Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2#include "cgroup-internal.h"
  3
  4#include <linux/sched/cputime.h>
  5
  6#include <linux/bpf.h>
  7#include <linux/btf.h>
  8#include <linux/btf_ids.h>
  9
 10static DEFINE_SPINLOCK(cgroup_rstat_lock);
 11static DEFINE_PER_CPU(raw_spinlock_t, cgroup_rstat_cpu_lock);
 12
 13static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu);
 14
 15static struct cgroup_rstat_cpu *cgroup_rstat_cpu(struct cgroup *cgrp, int cpu)
 16{
 17	return per_cpu_ptr(cgrp->rstat_cpu, cpu);
 18}
 19
 20/**
 21 * cgroup_rstat_updated - keep track of updated rstat_cpu
 22 * @cgrp: target cgroup
 23 * @cpu: cpu on which rstat_cpu was updated
 24 *
 25 * @cgrp's rstat_cpu on @cpu was updated.  Put it on the parent's matching
 26 * rstat_cpu->updated_children list.  See the comment on top of
 27 * cgroup_rstat_cpu definition for details.
 28 */
 29void cgroup_rstat_updated(struct cgroup *cgrp, int cpu)
 30{
 31	raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu);
 32	unsigned long flags;
 33
 34	/*
 35	 * Speculative already-on-list test. This may race leading to
 36	 * temporary inaccuracies, which is fine.
 37	 *
 38	 * Because @parent's updated_children is terminated with @parent
 39	 * instead of NULL, we can tell whether @cgrp is on the list by
 40	 * testing the next pointer for NULL.
 41	 */
 42	if (data_race(cgroup_rstat_cpu(cgrp, cpu)->updated_next))
 43		return;
 44
 45	raw_spin_lock_irqsave(cpu_lock, flags);
 46
 47	/* put @cgrp and all ancestors on the corresponding updated lists */
 48	while (true) {
 49		struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
 50		struct cgroup *parent = cgroup_parent(cgrp);
 51		struct cgroup_rstat_cpu *prstatc;
 52
 53		/*
 54		 * Both additions and removals are bottom-up.  If a cgroup
 55		 * is already in the tree, all ancestors are.
 56		 */
 57		if (rstatc->updated_next)
 58			break;
 59
 60		/* Root has no parent to link it to, but mark it busy */
 61		if (!parent) {
 62			rstatc->updated_next = cgrp;
 63			break;
 64		}
 65
 66		prstatc = cgroup_rstat_cpu(parent, cpu);
 67		rstatc->updated_next = prstatc->updated_children;
 68		prstatc->updated_children = cgrp;
 69
 70		cgrp = parent;
 71	}
 72
 73	raw_spin_unlock_irqrestore(cpu_lock, flags);
 74}
 75
 76/**
 77 * cgroup_rstat_cpu_pop_updated - iterate and dismantle rstat_cpu updated tree
 78 * @pos: current position
 79 * @root: root of the tree to traversal
 80 * @cpu: target cpu
 81 *
 82 * Walks the updated rstat_cpu tree on @cpu from @root.  %NULL @pos starts
 83 * the traversal and %NULL return indicates the end.  During traversal,
 84 * each returned cgroup is unlinked from the tree.  Must be called with the
 85 * matching cgroup_rstat_cpu_lock held.
 86 *
 87 * The only ordering guarantee is that, for a parent and a child pair
 88 * covered by a given traversal, if a child is visited, its parent is
 89 * guaranteed to be visited afterwards.
 90 */
 91static struct cgroup *cgroup_rstat_cpu_pop_updated(struct cgroup *pos,
 92						   struct cgroup *root, int cpu)
 93{
 94	struct cgroup_rstat_cpu *rstatc;
 95	struct cgroup *parent;
 96
 97	if (pos == root)
 98		return NULL;
 99
100	/*
101	 * We're gonna walk down to the first leaf and visit/remove it.  We
102	 * can pick whatever unvisited node as the starting point.
103	 */
104	if (!pos) {
105		pos = root;
106		/* return NULL if this subtree is not on-list */
107		if (!cgroup_rstat_cpu(pos, cpu)->updated_next)
108			return NULL;
109	} else {
110		pos = cgroup_parent(pos);
111	}
112
113	/* walk down to the first leaf */
114	while (true) {
115		rstatc = cgroup_rstat_cpu(pos, cpu);
116		if (rstatc->updated_children == pos)
117			break;
118		pos = rstatc->updated_children;
119	}
120
121	/*
122	 * Unlink @pos from the tree.  As the updated_children list is
123	 * singly linked, we have to walk it to find the removal point.
124	 * However, due to the way we traverse, @pos will be the first
125	 * child in most cases. The only exception is @root.
126	 */
127	parent = cgroup_parent(pos);
128	if (parent) {
129		struct cgroup_rstat_cpu *prstatc;
130		struct cgroup **nextp;
131
132		prstatc = cgroup_rstat_cpu(parent, cpu);
133		nextp = &prstatc->updated_children;
134		while (*nextp != pos) {
135			struct cgroup_rstat_cpu *nrstatc;
136
137			nrstatc = cgroup_rstat_cpu(*nextp, cpu);
138			WARN_ON_ONCE(*nextp == parent);
139			nextp = &nrstatc->updated_next;
 
 
 
 
 
 
 
 
140		}
141		*nextp = rstatc->updated_next;
 
 
142	}
143
144	rstatc->updated_next = NULL;
145	return pos;
146}
147
148/*
149 * A hook for bpf stat collectors to attach to and flush their stats.
150 * Together with providing bpf kfuncs for cgroup_rstat_updated() and
151 * cgroup_rstat_flush(), this enables a complete workflow where bpf progs that
152 * collect cgroup stats can integrate with rstat for efficient flushing.
153 *
154 * A static noinline declaration here could cause the compiler to optimize away
155 * the function. A global noinline declaration will keep the definition, but may
156 * optimize away the callsite. Therefore, __weak is needed to ensure that the
157 * call is still emitted, by telling the compiler that we don't know what the
158 * function might eventually be.
159 *
160 * __diag_* below are needed to dismiss the missing prototype warning.
161 */
162__diag_push();
163__diag_ignore_all("-Wmissing-prototypes",
164		  "kfuncs which will be used in BPF programs");
165
166__weak noinline void bpf_rstat_flush(struct cgroup *cgrp,
167				     struct cgroup *parent, int cpu)
168{
169}
170
171__diag_pop();
172
173/* see cgroup_rstat_flush() */
174static void cgroup_rstat_flush_locked(struct cgroup *cgrp, bool may_sleep)
175	__releases(&cgroup_rstat_lock) __acquires(&cgroup_rstat_lock)
176{
177	int cpu;
178
179	lockdep_assert_held(&cgroup_rstat_lock);
180
181	for_each_possible_cpu(cpu) {
182		raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock,
183						       cpu);
184		struct cgroup *pos = NULL;
185		unsigned long flags;
186
187		/*
188		 * The _irqsave() is needed because cgroup_rstat_lock is
189		 * spinlock_t which is a sleeping lock on PREEMPT_RT. Acquiring
190		 * this lock with the _irq() suffix only disables interrupts on
191		 * a non-PREEMPT_RT kernel. The raw_spinlock_t below disables
192		 * interrupts on both configurations. The _irqsave() ensures
193		 * that interrupts are always disabled and later restored.
194		 */
195		raw_spin_lock_irqsave(cpu_lock, flags);
196		while ((pos = cgroup_rstat_cpu_pop_updated(pos, cgrp, cpu))) {
197			struct cgroup_subsys_state *css;
198
199			cgroup_base_stat_flush(pos, cpu);
200			bpf_rstat_flush(pos, cgroup_parent(pos), cpu);
201
202			rcu_read_lock();
203			list_for_each_entry_rcu(css, &pos->rstat_css_list,
204						rstat_css_node)
205				css->ss->css_rstat_flush(css, cpu);
206			rcu_read_unlock();
207		}
208		raw_spin_unlock_irqrestore(cpu_lock, flags);
209
210		/* if @may_sleep, play nice and yield if necessary */
211		if (may_sleep && (need_resched() ||
212				  spin_needbreak(&cgroup_rstat_lock))) {
213			spin_unlock_irq(&cgroup_rstat_lock);
214			if (!cond_resched())
215				cpu_relax();
216			spin_lock_irq(&cgroup_rstat_lock);
217		}
218	}
219}
220
221/**
222 * cgroup_rstat_flush - flush stats in @cgrp's subtree
223 * @cgrp: target cgroup
224 *
225 * Collect all per-cpu stats in @cgrp's subtree into the global counters
226 * and propagate them upwards.  After this function returns, all cgroups in
227 * the subtree have up-to-date ->stat.
228 *
229 * This also gets all cgroups in the subtree including @cgrp off the
230 * ->updated_children lists.
231 *
232 * This function may block.
233 */
234void cgroup_rstat_flush(struct cgroup *cgrp)
235{
236	might_sleep();
237
238	spin_lock_irq(&cgroup_rstat_lock);
239	cgroup_rstat_flush_locked(cgrp, true);
240	spin_unlock_irq(&cgroup_rstat_lock);
241}
242
243/**
244 * cgroup_rstat_flush_irqsafe - irqsafe version of cgroup_rstat_flush()
245 * @cgrp: target cgroup
246 *
247 * This function can be called from any context.
248 */
249void cgroup_rstat_flush_irqsafe(struct cgroup *cgrp)
250{
251	unsigned long flags;
252
253	spin_lock_irqsave(&cgroup_rstat_lock, flags);
254	cgroup_rstat_flush_locked(cgrp, false);
255	spin_unlock_irqrestore(&cgroup_rstat_lock, flags);
256}
257
258/**
259 * cgroup_rstat_flush_hold - flush stats in @cgrp's subtree and hold
260 * @cgrp: target cgroup
261 *
262 * Flush stats in @cgrp's subtree and prevent further flushes.  Must be
263 * paired with cgroup_rstat_flush_release().
264 *
265 * This function may block.
266 */
267void cgroup_rstat_flush_hold(struct cgroup *cgrp)
268	__acquires(&cgroup_rstat_lock)
269{
270	might_sleep();
271	spin_lock_irq(&cgroup_rstat_lock);
272	cgroup_rstat_flush_locked(cgrp, true);
273}
274
275/**
276 * cgroup_rstat_flush_release - release cgroup_rstat_flush_hold()
277 */
278void cgroup_rstat_flush_release(void)
279	__releases(&cgroup_rstat_lock)
280{
281	spin_unlock_irq(&cgroup_rstat_lock);
282}
283
284int cgroup_rstat_init(struct cgroup *cgrp)
285{
286	int cpu;
287
288	/* the root cgrp has rstat_cpu preallocated */
289	if (!cgrp->rstat_cpu) {
290		cgrp->rstat_cpu = alloc_percpu(struct cgroup_rstat_cpu);
291		if (!cgrp->rstat_cpu)
292			return -ENOMEM;
293	}
294
295	/* ->updated_children list is self terminated */
296	for_each_possible_cpu(cpu) {
297		struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
298
299		rstatc->updated_children = cgrp;
300		u64_stats_init(&rstatc->bsync);
301	}
302
303	return 0;
304}
305
306void cgroup_rstat_exit(struct cgroup *cgrp)
307{
308	int cpu;
309
310	cgroup_rstat_flush(cgrp);
311
312	/* sanity check */
313	for_each_possible_cpu(cpu) {
314		struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
315
316		if (WARN_ON_ONCE(rstatc->updated_children != cgrp) ||
317		    WARN_ON_ONCE(rstatc->updated_next))
318			return;
319	}
320
321	free_percpu(cgrp->rstat_cpu);
322	cgrp->rstat_cpu = NULL;
323}
324
325void __init cgroup_rstat_boot(void)
326{
327	int cpu;
328
329	for_each_possible_cpu(cpu)
330		raw_spin_lock_init(per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu));
331}
332
333/*
334 * Functions for cgroup basic resource statistics implemented on top of
335 * rstat.
336 */
337static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat,
338				 struct cgroup_base_stat *src_bstat)
339{
340	dst_bstat->cputime.utime += src_bstat->cputime.utime;
341	dst_bstat->cputime.stime += src_bstat->cputime.stime;
342	dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime;
343#ifdef CONFIG_SCHED_CORE
344	dst_bstat->forceidle_sum += src_bstat->forceidle_sum;
345#endif
346}
347
348static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat,
349				 struct cgroup_base_stat *src_bstat)
350{
351	dst_bstat->cputime.utime -= src_bstat->cputime.utime;
352	dst_bstat->cputime.stime -= src_bstat->cputime.stime;
353	dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime;
354#ifdef CONFIG_SCHED_CORE
355	dst_bstat->forceidle_sum -= src_bstat->forceidle_sum;
356#endif
357}
358
359static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu)
360{
361	struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
362	struct cgroup *parent = cgroup_parent(cgrp);
363	struct cgroup_base_stat delta;
364	unsigned seq;
365
366	/* Root-level stats are sourced from system-wide CPU stats */
367	if (!parent)
368		return;
369
370	/* fetch the current per-cpu values */
371	do {
372		seq = __u64_stats_fetch_begin(&rstatc->bsync);
373		delta = rstatc->bstat;
374	} while (__u64_stats_fetch_retry(&rstatc->bsync, seq));
375
376	/* propagate percpu delta to global */
 
377	cgroup_base_stat_sub(&delta, &rstatc->last_bstat);
378	cgroup_base_stat_add(&cgrp->bstat, &delta);
379	cgroup_base_stat_add(&rstatc->last_bstat, &delta);
380
381	/* propagate global delta to parent (unless that's root) */
382	if (cgroup_parent(parent)) {
383		delta = cgrp->bstat;
384		cgroup_base_stat_sub(&delta, &cgrp->last_bstat);
385		cgroup_base_stat_add(&parent->bstat, &delta);
386		cgroup_base_stat_add(&cgrp->last_bstat, &delta);
387	}
388}
389
390static struct cgroup_rstat_cpu *
391cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp, unsigned long *flags)
392{
393	struct cgroup_rstat_cpu *rstatc;
394
395	rstatc = get_cpu_ptr(cgrp->rstat_cpu);
396	*flags = u64_stats_update_begin_irqsave(&rstatc->bsync);
397	return rstatc;
398}
399
400static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp,
401						 struct cgroup_rstat_cpu *rstatc,
402						 unsigned long flags)
403{
404	u64_stats_update_end_irqrestore(&rstatc->bsync, flags);
405	cgroup_rstat_updated(cgrp, smp_processor_id());
406	put_cpu_ptr(rstatc);
407}
408
409void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec)
410{
411	struct cgroup_rstat_cpu *rstatc;
412	unsigned long flags;
413
414	rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags);
415	rstatc->bstat.cputime.sum_exec_runtime += delta_exec;
416	cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags);
417}
418
419void __cgroup_account_cputime_field(struct cgroup *cgrp,
420				    enum cpu_usage_stat index, u64 delta_exec)
421{
422	struct cgroup_rstat_cpu *rstatc;
423	unsigned long flags;
424
425	rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags);
426
427	switch (index) {
428	case CPUTIME_USER:
429	case CPUTIME_NICE:
430		rstatc->bstat.cputime.utime += delta_exec;
431		break;
432	case CPUTIME_SYSTEM:
433	case CPUTIME_IRQ:
434	case CPUTIME_SOFTIRQ:
435		rstatc->bstat.cputime.stime += delta_exec;
436		break;
437#ifdef CONFIG_SCHED_CORE
438	case CPUTIME_FORCEIDLE:
439		rstatc->bstat.forceidle_sum += delta_exec;
440		break;
441#endif
442	default:
443		break;
444	}
445
446	cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags);
447}
448
449/*
450 * compute the cputime for the root cgroup by getting the per cpu data
451 * at a global level, then categorizing the fields in a manner consistent
452 * with how it is done by __cgroup_account_cputime_field for each bit of
453 * cpu time attributed to a cgroup.
454 */
455static void root_cgroup_cputime(struct cgroup_base_stat *bstat)
456{
457	struct task_cputime *cputime = &bstat->cputime;
458	int i;
459
460	cputime->stime = 0;
461	cputime->utime = 0;
462	cputime->sum_exec_runtime = 0;
463	for_each_possible_cpu(i) {
464		struct kernel_cpustat kcpustat;
465		u64 *cpustat = kcpustat.cpustat;
466		u64 user = 0;
467		u64 sys = 0;
468
469		kcpustat_cpu_fetch(&kcpustat, i);
470
471		user += cpustat[CPUTIME_USER];
472		user += cpustat[CPUTIME_NICE];
473		cputime->utime += user;
474
475		sys += cpustat[CPUTIME_SYSTEM];
476		sys += cpustat[CPUTIME_IRQ];
477		sys += cpustat[CPUTIME_SOFTIRQ];
478		cputime->stime += sys;
479
480		cputime->sum_exec_runtime += user;
481		cputime->sum_exec_runtime += sys;
482		cputime->sum_exec_runtime += cpustat[CPUTIME_STEAL];
483
484#ifdef CONFIG_SCHED_CORE
485		bstat->forceidle_sum += cpustat[CPUTIME_FORCEIDLE];
486#endif
487	}
488}
489
490void cgroup_base_stat_cputime_show(struct seq_file *seq)
491{
492	struct cgroup *cgrp = seq_css(seq)->cgroup;
493	u64 usage, utime, stime;
494	struct cgroup_base_stat bstat;
495#ifdef CONFIG_SCHED_CORE
496	u64 forceidle_time;
497#endif
498
499	if (cgroup_parent(cgrp)) {
500		cgroup_rstat_flush_hold(cgrp);
501		usage = cgrp->bstat.cputime.sum_exec_runtime;
502		cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime,
503			       &utime, &stime);
504#ifdef CONFIG_SCHED_CORE
505		forceidle_time = cgrp->bstat.forceidle_sum;
506#endif
507		cgroup_rstat_flush_release();
508	} else {
509		root_cgroup_cputime(&bstat);
510		usage = bstat.cputime.sum_exec_runtime;
511		utime = bstat.cputime.utime;
512		stime = bstat.cputime.stime;
513#ifdef CONFIG_SCHED_CORE
514		forceidle_time = bstat.forceidle_sum;
515#endif
516	}
517
518	do_div(usage, NSEC_PER_USEC);
519	do_div(utime, NSEC_PER_USEC);
520	do_div(stime, NSEC_PER_USEC);
521#ifdef CONFIG_SCHED_CORE
522	do_div(forceidle_time, NSEC_PER_USEC);
523#endif
524
525	seq_printf(seq, "usage_usec %llu\n"
526		   "user_usec %llu\n"
527		   "system_usec %llu\n",
528		   usage, utime, stime);
529
530#ifdef CONFIG_SCHED_CORE
531	seq_printf(seq, "core_sched.force_idle_usec %llu\n", forceidle_time);
532#endif
533}
534
535/* Add bpf kfuncs for cgroup_rstat_updated() and cgroup_rstat_flush() */
536BTF_SET8_START(bpf_rstat_kfunc_ids)
537BTF_ID_FLAGS(func, cgroup_rstat_updated)
538BTF_ID_FLAGS(func, cgroup_rstat_flush, KF_SLEEPABLE)
539BTF_SET8_END(bpf_rstat_kfunc_ids)
540
541static const struct btf_kfunc_id_set bpf_rstat_kfunc_set = {
542	.owner          = THIS_MODULE,
543	.set            = &bpf_rstat_kfunc_ids,
544};
545
546static int __init bpf_rstat_kfunc_init(void)
547{
548	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
549					 &bpf_rstat_kfunc_set);
550}
551late_initcall(bpf_rstat_kfunc_init);
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2#include "cgroup-internal.h"
  3
  4#include <linux/sched/cputime.h>
  5
 
 
 
 
  6static DEFINE_SPINLOCK(cgroup_rstat_lock);
  7static DEFINE_PER_CPU(raw_spinlock_t, cgroup_rstat_cpu_lock);
  8
  9static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu);
 10
 11static struct cgroup_rstat_cpu *cgroup_rstat_cpu(struct cgroup *cgrp, int cpu)
 12{
 13	return per_cpu_ptr(cgrp->rstat_cpu, cpu);
 14}
 15
 16/**
 17 * cgroup_rstat_updated - keep track of updated rstat_cpu
 18 * @cgrp: target cgroup
 19 * @cpu: cpu on which rstat_cpu was updated
 20 *
 21 * @cgrp's rstat_cpu on @cpu was updated.  Put it on the parent's matching
 22 * rstat_cpu->updated_children list.  See the comment on top of
 23 * cgroup_rstat_cpu definition for details.
 24 */
 25void cgroup_rstat_updated(struct cgroup *cgrp, int cpu)
 26{
 27	raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu);
 28	unsigned long flags;
 29
 30	/*
 31	 * Speculative already-on-list test. This may race leading to
 32	 * temporary inaccuracies, which is fine.
 33	 *
 34	 * Because @parent's updated_children is terminated with @parent
 35	 * instead of NULL, we can tell whether @cgrp is on the list by
 36	 * testing the next pointer for NULL.
 37	 */
 38	if (cgroup_rstat_cpu(cgrp, cpu)->updated_next)
 39		return;
 40
 41	raw_spin_lock_irqsave(cpu_lock, flags);
 42
 43	/* put @cgrp and all ancestors on the corresponding updated lists */
 44	while (true) {
 45		struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
 46		struct cgroup *parent = cgroup_parent(cgrp);
 47		struct cgroup_rstat_cpu *prstatc;
 48
 49		/*
 50		 * Both additions and removals are bottom-up.  If a cgroup
 51		 * is already in the tree, all ancestors are.
 52		 */
 53		if (rstatc->updated_next)
 54			break;
 55
 56		/* Root has no parent to link it to, but mark it busy */
 57		if (!parent) {
 58			rstatc->updated_next = cgrp;
 59			break;
 60		}
 61
 62		prstatc = cgroup_rstat_cpu(parent, cpu);
 63		rstatc->updated_next = prstatc->updated_children;
 64		prstatc->updated_children = cgrp;
 65
 66		cgrp = parent;
 67	}
 68
 69	raw_spin_unlock_irqrestore(cpu_lock, flags);
 70}
 71
 72/**
 73 * cgroup_rstat_cpu_pop_updated - iterate and dismantle rstat_cpu updated tree
 74 * @pos: current position
 75 * @root: root of the tree to traversal
 76 * @cpu: target cpu
 77 *
 78 * Walks the updated rstat_cpu tree on @cpu from @root.  %NULL @pos starts
 79 * the traversal and %NULL return indicates the end.  During traversal,
 80 * each returned cgroup is unlinked from the tree.  Must be called with the
 81 * matching cgroup_rstat_cpu_lock held.
 82 *
 83 * The only ordering guarantee is that, for a parent and a child pair
 84 * covered by a given traversal, if a child is visited, its parent is
 85 * guaranteed to be visited afterwards.
 86 */
 87static struct cgroup *cgroup_rstat_cpu_pop_updated(struct cgroup *pos,
 88						   struct cgroup *root, int cpu)
 89{
 90	struct cgroup_rstat_cpu *rstatc;
 
 91
 92	if (pos == root)
 93		return NULL;
 94
 95	/*
 96	 * We're gonna walk down to the first leaf and visit/remove it.  We
 97	 * can pick whatever unvisited node as the starting point.
 98	 */
 99	if (!pos)
100		pos = root;
101	else
 
 
 
102		pos = cgroup_parent(pos);
 
103
104	/* walk down to the first leaf */
105	while (true) {
106		rstatc = cgroup_rstat_cpu(pos, cpu);
107		if (rstatc->updated_children == pos)
108			break;
109		pos = rstatc->updated_children;
110	}
111
112	/*
113	 * Unlink @pos from the tree.  As the updated_children list is
114	 * singly linked, we have to walk it to find the removal point.
115	 * However, due to the way we traverse, @pos will be the first
116	 * child in most cases. The only exception is @root.
117	 */
118	if (rstatc->updated_next) {
119		struct cgroup *parent = cgroup_parent(pos);
 
 
120
121		if (parent) {
122			struct cgroup_rstat_cpu *prstatc;
123			struct cgroup **nextp;
124
125			prstatc = cgroup_rstat_cpu(parent, cpu);
126			nextp = &prstatc->updated_children;
127			while (true) {
128				struct cgroup_rstat_cpu *nrstatc;
129
130				nrstatc = cgroup_rstat_cpu(*nextp, cpu);
131				if (*nextp == pos)
132					break;
133				WARN_ON_ONCE(*nextp == parent);
134				nextp = &nrstatc->updated_next;
135			}
136			*nextp = rstatc->updated_next;
137		}
138
139		rstatc->updated_next = NULL;
140		return pos;
141	}
142
143	/* only happens for @root */
144	return NULL;
145}
146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147/* see cgroup_rstat_flush() */
148static void cgroup_rstat_flush_locked(struct cgroup *cgrp, bool may_sleep)
149	__releases(&cgroup_rstat_lock) __acquires(&cgroup_rstat_lock)
150{
151	int cpu;
152
153	lockdep_assert_held(&cgroup_rstat_lock);
154
155	for_each_possible_cpu(cpu) {
156		raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock,
157						       cpu);
158		struct cgroup *pos = NULL;
 
159
160		raw_spin_lock(cpu_lock);
 
 
 
 
 
 
 
 
161		while ((pos = cgroup_rstat_cpu_pop_updated(pos, cgrp, cpu))) {
162			struct cgroup_subsys_state *css;
163
164			cgroup_base_stat_flush(pos, cpu);
 
165
166			rcu_read_lock();
167			list_for_each_entry_rcu(css, &pos->rstat_css_list,
168						rstat_css_node)
169				css->ss->css_rstat_flush(css, cpu);
170			rcu_read_unlock();
171		}
172		raw_spin_unlock(cpu_lock);
173
174		/* if @may_sleep, play nice and yield if necessary */
175		if (may_sleep && (need_resched() ||
176				  spin_needbreak(&cgroup_rstat_lock))) {
177			spin_unlock_irq(&cgroup_rstat_lock);
178			if (!cond_resched())
179				cpu_relax();
180			spin_lock_irq(&cgroup_rstat_lock);
181		}
182	}
183}
184
185/**
186 * cgroup_rstat_flush - flush stats in @cgrp's subtree
187 * @cgrp: target cgroup
188 *
189 * Collect all per-cpu stats in @cgrp's subtree into the global counters
190 * and propagate them upwards.  After this function returns, all cgroups in
191 * the subtree have up-to-date ->stat.
192 *
193 * This also gets all cgroups in the subtree including @cgrp off the
194 * ->updated_children lists.
195 *
196 * This function may block.
197 */
198void cgroup_rstat_flush(struct cgroup *cgrp)
199{
200	might_sleep();
201
202	spin_lock_irq(&cgroup_rstat_lock);
203	cgroup_rstat_flush_locked(cgrp, true);
204	spin_unlock_irq(&cgroup_rstat_lock);
205}
206
207/**
208 * cgroup_rstat_flush_irqsafe - irqsafe version of cgroup_rstat_flush()
209 * @cgrp: target cgroup
210 *
211 * This function can be called from any context.
212 */
213void cgroup_rstat_flush_irqsafe(struct cgroup *cgrp)
214{
215	unsigned long flags;
216
217	spin_lock_irqsave(&cgroup_rstat_lock, flags);
218	cgroup_rstat_flush_locked(cgrp, false);
219	spin_unlock_irqrestore(&cgroup_rstat_lock, flags);
220}
221
222/**
223 * cgroup_rstat_flush_hold - flush stats in @cgrp's subtree and hold
224 * @cgrp: target cgroup
225 *
226 * Flush stats in @cgrp's subtree and prevent further flushes.  Must be
227 * paired with cgroup_rstat_flush_release().
228 *
229 * This function may block.
230 */
231void cgroup_rstat_flush_hold(struct cgroup *cgrp)
232	__acquires(&cgroup_rstat_lock)
233{
234	might_sleep();
235	spin_lock_irq(&cgroup_rstat_lock);
236	cgroup_rstat_flush_locked(cgrp, true);
237}
238
239/**
240 * cgroup_rstat_flush_release - release cgroup_rstat_flush_hold()
241 */
242void cgroup_rstat_flush_release(void)
243	__releases(&cgroup_rstat_lock)
244{
245	spin_unlock_irq(&cgroup_rstat_lock);
246}
247
248int cgroup_rstat_init(struct cgroup *cgrp)
249{
250	int cpu;
251
252	/* the root cgrp has rstat_cpu preallocated */
253	if (!cgrp->rstat_cpu) {
254		cgrp->rstat_cpu = alloc_percpu(struct cgroup_rstat_cpu);
255		if (!cgrp->rstat_cpu)
256			return -ENOMEM;
257	}
258
259	/* ->updated_children list is self terminated */
260	for_each_possible_cpu(cpu) {
261		struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
262
263		rstatc->updated_children = cgrp;
264		u64_stats_init(&rstatc->bsync);
265	}
266
267	return 0;
268}
269
270void cgroup_rstat_exit(struct cgroup *cgrp)
271{
272	int cpu;
273
274	cgroup_rstat_flush(cgrp);
275
276	/* sanity check */
277	for_each_possible_cpu(cpu) {
278		struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
279
280		if (WARN_ON_ONCE(rstatc->updated_children != cgrp) ||
281		    WARN_ON_ONCE(rstatc->updated_next))
282			return;
283	}
284
285	free_percpu(cgrp->rstat_cpu);
286	cgrp->rstat_cpu = NULL;
287}
288
289void __init cgroup_rstat_boot(void)
290{
291	int cpu;
292
293	for_each_possible_cpu(cpu)
294		raw_spin_lock_init(per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu));
295}
296
297/*
298 * Functions for cgroup basic resource statistics implemented on top of
299 * rstat.
300 */
301static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat,
302				 struct cgroup_base_stat *src_bstat)
303{
304	dst_bstat->cputime.utime += src_bstat->cputime.utime;
305	dst_bstat->cputime.stime += src_bstat->cputime.stime;
306	dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime;
 
 
 
307}
308
309static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat,
310				 struct cgroup_base_stat *src_bstat)
311{
312	dst_bstat->cputime.utime -= src_bstat->cputime.utime;
313	dst_bstat->cputime.stime -= src_bstat->cputime.stime;
314	dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime;
 
 
 
315}
316
317static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu)
318{
319	struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
320	struct cgroup *parent = cgroup_parent(cgrp);
321	struct cgroup_base_stat cur, delta;
322	unsigned seq;
323
324	/* Root-level stats are sourced from system-wide CPU stats */
325	if (!parent)
326		return;
327
328	/* fetch the current per-cpu values */
329	do {
330		seq = __u64_stats_fetch_begin(&rstatc->bsync);
331		cur.cputime = rstatc->bstat.cputime;
332	} while (__u64_stats_fetch_retry(&rstatc->bsync, seq));
333
334	/* propagate percpu delta to global */
335	delta = cur;
336	cgroup_base_stat_sub(&delta, &rstatc->last_bstat);
337	cgroup_base_stat_add(&cgrp->bstat, &delta);
338	cgroup_base_stat_add(&rstatc->last_bstat, &delta);
339
340	/* propagate global delta to parent (unless that's root) */
341	if (cgroup_parent(parent)) {
342		delta = cgrp->bstat;
343		cgroup_base_stat_sub(&delta, &cgrp->last_bstat);
344		cgroup_base_stat_add(&parent->bstat, &delta);
345		cgroup_base_stat_add(&cgrp->last_bstat, &delta);
346	}
347}
348
349static struct cgroup_rstat_cpu *
350cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp, unsigned long *flags)
351{
352	struct cgroup_rstat_cpu *rstatc;
353
354	rstatc = get_cpu_ptr(cgrp->rstat_cpu);
355	*flags = u64_stats_update_begin_irqsave(&rstatc->bsync);
356	return rstatc;
357}
358
359static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp,
360						 struct cgroup_rstat_cpu *rstatc,
361						 unsigned long flags)
362{
363	u64_stats_update_end_irqrestore(&rstatc->bsync, flags);
364	cgroup_rstat_updated(cgrp, smp_processor_id());
365	put_cpu_ptr(rstatc);
366}
367
368void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec)
369{
370	struct cgroup_rstat_cpu *rstatc;
371	unsigned long flags;
372
373	rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags);
374	rstatc->bstat.cputime.sum_exec_runtime += delta_exec;
375	cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags);
376}
377
378void __cgroup_account_cputime_field(struct cgroup *cgrp,
379				    enum cpu_usage_stat index, u64 delta_exec)
380{
381	struct cgroup_rstat_cpu *rstatc;
382	unsigned long flags;
383
384	rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags);
385
386	switch (index) {
387	case CPUTIME_USER:
388	case CPUTIME_NICE:
389		rstatc->bstat.cputime.utime += delta_exec;
390		break;
391	case CPUTIME_SYSTEM:
392	case CPUTIME_IRQ:
393	case CPUTIME_SOFTIRQ:
394		rstatc->bstat.cputime.stime += delta_exec;
395		break;
 
 
 
 
 
396	default:
397		break;
398	}
399
400	cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags);
401}
402
403/*
404 * compute the cputime for the root cgroup by getting the per cpu data
405 * at a global level, then categorizing the fields in a manner consistent
406 * with how it is done by __cgroup_account_cputime_field for each bit of
407 * cpu time attributed to a cgroup.
408 */
409static void root_cgroup_cputime(struct task_cputime *cputime)
410{
 
411	int i;
412
413	cputime->stime = 0;
414	cputime->utime = 0;
415	cputime->sum_exec_runtime = 0;
416	for_each_possible_cpu(i) {
417		struct kernel_cpustat kcpustat;
418		u64 *cpustat = kcpustat.cpustat;
419		u64 user = 0;
420		u64 sys = 0;
421
422		kcpustat_cpu_fetch(&kcpustat, i);
423
424		user += cpustat[CPUTIME_USER];
425		user += cpustat[CPUTIME_NICE];
426		cputime->utime += user;
427
428		sys += cpustat[CPUTIME_SYSTEM];
429		sys += cpustat[CPUTIME_IRQ];
430		sys += cpustat[CPUTIME_SOFTIRQ];
431		cputime->stime += sys;
432
433		cputime->sum_exec_runtime += user;
434		cputime->sum_exec_runtime += sys;
435		cputime->sum_exec_runtime += cpustat[CPUTIME_STEAL];
436		cputime->sum_exec_runtime += cpustat[CPUTIME_GUEST];
437		cputime->sum_exec_runtime += cpustat[CPUTIME_GUEST_NICE];
 
 
438	}
439}
440
441void cgroup_base_stat_cputime_show(struct seq_file *seq)
442{
443	struct cgroup *cgrp = seq_css(seq)->cgroup;
444	u64 usage, utime, stime;
445	struct task_cputime cputime;
 
 
 
446
447	if (cgroup_parent(cgrp)) {
448		cgroup_rstat_flush_hold(cgrp);
449		usage = cgrp->bstat.cputime.sum_exec_runtime;
450		cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime,
451			       &utime, &stime);
 
 
 
452		cgroup_rstat_flush_release();
453	} else {
454		root_cgroup_cputime(&cputime);
455		usage = cputime.sum_exec_runtime;
456		utime = cputime.utime;
457		stime = cputime.stime;
 
 
 
458	}
459
460	do_div(usage, NSEC_PER_USEC);
461	do_div(utime, NSEC_PER_USEC);
462	do_div(stime, NSEC_PER_USEC);
 
 
 
463
464	seq_printf(seq, "usage_usec %llu\n"
465		   "user_usec %llu\n"
466		   "system_usec %llu\n",
467		   usage, utime, stime);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
468}