Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
   3 * Copyright (c) 2016 Facebook
   4 */
   5#include <linux/kernel.h>
   6#include <linux/types.h>
   7#include <linux/slab.h>
   8#include <linux/bpf.h>
   9#include <linux/bpf_verifier.h>
  10#include <linux/bpf_perf_event.h>
  11#include <linux/btf.h>
  12#include <linux/filter.h>
  13#include <linux/uaccess.h>
  14#include <linux/ctype.h>
  15#include <linux/kprobes.h>
  16#include <linux/spinlock.h>
  17#include <linux/syscalls.h>
  18#include <linux/error-injection.h>
  19#include <linux/btf_ids.h>
  20#include <linux/bpf_lsm.h>
  21#include <linux/fprobe.h>
  22#include <linux/bsearch.h>
  23#include <linux/sort.h>
  24#include <linux/key.h>
  25#include <linux/verification.h>
  26
  27#include <net/bpf_sk_storage.h>
  28
  29#include <uapi/linux/bpf.h>
  30#include <uapi/linux/btf.h>
  31
  32#include <asm/tlb.h>
  33
  34#include "trace_probe.h"
  35#include "trace.h"
  36
  37#define CREATE_TRACE_POINTS
  38#include "bpf_trace.h"
  39
  40#define bpf_event_rcu_dereference(p)					\
  41	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
  42
  43#ifdef CONFIG_MODULES
  44struct bpf_trace_module {
  45	struct module *module;
  46	struct list_head list;
  47};
  48
  49static LIST_HEAD(bpf_trace_modules);
  50static DEFINE_MUTEX(bpf_module_mutex);
  51
  52static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
  53{
  54	struct bpf_raw_event_map *btp, *ret = NULL;
  55	struct bpf_trace_module *btm;
  56	unsigned int i;
  57
  58	mutex_lock(&bpf_module_mutex);
  59	list_for_each_entry(btm, &bpf_trace_modules, list) {
  60		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
  61			btp = &btm->module->bpf_raw_events[i];
  62			if (!strcmp(btp->tp->name, name)) {
  63				if (try_module_get(btm->module))
  64					ret = btp;
  65				goto out;
  66			}
  67		}
  68	}
  69out:
  70	mutex_unlock(&bpf_module_mutex);
  71	return ret;
  72}
  73#else
  74static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
  75{
  76	return NULL;
  77}
  78#endif /* CONFIG_MODULES */
  79
  80u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
  81u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
  82
  83static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
  84				  u64 flags, const struct btf **btf,
  85				  s32 *btf_id);
  86static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx);
  87static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
  88
  89/**
  90 * trace_call_bpf - invoke BPF program
  91 * @call: tracepoint event
  92 * @ctx: opaque context pointer
  93 *
  94 * kprobe handlers execute BPF programs via this helper.
  95 * Can be used from static tracepoints in the future.
  96 *
  97 * Return: BPF programs always return an integer which is interpreted by
  98 * kprobe handler as:
  99 * 0 - return from kprobe (event is filtered out)
 100 * 1 - store kprobe event into ring buffer
 101 * Other values are reserved and currently alias to 1
 102 */
 103unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
 104{
 105	unsigned int ret;
 106
 107	cant_sleep();
 108
 109	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
 110		/*
 111		 * since some bpf program is already running on this cpu,
 112		 * don't call into another bpf program (same or different)
 113		 * and don't send kprobe event into ring-buffer,
 114		 * so return zero here
 115		 */
 116		ret = 0;
 117		goto out;
 118	}
 119
 120	/*
 121	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
 122	 * to all call sites, we did a bpf_prog_array_valid() there to check
 123	 * whether call->prog_array is empty or not, which is
 124	 * a heuristic to speed up execution.
 125	 *
 126	 * If bpf_prog_array_valid() fetched prog_array was
 127	 * non-NULL, we go into trace_call_bpf() and do the actual
 128	 * proper rcu_dereference() under RCU lock.
 129	 * If it turns out that prog_array is NULL then, we bail out.
 130	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
 131	 * was NULL, you'll skip the prog_array with the risk of missing
 132	 * out of events when it was updated in between this and the
 133	 * rcu_dereference() which is accepted risk.
 134	 */
 135	rcu_read_lock();
 136	ret = bpf_prog_run_array(rcu_dereference(call->prog_array),
 137				 ctx, bpf_prog_run);
 138	rcu_read_unlock();
 139
 140 out:
 141	__this_cpu_dec(bpf_prog_active);
 142
 143	return ret;
 144}
 145
 146#ifdef CONFIG_BPF_KPROBE_OVERRIDE
 147BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
 148{
 149	regs_set_return_value(regs, rc);
 150	override_function_with_return(regs);
 151	return 0;
 152}
 153
 154static const struct bpf_func_proto bpf_override_return_proto = {
 155	.func		= bpf_override_return,
 156	.gpl_only	= true,
 157	.ret_type	= RET_INTEGER,
 158	.arg1_type	= ARG_PTR_TO_CTX,
 159	.arg2_type	= ARG_ANYTHING,
 160};
 161#endif
 162
 163static __always_inline int
 164bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
 165{
 166	int ret;
 167
 168	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
 169	if (unlikely(ret < 0))
 170		memset(dst, 0, size);
 171	return ret;
 172}
 173
 174BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
 175	   const void __user *, unsafe_ptr)
 176{
 177	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
 178}
 179
 180const struct bpf_func_proto bpf_probe_read_user_proto = {
 181	.func		= bpf_probe_read_user,
 182	.gpl_only	= true,
 183	.ret_type	= RET_INTEGER,
 184	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 185	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 186	.arg3_type	= ARG_ANYTHING,
 187};
 188
 189static __always_inline int
 190bpf_probe_read_user_str_common(void *dst, u32 size,
 191			       const void __user *unsafe_ptr)
 192{
 193	int ret;
 194
 195	/*
 196	 * NB: We rely on strncpy_from_user() not copying junk past the NUL
 197	 * terminator into `dst`.
 198	 *
 199	 * strncpy_from_user() does long-sized strides in the fast path. If the
 200	 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
 201	 * then there could be junk after the NUL in `dst`. If user takes `dst`
 202	 * and keys a hash map with it, then semantically identical strings can
 203	 * occupy multiple entries in the map.
 204	 */
 205	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
 206	if (unlikely(ret < 0))
 207		memset(dst, 0, size);
 208	return ret;
 209}
 210
 211BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
 212	   const void __user *, unsafe_ptr)
 213{
 214	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
 215}
 216
 217const struct bpf_func_proto bpf_probe_read_user_str_proto = {
 218	.func		= bpf_probe_read_user_str,
 219	.gpl_only	= true,
 220	.ret_type	= RET_INTEGER,
 221	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 222	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 223	.arg3_type	= ARG_ANYTHING,
 224};
 225
 226static __always_inline int
 227bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
 228{
 229	int ret;
 230
 231	ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
 232	if (unlikely(ret < 0))
 233		memset(dst, 0, size);
 234	return ret;
 235}
 236
 237BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
 238	   const void *, unsafe_ptr)
 239{
 240	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
 241}
 242
 243const struct bpf_func_proto bpf_probe_read_kernel_proto = {
 244	.func		= bpf_probe_read_kernel,
 245	.gpl_only	= true,
 246	.ret_type	= RET_INTEGER,
 247	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 248	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 249	.arg3_type	= ARG_ANYTHING,
 250};
 251
 252static __always_inline int
 253bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
 254{
 255	int ret;
 256
 257	/*
 258	 * The strncpy_from_kernel_nofault() call will likely not fill the
 259	 * entire buffer, but that's okay in this circumstance as we're probing
 260	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
 261	 * as well probe the stack. Thus, memory is explicitly cleared
 262	 * only in error case, so that improper users ignoring return
 263	 * code altogether don't copy garbage; otherwise length of string
 264	 * is returned that can be used for bpf_perf_event_output() et al.
 265	 */
 266	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
 267	if (unlikely(ret < 0))
 268		memset(dst, 0, size);
 269	return ret;
 270}
 271
 272BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
 273	   const void *, unsafe_ptr)
 274{
 275	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
 276}
 277
 278const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
 279	.func		= bpf_probe_read_kernel_str,
 280	.gpl_only	= true,
 281	.ret_type	= RET_INTEGER,
 282	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 283	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 284	.arg3_type	= ARG_ANYTHING,
 285};
 286
 287#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
 288BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
 289	   const void *, unsafe_ptr)
 290{
 291	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
 292		return bpf_probe_read_user_common(dst, size,
 293				(__force void __user *)unsafe_ptr);
 294	}
 295	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
 296}
 297
 298static const struct bpf_func_proto bpf_probe_read_compat_proto = {
 299	.func		= bpf_probe_read_compat,
 300	.gpl_only	= true,
 301	.ret_type	= RET_INTEGER,
 302	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 303	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 304	.arg3_type	= ARG_ANYTHING,
 305};
 306
 307BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
 308	   const void *, unsafe_ptr)
 309{
 310	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
 311		return bpf_probe_read_user_str_common(dst, size,
 312				(__force void __user *)unsafe_ptr);
 313	}
 314	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
 315}
 316
 317static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
 318	.func		= bpf_probe_read_compat_str,
 319	.gpl_only	= true,
 320	.ret_type	= RET_INTEGER,
 321	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 322	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 323	.arg3_type	= ARG_ANYTHING,
 324};
 325#endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
 326
 327BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
 328	   u32, size)
 329{
 330	/*
 331	 * Ensure we're in user context which is safe for the helper to
 332	 * run. This helper has no business in a kthread.
 333	 *
 334	 * access_ok() should prevent writing to non-user memory, but in
 335	 * some situations (nommu, temporary switch, etc) access_ok() does
 336	 * not provide enough validation, hence the check on KERNEL_DS.
 337	 *
 338	 * nmi_uaccess_okay() ensures the probe is not run in an interim
 339	 * state, when the task or mm are switched. This is specifically
 340	 * required to prevent the use of temporary mm.
 341	 */
 342
 343	if (unlikely(in_interrupt() ||
 344		     current->flags & (PF_KTHREAD | PF_EXITING)))
 345		return -EPERM;
 
 
 346	if (unlikely(!nmi_uaccess_okay()))
 347		return -EPERM;
 348
 349	return copy_to_user_nofault(unsafe_ptr, src, size);
 350}
 351
 352static const struct bpf_func_proto bpf_probe_write_user_proto = {
 353	.func		= bpf_probe_write_user,
 354	.gpl_only	= true,
 355	.ret_type	= RET_INTEGER,
 356	.arg1_type	= ARG_ANYTHING,
 357	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
 358	.arg3_type	= ARG_CONST_SIZE,
 359};
 360
 361static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
 362{
 363	if (!capable(CAP_SYS_ADMIN))
 364		return NULL;
 365
 366	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
 367			    current->comm, task_pid_nr(current));
 368
 369	return &bpf_probe_write_user_proto;
 370}
 371
 372static DEFINE_RAW_SPINLOCK(trace_printk_lock);
 373
 374#define MAX_TRACE_PRINTK_VARARGS	3
 375#define BPF_TRACE_PRINTK_SIZE		1024
 376
 377BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
 378	   u64, arg2, u64, arg3)
 379{
 380	u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
 381	u32 *bin_args;
 382	static char buf[BPF_TRACE_PRINTK_SIZE];
 383	unsigned long flags;
 384	int ret;
 385
 386	ret = bpf_bprintf_prepare(fmt, fmt_size, args, &bin_args,
 387				  MAX_TRACE_PRINTK_VARARGS);
 388	if (ret < 0)
 389		return ret;
 390
 391	raw_spin_lock_irqsave(&trace_printk_lock, flags);
 392	ret = bstr_printf(buf, sizeof(buf), fmt, bin_args);
 393
 394	trace_bpf_trace_printk(buf);
 395	raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
 396
 397	bpf_bprintf_cleanup();
 398
 399	return ret;
 400}
 401
 402static const struct bpf_func_proto bpf_trace_printk_proto = {
 403	.func		= bpf_trace_printk,
 404	.gpl_only	= true,
 405	.ret_type	= RET_INTEGER,
 406	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
 407	.arg2_type	= ARG_CONST_SIZE,
 408};
 409
 410static void __set_printk_clr_event(void)
 411{
 412	/*
 413	 * This program might be calling bpf_trace_printk,
 414	 * so enable the associated bpf_trace/bpf_trace_printk event.
 415	 * Repeat this each time as it is possible a user has
 416	 * disabled bpf_trace_printk events.  By loading a program
 417	 * calling bpf_trace_printk() however the user has expressed
 418	 * the intent to see such events.
 419	 */
 420	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
 421		pr_warn_ratelimited("could not enable bpf_trace_printk events");
 422}
 423
 424const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
 425{
 426	__set_printk_clr_event();
 427	return &bpf_trace_printk_proto;
 428}
 429
 430BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, data,
 431	   u32, data_len)
 432{
 433	static char buf[BPF_TRACE_PRINTK_SIZE];
 434	unsigned long flags;
 435	int ret, num_args;
 436	u32 *bin_args;
 437
 438	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
 439	    (data_len && !data))
 440		return -EINVAL;
 441	num_args = data_len / 8;
 442
 443	ret = bpf_bprintf_prepare(fmt, fmt_size, data, &bin_args, num_args);
 444	if (ret < 0)
 445		return ret;
 446
 447	raw_spin_lock_irqsave(&trace_printk_lock, flags);
 448	ret = bstr_printf(buf, sizeof(buf), fmt, bin_args);
 449
 450	trace_bpf_trace_printk(buf);
 451	raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
 452
 453	bpf_bprintf_cleanup();
 454
 455	return ret;
 456}
 457
 458static const struct bpf_func_proto bpf_trace_vprintk_proto = {
 459	.func		= bpf_trace_vprintk,
 460	.gpl_only	= true,
 461	.ret_type	= RET_INTEGER,
 462	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
 463	.arg2_type	= ARG_CONST_SIZE,
 464	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
 465	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
 466};
 467
 468const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void)
 469{
 470	__set_printk_clr_event();
 471	return &bpf_trace_vprintk_proto;
 472}
 473
 474BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
 475	   const void *, data, u32, data_len)
 476{
 477	int err, num_args;
 478	u32 *bin_args;
 479
 480	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
 481	    (data_len && !data))
 482		return -EINVAL;
 483	num_args = data_len / 8;
 484
 485	err = bpf_bprintf_prepare(fmt, fmt_size, data, &bin_args, num_args);
 486	if (err < 0)
 487		return err;
 488
 489	seq_bprintf(m, fmt, bin_args);
 490
 491	bpf_bprintf_cleanup();
 492
 493	return seq_has_overflowed(m) ? -EOVERFLOW : 0;
 494}
 495
 496BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
 497
 498static const struct bpf_func_proto bpf_seq_printf_proto = {
 499	.func		= bpf_seq_printf,
 500	.gpl_only	= true,
 501	.ret_type	= RET_INTEGER,
 502	.arg1_type	= ARG_PTR_TO_BTF_ID,
 503	.arg1_btf_id	= &btf_seq_file_ids[0],
 504	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
 505	.arg3_type	= ARG_CONST_SIZE,
 506	.arg4_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
 507	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
 508};
 509
 510BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
 511{
 512	return seq_write(m, data, len) ? -EOVERFLOW : 0;
 513}
 514
 515static const struct bpf_func_proto bpf_seq_write_proto = {
 516	.func		= bpf_seq_write,
 517	.gpl_only	= true,
 518	.ret_type	= RET_INTEGER,
 519	.arg1_type	= ARG_PTR_TO_BTF_ID,
 520	.arg1_btf_id	= &btf_seq_file_ids[0],
 521	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
 522	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
 523};
 524
 525BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
 526	   u32, btf_ptr_size, u64, flags)
 527{
 528	const struct btf *btf;
 529	s32 btf_id;
 530	int ret;
 531
 532	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
 533	if (ret)
 534		return ret;
 535
 536	return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
 537}
 538
 539static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
 540	.func		= bpf_seq_printf_btf,
 541	.gpl_only	= true,
 542	.ret_type	= RET_INTEGER,
 543	.arg1_type	= ARG_PTR_TO_BTF_ID,
 544	.arg1_btf_id	= &btf_seq_file_ids[0],
 545	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
 546	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
 547	.arg4_type	= ARG_ANYTHING,
 548};
 549
 550static __always_inline int
 551get_map_perf_counter(struct bpf_map *map, u64 flags,
 552		     u64 *value, u64 *enabled, u64 *running)
 553{
 554	struct bpf_array *array = container_of(map, struct bpf_array, map);
 555	unsigned int cpu = smp_processor_id();
 556	u64 index = flags & BPF_F_INDEX_MASK;
 557	struct bpf_event_entry *ee;
 558
 559	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
 560		return -EINVAL;
 561	if (index == BPF_F_CURRENT_CPU)
 562		index = cpu;
 563	if (unlikely(index >= array->map.max_entries))
 564		return -E2BIG;
 565
 566	ee = READ_ONCE(array->ptrs[index]);
 567	if (!ee)
 568		return -ENOENT;
 569
 570	return perf_event_read_local(ee->event, value, enabled, running);
 571}
 572
 573BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
 574{
 575	u64 value = 0;
 576	int err;
 577
 578	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
 579	/*
 580	 * this api is ugly since we miss [-22..-2] range of valid
 581	 * counter values, but that's uapi
 582	 */
 583	if (err)
 584		return err;
 585	return value;
 586}
 587
 588static const struct bpf_func_proto bpf_perf_event_read_proto = {
 589	.func		= bpf_perf_event_read,
 590	.gpl_only	= true,
 591	.ret_type	= RET_INTEGER,
 592	.arg1_type	= ARG_CONST_MAP_PTR,
 593	.arg2_type	= ARG_ANYTHING,
 594};
 595
 596BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
 597	   struct bpf_perf_event_value *, buf, u32, size)
 598{
 599	int err = -EINVAL;
 600
 601	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
 602		goto clear;
 603	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
 604				   &buf->running);
 605	if (unlikely(err))
 606		goto clear;
 607	return 0;
 608clear:
 609	memset(buf, 0, size);
 610	return err;
 611}
 612
 613static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
 614	.func		= bpf_perf_event_read_value,
 615	.gpl_only	= true,
 616	.ret_type	= RET_INTEGER,
 617	.arg1_type	= ARG_CONST_MAP_PTR,
 618	.arg2_type	= ARG_ANYTHING,
 619	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
 620	.arg4_type	= ARG_CONST_SIZE,
 621};
 622
 623static __always_inline u64
 624__bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
 625			u64 flags, struct perf_sample_data *sd)
 626{
 627	struct bpf_array *array = container_of(map, struct bpf_array, map);
 628	unsigned int cpu = smp_processor_id();
 629	u64 index = flags & BPF_F_INDEX_MASK;
 630	struct bpf_event_entry *ee;
 631	struct perf_event *event;
 632
 633	if (index == BPF_F_CURRENT_CPU)
 634		index = cpu;
 635	if (unlikely(index >= array->map.max_entries))
 636		return -E2BIG;
 637
 638	ee = READ_ONCE(array->ptrs[index]);
 639	if (!ee)
 640		return -ENOENT;
 641
 642	event = ee->event;
 643	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
 644		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
 645		return -EINVAL;
 646
 647	if (unlikely(event->oncpu != cpu))
 648		return -EOPNOTSUPP;
 649
 650	return perf_event_output(event, sd, regs);
 651}
 652
 653/*
 654 * Support executing tracepoints in normal, irq, and nmi context that each call
 655 * bpf_perf_event_output
 656 */
 657struct bpf_trace_sample_data {
 658	struct perf_sample_data sds[3];
 659};
 660
 661static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
 662static DEFINE_PER_CPU(int, bpf_trace_nest_level);
 663BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
 664	   u64, flags, void *, data, u64, size)
 665{
 666	struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
 667	int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
 668	struct perf_raw_record raw = {
 669		.frag = {
 670			.size = size,
 671			.data = data,
 672		},
 673	};
 674	struct perf_sample_data *sd;
 675	int err;
 676
 677	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
 678		err = -EBUSY;
 679		goto out;
 680	}
 681
 682	sd = &sds->sds[nest_level - 1];
 683
 684	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
 685		err = -EINVAL;
 686		goto out;
 687	}
 688
 689	perf_sample_data_init(sd, 0, 0);
 690	sd->raw = &raw;
 691	sd->sample_flags |= PERF_SAMPLE_RAW;
 692
 693	err = __bpf_perf_event_output(regs, map, flags, sd);
 694
 695out:
 696	this_cpu_dec(bpf_trace_nest_level);
 697	return err;
 698}
 699
 700static const struct bpf_func_proto bpf_perf_event_output_proto = {
 701	.func		= bpf_perf_event_output,
 702	.gpl_only	= true,
 703	.ret_type	= RET_INTEGER,
 704	.arg1_type	= ARG_PTR_TO_CTX,
 705	.arg2_type	= ARG_CONST_MAP_PTR,
 706	.arg3_type	= ARG_ANYTHING,
 707	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
 708	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
 709};
 710
 711static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
 712struct bpf_nested_pt_regs {
 713	struct pt_regs regs[3];
 714};
 715static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
 716static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
 717
 718u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
 719		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
 720{
 721	int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
 722	struct perf_raw_frag frag = {
 723		.copy		= ctx_copy,
 724		.size		= ctx_size,
 725		.data		= ctx,
 726	};
 727	struct perf_raw_record raw = {
 728		.frag = {
 729			{
 730				.next	= ctx_size ? &frag : NULL,
 731			},
 732			.size	= meta_size,
 733			.data	= meta,
 734		},
 735	};
 736	struct perf_sample_data *sd;
 737	struct pt_regs *regs;
 738	u64 ret;
 739
 740	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
 741		ret = -EBUSY;
 742		goto out;
 743	}
 744	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
 745	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
 746
 747	perf_fetch_caller_regs(regs);
 748	perf_sample_data_init(sd, 0, 0);
 749	sd->raw = &raw;
 750	sd->sample_flags |= PERF_SAMPLE_RAW;
 751
 752	ret = __bpf_perf_event_output(regs, map, flags, sd);
 753out:
 754	this_cpu_dec(bpf_event_output_nest_level);
 755	return ret;
 756}
 757
 758BPF_CALL_0(bpf_get_current_task)
 759{
 760	return (long) current;
 761}
 762
 763const struct bpf_func_proto bpf_get_current_task_proto = {
 764	.func		= bpf_get_current_task,
 765	.gpl_only	= true,
 766	.ret_type	= RET_INTEGER,
 767};
 768
 769BPF_CALL_0(bpf_get_current_task_btf)
 770{
 771	return (unsigned long) current;
 772}
 773
 774const struct bpf_func_proto bpf_get_current_task_btf_proto = {
 775	.func		= bpf_get_current_task_btf,
 776	.gpl_only	= true,
 777	.ret_type	= RET_PTR_TO_BTF_ID_TRUSTED,
 778	.ret_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
 779};
 780
 781BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task)
 782{
 783	return (unsigned long) task_pt_regs(task);
 784}
 785
 786BTF_ID_LIST(bpf_task_pt_regs_ids)
 787BTF_ID(struct, pt_regs)
 788
 789const struct bpf_func_proto bpf_task_pt_regs_proto = {
 790	.func		= bpf_task_pt_regs,
 791	.gpl_only	= true,
 792	.arg1_type	= ARG_PTR_TO_BTF_ID,
 793	.arg1_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
 794	.ret_type	= RET_PTR_TO_BTF_ID,
 795	.ret_btf_id	= &bpf_task_pt_regs_ids[0],
 796};
 797
 798BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
 799{
 800	struct bpf_array *array = container_of(map, struct bpf_array, map);
 801	struct cgroup *cgrp;
 802
 803	if (unlikely(idx >= array->map.max_entries))
 804		return -E2BIG;
 805
 806	cgrp = READ_ONCE(array->ptrs[idx]);
 807	if (unlikely(!cgrp))
 808		return -EAGAIN;
 809
 810	return task_under_cgroup_hierarchy(current, cgrp);
 811}
 812
 813static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
 814	.func           = bpf_current_task_under_cgroup,
 815	.gpl_only       = false,
 816	.ret_type       = RET_INTEGER,
 817	.arg1_type      = ARG_CONST_MAP_PTR,
 818	.arg2_type      = ARG_ANYTHING,
 819};
 820
 821struct send_signal_irq_work {
 822	struct irq_work irq_work;
 823	struct task_struct *task;
 824	u32 sig;
 825	enum pid_type type;
 826};
 827
 828static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
 829
 830static void do_bpf_send_signal(struct irq_work *entry)
 831{
 832	struct send_signal_irq_work *work;
 833
 834	work = container_of(entry, struct send_signal_irq_work, irq_work);
 835	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
 836	put_task_struct(work->task);
 837}
 838
 839static int bpf_send_signal_common(u32 sig, enum pid_type type)
 840{
 841	struct send_signal_irq_work *work = NULL;
 842
 843	/* Similar to bpf_probe_write_user, task needs to be
 844	 * in a sound condition and kernel memory access be
 845	 * permitted in order to send signal to the current
 846	 * task.
 847	 */
 848	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
 849		return -EPERM;
 850	if (unlikely(!nmi_uaccess_okay()))
 851		return -EPERM;
 852	/* Task should not be pid=1 to avoid kernel panic. */
 853	if (unlikely(is_global_init(current)))
 854		return -EPERM;
 855
 856	if (irqs_disabled()) {
 857		/* Do an early check on signal validity. Otherwise,
 858		 * the error is lost in deferred irq_work.
 859		 */
 860		if (unlikely(!valid_signal(sig)))
 861			return -EINVAL;
 862
 863		work = this_cpu_ptr(&send_signal_work);
 864		if (irq_work_is_busy(&work->irq_work))
 865			return -EBUSY;
 866
 867		/* Add the current task, which is the target of sending signal,
 868		 * to the irq_work. The current task may change when queued
 869		 * irq works get executed.
 870		 */
 871		work->task = get_task_struct(current);
 872		work->sig = sig;
 873		work->type = type;
 874		irq_work_queue(&work->irq_work);
 875		return 0;
 876	}
 877
 878	return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
 879}
 880
 881BPF_CALL_1(bpf_send_signal, u32, sig)
 882{
 883	return bpf_send_signal_common(sig, PIDTYPE_TGID);
 884}
 885
 886static const struct bpf_func_proto bpf_send_signal_proto = {
 887	.func		= bpf_send_signal,
 888	.gpl_only	= false,
 889	.ret_type	= RET_INTEGER,
 890	.arg1_type	= ARG_ANYTHING,
 891};
 892
 893BPF_CALL_1(bpf_send_signal_thread, u32, sig)
 894{
 895	return bpf_send_signal_common(sig, PIDTYPE_PID);
 896}
 897
 898static const struct bpf_func_proto bpf_send_signal_thread_proto = {
 899	.func		= bpf_send_signal_thread,
 900	.gpl_only	= false,
 901	.ret_type	= RET_INTEGER,
 902	.arg1_type	= ARG_ANYTHING,
 903};
 904
 905BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
 906{
 907	long len;
 908	char *p;
 909
 910	if (!sz)
 911		return 0;
 912
 913	p = d_path(path, buf, sz);
 914	if (IS_ERR(p)) {
 915		len = PTR_ERR(p);
 916	} else {
 917		len = buf + sz - p;
 918		memmove(buf, p, len);
 919	}
 920
 921	return len;
 922}
 923
 924BTF_SET_START(btf_allowlist_d_path)
 925#ifdef CONFIG_SECURITY
 926BTF_ID(func, security_file_permission)
 927BTF_ID(func, security_inode_getattr)
 928BTF_ID(func, security_file_open)
 929#endif
 930#ifdef CONFIG_SECURITY_PATH
 931BTF_ID(func, security_path_truncate)
 932#endif
 933BTF_ID(func, vfs_truncate)
 934BTF_ID(func, vfs_fallocate)
 935BTF_ID(func, dentry_open)
 936BTF_ID(func, vfs_getattr)
 937BTF_ID(func, filp_close)
 938BTF_SET_END(btf_allowlist_d_path)
 939
 940static bool bpf_d_path_allowed(const struct bpf_prog *prog)
 941{
 942	if (prog->type == BPF_PROG_TYPE_TRACING &&
 943	    prog->expected_attach_type == BPF_TRACE_ITER)
 944		return true;
 945
 946	if (prog->type == BPF_PROG_TYPE_LSM)
 947		return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
 948
 949	return btf_id_set_contains(&btf_allowlist_d_path,
 950				   prog->aux->attach_btf_id);
 951}
 952
 953BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
 954
 955static const struct bpf_func_proto bpf_d_path_proto = {
 956	.func		= bpf_d_path,
 957	.gpl_only	= false,
 958	.ret_type	= RET_INTEGER,
 959	.arg1_type	= ARG_PTR_TO_BTF_ID,
 960	.arg1_btf_id	= &bpf_d_path_btf_ids[0],
 961	.arg2_type	= ARG_PTR_TO_MEM,
 962	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
 963	.allowed	= bpf_d_path_allowed,
 964};
 965
 966#define BTF_F_ALL	(BTF_F_COMPACT  | BTF_F_NONAME | \
 967			 BTF_F_PTR_RAW | BTF_F_ZERO)
 968
 969static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
 970				  u64 flags, const struct btf **btf,
 971				  s32 *btf_id)
 972{
 973	const struct btf_type *t;
 974
 975	if (unlikely(flags & ~(BTF_F_ALL)))
 976		return -EINVAL;
 977
 978	if (btf_ptr_size != sizeof(struct btf_ptr))
 979		return -EINVAL;
 980
 981	*btf = bpf_get_btf_vmlinux();
 982
 983	if (IS_ERR_OR_NULL(*btf))
 984		return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
 985
 986	if (ptr->type_id > 0)
 987		*btf_id = ptr->type_id;
 988	else
 989		return -EINVAL;
 990
 991	if (*btf_id > 0)
 992		t = btf_type_by_id(*btf, *btf_id);
 993	if (*btf_id <= 0 || !t)
 994		return -ENOENT;
 995
 996	return 0;
 997}
 998
 999BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
1000	   u32, btf_ptr_size, u64, flags)
1001{
1002	const struct btf *btf;
1003	s32 btf_id;
1004	int ret;
1005
1006	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
1007	if (ret)
1008		return ret;
1009
1010	return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
1011				      flags);
1012}
1013
1014const struct bpf_func_proto bpf_snprintf_btf_proto = {
1015	.func		= bpf_snprintf_btf,
1016	.gpl_only	= false,
1017	.ret_type	= RET_INTEGER,
1018	.arg1_type	= ARG_PTR_TO_MEM,
1019	.arg2_type	= ARG_CONST_SIZE,
1020	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1021	.arg4_type	= ARG_CONST_SIZE,
1022	.arg5_type	= ARG_ANYTHING,
1023};
1024
1025BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
1026{
1027	/* This helper call is inlined by verifier. */
1028	return ((u64 *)ctx)[-2];
1029}
1030
1031static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
1032	.func		= bpf_get_func_ip_tracing,
1033	.gpl_only	= true,
1034	.ret_type	= RET_INTEGER,
1035	.arg1_type	= ARG_PTR_TO_CTX,
1036};
1037
1038#ifdef CONFIG_X86_KERNEL_IBT
1039static unsigned long get_entry_ip(unsigned long fentry_ip)
1040{
1041	u32 instr;
1042
1043	/* Being extra safe in here in case entry ip is on the page-edge. */
1044	if (get_kernel_nofault(instr, (u32 *) fentry_ip - 1))
1045		return fentry_ip;
1046	if (is_endbr(instr))
1047		fentry_ip -= ENDBR_INSN_SIZE;
1048	return fentry_ip;
1049}
1050#else
1051#define get_entry_ip(fentry_ip) fentry_ip
1052#endif
1053
1054BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
1055{
1056	struct kprobe *kp = kprobe_running();
1057
1058	if (!kp || !(kp->flags & KPROBE_FLAG_ON_FUNC_ENTRY))
1059		return 0;
1060
1061	return get_entry_ip((uintptr_t)kp->addr);
1062}
1063
1064static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
1065	.func		= bpf_get_func_ip_kprobe,
1066	.gpl_only	= true,
1067	.ret_type	= RET_INTEGER,
1068	.arg1_type	= ARG_PTR_TO_CTX,
1069};
1070
1071BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs)
1072{
1073	return bpf_kprobe_multi_entry_ip(current->bpf_ctx);
1074}
1075
1076static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = {
1077	.func		= bpf_get_func_ip_kprobe_multi,
1078	.gpl_only	= false,
1079	.ret_type	= RET_INTEGER,
1080	.arg1_type	= ARG_PTR_TO_CTX,
1081};
1082
1083BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs)
1084{
1085	return bpf_kprobe_multi_cookie(current->bpf_ctx);
1086}
1087
1088static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = {
1089	.func		= bpf_get_attach_cookie_kprobe_multi,
1090	.gpl_only	= false,
1091	.ret_type	= RET_INTEGER,
1092	.arg1_type	= ARG_PTR_TO_CTX,
1093};
1094
1095BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx)
1096{
1097	struct bpf_trace_run_ctx *run_ctx;
1098
1099	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1100	return run_ctx->bpf_cookie;
1101}
1102
1103static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = {
1104	.func		= bpf_get_attach_cookie_trace,
1105	.gpl_only	= false,
1106	.ret_type	= RET_INTEGER,
1107	.arg1_type	= ARG_PTR_TO_CTX,
1108};
1109
1110BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx)
1111{
1112	return ctx->event->bpf_cookie;
1113}
1114
1115static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = {
1116	.func		= bpf_get_attach_cookie_pe,
1117	.gpl_only	= false,
1118	.ret_type	= RET_INTEGER,
1119	.arg1_type	= ARG_PTR_TO_CTX,
1120};
1121
1122BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx)
1123{
1124	struct bpf_trace_run_ctx *run_ctx;
1125
1126	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1127	return run_ctx->bpf_cookie;
1128}
1129
1130static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = {
1131	.func		= bpf_get_attach_cookie_tracing,
1132	.gpl_only	= false,
1133	.ret_type	= RET_INTEGER,
1134	.arg1_type	= ARG_PTR_TO_CTX,
1135};
1136
1137BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags)
1138{
1139#ifndef CONFIG_X86
1140	return -ENOENT;
1141#else
1142	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1143	u32 entry_cnt = size / br_entry_size;
1144
1145	entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt);
1146
1147	if (unlikely(flags))
1148		return -EINVAL;
1149
1150	if (!entry_cnt)
1151		return -ENOENT;
1152
1153	return entry_cnt * br_entry_size;
1154#endif
1155}
1156
1157static const struct bpf_func_proto bpf_get_branch_snapshot_proto = {
1158	.func		= bpf_get_branch_snapshot,
1159	.gpl_only	= true,
1160	.ret_type	= RET_INTEGER,
1161	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1162	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1163};
1164
1165BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value)
1166{
1167	/* This helper call is inlined by verifier. */
1168	u64 nr_args = ((u64 *)ctx)[-1];
1169
1170	if ((u64) n >= nr_args)
1171		return -EINVAL;
1172	*value = ((u64 *)ctx)[n];
1173	return 0;
1174}
1175
1176static const struct bpf_func_proto bpf_get_func_arg_proto = {
1177	.func		= get_func_arg,
1178	.ret_type	= RET_INTEGER,
1179	.arg1_type	= ARG_PTR_TO_CTX,
1180	.arg2_type	= ARG_ANYTHING,
1181	.arg3_type	= ARG_PTR_TO_LONG,
1182};
1183
1184BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value)
1185{
1186	/* This helper call is inlined by verifier. */
1187	u64 nr_args = ((u64 *)ctx)[-1];
1188
1189	*value = ((u64 *)ctx)[nr_args];
1190	return 0;
1191}
1192
1193static const struct bpf_func_proto bpf_get_func_ret_proto = {
1194	.func		= get_func_ret,
1195	.ret_type	= RET_INTEGER,
1196	.arg1_type	= ARG_PTR_TO_CTX,
1197	.arg2_type	= ARG_PTR_TO_LONG,
1198};
1199
1200BPF_CALL_1(get_func_arg_cnt, void *, ctx)
1201{
1202	/* This helper call is inlined by verifier. */
1203	return ((u64 *)ctx)[-1];
1204}
1205
1206static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = {
1207	.func		= get_func_arg_cnt,
1208	.ret_type	= RET_INTEGER,
1209	.arg1_type	= ARG_PTR_TO_CTX,
1210};
1211
1212#ifdef CONFIG_KEYS
1213__diag_push();
1214__diag_ignore_all("-Wmissing-prototypes",
1215		  "kfuncs which will be used in BPF programs");
1216
1217/**
1218 * bpf_lookup_user_key - lookup a key by its serial
1219 * @serial: key handle serial number
1220 * @flags: lookup-specific flags
1221 *
1222 * Search a key with a given *serial* and the provided *flags*.
1223 * If found, increment the reference count of the key by one, and
1224 * return it in the bpf_key structure.
1225 *
1226 * The bpf_key structure must be passed to bpf_key_put() when done
1227 * with it, so that the key reference count is decremented and the
1228 * bpf_key structure is freed.
1229 *
1230 * Permission checks are deferred to the time the key is used by
1231 * one of the available key-specific kfuncs.
1232 *
1233 * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested
1234 * special keyring (e.g. session keyring), if it doesn't yet exist.
1235 * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting
1236 * for the key construction, and to retrieve uninstantiated keys (keys
1237 * without data attached to them).
1238 *
1239 * Return: a bpf_key pointer with a valid key pointer if the key is found, a
1240 *         NULL pointer otherwise.
1241 */
1242struct bpf_key *bpf_lookup_user_key(u32 serial, u64 flags)
1243{
1244	key_ref_t key_ref;
1245	struct bpf_key *bkey;
1246
1247	if (flags & ~KEY_LOOKUP_ALL)
1248		return NULL;
1249
1250	/*
1251	 * Permission check is deferred until the key is used, as the
1252	 * intent of the caller is unknown here.
1253	 */
1254	key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK);
1255	if (IS_ERR(key_ref))
1256		return NULL;
1257
1258	bkey = kmalloc(sizeof(*bkey), GFP_KERNEL);
1259	if (!bkey) {
1260		key_put(key_ref_to_ptr(key_ref));
1261		return NULL;
1262	}
1263
1264	bkey->key = key_ref_to_ptr(key_ref);
1265	bkey->has_ref = true;
1266
1267	return bkey;
1268}
1269
1270/**
1271 * bpf_lookup_system_key - lookup a key by a system-defined ID
1272 * @id: key ID
1273 *
1274 * Obtain a bpf_key structure with a key pointer set to the passed key ID.
1275 * The key pointer is marked as invalid, to prevent bpf_key_put() from
1276 * attempting to decrement the key reference count on that pointer. The key
1277 * pointer set in such way is currently understood only by
1278 * verify_pkcs7_signature().
1279 *
1280 * Set *id* to one of the values defined in include/linux/verification.h:
1281 * 0 for the primary keyring (immutable keyring of system keys);
1282 * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring
1283 * (where keys can be added only if they are vouched for by existing keys
1284 * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform
1285 * keyring (primarily used by the integrity subsystem to verify a kexec'ed
1286 * kerned image and, possibly, the initramfs signature).
1287 *
1288 * Return: a bpf_key pointer with an invalid key pointer set from the
1289 *         pre-determined ID on success, a NULL pointer otherwise
1290 */
1291struct bpf_key *bpf_lookup_system_key(u64 id)
1292{
1293	struct bpf_key *bkey;
1294
1295	if (system_keyring_id_check(id) < 0)
1296		return NULL;
1297
1298	bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC);
1299	if (!bkey)
1300		return NULL;
1301
1302	bkey->key = (struct key *)(unsigned long)id;
1303	bkey->has_ref = false;
1304
1305	return bkey;
1306}
1307
1308/**
1309 * bpf_key_put - decrement key reference count if key is valid and free bpf_key
1310 * @bkey: bpf_key structure
1311 *
1312 * Decrement the reference count of the key inside *bkey*, if the pointer
1313 * is valid, and free *bkey*.
1314 */
1315void bpf_key_put(struct bpf_key *bkey)
1316{
1317	if (bkey->has_ref)
1318		key_put(bkey->key);
1319
1320	kfree(bkey);
1321}
1322
1323#ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1324/**
1325 * bpf_verify_pkcs7_signature - verify a PKCS#7 signature
1326 * @data_ptr: data to verify
1327 * @sig_ptr: signature of the data
1328 * @trusted_keyring: keyring with keys trusted for signature verification
1329 *
1330 * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr*
1331 * with keys in a keyring referenced by *trusted_keyring*.
1332 *
1333 * Return: 0 on success, a negative value on error.
1334 */
1335int bpf_verify_pkcs7_signature(struct bpf_dynptr_kern *data_ptr,
1336			       struct bpf_dynptr_kern *sig_ptr,
1337			       struct bpf_key *trusted_keyring)
1338{
1339	int ret;
1340
1341	if (trusted_keyring->has_ref) {
1342		/*
1343		 * Do the permission check deferred in bpf_lookup_user_key().
1344		 * See bpf_lookup_user_key() for more details.
1345		 *
1346		 * A call to key_task_permission() here would be redundant, as
1347		 * it is already done by keyring_search() called by
1348		 * find_asymmetric_key().
1349		 */
1350		ret = key_validate(trusted_keyring->key);
1351		if (ret < 0)
1352			return ret;
1353	}
1354
1355	return verify_pkcs7_signature(data_ptr->data,
1356				      bpf_dynptr_get_size(data_ptr),
1357				      sig_ptr->data,
1358				      bpf_dynptr_get_size(sig_ptr),
1359				      trusted_keyring->key,
1360				      VERIFYING_UNSPECIFIED_SIGNATURE, NULL,
1361				      NULL);
1362}
1363#endif /* CONFIG_SYSTEM_DATA_VERIFICATION */
1364
1365__diag_pop();
1366
1367BTF_SET8_START(key_sig_kfunc_set)
1368BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE)
1369BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL)
1370BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE)
1371#ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1372BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE)
1373#endif
1374BTF_SET8_END(key_sig_kfunc_set)
1375
1376static const struct btf_kfunc_id_set bpf_key_sig_kfunc_set = {
1377	.owner = THIS_MODULE,
1378	.set = &key_sig_kfunc_set,
1379};
1380
1381static int __init bpf_key_sig_kfuncs_init(void)
1382{
1383	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
1384					 &bpf_key_sig_kfunc_set);
1385}
1386
1387late_initcall(bpf_key_sig_kfuncs_init);
1388#endif /* CONFIG_KEYS */
1389
1390static const struct bpf_func_proto *
1391bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1392{
1393	switch (func_id) {
1394	case BPF_FUNC_map_lookup_elem:
1395		return &bpf_map_lookup_elem_proto;
1396	case BPF_FUNC_map_update_elem:
1397		return &bpf_map_update_elem_proto;
1398	case BPF_FUNC_map_delete_elem:
1399		return &bpf_map_delete_elem_proto;
1400	case BPF_FUNC_map_push_elem:
1401		return &bpf_map_push_elem_proto;
1402	case BPF_FUNC_map_pop_elem:
1403		return &bpf_map_pop_elem_proto;
1404	case BPF_FUNC_map_peek_elem:
1405		return &bpf_map_peek_elem_proto;
1406	case BPF_FUNC_map_lookup_percpu_elem:
1407		return &bpf_map_lookup_percpu_elem_proto;
1408	case BPF_FUNC_ktime_get_ns:
1409		return &bpf_ktime_get_ns_proto;
1410	case BPF_FUNC_ktime_get_boot_ns:
1411		return &bpf_ktime_get_boot_ns_proto;
 
 
1412	case BPF_FUNC_tail_call:
1413		return &bpf_tail_call_proto;
1414	case BPF_FUNC_get_current_pid_tgid:
1415		return &bpf_get_current_pid_tgid_proto;
1416	case BPF_FUNC_get_current_task:
1417		return &bpf_get_current_task_proto;
1418	case BPF_FUNC_get_current_task_btf:
1419		return &bpf_get_current_task_btf_proto;
1420	case BPF_FUNC_task_pt_regs:
1421		return &bpf_task_pt_regs_proto;
1422	case BPF_FUNC_get_current_uid_gid:
1423		return &bpf_get_current_uid_gid_proto;
1424	case BPF_FUNC_get_current_comm:
1425		return &bpf_get_current_comm_proto;
1426	case BPF_FUNC_trace_printk:
1427		return bpf_get_trace_printk_proto();
1428	case BPF_FUNC_get_smp_processor_id:
1429		return &bpf_get_smp_processor_id_proto;
1430	case BPF_FUNC_get_numa_node_id:
1431		return &bpf_get_numa_node_id_proto;
1432	case BPF_FUNC_perf_event_read:
1433		return &bpf_perf_event_read_proto;
1434	case BPF_FUNC_current_task_under_cgroup:
1435		return &bpf_current_task_under_cgroup_proto;
1436	case BPF_FUNC_get_prandom_u32:
1437		return &bpf_get_prandom_u32_proto;
1438	case BPF_FUNC_probe_write_user:
1439		return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1440		       NULL : bpf_get_probe_write_proto();
1441	case BPF_FUNC_probe_read_user:
1442		return &bpf_probe_read_user_proto;
1443	case BPF_FUNC_probe_read_kernel:
1444		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1445		       NULL : &bpf_probe_read_kernel_proto;
1446	case BPF_FUNC_probe_read_user_str:
1447		return &bpf_probe_read_user_str_proto;
1448	case BPF_FUNC_probe_read_kernel_str:
1449		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1450		       NULL : &bpf_probe_read_kernel_str_proto;
1451#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1452	case BPF_FUNC_probe_read:
1453		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1454		       NULL : &bpf_probe_read_compat_proto;
1455	case BPF_FUNC_probe_read_str:
1456		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1457		       NULL : &bpf_probe_read_compat_str_proto;
1458#endif
1459#ifdef CONFIG_CGROUPS
1460	case BPF_FUNC_get_current_cgroup_id:
1461		return &bpf_get_current_cgroup_id_proto;
1462	case BPF_FUNC_get_current_ancestor_cgroup_id:
1463		return &bpf_get_current_ancestor_cgroup_id_proto;
1464	case BPF_FUNC_cgrp_storage_get:
1465		return &bpf_cgrp_storage_get_proto;
1466	case BPF_FUNC_cgrp_storage_delete:
1467		return &bpf_cgrp_storage_delete_proto;
1468#endif
1469	case BPF_FUNC_send_signal:
1470		return &bpf_send_signal_proto;
1471	case BPF_FUNC_send_signal_thread:
1472		return &bpf_send_signal_thread_proto;
1473	case BPF_FUNC_perf_event_read_value:
1474		return &bpf_perf_event_read_value_proto;
1475	case BPF_FUNC_get_ns_current_pid_tgid:
1476		return &bpf_get_ns_current_pid_tgid_proto;
1477	case BPF_FUNC_ringbuf_output:
1478		return &bpf_ringbuf_output_proto;
1479	case BPF_FUNC_ringbuf_reserve:
1480		return &bpf_ringbuf_reserve_proto;
1481	case BPF_FUNC_ringbuf_submit:
1482		return &bpf_ringbuf_submit_proto;
1483	case BPF_FUNC_ringbuf_discard:
1484		return &bpf_ringbuf_discard_proto;
1485	case BPF_FUNC_ringbuf_query:
1486		return &bpf_ringbuf_query_proto;
1487	case BPF_FUNC_jiffies64:
1488		return &bpf_jiffies64_proto;
1489	case BPF_FUNC_get_task_stack:
1490		return &bpf_get_task_stack_proto;
1491	case BPF_FUNC_copy_from_user:
1492		return &bpf_copy_from_user_proto;
1493	case BPF_FUNC_copy_from_user_task:
1494		return &bpf_copy_from_user_task_proto;
1495	case BPF_FUNC_snprintf_btf:
1496		return &bpf_snprintf_btf_proto;
1497	case BPF_FUNC_per_cpu_ptr:
1498		return &bpf_per_cpu_ptr_proto;
1499	case BPF_FUNC_this_cpu_ptr:
1500		return &bpf_this_cpu_ptr_proto;
1501	case BPF_FUNC_task_storage_get:
1502		if (bpf_prog_check_recur(prog))
1503			return &bpf_task_storage_get_recur_proto;
1504		return &bpf_task_storage_get_proto;
1505	case BPF_FUNC_task_storage_delete:
1506		if (bpf_prog_check_recur(prog))
1507			return &bpf_task_storage_delete_recur_proto;
1508		return &bpf_task_storage_delete_proto;
1509	case BPF_FUNC_for_each_map_elem:
1510		return &bpf_for_each_map_elem_proto;
1511	case BPF_FUNC_snprintf:
1512		return &bpf_snprintf_proto;
1513	case BPF_FUNC_get_func_ip:
1514		return &bpf_get_func_ip_proto_tracing;
1515	case BPF_FUNC_get_branch_snapshot:
1516		return &bpf_get_branch_snapshot_proto;
1517	case BPF_FUNC_find_vma:
1518		return &bpf_find_vma_proto;
1519	case BPF_FUNC_trace_vprintk:
1520		return bpf_get_trace_vprintk_proto();
1521	default:
1522		return bpf_base_func_proto(func_id);
1523	}
1524}
1525
1526static const struct bpf_func_proto *
1527kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1528{
1529	switch (func_id) {
1530	case BPF_FUNC_perf_event_output:
1531		return &bpf_perf_event_output_proto;
1532	case BPF_FUNC_get_stackid:
1533		return &bpf_get_stackid_proto;
1534	case BPF_FUNC_get_stack:
1535		return &bpf_get_stack_proto;
1536#ifdef CONFIG_BPF_KPROBE_OVERRIDE
1537	case BPF_FUNC_override_return:
1538		return &bpf_override_return_proto;
1539#endif
1540	case BPF_FUNC_get_func_ip:
1541		return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ?
1542			&bpf_get_func_ip_proto_kprobe_multi :
1543			&bpf_get_func_ip_proto_kprobe;
1544	case BPF_FUNC_get_attach_cookie:
1545		return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ?
1546			&bpf_get_attach_cookie_proto_kmulti :
1547			&bpf_get_attach_cookie_proto_trace;
1548	default:
1549		return bpf_tracing_func_proto(func_id, prog);
1550	}
1551}
1552
1553/* bpf+kprobe programs can access fields of 'struct pt_regs' */
1554static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1555					const struct bpf_prog *prog,
1556					struct bpf_insn_access_aux *info)
1557{
1558	if (off < 0 || off >= sizeof(struct pt_regs))
1559		return false;
1560	if (type != BPF_READ)
1561		return false;
1562	if (off % size != 0)
1563		return false;
1564	/*
1565	 * Assertion for 32 bit to make sure last 8 byte access
1566	 * (BPF_DW) to the last 4 byte member is disallowed.
1567	 */
1568	if (off + size > sizeof(struct pt_regs))
1569		return false;
1570
1571	return true;
1572}
1573
1574const struct bpf_verifier_ops kprobe_verifier_ops = {
1575	.get_func_proto  = kprobe_prog_func_proto,
1576	.is_valid_access = kprobe_prog_is_valid_access,
1577};
1578
1579const struct bpf_prog_ops kprobe_prog_ops = {
1580};
1581
1582BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1583	   u64, flags, void *, data, u64, size)
1584{
1585	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1586
1587	/*
1588	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1589	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1590	 * from there and call the same bpf_perf_event_output() helper inline.
1591	 */
1592	return ____bpf_perf_event_output(regs, map, flags, data, size);
1593}
1594
1595static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1596	.func		= bpf_perf_event_output_tp,
1597	.gpl_only	= true,
1598	.ret_type	= RET_INTEGER,
1599	.arg1_type	= ARG_PTR_TO_CTX,
1600	.arg2_type	= ARG_CONST_MAP_PTR,
1601	.arg3_type	= ARG_ANYTHING,
1602	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1603	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1604};
1605
1606BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1607	   u64, flags)
1608{
1609	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1610
1611	/*
1612	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1613	 * the other helper's function body cannot be inlined due to being
1614	 * external, thus we need to call raw helper function.
1615	 */
1616	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1617			       flags, 0, 0);
1618}
1619
1620static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1621	.func		= bpf_get_stackid_tp,
1622	.gpl_only	= true,
1623	.ret_type	= RET_INTEGER,
1624	.arg1_type	= ARG_PTR_TO_CTX,
1625	.arg2_type	= ARG_CONST_MAP_PTR,
1626	.arg3_type	= ARG_ANYTHING,
1627};
1628
1629BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1630	   u64, flags)
1631{
1632	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1633
1634	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1635			     (unsigned long) size, flags, 0);
1636}
1637
1638static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1639	.func		= bpf_get_stack_tp,
1640	.gpl_only	= true,
1641	.ret_type	= RET_INTEGER,
1642	.arg1_type	= ARG_PTR_TO_CTX,
1643	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1644	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1645	.arg4_type	= ARG_ANYTHING,
1646};
1647
1648static const struct bpf_func_proto *
1649tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1650{
1651	switch (func_id) {
1652	case BPF_FUNC_perf_event_output:
1653		return &bpf_perf_event_output_proto_tp;
1654	case BPF_FUNC_get_stackid:
1655		return &bpf_get_stackid_proto_tp;
1656	case BPF_FUNC_get_stack:
1657		return &bpf_get_stack_proto_tp;
1658	case BPF_FUNC_get_attach_cookie:
1659		return &bpf_get_attach_cookie_proto_trace;
1660	default:
1661		return bpf_tracing_func_proto(func_id, prog);
1662	}
1663}
1664
1665static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1666				    const struct bpf_prog *prog,
1667				    struct bpf_insn_access_aux *info)
1668{
1669	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1670		return false;
1671	if (type != BPF_READ)
1672		return false;
1673	if (off % size != 0)
1674		return false;
1675
1676	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1677	return true;
1678}
1679
1680const struct bpf_verifier_ops tracepoint_verifier_ops = {
1681	.get_func_proto  = tp_prog_func_proto,
1682	.is_valid_access = tp_prog_is_valid_access,
1683};
1684
1685const struct bpf_prog_ops tracepoint_prog_ops = {
1686};
1687
1688BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1689	   struct bpf_perf_event_value *, buf, u32, size)
1690{
1691	int err = -EINVAL;
1692
1693	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1694		goto clear;
1695	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1696				    &buf->running);
1697	if (unlikely(err))
1698		goto clear;
1699	return 0;
1700clear:
1701	memset(buf, 0, size);
1702	return err;
1703}
1704
1705static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1706         .func           = bpf_perf_prog_read_value,
1707         .gpl_only       = true,
1708         .ret_type       = RET_INTEGER,
1709         .arg1_type      = ARG_PTR_TO_CTX,
1710         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1711         .arg3_type      = ARG_CONST_SIZE,
1712};
1713
1714BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1715	   void *, buf, u32, size, u64, flags)
1716{
 
 
 
1717	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1718	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1719	u32 to_copy;
1720
1721	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1722		return -EINVAL;
1723
1724	if (unlikely(!(ctx->data->sample_flags & PERF_SAMPLE_BRANCH_STACK)))
1725		return -ENOENT;
1726
1727	if (unlikely(!br_stack))
1728		return -ENOENT;
1729
1730	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1731		return br_stack->nr * br_entry_size;
1732
1733	if (!buf || (size % br_entry_size != 0))
1734		return -EINVAL;
1735
1736	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1737	memcpy(buf, br_stack->entries, to_copy);
1738
1739	return to_copy;
 
1740}
1741
1742static const struct bpf_func_proto bpf_read_branch_records_proto = {
1743	.func           = bpf_read_branch_records,
1744	.gpl_only       = true,
1745	.ret_type       = RET_INTEGER,
1746	.arg1_type      = ARG_PTR_TO_CTX,
1747	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1748	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1749	.arg4_type      = ARG_ANYTHING,
1750};
1751
1752static const struct bpf_func_proto *
1753pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1754{
1755	switch (func_id) {
1756	case BPF_FUNC_perf_event_output:
1757		return &bpf_perf_event_output_proto_tp;
1758	case BPF_FUNC_get_stackid:
1759		return &bpf_get_stackid_proto_pe;
1760	case BPF_FUNC_get_stack:
1761		return &bpf_get_stack_proto_pe;
1762	case BPF_FUNC_perf_prog_read_value:
1763		return &bpf_perf_prog_read_value_proto;
1764	case BPF_FUNC_read_branch_records:
1765		return &bpf_read_branch_records_proto;
1766	case BPF_FUNC_get_attach_cookie:
1767		return &bpf_get_attach_cookie_proto_pe;
1768	default:
1769		return bpf_tracing_func_proto(func_id, prog);
1770	}
1771}
1772
1773/*
1774 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1775 * to avoid potential recursive reuse issue when/if tracepoints are added
1776 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1777 *
1778 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1779 * in normal, irq, and nmi context.
1780 */
1781struct bpf_raw_tp_regs {
1782	struct pt_regs regs[3];
1783};
1784static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1785static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1786static struct pt_regs *get_bpf_raw_tp_regs(void)
1787{
1788	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1789	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1790
1791	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1792		this_cpu_dec(bpf_raw_tp_nest_level);
1793		return ERR_PTR(-EBUSY);
1794	}
1795
1796	return &tp_regs->regs[nest_level - 1];
1797}
1798
1799static void put_bpf_raw_tp_regs(void)
1800{
1801	this_cpu_dec(bpf_raw_tp_nest_level);
1802}
1803
1804BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1805	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1806{
1807	struct pt_regs *regs = get_bpf_raw_tp_regs();
1808	int ret;
1809
1810	if (IS_ERR(regs))
1811		return PTR_ERR(regs);
1812
1813	perf_fetch_caller_regs(regs);
1814	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1815
1816	put_bpf_raw_tp_regs();
1817	return ret;
1818}
1819
1820static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1821	.func		= bpf_perf_event_output_raw_tp,
1822	.gpl_only	= true,
1823	.ret_type	= RET_INTEGER,
1824	.arg1_type	= ARG_PTR_TO_CTX,
1825	.arg2_type	= ARG_CONST_MAP_PTR,
1826	.arg3_type	= ARG_ANYTHING,
1827	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1828	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1829};
1830
1831extern const struct bpf_func_proto bpf_skb_output_proto;
1832extern const struct bpf_func_proto bpf_xdp_output_proto;
1833extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto;
1834
1835BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1836	   struct bpf_map *, map, u64, flags)
1837{
1838	struct pt_regs *regs = get_bpf_raw_tp_regs();
1839	int ret;
1840
1841	if (IS_ERR(regs))
1842		return PTR_ERR(regs);
1843
1844	perf_fetch_caller_regs(regs);
1845	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1846	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1847			      flags, 0, 0);
1848	put_bpf_raw_tp_regs();
1849	return ret;
1850}
1851
1852static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1853	.func		= bpf_get_stackid_raw_tp,
1854	.gpl_only	= true,
1855	.ret_type	= RET_INTEGER,
1856	.arg1_type	= ARG_PTR_TO_CTX,
1857	.arg2_type	= ARG_CONST_MAP_PTR,
1858	.arg3_type	= ARG_ANYTHING,
1859};
1860
1861BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1862	   void *, buf, u32, size, u64, flags)
1863{
1864	struct pt_regs *regs = get_bpf_raw_tp_regs();
1865	int ret;
1866
1867	if (IS_ERR(regs))
1868		return PTR_ERR(regs);
1869
1870	perf_fetch_caller_regs(regs);
1871	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1872			    (unsigned long) size, flags, 0);
1873	put_bpf_raw_tp_regs();
1874	return ret;
1875}
1876
1877static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1878	.func		= bpf_get_stack_raw_tp,
1879	.gpl_only	= true,
1880	.ret_type	= RET_INTEGER,
1881	.arg1_type	= ARG_PTR_TO_CTX,
1882	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1883	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1884	.arg4_type	= ARG_ANYTHING,
1885};
1886
1887static const struct bpf_func_proto *
1888raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1889{
1890	switch (func_id) {
1891	case BPF_FUNC_perf_event_output:
1892		return &bpf_perf_event_output_proto_raw_tp;
1893	case BPF_FUNC_get_stackid:
1894		return &bpf_get_stackid_proto_raw_tp;
1895	case BPF_FUNC_get_stack:
1896		return &bpf_get_stack_proto_raw_tp;
1897	default:
1898		return bpf_tracing_func_proto(func_id, prog);
1899	}
1900}
1901
1902const struct bpf_func_proto *
1903tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1904{
1905	const struct bpf_func_proto *fn;
1906
1907	switch (func_id) {
1908#ifdef CONFIG_NET
1909	case BPF_FUNC_skb_output:
1910		return &bpf_skb_output_proto;
1911	case BPF_FUNC_xdp_output:
1912		return &bpf_xdp_output_proto;
1913	case BPF_FUNC_skc_to_tcp6_sock:
1914		return &bpf_skc_to_tcp6_sock_proto;
1915	case BPF_FUNC_skc_to_tcp_sock:
1916		return &bpf_skc_to_tcp_sock_proto;
1917	case BPF_FUNC_skc_to_tcp_timewait_sock:
1918		return &bpf_skc_to_tcp_timewait_sock_proto;
1919	case BPF_FUNC_skc_to_tcp_request_sock:
1920		return &bpf_skc_to_tcp_request_sock_proto;
1921	case BPF_FUNC_skc_to_udp6_sock:
1922		return &bpf_skc_to_udp6_sock_proto;
1923	case BPF_FUNC_skc_to_unix_sock:
1924		return &bpf_skc_to_unix_sock_proto;
1925	case BPF_FUNC_skc_to_mptcp_sock:
1926		return &bpf_skc_to_mptcp_sock_proto;
1927	case BPF_FUNC_sk_storage_get:
1928		return &bpf_sk_storage_get_tracing_proto;
1929	case BPF_FUNC_sk_storage_delete:
1930		return &bpf_sk_storage_delete_tracing_proto;
1931	case BPF_FUNC_sock_from_file:
1932		return &bpf_sock_from_file_proto;
1933	case BPF_FUNC_get_socket_cookie:
1934		return &bpf_get_socket_ptr_cookie_proto;
1935	case BPF_FUNC_xdp_get_buff_len:
1936		return &bpf_xdp_get_buff_len_trace_proto;
1937#endif
1938	case BPF_FUNC_seq_printf:
1939		return prog->expected_attach_type == BPF_TRACE_ITER ?
1940		       &bpf_seq_printf_proto :
1941		       NULL;
1942	case BPF_FUNC_seq_write:
1943		return prog->expected_attach_type == BPF_TRACE_ITER ?
1944		       &bpf_seq_write_proto :
1945		       NULL;
1946	case BPF_FUNC_seq_printf_btf:
1947		return prog->expected_attach_type == BPF_TRACE_ITER ?
1948		       &bpf_seq_printf_btf_proto :
1949		       NULL;
1950	case BPF_FUNC_d_path:
1951		return &bpf_d_path_proto;
1952	case BPF_FUNC_get_func_arg:
1953		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL;
1954	case BPF_FUNC_get_func_ret:
1955		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL;
1956	case BPF_FUNC_get_func_arg_cnt:
1957		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL;
1958	case BPF_FUNC_get_attach_cookie:
1959		return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL;
1960	default:
1961		fn = raw_tp_prog_func_proto(func_id, prog);
1962		if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
1963			fn = bpf_iter_get_func_proto(func_id, prog);
1964		return fn;
1965	}
1966}
1967
1968static bool raw_tp_prog_is_valid_access(int off, int size,
1969					enum bpf_access_type type,
1970					const struct bpf_prog *prog,
1971					struct bpf_insn_access_aux *info)
1972{
1973	return bpf_tracing_ctx_access(off, size, type);
 
 
 
 
 
 
1974}
1975
1976static bool tracing_prog_is_valid_access(int off, int size,
1977					 enum bpf_access_type type,
1978					 const struct bpf_prog *prog,
1979					 struct bpf_insn_access_aux *info)
1980{
1981	return bpf_tracing_btf_ctx_access(off, size, type, prog, info);
 
 
 
 
 
 
1982}
1983
1984int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1985				     const union bpf_attr *kattr,
1986				     union bpf_attr __user *uattr)
1987{
1988	return -ENOTSUPP;
1989}
1990
1991const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1992	.get_func_proto  = raw_tp_prog_func_proto,
1993	.is_valid_access = raw_tp_prog_is_valid_access,
1994};
1995
1996const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1997#ifdef CONFIG_NET
1998	.test_run = bpf_prog_test_run_raw_tp,
1999#endif
2000};
2001
2002const struct bpf_verifier_ops tracing_verifier_ops = {
2003	.get_func_proto  = tracing_prog_func_proto,
2004	.is_valid_access = tracing_prog_is_valid_access,
2005};
2006
2007const struct bpf_prog_ops tracing_prog_ops = {
2008	.test_run = bpf_prog_test_run_tracing,
2009};
2010
2011static bool raw_tp_writable_prog_is_valid_access(int off, int size,
2012						 enum bpf_access_type type,
2013						 const struct bpf_prog *prog,
2014						 struct bpf_insn_access_aux *info)
2015{
2016	if (off == 0) {
2017		if (size != sizeof(u64) || type != BPF_READ)
2018			return false;
2019		info->reg_type = PTR_TO_TP_BUFFER;
2020	}
2021	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
2022}
2023
2024const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
2025	.get_func_proto  = raw_tp_prog_func_proto,
2026	.is_valid_access = raw_tp_writable_prog_is_valid_access,
2027};
2028
2029const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
2030};
2031
2032static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
2033				    const struct bpf_prog *prog,
2034				    struct bpf_insn_access_aux *info)
2035{
2036	const int size_u64 = sizeof(u64);
2037
2038	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
2039		return false;
2040	if (type != BPF_READ)
2041		return false;
2042	if (off % size != 0) {
2043		if (sizeof(unsigned long) != 4)
2044			return false;
2045		if (size != 8)
2046			return false;
2047		if (off % size != 4)
2048			return false;
2049	}
2050
2051	switch (off) {
2052	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
2053		bpf_ctx_record_field_size(info, size_u64);
2054		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2055			return false;
2056		break;
2057	case bpf_ctx_range(struct bpf_perf_event_data, addr):
2058		bpf_ctx_record_field_size(info, size_u64);
2059		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2060			return false;
2061		break;
2062	default:
2063		if (size != sizeof(long))
2064			return false;
2065	}
2066
2067	return true;
2068}
2069
2070static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
2071				      const struct bpf_insn *si,
2072				      struct bpf_insn *insn_buf,
2073				      struct bpf_prog *prog, u32 *target_size)
2074{
2075	struct bpf_insn *insn = insn_buf;
2076
2077	switch (si->off) {
2078	case offsetof(struct bpf_perf_event_data, sample_period):
2079		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2080						       data), si->dst_reg, si->src_reg,
2081				      offsetof(struct bpf_perf_event_data_kern, data));
2082		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2083				      bpf_target_off(struct perf_sample_data, period, 8,
2084						     target_size));
2085		break;
2086	case offsetof(struct bpf_perf_event_data, addr):
2087		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2088						       data), si->dst_reg, si->src_reg,
2089				      offsetof(struct bpf_perf_event_data_kern, data));
2090		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2091				      bpf_target_off(struct perf_sample_data, addr, 8,
2092						     target_size));
2093		break;
2094	default:
2095		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2096						       regs), si->dst_reg, si->src_reg,
2097				      offsetof(struct bpf_perf_event_data_kern, regs));
2098		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
2099				      si->off);
2100		break;
2101	}
2102
2103	return insn - insn_buf;
2104}
2105
2106const struct bpf_verifier_ops perf_event_verifier_ops = {
2107	.get_func_proto		= pe_prog_func_proto,
2108	.is_valid_access	= pe_prog_is_valid_access,
2109	.convert_ctx_access	= pe_prog_convert_ctx_access,
2110};
2111
2112const struct bpf_prog_ops perf_event_prog_ops = {
2113};
2114
2115static DEFINE_MUTEX(bpf_event_mutex);
2116
2117#define BPF_TRACE_MAX_PROGS 64
2118
2119int perf_event_attach_bpf_prog(struct perf_event *event,
2120			       struct bpf_prog *prog,
2121			       u64 bpf_cookie)
2122{
2123	struct bpf_prog_array *old_array;
2124	struct bpf_prog_array *new_array;
2125	int ret = -EEXIST;
2126
2127	/*
2128	 * Kprobe override only works if they are on the function entry,
2129	 * and only if they are on the opt-in list.
2130	 */
2131	if (prog->kprobe_override &&
2132	    (!trace_kprobe_on_func_entry(event->tp_event) ||
2133	     !trace_kprobe_error_injectable(event->tp_event)))
2134		return -EINVAL;
2135
2136	mutex_lock(&bpf_event_mutex);
2137
2138	if (event->prog)
2139		goto unlock;
2140
2141	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2142	if (old_array &&
2143	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
2144		ret = -E2BIG;
2145		goto unlock;
2146	}
2147
2148	ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array);
2149	if (ret < 0)
2150		goto unlock;
2151
2152	/* set the new array to event->tp_event and set event->prog */
2153	event->prog = prog;
2154	event->bpf_cookie = bpf_cookie;
2155	rcu_assign_pointer(event->tp_event->prog_array, new_array);
2156	bpf_prog_array_free_sleepable(old_array);
2157
2158unlock:
2159	mutex_unlock(&bpf_event_mutex);
2160	return ret;
2161}
2162
2163void perf_event_detach_bpf_prog(struct perf_event *event)
2164{
2165	struct bpf_prog_array *old_array;
2166	struct bpf_prog_array *new_array;
2167	int ret;
2168
2169	mutex_lock(&bpf_event_mutex);
2170
2171	if (!event->prog)
2172		goto unlock;
2173
2174	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2175	ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
2176	if (ret == -ENOENT)
2177		goto unlock;
2178	if (ret < 0) {
2179		bpf_prog_array_delete_safe(old_array, event->prog);
2180	} else {
2181		rcu_assign_pointer(event->tp_event->prog_array, new_array);
2182		bpf_prog_array_free_sleepable(old_array);
2183	}
2184
2185	bpf_prog_put(event->prog);
2186	event->prog = NULL;
2187
2188unlock:
2189	mutex_unlock(&bpf_event_mutex);
2190}
2191
2192int perf_event_query_prog_array(struct perf_event *event, void __user *info)
2193{
2194	struct perf_event_query_bpf __user *uquery = info;
2195	struct perf_event_query_bpf query = {};
2196	struct bpf_prog_array *progs;
2197	u32 *ids, prog_cnt, ids_len;
2198	int ret;
2199
2200	if (!perfmon_capable())
2201		return -EPERM;
2202	if (event->attr.type != PERF_TYPE_TRACEPOINT)
2203		return -EINVAL;
2204	if (copy_from_user(&query, uquery, sizeof(query)))
2205		return -EFAULT;
2206
2207	ids_len = query.ids_len;
2208	if (ids_len > BPF_TRACE_MAX_PROGS)
2209		return -E2BIG;
2210	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
2211	if (!ids)
2212		return -ENOMEM;
2213	/*
2214	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
2215	 * is required when user only wants to check for uquery->prog_cnt.
2216	 * There is no need to check for it since the case is handled
2217	 * gracefully in bpf_prog_array_copy_info.
2218	 */
2219
2220	mutex_lock(&bpf_event_mutex);
2221	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
2222	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
2223	mutex_unlock(&bpf_event_mutex);
2224
2225	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
2226	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
2227		ret = -EFAULT;
2228
2229	kfree(ids);
2230	return ret;
2231}
2232
2233extern struct bpf_raw_event_map __start__bpf_raw_tp[];
2234extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
2235
2236struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
2237{
2238	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
2239
2240	for (; btp < __stop__bpf_raw_tp; btp++) {
2241		if (!strcmp(btp->tp->name, name))
2242			return btp;
2243	}
2244
2245	return bpf_get_raw_tracepoint_module(name);
2246}
2247
2248void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
2249{
2250	struct module *mod;
2251
2252	preempt_disable();
2253	mod = __module_address((unsigned long)btp);
2254	module_put(mod);
2255	preempt_enable();
2256}
2257
2258static __always_inline
2259void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
2260{
2261	cant_sleep();
2262	if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
2263		bpf_prog_inc_misses_counter(prog);
2264		goto out;
2265	}
2266	rcu_read_lock();
2267	(void) bpf_prog_run(prog, args);
2268	rcu_read_unlock();
2269out:
2270	this_cpu_dec(*(prog->active));
2271}
2272
2273#define UNPACK(...)			__VA_ARGS__
2274#define REPEAT_1(FN, DL, X, ...)	FN(X)
2275#define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
2276#define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
2277#define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
2278#define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
2279#define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
2280#define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
2281#define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
2282#define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
2283#define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
2284#define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
2285#define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
2286#define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
2287
2288#define SARG(X)		u64 arg##X
2289#define COPY(X)		args[X] = arg##X
2290
2291#define __DL_COM	(,)
2292#define __DL_SEM	(;)
2293
2294#define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2295
2296#define BPF_TRACE_DEFN_x(x)						\
2297	void bpf_trace_run##x(struct bpf_prog *prog,			\
2298			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
2299	{								\
2300		u64 args[x];						\
2301		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
2302		__bpf_trace_run(prog, args);				\
2303	}								\
2304	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
2305BPF_TRACE_DEFN_x(1);
2306BPF_TRACE_DEFN_x(2);
2307BPF_TRACE_DEFN_x(3);
2308BPF_TRACE_DEFN_x(4);
2309BPF_TRACE_DEFN_x(5);
2310BPF_TRACE_DEFN_x(6);
2311BPF_TRACE_DEFN_x(7);
2312BPF_TRACE_DEFN_x(8);
2313BPF_TRACE_DEFN_x(9);
2314BPF_TRACE_DEFN_x(10);
2315BPF_TRACE_DEFN_x(11);
2316BPF_TRACE_DEFN_x(12);
2317
2318static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2319{
2320	struct tracepoint *tp = btp->tp;
2321
2322	/*
2323	 * check that program doesn't access arguments beyond what's
2324	 * available in this tracepoint
2325	 */
2326	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
2327		return -EINVAL;
2328
2329	if (prog->aux->max_tp_access > btp->writable_size)
2330		return -EINVAL;
2331
2332	return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func,
2333						   prog);
2334}
2335
2336int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2337{
2338	return __bpf_probe_register(btp, prog);
2339}
2340
2341int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2342{
2343	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
2344}
2345
2346int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
2347			    u32 *fd_type, const char **buf,
2348			    u64 *probe_offset, u64 *probe_addr)
2349{
2350	bool is_tracepoint, is_syscall_tp;
2351	struct bpf_prog *prog;
2352	int flags, err = 0;
2353
2354	prog = event->prog;
2355	if (!prog)
2356		return -ENOENT;
2357
2358	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
2359	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
2360		return -EOPNOTSUPP;
2361
2362	*prog_id = prog->aux->id;
2363	flags = event->tp_event->flags;
2364	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
2365	is_syscall_tp = is_syscall_trace_event(event->tp_event);
2366
2367	if (is_tracepoint || is_syscall_tp) {
2368		*buf = is_tracepoint ? event->tp_event->tp->name
2369				     : event->tp_event->name;
2370		*fd_type = BPF_FD_TYPE_TRACEPOINT;
2371		*probe_offset = 0x0;
2372		*probe_addr = 0x0;
2373	} else {
2374		/* kprobe/uprobe */
2375		err = -EOPNOTSUPP;
2376#ifdef CONFIG_KPROBE_EVENTS
2377		if (flags & TRACE_EVENT_FL_KPROBE)
2378			err = bpf_get_kprobe_info(event, fd_type, buf,
2379						  probe_offset, probe_addr,
2380						  event->attr.type == PERF_TYPE_TRACEPOINT);
2381#endif
2382#ifdef CONFIG_UPROBE_EVENTS
2383		if (flags & TRACE_EVENT_FL_UPROBE)
2384			err = bpf_get_uprobe_info(event, fd_type, buf,
2385						  probe_offset,
2386						  event->attr.type == PERF_TYPE_TRACEPOINT);
2387#endif
2388	}
2389
2390	return err;
2391}
2392
2393static int __init send_signal_irq_work_init(void)
2394{
2395	int cpu;
2396	struct send_signal_irq_work *work;
2397
2398	for_each_possible_cpu(cpu) {
2399		work = per_cpu_ptr(&send_signal_work, cpu);
2400		init_irq_work(&work->irq_work, do_bpf_send_signal);
2401	}
2402	return 0;
2403}
2404
2405subsys_initcall(send_signal_irq_work_init);
2406
2407#ifdef CONFIG_MODULES
2408static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2409			    void *module)
2410{
2411	struct bpf_trace_module *btm, *tmp;
2412	struct module *mod = module;
2413	int ret = 0;
2414
2415	if (mod->num_bpf_raw_events == 0 ||
2416	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2417		goto out;
2418
2419	mutex_lock(&bpf_module_mutex);
2420
2421	switch (op) {
2422	case MODULE_STATE_COMING:
2423		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2424		if (btm) {
2425			btm->module = module;
2426			list_add(&btm->list, &bpf_trace_modules);
2427		} else {
2428			ret = -ENOMEM;
2429		}
2430		break;
2431	case MODULE_STATE_GOING:
2432		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2433			if (btm->module == module) {
2434				list_del(&btm->list);
2435				kfree(btm);
2436				break;
2437			}
2438		}
2439		break;
2440	}
2441
2442	mutex_unlock(&bpf_module_mutex);
2443
2444out:
2445	return notifier_from_errno(ret);
2446}
2447
2448static struct notifier_block bpf_module_nb = {
2449	.notifier_call = bpf_event_notify,
2450};
2451
2452static int __init bpf_event_init(void)
2453{
2454	register_module_notifier(&bpf_module_nb);
2455	return 0;
2456}
2457
2458fs_initcall(bpf_event_init);
2459#endif /* CONFIG_MODULES */
2460
2461#ifdef CONFIG_FPROBE
2462struct bpf_kprobe_multi_link {
2463	struct bpf_link link;
2464	struct fprobe fp;
2465	unsigned long *addrs;
2466	u64 *cookies;
2467	u32 cnt;
2468	u32 mods_cnt;
2469	struct module **mods;
2470};
2471
2472struct bpf_kprobe_multi_run_ctx {
2473	struct bpf_run_ctx run_ctx;
2474	struct bpf_kprobe_multi_link *link;
2475	unsigned long entry_ip;
2476};
2477
2478struct user_syms {
2479	const char **syms;
2480	char *buf;
2481};
2482
2483static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt)
2484{
2485	unsigned long __user usymbol;
2486	const char **syms = NULL;
2487	char *buf = NULL, *p;
2488	int err = -ENOMEM;
2489	unsigned int i;
2490
2491	syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL);
2492	if (!syms)
2493		goto error;
2494
2495	buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL);
2496	if (!buf)
2497		goto error;
2498
2499	for (p = buf, i = 0; i < cnt; i++) {
2500		if (__get_user(usymbol, usyms + i)) {
2501			err = -EFAULT;
2502			goto error;
2503		}
2504		err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN);
2505		if (err == KSYM_NAME_LEN)
2506			err = -E2BIG;
2507		if (err < 0)
2508			goto error;
2509		syms[i] = p;
2510		p += err + 1;
2511	}
2512
2513	us->syms = syms;
2514	us->buf = buf;
2515	return 0;
2516
2517error:
2518	if (err) {
2519		kvfree(syms);
2520		kvfree(buf);
2521	}
2522	return err;
2523}
2524
2525static void kprobe_multi_put_modules(struct module **mods, u32 cnt)
2526{
2527	u32 i;
2528
2529	for (i = 0; i < cnt; i++)
2530		module_put(mods[i]);
2531}
2532
2533static void free_user_syms(struct user_syms *us)
2534{
2535	kvfree(us->syms);
2536	kvfree(us->buf);
2537}
2538
2539static void bpf_kprobe_multi_link_release(struct bpf_link *link)
2540{
2541	struct bpf_kprobe_multi_link *kmulti_link;
2542
2543	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2544	unregister_fprobe(&kmulti_link->fp);
2545	kprobe_multi_put_modules(kmulti_link->mods, kmulti_link->mods_cnt);
2546}
2547
2548static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link)
2549{
2550	struct bpf_kprobe_multi_link *kmulti_link;
2551
2552	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2553	kvfree(kmulti_link->addrs);
2554	kvfree(kmulti_link->cookies);
2555	kfree(kmulti_link->mods);
2556	kfree(kmulti_link);
2557}
2558
2559static const struct bpf_link_ops bpf_kprobe_multi_link_lops = {
2560	.release = bpf_kprobe_multi_link_release,
2561	.dealloc = bpf_kprobe_multi_link_dealloc,
2562};
2563
2564static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv)
2565{
2566	const struct bpf_kprobe_multi_link *link = priv;
2567	unsigned long *addr_a = a, *addr_b = b;
2568	u64 *cookie_a, *cookie_b;
2569
2570	cookie_a = link->cookies + (addr_a - link->addrs);
2571	cookie_b = link->cookies + (addr_b - link->addrs);
2572
2573	/* swap addr_a/addr_b and cookie_a/cookie_b values */
2574	swap(*addr_a, *addr_b);
2575	swap(*cookie_a, *cookie_b);
2576}
2577
2578static int bpf_kprobe_multi_addrs_cmp(const void *a, const void *b)
2579{
2580	const unsigned long *addr_a = a, *addr_b = b;
2581
2582	if (*addr_a == *addr_b)
2583		return 0;
2584	return *addr_a < *addr_b ? -1 : 1;
2585}
2586
2587static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv)
2588{
2589	return bpf_kprobe_multi_addrs_cmp(a, b);
2590}
2591
2592static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2593{
2594	struct bpf_kprobe_multi_run_ctx *run_ctx;
2595	struct bpf_kprobe_multi_link *link;
2596	u64 *cookie, entry_ip;
2597	unsigned long *addr;
2598
2599	if (WARN_ON_ONCE(!ctx))
2600		return 0;
2601	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx);
2602	link = run_ctx->link;
2603	if (!link->cookies)
2604		return 0;
2605	entry_ip = run_ctx->entry_ip;
2606	addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip),
2607		       bpf_kprobe_multi_addrs_cmp);
2608	if (!addr)
2609		return 0;
2610	cookie = link->cookies + (addr - link->addrs);
2611	return *cookie;
2612}
2613
2614static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2615{
2616	struct bpf_kprobe_multi_run_ctx *run_ctx;
2617
2618	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx);
2619	return run_ctx->entry_ip;
2620}
2621
2622static int
2623kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link,
2624			   unsigned long entry_ip, struct pt_regs *regs)
2625{
2626	struct bpf_kprobe_multi_run_ctx run_ctx = {
2627		.link = link,
2628		.entry_ip = entry_ip,
2629	};
2630	struct bpf_run_ctx *old_run_ctx;
2631	int err;
2632
2633	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
2634		err = 0;
2635		goto out;
2636	}
2637
2638	migrate_disable();
2639	rcu_read_lock();
2640	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2641	err = bpf_prog_run(link->link.prog, regs);
2642	bpf_reset_run_ctx(old_run_ctx);
2643	rcu_read_unlock();
2644	migrate_enable();
2645
2646 out:
2647	__this_cpu_dec(bpf_prog_active);
2648	return err;
2649}
2650
2651static void
2652kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip,
2653			  struct pt_regs *regs)
2654{
2655	struct bpf_kprobe_multi_link *link;
2656
2657	link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2658	kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs);
2659}
2660
2661static int symbols_cmp_r(const void *a, const void *b, const void *priv)
2662{
2663	const char **str_a = (const char **) a;
2664	const char **str_b = (const char **) b;
2665
2666	return strcmp(*str_a, *str_b);
2667}
2668
2669struct multi_symbols_sort {
2670	const char **funcs;
2671	u64 *cookies;
2672};
2673
2674static void symbols_swap_r(void *a, void *b, int size, const void *priv)
2675{
2676	const struct multi_symbols_sort *data = priv;
2677	const char **name_a = a, **name_b = b;
2678
2679	swap(*name_a, *name_b);
2680
2681	/* If defined, swap also related cookies. */
2682	if (data->cookies) {
2683		u64 *cookie_a, *cookie_b;
2684
2685		cookie_a = data->cookies + (name_a - data->funcs);
2686		cookie_b = data->cookies + (name_b - data->funcs);
2687		swap(*cookie_a, *cookie_b);
2688	}
2689}
2690
2691struct module_addr_args {
2692	unsigned long *addrs;
2693	u32 addrs_cnt;
2694	struct module **mods;
2695	int mods_cnt;
2696	int mods_cap;
2697};
2698
2699static int module_callback(void *data, const char *name,
2700			   struct module *mod, unsigned long addr)
2701{
2702	struct module_addr_args *args = data;
2703	struct module **mods;
2704
2705	/* We iterate all modules symbols and for each we:
2706	 * - search for it in provided addresses array
2707	 * - if found we check if we already have the module pointer stored
2708	 *   (we iterate modules sequentially, so we can check just the last
2709	 *   module pointer)
2710	 * - take module reference and store it
2711	 */
2712	if (!bsearch(&addr, args->addrs, args->addrs_cnt, sizeof(addr),
2713		       bpf_kprobe_multi_addrs_cmp))
2714		return 0;
2715
2716	if (args->mods && args->mods[args->mods_cnt - 1] == mod)
2717		return 0;
2718
2719	if (args->mods_cnt == args->mods_cap) {
2720		args->mods_cap = max(16, args->mods_cap * 3 / 2);
2721		mods = krealloc_array(args->mods, args->mods_cap, sizeof(*mods), GFP_KERNEL);
2722		if (!mods)
2723			return -ENOMEM;
2724		args->mods = mods;
2725	}
2726
2727	if (!try_module_get(mod))
2728		return -EINVAL;
2729
2730	args->mods[args->mods_cnt] = mod;
2731	args->mods_cnt++;
2732	return 0;
2733}
2734
2735static int get_modules_for_addrs(struct module ***mods, unsigned long *addrs, u32 addrs_cnt)
2736{
2737	struct module_addr_args args = {
2738		.addrs     = addrs,
2739		.addrs_cnt = addrs_cnt,
2740	};
2741	int err;
2742
2743	/* We return either err < 0 in case of error, ... */
2744	err = module_kallsyms_on_each_symbol(module_callback, &args);
2745	if (err) {
2746		kprobe_multi_put_modules(args.mods, args.mods_cnt);
2747		kfree(args.mods);
2748		return err;
2749	}
2750
2751	/* or number of modules found if everything is ok. */
2752	*mods = args.mods;
2753	return args.mods_cnt;
2754}
2755
2756int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2757{
2758	struct bpf_kprobe_multi_link *link = NULL;
2759	struct bpf_link_primer link_primer;
2760	void __user *ucookies;
2761	unsigned long *addrs;
2762	u32 flags, cnt, size;
2763	void __user *uaddrs;
2764	u64 *cookies = NULL;
2765	void __user *usyms;
2766	int err;
2767
2768	/* no support for 32bit archs yet */
2769	if (sizeof(u64) != sizeof(void *))
2770		return -EOPNOTSUPP;
2771
2772	if (prog->expected_attach_type != BPF_TRACE_KPROBE_MULTI)
2773		return -EINVAL;
2774
2775	flags = attr->link_create.kprobe_multi.flags;
2776	if (flags & ~BPF_F_KPROBE_MULTI_RETURN)
2777		return -EINVAL;
2778
2779	uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs);
2780	usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms);
2781	if (!!uaddrs == !!usyms)
2782		return -EINVAL;
2783
2784	cnt = attr->link_create.kprobe_multi.cnt;
2785	if (!cnt)
2786		return -EINVAL;
2787
2788	size = cnt * sizeof(*addrs);
2789	addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2790	if (!addrs)
2791		return -ENOMEM;
2792
2793	ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies);
2794	if (ucookies) {
2795		cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2796		if (!cookies) {
2797			err = -ENOMEM;
2798			goto error;
2799		}
2800		if (copy_from_user(cookies, ucookies, size)) {
2801			err = -EFAULT;
2802			goto error;
2803		}
2804	}
2805
2806	if (uaddrs) {
2807		if (copy_from_user(addrs, uaddrs, size)) {
2808			err = -EFAULT;
2809			goto error;
2810		}
2811	} else {
2812		struct multi_symbols_sort data = {
2813			.cookies = cookies,
2814		};
2815		struct user_syms us;
2816
2817		err = copy_user_syms(&us, usyms, cnt);
2818		if (err)
2819			goto error;
2820
2821		if (cookies)
2822			data.funcs = us.syms;
2823
2824		sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r,
2825		       symbols_swap_r, &data);
2826
2827		err = ftrace_lookup_symbols(us.syms, cnt, addrs);
2828		free_user_syms(&us);
2829		if (err)
2830			goto error;
2831	}
2832
2833	link = kzalloc(sizeof(*link), GFP_KERNEL);
2834	if (!link) {
2835		err = -ENOMEM;
2836		goto error;
2837	}
2838
2839	bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI,
2840		      &bpf_kprobe_multi_link_lops, prog);
2841
2842	err = bpf_link_prime(&link->link, &link_primer);
2843	if (err)
2844		goto error;
2845
2846	if (flags & BPF_F_KPROBE_MULTI_RETURN)
2847		link->fp.exit_handler = kprobe_multi_link_handler;
2848	else
2849		link->fp.entry_handler = kprobe_multi_link_handler;
2850
2851	link->addrs = addrs;
2852	link->cookies = cookies;
2853	link->cnt = cnt;
2854
2855	if (cookies) {
2856		/*
2857		 * Sorting addresses will trigger sorting cookies as well
2858		 * (check bpf_kprobe_multi_cookie_swap). This way we can
2859		 * find cookie based on the address in bpf_get_attach_cookie
2860		 * helper.
2861		 */
2862		sort_r(addrs, cnt, sizeof(*addrs),
2863		       bpf_kprobe_multi_cookie_cmp,
2864		       bpf_kprobe_multi_cookie_swap,
2865		       link);
2866	} else {
2867		/*
2868		 * We need to sort addrs array even if there are no cookies
2869		 * provided, to allow bsearch in get_modules_for_addrs.
2870		 */
2871		sort(addrs, cnt, sizeof(*addrs),
2872		       bpf_kprobe_multi_addrs_cmp, NULL);
2873	}
2874
2875	err = get_modules_for_addrs(&link->mods, addrs, cnt);
2876	if (err < 0) {
2877		bpf_link_cleanup(&link_primer);
2878		return err;
2879	}
2880	link->mods_cnt = err;
2881
2882	err = register_fprobe_ips(&link->fp, addrs, cnt);
2883	if (err) {
2884		kprobe_multi_put_modules(link->mods, link->mods_cnt);
2885		bpf_link_cleanup(&link_primer);
2886		return err;
2887	}
2888
2889	return bpf_link_settle(&link_primer);
2890
2891error:
2892	kfree(link);
2893	kvfree(addrs);
2894	kvfree(cookies);
2895	return err;
2896}
2897#else /* !CONFIG_FPROBE */
2898int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2899{
2900	return -EOPNOTSUPP;
2901}
2902static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2903{
2904	return 0;
2905}
2906static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2907{
2908	return 0;
2909}
2910#endif
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
   3 * Copyright (c) 2016 Facebook
   4 */
   5#include <linux/kernel.h>
   6#include <linux/types.h>
   7#include <linux/slab.h>
   8#include <linux/bpf.h>
 
   9#include <linux/bpf_perf_event.h>
  10#include <linux/btf.h>
  11#include <linux/filter.h>
  12#include <linux/uaccess.h>
  13#include <linux/ctype.h>
  14#include <linux/kprobes.h>
  15#include <linux/spinlock.h>
  16#include <linux/syscalls.h>
  17#include <linux/error-injection.h>
  18#include <linux/btf_ids.h>
  19#include <linux/bpf_lsm.h>
 
 
 
 
 
  20
  21#include <net/bpf_sk_storage.h>
  22
  23#include <uapi/linux/bpf.h>
  24#include <uapi/linux/btf.h>
  25
  26#include <asm/tlb.h>
  27
  28#include "trace_probe.h"
  29#include "trace.h"
  30
  31#define CREATE_TRACE_POINTS
  32#include "bpf_trace.h"
  33
  34#define bpf_event_rcu_dereference(p)					\
  35	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
  36
  37#ifdef CONFIG_MODULES
  38struct bpf_trace_module {
  39	struct module *module;
  40	struct list_head list;
  41};
  42
  43static LIST_HEAD(bpf_trace_modules);
  44static DEFINE_MUTEX(bpf_module_mutex);
  45
  46static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
  47{
  48	struct bpf_raw_event_map *btp, *ret = NULL;
  49	struct bpf_trace_module *btm;
  50	unsigned int i;
  51
  52	mutex_lock(&bpf_module_mutex);
  53	list_for_each_entry(btm, &bpf_trace_modules, list) {
  54		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
  55			btp = &btm->module->bpf_raw_events[i];
  56			if (!strcmp(btp->tp->name, name)) {
  57				if (try_module_get(btm->module))
  58					ret = btp;
  59				goto out;
  60			}
  61		}
  62	}
  63out:
  64	mutex_unlock(&bpf_module_mutex);
  65	return ret;
  66}
  67#else
  68static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
  69{
  70	return NULL;
  71}
  72#endif /* CONFIG_MODULES */
  73
  74u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
  75u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
  76
  77static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
  78				  u64 flags, const struct btf **btf,
  79				  s32 *btf_id);
 
 
  80
  81/**
  82 * trace_call_bpf - invoke BPF program
  83 * @call: tracepoint event
  84 * @ctx: opaque context pointer
  85 *
  86 * kprobe handlers execute BPF programs via this helper.
  87 * Can be used from static tracepoints in the future.
  88 *
  89 * Return: BPF programs always return an integer which is interpreted by
  90 * kprobe handler as:
  91 * 0 - return from kprobe (event is filtered out)
  92 * 1 - store kprobe event into ring buffer
  93 * Other values are reserved and currently alias to 1
  94 */
  95unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
  96{
  97	unsigned int ret;
  98
  99	cant_sleep();
 100
 101	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
 102		/*
 103		 * since some bpf program is already running on this cpu,
 104		 * don't call into another bpf program (same or different)
 105		 * and don't send kprobe event into ring-buffer,
 106		 * so return zero here
 107		 */
 108		ret = 0;
 109		goto out;
 110	}
 111
 112	/*
 113	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
 114	 * to all call sites, we did a bpf_prog_array_valid() there to check
 115	 * whether call->prog_array is empty or not, which is
 116	 * a heuristic to speed up execution.
 117	 *
 118	 * If bpf_prog_array_valid() fetched prog_array was
 119	 * non-NULL, we go into trace_call_bpf() and do the actual
 120	 * proper rcu_dereference() under RCU lock.
 121	 * If it turns out that prog_array is NULL then, we bail out.
 122	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
 123	 * was NULL, you'll skip the prog_array with the risk of missing
 124	 * out of events when it was updated in between this and the
 125	 * rcu_dereference() which is accepted risk.
 126	 */
 127	ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
 
 
 
 128
 129 out:
 130	__this_cpu_dec(bpf_prog_active);
 131
 132	return ret;
 133}
 134
 135#ifdef CONFIG_BPF_KPROBE_OVERRIDE
 136BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
 137{
 138	regs_set_return_value(regs, rc);
 139	override_function_with_return(regs);
 140	return 0;
 141}
 142
 143static const struct bpf_func_proto bpf_override_return_proto = {
 144	.func		= bpf_override_return,
 145	.gpl_only	= true,
 146	.ret_type	= RET_INTEGER,
 147	.arg1_type	= ARG_PTR_TO_CTX,
 148	.arg2_type	= ARG_ANYTHING,
 149};
 150#endif
 151
 152static __always_inline int
 153bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
 154{
 155	int ret;
 156
 157	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
 158	if (unlikely(ret < 0))
 159		memset(dst, 0, size);
 160	return ret;
 161}
 162
 163BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
 164	   const void __user *, unsafe_ptr)
 165{
 166	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
 167}
 168
 169const struct bpf_func_proto bpf_probe_read_user_proto = {
 170	.func		= bpf_probe_read_user,
 171	.gpl_only	= true,
 172	.ret_type	= RET_INTEGER,
 173	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 174	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 175	.arg3_type	= ARG_ANYTHING,
 176};
 177
 178static __always_inline int
 179bpf_probe_read_user_str_common(void *dst, u32 size,
 180			       const void __user *unsafe_ptr)
 181{
 182	int ret;
 183
 184	/*
 185	 * NB: We rely on strncpy_from_user() not copying junk past the NUL
 186	 * terminator into `dst`.
 187	 *
 188	 * strncpy_from_user() does long-sized strides in the fast path. If the
 189	 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
 190	 * then there could be junk after the NUL in `dst`. If user takes `dst`
 191	 * and keys a hash map with it, then semantically identical strings can
 192	 * occupy multiple entries in the map.
 193	 */
 194	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
 195	if (unlikely(ret < 0))
 196		memset(dst, 0, size);
 197	return ret;
 198}
 199
 200BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
 201	   const void __user *, unsafe_ptr)
 202{
 203	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
 204}
 205
 206const struct bpf_func_proto bpf_probe_read_user_str_proto = {
 207	.func		= bpf_probe_read_user_str,
 208	.gpl_only	= true,
 209	.ret_type	= RET_INTEGER,
 210	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 211	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 212	.arg3_type	= ARG_ANYTHING,
 213};
 214
 215static __always_inline int
 216bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
 217{
 218	int ret;
 219
 220	ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
 221	if (unlikely(ret < 0))
 222		memset(dst, 0, size);
 223	return ret;
 224}
 225
 226BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
 227	   const void *, unsafe_ptr)
 228{
 229	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
 230}
 231
 232const struct bpf_func_proto bpf_probe_read_kernel_proto = {
 233	.func		= bpf_probe_read_kernel,
 234	.gpl_only	= true,
 235	.ret_type	= RET_INTEGER,
 236	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 237	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 238	.arg3_type	= ARG_ANYTHING,
 239};
 240
 241static __always_inline int
 242bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
 243{
 244	int ret;
 245
 246	/*
 247	 * The strncpy_from_kernel_nofault() call will likely not fill the
 248	 * entire buffer, but that's okay in this circumstance as we're probing
 249	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
 250	 * as well probe the stack. Thus, memory is explicitly cleared
 251	 * only in error case, so that improper users ignoring return
 252	 * code altogether don't copy garbage; otherwise length of string
 253	 * is returned that can be used for bpf_perf_event_output() et al.
 254	 */
 255	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
 256	if (unlikely(ret < 0))
 257		memset(dst, 0, size);
 258	return ret;
 259}
 260
 261BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
 262	   const void *, unsafe_ptr)
 263{
 264	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
 265}
 266
 267const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
 268	.func		= bpf_probe_read_kernel_str,
 269	.gpl_only	= true,
 270	.ret_type	= RET_INTEGER,
 271	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 272	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 273	.arg3_type	= ARG_ANYTHING,
 274};
 275
 276#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
 277BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
 278	   const void *, unsafe_ptr)
 279{
 280	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
 281		return bpf_probe_read_user_common(dst, size,
 282				(__force void __user *)unsafe_ptr);
 283	}
 284	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
 285}
 286
 287static const struct bpf_func_proto bpf_probe_read_compat_proto = {
 288	.func		= bpf_probe_read_compat,
 289	.gpl_only	= true,
 290	.ret_type	= RET_INTEGER,
 291	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 292	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 293	.arg3_type	= ARG_ANYTHING,
 294};
 295
 296BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
 297	   const void *, unsafe_ptr)
 298{
 299	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
 300		return bpf_probe_read_user_str_common(dst, size,
 301				(__force void __user *)unsafe_ptr);
 302	}
 303	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
 304}
 305
 306static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
 307	.func		= bpf_probe_read_compat_str,
 308	.gpl_only	= true,
 309	.ret_type	= RET_INTEGER,
 310	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 311	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 312	.arg3_type	= ARG_ANYTHING,
 313};
 314#endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
 315
 316BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
 317	   u32, size)
 318{
 319	/*
 320	 * Ensure we're in user context which is safe for the helper to
 321	 * run. This helper has no business in a kthread.
 322	 *
 323	 * access_ok() should prevent writing to non-user memory, but in
 324	 * some situations (nommu, temporary switch, etc) access_ok() does
 325	 * not provide enough validation, hence the check on KERNEL_DS.
 326	 *
 327	 * nmi_uaccess_okay() ensures the probe is not run in an interim
 328	 * state, when the task or mm are switched. This is specifically
 329	 * required to prevent the use of temporary mm.
 330	 */
 331
 332	if (unlikely(in_interrupt() ||
 333		     current->flags & (PF_KTHREAD | PF_EXITING)))
 334		return -EPERM;
 335	if (unlikely(uaccess_kernel()))
 336		return -EPERM;
 337	if (unlikely(!nmi_uaccess_okay()))
 338		return -EPERM;
 339
 340	return copy_to_user_nofault(unsafe_ptr, src, size);
 341}
 342
 343static const struct bpf_func_proto bpf_probe_write_user_proto = {
 344	.func		= bpf_probe_write_user,
 345	.gpl_only	= true,
 346	.ret_type	= RET_INTEGER,
 347	.arg1_type	= ARG_ANYTHING,
 348	.arg2_type	= ARG_PTR_TO_MEM,
 349	.arg3_type	= ARG_CONST_SIZE,
 350};
 351
 352static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
 353{
 354	if (!capable(CAP_SYS_ADMIN))
 355		return NULL;
 356
 357	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
 358			    current->comm, task_pid_nr(current));
 359
 360	return &bpf_probe_write_user_proto;
 361}
 362
 363static DEFINE_RAW_SPINLOCK(trace_printk_lock);
 364
 365#define MAX_TRACE_PRINTK_VARARGS	3
 366#define BPF_TRACE_PRINTK_SIZE		1024
 367
 368BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
 369	   u64, arg2, u64, arg3)
 370{
 371	u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
 372	u32 *bin_args;
 373	static char buf[BPF_TRACE_PRINTK_SIZE];
 374	unsigned long flags;
 375	int ret;
 376
 377	ret = bpf_bprintf_prepare(fmt, fmt_size, args, &bin_args,
 378				  MAX_TRACE_PRINTK_VARARGS);
 379	if (ret < 0)
 380		return ret;
 381
 382	raw_spin_lock_irqsave(&trace_printk_lock, flags);
 383	ret = bstr_printf(buf, sizeof(buf), fmt, bin_args);
 384
 385	trace_bpf_trace_printk(buf);
 386	raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
 387
 388	bpf_bprintf_cleanup();
 389
 390	return ret;
 391}
 392
 393static const struct bpf_func_proto bpf_trace_printk_proto = {
 394	.func		= bpf_trace_printk,
 395	.gpl_only	= true,
 396	.ret_type	= RET_INTEGER,
 397	.arg1_type	= ARG_PTR_TO_MEM,
 398	.arg2_type	= ARG_CONST_SIZE,
 399};
 400
 401const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
 402{
 403	/*
 404	 * This program might be calling bpf_trace_printk,
 405	 * so enable the associated bpf_trace/bpf_trace_printk event.
 406	 * Repeat this each time as it is possible a user has
 407	 * disabled bpf_trace_printk events.  By loading a program
 408	 * calling bpf_trace_printk() however the user has expressed
 409	 * the intent to see such events.
 410	 */
 411	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
 412		pr_warn_ratelimited("could not enable bpf_trace_printk events");
 
 413
 
 
 
 414	return &bpf_trace_printk_proto;
 415}
 416
 417#define MAX_SEQ_PRINTF_VARARGS		12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 418
 419BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
 420	   const void *, data, u32, data_len)
 421{
 422	int err, num_args;
 423	u32 *bin_args;
 424
 425	if (data_len & 7 || data_len > MAX_SEQ_PRINTF_VARARGS * 8 ||
 426	    (data_len && !data))
 427		return -EINVAL;
 428	num_args = data_len / 8;
 429
 430	err = bpf_bprintf_prepare(fmt, fmt_size, data, &bin_args, num_args);
 431	if (err < 0)
 432		return err;
 433
 434	seq_bprintf(m, fmt, bin_args);
 435
 436	bpf_bprintf_cleanup();
 437
 438	return seq_has_overflowed(m) ? -EOVERFLOW : 0;
 439}
 440
 441BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
 442
 443static const struct bpf_func_proto bpf_seq_printf_proto = {
 444	.func		= bpf_seq_printf,
 445	.gpl_only	= true,
 446	.ret_type	= RET_INTEGER,
 447	.arg1_type	= ARG_PTR_TO_BTF_ID,
 448	.arg1_btf_id	= &btf_seq_file_ids[0],
 449	.arg2_type	= ARG_PTR_TO_MEM,
 450	.arg3_type	= ARG_CONST_SIZE,
 451	.arg4_type      = ARG_PTR_TO_MEM_OR_NULL,
 452	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
 453};
 454
 455BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
 456{
 457	return seq_write(m, data, len) ? -EOVERFLOW : 0;
 458}
 459
 460static const struct bpf_func_proto bpf_seq_write_proto = {
 461	.func		= bpf_seq_write,
 462	.gpl_only	= true,
 463	.ret_type	= RET_INTEGER,
 464	.arg1_type	= ARG_PTR_TO_BTF_ID,
 465	.arg1_btf_id	= &btf_seq_file_ids[0],
 466	.arg2_type	= ARG_PTR_TO_MEM,
 467	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
 468};
 469
 470BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
 471	   u32, btf_ptr_size, u64, flags)
 472{
 473	const struct btf *btf;
 474	s32 btf_id;
 475	int ret;
 476
 477	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
 478	if (ret)
 479		return ret;
 480
 481	return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
 482}
 483
 484static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
 485	.func		= bpf_seq_printf_btf,
 486	.gpl_only	= true,
 487	.ret_type	= RET_INTEGER,
 488	.arg1_type	= ARG_PTR_TO_BTF_ID,
 489	.arg1_btf_id	= &btf_seq_file_ids[0],
 490	.arg2_type	= ARG_PTR_TO_MEM,
 491	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
 492	.arg4_type	= ARG_ANYTHING,
 493};
 494
 495static __always_inline int
 496get_map_perf_counter(struct bpf_map *map, u64 flags,
 497		     u64 *value, u64 *enabled, u64 *running)
 498{
 499	struct bpf_array *array = container_of(map, struct bpf_array, map);
 500	unsigned int cpu = smp_processor_id();
 501	u64 index = flags & BPF_F_INDEX_MASK;
 502	struct bpf_event_entry *ee;
 503
 504	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
 505		return -EINVAL;
 506	if (index == BPF_F_CURRENT_CPU)
 507		index = cpu;
 508	if (unlikely(index >= array->map.max_entries))
 509		return -E2BIG;
 510
 511	ee = READ_ONCE(array->ptrs[index]);
 512	if (!ee)
 513		return -ENOENT;
 514
 515	return perf_event_read_local(ee->event, value, enabled, running);
 516}
 517
 518BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
 519{
 520	u64 value = 0;
 521	int err;
 522
 523	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
 524	/*
 525	 * this api is ugly since we miss [-22..-2] range of valid
 526	 * counter values, but that's uapi
 527	 */
 528	if (err)
 529		return err;
 530	return value;
 531}
 532
 533static const struct bpf_func_proto bpf_perf_event_read_proto = {
 534	.func		= bpf_perf_event_read,
 535	.gpl_only	= true,
 536	.ret_type	= RET_INTEGER,
 537	.arg1_type	= ARG_CONST_MAP_PTR,
 538	.arg2_type	= ARG_ANYTHING,
 539};
 540
 541BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
 542	   struct bpf_perf_event_value *, buf, u32, size)
 543{
 544	int err = -EINVAL;
 545
 546	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
 547		goto clear;
 548	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
 549				   &buf->running);
 550	if (unlikely(err))
 551		goto clear;
 552	return 0;
 553clear:
 554	memset(buf, 0, size);
 555	return err;
 556}
 557
 558static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
 559	.func		= bpf_perf_event_read_value,
 560	.gpl_only	= true,
 561	.ret_type	= RET_INTEGER,
 562	.arg1_type	= ARG_CONST_MAP_PTR,
 563	.arg2_type	= ARG_ANYTHING,
 564	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
 565	.arg4_type	= ARG_CONST_SIZE,
 566};
 567
 568static __always_inline u64
 569__bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
 570			u64 flags, struct perf_sample_data *sd)
 571{
 572	struct bpf_array *array = container_of(map, struct bpf_array, map);
 573	unsigned int cpu = smp_processor_id();
 574	u64 index = flags & BPF_F_INDEX_MASK;
 575	struct bpf_event_entry *ee;
 576	struct perf_event *event;
 577
 578	if (index == BPF_F_CURRENT_CPU)
 579		index = cpu;
 580	if (unlikely(index >= array->map.max_entries))
 581		return -E2BIG;
 582
 583	ee = READ_ONCE(array->ptrs[index]);
 584	if (!ee)
 585		return -ENOENT;
 586
 587	event = ee->event;
 588	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
 589		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
 590		return -EINVAL;
 591
 592	if (unlikely(event->oncpu != cpu))
 593		return -EOPNOTSUPP;
 594
 595	return perf_event_output(event, sd, regs);
 596}
 597
 598/*
 599 * Support executing tracepoints in normal, irq, and nmi context that each call
 600 * bpf_perf_event_output
 601 */
 602struct bpf_trace_sample_data {
 603	struct perf_sample_data sds[3];
 604};
 605
 606static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
 607static DEFINE_PER_CPU(int, bpf_trace_nest_level);
 608BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
 609	   u64, flags, void *, data, u64, size)
 610{
 611	struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
 612	int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
 613	struct perf_raw_record raw = {
 614		.frag = {
 615			.size = size,
 616			.data = data,
 617		},
 618	};
 619	struct perf_sample_data *sd;
 620	int err;
 621
 622	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
 623		err = -EBUSY;
 624		goto out;
 625	}
 626
 627	sd = &sds->sds[nest_level - 1];
 628
 629	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
 630		err = -EINVAL;
 631		goto out;
 632	}
 633
 634	perf_sample_data_init(sd, 0, 0);
 635	sd->raw = &raw;
 
 636
 637	err = __bpf_perf_event_output(regs, map, flags, sd);
 638
 639out:
 640	this_cpu_dec(bpf_trace_nest_level);
 641	return err;
 642}
 643
 644static const struct bpf_func_proto bpf_perf_event_output_proto = {
 645	.func		= bpf_perf_event_output,
 646	.gpl_only	= true,
 647	.ret_type	= RET_INTEGER,
 648	.arg1_type	= ARG_PTR_TO_CTX,
 649	.arg2_type	= ARG_CONST_MAP_PTR,
 650	.arg3_type	= ARG_ANYTHING,
 651	.arg4_type	= ARG_PTR_TO_MEM,
 652	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
 653};
 654
 655static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
 656struct bpf_nested_pt_regs {
 657	struct pt_regs regs[3];
 658};
 659static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
 660static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
 661
 662u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
 663		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
 664{
 665	int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
 666	struct perf_raw_frag frag = {
 667		.copy		= ctx_copy,
 668		.size		= ctx_size,
 669		.data		= ctx,
 670	};
 671	struct perf_raw_record raw = {
 672		.frag = {
 673			{
 674				.next	= ctx_size ? &frag : NULL,
 675			},
 676			.size	= meta_size,
 677			.data	= meta,
 678		},
 679	};
 680	struct perf_sample_data *sd;
 681	struct pt_regs *regs;
 682	u64 ret;
 683
 684	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
 685		ret = -EBUSY;
 686		goto out;
 687	}
 688	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
 689	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
 690
 691	perf_fetch_caller_regs(regs);
 692	perf_sample_data_init(sd, 0, 0);
 693	sd->raw = &raw;
 
 694
 695	ret = __bpf_perf_event_output(regs, map, flags, sd);
 696out:
 697	this_cpu_dec(bpf_event_output_nest_level);
 698	return ret;
 699}
 700
 701BPF_CALL_0(bpf_get_current_task)
 702{
 703	return (long) current;
 704}
 705
 706const struct bpf_func_proto bpf_get_current_task_proto = {
 707	.func		= bpf_get_current_task,
 708	.gpl_only	= true,
 709	.ret_type	= RET_INTEGER,
 710};
 711
 712BPF_CALL_0(bpf_get_current_task_btf)
 713{
 714	return (unsigned long) current;
 715}
 716
 717BTF_ID_LIST_SINGLE(bpf_get_current_btf_ids, struct, task_struct)
 
 
 
 
 
 718
 719static const struct bpf_func_proto bpf_get_current_task_btf_proto = {
 720	.func		= bpf_get_current_task_btf,
 
 
 
 
 
 
 
 
 721	.gpl_only	= true,
 
 
 722	.ret_type	= RET_PTR_TO_BTF_ID,
 723	.ret_btf_id	= &bpf_get_current_btf_ids[0],
 724};
 725
 726BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
 727{
 728	struct bpf_array *array = container_of(map, struct bpf_array, map);
 729	struct cgroup *cgrp;
 730
 731	if (unlikely(idx >= array->map.max_entries))
 732		return -E2BIG;
 733
 734	cgrp = READ_ONCE(array->ptrs[idx]);
 735	if (unlikely(!cgrp))
 736		return -EAGAIN;
 737
 738	return task_under_cgroup_hierarchy(current, cgrp);
 739}
 740
 741static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
 742	.func           = bpf_current_task_under_cgroup,
 743	.gpl_only       = false,
 744	.ret_type       = RET_INTEGER,
 745	.arg1_type      = ARG_CONST_MAP_PTR,
 746	.arg2_type      = ARG_ANYTHING,
 747};
 748
 749struct send_signal_irq_work {
 750	struct irq_work irq_work;
 751	struct task_struct *task;
 752	u32 sig;
 753	enum pid_type type;
 754};
 755
 756static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
 757
 758static void do_bpf_send_signal(struct irq_work *entry)
 759{
 760	struct send_signal_irq_work *work;
 761
 762	work = container_of(entry, struct send_signal_irq_work, irq_work);
 763	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
 
 764}
 765
 766static int bpf_send_signal_common(u32 sig, enum pid_type type)
 767{
 768	struct send_signal_irq_work *work = NULL;
 769
 770	/* Similar to bpf_probe_write_user, task needs to be
 771	 * in a sound condition and kernel memory access be
 772	 * permitted in order to send signal to the current
 773	 * task.
 774	 */
 775	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
 776		return -EPERM;
 777	if (unlikely(uaccess_kernel()))
 778		return -EPERM;
 779	if (unlikely(!nmi_uaccess_okay()))
 
 780		return -EPERM;
 781
 782	if (irqs_disabled()) {
 783		/* Do an early check on signal validity. Otherwise,
 784		 * the error is lost in deferred irq_work.
 785		 */
 786		if (unlikely(!valid_signal(sig)))
 787			return -EINVAL;
 788
 789		work = this_cpu_ptr(&send_signal_work);
 790		if (irq_work_is_busy(&work->irq_work))
 791			return -EBUSY;
 792
 793		/* Add the current task, which is the target of sending signal,
 794		 * to the irq_work. The current task may change when queued
 795		 * irq works get executed.
 796		 */
 797		work->task = current;
 798		work->sig = sig;
 799		work->type = type;
 800		irq_work_queue(&work->irq_work);
 801		return 0;
 802	}
 803
 804	return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
 805}
 806
 807BPF_CALL_1(bpf_send_signal, u32, sig)
 808{
 809	return bpf_send_signal_common(sig, PIDTYPE_TGID);
 810}
 811
 812static const struct bpf_func_proto bpf_send_signal_proto = {
 813	.func		= bpf_send_signal,
 814	.gpl_only	= false,
 815	.ret_type	= RET_INTEGER,
 816	.arg1_type	= ARG_ANYTHING,
 817};
 818
 819BPF_CALL_1(bpf_send_signal_thread, u32, sig)
 820{
 821	return bpf_send_signal_common(sig, PIDTYPE_PID);
 822}
 823
 824static const struct bpf_func_proto bpf_send_signal_thread_proto = {
 825	.func		= bpf_send_signal_thread,
 826	.gpl_only	= false,
 827	.ret_type	= RET_INTEGER,
 828	.arg1_type	= ARG_ANYTHING,
 829};
 830
 831BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
 832{
 833	long len;
 834	char *p;
 835
 836	if (!sz)
 837		return 0;
 838
 839	p = d_path(path, buf, sz);
 840	if (IS_ERR(p)) {
 841		len = PTR_ERR(p);
 842	} else {
 843		len = buf + sz - p;
 844		memmove(buf, p, len);
 845	}
 846
 847	return len;
 848}
 849
 850BTF_SET_START(btf_allowlist_d_path)
 851#ifdef CONFIG_SECURITY
 852BTF_ID(func, security_file_permission)
 853BTF_ID(func, security_inode_getattr)
 854BTF_ID(func, security_file_open)
 855#endif
 856#ifdef CONFIG_SECURITY_PATH
 857BTF_ID(func, security_path_truncate)
 858#endif
 859BTF_ID(func, vfs_truncate)
 860BTF_ID(func, vfs_fallocate)
 861BTF_ID(func, dentry_open)
 862BTF_ID(func, vfs_getattr)
 863BTF_ID(func, filp_close)
 864BTF_SET_END(btf_allowlist_d_path)
 865
 866static bool bpf_d_path_allowed(const struct bpf_prog *prog)
 867{
 868	if (prog->type == BPF_PROG_TYPE_TRACING &&
 869	    prog->expected_attach_type == BPF_TRACE_ITER)
 870		return true;
 871
 872	if (prog->type == BPF_PROG_TYPE_LSM)
 873		return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
 874
 875	return btf_id_set_contains(&btf_allowlist_d_path,
 876				   prog->aux->attach_btf_id);
 877}
 878
 879BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
 880
 881static const struct bpf_func_proto bpf_d_path_proto = {
 882	.func		= bpf_d_path,
 883	.gpl_only	= false,
 884	.ret_type	= RET_INTEGER,
 885	.arg1_type	= ARG_PTR_TO_BTF_ID,
 886	.arg1_btf_id	= &bpf_d_path_btf_ids[0],
 887	.arg2_type	= ARG_PTR_TO_MEM,
 888	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
 889	.allowed	= bpf_d_path_allowed,
 890};
 891
 892#define BTF_F_ALL	(BTF_F_COMPACT  | BTF_F_NONAME | \
 893			 BTF_F_PTR_RAW | BTF_F_ZERO)
 894
 895static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
 896				  u64 flags, const struct btf **btf,
 897				  s32 *btf_id)
 898{
 899	const struct btf_type *t;
 900
 901	if (unlikely(flags & ~(BTF_F_ALL)))
 902		return -EINVAL;
 903
 904	if (btf_ptr_size != sizeof(struct btf_ptr))
 905		return -EINVAL;
 906
 907	*btf = bpf_get_btf_vmlinux();
 908
 909	if (IS_ERR_OR_NULL(*btf))
 910		return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
 911
 912	if (ptr->type_id > 0)
 913		*btf_id = ptr->type_id;
 914	else
 915		return -EINVAL;
 916
 917	if (*btf_id > 0)
 918		t = btf_type_by_id(*btf, *btf_id);
 919	if (*btf_id <= 0 || !t)
 920		return -ENOENT;
 921
 922	return 0;
 923}
 924
 925BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
 926	   u32, btf_ptr_size, u64, flags)
 927{
 928	const struct btf *btf;
 929	s32 btf_id;
 930	int ret;
 931
 932	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
 933	if (ret)
 934		return ret;
 935
 936	return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
 937				      flags);
 938}
 939
 940const struct bpf_func_proto bpf_snprintf_btf_proto = {
 941	.func		= bpf_snprintf_btf,
 942	.gpl_only	= false,
 943	.ret_type	= RET_INTEGER,
 944	.arg1_type	= ARG_PTR_TO_MEM,
 945	.arg2_type	= ARG_CONST_SIZE,
 946	.arg3_type	= ARG_PTR_TO_MEM,
 947	.arg4_type	= ARG_CONST_SIZE,
 948	.arg5_type	= ARG_ANYTHING,
 949};
 950
 951const struct bpf_func_proto *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 952bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
 953{
 954	switch (func_id) {
 955	case BPF_FUNC_map_lookup_elem:
 956		return &bpf_map_lookup_elem_proto;
 957	case BPF_FUNC_map_update_elem:
 958		return &bpf_map_update_elem_proto;
 959	case BPF_FUNC_map_delete_elem:
 960		return &bpf_map_delete_elem_proto;
 961	case BPF_FUNC_map_push_elem:
 962		return &bpf_map_push_elem_proto;
 963	case BPF_FUNC_map_pop_elem:
 964		return &bpf_map_pop_elem_proto;
 965	case BPF_FUNC_map_peek_elem:
 966		return &bpf_map_peek_elem_proto;
 
 
 967	case BPF_FUNC_ktime_get_ns:
 968		return &bpf_ktime_get_ns_proto;
 969	case BPF_FUNC_ktime_get_boot_ns:
 970		return &bpf_ktime_get_boot_ns_proto;
 971	case BPF_FUNC_ktime_get_coarse_ns:
 972		return &bpf_ktime_get_coarse_ns_proto;
 973	case BPF_FUNC_tail_call:
 974		return &bpf_tail_call_proto;
 975	case BPF_FUNC_get_current_pid_tgid:
 976		return &bpf_get_current_pid_tgid_proto;
 977	case BPF_FUNC_get_current_task:
 978		return &bpf_get_current_task_proto;
 979	case BPF_FUNC_get_current_task_btf:
 980		return &bpf_get_current_task_btf_proto;
 
 
 981	case BPF_FUNC_get_current_uid_gid:
 982		return &bpf_get_current_uid_gid_proto;
 983	case BPF_FUNC_get_current_comm:
 984		return &bpf_get_current_comm_proto;
 985	case BPF_FUNC_trace_printk:
 986		return bpf_get_trace_printk_proto();
 987	case BPF_FUNC_get_smp_processor_id:
 988		return &bpf_get_smp_processor_id_proto;
 989	case BPF_FUNC_get_numa_node_id:
 990		return &bpf_get_numa_node_id_proto;
 991	case BPF_FUNC_perf_event_read:
 992		return &bpf_perf_event_read_proto;
 993	case BPF_FUNC_current_task_under_cgroup:
 994		return &bpf_current_task_under_cgroup_proto;
 995	case BPF_FUNC_get_prandom_u32:
 996		return &bpf_get_prandom_u32_proto;
 997	case BPF_FUNC_probe_write_user:
 998		return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
 999		       NULL : bpf_get_probe_write_proto();
1000	case BPF_FUNC_probe_read_user:
1001		return &bpf_probe_read_user_proto;
1002	case BPF_FUNC_probe_read_kernel:
1003		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1004		       NULL : &bpf_probe_read_kernel_proto;
1005	case BPF_FUNC_probe_read_user_str:
1006		return &bpf_probe_read_user_str_proto;
1007	case BPF_FUNC_probe_read_kernel_str:
1008		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1009		       NULL : &bpf_probe_read_kernel_str_proto;
1010#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1011	case BPF_FUNC_probe_read:
1012		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1013		       NULL : &bpf_probe_read_compat_proto;
1014	case BPF_FUNC_probe_read_str:
1015		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1016		       NULL : &bpf_probe_read_compat_str_proto;
1017#endif
1018#ifdef CONFIG_CGROUPS
1019	case BPF_FUNC_get_current_cgroup_id:
1020		return &bpf_get_current_cgroup_id_proto;
1021	case BPF_FUNC_get_current_ancestor_cgroup_id:
1022		return &bpf_get_current_ancestor_cgroup_id_proto;
 
 
 
 
1023#endif
1024	case BPF_FUNC_send_signal:
1025		return &bpf_send_signal_proto;
1026	case BPF_FUNC_send_signal_thread:
1027		return &bpf_send_signal_thread_proto;
1028	case BPF_FUNC_perf_event_read_value:
1029		return &bpf_perf_event_read_value_proto;
1030	case BPF_FUNC_get_ns_current_pid_tgid:
1031		return &bpf_get_ns_current_pid_tgid_proto;
1032	case BPF_FUNC_ringbuf_output:
1033		return &bpf_ringbuf_output_proto;
1034	case BPF_FUNC_ringbuf_reserve:
1035		return &bpf_ringbuf_reserve_proto;
1036	case BPF_FUNC_ringbuf_submit:
1037		return &bpf_ringbuf_submit_proto;
1038	case BPF_FUNC_ringbuf_discard:
1039		return &bpf_ringbuf_discard_proto;
1040	case BPF_FUNC_ringbuf_query:
1041		return &bpf_ringbuf_query_proto;
1042	case BPF_FUNC_jiffies64:
1043		return &bpf_jiffies64_proto;
1044	case BPF_FUNC_get_task_stack:
1045		return &bpf_get_task_stack_proto;
1046	case BPF_FUNC_copy_from_user:
1047		return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL;
 
 
1048	case BPF_FUNC_snprintf_btf:
1049		return &bpf_snprintf_btf_proto;
1050	case BPF_FUNC_per_cpu_ptr:
1051		return &bpf_per_cpu_ptr_proto;
1052	case BPF_FUNC_this_cpu_ptr:
1053		return &bpf_this_cpu_ptr_proto;
1054	case BPF_FUNC_task_storage_get:
 
 
1055		return &bpf_task_storage_get_proto;
1056	case BPF_FUNC_task_storage_delete:
 
 
1057		return &bpf_task_storage_delete_proto;
1058	case BPF_FUNC_for_each_map_elem:
1059		return &bpf_for_each_map_elem_proto;
1060	case BPF_FUNC_snprintf:
1061		return &bpf_snprintf_proto;
 
 
 
 
 
 
 
 
1062	default:
1063		return NULL;
1064	}
1065}
1066
1067static const struct bpf_func_proto *
1068kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1069{
1070	switch (func_id) {
1071	case BPF_FUNC_perf_event_output:
1072		return &bpf_perf_event_output_proto;
1073	case BPF_FUNC_get_stackid:
1074		return &bpf_get_stackid_proto;
1075	case BPF_FUNC_get_stack:
1076		return &bpf_get_stack_proto;
1077#ifdef CONFIG_BPF_KPROBE_OVERRIDE
1078	case BPF_FUNC_override_return:
1079		return &bpf_override_return_proto;
1080#endif
 
 
 
 
 
 
 
 
1081	default:
1082		return bpf_tracing_func_proto(func_id, prog);
1083	}
1084}
1085
1086/* bpf+kprobe programs can access fields of 'struct pt_regs' */
1087static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1088					const struct bpf_prog *prog,
1089					struct bpf_insn_access_aux *info)
1090{
1091	if (off < 0 || off >= sizeof(struct pt_regs))
1092		return false;
1093	if (type != BPF_READ)
1094		return false;
1095	if (off % size != 0)
1096		return false;
1097	/*
1098	 * Assertion for 32 bit to make sure last 8 byte access
1099	 * (BPF_DW) to the last 4 byte member is disallowed.
1100	 */
1101	if (off + size > sizeof(struct pt_regs))
1102		return false;
1103
1104	return true;
1105}
1106
1107const struct bpf_verifier_ops kprobe_verifier_ops = {
1108	.get_func_proto  = kprobe_prog_func_proto,
1109	.is_valid_access = kprobe_prog_is_valid_access,
1110};
1111
1112const struct bpf_prog_ops kprobe_prog_ops = {
1113};
1114
1115BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1116	   u64, flags, void *, data, u64, size)
1117{
1118	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1119
1120	/*
1121	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1122	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1123	 * from there and call the same bpf_perf_event_output() helper inline.
1124	 */
1125	return ____bpf_perf_event_output(regs, map, flags, data, size);
1126}
1127
1128static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1129	.func		= bpf_perf_event_output_tp,
1130	.gpl_only	= true,
1131	.ret_type	= RET_INTEGER,
1132	.arg1_type	= ARG_PTR_TO_CTX,
1133	.arg2_type	= ARG_CONST_MAP_PTR,
1134	.arg3_type	= ARG_ANYTHING,
1135	.arg4_type	= ARG_PTR_TO_MEM,
1136	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1137};
1138
1139BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1140	   u64, flags)
1141{
1142	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1143
1144	/*
1145	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1146	 * the other helper's function body cannot be inlined due to being
1147	 * external, thus we need to call raw helper function.
1148	 */
1149	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1150			       flags, 0, 0);
1151}
1152
1153static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1154	.func		= bpf_get_stackid_tp,
1155	.gpl_only	= true,
1156	.ret_type	= RET_INTEGER,
1157	.arg1_type	= ARG_PTR_TO_CTX,
1158	.arg2_type	= ARG_CONST_MAP_PTR,
1159	.arg3_type	= ARG_ANYTHING,
1160};
1161
1162BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1163	   u64, flags)
1164{
1165	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1166
1167	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1168			     (unsigned long) size, flags, 0);
1169}
1170
1171static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1172	.func		= bpf_get_stack_tp,
1173	.gpl_only	= true,
1174	.ret_type	= RET_INTEGER,
1175	.arg1_type	= ARG_PTR_TO_CTX,
1176	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1177	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1178	.arg4_type	= ARG_ANYTHING,
1179};
1180
1181static const struct bpf_func_proto *
1182tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1183{
1184	switch (func_id) {
1185	case BPF_FUNC_perf_event_output:
1186		return &bpf_perf_event_output_proto_tp;
1187	case BPF_FUNC_get_stackid:
1188		return &bpf_get_stackid_proto_tp;
1189	case BPF_FUNC_get_stack:
1190		return &bpf_get_stack_proto_tp;
 
 
1191	default:
1192		return bpf_tracing_func_proto(func_id, prog);
1193	}
1194}
1195
1196static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1197				    const struct bpf_prog *prog,
1198				    struct bpf_insn_access_aux *info)
1199{
1200	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1201		return false;
1202	if (type != BPF_READ)
1203		return false;
1204	if (off % size != 0)
1205		return false;
1206
1207	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1208	return true;
1209}
1210
1211const struct bpf_verifier_ops tracepoint_verifier_ops = {
1212	.get_func_proto  = tp_prog_func_proto,
1213	.is_valid_access = tp_prog_is_valid_access,
1214};
1215
1216const struct bpf_prog_ops tracepoint_prog_ops = {
1217};
1218
1219BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1220	   struct bpf_perf_event_value *, buf, u32, size)
1221{
1222	int err = -EINVAL;
1223
1224	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1225		goto clear;
1226	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1227				    &buf->running);
1228	if (unlikely(err))
1229		goto clear;
1230	return 0;
1231clear:
1232	memset(buf, 0, size);
1233	return err;
1234}
1235
1236static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1237         .func           = bpf_perf_prog_read_value,
1238         .gpl_only       = true,
1239         .ret_type       = RET_INTEGER,
1240         .arg1_type      = ARG_PTR_TO_CTX,
1241         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1242         .arg3_type      = ARG_CONST_SIZE,
1243};
1244
1245BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1246	   void *, buf, u32, size, u64, flags)
1247{
1248#ifndef CONFIG_X86
1249	return -ENOENT;
1250#else
1251	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1252	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1253	u32 to_copy;
1254
1255	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1256		return -EINVAL;
1257
 
 
 
1258	if (unlikely(!br_stack))
1259		return -EINVAL;
1260
1261	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1262		return br_stack->nr * br_entry_size;
1263
1264	if (!buf || (size % br_entry_size != 0))
1265		return -EINVAL;
1266
1267	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1268	memcpy(buf, br_stack->entries, to_copy);
1269
1270	return to_copy;
1271#endif
1272}
1273
1274static const struct bpf_func_proto bpf_read_branch_records_proto = {
1275	.func           = bpf_read_branch_records,
1276	.gpl_only       = true,
1277	.ret_type       = RET_INTEGER,
1278	.arg1_type      = ARG_PTR_TO_CTX,
1279	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1280	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1281	.arg4_type      = ARG_ANYTHING,
1282};
1283
1284static const struct bpf_func_proto *
1285pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1286{
1287	switch (func_id) {
1288	case BPF_FUNC_perf_event_output:
1289		return &bpf_perf_event_output_proto_tp;
1290	case BPF_FUNC_get_stackid:
1291		return &bpf_get_stackid_proto_pe;
1292	case BPF_FUNC_get_stack:
1293		return &bpf_get_stack_proto_pe;
1294	case BPF_FUNC_perf_prog_read_value:
1295		return &bpf_perf_prog_read_value_proto;
1296	case BPF_FUNC_read_branch_records:
1297		return &bpf_read_branch_records_proto;
 
 
1298	default:
1299		return bpf_tracing_func_proto(func_id, prog);
1300	}
1301}
1302
1303/*
1304 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1305 * to avoid potential recursive reuse issue when/if tracepoints are added
1306 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1307 *
1308 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1309 * in normal, irq, and nmi context.
1310 */
1311struct bpf_raw_tp_regs {
1312	struct pt_regs regs[3];
1313};
1314static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1315static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1316static struct pt_regs *get_bpf_raw_tp_regs(void)
1317{
1318	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1319	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1320
1321	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1322		this_cpu_dec(bpf_raw_tp_nest_level);
1323		return ERR_PTR(-EBUSY);
1324	}
1325
1326	return &tp_regs->regs[nest_level - 1];
1327}
1328
1329static void put_bpf_raw_tp_regs(void)
1330{
1331	this_cpu_dec(bpf_raw_tp_nest_level);
1332}
1333
1334BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1335	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1336{
1337	struct pt_regs *regs = get_bpf_raw_tp_regs();
1338	int ret;
1339
1340	if (IS_ERR(regs))
1341		return PTR_ERR(regs);
1342
1343	perf_fetch_caller_regs(regs);
1344	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1345
1346	put_bpf_raw_tp_regs();
1347	return ret;
1348}
1349
1350static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1351	.func		= bpf_perf_event_output_raw_tp,
1352	.gpl_only	= true,
1353	.ret_type	= RET_INTEGER,
1354	.arg1_type	= ARG_PTR_TO_CTX,
1355	.arg2_type	= ARG_CONST_MAP_PTR,
1356	.arg3_type	= ARG_ANYTHING,
1357	.arg4_type	= ARG_PTR_TO_MEM,
1358	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1359};
1360
1361extern const struct bpf_func_proto bpf_skb_output_proto;
1362extern const struct bpf_func_proto bpf_xdp_output_proto;
 
1363
1364BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1365	   struct bpf_map *, map, u64, flags)
1366{
1367	struct pt_regs *regs = get_bpf_raw_tp_regs();
1368	int ret;
1369
1370	if (IS_ERR(regs))
1371		return PTR_ERR(regs);
1372
1373	perf_fetch_caller_regs(regs);
1374	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1375	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1376			      flags, 0, 0);
1377	put_bpf_raw_tp_regs();
1378	return ret;
1379}
1380
1381static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1382	.func		= bpf_get_stackid_raw_tp,
1383	.gpl_only	= true,
1384	.ret_type	= RET_INTEGER,
1385	.arg1_type	= ARG_PTR_TO_CTX,
1386	.arg2_type	= ARG_CONST_MAP_PTR,
1387	.arg3_type	= ARG_ANYTHING,
1388};
1389
1390BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1391	   void *, buf, u32, size, u64, flags)
1392{
1393	struct pt_regs *regs = get_bpf_raw_tp_regs();
1394	int ret;
1395
1396	if (IS_ERR(regs))
1397		return PTR_ERR(regs);
1398
1399	perf_fetch_caller_regs(regs);
1400	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1401			    (unsigned long) size, flags, 0);
1402	put_bpf_raw_tp_regs();
1403	return ret;
1404}
1405
1406static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1407	.func		= bpf_get_stack_raw_tp,
1408	.gpl_only	= true,
1409	.ret_type	= RET_INTEGER,
1410	.arg1_type	= ARG_PTR_TO_CTX,
1411	.arg2_type	= ARG_PTR_TO_MEM,
1412	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1413	.arg4_type	= ARG_ANYTHING,
1414};
1415
1416static const struct bpf_func_proto *
1417raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1418{
1419	switch (func_id) {
1420	case BPF_FUNC_perf_event_output:
1421		return &bpf_perf_event_output_proto_raw_tp;
1422	case BPF_FUNC_get_stackid:
1423		return &bpf_get_stackid_proto_raw_tp;
1424	case BPF_FUNC_get_stack:
1425		return &bpf_get_stack_proto_raw_tp;
1426	default:
1427		return bpf_tracing_func_proto(func_id, prog);
1428	}
1429}
1430
1431const struct bpf_func_proto *
1432tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1433{
 
 
1434	switch (func_id) {
1435#ifdef CONFIG_NET
1436	case BPF_FUNC_skb_output:
1437		return &bpf_skb_output_proto;
1438	case BPF_FUNC_xdp_output:
1439		return &bpf_xdp_output_proto;
1440	case BPF_FUNC_skc_to_tcp6_sock:
1441		return &bpf_skc_to_tcp6_sock_proto;
1442	case BPF_FUNC_skc_to_tcp_sock:
1443		return &bpf_skc_to_tcp_sock_proto;
1444	case BPF_FUNC_skc_to_tcp_timewait_sock:
1445		return &bpf_skc_to_tcp_timewait_sock_proto;
1446	case BPF_FUNC_skc_to_tcp_request_sock:
1447		return &bpf_skc_to_tcp_request_sock_proto;
1448	case BPF_FUNC_skc_to_udp6_sock:
1449		return &bpf_skc_to_udp6_sock_proto;
 
 
 
 
1450	case BPF_FUNC_sk_storage_get:
1451		return &bpf_sk_storage_get_tracing_proto;
1452	case BPF_FUNC_sk_storage_delete:
1453		return &bpf_sk_storage_delete_tracing_proto;
1454	case BPF_FUNC_sock_from_file:
1455		return &bpf_sock_from_file_proto;
1456	case BPF_FUNC_get_socket_cookie:
1457		return &bpf_get_socket_ptr_cookie_proto;
 
 
1458#endif
1459	case BPF_FUNC_seq_printf:
1460		return prog->expected_attach_type == BPF_TRACE_ITER ?
1461		       &bpf_seq_printf_proto :
1462		       NULL;
1463	case BPF_FUNC_seq_write:
1464		return prog->expected_attach_type == BPF_TRACE_ITER ?
1465		       &bpf_seq_write_proto :
1466		       NULL;
1467	case BPF_FUNC_seq_printf_btf:
1468		return prog->expected_attach_type == BPF_TRACE_ITER ?
1469		       &bpf_seq_printf_btf_proto :
1470		       NULL;
1471	case BPF_FUNC_d_path:
1472		return &bpf_d_path_proto;
 
 
 
 
 
 
 
 
1473	default:
1474		return raw_tp_prog_func_proto(func_id, prog);
 
 
 
1475	}
1476}
1477
1478static bool raw_tp_prog_is_valid_access(int off, int size,
1479					enum bpf_access_type type,
1480					const struct bpf_prog *prog,
1481					struct bpf_insn_access_aux *info)
1482{
1483	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1484		return false;
1485	if (type != BPF_READ)
1486		return false;
1487	if (off % size != 0)
1488		return false;
1489	return true;
1490}
1491
1492static bool tracing_prog_is_valid_access(int off, int size,
1493					 enum bpf_access_type type,
1494					 const struct bpf_prog *prog,
1495					 struct bpf_insn_access_aux *info)
1496{
1497	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1498		return false;
1499	if (type != BPF_READ)
1500		return false;
1501	if (off % size != 0)
1502		return false;
1503	return btf_ctx_access(off, size, type, prog, info);
1504}
1505
1506int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1507				     const union bpf_attr *kattr,
1508				     union bpf_attr __user *uattr)
1509{
1510	return -ENOTSUPP;
1511}
1512
1513const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1514	.get_func_proto  = raw_tp_prog_func_proto,
1515	.is_valid_access = raw_tp_prog_is_valid_access,
1516};
1517
1518const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1519#ifdef CONFIG_NET
1520	.test_run = bpf_prog_test_run_raw_tp,
1521#endif
1522};
1523
1524const struct bpf_verifier_ops tracing_verifier_ops = {
1525	.get_func_proto  = tracing_prog_func_proto,
1526	.is_valid_access = tracing_prog_is_valid_access,
1527};
1528
1529const struct bpf_prog_ops tracing_prog_ops = {
1530	.test_run = bpf_prog_test_run_tracing,
1531};
1532
1533static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1534						 enum bpf_access_type type,
1535						 const struct bpf_prog *prog,
1536						 struct bpf_insn_access_aux *info)
1537{
1538	if (off == 0) {
1539		if (size != sizeof(u64) || type != BPF_READ)
1540			return false;
1541		info->reg_type = PTR_TO_TP_BUFFER;
1542	}
1543	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1544}
1545
1546const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1547	.get_func_proto  = raw_tp_prog_func_proto,
1548	.is_valid_access = raw_tp_writable_prog_is_valid_access,
1549};
1550
1551const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1552};
1553
1554static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1555				    const struct bpf_prog *prog,
1556				    struct bpf_insn_access_aux *info)
1557{
1558	const int size_u64 = sizeof(u64);
1559
1560	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1561		return false;
1562	if (type != BPF_READ)
1563		return false;
1564	if (off % size != 0) {
1565		if (sizeof(unsigned long) != 4)
1566			return false;
1567		if (size != 8)
1568			return false;
1569		if (off % size != 4)
1570			return false;
1571	}
1572
1573	switch (off) {
1574	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1575		bpf_ctx_record_field_size(info, size_u64);
1576		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1577			return false;
1578		break;
1579	case bpf_ctx_range(struct bpf_perf_event_data, addr):
1580		bpf_ctx_record_field_size(info, size_u64);
1581		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1582			return false;
1583		break;
1584	default:
1585		if (size != sizeof(long))
1586			return false;
1587	}
1588
1589	return true;
1590}
1591
1592static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1593				      const struct bpf_insn *si,
1594				      struct bpf_insn *insn_buf,
1595				      struct bpf_prog *prog, u32 *target_size)
1596{
1597	struct bpf_insn *insn = insn_buf;
1598
1599	switch (si->off) {
1600	case offsetof(struct bpf_perf_event_data, sample_period):
1601		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1602						       data), si->dst_reg, si->src_reg,
1603				      offsetof(struct bpf_perf_event_data_kern, data));
1604		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1605				      bpf_target_off(struct perf_sample_data, period, 8,
1606						     target_size));
1607		break;
1608	case offsetof(struct bpf_perf_event_data, addr):
1609		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1610						       data), si->dst_reg, si->src_reg,
1611				      offsetof(struct bpf_perf_event_data_kern, data));
1612		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1613				      bpf_target_off(struct perf_sample_data, addr, 8,
1614						     target_size));
1615		break;
1616	default:
1617		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1618						       regs), si->dst_reg, si->src_reg,
1619				      offsetof(struct bpf_perf_event_data_kern, regs));
1620		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1621				      si->off);
1622		break;
1623	}
1624
1625	return insn - insn_buf;
1626}
1627
1628const struct bpf_verifier_ops perf_event_verifier_ops = {
1629	.get_func_proto		= pe_prog_func_proto,
1630	.is_valid_access	= pe_prog_is_valid_access,
1631	.convert_ctx_access	= pe_prog_convert_ctx_access,
1632};
1633
1634const struct bpf_prog_ops perf_event_prog_ops = {
1635};
1636
1637static DEFINE_MUTEX(bpf_event_mutex);
1638
1639#define BPF_TRACE_MAX_PROGS 64
1640
1641int perf_event_attach_bpf_prog(struct perf_event *event,
1642			       struct bpf_prog *prog)
 
1643{
1644	struct bpf_prog_array *old_array;
1645	struct bpf_prog_array *new_array;
1646	int ret = -EEXIST;
1647
1648	/*
1649	 * Kprobe override only works if they are on the function entry,
1650	 * and only if they are on the opt-in list.
1651	 */
1652	if (prog->kprobe_override &&
1653	    (!trace_kprobe_on_func_entry(event->tp_event) ||
1654	     !trace_kprobe_error_injectable(event->tp_event)))
1655		return -EINVAL;
1656
1657	mutex_lock(&bpf_event_mutex);
1658
1659	if (event->prog)
1660		goto unlock;
1661
1662	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1663	if (old_array &&
1664	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1665		ret = -E2BIG;
1666		goto unlock;
1667	}
1668
1669	ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1670	if (ret < 0)
1671		goto unlock;
1672
1673	/* set the new array to event->tp_event and set event->prog */
1674	event->prog = prog;
 
1675	rcu_assign_pointer(event->tp_event->prog_array, new_array);
1676	bpf_prog_array_free(old_array);
1677
1678unlock:
1679	mutex_unlock(&bpf_event_mutex);
1680	return ret;
1681}
1682
1683void perf_event_detach_bpf_prog(struct perf_event *event)
1684{
1685	struct bpf_prog_array *old_array;
1686	struct bpf_prog_array *new_array;
1687	int ret;
1688
1689	mutex_lock(&bpf_event_mutex);
1690
1691	if (!event->prog)
1692		goto unlock;
1693
1694	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1695	ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1696	if (ret == -ENOENT)
1697		goto unlock;
1698	if (ret < 0) {
1699		bpf_prog_array_delete_safe(old_array, event->prog);
1700	} else {
1701		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1702		bpf_prog_array_free(old_array);
1703	}
1704
1705	bpf_prog_put(event->prog);
1706	event->prog = NULL;
1707
1708unlock:
1709	mutex_unlock(&bpf_event_mutex);
1710}
1711
1712int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1713{
1714	struct perf_event_query_bpf __user *uquery = info;
1715	struct perf_event_query_bpf query = {};
1716	struct bpf_prog_array *progs;
1717	u32 *ids, prog_cnt, ids_len;
1718	int ret;
1719
1720	if (!perfmon_capable())
1721		return -EPERM;
1722	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1723		return -EINVAL;
1724	if (copy_from_user(&query, uquery, sizeof(query)))
1725		return -EFAULT;
1726
1727	ids_len = query.ids_len;
1728	if (ids_len > BPF_TRACE_MAX_PROGS)
1729		return -E2BIG;
1730	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1731	if (!ids)
1732		return -ENOMEM;
1733	/*
1734	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1735	 * is required when user only wants to check for uquery->prog_cnt.
1736	 * There is no need to check for it since the case is handled
1737	 * gracefully in bpf_prog_array_copy_info.
1738	 */
1739
1740	mutex_lock(&bpf_event_mutex);
1741	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
1742	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
1743	mutex_unlock(&bpf_event_mutex);
1744
1745	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1746	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1747		ret = -EFAULT;
1748
1749	kfree(ids);
1750	return ret;
1751}
1752
1753extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1754extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1755
1756struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1757{
1758	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1759
1760	for (; btp < __stop__bpf_raw_tp; btp++) {
1761		if (!strcmp(btp->tp->name, name))
1762			return btp;
1763	}
1764
1765	return bpf_get_raw_tracepoint_module(name);
1766}
1767
1768void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1769{
1770	struct module *mod;
1771
1772	preempt_disable();
1773	mod = __module_address((unsigned long)btp);
1774	module_put(mod);
1775	preempt_enable();
1776}
1777
1778static __always_inline
1779void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1780{
1781	cant_sleep();
 
 
 
 
1782	rcu_read_lock();
1783	(void) BPF_PROG_RUN(prog, args);
1784	rcu_read_unlock();
 
 
1785}
1786
1787#define UNPACK(...)			__VA_ARGS__
1788#define REPEAT_1(FN, DL, X, ...)	FN(X)
1789#define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1790#define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1791#define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1792#define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1793#define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1794#define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1795#define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1796#define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1797#define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1798#define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1799#define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1800#define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
1801
1802#define SARG(X)		u64 arg##X
1803#define COPY(X)		args[X] = arg##X
1804
1805#define __DL_COM	(,)
1806#define __DL_SEM	(;)
1807
1808#define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1809
1810#define BPF_TRACE_DEFN_x(x)						\
1811	void bpf_trace_run##x(struct bpf_prog *prog,			\
1812			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
1813	{								\
1814		u64 args[x];						\
1815		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
1816		__bpf_trace_run(prog, args);				\
1817	}								\
1818	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1819BPF_TRACE_DEFN_x(1);
1820BPF_TRACE_DEFN_x(2);
1821BPF_TRACE_DEFN_x(3);
1822BPF_TRACE_DEFN_x(4);
1823BPF_TRACE_DEFN_x(5);
1824BPF_TRACE_DEFN_x(6);
1825BPF_TRACE_DEFN_x(7);
1826BPF_TRACE_DEFN_x(8);
1827BPF_TRACE_DEFN_x(9);
1828BPF_TRACE_DEFN_x(10);
1829BPF_TRACE_DEFN_x(11);
1830BPF_TRACE_DEFN_x(12);
1831
1832static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1833{
1834	struct tracepoint *tp = btp->tp;
1835
1836	/*
1837	 * check that program doesn't access arguments beyond what's
1838	 * available in this tracepoint
1839	 */
1840	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1841		return -EINVAL;
1842
1843	if (prog->aux->max_tp_access > btp->writable_size)
1844		return -EINVAL;
1845
1846	return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func,
1847						   prog);
1848}
1849
1850int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1851{
1852	return __bpf_probe_register(btp, prog);
1853}
1854
1855int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1856{
1857	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1858}
1859
1860int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1861			    u32 *fd_type, const char **buf,
1862			    u64 *probe_offset, u64 *probe_addr)
1863{
1864	bool is_tracepoint, is_syscall_tp;
1865	struct bpf_prog *prog;
1866	int flags, err = 0;
1867
1868	prog = event->prog;
1869	if (!prog)
1870		return -ENOENT;
1871
1872	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1873	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1874		return -EOPNOTSUPP;
1875
1876	*prog_id = prog->aux->id;
1877	flags = event->tp_event->flags;
1878	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1879	is_syscall_tp = is_syscall_trace_event(event->tp_event);
1880
1881	if (is_tracepoint || is_syscall_tp) {
1882		*buf = is_tracepoint ? event->tp_event->tp->name
1883				     : event->tp_event->name;
1884		*fd_type = BPF_FD_TYPE_TRACEPOINT;
1885		*probe_offset = 0x0;
1886		*probe_addr = 0x0;
1887	} else {
1888		/* kprobe/uprobe */
1889		err = -EOPNOTSUPP;
1890#ifdef CONFIG_KPROBE_EVENTS
1891		if (flags & TRACE_EVENT_FL_KPROBE)
1892			err = bpf_get_kprobe_info(event, fd_type, buf,
1893						  probe_offset, probe_addr,
1894						  event->attr.type == PERF_TYPE_TRACEPOINT);
1895#endif
1896#ifdef CONFIG_UPROBE_EVENTS
1897		if (flags & TRACE_EVENT_FL_UPROBE)
1898			err = bpf_get_uprobe_info(event, fd_type, buf,
1899						  probe_offset,
1900						  event->attr.type == PERF_TYPE_TRACEPOINT);
1901#endif
1902	}
1903
1904	return err;
1905}
1906
1907static int __init send_signal_irq_work_init(void)
1908{
1909	int cpu;
1910	struct send_signal_irq_work *work;
1911
1912	for_each_possible_cpu(cpu) {
1913		work = per_cpu_ptr(&send_signal_work, cpu);
1914		init_irq_work(&work->irq_work, do_bpf_send_signal);
1915	}
1916	return 0;
1917}
1918
1919subsys_initcall(send_signal_irq_work_init);
1920
1921#ifdef CONFIG_MODULES
1922static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
1923			    void *module)
1924{
1925	struct bpf_trace_module *btm, *tmp;
1926	struct module *mod = module;
1927	int ret = 0;
1928
1929	if (mod->num_bpf_raw_events == 0 ||
1930	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
1931		goto out;
1932
1933	mutex_lock(&bpf_module_mutex);
1934
1935	switch (op) {
1936	case MODULE_STATE_COMING:
1937		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
1938		if (btm) {
1939			btm->module = module;
1940			list_add(&btm->list, &bpf_trace_modules);
1941		} else {
1942			ret = -ENOMEM;
1943		}
1944		break;
1945	case MODULE_STATE_GOING:
1946		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
1947			if (btm->module == module) {
1948				list_del(&btm->list);
1949				kfree(btm);
1950				break;
1951			}
1952		}
1953		break;
1954	}
1955
1956	mutex_unlock(&bpf_module_mutex);
1957
1958out:
1959	return notifier_from_errno(ret);
1960}
1961
1962static struct notifier_block bpf_module_nb = {
1963	.notifier_call = bpf_event_notify,
1964};
1965
1966static int __init bpf_event_init(void)
1967{
1968	register_module_notifier(&bpf_module_nb);
1969	return 0;
1970}
1971
1972fs_initcall(bpf_event_init);
1973#endif /* CONFIG_MODULES */