thp_nr_pages(page);
2062
2063			/* Final THP may cross MAX_LFS_FILESIZE on 32-bit */
2064			xas_set(&xas, page->index + nr_pages);
2065			if (xas.xa_index < nr_pages)
2066				break;
2067		}
2068	}
2069	rcu_read_unlock();
2070
2071	return pagevec_count(pvec);
 
 
 
 
 
 
 
 
 
2072}
2073
2074/**
2075 * find_get_pages_range - gang pagecache lookup
2076 * @mapping:	The address_space to search
2077 * @start:	The starting page index
2078 * @end:	The final page index (inclusive)
2079 * @nr_pages:	The maximum number of pages
2080 * @pages:	Where the resulting pages are placed
2081 *
2082 * find_get_pages_range() will search for and return a group of up to @nr_pages
2083 * pages in the mapping starting at index @start and up to index @end
2084 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
2085 * a reference against the returned pages.
2086 *
2087 * The search returns a group of mapping-contiguous pages with ascending
2088 * indexes.  There may be holes in the indices due to not-present pages.
2089 * We also update @start to index the next page for the traversal.
2090 *
2091 * Return: the number of pages which were found. If this number is
2092 * smaller than @nr_pages, the end of specified range has been
2093 * reached.
2094 */
2095unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2096			      pgoff_t end, unsigned int nr_pages,
2097			      struct page **pages)
2098{
2099	XA_STATE(xas, &mapping->i_pages, *start);
2100	struct page *page;
2101	unsigned ret = 0;
2102
2103	if (unlikely(!nr_pages))
2104		return 0;
2105
2106	rcu_read_lock();
2107	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2108		/* Skip over shadow, swap and DAX entries */
2109		if (xa_is_value(page))
2110			continue;
 
 
2111
2112		pages[ret] = find_subpage(page, xas.xa_index);
2113		if (++ret == nr_pages) {
2114			*start = xas.xa_index + 1;
2115			goto out;
2116		}
2117	}
2118
2119	/*
2120	 * We come here when there is no page beyond @end. We take care to not
2121	 * overflow the index @start as it confuses some of the callers. This
2122	 * breaks the iteration when there is a page at index -1 but that is
2123	 * already broken anyway.
2124	 */
2125	if (end == (pgoff_t)-1)
2126		*start = (pgoff_t)-1;
2127	else
2128		*start = end + 1;
2129out:
2130	rcu_read_unlock();
2131
2132	return ret;
 
 
 
 
 
 
 
 
 
 
 
2133}
2134
2135/**
2136 * find_get_pages_contig - gang contiguous pagecache lookup
2137 * @mapping:	The address_space to search
2138 * @index:	The starting page index
2139 * @nr_pages:	The maximum number of pages
2140 * @pages:	Where the resulting pages are placed
2141 *
2142 * find_get_pages_contig() works exactly like find_get_pages(), except
2143 * that the returned number of pages are guaranteed to be contiguous.
 
2144 *
2145 * Return: the number of pages which were found.
 
2146 */
2147unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2148			       unsigned int nr_pages, struct page **pages)
 
2149{
2150	XA_STATE(xas, &mapping->i_pages, index);
2151	struct page *page;
2152	unsigned int ret = 0;
2153
2154	if (unlikely(!nr_pages))
2155		return 0;
2156
2157	rcu_read_lock();
2158	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2159		if (xas_retry(&xas, page))
2160			continue;
2161		/*
2162		 * If the entry has been swapped out, we can stop looking.
2163		 * No current caller is looking for DAX entries.
2164		 */
2165		if (xa_is_value(page))
2166			break;
2167
2168		if (!page_cache_get_speculative(page))
2169			goto retry;
2170
2171		/* Has the page moved or been split? */
2172		if (unlikely(page != xas_reload(&xas)))
2173			goto put_page;
 
 
2174
2175		pages[ret] = find_subpage(page, xas.xa_index);
2176		if (++ret == nr_pages)
2177			break;
 
 
2178		continue;
2179put_page:
2180		put_page(page);
 
2181retry:
2182		xas_reset(&xas);
2183	}
 
 
 
 
 
 
 
 
 
 
 
 
2184	rcu_read_unlock();
2185	return ret;
2186}
2187EXPORT_SYMBOL(find_get_pages_contig);
2188
2189/**
2190 * find_get_pages_range_tag - Find and return head pages matching @tag.
2191 * @mapping:	the address_space to search
2192 * @index:	the starting page index
2193 * @end:	The final page index (inclusive)
2194 * @tag:	the tag index
2195 * @nr_pages:	the maximum number of pages
2196 * @pages:	where the resulting pages are placed
2197 *
2198 * Like find_get_pages(), except we only return head pages which are tagged
2199 * with @tag.  @index is updated to the index immediately after the last
2200 * page we return, ready for the next iteration.
2201 *
2202 * Return: the number of pages which were found.
2203 */
2204unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2205			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2206			struct page **pages)
2207{
2208	XA_STATE(xas, &mapping->i_pages, *index);
2209	struct page *page;
2210	unsigned ret = 0;
2211
2212	if (unlikely(!nr_pages))
2213		return 0;
2214
2215	rcu_read_lock();
2216	while ((page = find_get_entry(&xas, end, tag))) {
2217		/*
2218		 * Shadow entries should never be tagged, but this iteration
2219		 * is lockless so there is a window for page reclaim to evict
2220		 * a page we saw tagged.  Skip over it.
2221		 */
2222		if (xa_is_value(page))
2223			continue;
2224
2225		pages[ret] = page;
2226		if (++ret == nr_pages) {
2227			*index = page->index + thp_nr_pages(page);
2228			goto out;
2229		}
2230	}
2231
2232	/*
2233	 * We come here when we got to @end. We take care to not overflow the
2234	 * index @index as it confuses some of the callers. This breaks the
2235	 * iteration when there is a page at index -1 but that is already
2236	 * broken anyway.
2237	 */
2238	if (end == (pgoff_t)-1)
2239		*index = (pgoff_t)-1;
2240	else
2241		*index = end + 1;
2242out:
2243	rcu_read_unlock();
2244
2245	return ret;
2246}
2247EXPORT_SYMBOL(find_get_pages_range_tag);
2248
2249/*
2250 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2251 * a _large_ part of the i/o request. Imagine the worst scenario:
2252 *
2253 *      ---R__________________________________________B__________
2254 *         ^ reading here                             ^ bad block(assume 4k)
2255 *
2256 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2257 * => failing the whole request => read(R) => read(R+1) =>
2258 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2259 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2260 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2261 *
2262 * It is going insane. Fix it by quickly scaling down the readahead size.
2263 */
2264static void shrink_readahead_size_eio(struct file_ra_state *ra)
2265{
2266	ra->ra_pages /= 4;
2267}
2268
2269/*
2270 * filemap_get_read_batch - Get a batch of pages for read
2271 *
2272 * Get a batch of pages which represent a contiguous range of bytes
2273 * in the file.  No tail pages will be returned.  If @index is in the
2274 * middle of a THP, the entire THP will be returned.  The last page in
2275 * the batch may have Readahead set or be not Uptodate so that the
2276 * caller can take the appropriate action.
2277 */
2278static void filemap_get_read_batch(struct address_space *mapping,
2279		pgoff_t index, pgoff_t max, struct pagevec *pvec)
2280{
2281	XA_STATE(xas, &mapping->i_pages, index);
2282	struct page *head;
2283
2284	rcu_read_lock();
2285	for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2286		if (xas_retry(&xas, head))
2287			continue;
2288		if (xas.xa_index > max || xa_is_value(head))
 
 
2289			break;
2290		if (!page_cache_get_speculative(head))
2291			goto retry;
2292
2293		/* Has the page moved or been split? */
2294		if (unlikely(head != xas_reload(&xas)))
2295			goto put_page;
2296
2297		if (!pagevec_add(pvec, head))
2298			break;
2299		if (!PageUptodate(head))
2300			break;
2301		if (PageReadahead(head))
2302			break;
2303		xas.xa_index = head->index + thp_nr_pages(head) - 1;
2304		xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
2305		continue;
2306put_page:
2307		put_page(head);
2308retry:
2309		xas_reset(&xas);
2310	}
2311	rcu_read_unlock();
2312}
2313
2314static int filemap_read_page(struct file *file, struct address_space *mapping,
2315		struct page *page)
2316{
 
 
2317	int error;
2318
2319	/*
2320	 * A previous I/O error may have been due to temporary failures,
2321	 * eg. multipath errors.  PG_error will be set again if readpage
2322	 * fails.
2323	 */
2324	ClearPageError(page);
 
2325	/* Start the actual read. The read will unlock the page. */
2326	error = mapping->a_ops->readpage(file, page);
 
 
 
 
2327	if (error)
2328		return error;
2329
2330	error = wait_on_page_locked_killable(page);
2331	if (error)
2332		return error;
2333	if (PageUptodate(page))
2334		return 0;
2335	shrink_readahead_size_eio(&file->f_ra);
 
2336	return -EIO;
2337}
2338
2339static bool filemap_range_uptodate(struct address_space *mapping,
2340		loff_t pos, struct iov_iter *iter, struct page *page)
2341{
2342	int count;
2343
2344	if (PageUptodate(page))
2345		return true;
2346	/* pipes can't handle partially uptodate pages */
2347	if (iov_iter_is_pipe(iter))
2348		return false;
2349	if (!mapping->a_ops->is_partially_uptodate)
2350		return false;
2351	if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2352		return false;
2353
2354	count = iter->count;
2355	if (page_offset(page) > pos) {
2356		count -= page_offset(page) - pos;
2357		pos = 0;
2358	} else {
2359		pos -= page_offset(page);
2360	}
2361
2362	return mapping->a_ops->is_partially_uptodate(page, pos, count);
2363}
2364
2365static int filemap_update_page(struct kiocb *iocb,
2366		struct address_space *mapping, struct iov_iter *iter,
2367		struct page *page)
2368{
2369	int error;
2370
2371	if (!trylock_page(page)) {
 
 
 
 
 
 
 
 
2372		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2373			return -EAGAIN;
2374		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2375			put_and_wait_on_page_locked(page, TASK_KILLABLE);
 
 
 
 
 
2376			return AOP_TRUNCATED_PAGE;
2377		}
2378		error = __lock_page_async(page, iocb->ki_waitq);
2379		if (error)
2380			return error;
2381	}
2382
2383	if (!page->mapping)
2384		goto truncated;
 
2385
2386	error = 0;
2387	if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page))
2388		goto unlock;
2389
2390	error = -EAGAIN;
2391	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2392		goto unlock;
2393
2394	error = filemap_read_page(iocb->ki_filp, mapping, page);
 
 
 
 
 
 
2395	if (error == AOP_TRUNCATED_PAGE)
2396		put_page(page);
2397	return error;
2398truncated:
2399	unlock_page(page);
2400	put_page(page);
2401	return AOP_TRUNCATED_PAGE;
2402unlock:
2403	unlock_page(page);
2404	return error;
2405}
2406
2407static int filemap_create_page(struct file *file,
2408		struct address_space *mapping, pgoff_t index,
2409		struct pagevec *pvec)
2410{
2411	struct page *page;
2412	int error;
2413
2414	page = page_cache_alloc(mapping);
2415	if (!page)
2416		return -ENOMEM;
2417
2418	error = add_to_page_cache_lru(page, mapping, index,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2419			mapping_gfp_constraint(mapping, GFP_KERNEL));
2420	if (error == -EEXIST)
2421		error = AOP_TRUNCATED_PAGE;
2422	if (error)
2423		goto error;
2424
2425	error = filemap_read_page(file, mapping, page);
2426	if (error)
2427		goto error;
2428
2429	pagevec_add(pvec, page);
 
2430	return 0;
2431error:
2432	put_page(page);
 
2433	return error;
2434}
2435
2436static int filemap_readahead(struct kiocb *iocb, struct file *file,
2437		struct address_space *mapping, struct page *page,
2438		pgoff_t last_index)
2439{
 
 
2440	if (iocb->ki_flags & IOCB_NOIO)
2441		return -EAGAIN;
2442	page_cache_async_readahead(mapping, &file->f_ra, file, page,
2443			page->index, last_index - page->index);
2444	return 0;
2445}
2446
2447static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2448		struct pagevec *pvec)
2449{
2450	struct file *filp = iocb->ki_filp;
2451	struct address_space *mapping = filp->f_mapping;
2452	struct file_ra_state *ra = &filp->f_ra;
2453	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2454	pgoff_t last_index;
2455	struct page *page;
2456	int err = 0;
2457
 
2458	last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2459retry:
2460	if (fatal_signal_pending(current))
2461		return -EINTR;
2462
2463	filemap_get_read_batch(mapping, index, last_index, pvec);
2464	if (!pagevec_count(pvec)) {
2465		if (iocb->ki_flags & IOCB_NOIO)
2466			return -EAGAIN;
2467		page_cache_sync_readahead(mapping, ra, filp, index,
2468				last_index - index);
2469		filemap_get_read_batch(mapping, index, last_index, pvec);
2470	}
2471	if (!pagevec_count(pvec)) {
2472		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2473			return -EAGAIN;
2474		err = filemap_create_page(filp, mapping,
2475				iocb->ki_pos >> PAGE_SHIFT, pvec);
2476		if (err == AOP_TRUNCATED_PAGE)
2477			goto retry;
2478		return err;
2479	}
2480
2481	page = pvec->pages[pagevec_count(pvec) - 1];
2482	if (PageReadahead(page)) {
2483		err = filemap_readahead(iocb, filp, mapping, page, last_index);
2484		if (err)
2485			goto err;
2486	}
2487	if (!PageUptodate(page)) {
2488		if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
 
2489			iocb->ki_flags |= IOCB_NOWAIT;
2490		err = filemap_update_page(iocb, mapping, iter, page);
2491		if (err)
2492			goto err;
2493	}
2494
2495	return 0;
2496err:
2497	if (err < 0)
2498		put_page(page);
2499	if (likely(--pvec->nr))
2500		return 0;
2501	if (err == AOP_TRUNCATED_PAGE)
2502		goto retry;
2503	return err;
2504}
2505
 
 
 
 
 
 
 
2506/**
2507 * filemap_read - Read data from the page cache.
2508 * @iocb: The iocb to read.
2509 * @iter: Destination for the data.
2510 * @already_read: Number of bytes already read by the caller.
2511 *
2512 * Copies data from the page cache.  If the data is not currently present,
2513 * uses the readahead and readpage address_space operations to fetch it.
2514 *
2515 * Return: Total number of bytes copied, including those already read by
2516 * the caller.  If an error happens before any bytes are copied, returns
2517 * a negative error number.
2518 */
2519ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2520		ssize_t already_read)
2521{
2522	struct file *filp = iocb->ki_filp;
2523	struct file_ra_state *ra = &filp->f_ra;
2524	struct address_space *mapping = filp->f_mapping;
2525	struct inode *inode = mapping->host;
2526	struct pagevec pvec;
2527	int i, error = 0;
2528	bool writably_mapped;
2529	loff_t isize, end_offset;
2530
2531	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2532		return 0;
2533	if (unlikely(!iov_iter_count(iter)))
2534		return 0;
2535
2536	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2537	pagevec_init(&pvec);
2538
2539	do {
2540		cond_resched();
2541
2542		/*
2543		 * If we've already successfully copied some data, then we
2544		 * can no longer safely return -EIOCBQUEUED. Hence mark
2545		 * an async read NOWAIT at that point.
2546		 */
2547		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2548			iocb->ki_flags |= IOCB_NOWAIT;
2549
2550		error = filemap_get_pages(iocb, iter, &pvec);
 
 
 
2551		if (error < 0)
2552			break;
2553
2554		/*
2555		 * i_size must be checked after we know the pages are Uptodate.
2556		 *
2557		 * Checking i_size after the check allows us to calculate
2558		 * the correct value for "nr", which means the zero-filled
2559		 * part of the page is not copied back to userspace (unless
2560		 * another truncate extends the file - this is desired though).
2561		 */
2562		isize = i_size_read(inode);
2563		if (unlikely(iocb->ki_pos >= isize))
2564			goto put_pages;
2565		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2566
2567		/*
2568		 * Once we start copying data, we don't want to be touching any
2569		 * cachelines that might be contended:
2570		 */
2571		writably_mapped = mapping_writably_mapped(mapping);
2572
2573		/*
2574		 * When a sequential read accesses a page several times, only
2575		 * mark it as accessed the first time.
2576		 */
2577		if (iocb->ki_pos >> PAGE_SHIFT !=
2578		    ra->prev_pos >> PAGE_SHIFT)
2579			mark_page_accessed(pvec.pages[0]);
2580
2581		for (i = 0; i < pagevec_count(&pvec); i++) {
2582			struct page *page = pvec.pages[i];
2583			size_t page_size = thp_size(page);
2584			size_t offset = iocb->ki_pos & (page_size - 1);
2585			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2586					     page_size - offset);
2587			size_t copied;
2588
2589			if (end_offset < page_offset(page))
2590				break;
2591			if (i > 0)
2592				mark_page_accessed(page);
2593			/*
2594			 * If users can be writing to this page using arbitrary
2595			 * virtual addresses, take care about potential aliasing
2596			 * before reading the page on the kernel side.
2597			 */
2598			if (writably_mapped) {
2599				int j;
2600
2601				for (j = 0; j < thp_nr_pages(page); j++)
2602					flush_dcache_page(page + j);
2603			}
2604
2605			copied = copy_page_to_iter(page, offset, bytes, iter);
2606
2607			already_read += copied;
2608			iocb->ki_pos += copied;
2609			ra->prev_pos = iocb->ki_pos;
2610
2611			if (copied < bytes) {
2612				error = -EFAULT;
2613				break;
2614			}
2615		}
2616put_pages:
2617		for (i = 0; i < pagevec_count(&pvec); i++)
2618			put_page(pvec.pages[i]);
2619		pagevec_reinit(&pvec);
2620	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2621
2622	file_accessed(filp);
2623
2624	return already_read ? already_read : error;
2625}
2626EXPORT_SYMBOL_GPL(filemap_read);
2627
2628/**
2629 * generic_file_read_iter - generic filesystem read routine
2630 * @iocb:	kernel I/O control block
2631 * @iter:	destination for the data read
2632 *
2633 * This is the "read_iter()" routine for all filesystems
2634 * that can use the page cache directly.
2635 *
2636 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2637 * be returned when no data can be read without waiting for I/O requests
2638 * to complete; it doesn't prevent readahead.
2639 *
2640 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2641 * requests shall be made for the read or for readahead.  When no data
2642 * can be read, -EAGAIN shall be returned.  When readahead would be
2643 * triggered, a partial, possibly empty read shall be returned.
2644 *
2645 * Return:
2646 * * number of bytes copied, even for partial reads
2647 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2648 */
2649ssize_t
2650generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2651{
2652	size_t count = iov_iter_count(iter);
2653	ssize_t retval = 0;
2654
2655	if (!count)
2656		return 0; /* skip atime */
2657
2658	if (iocb->ki_flags & IOCB_DIRECT) {
2659		struct file *file = iocb->ki_filp;
2660		struct address_space *mapping = file->f_mapping;
2661		struct inode *inode = mapping->host;
2662		loff_t size;
2663
2664		size = i_size_read(inode);
2665		if (iocb->ki_flags & IOCB_NOWAIT) {
2666			if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2667						iocb->ki_pos + count - 1))
2668				return -EAGAIN;
2669		} else {
2670			retval = filemap_write_and_wait_range(mapping,
2671						iocb->ki_pos,
2672					        iocb->ki_pos + count - 1);
2673			if (retval < 0)
2674				return retval;
2675		}
2676
2677		file_accessed(file);
2678
2679		retval = mapping->a_ops->direct_IO(iocb, iter);
2680		if (retval >= 0) {
2681			iocb->ki_pos += retval;
2682			count -= retval;
2683		}
2684		if (retval != -EIOCBQUEUED)
2685			iov_iter_revert(iter, count - iov_iter_count(iter));
2686
2687		/*
2688		 * Btrfs can have a short DIO read if we encounter
2689		 * compressed extents, so if there was an error, or if
2690		 * we've already read everything we wanted to, or if
2691		 * there was a short read because we hit EOF, go ahead
2692		 * and return.  Otherwise fallthrough to buffered io for
2693		 * the rest of the read.  Buffered reads will not work for
2694		 * DAX files, so don't bother trying.
2695		 */
2696		if (retval < 0 || !count || iocb->ki_pos >= size ||
2697		    IS_DAX(inode))
 
2698			return retval;
2699	}
2700
2701	return filemap_read(iocb, iter, retval);
2702}
2703EXPORT_SYMBOL(generic_file_read_iter);
2704
2705static inline loff_t page_seek_hole_data(struct xa_state *xas,
2706		struct address_space *mapping, struct page *page,
2707		loff_t start, loff_t end, bool seek_data)
2708{
2709	const struct address_space_operations *ops = mapping->a_ops;
2710	size_t offset, bsz = i_blocksize(mapping->host);
2711
2712	if (xa_is_value(page) || PageUptodate(page))
2713		return seek_data ? start : end;
2714	if (!ops->is_partially_uptodate)
2715		return seek_data ? end : start;
2716
2717	xas_pause(xas);
2718	rcu_read_unlock();
2719	lock_page(page);
2720	if (unlikely(page->mapping != mapping))
2721		goto unlock;
2722
2723	offset = offset_in_thp(page, start) & ~(bsz - 1);
2724
2725	do {
2726		if (ops->is_partially_uptodate(page, offset, bsz) == seek_data)
 
2727			break;
2728		start = (start + bsz) & ~(bsz - 1);
2729		offset += bsz;
2730	} while (offset < thp_size(page));
2731unlock:
2732	unlock_page(page);
2733	rcu_read_lock();
2734	return start;
2735}
2736
2737static inline
2738unsigned int seek_page_size(struct xa_state *xas, struct page *page)
2739{
2740	if (xa_is_value(page))
2741		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2742	return thp_size(page);
2743}
2744
2745/**
2746 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2747 * @mapping: Address space to search.
2748 * @start: First byte to consider.
2749 * @end: Limit of search (exclusive).
2750 * @whence: Either SEEK_HOLE or SEEK_DATA.
2751 *
2752 * If the page cache knows which blocks contain holes and which blocks
2753 * contain data, your filesystem can use this function to implement
2754 * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2755 * entirely memory-based such as tmpfs, and filesystems which support
2756 * unwritten extents.
2757 *
2758 * Return: The requested offset on success, or -ENXIO if @whence specifies
2759 * SEEK_DATA and there is no data after @start.  There is an implicit hole
2760 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2761 * and @end contain data.
2762 */
2763loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2764		loff_t end, int whence)
2765{
2766	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2767	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2768	bool seek_data = (whence == SEEK_DATA);
2769	struct page *page;
2770
2771	if (end <= start)
2772		return -ENXIO;
2773
2774	rcu_read_lock();
2775	while ((page = find_get_entry(&xas, max, XA_PRESENT))) {
2776		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2777		unsigned int seek_size;
2778
2779		if (start < pos) {
2780			if (!seek_data)
2781				goto unlock;
2782			start = pos;
2783		}
2784
2785		seek_size = seek_page_size(&xas, page);
2786		pos = round_up(pos + 1, seek_size);
2787		start = page_seek_hole_data(&xas, mapping, page, start, pos,
2788				seek_data);
2789		if (start < pos)
2790			goto unlock;
2791		if (start >= end)
2792			break;
2793		if (seek_size > PAGE_SIZE)
2794			xas_set(&xas, pos >> PAGE_SHIFT);
2795		if (!xa_is_value(page))
2796			put_page(page);
2797	}
2798	if (seek_data)
2799		start = -ENXIO;
2800unlock:
2801	rcu_read_unlock();
2802	if (page && !xa_is_value(page))
2803		put_page(page);
2804	if (start > end)
2805		return end;
2806	return start;
2807}
2808
2809#ifdef CONFIG_MMU
2810#define MMAP_LOTSAMISS  (100)
2811/*
2812 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2813 * @vmf - the vm_fault for this fault.
2814 * @page - the page to lock.
2815 * @fpin - the pointer to the file we may pin (or is already pinned).
2816 *
2817 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2818 * It differs in that it actually returns the page locked if it returns 1 and 0
2819 * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2820 * will point to the pinned file and needs to be fput()'ed at a later point.
 
2821 */
2822static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2823				     struct file **fpin)
2824{
2825	if (trylock_page(page))
2826		return 1;
2827
2828	/*
2829	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2830	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2831	 * is supposed to work. We have way too many special cases..
2832	 */
2833	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2834		return 0;
2835
2836	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2837	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2838		if (__lock_page_killable(page)) {
2839			/*
2840			 * We didn't have the right flags to drop the mmap_lock,
2841			 * but all fault_handlers only check for fatal signals
2842			 * if we return VM_FAULT_RETRY, so we need to drop the
2843			 * mmap_lock here and return 0 if we don't have a fpin.
2844			 */
2845			if (*fpin == NULL)
2846				mmap_read_unlock(vmf->vma->vm_mm);
2847			return 0;
2848		}
2849	} else
2850		__lock_page(page);
 
2851	return 1;
2852}
2853
2854
2855/*
2856 * Synchronous readahead happens when we don't even find a page in the page
2857 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2858 * to drop the mmap sem we return the file that was pinned in order for us to do
2859 * that.  If we didn't pin a file then we return NULL.  The file that is
2860 * returned needs to be fput()'ed when we're done with it.
2861 */
2862static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2863{
2864	struct file *file = vmf->vma->vm_file;
2865	struct file_ra_state *ra = &file->f_ra;
2866	struct address_space *mapping = file->f_mapping;
2867	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2868	struct file *fpin = NULL;
 
2869	unsigned int mmap_miss;
2870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2871	/* If we don't want any read-ahead, don't bother */
2872	if (vmf->vma->vm_flags & VM_RAND_READ)
2873		return fpin;
2874	if (!ra->ra_pages)
2875		return fpin;
2876
2877	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2878		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2879		page_cache_sync_ra(&ractl, ra->ra_pages);
2880		return fpin;
2881	}
2882
2883	/* Avoid banging the cache line if not needed */
2884	mmap_miss = READ_ONCE(ra->mmap_miss);
2885	if (mmap_miss < MMAP_LOTSAMISS * 10)
2886		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2887
2888	/*
2889	 * Do we miss much more than hit in this file? If so,
2890	 * stop bothering with read-ahead. It will only hurt.
2891	 */
2892	if (mmap_miss > MMAP_LOTSAMISS)
2893		return fpin;
2894
2895	/*
2896	 * mmap read-around
2897	 */
2898	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2899	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2900	ra->size = ra->ra_pages;
2901	ra->async_size = ra->ra_pages / 4;
2902	ractl._index = ra->start;
2903	do_page_cache_ra(&ractl, ra->size, ra->async_size);
2904	return fpin;
2905}
2906
2907/*
2908 * Asynchronous readahead happens when we find the page and PG_readahead,
2909 * so we want to possibly extend the readahead further.  We return the file that
2910 * was pinned if we have to drop the mmap_lock in order to do IO.
2911 */
2912static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2913					    struct page *page)
2914{
2915	struct file *file = vmf->vma->vm_file;
2916	struct file_ra_state *ra = &file->f_ra;
2917	struct address_space *mapping = file->f_mapping;
2918	struct file *fpin = NULL;
2919	unsigned int mmap_miss;
2920	pgoff_t offset = vmf->pgoff;
2921
2922	/* If we don't want any read-ahead, don't bother */
2923	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2924		return fpin;
 
2925	mmap_miss = READ_ONCE(ra->mmap_miss);
2926	if (mmap_miss)
2927		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2928	if (PageReadahead(page)) {
 
2929		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2930		page_cache_async_readahead(mapping, ra, file,
2931					   page, offset, ra->ra_pages);
2932	}
2933	return fpin;
2934}
2935
2936/**
2937 * filemap_fault - read in file data for page fault handling
2938 * @vmf:	struct vm_fault containing details of the fault
2939 *
2940 * filemap_fault() is invoked via the vma operations vector for a
2941 * mapped memory region to read in file data during a page fault.
2942 *
2943 * The goto's are kind of ugly, but this streamlines the normal case of having
2944 * it in the page cache, and handles the special cases reasonably without
2945 * having a lot of duplicated code.
2946 *
2947 * vma->vm_mm->mmap_lock must be held on entry.
2948 *
2949 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2950 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2951 *
2952 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2953 * has not been released.
2954 *
2955 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2956 *
2957 * Return: bitwise-OR of %VM_FAULT_ codes.
2958 */
2959vm_fault_t filemap_fault(struct vm_fault *vmf)
2960{
2961	int error;
2962	struct file *file = vmf->vma->vm_file;
2963	struct file *fpin = NULL;
2964	struct address_space *mapping = file->f_mapping;
2965	struct inode *inode = mapping->host;
2966	pgoff_t offset = vmf->pgoff;
2967	pgoff_t max_off;
2968	struct page *page;
2969	vm_fault_t ret = 0;
 
2970
2971	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2972	if (unlikely(offset >= max_off))
2973		return VM_FAULT_SIGBUS;
2974
2975	/*
2976	 * Do we have something in the page cache already?
2977	 */
2978	page = find_get_page(mapping, offset);
2979	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2980		/*
2981		 * We found the page, so try async readahead before
2982		 * waiting for the lock.
2983		 */
2984		fpin = do_async_mmap_readahead(vmf, page);
2985	} else if (!page) {
 
 
 
 
 
2986		/* No page in the page cache at all */
2987		count_vm_event(PGMAJFAULT);
2988		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2989		ret = VM_FAULT_MAJOR;
2990		fpin = do_sync_mmap_readahead(vmf);
2991retry_find:
2992		page = pagecache_get_page(mapping, offset,
 
 
 
 
 
 
 
 
2993					  FGP_CREAT|FGP_FOR_MMAP,
2994					  vmf->gfp_mask);
2995		if (!page) {
2996			if (fpin)
2997				goto out_retry;
 
2998			return VM_FAULT_OOM;
2999		}
3000	}
3001
3002	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
3003		goto out_retry;
3004
3005	/* Did it get truncated? */
3006	if (unlikely(compound_head(page)->mapping != mapping)) {
3007		unlock_page(page);
3008		put_page(page);
3009		goto retry_find;
3010	}
3011	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
3012
3013	/*
3014	 * We have a locked page in the page cache, now we need to check
3015	 * that it's up-to-date. If not, it is going to be due to an error.
3016	 */
3017	if (unlikely(!PageUptodate(page)))
 
 
 
 
 
 
 
 
 
 
 
3018		goto page_not_uptodate;
 
3019
3020	/*
3021	 * We've made it this far and we had to drop our mmap_lock, now is the
3022	 * time to return to the upper layer and have it re-find the vma and
3023	 * redo the fault.
3024	 */
3025	if (fpin) {
3026		unlock_page(page);
3027		goto out_retry;
3028	}
 
 
3029
3030	/*
3031	 * Found the page and have a reference on it.
3032	 * We must recheck i_size under page lock.
3033	 */
3034	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3035	if (unlikely(offset >= max_off)) {
3036		unlock_page(page);
3037		put_page(page);
3038		return VM_FAULT_SIGBUS;
3039	}
3040
3041	vmf->page = page;
3042	return ret | VM_FAULT_LOCKED;
3043
3044page_not_uptodate:
3045	/*
3046	 * Umm, take care of errors if the page isn't up-to-date.
3047	 * Try to re-read it _once_. We do this synchronously,
3048	 * because there really aren't any performance issues here
3049	 * and we need to check for errors.
3050	 */
3051	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3052	error = filemap_read_page(file, mapping, page);
3053	if (fpin)
3054		goto out_retry;
3055	put_page(page);
3056
3057	if (!error || error == AOP_TRUNCATED_PAGE)
3058		goto retry_find;
 
3059
3060	return VM_FAULT_SIGBUS;
3061
3062out_retry:
3063	/*
3064	 * We dropped the mmap_lock, we need to return to the fault handler to
3065	 * re-find the vma and come back and find our hopefully still populated
3066	 * page.
3067	 */
3068	if (page)
3069		put_page(page);
 
 
3070	if (fpin)
3071		fput(fpin);
3072	return ret | VM_FAULT_RETRY;
3073}
3074EXPORT_SYMBOL(filemap_fault);
3075
3076static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3077{
3078	struct mm_struct *mm = vmf->vma->vm_mm;
3079
3080	/* Huge page is mapped? No need to proceed. */
3081	if (pmd_trans_huge(*vmf->pmd)) {
3082		unlock_page(page);
3083		put_page(page);
3084		return true;
3085	}
3086
3087	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3088	    vm_fault_t ret = do_set_pmd(vmf, page);
3089	    if (!ret) {
3090		    /* The page is mapped successfully, reference consumed. */
3091		    unlock_page(page);
3092		    return true;
3093	    }
3094	}
3095
3096	if (pmd_none(*vmf->pmd)) {
3097		vmf->ptl = pmd_lock(mm, vmf->pmd);
3098		if (likely(pmd_none(*vmf->pmd))) {
3099			mm_inc_nr_ptes(mm);
3100			pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
3101			vmf->prealloc_pte = NULL;
3102		}
3103		spin_unlock(vmf->ptl);
3104	}
3105
 
 
 
3106	/* See comment in handle_pte_fault() */
3107	if (pmd_devmap_trans_unstable(vmf->pmd)) {
3108		unlock_page(page);
3109		put_page(page);
3110		return true;
3111	}
3112
3113	return false;
3114}
3115
3116static struct page *next_uptodate_page(struct page *page,
3117				       struct address_space *mapping,
3118				       struct xa_state *xas, pgoff_t end_pgoff)
3119{
3120	unsigned long max_idx;
3121
3122	do {
3123		if (!page)
3124			return NULL;
3125		if (xas_retry(xas, page))
3126			continue;
3127		if (xa_is_value(page))
3128			continue;
3129		if (PageLocked(page))
3130			continue;
3131		if (!page_cache_get_speculative(page))
3132			continue;
3133		/* Has the page moved or been split? */
3134		if (unlikely(page != xas_reload(xas)))
3135			goto skip;
3136		if (!PageUptodate(page) || PageReadahead(page))
3137			goto skip;
3138		if (PageHWPoison(page))
3139			goto skip;
3140		if (!trylock_page(page))
3141			goto skip;
3142		if (page->mapping != mapping)
3143			goto unlock;
3144		if (!PageUptodate(page))
3145			goto unlock;
3146		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3147		if (xas->xa_index >= max_idx)
3148			goto unlock;
3149		return page;
3150unlock:
3151		unlock_page(page);
3152skip:
3153		put_page(page);
3154	} while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
3155
3156	return NULL;
3157}
3158
3159static inline struct page *first_map_page(struct address_space *mapping,
3160					  struct xa_state *xas,
3161					  pgoff_t end_pgoff)
3162{
3163	return next_uptodate_page(xas_find(xas, end_pgoff),
3164				  mapping, xas, end_pgoff);
3165}
3166
3167static inline struct page *next_map_page(struct address_space *mapping,
3168					 struct xa_state *xas,
3169					 pgoff_t end_pgoff)
3170{
3171	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3172				  mapping, xas, end_pgoff);
3173}
3174
3175vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3176			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3177{
3178	struct vm_area_struct *vma = vmf->vma;
3179	struct file *file = vma->vm_file;
3180	struct address_space *mapping = file->f_mapping;
3181	pgoff_t last_pgoff = start_pgoff;
3182	unsigned long addr;
3183	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3184	struct page *head, *page;
 
3185	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3186	vm_fault_t ret = 0;
3187
3188	rcu_read_lock();
3189	head = first_map_page(mapping, &xas, end_pgoff);
3190	if (!head)
3191		goto out;
3192
3193	if (filemap_map_pmd(vmf, head)) {
3194		ret = VM_FAULT_NOPAGE;
3195		goto out;
3196	}
3197
3198	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3199	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3200	do {
3201		page = find_subpage(head, xas.xa_index);
 
3202		if (PageHWPoison(page))
3203			goto unlock;
3204
3205		if (mmap_miss > 0)
3206			mmap_miss--;
3207
3208		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3209		vmf->pte += xas.xa_index - last_pgoff;
3210		last_pgoff = xas.xa_index;
3211
 
 
 
 
 
3212		if (!pte_none(*vmf->pte))
3213			goto unlock;
3214
3215		/* We're about to handle the fault */
3216		if (vmf->address == addr)
3217			ret = VM_FAULT_NOPAGE;
3218
3219		do_set_pte(vmf, page, addr);
3220		/* no need to invalidate: a not-present page won't be cached */
3221		update_mmu_cache(vma, addr, vmf->pte);
3222		unlock_page(head);
 
 
 
 
 
3223		continue;
3224unlock:
3225		unlock_page(head);
3226		put_page(head);
3227	} while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
 
 
 
 
3228	pte_unmap_unlock(vmf->pte, vmf->ptl);
3229out:
3230	rcu_read_unlock();
3231	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3232	return ret;
3233}
3234EXPORT_SYMBOL(filemap_map_pages);
3235
3236vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3237{
3238	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3239	struct page *page = vmf->page;
3240	vm_fault_t ret = VM_FAULT_LOCKED;
3241
3242	sb_start_pagefault(mapping->host->i_sb);
3243	file_update_time(vmf->vma->vm_file);
3244	lock_page(page);
3245	if (page->mapping != mapping) {
3246		unlock_page(page);
3247		ret = VM_FAULT_NOPAGE;
3248		goto out;
3249	}
3250	/*
3251	 * We mark the page dirty already here so that when freeze is in
3252	 * progress, we are guaranteed that writeback during freezing will
3253	 * see the dirty page and writeprotect it again.
3254	 */
3255	set_page_dirty(page);
3256	wait_for_stable_page(page);
3257out:
3258	sb_end_pagefault(mapping->host->i_sb);
3259	return ret;
3260}
3261
3262const struct vm_operations_struct generic_file_vm_ops = {
3263	.fault		= filemap_fault,
3264	.map_pages	= filemap_map_pages,
3265	.page_mkwrite	= filemap_page_mkwrite,
3266};
3267
3268/* This is used for a general mmap of a disk file */
3269
3270int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3271{
3272	struct address_space *mapping = file->f_mapping;
3273
3274	if (!mapping->a_ops->readpage)
3275		return -ENOEXEC;
3276	file_accessed(file);
3277	vma->vm_ops = &generic_file_vm_ops;
3278	return 0;
3279}
3280
3281/*
3282 * This is for filesystems which do not implement ->writepage.
3283 */
3284int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3285{
3286	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3287		return -EINVAL;
3288	return generic_file_mmap(file, vma);
3289}
3290#else
3291vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3292{
3293	return VM_FAULT_SIGBUS;
3294}
3295int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3296{
3297	return -ENOSYS;
3298}
3299int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3300{
3301	return -ENOSYS;
3302}
3303#endif /* CONFIG_MMU */
3304
3305EXPORT_SYMBOL(filemap_page_mkwrite);
3306EXPORT_SYMBOL(generic_file_mmap);
3307EXPORT_SYMBOL(generic_file_readonly_mmap);
3308
3309static struct page *wait_on_page_read(struct page *page)
 
3310{
3311	if (!IS_ERR(page)) {
3312		wait_on_page_locked(page);
3313		if (!PageUptodate(page)) {
3314			put_page(page);
3315			page = ERR_PTR(-EIO);
3316		}
3317	}
3318	return page;
3319}
3320
3321static struct page *do_read_cache_page(struct address_space *mapping,
3322				pgoff_t index,
3323				int (*filler)(void *, struct page *),
3324				void *data,
3325				gfp_t gfp)
3326{
3327	struct page *page;
3328	int err;
3329repeat:
3330	page = find_get_page(mapping, index);
3331	if (!page) {
3332		page = __page_cache_alloc(gfp);
3333		if (!page)
3334			return ERR_PTR(-ENOMEM);
3335		err = add_to_page_cache_lru(page, mapping, index, gfp);
3336		if (unlikely(err)) {
3337			put_page(page);
3338			if (err == -EEXIST)
3339				goto repeat;
3340			/* Presumably ENOMEM for xarray node */
3341			return ERR_PTR(err);
3342		}
3343
3344filler:
3345		if (filler)
3346			err = filler(data, page);
3347		else
3348			err = mapping->a_ops->readpage(data, page);
3349
3350		if (err < 0) {
3351			put_page(page);
3352			return ERR_PTR(err);
3353		}
3354
3355		page = wait_on_page_read(page);
3356		if (IS_ERR(page))
3357			return page;
3358		goto out;
3359	}
3360	if (PageUptodate(page))
3361		goto out;
3362
3363	/*
3364	 * Page is not up to date and may be locked due to one of the following
3365	 * case a: Page is being filled and the page lock is held
3366	 * case b: Read/write error clearing the page uptodate status
3367	 * case c: Truncation in progress (page locked)
3368	 * case d: Reclaim in progress
3369	 *
3370	 * Case a, the page will be up to date when the page is unlocked.
3371	 *    There is no need to serialise on the page lock here as the page
3372	 *    is pinned so the lock gives no additional protection. Even if the
3373	 *    page is truncated, the data is still valid if PageUptodate as
3374	 *    it's a race vs truncate race.
3375	 * Case b, the page will not be up to date
3376	 * Case c, the page may be truncated but in itself, the data may still
3377	 *    be valid after IO completes as it's a read vs truncate race. The
3378	 *    operation must restart if the page is not uptodate on unlock but
3379	 *    otherwise serialising on page lock to stabilise the mapping gives
3380	 *    no additional guarantees to the caller as the page lock is
3381	 *    released before return.
3382	 * Case d, similar to truncation. If reclaim holds the page lock, it
3383	 *    will be a race with remove_mapping that determines if the mapping
3384	 *    is valid on unlock but otherwise the data is valid and there is
3385	 *    no need to serialise with page lock.
3386	 *
3387	 * As the page lock gives no additional guarantee, we optimistically
3388	 * wait on the page to be unlocked and check if it's up to date and
3389	 * use the page if it is. Otherwise, the page lock is required to
3390	 * distinguish between the different cases. The motivation is that we
3391	 * avoid spurious serialisations and wakeups when multiple processes
3392	 * wait on the same page for IO to complete.
3393	 */
3394	wait_on_page_locked(page);
3395	if (PageUptodate(page))
3396		goto out;
3397
3398	/* Distinguish between all the cases under the safety of the lock */
3399	lock_page(page);
3400
3401	/* Case c or d, restart the operation */
3402	if (!page->mapping) {
3403		unlock_page(page);
3404		put_page(page);
3405		goto repeat;
3406	}
3407
3408	/* Someone else locked and filled the page in a very small window */
3409	if (PageUptodate(page)) {
3410		unlock_page(page);
3411		goto out;
3412	}
3413
3414	/*
3415	 * A previous I/O error may have been due to temporary
3416	 * failures.
3417	 * Clear page error before actual read, PG_error will be
3418	 * set again if read page fails.
3419	 */
3420	ClearPageError(page);
3421	goto filler;
3422
3423out:
3424	mark_page_accessed(page);
3425	return page;
3426}
3427
3428/**
3429 * read_cache_page - read into page cache, fill it if needed
3430 * @mapping:	the page's address_space
3431 * @index:	the page index
3432 * @filler:	function to perform the read
3433 * @data:	first arg to filler(data, page) function, often left as NULL
3434 *
3435 * Read into the page cache. If a page already exists, and PageUptodate() is
3436 * not set, try to fill the page and wait for it to become unlocked.
3437 *
3438 * If the page does not get brought uptodate, return -EIO.
 
3439 *
3440 * Return: up to date page on success, ERR_PTR() on failure.
 
3441 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3442struct page *read_cache_page(struct address_space *mapping,
3443				pgoff_t index,
3444				int (*filler)(void *, struct page *),
3445				void *data)
3446{
3447	return do_read_cache_page(mapping, index, filler, data,
3448			mapping_gfp_mask(mapping));
3449}
3450EXPORT_SYMBOL(read_cache_page);
3451
3452/**
3453 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3454 * @mapping:	the page's address_space
3455 * @index:	the page index
3456 * @gfp:	the page allocator flags to use if allocating
3457 *
3458 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3459 * any new page allocations done using the specified allocation flags.
3460 *
3461 * If the page does not get brought uptodate, return -EIO.
3462 *
 
 
3463 * Return: up to date page on success, ERR_PTR() on failure.
3464 */
3465struct page *read_cache_page_gfp(struct address_space *mapping,
3466				pgoff_t index,
3467				gfp_t gfp)
3468{
3469	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3470}
3471EXPORT_SYMBOL(read_cache_page_gfp);
3472
3473int pagecache_write_begin(struct file *file, struct address_space *mapping,
3474				loff_t pos, unsigned len, unsigned flags,
3475				struct page **pagep, void **fsdata)
3476{
3477	const struct address_space_operations *aops = mapping->a_ops;
3478
3479	return aops->write_begin(file, mapping, pos, len, flags,
3480							pagep, fsdata);
3481}
3482EXPORT_SYMBOL(pagecache_write_begin);
3483
3484int pagecache_write_end(struct file *file, struct address_space *mapping,
3485				loff_t pos, unsigned len, unsigned copied,
3486				struct page *page, void *fsdata)
3487{
3488	const struct address_space_operations *aops = mapping->a_ops;
3489
3490	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3491}
3492EXPORT_SYMBOL(pagecache_write_end);
3493
3494/*
3495 * Warn about a page cache invalidation failure during a direct I/O write.
3496 */
3497void dio_warn_stale_pagecache(struct file *filp)
3498{
3499	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3500	char pathname[128];
3501	char *path;
3502
3503	errseq_set(&filp->f_mapping->wb_err, -EIO);
3504	if (__ratelimit(&_rs)) {
3505		path = file_path(filp, pathname, sizeof(pathname));
3506		if (IS_ERR(path))
3507			path = "(unknown)";
3508		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3509		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3510			current->comm);
3511	}
3512}
3513
3514ssize_t
3515generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3516{
3517	struct file	*file = iocb->ki_filp;
3518	struct address_space *mapping = file->f_mapping;
3519	struct inode	*inode = mapping->host;
3520	loff_t		pos = iocb->ki_pos;
3521	ssize_t		written;
3522	size_t		write_len;
3523	pgoff_t		end;
3524
3525	write_len = iov_iter_count(from);
3526	end = (pos + write_len - 1) >> PAGE_SHIFT;
3527
3528	if (iocb->ki_flags & IOCB_NOWAIT) {
3529		/* If there are pages to writeback, return */
3530		if (filemap_range_has_page(file->f_mapping, pos,
3531					   pos + write_len - 1))
3532			return -EAGAIN;
3533	} else {
3534		written = filemap_write_and_wait_range(mapping, pos,
3535							pos + write_len - 1);
3536		if (written)
3537			goto out;
3538	}
3539
3540	/*
3541	 * After a write we want buffered reads to be sure to go to disk to get
3542	 * the new data.  We invalidate clean cached page from the region we're
3543	 * about to write.  We do this *before* the write so that we can return
3544	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3545	 */
3546	written = invalidate_inode_pages2_range(mapping,
3547					pos >> PAGE_SHIFT, end);
3548	/*
3549	 * If a page can not be invalidated, return 0 to fall back
3550	 * to buffered write.
3551	 */
3552	if (written) {
3553		if (written == -EBUSY)
3554			return 0;
3555		goto out;
3556	}
3557
3558	written = mapping->a_ops->direct_IO(iocb, from);
3559
3560	/*
3561	 * Finally, try again to invalidate clean pages which might have been
3562	 * cached by non-direct readahead, or faulted in by get_user_pages()
3563	 * if the source of the write was an mmap'ed region of the file
3564	 * we're writing.  Either one is a pretty crazy thing to do,
3565	 * so we don't support it 100%.  If this invalidation
3566	 * fails, tough, the write still worked...
3567	 *
3568	 * Most of the time we do not need this since dio_complete() will do
3569	 * the invalidation for us. However there are some file systems that
3570	 * do not end up with dio_complete() being called, so let's not break
3571	 * them by removing it completely.
3572	 *
3573	 * Noticeable example is a blkdev_direct_IO().
3574	 *
3575	 * Skip invalidation for async writes or if mapping has no pages.
3576	 */
3577	if (written > 0 && mapping->nrpages &&
3578	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3579		dio_warn_stale_pagecache(file);
3580
3581	if (written > 0) {
3582		pos += written;
3583		write_len -= written;
3584		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3585			i_size_write(inode, pos);
3586			mark_inode_dirty(inode);
3587		}
3588		iocb->ki_pos = pos;
3589	}
3590	if (written != -EIOCBQUEUED)
3591		iov_iter_revert(from, write_len - iov_iter_count(from));
3592out:
3593	return written;
3594}
3595EXPORT_SYMBOL(generic_file_direct_write);
3596
3597/*
3598 * Find or create a page at the given pagecache position. Return the locked
3599 * page. This function is specifically for buffered writes.
3600 */
3601struct page *grab_cache_page_write_begin(struct address_space *mapping,
3602					pgoff_t index, unsigned flags)
3603{
3604	struct page *page;
3605	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3606
3607	if (flags & AOP_FLAG_NOFS)
3608		fgp_flags |= FGP_NOFS;
3609
3610	page = pagecache_get_page(mapping, index, fgp_flags,
3611			mapping_gfp_mask(mapping));
3612	if (page)
3613		wait_for_stable_page(page);
3614
3615	return page;
3616}
3617EXPORT_SYMBOL(grab_cache_page_write_begin);
3618
3619ssize_t generic_perform_write(struct file *file,
3620				struct iov_iter *i, loff_t pos)
3621{
 
 
3622	struct address_space *mapping = file->f_mapping;
3623	const struct address_space_operations *a_ops = mapping->a_ops;
3624	long status = 0;
3625	ssize_t written = 0;
3626	unsigned int flags = 0;
3627
3628	do {
3629		struct page *page;
3630		unsigned long offset;	/* Offset into pagecache page */
3631		unsigned long bytes;	/* Bytes to write to page */
3632		size_t copied;		/* Bytes copied from user */
3633		void *fsdata;
3634
3635		offset = (pos & (PAGE_SIZE - 1));
3636		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3637						iov_iter_count(i));
3638
3639again:
3640		/*
3641		 * Bring in the user page that we will copy from _first_.
3642		 * Otherwise there's a nasty deadlock on copying from the
3643		 * same page as we're writing to, without it being marked
3644		 * up-to-date.
3645		 */
3646		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3647			status = -EFAULT;
3648			break;
3649		}
3650
3651		if (fatal_signal_pending(current)) {
3652			status = -EINTR;
3653			break;
3654		}
3655
3656		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3657						&page, &fsdata);
3658		if (unlikely(status < 0))
3659			break;
3660
3661		if (mapping_writably_mapped(mapping))
3662			flush_dcache_page(page);
3663
3664		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3665		flush_dcache_page(page);
3666
3667		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3668						page, fsdata);
3669		if (unlikely(status != copied)) {
3670			iov_iter_revert(i, copied - max(status, 0L));
3671			if (unlikely(status < 0))
3672				break;
3673		}
3674		cond_resched();
3675
3676		if (unlikely(status == 0)) {
3677			/*
3678			 * A short copy made ->write_end() reject the
3679			 * thing entirely.  Might be memory poisoning
3680			 * halfway through, might be a race with munmap,
3681			 * might be severe memory pressure.
3682			 */
3683			if (copied)
3684				bytes = copied;
3685			goto again;
3686		}
3687		pos += status;
3688		written += status;
3689
3690		balance_dirty_pages_ratelimited(mapping);
3691	} while (iov_iter_count(i));
3692
3693	return written ? written : status;
3694}
3695EXPORT_SYMBOL(generic_perform_write);
3696
3697/**
3698 * __generic_file_write_iter - write data to a file
3699 * @iocb:	IO state structure (file, offset, etc.)
3700 * @from:	iov_iter with data to write
3701 *
3702 * This function does all the work needed for actually writing data to a
3703 * file. It does all basic checks, removes SUID from the file, updates
3704 * modification times and calls proper subroutines depending on whether we
3705 * do direct IO or a standard buffered write.
3706 *
3707 * It expects i_mutex to be grabbed unless we work on a block device or similar
3708 * object which does not need locking at all.
3709 *
3710 * This function does *not* take care of syncing data in case of O_SYNC write.
3711 * A caller has to handle it. This is mainly due to the fact that we want to
3712 * avoid syncing under i_mutex.
3713 *
3714 * Return:
3715 * * number of bytes written, even for truncated writes
3716 * * negative error code if no data has been written at all
3717 */
3718ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3719{
3720	struct file *file = iocb->ki_filp;
3721	struct address_space *mapping = file->f_mapping;
3722	struct inode 	*inode = mapping->host;
3723	ssize_t		written = 0;
3724	ssize_t		err;
3725	ssize_t		status;
3726
3727	/* We can write back this queue in page reclaim */
3728	current->backing_dev_info = inode_to_bdi(inode);
3729	err = file_remove_privs(file);
3730	if (err)
3731		goto out;
3732
3733	err = file_update_time(file);
3734	if (err)
3735		goto out;
3736
3737	if (iocb->ki_flags & IOCB_DIRECT) {
3738		loff_t pos, endbyte;
3739
3740		written = generic_file_direct_write(iocb, from);
3741		/*
3742		 * If the write stopped short of completing, fall back to
3743		 * buffered writes.  Some filesystems do this for writes to
3744		 * holes, for example.  For DAX files, a buffered write will
3745		 * not succeed (even if it did, DAX does not handle dirty
3746		 * page-cache pages correctly).
3747		 */
3748		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3749			goto out;
3750
3751		status = generic_perform_write(file, from, pos = iocb->ki_pos);
 
3752		/*
3753		 * If generic_perform_write() returned a synchronous error
3754		 * then we want to return the number of bytes which were
3755		 * direct-written, or the error code if that was zero.  Note
3756		 * that this differs from normal direct-io semantics, which
3757		 * will return -EFOO even if some bytes were written.
3758		 */
3759		if (unlikely(status < 0)) {
3760			err = status;
3761			goto out;
3762		}
3763		/*
3764		 * We need to ensure that the page cache pages are written to
3765		 * disk and invalidated to preserve the expected O_DIRECT
3766		 * semantics.
3767		 */
3768		endbyte = pos + status - 1;
3769		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3770		if (err == 0) {
3771			iocb->ki_pos = endbyte + 1;
3772			written += status;
3773			invalidate_mapping_pages(mapping,
3774						 pos >> PAGE_SHIFT,
3775						 endbyte >> PAGE_SHIFT);
3776		} else {
3777			/*
3778			 * We don't know how much we wrote, so just return
3779			 * the number of bytes which were direct-written
3780			 */
3781		}
3782	} else {
3783		written = generic_perform_write(file, from, iocb->ki_pos);
3784		if (likely(written > 0))
3785			iocb->ki_pos += written;
3786	}
3787out:
3788	current->backing_dev_info = NULL;
3789	return written ? written : err;
3790}
3791EXPORT_SYMBOL(__generic_file_write_iter);
3792
3793/**
3794 * generic_file_write_iter - write data to a file
3795 * @iocb:	IO state structure
3796 * @from:	iov_iter with data to write
3797 *
3798 * This is a wrapper around __generic_file_write_iter() to be used by most
3799 * filesystems. It takes care of syncing the file in case of O_SYNC file
3800 * and acquires i_mutex as needed.
3801 * Return:
3802 * * negative error code if no data has been written at all of
3803 *   vfs_fsync_range() failed for a synchronous write
3804 * * number of bytes written, even for truncated writes
3805 */
3806ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3807{
3808	struct file *file = iocb->ki_filp;
3809	struct inode *inode = file->f_mapping->host;
3810	ssize_t ret;
3811
3812	inode_lock(inode);
3813	ret = generic_write_checks(iocb, from);
3814	if (ret > 0)
3815		ret = __generic_file_write_iter(iocb, from);
3816	inode_unlock(inode);
3817
3818	if (ret > 0)
3819		ret = generic_write_sync(iocb, ret);
3820	return ret;
3821}
3822EXPORT_SYMBOL(generic_file_write_iter);
3823
3824/**
3825 * try_to_release_page() - release old fs-specific metadata on a page
3826 *
3827 * @page: the page which the kernel is trying to free
3828 * @gfp_mask: memory allocation flags (and I/O mode)
3829 *
3830 * The address_space is to try to release any data against the page
3831 * (presumably at page->private).
3832 *
3833 * This may also be called if PG_fscache is set on a page, indicating that the
3834 * page is known to the local caching routines.
3835 *
3836 * The @gfp_mask argument specifies whether I/O may be performed to release
3837 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
 
3838 *
3839 * Return: %1 if the release was successful, otherwise return zero.
3840 */
3841int try_to_release_page(struct page *page, gfp_t gfp_mask)
3842{
3843	struct address_space * const mapping = page->mapping;
3844
3845	BUG_ON(!PageLocked(page));
3846	if (PageWriteback(page))
3847		return 0;
3848
3849	if (mapping && mapping->a_ops->releasepage)
3850		return mapping->a_ops->releasepage(page, gfp_mask);
3851	return try_to_free_buffers(page);
3852}
3853
3854EXPORT_SYMBOL(try_to_release_page);