Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_trans.h"
16#include "xfs_buf_item.h"
17#include "xfs_btree.h"
18#include "xfs_errortag.h"
19#include "xfs_error.h"
20#include "xfs_trace.h"
21#include "xfs_alloc.h"
22#include "xfs_log.h"
23#include "xfs_btree_staging.h"
24#include "xfs_ag.h"
25#include "xfs_alloc_btree.h"
26#include "xfs_ialloc_btree.h"
27#include "xfs_bmap_btree.h"
28#include "xfs_rmap_btree.h"
29#include "xfs_refcount_btree.h"
30
31/*
32 * Btree magic numbers.
33 */
34static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
35 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
36 XFS_FIBT_MAGIC, 0 },
37 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
38 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
39 XFS_REFC_CRC_MAGIC }
40};
41
42uint32_t
43xfs_btree_magic(
44 int crc,
45 xfs_btnum_t btnum)
46{
47 uint32_t magic = xfs_magics[crc][btnum];
48
49 /* Ensure we asked for crc for crc-only magics. */
50 ASSERT(magic != 0);
51 return magic;
52}
53
54/*
55 * These sibling pointer checks are optimised for null sibling pointers. This
56 * happens a lot, and we don't need to byte swap at runtime if the sibling
57 * pointer is NULL.
58 *
59 * These are explicitly marked at inline because the cost of calling them as
60 * functions instead of inlining them is about 36 bytes extra code per call site
61 * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these
62 * two sibling check functions reduces the compiled code size by over 300
63 * bytes.
64 */
65static inline xfs_failaddr_t
66xfs_btree_check_lblock_siblings(
67 struct xfs_mount *mp,
68 struct xfs_btree_cur *cur,
69 int level,
70 xfs_fsblock_t fsb,
71 __be64 dsibling)
72{
73 xfs_fsblock_t sibling;
74
75 if (dsibling == cpu_to_be64(NULLFSBLOCK))
76 return NULL;
77
78 sibling = be64_to_cpu(dsibling);
79 if (sibling == fsb)
80 return __this_address;
81 if (level >= 0) {
82 if (!xfs_btree_check_lptr(cur, sibling, level + 1))
83 return __this_address;
84 } else {
85 if (!xfs_verify_fsbno(mp, sibling))
86 return __this_address;
87 }
88
89 return NULL;
90}
91
92static inline xfs_failaddr_t
93xfs_btree_check_sblock_siblings(
94 struct xfs_perag *pag,
95 struct xfs_btree_cur *cur,
96 int level,
97 xfs_agblock_t agbno,
98 __be32 dsibling)
99{
100 xfs_agblock_t sibling;
101
102 if (dsibling == cpu_to_be32(NULLAGBLOCK))
103 return NULL;
104
105 sibling = be32_to_cpu(dsibling);
106 if (sibling == agbno)
107 return __this_address;
108 if (level >= 0) {
109 if (!xfs_btree_check_sptr(cur, sibling, level + 1))
110 return __this_address;
111 } else {
112 if (!xfs_verify_agbno(pag, sibling))
113 return __this_address;
114 }
115 return NULL;
116}
117
118/*
119 * Check a long btree block header. Return the address of the failing check,
120 * or NULL if everything is ok.
121 */
122xfs_failaddr_t
123__xfs_btree_check_lblock(
124 struct xfs_btree_cur *cur,
125 struct xfs_btree_block *block,
126 int level,
127 struct xfs_buf *bp)
128{
129 struct xfs_mount *mp = cur->bc_mp;
130 xfs_btnum_t btnum = cur->bc_btnum;
131 int crc = xfs_has_crc(mp);
132 xfs_failaddr_t fa;
133 xfs_fsblock_t fsb = NULLFSBLOCK;
134
135 if (crc) {
136 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
137 return __this_address;
138 if (block->bb_u.l.bb_blkno !=
139 cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
140 return __this_address;
141 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
142 return __this_address;
143 }
144
145 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
146 return __this_address;
147 if (be16_to_cpu(block->bb_level) != level)
148 return __this_address;
149 if (be16_to_cpu(block->bb_numrecs) >
150 cur->bc_ops->get_maxrecs(cur, level))
151 return __this_address;
152
153 if (bp)
154 fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
155
156 fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
157 block->bb_u.l.bb_leftsib);
158 if (!fa)
159 fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
160 block->bb_u.l.bb_rightsib);
161 return fa;
162}
163
164/* Check a long btree block header. */
165static int
166xfs_btree_check_lblock(
167 struct xfs_btree_cur *cur,
168 struct xfs_btree_block *block,
169 int level,
170 struct xfs_buf *bp)
171{
172 struct xfs_mount *mp = cur->bc_mp;
173 xfs_failaddr_t fa;
174
175 fa = __xfs_btree_check_lblock(cur, block, level, bp);
176 if (XFS_IS_CORRUPT(mp, fa != NULL) ||
177 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) {
178 if (bp)
179 trace_xfs_btree_corrupt(bp, _RET_IP_);
180 return -EFSCORRUPTED;
181 }
182 return 0;
183}
184
185/*
186 * Check a short btree block header. Return the address of the failing check,
187 * or NULL if everything is ok.
188 */
189xfs_failaddr_t
190__xfs_btree_check_sblock(
191 struct xfs_btree_cur *cur,
192 struct xfs_btree_block *block,
193 int level,
194 struct xfs_buf *bp)
195{
196 struct xfs_mount *mp = cur->bc_mp;
197 struct xfs_perag *pag = cur->bc_ag.pag;
198 xfs_btnum_t btnum = cur->bc_btnum;
199 int crc = xfs_has_crc(mp);
200 xfs_failaddr_t fa;
201 xfs_agblock_t agbno = NULLAGBLOCK;
202
203 if (crc) {
204 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
205 return __this_address;
206 if (block->bb_u.s.bb_blkno !=
207 cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
208 return __this_address;
209 }
210
211 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
212 return __this_address;
213 if (be16_to_cpu(block->bb_level) != level)
214 return __this_address;
215 if (be16_to_cpu(block->bb_numrecs) >
216 cur->bc_ops->get_maxrecs(cur, level))
217 return __this_address;
218
219 if (bp)
220 agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
221
222 fa = xfs_btree_check_sblock_siblings(pag, cur, level, agbno,
223 block->bb_u.s.bb_leftsib);
224 if (!fa)
225 fa = xfs_btree_check_sblock_siblings(pag, cur, level, agbno,
226 block->bb_u.s.bb_rightsib);
227 return fa;
228}
229
230/* Check a short btree block header. */
231STATIC int
232xfs_btree_check_sblock(
233 struct xfs_btree_cur *cur,
234 struct xfs_btree_block *block,
235 int level,
236 struct xfs_buf *bp)
237{
238 struct xfs_mount *mp = cur->bc_mp;
239 xfs_failaddr_t fa;
240
241 fa = __xfs_btree_check_sblock(cur, block, level, bp);
242 if (XFS_IS_CORRUPT(mp, fa != NULL) ||
243 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) {
244 if (bp)
245 trace_xfs_btree_corrupt(bp, _RET_IP_);
246 return -EFSCORRUPTED;
247 }
248 return 0;
249}
250
251/*
252 * Debug routine: check that block header is ok.
253 */
254int
255xfs_btree_check_block(
256 struct xfs_btree_cur *cur, /* btree cursor */
257 struct xfs_btree_block *block, /* generic btree block pointer */
258 int level, /* level of the btree block */
259 struct xfs_buf *bp) /* buffer containing block, if any */
260{
261 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
262 return xfs_btree_check_lblock(cur, block, level, bp);
263 else
264 return xfs_btree_check_sblock(cur, block, level, bp);
265}
266
267/* Check that this long pointer is valid and points within the fs. */
268bool
269xfs_btree_check_lptr(
270 struct xfs_btree_cur *cur,
271 xfs_fsblock_t fsbno,
272 int level)
273{
274 if (level <= 0)
275 return false;
276 return xfs_verify_fsbno(cur->bc_mp, fsbno);
277}
278
279/* Check that this short pointer is valid and points within the AG. */
280bool
281xfs_btree_check_sptr(
282 struct xfs_btree_cur *cur,
283 xfs_agblock_t agbno,
284 int level)
285{
286 if (level <= 0)
287 return false;
288 return xfs_verify_agbno(cur->bc_ag.pag, agbno);
289}
290
291/*
292 * Check that a given (indexed) btree pointer at a certain level of a
293 * btree is valid and doesn't point past where it should.
294 */
295static int
296xfs_btree_check_ptr(
297 struct xfs_btree_cur *cur,
298 const union xfs_btree_ptr *ptr,
299 int index,
300 int level)
301{
302 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
303 if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
304 level))
305 return 0;
306 xfs_err(cur->bc_mp,
307"Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
308 cur->bc_ino.ip->i_ino,
309 cur->bc_ino.whichfork, cur->bc_btnum,
310 level, index);
311 } else {
312 if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
313 level))
314 return 0;
315 xfs_err(cur->bc_mp,
316"AG %u: Corrupt btree %d pointer at level %d index %d.",
317 cur->bc_ag.pag->pag_agno, cur->bc_btnum,
318 level, index);
319 }
320
321 return -EFSCORRUPTED;
322}
323
324#ifdef DEBUG
325# define xfs_btree_debug_check_ptr xfs_btree_check_ptr
326#else
327# define xfs_btree_debug_check_ptr(...) (0)
328#endif
329
330/*
331 * Calculate CRC on the whole btree block and stuff it into the
332 * long-form btree header.
333 *
334 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
335 * it into the buffer so recovery knows what the last modification was that made
336 * it to disk.
337 */
338void
339xfs_btree_lblock_calc_crc(
340 struct xfs_buf *bp)
341{
342 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
343 struct xfs_buf_log_item *bip = bp->b_log_item;
344
345 if (!xfs_has_crc(bp->b_mount))
346 return;
347 if (bip)
348 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
349 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
350}
351
352bool
353xfs_btree_lblock_verify_crc(
354 struct xfs_buf *bp)
355{
356 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
357 struct xfs_mount *mp = bp->b_mount;
358
359 if (xfs_has_crc(mp)) {
360 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
361 return false;
362 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
363 }
364
365 return true;
366}
367
368/*
369 * Calculate CRC on the whole btree block and stuff it into the
370 * short-form btree header.
371 *
372 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
373 * it into the buffer so recovery knows what the last modification was that made
374 * it to disk.
375 */
376void
377xfs_btree_sblock_calc_crc(
378 struct xfs_buf *bp)
379{
380 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
381 struct xfs_buf_log_item *bip = bp->b_log_item;
382
383 if (!xfs_has_crc(bp->b_mount))
384 return;
385 if (bip)
386 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
387 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
388}
389
390bool
391xfs_btree_sblock_verify_crc(
392 struct xfs_buf *bp)
393{
394 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
395 struct xfs_mount *mp = bp->b_mount;
396
397 if (xfs_has_crc(mp)) {
398 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
399 return false;
400 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
401 }
402
403 return true;
404}
405
406static int
407xfs_btree_free_block(
408 struct xfs_btree_cur *cur,
409 struct xfs_buf *bp)
410{
411 int error;
412
413 error = cur->bc_ops->free_block(cur, bp);
414 if (!error) {
415 xfs_trans_binval(cur->bc_tp, bp);
416 XFS_BTREE_STATS_INC(cur, free);
417 }
418 return error;
419}
420
421/*
422 * Delete the btree cursor.
423 */
424void
425xfs_btree_del_cursor(
426 struct xfs_btree_cur *cur, /* btree cursor */
427 int error) /* del because of error */
428{
429 int i; /* btree level */
430
431 /*
432 * Clear the buffer pointers and release the buffers. If we're doing
433 * this because of an error, inspect all of the entries in the bc_bufs
434 * array for buffers to be unlocked. This is because some of the btree
435 * code works from level n down to 0, and if we get an error along the
436 * way we won't have initialized all the entries down to 0.
437 */
438 for (i = 0; i < cur->bc_nlevels; i++) {
439 if (cur->bc_levels[i].bp)
440 xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp);
441 else if (!error)
442 break;
443 }
444
445 /*
446 * If we are doing a BMBT update, the number of unaccounted blocks
447 * allocated during this cursor life time should be zero. If it's not
448 * zero, then we should be shut down or on our way to shutdown due to
449 * cancelling a dirty transaction on error.
450 */
451 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 ||
452 xfs_is_shutdown(cur->bc_mp) || error != 0);
453 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING))
454 kmem_free(cur->bc_ops);
455 if (!(cur->bc_flags & XFS_BTREE_LONG_PTRS) && cur->bc_ag.pag)
456 xfs_perag_put(cur->bc_ag.pag);
457 kmem_cache_free(cur->bc_cache, cur);
458}
459
460/*
461 * Duplicate the btree cursor.
462 * Allocate a new one, copy the record, re-get the buffers.
463 */
464int /* error */
465xfs_btree_dup_cursor(
466 struct xfs_btree_cur *cur, /* input cursor */
467 struct xfs_btree_cur **ncur) /* output cursor */
468{
469 struct xfs_buf *bp; /* btree block's buffer pointer */
470 int error; /* error return value */
471 int i; /* level number of btree block */
472 xfs_mount_t *mp; /* mount structure for filesystem */
473 struct xfs_btree_cur *new; /* new cursor value */
474 xfs_trans_t *tp; /* transaction pointer, can be NULL */
475
476 tp = cur->bc_tp;
477 mp = cur->bc_mp;
478
479 /*
480 * Allocate a new cursor like the old one.
481 */
482 new = cur->bc_ops->dup_cursor(cur);
483
484 /*
485 * Copy the record currently in the cursor.
486 */
487 new->bc_rec = cur->bc_rec;
488
489 /*
490 * For each level current, re-get the buffer and copy the ptr value.
491 */
492 for (i = 0; i < new->bc_nlevels; i++) {
493 new->bc_levels[i].ptr = cur->bc_levels[i].ptr;
494 new->bc_levels[i].ra = cur->bc_levels[i].ra;
495 bp = cur->bc_levels[i].bp;
496 if (bp) {
497 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
498 xfs_buf_daddr(bp), mp->m_bsize,
499 0, &bp,
500 cur->bc_ops->buf_ops);
501 if (error) {
502 xfs_btree_del_cursor(new, error);
503 *ncur = NULL;
504 return error;
505 }
506 }
507 new->bc_levels[i].bp = bp;
508 }
509 *ncur = new;
510 return 0;
511}
512
513/*
514 * XFS btree block layout and addressing:
515 *
516 * There are two types of blocks in the btree: leaf and non-leaf blocks.
517 *
518 * The leaf record start with a header then followed by records containing
519 * the values. A non-leaf block also starts with the same header, and
520 * then first contains lookup keys followed by an equal number of pointers
521 * to the btree blocks at the previous level.
522 *
523 * +--------+-------+-------+-------+-------+-------+-------+
524 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
525 * +--------+-------+-------+-------+-------+-------+-------+
526 *
527 * +--------+-------+-------+-------+-------+-------+-------+
528 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
529 * +--------+-------+-------+-------+-------+-------+-------+
530 *
531 * The header is called struct xfs_btree_block for reasons better left unknown
532 * and comes in different versions for short (32bit) and long (64bit) block
533 * pointers. The record and key structures are defined by the btree instances
534 * and opaque to the btree core. The block pointers are simple disk endian
535 * integers, available in a short (32bit) and long (64bit) variant.
536 *
537 * The helpers below calculate the offset of a given record, key or pointer
538 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
539 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
540 * inside the btree block is done using indices starting at one, not zero!
541 *
542 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
543 * overlapping intervals. In such a tree, records are still sorted lowest to
544 * highest and indexed by the smallest key value that refers to the record.
545 * However, nodes are different: each pointer has two associated keys -- one
546 * indexing the lowest key available in the block(s) below (the same behavior
547 * as the key in a regular btree) and another indexing the highest key
548 * available in the block(s) below. Because records are /not/ sorted by the
549 * highest key, all leaf block updates require us to compute the highest key
550 * that matches any record in the leaf and to recursively update the high keys
551 * in the nodes going further up in the tree, if necessary. Nodes look like
552 * this:
553 *
554 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
555 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
556 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
557 *
558 * To perform an interval query on an overlapped tree, perform the usual
559 * depth-first search and use the low and high keys to decide if we can skip
560 * that particular node. If a leaf node is reached, return the records that
561 * intersect the interval. Note that an interval query may return numerous
562 * entries. For a non-overlapped tree, simply search for the record associated
563 * with the lowest key and iterate forward until a non-matching record is
564 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
565 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
566 * more detail.
567 *
568 * Why do we care about overlapping intervals? Let's say you have a bunch of
569 * reverse mapping records on a reflink filesystem:
570 *
571 * 1: +- file A startblock B offset C length D -----------+
572 * 2: +- file E startblock F offset G length H --------------+
573 * 3: +- file I startblock F offset J length K --+
574 * 4: +- file L... --+
575 *
576 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
577 * we'd simply increment the length of record 1. But how do we find the record
578 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
579 * record 3 because the keys are ordered first by startblock. An interval
580 * query would return records 1 and 2 because they both overlap (B+D-1), and
581 * from that we can pick out record 1 as the appropriate left neighbor.
582 *
583 * In the non-overlapped case you can do a LE lookup and decrement the cursor
584 * because a record's interval must end before the next record.
585 */
586
587/*
588 * Return size of the btree block header for this btree instance.
589 */
590static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
591{
592 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
593 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
594 return XFS_BTREE_LBLOCK_CRC_LEN;
595 return XFS_BTREE_LBLOCK_LEN;
596 }
597 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
598 return XFS_BTREE_SBLOCK_CRC_LEN;
599 return XFS_BTREE_SBLOCK_LEN;
600}
601
602/*
603 * Return size of btree block pointers for this btree instance.
604 */
605static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
606{
607 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
608 sizeof(__be64) : sizeof(__be32);
609}
610
611/*
612 * Calculate offset of the n-th record in a btree block.
613 */
614STATIC size_t
615xfs_btree_rec_offset(
616 struct xfs_btree_cur *cur,
617 int n)
618{
619 return xfs_btree_block_len(cur) +
620 (n - 1) * cur->bc_ops->rec_len;
621}
622
623/*
624 * Calculate offset of the n-th key in a btree block.
625 */
626STATIC size_t
627xfs_btree_key_offset(
628 struct xfs_btree_cur *cur,
629 int n)
630{
631 return xfs_btree_block_len(cur) +
632 (n - 1) * cur->bc_ops->key_len;
633}
634
635/*
636 * Calculate offset of the n-th high key in a btree block.
637 */
638STATIC size_t
639xfs_btree_high_key_offset(
640 struct xfs_btree_cur *cur,
641 int n)
642{
643 return xfs_btree_block_len(cur) +
644 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
645}
646
647/*
648 * Calculate offset of the n-th block pointer in a btree block.
649 */
650STATIC size_t
651xfs_btree_ptr_offset(
652 struct xfs_btree_cur *cur,
653 int n,
654 int level)
655{
656 return xfs_btree_block_len(cur) +
657 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
658 (n - 1) * xfs_btree_ptr_len(cur);
659}
660
661/*
662 * Return a pointer to the n-th record in the btree block.
663 */
664union xfs_btree_rec *
665xfs_btree_rec_addr(
666 struct xfs_btree_cur *cur,
667 int n,
668 struct xfs_btree_block *block)
669{
670 return (union xfs_btree_rec *)
671 ((char *)block + xfs_btree_rec_offset(cur, n));
672}
673
674/*
675 * Return a pointer to the n-th key in the btree block.
676 */
677union xfs_btree_key *
678xfs_btree_key_addr(
679 struct xfs_btree_cur *cur,
680 int n,
681 struct xfs_btree_block *block)
682{
683 return (union xfs_btree_key *)
684 ((char *)block + xfs_btree_key_offset(cur, n));
685}
686
687/*
688 * Return a pointer to the n-th high key in the btree block.
689 */
690union xfs_btree_key *
691xfs_btree_high_key_addr(
692 struct xfs_btree_cur *cur,
693 int n,
694 struct xfs_btree_block *block)
695{
696 return (union xfs_btree_key *)
697 ((char *)block + xfs_btree_high_key_offset(cur, n));
698}
699
700/*
701 * Return a pointer to the n-th block pointer in the btree block.
702 */
703union xfs_btree_ptr *
704xfs_btree_ptr_addr(
705 struct xfs_btree_cur *cur,
706 int n,
707 struct xfs_btree_block *block)
708{
709 int level = xfs_btree_get_level(block);
710
711 ASSERT(block->bb_level != 0);
712
713 return (union xfs_btree_ptr *)
714 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
715}
716
717struct xfs_ifork *
718xfs_btree_ifork_ptr(
719 struct xfs_btree_cur *cur)
720{
721 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
722
723 if (cur->bc_flags & XFS_BTREE_STAGING)
724 return cur->bc_ino.ifake->if_fork;
725 return xfs_ifork_ptr(cur->bc_ino.ip, cur->bc_ino.whichfork);
726}
727
728/*
729 * Get the root block which is stored in the inode.
730 *
731 * For now this btree implementation assumes the btree root is always
732 * stored in the if_broot field of an inode fork.
733 */
734STATIC struct xfs_btree_block *
735xfs_btree_get_iroot(
736 struct xfs_btree_cur *cur)
737{
738 struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
739
740 return (struct xfs_btree_block *)ifp->if_broot;
741}
742
743/*
744 * Retrieve the block pointer from the cursor at the given level.
745 * This may be an inode btree root or from a buffer.
746 */
747struct xfs_btree_block * /* generic btree block pointer */
748xfs_btree_get_block(
749 struct xfs_btree_cur *cur, /* btree cursor */
750 int level, /* level in btree */
751 struct xfs_buf **bpp) /* buffer containing the block */
752{
753 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
754 (level == cur->bc_nlevels - 1)) {
755 *bpp = NULL;
756 return xfs_btree_get_iroot(cur);
757 }
758
759 *bpp = cur->bc_levels[level].bp;
760 return XFS_BUF_TO_BLOCK(*bpp);
761}
762
763/*
764 * Change the cursor to point to the first record at the given level.
765 * Other levels are unaffected.
766 */
767STATIC int /* success=1, failure=0 */
768xfs_btree_firstrec(
769 struct xfs_btree_cur *cur, /* btree cursor */
770 int level) /* level to change */
771{
772 struct xfs_btree_block *block; /* generic btree block pointer */
773 struct xfs_buf *bp; /* buffer containing block */
774
775 /*
776 * Get the block pointer for this level.
777 */
778 block = xfs_btree_get_block(cur, level, &bp);
779 if (xfs_btree_check_block(cur, block, level, bp))
780 return 0;
781 /*
782 * It's empty, there is no such record.
783 */
784 if (!block->bb_numrecs)
785 return 0;
786 /*
787 * Set the ptr value to 1, that's the first record/key.
788 */
789 cur->bc_levels[level].ptr = 1;
790 return 1;
791}
792
793/*
794 * Change the cursor to point to the last record in the current block
795 * at the given level. Other levels are unaffected.
796 */
797STATIC int /* success=1, failure=0 */
798xfs_btree_lastrec(
799 struct xfs_btree_cur *cur, /* btree cursor */
800 int level) /* level to change */
801{
802 struct xfs_btree_block *block; /* generic btree block pointer */
803 struct xfs_buf *bp; /* buffer containing block */
804
805 /*
806 * Get the block pointer for this level.
807 */
808 block = xfs_btree_get_block(cur, level, &bp);
809 if (xfs_btree_check_block(cur, block, level, bp))
810 return 0;
811 /*
812 * It's empty, there is no such record.
813 */
814 if (!block->bb_numrecs)
815 return 0;
816 /*
817 * Set the ptr value to numrecs, that's the last record/key.
818 */
819 cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs);
820 return 1;
821}
822
823/*
824 * Compute first and last byte offsets for the fields given.
825 * Interprets the offsets table, which contains struct field offsets.
826 */
827void
828xfs_btree_offsets(
829 uint32_t fields, /* bitmask of fields */
830 const short *offsets, /* table of field offsets */
831 int nbits, /* number of bits to inspect */
832 int *first, /* output: first byte offset */
833 int *last) /* output: last byte offset */
834{
835 int i; /* current bit number */
836 uint32_t imask; /* mask for current bit number */
837
838 ASSERT(fields != 0);
839 /*
840 * Find the lowest bit, so the first byte offset.
841 */
842 for (i = 0, imask = 1u; ; i++, imask <<= 1) {
843 if (imask & fields) {
844 *first = offsets[i];
845 break;
846 }
847 }
848 /*
849 * Find the highest bit, so the last byte offset.
850 */
851 for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) {
852 if (imask & fields) {
853 *last = offsets[i + 1] - 1;
854 break;
855 }
856 }
857}
858
859/*
860 * Get a buffer for the block, return it read in.
861 * Long-form addressing.
862 */
863int
864xfs_btree_read_bufl(
865 struct xfs_mount *mp, /* file system mount point */
866 struct xfs_trans *tp, /* transaction pointer */
867 xfs_fsblock_t fsbno, /* file system block number */
868 struct xfs_buf **bpp, /* buffer for fsbno */
869 int refval, /* ref count value for buffer */
870 const struct xfs_buf_ops *ops)
871{
872 struct xfs_buf *bp; /* return value */
873 xfs_daddr_t d; /* real disk block address */
874 int error;
875
876 if (!xfs_verify_fsbno(mp, fsbno))
877 return -EFSCORRUPTED;
878 d = XFS_FSB_TO_DADDR(mp, fsbno);
879 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
880 mp->m_bsize, 0, &bp, ops);
881 if (error)
882 return error;
883 if (bp)
884 xfs_buf_set_ref(bp, refval);
885 *bpp = bp;
886 return 0;
887}
888
889/*
890 * Read-ahead the block, don't wait for it, don't return a buffer.
891 * Long-form addressing.
892 */
893/* ARGSUSED */
894void
895xfs_btree_reada_bufl(
896 struct xfs_mount *mp, /* file system mount point */
897 xfs_fsblock_t fsbno, /* file system block number */
898 xfs_extlen_t count, /* count of filesystem blocks */
899 const struct xfs_buf_ops *ops)
900{
901 xfs_daddr_t d;
902
903 ASSERT(fsbno != NULLFSBLOCK);
904 d = XFS_FSB_TO_DADDR(mp, fsbno);
905 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
906}
907
908/*
909 * Read-ahead the block, don't wait for it, don't return a buffer.
910 * Short-form addressing.
911 */
912/* ARGSUSED */
913void
914xfs_btree_reada_bufs(
915 struct xfs_mount *mp, /* file system mount point */
916 xfs_agnumber_t agno, /* allocation group number */
917 xfs_agblock_t agbno, /* allocation group block number */
918 xfs_extlen_t count, /* count of filesystem blocks */
919 const struct xfs_buf_ops *ops)
920{
921 xfs_daddr_t d;
922
923 ASSERT(agno != NULLAGNUMBER);
924 ASSERT(agbno != NULLAGBLOCK);
925 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
926 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
927}
928
929STATIC int
930xfs_btree_readahead_lblock(
931 struct xfs_btree_cur *cur,
932 int lr,
933 struct xfs_btree_block *block)
934{
935 int rval = 0;
936 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
937 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
938
939 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
940 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
941 cur->bc_ops->buf_ops);
942 rval++;
943 }
944
945 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
946 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
947 cur->bc_ops->buf_ops);
948 rval++;
949 }
950
951 return rval;
952}
953
954STATIC int
955xfs_btree_readahead_sblock(
956 struct xfs_btree_cur *cur,
957 int lr,
958 struct xfs_btree_block *block)
959{
960 int rval = 0;
961 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
962 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
963
964
965 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
966 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
967 left, 1, cur->bc_ops->buf_ops);
968 rval++;
969 }
970
971 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
972 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
973 right, 1, cur->bc_ops->buf_ops);
974 rval++;
975 }
976
977 return rval;
978}
979
980/*
981 * Read-ahead btree blocks, at the given level.
982 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
983 */
984STATIC int
985xfs_btree_readahead(
986 struct xfs_btree_cur *cur, /* btree cursor */
987 int lev, /* level in btree */
988 int lr) /* left/right bits */
989{
990 struct xfs_btree_block *block;
991
992 /*
993 * No readahead needed if we are at the root level and the
994 * btree root is stored in the inode.
995 */
996 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
997 (lev == cur->bc_nlevels - 1))
998 return 0;
999
1000 if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra)
1001 return 0;
1002
1003 cur->bc_levels[lev].ra |= lr;
1004 block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp);
1005
1006 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1007 return xfs_btree_readahead_lblock(cur, lr, block);
1008 return xfs_btree_readahead_sblock(cur, lr, block);
1009}
1010
1011STATIC int
1012xfs_btree_ptr_to_daddr(
1013 struct xfs_btree_cur *cur,
1014 const union xfs_btree_ptr *ptr,
1015 xfs_daddr_t *daddr)
1016{
1017 xfs_fsblock_t fsbno;
1018 xfs_agblock_t agbno;
1019 int error;
1020
1021 error = xfs_btree_check_ptr(cur, ptr, 0, 1);
1022 if (error)
1023 return error;
1024
1025 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1026 fsbno = be64_to_cpu(ptr->l);
1027 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
1028 } else {
1029 agbno = be32_to_cpu(ptr->s);
1030 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno,
1031 agbno);
1032 }
1033
1034 return 0;
1035}
1036
1037/*
1038 * Readahead @count btree blocks at the given @ptr location.
1039 *
1040 * We don't need to care about long or short form btrees here as we have a
1041 * method of converting the ptr directly to a daddr available to us.
1042 */
1043STATIC void
1044xfs_btree_readahead_ptr(
1045 struct xfs_btree_cur *cur,
1046 union xfs_btree_ptr *ptr,
1047 xfs_extlen_t count)
1048{
1049 xfs_daddr_t daddr;
1050
1051 if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1052 return;
1053 xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
1054 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
1055}
1056
1057/*
1058 * Set the buffer for level "lev" in the cursor to bp, releasing
1059 * any previous buffer.
1060 */
1061STATIC void
1062xfs_btree_setbuf(
1063 struct xfs_btree_cur *cur, /* btree cursor */
1064 int lev, /* level in btree */
1065 struct xfs_buf *bp) /* new buffer to set */
1066{
1067 struct xfs_btree_block *b; /* btree block */
1068
1069 if (cur->bc_levels[lev].bp)
1070 xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp);
1071 cur->bc_levels[lev].bp = bp;
1072 cur->bc_levels[lev].ra = 0;
1073
1074 b = XFS_BUF_TO_BLOCK(bp);
1075 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1076 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1077 cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1078 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1079 cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1080 } else {
1081 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1082 cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1083 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1084 cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1085 }
1086}
1087
1088bool
1089xfs_btree_ptr_is_null(
1090 struct xfs_btree_cur *cur,
1091 const union xfs_btree_ptr *ptr)
1092{
1093 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1094 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1095 else
1096 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1097}
1098
1099void
1100xfs_btree_set_ptr_null(
1101 struct xfs_btree_cur *cur,
1102 union xfs_btree_ptr *ptr)
1103{
1104 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1105 ptr->l = cpu_to_be64(NULLFSBLOCK);
1106 else
1107 ptr->s = cpu_to_be32(NULLAGBLOCK);
1108}
1109
1110/*
1111 * Get/set/init sibling pointers
1112 */
1113void
1114xfs_btree_get_sibling(
1115 struct xfs_btree_cur *cur,
1116 struct xfs_btree_block *block,
1117 union xfs_btree_ptr *ptr,
1118 int lr)
1119{
1120 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1121
1122 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1123 if (lr == XFS_BB_RIGHTSIB)
1124 ptr->l = block->bb_u.l.bb_rightsib;
1125 else
1126 ptr->l = block->bb_u.l.bb_leftsib;
1127 } else {
1128 if (lr == XFS_BB_RIGHTSIB)
1129 ptr->s = block->bb_u.s.bb_rightsib;
1130 else
1131 ptr->s = block->bb_u.s.bb_leftsib;
1132 }
1133}
1134
1135void
1136xfs_btree_set_sibling(
1137 struct xfs_btree_cur *cur,
1138 struct xfs_btree_block *block,
1139 const union xfs_btree_ptr *ptr,
1140 int lr)
1141{
1142 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1143
1144 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1145 if (lr == XFS_BB_RIGHTSIB)
1146 block->bb_u.l.bb_rightsib = ptr->l;
1147 else
1148 block->bb_u.l.bb_leftsib = ptr->l;
1149 } else {
1150 if (lr == XFS_BB_RIGHTSIB)
1151 block->bb_u.s.bb_rightsib = ptr->s;
1152 else
1153 block->bb_u.s.bb_leftsib = ptr->s;
1154 }
1155}
1156
1157void
1158xfs_btree_init_block_int(
1159 struct xfs_mount *mp,
1160 struct xfs_btree_block *buf,
1161 xfs_daddr_t blkno,
1162 xfs_btnum_t btnum,
1163 __u16 level,
1164 __u16 numrecs,
1165 __u64 owner,
1166 unsigned int flags)
1167{
1168 int crc = xfs_has_crc(mp);
1169 __u32 magic = xfs_btree_magic(crc, btnum);
1170
1171 buf->bb_magic = cpu_to_be32(magic);
1172 buf->bb_level = cpu_to_be16(level);
1173 buf->bb_numrecs = cpu_to_be16(numrecs);
1174
1175 if (flags & XFS_BTREE_LONG_PTRS) {
1176 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1177 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1178 if (crc) {
1179 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1180 buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1181 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1182 buf->bb_u.l.bb_pad = 0;
1183 buf->bb_u.l.bb_lsn = 0;
1184 }
1185 } else {
1186 /* owner is a 32 bit value on short blocks */
1187 __u32 __owner = (__u32)owner;
1188
1189 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1190 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1191 if (crc) {
1192 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1193 buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1194 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1195 buf->bb_u.s.bb_lsn = 0;
1196 }
1197 }
1198}
1199
1200void
1201xfs_btree_init_block(
1202 struct xfs_mount *mp,
1203 struct xfs_buf *bp,
1204 xfs_btnum_t btnum,
1205 __u16 level,
1206 __u16 numrecs,
1207 __u64 owner)
1208{
1209 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), xfs_buf_daddr(bp),
1210 btnum, level, numrecs, owner, 0);
1211}
1212
1213void
1214xfs_btree_init_block_cur(
1215 struct xfs_btree_cur *cur,
1216 struct xfs_buf *bp,
1217 int level,
1218 int numrecs)
1219{
1220 __u64 owner;
1221
1222 /*
1223 * we can pull the owner from the cursor right now as the different
1224 * owners align directly with the pointer size of the btree. This may
1225 * change in future, but is safe for current users of the generic btree
1226 * code.
1227 */
1228 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1229 owner = cur->bc_ino.ip->i_ino;
1230 else
1231 owner = cur->bc_ag.pag->pag_agno;
1232
1233 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp),
1234 xfs_buf_daddr(bp), cur->bc_btnum, level,
1235 numrecs, owner, cur->bc_flags);
1236}
1237
1238/*
1239 * Return true if ptr is the last record in the btree and
1240 * we need to track updates to this record. The decision
1241 * will be further refined in the update_lastrec method.
1242 */
1243STATIC int
1244xfs_btree_is_lastrec(
1245 struct xfs_btree_cur *cur,
1246 struct xfs_btree_block *block,
1247 int level)
1248{
1249 union xfs_btree_ptr ptr;
1250
1251 if (level > 0)
1252 return 0;
1253 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1254 return 0;
1255
1256 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1257 if (!xfs_btree_ptr_is_null(cur, &ptr))
1258 return 0;
1259 return 1;
1260}
1261
1262STATIC void
1263xfs_btree_buf_to_ptr(
1264 struct xfs_btree_cur *cur,
1265 struct xfs_buf *bp,
1266 union xfs_btree_ptr *ptr)
1267{
1268 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1269 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1270 xfs_buf_daddr(bp)));
1271 else {
1272 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1273 xfs_buf_daddr(bp)));
1274 }
1275}
1276
1277STATIC void
1278xfs_btree_set_refs(
1279 struct xfs_btree_cur *cur,
1280 struct xfs_buf *bp)
1281{
1282 switch (cur->bc_btnum) {
1283 case XFS_BTNUM_BNO:
1284 case XFS_BTNUM_CNT:
1285 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1286 break;
1287 case XFS_BTNUM_INO:
1288 case XFS_BTNUM_FINO:
1289 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1290 break;
1291 case XFS_BTNUM_BMAP:
1292 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1293 break;
1294 case XFS_BTNUM_RMAP:
1295 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1296 break;
1297 case XFS_BTNUM_REFC:
1298 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1299 break;
1300 default:
1301 ASSERT(0);
1302 }
1303}
1304
1305int
1306xfs_btree_get_buf_block(
1307 struct xfs_btree_cur *cur,
1308 const union xfs_btree_ptr *ptr,
1309 struct xfs_btree_block **block,
1310 struct xfs_buf **bpp)
1311{
1312 struct xfs_mount *mp = cur->bc_mp;
1313 xfs_daddr_t d;
1314 int error;
1315
1316 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1317 if (error)
1318 return error;
1319 error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize,
1320 0, bpp);
1321 if (error)
1322 return error;
1323
1324 (*bpp)->b_ops = cur->bc_ops->buf_ops;
1325 *block = XFS_BUF_TO_BLOCK(*bpp);
1326 return 0;
1327}
1328
1329/*
1330 * Read in the buffer at the given ptr and return the buffer and
1331 * the block pointer within the buffer.
1332 */
1333STATIC int
1334xfs_btree_read_buf_block(
1335 struct xfs_btree_cur *cur,
1336 const union xfs_btree_ptr *ptr,
1337 int flags,
1338 struct xfs_btree_block **block,
1339 struct xfs_buf **bpp)
1340{
1341 struct xfs_mount *mp = cur->bc_mp;
1342 xfs_daddr_t d;
1343 int error;
1344
1345 /* need to sort out how callers deal with failures first */
1346 ASSERT(!(flags & XBF_TRYLOCK));
1347
1348 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1349 if (error)
1350 return error;
1351 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1352 mp->m_bsize, flags, bpp,
1353 cur->bc_ops->buf_ops);
1354 if (error)
1355 return error;
1356
1357 xfs_btree_set_refs(cur, *bpp);
1358 *block = XFS_BUF_TO_BLOCK(*bpp);
1359 return 0;
1360}
1361
1362/*
1363 * Copy keys from one btree block to another.
1364 */
1365void
1366xfs_btree_copy_keys(
1367 struct xfs_btree_cur *cur,
1368 union xfs_btree_key *dst_key,
1369 const union xfs_btree_key *src_key,
1370 int numkeys)
1371{
1372 ASSERT(numkeys >= 0);
1373 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1374}
1375
1376/*
1377 * Copy records from one btree block to another.
1378 */
1379STATIC void
1380xfs_btree_copy_recs(
1381 struct xfs_btree_cur *cur,
1382 union xfs_btree_rec *dst_rec,
1383 union xfs_btree_rec *src_rec,
1384 int numrecs)
1385{
1386 ASSERT(numrecs >= 0);
1387 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1388}
1389
1390/*
1391 * Copy block pointers from one btree block to another.
1392 */
1393void
1394xfs_btree_copy_ptrs(
1395 struct xfs_btree_cur *cur,
1396 union xfs_btree_ptr *dst_ptr,
1397 const union xfs_btree_ptr *src_ptr,
1398 int numptrs)
1399{
1400 ASSERT(numptrs >= 0);
1401 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1402}
1403
1404/*
1405 * Shift keys one index left/right inside a single btree block.
1406 */
1407STATIC void
1408xfs_btree_shift_keys(
1409 struct xfs_btree_cur *cur,
1410 union xfs_btree_key *key,
1411 int dir,
1412 int numkeys)
1413{
1414 char *dst_key;
1415
1416 ASSERT(numkeys >= 0);
1417 ASSERT(dir == 1 || dir == -1);
1418
1419 dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1420 memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1421}
1422
1423/*
1424 * Shift records one index left/right inside a single btree block.
1425 */
1426STATIC void
1427xfs_btree_shift_recs(
1428 struct xfs_btree_cur *cur,
1429 union xfs_btree_rec *rec,
1430 int dir,
1431 int numrecs)
1432{
1433 char *dst_rec;
1434
1435 ASSERT(numrecs >= 0);
1436 ASSERT(dir == 1 || dir == -1);
1437
1438 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1439 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1440}
1441
1442/*
1443 * Shift block pointers one index left/right inside a single btree block.
1444 */
1445STATIC void
1446xfs_btree_shift_ptrs(
1447 struct xfs_btree_cur *cur,
1448 union xfs_btree_ptr *ptr,
1449 int dir,
1450 int numptrs)
1451{
1452 char *dst_ptr;
1453
1454 ASSERT(numptrs >= 0);
1455 ASSERT(dir == 1 || dir == -1);
1456
1457 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1458 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1459}
1460
1461/*
1462 * Log key values from the btree block.
1463 */
1464STATIC void
1465xfs_btree_log_keys(
1466 struct xfs_btree_cur *cur,
1467 struct xfs_buf *bp,
1468 int first,
1469 int last)
1470{
1471
1472 if (bp) {
1473 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1474 xfs_trans_log_buf(cur->bc_tp, bp,
1475 xfs_btree_key_offset(cur, first),
1476 xfs_btree_key_offset(cur, last + 1) - 1);
1477 } else {
1478 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1479 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1480 }
1481}
1482
1483/*
1484 * Log record values from the btree block.
1485 */
1486void
1487xfs_btree_log_recs(
1488 struct xfs_btree_cur *cur,
1489 struct xfs_buf *bp,
1490 int first,
1491 int last)
1492{
1493
1494 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1495 xfs_trans_log_buf(cur->bc_tp, bp,
1496 xfs_btree_rec_offset(cur, first),
1497 xfs_btree_rec_offset(cur, last + 1) - 1);
1498
1499}
1500
1501/*
1502 * Log block pointer fields from a btree block (nonleaf).
1503 */
1504STATIC void
1505xfs_btree_log_ptrs(
1506 struct xfs_btree_cur *cur, /* btree cursor */
1507 struct xfs_buf *bp, /* buffer containing btree block */
1508 int first, /* index of first pointer to log */
1509 int last) /* index of last pointer to log */
1510{
1511
1512 if (bp) {
1513 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
1514 int level = xfs_btree_get_level(block);
1515
1516 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1517 xfs_trans_log_buf(cur->bc_tp, bp,
1518 xfs_btree_ptr_offset(cur, first, level),
1519 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1520 } else {
1521 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1522 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1523 }
1524
1525}
1526
1527/*
1528 * Log fields from a btree block header.
1529 */
1530void
1531xfs_btree_log_block(
1532 struct xfs_btree_cur *cur, /* btree cursor */
1533 struct xfs_buf *bp, /* buffer containing btree block */
1534 uint32_t fields) /* mask of fields: XFS_BB_... */
1535{
1536 int first; /* first byte offset logged */
1537 int last; /* last byte offset logged */
1538 static const short soffsets[] = { /* table of offsets (short) */
1539 offsetof(struct xfs_btree_block, bb_magic),
1540 offsetof(struct xfs_btree_block, bb_level),
1541 offsetof(struct xfs_btree_block, bb_numrecs),
1542 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1543 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1544 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1545 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1546 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1547 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1548 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1549 XFS_BTREE_SBLOCK_CRC_LEN
1550 };
1551 static const short loffsets[] = { /* table of offsets (long) */
1552 offsetof(struct xfs_btree_block, bb_magic),
1553 offsetof(struct xfs_btree_block, bb_level),
1554 offsetof(struct xfs_btree_block, bb_numrecs),
1555 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1556 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1557 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1558 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1559 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1560 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1561 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1562 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1563 XFS_BTREE_LBLOCK_CRC_LEN
1564 };
1565
1566 if (bp) {
1567 int nbits;
1568
1569 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1570 /*
1571 * We don't log the CRC when updating a btree
1572 * block but instead recreate it during log
1573 * recovery. As the log buffers have checksums
1574 * of their own this is safe and avoids logging a crc
1575 * update in a lot of places.
1576 */
1577 if (fields == XFS_BB_ALL_BITS)
1578 fields = XFS_BB_ALL_BITS_CRC;
1579 nbits = XFS_BB_NUM_BITS_CRC;
1580 } else {
1581 nbits = XFS_BB_NUM_BITS;
1582 }
1583 xfs_btree_offsets(fields,
1584 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1585 loffsets : soffsets,
1586 nbits, &first, &last);
1587 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1588 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1589 } else {
1590 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1591 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1592 }
1593}
1594
1595/*
1596 * Increment cursor by one record at the level.
1597 * For nonzero levels the leaf-ward information is untouched.
1598 */
1599int /* error */
1600xfs_btree_increment(
1601 struct xfs_btree_cur *cur,
1602 int level,
1603 int *stat) /* success/failure */
1604{
1605 struct xfs_btree_block *block;
1606 union xfs_btree_ptr ptr;
1607 struct xfs_buf *bp;
1608 int error; /* error return value */
1609 int lev;
1610
1611 ASSERT(level < cur->bc_nlevels);
1612
1613 /* Read-ahead to the right at this level. */
1614 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1615
1616 /* Get a pointer to the btree block. */
1617 block = xfs_btree_get_block(cur, level, &bp);
1618
1619#ifdef DEBUG
1620 error = xfs_btree_check_block(cur, block, level, bp);
1621 if (error)
1622 goto error0;
1623#endif
1624
1625 /* We're done if we remain in the block after the increment. */
1626 if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block))
1627 goto out1;
1628
1629 /* Fail if we just went off the right edge of the tree. */
1630 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1631 if (xfs_btree_ptr_is_null(cur, &ptr))
1632 goto out0;
1633
1634 XFS_BTREE_STATS_INC(cur, increment);
1635
1636 /*
1637 * March up the tree incrementing pointers.
1638 * Stop when we don't go off the right edge of a block.
1639 */
1640 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1641 block = xfs_btree_get_block(cur, lev, &bp);
1642
1643#ifdef DEBUG
1644 error = xfs_btree_check_block(cur, block, lev, bp);
1645 if (error)
1646 goto error0;
1647#endif
1648
1649 if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block))
1650 break;
1651
1652 /* Read-ahead the right block for the next loop. */
1653 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1654 }
1655
1656 /*
1657 * If we went off the root then we are either seriously
1658 * confused or have the tree root in an inode.
1659 */
1660 if (lev == cur->bc_nlevels) {
1661 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1662 goto out0;
1663 ASSERT(0);
1664 error = -EFSCORRUPTED;
1665 goto error0;
1666 }
1667 ASSERT(lev < cur->bc_nlevels);
1668
1669 /*
1670 * Now walk back down the tree, fixing up the cursor's buffer
1671 * pointers and key numbers.
1672 */
1673 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1674 union xfs_btree_ptr *ptrp;
1675
1676 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1677 --lev;
1678 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1679 if (error)
1680 goto error0;
1681
1682 xfs_btree_setbuf(cur, lev, bp);
1683 cur->bc_levels[lev].ptr = 1;
1684 }
1685out1:
1686 *stat = 1;
1687 return 0;
1688
1689out0:
1690 *stat = 0;
1691 return 0;
1692
1693error0:
1694 return error;
1695}
1696
1697/*
1698 * Decrement cursor by one record at the level.
1699 * For nonzero levels the leaf-ward information is untouched.
1700 */
1701int /* error */
1702xfs_btree_decrement(
1703 struct xfs_btree_cur *cur,
1704 int level,
1705 int *stat) /* success/failure */
1706{
1707 struct xfs_btree_block *block;
1708 struct xfs_buf *bp;
1709 int error; /* error return value */
1710 int lev;
1711 union xfs_btree_ptr ptr;
1712
1713 ASSERT(level < cur->bc_nlevels);
1714
1715 /* Read-ahead to the left at this level. */
1716 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1717
1718 /* We're done if we remain in the block after the decrement. */
1719 if (--cur->bc_levels[level].ptr > 0)
1720 goto out1;
1721
1722 /* Get a pointer to the btree block. */
1723 block = xfs_btree_get_block(cur, level, &bp);
1724
1725#ifdef DEBUG
1726 error = xfs_btree_check_block(cur, block, level, bp);
1727 if (error)
1728 goto error0;
1729#endif
1730
1731 /* Fail if we just went off the left edge of the tree. */
1732 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1733 if (xfs_btree_ptr_is_null(cur, &ptr))
1734 goto out0;
1735
1736 XFS_BTREE_STATS_INC(cur, decrement);
1737
1738 /*
1739 * March up the tree decrementing pointers.
1740 * Stop when we don't go off the left edge of a block.
1741 */
1742 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1743 if (--cur->bc_levels[lev].ptr > 0)
1744 break;
1745 /* Read-ahead the left block for the next loop. */
1746 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1747 }
1748
1749 /*
1750 * If we went off the root then we are seriously confused.
1751 * or the root of the tree is in an inode.
1752 */
1753 if (lev == cur->bc_nlevels) {
1754 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1755 goto out0;
1756 ASSERT(0);
1757 error = -EFSCORRUPTED;
1758 goto error0;
1759 }
1760 ASSERT(lev < cur->bc_nlevels);
1761
1762 /*
1763 * Now walk back down the tree, fixing up the cursor's buffer
1764 * pointers and key numbers.
1765 */
1766 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1767 union xfs_btree_ptr *ptrp;
1768
1769 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1770 --lev;
1771 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1772 if (error)
1773 goto error0;
1774 xfs_btree_setbuf(cur, lev, bp);
1775 cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block);
1776 }
1777out1:
1778 *stat = 1;
1779 return 0;
1780
1781out0:
1782 *stat = 0;
1783 return 0;
1784
1785error0:
1786 return error;
1787}
1788
1789int
1790xfs_btree_lookup_get_block(
1791 struct xfs_btree_cur *cur, /* btree cursor */
1792 int level, /* level in the btree */
1793 const union xfs_btree_ptr *pp, /* ptr to btree block */
1794 struct xfs_btree_block **blkp) /* return btree block */
1795{
1796 struct xfs_buf *bp; /* buffer pointer for btree block */
1797 xfs_daddr_t daddr;
1798 int error = 0;
1799
1800 /* special case the root block if in an inode */
1801 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1802 (level == cur->bc_nlevels - 1)) {
1803 *blkp = xfs_btree_get_iroot(cur);
1804 return 0;
1805 }
1806
1807 /*
1808 * If the old buffer at this level for the disk address we are
1809 * looking for re-use it.
1810 *
1811 * Otherwise throw it away and get a new one.
1812 */
1813 bp = cur->bc_levels[level].bp;
1814 error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1815 if (error)
1816 return error;
1817 if (bp && xfs_buf_daddr(bp) == daddr) {
1818 *blkp = XFS_BUF_TO_BLOCK(bp);
1819 return 0;
1820 }
1821
1822 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1823 if (error)
1824 return error;
1825
1826 /* Check the inode owner since the verifiers don't. */
1827 if (xfs_has_crc(cur->bc_mp) &&
1828 !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) &&
1829 (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1830 be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1831 cur->bc_ino.ip->i_ino)
1832 goto out_bad;
1833
1834 /* Did we get the level we were looking for? */
1835 if (be16_to_cpu((*blkp)->bb_level) != level)
1836 goto out_bad;
1837
1838 /* Check that internal nodes have at least one record. */
1839 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1840 goto out_bad;
1841
1842 xfs_btree_setbuf(cur, level, bp);
1843 return 0;
1844
1845out_bad:
1846 *blkp = NULL;
1847 xfs_buf_mark_corrupt(bp);
1848 xfs_trans_brelse(cur->bc_tp, bp);
1849 return -EFSCORRUPTED;
1850}
1851
1852/*
1853 * Get current search key. For level 0 we don't actually have a key
1854 * structure so we make one up from the record. For all other levels
1855 * we just return the right key.
1856 */
1857STATIC union xfs_btree_key *
1858xfs_lookup_get_search_key(
1859 struct xfs_btree_cur *cur,
1860 int level,
1861 int keyno,
1862 struct xfs_btree_block *block,
1863 union xfs_btree_key *kp)
1864{
1865 if (level == 0) {
1866 cur->bc_ops->init_key_from_rec(kp,
1867 xfs_btree_rec_addr(cur, keyno, block));
1868 return kp;
1869 }
1870
1871 return xfs_btree_key_addr(cur, keyno, block);
1872}
1873
1874/*
1875 * Lookup the record. The cursor is made to point to it, based on dir.
1876 * stat is set to 0 if can't find any such record, 1 for success.
1877 */
1878int /* error */
1879xfs_btree_lookup(
1880 struct xfs_btree_cur *cur, /* btree cursor */
1881 xfs_lookup_t dir, /* <=, ==, or >= */
1882 int *stat) /* success/failure */
1883{
1884 struct xfs_btree_block *block; /* current btree block */
1885 int64_t diff; /* difference for the current key */
1886 int error; /* error return value */
1887 int keyno; /* current key number */
1888 int level; /* level in the btree */
1889 union xfs_btree_ptr *pp; /* ptr to btree block */
1890 union xfs_btree_ptr ptr; /* ptr to btree block */
1891
1892 XFS_BTREE_STATS_INC(cur, lookup);
1893
1894 /* No such thing as a zero-level tree. */
1895 if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0))
1896 return -EFSCORRUPTED;
1897
1898 block = NULL;
1899 keyno = 0;
1900
1901 /* initialise start pointer from cursor */
1902 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1903 pp = &ptr;
1904
1905 /*
1906 * Iterate over each level in the btree, starting at the root.
1907 * For each level above the leaves, find the key we need, based
1908 * on the lookup record, then follow the corresponding block
1909 * pointer down to the next level.
1910 */
1911 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1912 /* Get the block we need to do the lookup on. */
1913 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1914 if (error)
1915 goto error0;
1916
1917 if (diff == 0) {
1918 /*
1919 * If we already had a key match at a higher level, we
1920 * know we need to use the first entry in this block.
1921 */
1922 keyno = 1;
1923 } else {
1924 /* Otherwise search this block. Do a binary search. */
1925
1926 int high; /* high entry number */
1927 int low; /* low entry number */
1928
1929 /* Set low and high entry numbers, 1-based. */
1930 low = 1;
1931 high = xfs_btree_get_numrecs(block);
1932 if (!high) {
1933 /* Block is empty, must be an empty leaf. */
1934 if (level != 0 || cur->bc_nlevels != 1) {
1935 XFS_CORRUPTION_ERROR(__func__,
1936 XFS_ERRLEVEL_LOW,
1937 cur->bc_mp, block,
1938 sizeof(*block));
1939 return -EFSCORRUPTED;
1940 }
1941
1942 cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE;
1943 *stat = 0;
1944 return 0;
1945 }
1946
1947 /* Binary search the block. */
1948 while (low <= high) {
1949 union xfs_btree_key key;
1950 union xfs_btree_key *kp;
1951
1952 XFS_BTREE_STATS_INC(cur, compare);
1953
1954 /* keyno is average of low and high. */
1955 keyno = (low + high) >> 1;
1956
1957 /* Get current search key */
1958 kp = xfs_lookup_get_search_key(cur, level,
1959 keyno, block, &key);
1960
1961 /*
1962 * Compute difference to get next direction:
1963 * - less than, move right
1964 * - greater than, move left
1965 * - equal, we're done
1966 */
1967 diff = cur->bc_ops->key_diff(cur, kp);
1968 if (diff < 0)
1969 low = keyno + 1;
1970 else if (diff > 0)
1971 high = keyno - 1;
1972 else
1973 break;
1974 }
1975 }
1976
1977 /*
1978 * If there are more levels, set up for the next level
1979 * by getting the block number and filling in the cursor.
1980 */
1981 if (level > 0) {
1982 /*
1983 * If we moved left, need the previous key number,
1984 * unless there isn't one.
1985 */
1986 if (diff > 0 && --keyno < 1)
1987 keyno = 1;
1988 pp = xfs_btree_ptr_addr(cur, keyno, block);
1989
1990 error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1991 if (error)
1992 goto error0;
1993
1994 cur->bc_levels[level].ptr = keyno;
1995 }
1996 }
1997
1998 /* Done with the search. See if we need to adjust the results. */
1999 if (dir != XFS_LOOKUP_LE && diff < 0) {
2000 keyno++;
2001 /*
2002 * If ge search and we went off the end of the block, but it's
2003 * not the last block, we're in the wrong block.
2004 */
2005 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
2006 if (dir == XFS_LOOKUP_GE &&
2007 keyno > xfs_btree_get_numrecs(block) &&
2008 !xfs_btree_ptr_is_null(cur, &ptr)) {
2009 int i;
2010
2011 cur->bc_levels[0].ptr = keyno;
2012 error = xfs_btree_increment(cur, 0, &i);
2013 if (error)
2014 goto error0;
2015 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
2016 return -EFSCORRUPTED;
2017 *stat = 1;
2018 return 0;
2019 }
2020 } else if (dir == XFS_LOOKUP_LE && diff > 0)
2021 keyno--;
2022 cur->bc_levels[0].ptr = keyno;
2023
2024 /* Return if we succeeded or not. */
2025 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2026 *stat = 0;
2027 else if (dir != XFS_LOOKUP_EQ || diff == 0)
2028 *stat = 1;
2029 else
2030 *stat = 0;
2031 return 0;
2032
2033error0:
2034 return error;
2035}
2036
2037/* Find the high key storage area from a regular key. */
2038union xfs_btree_key *
2039xfs_btree_high_key_from_key(
2040 struct xfs_btree_cur *cur,
2041 union xfs_btree_key *key)
2042{
2043 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2044 return (union xfs_btree_key *)((char *)key +
2045 (cur->bc_ops->key_len / 2));
2046}
2047
2048/* Determine the low (and high if overlapped) keys of a leaf block */
2049STATIC void
2050xfs_btree_get_leaf_keys(
2051 struct xfs_btree_cur *cur,
2052 struct xfs_btree_block *block,
2053 union xfs_btree_key *key)
2054{
2055 union xfs_btree_key max_hkey;
2056 union xfs_btree_key hkey;
2057 union xfs_btree_rec *rec;
2058 union xfs_btree_key *high;
2059 int n;
2060
2061 rec = xfs_btree_rec_addr(cur, 1, block);
2062 cur->bc_ops->init_key_from_rec(key, rec);
2063
2064 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2065
2066 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2067 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2068 rec = xfs_btree_rec_addr(cur, n, block);
2069 cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2070 if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2071 > 0)
2072 max_hkey = hkey;
2073 }
2074
2075 high = xfs_btree_high_key_from_key(cur, key);
2076 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2077 }
2078}
2079
2080/* Determine the low (and high if overlapped) keys of a node block */
2081STATIC void
2082xfs_btree_get_node_keys(
2083 struct xfs_btree_cur *cur,
2084 struct xfs_btree_block *block,
2085 union xfs_btree_key *key)
2086{
2087 union xfs_btree_key *hkey;
2088 union xfs_btree_key *max_hkey;
2089 union xfs_btree_key *high;
2090 int n;
2091
2092 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2093 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2094 cur->bc_ops->key_len / 2);
2095
2096 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2097 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2098 hkey = xfs_btree_high_key_addr(cur, n, block);
2099 if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2100 max_hkey = hkey;
2101 }
2102
2103 high = xfs_btree_high_key_from_key(cur, key);
2104 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2105 } else {
2106 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2107 cur->bc_ops->key_len);
2108 }
2109}
2110
2111/* Derive the keys for any btree block. */
2112void
2113xfs_btree_get_keys(
2114 struct xfs_btree_cur *cur,
2115 struct xfs_btree_block *block,
2116 union xfs_btree_key *key)
2117{
2118 if (be16_to_cpu(block->bb_level) == 0)
2119 xfs_btree_get_leaf_keys(cur, block, key);
2120 else
2121 xfs_btree_get_node_keys(cur, block, key);
2122}
2123
2124/*
2125 * Decide if we need to update the parent keys of a btree block. For
2126 * a standard btree this is only necessary if we're updating the first
2127 * record/key. For an overlapping btree, we must always update the
2128 * keys because the highest key can be in any of the records or keys
2129 * in the block.
2130 */
2131static inline bool
2132xfs_btree_needs_key_update(
2133 struct xfs_btree_cur *cur,
2134 int ptr)
2135{
2136 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2137}
2138
2139/*
2140 * Update the low and high parent keys of the given level, progressing
2141 * towards the root. If force_all is false, stop if the keys for a given
2142 * level do not need updating.
2143 */
2144STATIC int
2145__xfs_btree_updkeys(
2146 struct xfs_btree_cur *cur,
2147 int level,
2148 struct xfs_btree_block *block,
2149 struct xfs_buf *bp0,
2150 bool force_all)
2151{
2152 union xfs_btree_key key; /* keys from current level */
2153 union xfs_btree_key *lkey; /* keys from the next level up */
2154 union xfs_btree_key *hkey;
2155 union xfs_btree_key *nlkey; /* keys from the next level up */
2156 union xfs_btree_key *nhkey;
2157 struct xfs_buf *bp;
2158 int ptr;
2159
2160 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2161
2162 /* Exit if there aren't any parent levels to update. */
2163 if (level + 1 >= cur->bc_nlevels)
2164 return 0;
2165
2166 trace_xfs_btree_updkeys(cur, level, bp0);
2167
2168 lkey = &key;
2169 hkey = xfs_btree_high_key_from_key(cur, lkey);
2170 xfs_btree_get_keys(cur, block, lkey);
2171 for (level++; level < cur->bc_nlevels; level++) {
2172#ifdef DEBUG
2173 int error;
2174#endif
2175 block = xfs_btree_get_block(cur, level, &bp);
2176 trace_xfs_btree_updkeys(cur, level, bp);
2177#ifdef DEBUG
2178 error = xfs_btree_check_block(cur, block, level, bp);
2179 if (error)
2180 return error;
2181#endif
2182 ptr = cur->bc_levels[level].ptr;
2183 nlkey = xfs_btree_key_addr(cur, ptr, block);
2184 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2185 if (!force_all &&
2186 !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2187 cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2188 break;
2189 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2190 xfs_btree_log_keys(cur, bp, ptr, ptr);
2191 if (level + 1 >= cur->bc_nlevels)
2192 break;
2193 xfs_btree_get_node_keys(cur, block, lkey);
2194 }
2195
2196 return 0;
2197}
2198
2199/* Update all the keys from some level in cursor back to the root. */
2200STATIC int
2201xfs_btree_updkeys_force(
2202 struct xfs_btree_cur *cur,
2203 int level)
2204{
2205 struct xfs_buf *bp;
2206 struct xfs_btree_block *block;
2207
2208 block = xfs_btree_get_block(cur, level, &bp);
2209 return __xfs_btree_updkeys(cur, level, block, bp, true);
2210}
2211
2212/*
2213 * Update the parent keys of the given level, progressing towards the root.
2214 */
2215STATIC int
2216xfs_btree_update_keys(
2217 struct xfs_btree_cur *cur,
2218 int level)
2219{
2220 struct xfs_btree_block *block;
2221 struct xfs_buf *bp;
2222 union xfs_btree_key *kp;
2223 union xfs_btree_key key;
2224 int ptr;
2225
2226 ASSERT(level >= 0);
2227
2228 block = xfs_btree_get_block(cur, level, &bp);
2229 if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2230 return __xfs_btree_updkeys(cur, level, block, bp, false);
2231
2232 /*
2233 * Go up the tree from this level toward the root.
2234 * At each level, update the key value to the value input.
2235 * Stop when we reach a level where the cursor isn't pointing
2236 * at the first entry in the block.
2237 */
2238 xfs_btree_get_keys(cur, block, &key);
2239 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2240#ifdef DEBUG
2241 int error;
2242#endif
2243 block = xfs_btree_get_block(cur, level, &bp);
2244#ifdef DEBUG
2245 error = xfs_btree_check_block(cur, block, level, bp);
2246 if (error)
2247 return error;
2248#endif
2249 ptr = cur->bc_levels[level].ptr;
2250 kp = xfs_btree_key_addr(cur, ptr, block);
2251 xfs_btree_copy_keys(cur, kp, &key, 1);
2252 xfs_btree_log_keys(cur, bp, ptr, ptr);
2253 }
2254
2255 return 0;
2256}
2257
2258/*
2259 * Update the record referred to by cur to the value in the
2260 * given record. This either works (return 0) or gets an
2261 * EFSCORRUPTED error.
2262 */
2263int
2264xfs_btree_update(
2265 struct xfs_btree_cur *cur,
2266 union xfs_btree_rec *rec)
2267{
2268 struct xfs_btree_block *block;
2269 struct xfs_buf *bp;
2270 int error;
2271 int ptr;
2272 union xfs_btree_rec *rp;
2273
2274 /* Pick up the current block. */
2275 block = xfs_btree_get_block(cur, 0, &bp);
2276
2277#ifdef DEBUG
2278 error = xfs_btree_check_block(cur, block, 0, bp);
2279 if (error)
2280 goto error0;
2281#endif
2282 /* Get the address of the rec to be updated. */
2283 ptr = cur->bc_levels[0].ptr;
2284 rp = xfs_btree_rec_addr(cur, ptr, block);
2285
2286 /* Fill in the new contents and log them. */
2287 xfs_btree_copy_recs(cur, rp, rec, 1);
2288 xfs_btree_log_recs(cur, bp, ptr, ptr);
2289
2290 /*
2291 * If we are tracking the last record in the tree and
2292 * we are at the far right edge of the tree, update it.
2293 */
2294 if (xfs_btree_is_lastrec(cur, block, 0)) {
2295 cur->bc_ops->update_lastrec(cur, block, rec,
2296 ptr, LASTREC_UPDATE);
2297 }
2298
2299 /* Pass new key value up to our parent. */
2300 if (xfs_btree_needs_key_update(cur, ptr)) {
2301 error = xfs_btree_update_keys(cur, 0);
2302 if (error)
2303 goto error0;
2304 }
2305
2306 return 0;
2307
2308error0:
2309 return error;
2310}
2311
2312/*
2313 * Move 1 record left from cur/level if possible.
2314 * Update cur to reflect the new path.
2315 */
2316STATIC int /* error */
2317xfs_btree_lshift(
2318 struct xfs_btree_cur *cur,
2319 int level,
2320 int *stat) /* success/failure */
2321{
2322 struct xfs_buf *lbp; /* left buffer pointer */
2323 struct xfs_btree_block *left; /* left btree block */
2324 int lrecs; /* left record count */
2325 struct xfs_buf *rbp; /* right buffer pointer */
2326 struct xfs_btree_block *right; /* right btree block */
2327 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2328 int rrecs; /* right record count */
2329 union xfs_btree_ptr lptr; /* left btree pointer */
2330 union xfs_btree_key *rkp = NULL; /* right btree key */
2331 union xfs_btree_ptr *rpp = NULL; /* right address pointer */
2332 union xfs_btree_rec *rrp = NULL; /* right record pointer */
2333 int error; /* error return value */
2334 int i;
2335
2336 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2337 level == cur->bc_nlevels - 1)
2338 goto out0;
2339
2340 /* Set up variables for this block as "right". */
2341 right = xfs_btree_get_block(cur, level, &rbp);
2342
2343#ifdef DEBUG
2344 error = xfs_btree_check_block(cur, right, level, rbp);
2345 if (error)
2346 goto error0;
2347#endif
2348
2349 /* If we've got no left sibling then we can't shift an entry left. */
2350 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2351 if (xfs_btree_ptr_is_null(cur, &lptr))
2352 goto out0;
2353
2354 /*
2355 * If the cursor entry is the one that would be moved, don't
2356 * do it... it's too complicated.
2357 */
2358 if (cur->bc_levels[level].ptr <= 1)
2359 goto out0;
2360
2361 /* Set up the left neighbor as "left". */
2362 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2363 if (error)
2364 goto error0;
2365
2366 /* If it's full, it can't take another entry. */
2367 lrecs = xfs_btree_get_numrecs(left);
2368 if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2369 goto out0;
2370
2371 rrecs = xfs_btree_get_numrecs(right);
2372
2373 /*
2374 * We add one entry to the left side and remove one for the right side.
2375 * Account for it here, the changes will be updated on disk and logged
2376 * later.
2377 */
2378 lrecs++;
2379 rrecs--;
2380
2381 XFS_BTREE_STATS_INC(cur, lshift);
2382 XFS_BTREE_STATS_ADD(cur, moves, 1);
2383
2384 /*
2385 * If non-leaf, copy a key and a ptr to the left block.
2386 * Log the changes to the left block.
2387 */
2388 if (level > 0) {
2389 /* It's a non-leaf. Move keys and pointers. */
2390 union xfs_btree_key *lkp; /* left btree key */
2391 union xfs_btree_ptr *lpp; /* left address pointer */
2392
2393 lkp = xfs_btree_key_addr(cur, lrecs, left);
2394 rkp = xfs_btree_key_addr(cur, 1, right);
2395
2396 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2397 rpp = xfs_btree_ptr_addr(cur, 1, right);
2398
2399 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2400 if (error)
2401 goto error0;
2402
2403 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2404 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2405
2406 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2407 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2408
2409 ASSERT(cur->bc_ops->keys_inorder(cur,
2410 xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2411 } else {
2412 /* It's a leaf. Move records. */
2413 union xfs_btree_rec *lrp; /* left record pointer */
2414
2415 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2416 rrp = xfs_btree_rec_addr(cur, 1, right);
2417
2418 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2419 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2420
2421 ASSERT(cur->bc_ops->recs_inorder(cur,
2422 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2423 }
2424
2425 xfs_btree_set_numrecs(left, lrecs);
2426 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2427
2428 xfs_btree_set_numrecs(right, rrecs);
2429 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2430
2431 /*
2432 * Slide the contents of right down one entry.
2433 */
2434 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2435 if (level > 0) {
2436 /* It's a nonleaf. operate on keys and ptrs */
2437 for (i = 0; i < rrecs; i++) {
2438 error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2439 if (error)
2440 goto error0;
2441 }
2442
2443 xfs_btree_shift_keys(cur,
2444 xfs_btree_key_addr(cur, 2, right),
2445 -1, rrecs);
2446 xfs_btree_shift_ptrs(cur,
2447 xfs_btree_ptr_addr(cur, 2, right),
2448 -1, rrecs);
2449
2450 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2451 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2452 } else {
2453 /* It's a leaf. operate on records */
2454 xfs_btree_shift_recs(cur,
2455 xfs_btree_rec_addr(cur, 2, right),
2456 -1, rrecs);
2457 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2458 }
2459
2460 /*
2461 * Using a temporary cursor, update the parent key values of the
2462 * block on the left.
2463 */
2464 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2465 error = xfs_btree_dup_cursor(cur, &tcur);
2466 if (error)
2467 goto error0;
2468 i = xfs_btree_firstrec(tcur, level);
2469 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2470 error = -EFSCORRUPTED;
2471 goto error0;
2472 }
2473
2474 error = xfs_btree_decrement(tcur, level, &i);
2475 if (error)
2476 goto error1;
2477
2478 /* Update the parent high keys of the left block, if needed. */
2479 error = xfs_btree_update_keys(tcur, level);
2480 if (error)
2481 goto error1;
2482
2483 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2484 }
2485
2486 /* Update the parent keys of the right block. */
2487 error = xfs_btree_update_keys(cur, level);
2488 if (error)
2489 goto error0;
2490
2491 /* Slide the cursor value left one. */
2492 cur->bc_levels[level].ptr--;
2493
2494 *stat = 1;
2495 return 0;
2496
2497out0:
2498 *stat = 0;
2499 return 0;
2500
2501error0:
2502 return error;
2503
2504error1:
2505 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2506 return error;
2507}
2508
2509/*
2510 * Move 1 record right from cur/level if possible.
2511 * Update cur to reflect the new path.
2512 */
2513STATIC int /* error */
2514xfs_btree_rshift(
2515 struct xfs_btree_cur *cur,
2516 int level,
2517 int *stat) /* success/failure */
2518{
2519 struct xfs_buf *lbp; /* left buffer pointer */
2520 struct xfs_btree_block *left; /* left btree block */
2521 struct xfs_buf *rbp; /* right buffer pointer */
2522 struct xfs_btree_block *right; /* right btree block */
2523 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2524 union xfs_btree_ptr rptr; /* right block pointer */
2525 union xfs_btree_key *rkp; /* right btree key */
2526 int rrecs; /* right record count */
2527 int lrecs; /* left record count */
2528 int error; /* error return value */
2529 int i; /* loop counter */
2530
2531 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2532 (level == cur->bc_nlevels - 1))
2533 goto out0;
2534
2535 /* Set up variables for this block as "left". */
2536 left = xfs_btree_get_block(cur, level, &lbp);
2537
2538#ifdef DEBUG
2539 error = xfs_btree_check_block(cur, left, level, lbp);
2540 if (error)
2541 goto error0;
2542#endif
2543
2544 /* If we've got no right sibling then we can't shift an entry right. */
2545 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2546 if (xfs_btree_ptr_is_null(cur, &rptr))
2547 goto out0;
2548
2549 /*
2550 * If the cursor entry is the one that would be moved, don't
2551 * do it... it's too complicated.
2552 */
2553 lrecs = xfs_btree_get_numrecs(left);
2554 if (cur->bc_levels[level].ptr >= lrecs)
2555 goto out0;
2556
2557 /* Set up the right neighbor as "right". */
2558 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2559 if (error)
2560 goto error0;
2561
2562 /* If it's full, it can't take another entry. */
2563 rrecs = xfs_btree_get_numrecs(right);
2564 if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2565 goto out0;
2566
2567 XFS_BTREE_STATS_INC(cur, rshift);
2568 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2569
2570 /*
2571 * Make a hole at the start of the right neighbor block, then
2572 * copy the last left block entry to the hole.
2573 */
2574 if (level > 0) {
2575 /* It's a nonleaf. make a hole in the keys and ptrs */
2576 union xfs_btree_key *lkp;
2577 union xfs_btree_ptr *lpp;
2578 union xfs_btree_ptr *rpp;
2579
2580 lkp = xfs_btree_key_addr(cur, lrecs, left);
2581 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2582 rkp = xfs_btree_key_addr(cur, 1, right);
2583 rpp = xfs_btree_ptr_addr(cur, 1, right);
2584
2585 for (i = rrecs - 1; i >= 0; i--) {
2586 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2587 if (error)
2588 goto error0;
2589 }
2590
2591 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2592 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2593
2594 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2595 if (error)
2596 goto error0;
2597
2598 /* Now put the new data in, and log it. */
2599 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2600 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2601
2602 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2603 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2604
2605 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2606 xfs_btree_key_addr(cur, 2, right)));
2607 } else {
2608 /* It's a leaf. make a hole in the records */
2609 union xfs_btree_rec *lrp;
2610 union xfs_btree_rec *rrp;
2611
2612 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2613 rrp = xfs_btree_rec_addr(cur, 1, right);
2614
2615 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2616
2617 /* Now put the new data in, and log it. */
2618 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2619 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2620 }
2621
2622 /*
2623 * Decrement and log left's numrecs, bump and log right's numrecs.
2624 */
2625 xfs_btree_set_numrecs(left, --lrecs);
2626 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2627
2628 xfs_btree_set_numrecs(right, ++rrecs);
2629 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2630
2631 /*
2632 * Using a temporary cursor, update the parent key values of the
2633 * block on the right.
2634 */
2635 error = xfs_btree_dup_cursor(cur, &tcur);
2636 if (error)
2637 goto error0;
2638 i = xfs_btree_lastrec(tcur, level);
2639 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2640 error = -EFSCORRUPTED;
2641 goto error0;
2642 }
2643
2644 error = xfs_btree_increment(tcur, level, &i);
2645 if (error)
2646 goto error1;
2647
2648 /* Update the parent high keys of the left block, if needed. */
2649 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2650 error = xfs_btree_update_keys(cur, level);
2651 if (error)
2652 goto error1;
2653 }
2654
2655 /* Update the parent keys of the right block. */
2656 error = xfs_btree_update_keys(tcur, level);
2657 if (error)
2658 goto error1;
2659
2660 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2661
2662 *stat = 1;
2663 return 0;
2664
2665out0:
2666 *stat = 0;
2667 return 0;
2668
2669error0:
2670 return error;
2671
2672error1:
2673 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2674 return error;
2675}
2676
2677/*
2678 * Split cur/level block in half.
2679 * Return new block number and the key to its first
2680 * record (to be inserted into parent).
2681 */
2682STATIC int /* error */
2683__xfs_btree_split(
2684 struct xfs_btree_cur *cur,
2685 int level,
2686 union xfs_btree_ptr *ptrp,
2687 union xfs_btree_key *key,
2688 struct xfs_btree_cur **curp,
2689 int *stat) /* success/failure */
2690{
2691 union xfs_btree_ptr lptr; /* left sibling block ptr */
2692 struct xfs_buf *lbp; /* left buffer pointer */
2693 struct xfs_btree_block *left; /* left btree block */
2694 union xfs_btree_ptr rptr; /* right sibling block ptr */
2695 struct xfs_buf *rbp; /* right buffer pointer */
2696 struct xfs_btree_block *right; /* right btree block */
2697 union xfs_btree_ptr rrptr; /* right-right sibling ptr */
2698 struct xfs_buf *rrbp; /* right-right buffer pointer */
2699 struct xfs_btree_block *rrblock; /* right-right btree block */
2700 int lrecs;
2701 int rrecs;
2702 int src_index;
2703 int error; /* error return value */
2704 int i;
2705
2706 XFS_BTREE_STATS_INC(cur, split);
2707
2708 /* Set up left block (current one). */
2709 left = xfs_btree_get_block(cur, level, &lbp);
2710
2711#ifdef DEBUG
2712 error = xfs_btree_check_block(cur, left, level, lbp);
2713 if (error)
2714 goto error0;
2715#endif
2716
2717 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2718
2719 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2720 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2721 if (error)
2722 goto error0;
2723 if (*stat == 0)
2724 goto out0;
2725 XFS_BTREE_STATS_INC(cur, alloc);
2726
2727 /* Set up the new block as "right". */
2728 error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2729 if (error)
2730 goto error0;
2731
2732 /* Fill in the btree header for the new right block. */
2733 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2734
2735 /*
2736 * Split the entries between the old and the new block evenly.
2737 * Make sure that if there's an odd number of entries now, that
2738 * each new block will have the same number of entries.
2739 */
2740 lrecs = xfs_btree_get_numrecs(left);
2741 rrecs = lrecs / 2;
2742 if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1)
2743 rrecs++;
2744 src_index = (lrecs - rrecs + 1);
2745
2746 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2747
2748 /* Adjust numrecs for the later get_*_keys() calls. */
2749 lrecs -= rrecs;
2750 xfs_btree_set_numrecs(left, lrecs);
2751 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2752
2753 /*
2754 * Copy btree block entries from the left block over to the
2755 * new block, the right. Update the right block and log the
2756 * changes.
2757 */
2758 if (level > 0) {
2759 /* It's a non-leaf. Move keys and pointers. */
2760 union xfs_btree_key *lkp; /* left btree key */
2761 union xfs_btree_ptr *lpp; /* left address pointer */
2762 union xfs_btree_key *rkp; /* right btree key */
2763 union xfs_btree_ptr *rpp; /* right address pointer */
2764
2765 lkp = xfs_btree_key_addr(cur, src_index, left);
2766 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2767 rkp = xfs_btree_key_addr(cur, 1, right);
2768 rpp = xfs_btree_ptr_addr(cur, 1, right);
2769
2770 for (i = src_index; i < rrecs; i++) {
2771 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2772 if (error)
2773 goto error0;
2774 }
2775
2776 /* Copy the keys & pointers to the new block. */
2777 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2778 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2779
2780 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2781 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2782
2783 /* Stash the keys of the new block for later insertion. */
2784 xfs_btree_get_node_keys(cur, right, key);
2785 } else {
2786 /* It's a leaf. Move records. */
2787 union xfs_btree_rec *lrp; /* left record pointer */
2788 union xfs_btree_rec *rrp; /* right record pointer */
2789
2790 lrp = xfs_btree_rec_addr(cur, src_index, left);
2791 rrp = xfs_btree_rec_addr(cur, 1, right);
2792
2793 /* Copy records to the new block. */
2794 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2795 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2796
2797 /* Stash the keys of the new block for later insertion. */
2798 xfs_btree_get_leaf_keys(cur, right, key);
2799 }
2800
2801 /*
2802 * Find the left block number by looking in the buffer.
2803 * Adjust sibling pointers.
2804 */
2805 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2806 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2807 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2808 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2809
2810 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2811 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2812
2813 /*
2814 * If there's a block to the new block's right, make that block
2815 * point back to right instead of to left.
2816 */
2817 if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2818 error = xfs_btree_read_buf_block(cur, &rrptr,
2819 0, &rrblock, &rrbp);
2820 if (error)
2821 goto error0;
2822 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2823 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2824 }
2825
2826 /* Update the parent high keys of the left block, if needed. */
2827 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2828 error = xfs_btree_update_keys(cur, level);
2829 if (error)
2830 goto error0;
2831 }
2832
2833 /*
2834 * If the cursor is really in the right block, move it there.
2835 * If it's just pointing past the last entry in left, then we'll
2836 * insert there, so don't change anything in that case.
2837 */
2838 if (cur->bc_levels[level].ptr > lrecs + 1) {
2839 xfs_btree_setbuf(cur, level, rbp);
2840 cur->bc_levels[level].ptr -= lrecs;
2841 }
2842 /*
2843 * If there are more levels, we'll need another cursor which refers
2844 * the right block, no matter where this cursor was.
2845 */
2846 if (level + 1 < cur->bc_nlevels) {
2847 error = xfs_btree_dup_cursor(cur, curp);
2848 if (error)
2849 goto error0;
2850 (*curp)->bc_levels[level + 1].ptr++;
2851 }
2852 *ptrp = rptr;
2853 *stat = 1;
2854 return 0;
2855out0:
2856 *stat = 0;
2857 return 0;
2858
2859error0:
2860 return error;
2861}
2862
2863#ifdef __KERNEL__
2864struct xfs_btree_split_args {
2865 struct xfs_btree_cur *cur;
2866 int level;
2867 union xfs_btree_ptr *ptrp;
2868 union xfs_btree_key *key;
2869 struct xfs_btree_cur **curp;
2870 int *stat; /* success/failure */
2871 int result;
2872 bool kswapd; /* allocation in kswapd context */
2873 struct completion *done;
2874 struct work_struct work;
2875};
2876
2877/*
2878 * Stack switching interfaces for allocation
2879 */
2880static void
2881xfs_btree_split_worker(
2882 struct work_struct *work)
2883{
2884 struct xfs_btree_split_args *args = container_of(work,
2885 struct xfs_btree_split_args, work);
2886 unsigned long pflags;
2887 unsigned long new_pflags = 0;
2888
2889 /*
2890 * we are in a transaction context here, but may also be doing work
2891 * in kswapd context, and hence we may need to inherit that state
2892 * temporarily to ensure that we don't block waiting for memory reclaim
2893 * in any way.
2894 */
2895 if (args->kswapd)
2896 new_pflags |= PF_MEMALLOC | PF_KSWAPD;
2897
2898 current_set_flags_nested(&pflags, new_pflags);
2899 xfs_trans_set_context(args->cur->bc_tp);
2900
2901 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2902 args->key, args->curp, args->stat);
2903
2904 xfs_trans_clear_context(args->cur->bc_tp);
2905 current_restore_flags_nested(&pflags, new_pflags);
2906
2907 /*
2908 * Do not access args after complete() has run here. We don't own args
2909 * and the owner may run and free args before we return here.
2910 */
2911 complete(args->done);
2912
2913}
2914
2915/*
2916 * BMBT split requests often come in with little stack to work on. Push
2917 * them off to a worker thread so there is lots of stack to use. For the other
2918 * btree types, just call directly to avoid the context switch overhead here.
2919 */
2920STATIC int /* error */
2921xfs_btree_split(
2922 struct xfs_btree_cur *cur,
2923 int level,
2924 union xfs_btree_ptr *ptrp,
2925 union xfs_btree_key *key,
2926 struct xfs_btree_cur **curp,
2927 int *stat) /* success/failure */
2928{
2929 struct xfs_btree_split_args args;
2930 DECLARE_COMPLETION_ONSTACK(done);
2931
2932 if (cur->bc_btnum != XFS_BTNUM_BMAP)
2933 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2934
2935 args.cur = cur;
2936 args.level = level;
2937 args.ptrp = ptrp;
2938 args.key = key;
2939 args.curp = curp;
2940 args.stat = stat;
2941 args.done = &done;
2942 args.kswapd = current_is_kswapd();
2943 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2944 queue_work(xfs_alloc_wq, &args.work);
2945 wait_for_completion(&done);
2946 destroy_work_on_stack(&args.work);
2947 return args.result;
2948}
2949#else
2950#define xfs_btree_split __xfs_btree_split
2951#endif /* __KERNEL__ */
2952
2953
2954/*
2955 * Copy the old inode root contents into a real block and make the
2956 * broot point to it.
2957 */
2958int /* error */
2959xfs_btree_new_iroot(
2960 struct xfs_btree_cur *cur, /* btree cursor */
2961 int *logflags, /* logging flags for inode */
2962 int *stat) /* return status - 0 fail */
2963{
2964 struct xfs_buf *cbp; /* buffer for cblock */
2965 struct xfs_btree_block *block; /* btree block */
2966 struct xfs_btree_block *cblock; /* child btree block */
2967 union xfs_btree_key *ckp; /* child key pointer */
2968 union xfs_btree_ptr *cpp; /* child ptr pointer */
2969 union xfs_btree_key *kp; /* pointer to btree key */
2970 union xfs_btree_ptr *pp; /* pointer to block addr */
2971 union xfs_btree_ptr nptr; /* new block addr */
2972 int level; /* btree level */
2973 int error; /* error return code */
2974 int i; /* loop counter */
2975
2976 XFS_BTREE_STATS_INC(cur, newroot);
2977
2978 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2979
2980 level = cur->bc_nlevels - 1;
2981
2982 block = xfs_btree_get_iroot(cur);
2983 pp = xfs_btree_ptr_addr(cur, 1, block);
2984
2985 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2986 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2987 if (error)
2988 goto error0;
2989 if (*stat == 0)
2990 return 0;
2991
2992 XFS_BTREE_STATS_INC(cur, alloc);
2993
2994 /* Copy the root into a real block. */
2995 error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
2996 if (error)
2997 goto error0;
2998
2999 /*
3000 * we can't just memcpy() the root in for CRC enabled btree blocks.
3001 * In that case have to also ensure the blkno remains correct
3002 */
3003 memcpy(cblock, block, xfs_btree_block_len(cur));
3004 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
3005 __be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
3006 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
3007 cblock->bb_u.l.bb_blkno = bno;
3008 else
3009 cblock->bb_u.s.bb_blkno = bno;
3010 }
3011
3012 be16_add_cpu(&block->bb_level, 1);
3013 xfs_btree_set_numrecs(block, 1);
3014 cur->bc_nlevels++;
3015 ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3016 cur->bc_levels[level + 1].ptr = 1;
3017
3018 kp = xfs_btree_key_addr(cur, 1, block);
3019 ckp = xfs_btree_key_addr(cur, 1, cblock);
3020 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3021
3022 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3023 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3024 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3025 if (error)
3026 goto error0;
3027 }
3028
3029 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3030
3031 error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
3032 if (error)
3033 goto error0;
3034
3035 xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3036
3037 xfs_iroot_realloc(cur->bc_ino.ip,
3038 1 - xfs_btree_get_numrecs(cblock),
3039 cur->bc_ino.whichfork);
3040
3041 xfs_btree_setbuf(cur, level, cbp);
3042
3043 /*
3044 * Do all this logging at the end so that
3045 * the root is at the right level.
3046 */
3047 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3048 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3049 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3050
3051 *logflags |=
3052 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
3053 *stat = 1;
3054 return 0;
3055error0:
3056 return error;
3057}
3058
3059/*
3060 * Allocate a new root block, fill it in.
3061 */
3062STATIC int /* error */
3063xfs_btree_new_root(
3064 struct xfs_btree_cur *cur, /* btree cursor */
3065 int *stat) /* success/failure */
3066{
3067 struct xfs_btree_block *block; /* one half of the old root block */
3068 struct xfs_buf *bp; /* buffer containing block */
3069 int error; /* error return value */
3070 struct xfs_buf *lbp; /* left buffer pointer */
3071 struct xfs_btree_block *left; /* left btree block */
3072 struct xfs_buf *nbp; /* new (root) buffer */
3073 struct xfs_btree_block *new; /* new (root) btree block */
3074 int nptr; /* new value for key index, 1 or 2 */
3075 struct xfs_buf *rbp; /* right buffer pointer */
3076 struct xfs_btree_block *right; /* right btree block */
3077 union xfs_btree_ptr rptr;
3078 union xfs_btree_ptr lptr;
3079
3080 XFS_BTREE_STATS_INC(cur, newroot);
3081
3082 /* initialise our start point from the cursor */
3083 cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3084
3085 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3086 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3087 if (error)
3088 goto error0;
3089 if (*stat == 0)
3090 goto out0;
3091 XFS_BTREE_STATS_INC(cur, alloc);
3092
3093 /* Set up the new block. */
3094 error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3095 if (error)
3096 goto error0;
3097
3098 /* Set the root in the holding structure increasing the level by 1. */
3099 cur->bc_ops->set_root(cur, &lptr, 1);
3100
3101 /*
3102 * At the previous root level there are now two blocks: the old root,
3103 * and the new block generated when it was split. We don't know which
3104 * one the cursor is pointing at, so we set up variables "left" and
3105 * "right" for each case.
3106 */
3107 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3108
3109#ifdef DEBUG
3110 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3111 if (error)
3112 goto error0;
3113#endif
3114
3115 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3116 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3117 /* Our block is left, pick up the right block. */
3118 lbp = bp;
3119 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3120 left = block;
3121 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3122 if (error)
3123 goto error0;
3124 bp = rbp;
3125 nptr = 1;
3126 } else {
3127 /* Our block is right, pick up the left block. */
3128 rbp = bp;
3129 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3130 right = block;
3131 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3132 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3133 if (error)
3134 goto error0;
3135 bp = lbp;
3136 nptr = 2;
3137 }
3138
3139 /* Fill in the new block's btree header and log it. */
3140 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3141 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3142 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3143 !xfs_btree_ptr_is_null(cur, &rptr));
3144
3145 /* Fill in the key data in the new root. */
3146 if (xfs_btree_get_level(left) > 0) {
3147 /*
3148 * Get the keys for the left block's keys and put them directly
3149 * in the parent block. Do the same for the right block.
3150 */
3151 xfs_btree_get_node_keys(cur, left,
3152 xfs_btree_key_addr(cur, 1, new));
3153 xfs_btree_get_node_keys(cur, right,
3154 xfs_btree_key_addr(cur, 2, new));
3155 } else {
3156 /*
3157 * Get the keys for the left block's records and put them
3158 * directly in the parent block. Do the same for the right
3159 * block.
3160 */
3161 xfs_btree_get_leaf_keys(cur, left,
3162 xfs_btree_key_addr(cur, 1, new));
3163 xfs_btree_get_leaf_keys(cur, right,
3164 xfs_btree_key_addr(cur, 2, new));
3165 }
3166 xfs_btree_log_keys(cur, nbp, 1, 2);
3167
3168 /* Fill in the pointer data in the new root. */
3169 xfs_btree_copy_ptrs(cur,
3170 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3171 xfs_btree_copy_ptrs(cur,
3172 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3173 xfs_btree_log_ptrs(cur, nbp, 1, 2);
3174
3175 /* Fix up the cursor. */
3176 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3177 cur->bc_levels[cur->bc_nlevels].ptr = nptr;
3178 cur->bc_nlevels++;
3179 ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3180 *stat = 1;
3181 return 0;
3182error0:
3183 return error;
3184out0:
3185 *stat = 0;
3186 return 0;
3187}
3188
3189STATIC int
3190xfs_btree_make_block_unfull(
3191 struct xfs_btree_cur *cur, /* btree cursor */
3192 int level, /* btree level */
3193 int numrecs,/* # of recs in block */
3194 int *oindex,/* old tree index */
3195 int *index, /* new tree index */
3196 union xfs_btree_ptr *nptr, /* new btree ptr */
3197 struct xfs_btree_cur **ncur, /* new btree cursor */
3198 union xfs_btree_key *key, /* key of new block */
3199 int *stat)
3200{
3201 int error = 0;
3202
3203 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3204 level == cur->bc_nlevels - 1) {
3205 struct xfs_inode *ip = cur->bc_ino.ip;
3206
3207 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3208 /* A root block that can be made bigger. */
3209 xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3210 *stat = 1;
3211 } else {
3212 /* A root block that needs replacing */
3213 int logflags = 0;
3214
3215 error = xfs_btree_new_iroot(cur, &logflags, stat);
3216 if (error || *stat == 0)
3217 return error;
3218
3219 xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3220 }
3221
3222 return 0;
3223 }
3224
3225 /* First, try shifting an entry to the right neighbor. */
3226 error = xfs_btree_rshift(cur, level, stat);
3227 if (error || *stat)
3228 return error;
3229
3230 /* Next, try shifting an entry to the left neighbor. */
3231 error = xfs_btree_lshift(cur, level, stat);
3232 if (error)
3233 return error;
3234
3235 if (*stat) {
3236 *oindex = *index = cur->bc_levels[level].ptr;
3237 return 0;
3238 }
3239
3240 /*
3241 * Next, try splitting the current block in half.
3242 *
3243 * If this works we have to re-set our variables because we
3244 * could be in a different block now.
3245 */
3246 error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3247 if (error || *stat == 0)
3248 return error;
3249
3250
3251 *index = cur->bc_levels[level].ptr;
3252 return 0;
3253}
3254
3255/*
3256 * Insert one record/level. Return information to the caller
3257 * allowing the next level up to proceed if necessary.
3258 */
3259STATIC int
3260xfs_btree_insrec(
3261 struct xfs_btree_cur *cur, /* btree cursor */
3262 int level, /* level to insert record at */
3263 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
3264 union xfs_btree_rec *rec, /* record to insert */
3265 union xfs_btree_key *key, /* i/o: block key for ptrp */
3266 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
3267 int *stat) /* success/failure */
3268{
3269 struct xfs_btree_block *block; /* btree block */
3270 struct xfs_buf *bp; /* buffer for block */
3271 union xfs_btree_ptr nptr; /* new block ptr */
3272 struct xfs_btree_cur *ncur = NULL; /* new btree cursor */
3273 union xfs_btree_key nkey; /* new block key */
3274 union xfs_btree_key *lkey;
3275 int optr; /* old key/record index */
3276 int ptr; /* key/record index */
3277 int numrecs;/* number of records */
3278 int error; /* error return value */
3279 int i;
3280 xfs_daddr_t old_bn;
3281
3282 ncur = NULL;
3283 lkey = &nkey;
3284
3285 /*
3286 * If we have an external root pointer, and we've made it to the
3287 * root level, allocate a new root block and we're done.
3288 */
3289 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3290 (level >= cur->bc_nlevels)) {
3291 error = xfs_btree_new_root(cur, stat);
3292 xfs_btree_set_ptr_null(cur, ptrp);
3293
3294 return error;
3295 }
3296
3297 /* If we're off the left edge, return failure. */
3298 ptr = cur->bc_levels[level].ptr;
3299 if (ptr == 0) {
3300 *stat = 0;
3301 return 0;
3302 }
3303
3304 optr = ptr;
3305
3306 XFS_BTREE_STATS_INC(cur, insrec);
3307
3308 /* Get pointers to the btree buffer and block. */
3309 block = xfs_btree_get_block(cur, level, &bp);
3310 old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3311 numrecs = xfs_btree_get_numrecs(block);
3312
3313#ifdef DEBUG
3314 error = xfs_btree_check_block(cur, block, level, bp);
3315 if (error)
3316 goto error0;
3317
3318 /* Check that the new entry is being inserted in the right place. */
3319 if (ptr <= numrecs) {
3320 if (level == 0) {
3321 ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3322 xfs_btree_rec_addr(cur, ptr, block)));
3323 } else {
3324 ASSERT(cur->bc_ops->keys_inorder(cur, key,
3325 xfs_btree_key_addr(cur, ptr, block)));
3326 }
3327 }
3328#endif
3329
3330 /*
3331 * If the block is full, we can't insert the new entry until we
3332 * make the block un-full.
3333 */
3334 xfs_btree_set_ptr_null(cur, &nptr);
3335 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3336 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3337 &optr, &ptr, &nptr, &ncur, lkey, stat);
3338 if (error || *stat == 0)
3339 goto error0;
3340 }
3341
3342 /*
3343 * The current block may have changed if the block was
3344 * previously full and we have just made space in it.
3345 */
3346 block = xfs_btree_get_block(cur, level, &bp);
3347 numrecs = xfs_btree_get_numrecs(block);
3348
3349#ifdef DEBUG
3350 error = xfs_btree_check_block(cur, block, level, bp);
3351 if (error)
3352 goto error0;
3353#endif
3354
3355 /*
3356 * At this point we know there's room for our new entry in the block
3357 * we're pointing at.
3358 */
3359 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3360
3361 if (level > 0) {
3362 /* It's a nonleaf. make a hole in the keys and ptrs */
3363 union xfs_btree_key *kp;
3364 union xfs_btree_ptr *pp;
3365
3366 kp = xfs_btree_key_addr(cur, ptr, block);
3367 pp = xfs_btree_ptr_addr(cur, ptr, block);
3368
3369 for (i = numrecs - ptr; i >= 0; i--) {
3370 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3371 if (error)
3372 goto error0;
3373 }
3374
3375 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3376 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3377
3378 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3379 if (error)
3380 goto error0;
3381
3382 /* Now put the new data in, bump numrecs and log it. */
3383 xfs_btree_copy_keys(cur, kp, key, 1);
3384 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3385 numrecs++;
3386 xfs_btree_set_numrecs(block, numrecs);
3387 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3388 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3389#ifdef DEBUG
3390 if (ptr < numrecs) {
3391 ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3392 xfs_btree_key_addr(cur, ptr + 1, block)));
3393 }
3394#endif
3395 } else {
3396 /* It's a leaf. make a hole in the records */
3397 union xfs_btree_rec *rp;
3398
3399 rp = xfs_btree_rec_addr(cur, ptr, block);
3400
3401 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3402
3403 /* Now put the new data in, bump numrecs and log it. */
3404 xfs_btree_copy_recs(cur, rp, rec, 1);
3405 xfs_btree_set_numrecs(block, ++numrecs);
3406 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3407#ifdef DEBUG
3408 if (ptr < numrecs) {
3409 ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3410 xfs_btree_rec_addr(cur, ptr + 1, block)));
3411 }
3412#endif
3413 }
3414
3415 /* Log the new number of records in the btree header. */
3416 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3417
3418 /*
3419 * If we just inserted into a new tree block, we have to
3420 * recalculate nkey here because nkey is out of date.
3421 *
3422 * Otherwise we're just updating an existing block (having shoved
3423 * some records into the new tree block), so use the regular key
3424 * update mechanism.
3425 */
3426 if (bp && xfs_buf_daddr(bp) != old_bn) {
3427 xfs_btree_get_keys(cur, block, lkey);
3428 } else if (xfs_btree_needs_key_update(cur, optr)) {
3429 error = xfs_btree_update_keys(cur, level);
3430 if (error)
3431 goto error0;
3432 }
3433
3434 /*
3435 * If we are tracking the last record in the tree and
3436 * we are at the far right edge of the tree, update it.
3437 */
3438 if (xfs_btree_is_lastrec(cur, block, level)) {
3439 cur->bc_ops->update_lastrec(cur, block, rec,
3440 ptr, LASTREC_INSREC);
3441 }
3442
3443 /*
3444 * Return the new block number, if any.
3445 * If there is one, give back a record value and a cursor too.
3446 */
3447 *ptrp = nptr;
3448 if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3449 xfs_btree_copy_keys(cur, key, lkey, 1);
3450 *curp = ncur;
3451 }
3452
3453 *stat = 1;
3454 return 0;
3455
3456error0:
3457 if (ncur)
3458 xfs_btree_del_cursor(ncur, error);
3459 return error;
3460}
3461
3462/*
3463 * Insert the record at the point referenced by cur.
3464 *
3465 * A multi-level split of the tree on insert will invalidate the original
3466 * cursor. All callers of this function should assume that the cursor is
3467 * no longer valid and revalidate it.
3468 */
3469int
3470xfs_btree_insert(
3471 struct xfs_btree_cur *cur,
3472 int *stat)
3473{
3474 int error; /* error return value */
3475 int i; /* result value, 0 for failure */
3476 int level; /* current level number in btree */
3477 union xfs_btree_ptr nptr; /* new block number (split result) */
3478 struct xfs_btree_cur *ncur; /* new cursor (split result) */
3479 struct xfs_btree_cur *pcur; /* previous level's cursor */
3480 union xfs_btree_key bkey; /* key of block to insert */
3481 union xfs_btree_key *key;
3482 union xfs_btree_rec rec; /* record to insert */
3483
3484 level = 0;
3485 ncur = NULL;
3486 pcur = cur;
3487 key = &bkey;
3488
3489 xfs_btree_set_ptr_null(cur, &nptr);
3490
3491 /* Make a key out of the record data to be inserted, and save it. */
3492 cur->bc_ops->init_rec_from_cur(cur, &rec);
3493 cur->bc_ops->init_key_from_rec(key, &rec);
3494
3495 /*
3496 * Loop going up the tree, starting at the leaf level.
3497 * Stop when we don't get a split block, that must mean that
3498 * the insert is finished with this level.
3499 */
3500 do {
3501 /*
3502 * Insert nrec/nptr into this level of the tree.
3503 * Note if we fail, nptr will be null.
3504 */
3505 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3506 &ncur, &i);
3507 if (error) {
3508 if (pcur != cur)
3509 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3510 goto error0;
3511 }
3512
3513 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3514 error = -EFSCORRUPTED;
3515 goto error0;
3516 }
3517 level++;
3518
3519 /*
3520 * See if the cursor we just used is trash.
3521 * Can't trash the caller's cursor, but otherwise we should
3522 * if ncur is a new cursor or we're about to be done.
3523 */
3524 if (pcur != cur &&
3525 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3526 /* Save the state from the cursor before we trash it */
3527 if (cur->bc_ops->update_cursor)
3528 cur->bc_ops->update_cursor(pcur, cur);
3529 cur->bc_nlevels = pcur->bc_nlevels;
3530 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3531 }
3532 /* If we got a new cursor, switch to it. */
3533 if (ncur) {
3534 pcur = ncur;
3535 ncur = NULL;
3536 }
3537 } while (!xfs_btree_ptr_is_null(cur, &nptr));
3538
3539 *stat = i;
3540 return 0;
3541error0:
3542 return error;
3543}
3544
3545/*
3546 * Try to merge a non-leaf block back into the inode root.
3547 *
3548 * Note: the killroot names comes from the fact that we're effectively
3549 * killing the old root block. But because we can't just delete the
3550 * inode we have to copy the single block it was pointing to into the
3551 * inode.
3552 */
3553STATIC int
3554xfs_btree_kill_iroot(
3555 struct xfs_btree_cur *cur)
3556{
3557 int whichfork = cur->bc_ino.whichfork;
3558 struct xfs_inode *ip = cur->bc_ino.ip;
3559 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
3560 struct xfs_btree_block *block;
3561 struct xfs_btree_block *cblock;
3562 union xfs_btree_key *kp;
3563 union xfs_btree_key *ckp;
3564 union xfs_btree_ptr *pp;
3565 union xfs_btree_ptr *cpp;
3566 struct xfs_buf *cbp;
3567 int level;
3568 int index;
3569 int numrecs;
3570 int error;
3571#ifdef DEBUG
3572 union xfs_btree_ptr ptr;
3573#endif
3574 int i;
3575
3576 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3577 ASSERT(cur->bc_nlevels > 1);
3578
3579 /*
3580 * Don't deal with the root block needs to be a leaf case.
3581 * We're just going to turn the thing back into extents anyway.
3582 */
3583 level = cur->bc_nlevels - 1;
3584 if (level == 1)
3585 goto out0;
3586
3587 /*
3588 * Give up if the root has multiple children.
3589 */
3590 block = xfs_btree_get_iroot(cur);
3591 if (xfs_btree_get_numrecs(block) != 1)
3592 goto out0;
3593
3594 cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3595 numrecs = xfs_btree_get_numrecs(cblock);
3596
3597 /*
3598 * Only do this if the next level will fit.
3599 * Then the data must be copied up to the inode,
3600 * instead of freeing the root you free the next level.
3601 */
3602 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3603 goto out0;
3604
3605 XFS_BTREE_STATS_INC(cur, killroot);
3606
3607#ifdef DEBUG
3608 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3609 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3610 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3611 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3612#endif
3613
3614 index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3615 if (index) {
3616 xfs_iroot_realloc(cur->bc_ino.ip, index,
3617 cur->bc_ino.whichfork);
3618 block = ifp->if_broot;
3619 }
3620
3621 be16_add_cpu(&block->bb_numrecs, index);
3622 ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3623
3624 kp = xfs_btree_key_addr(cur, 1, block);
3625 ckp = xfs_btree_key_addr(cur, 1, cblock);
3626 xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3627
3628 pp = xfs_btree_ptr_addr(cur, 1, block);
3629 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3630
3631 for (i = 0; i < numrecs; i++) {
3632 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3633 if (error)
3634 return error;
3635 }
3636
3637 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3638
3639 error = xfs_btree_free_block(cur, cbp);
3640 if (error)
3641 return error;
3642
3643 cur->bc_levels[level - 1].bp = NULL;
3644 be16_add_cpu(&block->bb_level, -1);
3645 xfs_trans_log_inode(cur->bc_tp, ip,
3646 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3647 cur->bc_nlevels--;
3648out0:
3649 return 0;
3650}
3651
3652/*
3653 * Kill the current root node, and replace it with it's only child node.
3654 */
3655STATIC int
3656xfs_btree_kill_root(
3657 struct xfs_btree_cur *cur,
3658 struct xfs_buf *bp,
3659 int level,
3660 union xfs_btree_ptr *newroot)
3661{
3662 int error;
3663
3664 XFS_BTREE_STATS_INC(cur, killroot);
3665
3666 /*
3667 * Update the root pointer, decreasing the level by 1 and then
3668 * free the old root.
3669 */
3670 cur->bc_ops->set_root(cur, newroot, -1);
3671
3672 error = xfs_btree_free_block(cur, bp);
3673 if (error)
3674 return error;
3675
3676 cur->bc_levels[level].bp = NULL;
3677 cur->bc_levels[level].ra = 0;
3678 cur->bc_nlevels--;
3679
3680 return 0;
3681}
3682
3683STATIC int
3684xfs_btree_dec_cursor(
3685 struct xfs_btree_cur *cur,
3686 int level,
3687 int *stat)
3688{
3689 int error;
3690 int i;
3691
3692 if (level > 0) {
3693 error = xfs_btree_decrement(cur, level, &i);
3694 if (error)
3695 return error;
3696 }
3697
3698 *stat = 1;
3699 return 0;
3700}
3701
3702/*
3703 * Single level of the btree record deletion routine.
3704 * Delete record pointed to by cur/level.
3705 * Remove the record from its block then rebalance the tree.
3706 * Return 0 for error, 1 for done, 2 to go on to the next level.
3707 */
3708STATIC int /* error */
3709xfs_btree_delrec(
3710 struct xfs_btree_cur *cur, /* btree cursor */
3711 int level, /* level removing record from */
3712 int *stat) /* fail/done/go-on */
3713{
3714 struct xfs_btree_block *block; /* btree block */
3715 union xfs_btree_ptr cptr; /* current block ptr */
3716 struct xfs_buf *bp; /* buffer for block */
3717 int error; /* error return value */
3718 int i; /* loop counter */
3719 union xfs_btree_ptr lptr; /* left sibling block ptr */
3720 struct xfs_buf *lbp; /* left buffer pointer */
3721 struct xfs_btree_block *left; /* left btree block */
3722 int lrecs = 0; /* left record count */
3723 int ptr; /* key/record index */
3724 union xfs_btree_ptr rptr; /* right sibling block ptr */
3725 struct xfs_buf *rbp; /* right buffer pointer */
3726 struct xfs_btree_block *right; /* right btree block */
3727 struct xfs_btree_block *rrblock; /* right-right btree block */
3728 struct xfs_buf *rrbp; /* right-right buffer pointer */
3729 int rrecs = 0; /* right record count */
3730 struct xfs_btree_cur *tcur; /* temporary btree cursor */
3731 int numrecs; /* temporary numrec count */
3732
3733 tcur = NULL;
3734
3735 /* Get the index of the entry being deleted, check for nothing there. */
3736 ptr = cur->bc_levels[level].ptr;
3737 if (ptr == 0) {
3738 *stat = 0;
3739 return 0;
3740 }
3741
3742 /* Get the buffer & block containing the record or key/ptr. */
3743 block = xfs_btree_get_block(cur, level, &bp);
3744 numrecs = xfs_btree_get_numrecs(block);
3745
3746#ifdef DEBUG
3747 error = xfs_btree_check_block(cur, block, level, bp);
3748 if (error)
3749 goto error0;
3750#endif
3751
3752 /* Fail if we're off the end of the block. */
3753 if (ptr > numrecs) {
3754 *stat = 0;
3755 return 0;
3756 }
3757
3758 XFS_BTREE_STATS_INC(cur, delrec);
3759 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3760
3761 /* Excise the entries being deleted. */
3762 if (level > 0) {
3763 /* It's a nonleaf. operate on keys and ptrs */
3764 union xfs_btree_key *lkp;
3765 union xfs_btree_ptr *lpp;
3766
3767 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3768 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3769
3770 for (i = 0; i < numrecs - ptr; i++) {
3771 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3772 if (error)
3773 goto error0;
3774 }
3775
3776 if (ptr < numrecs) {
3777 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3778 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3779 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3780 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3781 }
3782 } else {
3783 /* It's a leaf. operate on records */
3784 if (ptr < numrecs) {
3785 xfs_btree_shift_recs(cur,
3786 xfs_btree_rec_addr(cur, ptr + 1, block),
3787 -1, numrecs - ptr);
3788 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3789 }
3790 }
3791
3792 /*
3793 * Decrement and log the number of entries in the block.
3794 */
3795 xfs_btree_set_numrecs(block, --numrecs);
3796 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3797
3798 /*
3799 * If we are tracking the last record in the tree and
3800 * we are at the far right edge of the tree, update it.
3801 */
3802 if (xfs_btree_is_lastrec(cur, block, level)) {
3803 cur->bc_ops->update_lastrec(cur, block, NULL,
3804 ptr, LASTREC_DELREC);
3805 }
3806
3807 /*
3808 * We're at the root level. First, shrink the root block in-memory.
3809 * Try to get rid of the next level down. If we can't then there's
3810 * nothing left to do.
3811 */
3812 if (level == cur->bc_nlevels - 1) {
3813 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3814 xfs_iroot_realloc(cur->bc_ino.ip, -1,
3815 cur->bc_ino.whichfork);
3816
3817 error = xfs_btree_kill_iroot(cur);
3818 if (error)
3819 goto error0;
3820
3821 error = xfs_btree_dec_cursor(cur, level, stat);
3822 if (error)
3823 goto error0;
3824 *stat = 1;
3825 return 0;
3826 }
3827
3828 /*
3829 * If this is the root level, and there's only one entry left,
3830 * and it's NOT the leaf level, then we can get rid of this
3831 * level.
3832 */
3833 if (numrecs == 1 && level > 0) {
3834 union xfs_btree_ptr *pp;
3835 /*
3836 * pp is still set to the first pointer in the block.
3837 * Make it the new root of the btree.
3838 */
3839 pp = xfs_btree_ptr_addr(cur, 1, block);
3840 error = xfs_btree_kill_root(cur, bp, level, pp);
3841 if (error)
3842 goto error0;
3843 } else if (level > 0) {
3844 error = xfs_btree_dec_cursor(cur, level, stat);
3845 if (error)
3846 goto error0;
3847 }
3848 *stat = 1;
3849 return 0;
3850 }
3851
3852 /*
3853 * If we deleted the leftmost entry in the block, update the
3854 * key values above us in the tree.
3855 */
3856 if (xfs_btree_needs_key_update(cur, ptr)) {
3857 error = xfs_btree_update_keys(cur, level);
3858 if (error)
3859 goto error0;
3860 }
3861
3862 /*
3863 * If the number of records remaining in the block is at least
3864 * the minimum, we're done.
3865 */
3866 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3867 error = xfs_btree_dec_cursor(cur, level, stat);
3868 if (error)
3869 goto error0;
3870 return 0;
3871 }
3872
3873 /*
3874 * Otherwise, we have to move some records around to keep the
3875 * tree balanced. Look at the left and right sibling blocks to
3876 * see if we can re-balance by moving only one record.
3877 */
3878 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3879 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3880
3881 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3882 /*
3883 * One child of root, need to get a chance to copy its contents
3884 * into the root and delete it. Can't go up to next level,
3885 * there's nothing to delete there.
3886 */
3887 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3888 xfs_btree_ptr_is_null(cur, &lptr) &&
3889 level == cur->bc_nlevels - 2) {
3890 error = xfs_btree_kill_iroot(cur);
3891 if (!error)
3892 error = xfs_btree_dec_cursor(cur, level, stat);
3893 if (error)
3894 goto error0;
3895 return 0;
3896 }
3897 }
3898
3899 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3900 !xfs_btree_ptr_is_null(cur, &lptr));
3901
3902 /*
3903 * Duplicate the cursor so our btree manipulations here won't
3904 * disrupt the next level up.
3905 */
3906 error = xfs_btree_dup_cursor(cur, &tcur);
3907 if (error)
3908 goto error0;
3909
3910 /*
3911 * If there's a right sibling, see if it's ok to shift an entry
3912 * out of it.
3913 */
3914 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3915 /*
3916 * Move the temp cursor to the last entry in the next block.
3917 * Actually any entry but the first would suffice.
3918 */
3919 i = xfs_btree_lastrec(tcur, level);
3920 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3921 error = -EFSCORRUPTED;
3922 goto error0;
3923 }
3924
3925 error = xfs_btree_increment(tcur, level, &i);
3926 if (error)
3927 goto error0;
3928 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3929 error = -EFSCORRUPTED;
3930 goto error0;
3931 }
3932
3933 i = xfs_btree_lastrec(tcur, level);
3934 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3935 error = -EFSCORRUPTED;
3936 goto error0;
3937 }
3938
3939 /* Grab a pointer to the block. */
3940 right = xfs_btree_get_block(tcur, level, &rbp);
3941#ifdef DEBUG
3942 error = xfs_btree_check_block(tcur, right, level, rbp);
3943 if (error)
3944 goto error0;
3945#endif
3946 /* Grab the current block number, for future use. */
3947 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3948
3949 /*
3950 * If right block is full enough so that removing one entry
3951 * won't make it too empty, and left-shifting an entry out
3952 * of right to us works, we're done.
3953 */
3954 if (xfs_btree_get_numrecs(right) - 1 >=
3955 cur->bc_ops->get_minrecs(tcur, level)) {
3956 error = xfs_btree_lshift(tcur, level, &i);
3957 if (error)
3958 goto error0;
3959 if (i) {
3960 ASSERT(xfs_btree_get_numrecs(block) >=
3961 cur->bc_ops->get_minrecs(tcur, level));
3962
3963 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3964 tcur = NULL;
3965
3966 error = xfs_btree_dec_cursor(cur, level, stat);
3967 if (error)
3968 goto error0;
3969 return 0;
3970 }
3971 }
3972
3973 /*
3974 * Otherwise, grab the number of records in right for
3975 * future reference, and fix up the temp cursor to point
3976 * to our block again (last record).
3977 */
3978 rrecs = xfs_btree_get_numrecs(right);
3979 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3980 i = xfs_btree_firstrec(tcur, level);
3981 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3982 error = -EFSCORRUPTED;
3983 goto error0;
3984 }
3985
3986 error = xfs_btree_decrement(tcur, level, &i);
3987 if (error)
3988 goto error0;
3989 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3990 error = -EFSCORRUPTED;
3991 goto error0;
3992 }
3993 }
3994 }
3995
3996 /*
3997 * If there's a left sibling, see if it's ok to shift an entry
3998 * out of it.
3999 */
4000 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4001 /*
4002 * Move the temp cursor to the first entry in the
4003 * previous block.
4004 */
4005 i = xfs_btree_firstrec(tcur, level);
4006 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4007 error = -EFSCORRUPTED;
4008 goto error0;
4009 }
4010
4011 error = xfs_btree_decrement(tcur, level, &i);
4012 if (error)
4013 goto error0;
4014 i = xfs_btree_firstrec(tcur, level);
4015 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4016 error = -EFSCORRUPTED;
4017 goto error0;
4018 }
4019
4020 /* Grab a pointer to the block. */
4021 left = xfs_btree_get_block(tcur, level, &lbp);
4022#ifdef DEBUG
4023 error = xfs_btree_check_block(cur, left, level, lbp);
4024 if (error)
4025 goto error0;
4026#endif
4027 /* Grab the current block number, for future use. */
4028 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4029
4030 /*
4031 * If left block is full enough so that removing one entry
4032 * won't make it too empty, and right-shifting an entry out
4033 * of left to us works, we're done.
4034 */
4035 if (xfs_btree_get_numrecs(left) - 1 >=
4036 cur->bc_ops->get_minrecs(tcur, level)) {
4037 error = xfs_btree_rshift(tcur, level, &i);
4038 if (error)
4039 goto error0;
4040 if (i) {
4041 ASSERT(xfs_btree_get_numrecs(block) >=
4042 cur->bc_ops->get_minrecs(tcur, level));
4043 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4044 tcur = NULL;
4045 if (level == 0)
4046 cur->bc_levels[0].ptr++;
4047
4048 *stat = 1;
4049 return 0;
4050 }
4051 }
4052
4053 /*
4054 * Otherwise, grab the number of records in right for
4055 * future reference.
4056 */
4057 lrecs = xfs_btree_get_numrecs(left);
4058 }
4059
4060 /* Delete the temp cursor, we're done with it. */
4061 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4062 tcur = NULL;
4063
4064 /* If here, we need to do a join to keep the tree balanced. */
4065 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4066
4067 if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4068 lrecs + xfs_btree_get_numrecs(block) <=
4069 cur->bc_ops->get_maxrecs(cur, level)) {
4070 /*
4071 * Set "right" to be the starting block,
4072 * "left" to be the left neighbor.
4073 */
4074 rptr = cptr;
4075 right = block;
4076 rbp = bp;
4077 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4078 if (error)
4079 goto error0;
4080
4081 /*
4082 * If that won't work, see if we can join with the right neighbor block.
4083 */
4084 } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4085 rrecs + xfs_btree_get_numrecs(block) <=
4086 cur->bc_ops->get_maxrecs(cur, level)) {
4087 /*
4088 * Set "left" to be the starting block,
4089 * "right" to be the right neighbor.
4090 */
4091 lptr = cptr;
4092 left = block;
4093 lbp = bp;
4094 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4095 if (error)
4096 goto error0;
4097
4098 /*
4099 * Otherwise, we can't fix the imbalance.
4100 * Just return. This is probably a logic error, but it's not fatal.
4101 */
4102 } else {
4103 error = xfs_btree_dec_cursor(cur, level, stat);
4104 if (error)
4105 goto error0;
4106 return 0;
4107 }
4108
4109 rrecs = xfs_btree_get_numrecs(right);
4110 lrecs = xfs_btree_get_numrecs(left);
4111
4112 /*
4113 * We're now going to join "left" and "right" by moving all the stuff
4114 * in "right" to "left" and deleting "right".
4115 */
4116 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4117 if (level > 0) {
4118 /* It's a non-leaf. Move keys and pointers. */
4119 union xfs_btree_key *lkp; /* left btree key */
4120 union xfs_btree_ptr *lpp; /* left address pointer */
4121 union xfs_btree_key *rkp; /* right btree key */
4122 union xfs_btree_ptr *rpp; /* right address pointer */
4123
4124 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4125 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4126 rkp = xfs_btree_key_addr(cur, 1, right);
4127 rpp = xfs_btree_ptr_addr(cur, 1, right);
4128
4129 for (i = 1; i < rrecs; i++) {
4130 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4131 if (error)
4132 goto error0;
4133 }
4134
4135 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4136 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4137
4138 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4139 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4140 } else {
4141 /* It's a leaf. Move records. */
4142 union xfs_btree_rec *lrp; /* left record pointer */
4143 union xfs_btree_rec *rrp; /* right record pointer */
4144
4145 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4146 rrp = xfs_btree_rec_addr(cur, 1, right);
4147
4148 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4149 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4150 }
4151
4152 XFS_BTREE_STATS_INC(cur, join);
4153
4154 /*
4155 * Fix up the number of records and right block pointer in the
4156 * surviving block, and log it.
4157 */
4158 xfs_btree_set_numrecs(left, lrecs + rrecs);
4159 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4160 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4161 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4162
4163 /* If there is a right sibling, point it to the remaining block. */
4164 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4165 if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4166 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4167 if (error)
4168 goto error0;
4169 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4170 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4171 }
4172
4173 /* Free the deleted block. */
4174 error = xfs_btree_free_block(cur, rbp);
4175 if (error)
4176 goto error0;
4177
4178 /*
4179 * If we joined with the left neighbor, set the buffer in the
4180 * cursor to the left block, and fix up the index.
4181 */
4182 if (bp != lbp) {
4183 cur->bc_levels[level].bp = lbp;
4184 cur->bc_levels[level].ptr += lrecs;
4185 cur->bc_levels[level].ra = 0;
4186 }
4187 /*
4188 * If we joined with the right neighbor and there's a level above
4189 * us, increment the cursor at that level.
4190 */
4191 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4192 (level + 1 < cur->bc_nlevels)) {
4193 error = xfs_btree_increment(cur, level + 1, &i);
4194 if (error)
4195 goto error0;
4196 }
4197
4198 /*
4199 * Readjust the ptr at this level if it's not a leaf, since it's
4200 * still pointing at the deletion point, which makes the cursor
4201 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4202 * We can't use decrement because it would change the next level up.
4203 */
4204 if (level > 0)
4205 cur->bc_levels[level].ptr--;
4206
4207 /*
4208 * We combined blocks, so we have to update the parent keys if the
4209 * btree supports overlapped intervals. However,
4210 * bc_levels[level + 1].ptr points to the old block so that the caller
4211 * knows which record to delete. Therefore, the caller must be savvy
4212 * enough to call updkeys for us if we return stat == 2. The other
4213 * exit points from this function don't require deletions further up
4214 * the tree, so they can call updkeys directly.
4215 */
4216
4217 /* Return value means the next level up has something to do. */
4218 *stat = 2;
4219 return 0;
4220
4221error0:
4222 if (tcur)
4223 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4224 return error;
4225}
4226
4227/*
4228 * Delete the record pointed to by cur.
4229 * The cursor refers to the place where the record was (could be inserted)
4230 * when the operation returns.
4231 */
4232int /* error */
4233xfs_btree_delete(
4234 struct xfs_btree_cur *cur,
4235 int *stat) /* success/failure */
4236{
4237 int error; /* error return value */
4238 int level;
4239 int i;
4240 bool joined = false;
4241
4242 /*
4243 * Go up the tree, starting at leaf level.
4244 *
4245 * If 2 is returned then a join was done; go to the next level.
4246 * Otherwise we are done.
4247 */
4248 for (level = 0, i = 2; i == 2; level++) {
4249 error = xfs_btree_delrec(cur, level, &i);
4250 if (error)
4251 goto error0;
4252 if (i == 2)
4253 joined = true;
4254 }
4255
4256 /*
4257 * If we combined blocks as part of deleting the record, delrec won't
4258 * have updated the parent high keys so we have to do that here.
4259 */
4260 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4261 error = xfs_btree_updkeys_force(cur, 0);
4262 if (error)
4263 goto error0;
4264 }
4265
4266 if (i == 0) {
4267 for (level = 1; level < cur->bc_nlevels; level++) {
4268 if (cur->bc_levels[level].ptr == 0) {
4269 error = xfs_btree_decrement(cur, level, &i);
4270 if (error)
4271 goto error0;
4272 break;
4273 }
4274 }
4275 }
4276
4277 *stat = i;
4278 return 0;
4279error0:
4280 return error;
4281}
4282
4283/*
4284 * Get the data from the pointed-to record.
4285 */
4286int /* error */
4287xfs_btree_get_rec(
4288 struct xfs_btree_cur *cur, /* btree cursor */
4289 union xfs_btree_rec **recp, /* output: btree record */
4290 int *stat) /* output: success/failure */
4291{
4292 struct xfs_btree_block *block; /* btree block */
4293 struct xfs_buf *bp; /* buffer pointer */
4294 int ptr; /* record number */
4295#ifdef DEBUG
4296 int error; /* error return value */
4297#endif
4298
4299 ptr = cur->bc_levels[0].ptr;
4300 block = xfs_btree_get_block(cur, 0, &bp);
4301
4302#ifdef DEBUG
4303 error = xfs_btree_check_block(cur, block, 0, bp);
4304 if (error)
4305 return error;
4306#endif
4307
4308 /*
4309 * Off the right end or left end, return failure.
4310 */
4311 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4312 *stat = 0;
4313 return 0;
4314 }
4315
4316 /*
4317 * Point to the record and extract its data.
4318 */
4319 *recp = xfs_btree_rec_addr(cur, ptr, block);
4320 *stat = 1;
4321 return 0;
4322}
4323
4324/* Visit a block in a btree. */
4325STATIC int
4326xfs_btree_visit_block(
4327 struct xfs_btree_cur *cur,
4328 int level,
4329 xfs_btree_visit_blocks_fn fn,
4330 void *data)
4331{
4332 struct xfs_btree_block *block;
4333 struct xfs_buf *bp;
4334 union xfs_btree_ptr rptr;
4335 int error;
4336
4337 /* do right sibling readahead */
4338 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4339 block = xfs_btree_get_block(cur, level, &bp);
4340
4341 /* process the block */
4342 error = fn(cur, level, data);
4343 if (error)
4344 return error;
4345
4346 /* now read rh sibling block for next iteration */
4347 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4348 if (xfs_btree_ptr_is_null(cur, &rptr))
4349 return -ENOENT;
4350
4351 /*
4352 * We only visit blocks once in this walk, so we have to avoid the
4353 * internal xfs_btree_lookup_get_block() optimisation where it will
4354 * return the same block without checking if the right sibling points
4355 * back to us and creates a cyclic reference in the btree.
4356 */
4357 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4358 if (be64_to_cpu(rptr.l) == XFS_DADDR_TO_FSB(cur->bc_mp,
4359 xfs_buf_daddr(bp)))
4360 return -EFSCORRUPTED;
4361 } else {
4362 if (be32_to_cpu(rptr.s) == xfs_daddr_to_agbno(cur->bc_mp,
4363 xfs_buf_daddr(bp)))
4364 return -EFSCORRUPTED;
4365 }
4366 return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4367}
4368
4369
4370/* Visit every block in a btree. */
4371int
4372xfs_btree_visit_blocks(
4373 struct xfs_btree_cur *cur,
4374 xfs_btree_visit_blocks_fn fn,
4375 unsigned int flags,
4376 void *data)
4377{
4378 union xfs_btree_ptr lptr;
4379 int level;
4380 struct xfs_btree_block *block = NULL;
4381 int error = 0;
4382
4383 cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4384
4385 /* for each level */
4386 for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4387 /* grab the left hand block */
4388 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4389 if (error)
4390 return error;
4391
4392 /* readahead the left most block for the next level down */
4393 if (level > 0) {
4394 union xfs_btree_ptr *ptr;
4395
4396 ptr = xfs_btree_ptr_addr(cur, 1, block);
4397 xfs_btree_readahead_ptr(cur, ptr, 1);
4398
4399 /* save for the next iteration of the loop */
4400 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4401
4402 if (!(flags & XFS_BTREE_VISIT_LEAVES))
4403 continue;
4404 } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4405 continue;
4406 }
4407
4408 /* for each buffer in the level */
4409 do {
4410 error = xfs_btree_visit_block(cur, level, fn, data);
4411 } while (!error);
4412
4413 if (error != -ENOENT)
4414 return error;
4415 }
4416
4417 return 0;
4418}
4419
4420/*
4421 * Change the owner of a btree.
4422 *
4423 * The mechanism we use here is ordered buffer logging. Because we don't know
4424 * how many buffers were are going to need to modify, we don't really want to
4425 * have to make transaction reservations for the worst case of every buffer in a
4426 * full size btree as that may be more space that we can fit in the log....
4427 *
4428 * We do the btree walk in the most optimal manner possible - we have sibling
4429 * pointers so we can just walk all the blocks on each level from left to right
4430 * in a single pass, and then move to the next level and do the same. We can
4431 * also do readahead on the sibling pointers to get IO moving more quickly,
4432 * though for slow disks this is unlikely to make much difference to performance
4433 * as the amount of CPU work we have to do before moving to the next block is
4434 * relatively small.
4435 *
4436 * For each btree block that we load, modify the owner appropriately, set the
4437 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4438 * we mark the region we change dirty so that if the buffer is relogged in
4439 * a subsequent transaction the changes we make here as an ordered buffer are
4440 * correctly relogged in that transaction. If we are in recovery context, then
4441 * just queue the modified buffer as delayed write buffer so the transaction
4442 * recovery completion writes the changes to disk.
4443 */
4444struct xfs_btree_block_change_owner_info {
4445 uint64_t new_owner;
4446 struct list_head *buffer_list;
4447};
4448
4449static int
4450xfs_btree_block_change_owner(
4451 struct xfs_btree_cur *cur,
4452 int level,
4453 void *data)
4454{
4455 struct xfs_btree_block_change_owner_info *bbcoi = data;
4456 struct xfs_btree_block *block;
4457 struct xfs_buf *bp;
4458
4459 /* modify the owner */
4460 block = xfs_btree_get_block(cur, level, &bp);
4461 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4462 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4463 return 0;
4464 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4465 } else {
4466 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4467 return 0;
4468 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4469 }
4470
4471 /*
4472 * If the block is a root block hosted in an inode, we might not have a
4473 * buffer pointer here and we shouldn't attempt to log the change as the
4474 * information is already held in the inode and discarded when the root
4475 * block is formatted into the on-disk inode fork. We still change it,
4476 * though, so everything is consistent in memory.
4477 */
4478 if (!bp) {
4479 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4480 ASSERT(level == cur->bc_nlevels - 1);
4481 return 0;
4482 }
4483
4484 if (cur->bc_tp) {
4485 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4486 xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4487 return -EAGAIN;
4488 }
4489 } else {
4490 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4491 }
4492
4493 return 0;
4494}
4495
4496int
4497xfs_btree_change_owner(
4498 struct xfs_btree_cur *cur,
4499 uint64_t new_owner,
4500 struct list_head *buffer_list)
4501{
4502 struct xfs_btree_block_change_owner_info bbcoi;
4503
4504 bbcoi.new_owner = new_owner;
4505 bbcoi.buffer_list = buffer_list;
4506
4507 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4508 XFS_BTREE_VISIT_ALL, &bbcoi);
4509}
4510
4511/* Verify the v5 fields of a long-format btree block. */
4512xfs_failaddr_t
4513xfs_btree_lblock_v5hdr_verify(
4514 struct xfs_buf *bp,
4515 uint64_t owner)
4516{
4517 struct xfs_mount *mp = bp->b_mount;
4518 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4519
4520 if (!xfs_has_crc(mp))
4521 return __this_address;
4522 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4523 return __this_address;
4524 if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4525 return __this_address;
4526 if (owner != XFS_RMAP_OWN_UNKNOWN &&
4527 be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4528 return __this_address;
4529 return NULL;
4530}
4531
4532/* Verify a long-format btree block. */
4533xfs_failaddr_t
4534xfs_btree_lblock_verify(
4535 struct xfs_buf *bp,
4536 unsigned int max_recs)
4537{
4538 struct xfs_mount *mp = bp->b_mount;
4539 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4540 xfs_fsblock_t fsb;
4541 xfs_failaddr_t fa;
4542
4543 /* numrecs verification */
4544 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4545 return __this_address;
4546
4547 /* sibling pointer verification */
4548 fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
4549 fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
4550 block->bb_u.l.bb_leftsib);
4551 if (!fa)
4552 fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
4553 block->bb_u.l.bb_rightsib);
4554 return fa;
4555}
4556
4557/**
4558 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4559 * btree block
4560 *
4561 * @bp: buffer containing the btree block
4562 */
4563xfs_failaddr_t
4564xfs_btree_sblock_v5hdr_verify(
4565 struct xfs_buf *bp)
4566{
4567 struct xfs_mount *mp = bp->b_mount;
4568 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4569 struct xfs_perag *pag = bp->b_pag;
4570
4571 if (!xfs_has_crc(mp))
4572 return __this_address;
4573 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4574 return __this_address;
4575 if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4576 return __this_address;
4577 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4578 return __this_address;
4579 return NULL;
4580}
4581
4582/**
4583 * xfs_btree_sblock_verify() -- verify a short-format btree block
4584 *
4585 * @bp: buffer containing the btree block
4586 * @max_recs: maximum records allowed in this btree node
4587 */
4588xfs_failaddr_t
4589xfs_btree_sblock_verify(
4590 struct xfs_buf *bp,
4591 unsigned int max_recs)
4592{
4593 struct xfs_mount *mp = bp->b_mount;
4594 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4595 xfs_agblock_t agbno;
4596 xfs_failaddr_t fa;
4597
4598 /* numrecs verification */
4599 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4600 return __this_address;
4601
4602 /* sibling pointer verification */
4603 agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
4604 fa = xfs_btree_check_sblock_siblings(bp->b_pag, NULL, -1, agbno,
4605 block->bb_u.s.bb_leftsib);
4606 if (!fa)
4607 fa = xfs_btree_check_sblock_siblings(bp->b_pag, NULL, -1, agbno,
4608 block->bb_u.s.bb_rightsib);
4609 return fa;
4610}
4611
4612/*
4613 * For the given limits on leaf and keyptr records per block, calculate the
4614 * height of the tree needed to index the number of leaf records.
4615 */
4616unsigned int
4617xfs_btree_compute_maxlevels(
4618 const unsigned int *limits,
4619 unsigned long long records)
4620{
4621 unsigned long long level_blocks = howmany_64(records, limits[0]);
4622 unsigned int height = 1;
4623
4624 while (level_blocks > 1) {
4625 level_blocks = howmany_64(level_blocks, limits[1]);
4626 height++;
4627 }
4628
4629 return height;
4630}
4631
4632/*
4633 * For the given limits on leaf and keyptr records per block, calculate the
4634 * number of blocks needed to index the given number of leaf records.
4635 */
4636unsigned long long
4637xfs_btree_calc_size(
4638 const unsigned int *limits,
4639 unsigned long long records)
4640{
4641 unsigned long long level_blocks = howmany_64(records, limits[0]);
4642 unsigned long long blocks = level_blocks;
4643
4644 while (level_blocks > 1) {
4645 level_blocks = howmany_64(level_blocks, limits[1]);
4646 blocks += level_blocks;
4647 }
4648
4649 return blocks;
4650}
4651
4652/*
4653 * Given a number of available blocks for the btree to consume with records and
4654 * pointers, calculate the height of the tree needed to index all the records
4655 * that space can hold based on the number of pointers each interior node
4656 * holds.
4657 *
4658 * We start by assuming a single level tree consumes a single block, then track
4659 * the number of blocks each node level consumes until we no longer have space
4660 * to store the next node level. At this point, we are indexing all the leaf
4661 * blocks in the space, and there's no more free space to split the tree any
4662 * further. That's our maximum btree height.
4663 */
4664unsigned int
4665xfs_btree_space_to_height(
4666 const unsigned int *limits,
4667 unsigned long long leaf_blocks)
4668{
4669 /*
4670 * The root btree block can have fewer than minrecs pointers in it
4671 * because the tree might not be big enough to require that amount of
4672 * fanout. Hence it has a minimum size of 2 pointers, not limits[1].
4673 */
4674 unsigned long long node_blocks = 2;
4675 unsigned long long blocks_left = leaf_blocks - 1;
4676 unsigned int height = 1;
4677
4678 if (leaf_blocks < 1)
4679 return 0;
4680
4681 while (node_blocks < blocks_left) {
4682 blocks_left -= node_blocks;
4683 node_blocks *= limits[1];
4684 height++;
4685 }
4686
4687 return height;
4688}
4689
4690/*
4691 * Query a regular btree for all records overlapping a given interval.
4692 * Start with a LE lookup of the key of low_rec and return all records
4693 * until we find a record with a key greater than the key of high_rec.
4694 */
4695STATIC int
4696xfs_btree_simple_query_range(
4697 struct xfs_btree_cur *cur,
4698 const union xfs_btree_key *low_key,
4699 const union xfs_btree_key *high_key,
4700 xfs_btree_query_range_fn fn,
4701 void *priv)
4702{
4703 union xfs_btree_rec *recp;
4704 union xfs_btree_key rec_key;
4705 int64_t diff;
4706 int stat;
4707 bool firstrec = true;
4708 int error;
4709
4710 ASSERT(cur->bc_ops->init_high_key_from_rec);
4711 ASSERT(cur->bc_ops->diff_two_keys);
4712
4713 /*
4714 * Find the leftmost record. The btree cursor must be set
4715 * to the low record used to generate low_key.
4716 */
4717 stat = 0;
4718 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4719 if (error)
4720 goto out;
4721
4722 /* Nothing? See if there's anything to the right. */
4723 if (!stat) {
4724 error = xfs_btree_increment(cur, 0, &stat);
4725 if (error)
4726 goto out;
4727 }
4728
4729 while (stat) {
4730 /* Find the record. */
4731 error = xfs_btree_get_rec(cur, &recp, &stat);
4732 if (error || !stat)
4733 break;
4734
4735 /* Skip if high_key(rec) < low_key. */
4736 if (firstrec) {
4737 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4738 firstrec = false;
4739 diff = cur->bc_ops->diff_two_keys(cur, low_key,
4740 &rec_key);
4741 if (diff > 0)
4742 goto advloop;
4743 }
4744
4745 /* Stop if high_key < low_key(rec). */
4746 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4747 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4748 if (diff > 0)
4749 break;
4750
4751 /* Callback */
4752 error = fn(cur, recp, priv);
4753 if (error)
4754 break;
4755
4756advloop:
4757 /* Move on to the next record. */
4758 error = xfs_btree_increment(cur, 0, &stat);
4759 if (error)
4760 break;
4761 }
4762
4763out:
4764 return error;
4765}
4766
4767/*
4768 * Query an overlapped interval btree for all records overlapping a given
4769 * interval. This function roughly follows the algorithm given in
4770 * "Interval Trees" of _Introduction to Algorithms_, which is section
4771 * 14.3 in the 2nd and 3rd editions.
4772 *
4773 * First, generate keys for the low and high records passed in.
4774 *
4775 * For any leaf node, generate the high and low keys for the record.
4776 * If the record keys overlap with the query low/high keys, pass the
4777 * record to the function iterator.
4778 *
4779 * For any internal node, compare the low and high keys of each
4780 * pointer against the query low/high keys. If there's an overlap,
4781 * follow the pointer.
4782 *
4783 * As an optimization, we stop scanning a block when we find a low key
4784 * that is greater than the query's high key.
4785 */
4786STATIC int
4787xfs_btree_overlapped_query_range(
4788 struct xfs_btree_cur *cur,
4789 const union xfs_btree_key *low_key,
4790 const union xfs_btree_key *high_key,
4791 xfs_btree_query_range_fn fn,
4792 void *priv)
4793{
4794 union xfs_btree_ptr ptr;
4795 union xfs_btree_ptr *pp;
4796 union xfs_btree_key rec_key;
4797 union xfs_btree_key rec_hkey;
4798 union xfs_btree_key *lkp;
4799 union xfs_btree_key *hkp;
4800 union xfs_btree_rec *recp;
4801 struct xfs_btree_block *block;
4802 int64_t ldiff;
4803 int64_t hdiff;
4804 int level;
4805 struct xfs_buf *bp;
4806 int i;
4807 int error;
4808
4809 /* Load the root of the btree. */
4810 level = cur->bc_nlevels - 1;
4811 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4812 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4813 if (error)
4814 return error;
4815 xfs_btree_get_block(cur, level, &bp);
4816 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4817#ifdef DEBUG
4818 error = xfs_btree_check_block(cur, block, level, bp);
4819 if (error)
4820 goto out;
4821#endif
4822 cur->bc_levels[level].ptr = 1;
4823
4824 while (level < cur->bc_nlevels) {
4825 block = xfs_btree_get_block(cur, level, &bp);
4826
4827 /* End of node, pop back towards the root. */
4828 if (cur->bc_levels[level].ptr >
4829 be16_to_cpu(block->bb_numrecs)) {
4830pop_up:
4831 if (level < cur->bc_nlevels - 1)
4832 cur->bc_levels[level + 1].ptr++;
4833 level++;
4834 continue;
4835 }
4836
4837 if (level == 0) {
4838 /* Handle a leaf node. */
4839 recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr,
4840 block);
4841
4842 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4843 ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4844 low_key);
4845
4846 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4847 hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4848 &rec_key);
4849
4850 /*
4851 * If (record's high key >= query's low key) and
4852 * (query's high key >= record's low key), then
4853 * this record overlaps the query range; callback.
4854 */
4855 if (ldiff >= 0 && hdiff >= 0) {
4856 error = fn(cur, recp, priv);
4857 if (error)
4858 break;
4859 } else if (hdiff < 0) {
4860 /* Record is larger than high key; pop. */
4861 goto pop_up;
4862 }
4863 cur->bc_levels[level].ptr++;
4864 continue;
4865 }
4866
4867 /* Handle an internal node. */
4868 lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block);
4869 hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr,
4870 block);
4871 pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block);
4872
4873 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4874 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4875
4876 /*
4877 * If (pointer's high key >= query's low key) and
4878 * (query's high key >= pointer's low key), then
4879 * this record overlaps the query range; follow pointer.
4880 */
4881 if (ldiff >= 0 && hdiff >= 0) {
4882 level--;
4883 error = xfs_btree_lookup_get_block(cur, level, pp,
4884 &block);
4885 if (error)
4886 goto out;
4887 xfs_btree_get_block(cur, level, &bp);
4888 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4889#ifdef DEBUG
4890 error = xfs_btree_check_block(cur, block, level, bp);
4891 if (error)
4892 goto out;
4893#endif
4894 cur->bc_levels[level].ptr = 1;
4895 continue;
4896 } else if (hdiff < 0) {
4897 /* The low key is larger than the upper range; pop. */
4898 goto pop_up;
4899 }
4900 cur->bc_levels[level].ptr++;
4901 }
4902
4903out:
4904 /*
4905 * If we don't end this function with the cursor pointing at a record
4906 * block, a subsequent non-error cursor deletion will not release
4907 * node-level buffers, causing a buffer leak. This is quite possible
4908 * with a zero-results range query, so release the buffers if we
4909 * failed to return any results.
4910 */
4911 if (cur->bc_levels[0].bp == NULL) {
4912 for (i = 0; i < cur->bc_nlevels; i++) {
4913 if (cur->bc_levels[i].bp) {
4914 xfs_trans_brelse(cur->bc_tp,
4915 cur->bc_levels[i].bp);
4916 cur->bc_levels[i].bp = NULL;
4917 cur->bc_levels[i].ptr = 0;
4918 cur->bc_levels[i].ra = 0;
4919 }
4920 }
4921 }
4922
4923 return error;
4924}
4925
4926/*
4927 * Query a btree for all records overlapping a given interval of keys. The
4928 * supplied function will be called with each record found; return one of the
4929 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4930 * code. This function returns -ECANCELED, zero, or a negative error code.
4931 */
4932int
4933xfs_btree_query_range(
4934 struct xfs_btree_cur *cur,
4935 const union xfs_btree_irec *low_rec,
4936 const union xfs_btree_irec *high_rec,
4937 xfs_btree_query_range_fn fn,
4938 void *priv)
4939{
4940 union xfs_btree_rec rec;
4941 union xfs_btree_key low_key;
4942 union xfs_btree_key high_key;
4943
4944 /* Find the keys of both ends of the interval. */
4945 cur->bc_rec = *high_rec;
4946 cur->bc_ops->init_rec_from_cur(cur, &rec);
4947 cur->bc_ops->init_key_from_rec(&high_key, &rec);
4948
4949 cur->bc_rec = *low_rec;
4950 cur->bc_ops->init_rec_from_cur(cur, &rec);
4951 cur->bc_ops->init_key_from_rec(&low_key, &rec);
4952
4953 /* Enforce low key < high key. */
4954 if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4955 return -EINVAL;
4956
4957 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4958 return xfs_btree_simple_query_range(cur, &low_key,
4959 &high_key, fn, priv);
4960 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4961 fn, priv);
4962}
4963
4964/* Query a btree for all records. */
4965int
4966xfs_btree_query_all(
4967 struct xfs_btree_cur *cur,
4968 xfs_btree_query_range_fn fn,
4969 void *priv)
4970{
4971 union xfs_btree_key low_key;
4972 union xfs_btree_key high_key;
4973
4974 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4975 memset(&low_key, 0, sizeof(low_key));
4976 memset(&high_key, 0xFF, sizeof(high_key));
4977
4978 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4979}
4980
4981static int
4982xfs_btree_count_blocks_helper(
4983 struct xfs_btree_cur *cur,
4984 int level,
4985 void *data)
4986{
4987 xfs_extlen_t *blocks = data;
4988 (*blocks)++;
4989
4990 return 0;
4991}
4992
4993/* Count the blocks in a btree and return the result in *blocks. */
4994int
4995xfs_btree_count_blocks(
4996 struct xfs_btree_cur *cur,
4997 xfs_extlen_t *blocks)
4998{
4999 *blocks = 0;
5000 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
5001 XFS_BTREE_VISIT_ALL, blocks);
5002}
5003
5004/* Compare two btree pointers. */
5005int64_t
5006xfs_btree_diff_two_ptrs(
5007 struct xfs_btree_cur *cur,
5008 const union xfs_btree_ptr *a,
5009 const union xfs_btree_ptr *b)
5010{
5011 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5012 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
5013 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
5014}
5015
5016/* If there's an extent, we're done. */
5017STATIC int
5018xfs_btree_has_record_helper(
5019 struct xfs_btree_cur *cur,
5020 const union xfs_btree_rec *rec,
5021 void *priv)
5022{
5023 return -ECANCELED;
5024}
5025
5026/* Is there a record covering a given range of keys? */
5027int
5028xfs_btree_has_record(
5029 struct xfs_btree_cur *cur,
5030 const union xfs_btree_irec *low,
5031 const union xfs_btree_irec *high,
5032 bool *exists)
5033{
5034 int error;
5035
5036 error = xfs_btree_query_range(cur, low, high,
5037 &xfs_btree_has_record_helper, NULL);
5038 if (error == -ECANCELED) {
5039 *exists = true;
5040 return 0;
5041 }
5042 *exists = false;
5043 return error;
5044}
5045
5046/* Are there more records in this btree? */
5047bool
5048xfs_btree_has_more_records(
5049 struct xfs_btree_cur *cur)
5050{
5051 struct xfs_btree_block *block;
5052 struct xfs_buf *bp;
5053
5054 block = xfs_btree_get_block(cur, 0, &bp);
5055
5056 /* There are still records in this block. */
5057 if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block))
5058 return true;
5059
5060 /* There are more record blocks. */
5061 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5062 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
5063 else
5064 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
5065}
5066
5067/* Set up all the btree cursor caches. */
5068int __init
5069xfs_btree_init_cur_caches(void)
5070{
5071 int error;
5072
5073 error = xfs_allocbt_init_cur_cache();
5074 if (error)
5075 return error;
5076 error = xfs_inobt_init_cur_cache();
5077 if (error)
5078 goto err;
5079 error = xfs_bmbt_init_cur_cache();
5080 if (error)
5081 goto err;
5082 error = xfs_rmapbt_init_cur_cache();
5083 if (error)
5084 goto err;
5085 error = xfs_refcountbt_init_cur_cache();
5086 if (error)
5087 goto err;
5088
5089 return 0;
5090err:
5091 xfs_btree_destroy_cur_caches();
5092 return error;
5093}
5094
5095/* Destroy all the btree cursor caches, if they've been allocated. */
5096void
5097xfs_btree_destroy_cur_caches(void)
5098{
5099 xfs_allocbt_destroy_cur_cache();
5100 xfs_inobt_destroy_cur_cache();
5101 xfs_bmbt_destroy_cur_cache();
5102 xfs_rmapbt_destroy_cur_cache();
5103 xfs_refcountbt_destroy_cur_cache();
5104}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_trans.h"
16#include "xfs_buf_item.h"
17#include "xfs_btree.h"
18#include "xfs_errortag.h"
19#include "xfs_error.h"
20#include "xfs_trace.h"
21#include "xfs_alloc.h"
22#include "xfs_log.h"
23#include "xfs_btree_staging.h"
24#include "xfs_ag.h"
25
26/*
27 * Cursor allocation zone.
28 */
29kmem_zone_t *xfs_btree_cur_zone;
30
31/*
32 * Btree magic numbers.
33 */
34static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
35 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
36 XFS_FIBT_MAGIC, 0 },
37 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
38 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
39 XFS_REFC_CRC_MAGIC }
40};
41
42uint32_t
43xfs_btree_magic(
44 int crc,
45 xfs_btnum_t btnum)
46{
47 uint32_t magic = xfs_magics[crc][btnum];
48
49 /* Ensure we asked for crc for crc-only magics. */
50 ASSERT(magic != 0);
51 return magic;
52}
53
54/*
55 * Check a long btree block header. Return the address of the failing check,
56 * or NULL if everything is ok.
57 */
58xfs_failaddr_t
59__xfs_btree_check_lblock(
60 struct xfs_btree_cur *cur,
61 struct xfs_btree_block *block,
62 int level,
63 struct xfs_buf *bp)
64{
65 struct xfs_mount *mp = cur->bc_mp;
66 xfs_btnum_t btnum = cur->bc_btnum;
67 int crc = xfs_sb_version_hascrc(&mp->m_sb);
68
69 if (crc) {
70 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
71 return __this_address;
72 if (block->bb_u.l.bb_blkno !=
73 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
74 return __this_address;
75 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
76 return __this_address;
77 }
78
79 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
80 return __this_address;
81 if (be16_to_cpu(block->bb_level) != level)
82 return __this_address;
83 if (be16_to_cpu(block->bb_numrecs) >
84 cur->bc_ops->get_maxrecs(cur, level))
85 return __this_address;
86 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
87 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
88 level + 1))
89 return __this_address;
90 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
91 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
92 level + 1))
93 return __this_address;
94
95 return NULL;
96}
97
98/* Check a long btree block header. */
99static int
100xfs_btree_check_lblock(
101 struct xfs_btree_cur *cur,
102 struct xfs_btree_block *block,
103 int level,
104 struct xfs_buf *bp)
105{
106 struct xfs_mount *mp = cur->bc_mp;
107 xfs_failaddr_t fa;
108
109 fa = __xfs_btree_check_lblock(cur, block, level, bp);
110 if (XFS_IS_CORRUPT(mp, fa != NULL) ||
111 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) {
112 if (bp)
113 trace_xfs_btree_corrupt(bp, _RET_IP_);
114 return -EFSCORRUPTED;
115 }
116 return 0;
117}
118
119/*
120 * Check a short btree block header. Return the address of the failing check,
121 * or NULL if everything is ok.
122 */
123xfs_failaddr_t
124__xfs_btree_check_sblock(
125 struct xfs_btree_cur *cur,
126 struct xfs_btree_block *block,
127 int level,
128 struct xfs_buf *bp)
129{
130 struct xfs_mount *mp = cur->bc_mp;
131 xfs_btnum_t btnum = cur->bc_btnum;
132 int crc = xfs_sb_version_hascrc(&mp->m_sb);
133
134 if (crc) {
135 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
136 return __this_address;
137 if (block->bb_u.s.bb_blkno !=
138 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
139 return __this_address;
140 }
141
142 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
143 return __this_address;
144 if (be16_to_cpu(block->bb_level) != level)
145 return __this_address;
146 if (be16_to_cpu(block->bb_numrecs) >
147 cur->bc_ops->get_maxrecs(cur, level))
148 return __this_address;
149 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
150 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
151 level + 1))
152 return __this_address;
153 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
154 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
155 level + 1))
156 return __this_address;
157
158 return NULL;
159}
160
161/* Check a short btree block header. */
162STATIC int
163xfs_btree_check_sblock(
164 struct xfs_btree_cur *cur,
165 struct xfs_btree_block *block,
166 int level,
167 struct xfs_buf *bp)
168{
169 struct xfs_mount *mp = cur->bc_mp;
170 xfs_failaddr_t fa;
171
172 fa = __xfs_btree_check_sblock(cur, block, level, bp);
173 if (XFS_IS_CORRUPT(mp, fa != NULL) ||
174 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) {
175 if (bp)
176 trace_xfs_btree_corrupt(bp, _RET_IP_);
177 return -EFSCORRUPTED;
178 }
179 return 0;
180}
181
182/*
183 * Debug routine: check that block header is ok.
184 */
185int
186xfs_btree_check_block(
187 struct xfs_btree_cur *cur, /* btree cursor */
188 struct xfs_btree_block *block, /* generic btree block pointer */
189 int level, /* level of the btree block */
190 struct xfs_buf *bp) /* buffer containing block, if any */
191{
192 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
193 return xfs_btree_check_lblock(cur, block, level, bp);
194 else
195 return xfs_btree_check_sblock(cur, block, level, bp);
196}
197
198/* Check that this long pointer is valid and points within the fs. */
199bool
200xfs_btree_check_lptr(
201 struct xfs_btree_cur *cur,
202 xfs_fsblock_t fsbno,
203 int level)
204{
205 if (level <= 0)
206 return false;
207 return xfs_verify_fsbno(cur->bc_mp, fsbno);
208}
209
210/* Check that this short pointer is valid and points within the AG. */
211bool
212xfs_btree_check_sptr(
213 struct xfs_btree_cur *cur,
214 xfs_agblock_t agbno,
215 int level)
216{
217 if (level <= 0)
218 return false;
219 return xfs_verify_agbno(cur->bc_mp, cur->bc_ag.pag->pag_agno, agbno);
220}
221
222/*
223 * Check that a given (indexed) btree pointer at a certain level of a
224 * btree is valid and doesn't point past where it should.
225 */
226static int
227xfs_btree_check_ptr(
228 struct xfs_btree_cur *cur,
229 union xfs_btree_ptr *ptr,
230 int index,
231 int level)
232{
233 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
234 if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
235 level))
236 return 0;
237 xfs_err(cur->bc_mp,
238"Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
239 cur->bc_ino.ip->i_ino,
240 cur->bc_ino.whichfork, cur->bc_btnum,
241 level, index);
242 } else {
243 if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
244 level))
245 return 0;
246 xfs_err(cur->bc_mp,
247"AG %u: Corrupt btree %d pointer at level %d index %d.",
248 cur->bc_ag.pag->pag_agno, cur->bc_btnum,
249 level, index);
250 }
251
252 return -EFSCORRUPTED;
253}
254
255#ifdef DEBUG
256# define xfs_btree_debug_check_ptr xfs_btree_check_ptr
257#else
258# define xfs_btree_debug_check_ptr(...) (0)
259#endif
260
261/*
262 * Calculate CRC on the whole btree block and stuff it into the
263 * long-form btree header.
264 *
265 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
266 * it into the buffer so recovery knows what the last modification was that made
267 * it to disk.
268 */
269void
270xfs_btree_lblock_calc_crc(
271 struct xfs_buf *bp)
272{
273 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
274 struct xfs_buf_log_item *bip = bp->b_log_item;
275
276 if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
277 return;
278 if (bip)
279 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
280 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
281}
282
283bool
284xfs_btree_lblock_verify_crc(
285 struct xfs_buf *bp)
286{
287 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
288 struct xfs_mount *mp = bp->b_mount;
289
290 if (xfs_sb_version_hascrc(&mp->m_sb)) {
291 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
292 return false;
293 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
294 }
295
296 return true;
297}
298
299/*
300 * Calculate CRC on the whole btree block and stuff it into the
301 * short-form btree header.
302 *
303 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
304 * it into the buffer so recovery knows what the last modification was that made
305 * it to disk.
306 */
307void
308xfs_btree_sblock_calc_crc(
309 struct xfs_buf *bp)
310{
311 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
312 struct xfs_buf_log_item *bip = bp->b_log_item;
313
314 if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
315 return;
316 if (bip)
317 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
318 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
319}
320
321bool
322xfs_btree_sblock_verify_crc(
323 struct xfs_buf *bp)
324{
325 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
326 struct xfs_mount *mp = bp->b_mount;
327
328 if (xfs_sb_version_hascrc(&mp->m_sb)) {
329 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
330 return false;
331 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
332 }
333
334 return true;
335}
336
337static int
338xfs_btree_free_block(
339 struct xfs_btree_cur *cur,
340 struct xfs_buf *bp)
341{
342 int error;
343
344 error = cur->bc_ops->free_block(cur, bp);
345 if (!error) {
346 xfs_trans_binval(cur->bc_tp, bp);
347 XFS_BTREE_STATS_INC(cur, free);
348 }
349 return error;
350}
351
352/*
353 * Delete the btree cursor.
354 */
355void
356xfs_btree_del_cursor(
357 struct xfs_btree_cur *cur, /* btree cursor */
358 int error) /* del because of error */
359{
360 int i; /* btree level */
361
362 /*
363 * Clear the buffer pointers and release the buffers. If we're doing
364 * this because of an error, inspect all of the entries in the bc_bufs
365 * array for buffers to be unlocked. This is because some of the btree
366 * code works from level n down to 0, and if we get an error along the
367 * way we won't have initialized all the entries down to 0.
368 */
369 for (i = 0; i < cur->bc_nlevels; i++) {
370 if (cur->bc_bufs[i])
371 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
372 else if (!error)
373 break;
374 }
375
376 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 ||
377 XFS_FORCED_SHUTDOWN(cur->bc_mp));
378 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING))
379 kmem_free(cur->bc_ops);
380 if (!(cur->bc_flags & XFS_BTREE_LONG_PTRS) && cur->bc_ag.pag)
381 xfs_perag_put(cur->bc_ag.pag);
382 kmem_cache_free(xfs_btree_cur_zone, cur);
383}
384
385/*
386 * Duplicate the btree cursor.
387 * Allocate a new one, copy the record, re-get the buffers.
388 */
389int /* error */
390xfs_btree_dup_cursor(
391 xfs_btree_cur_t *cur, /* input cursor */
392 xfs_btree_cur_t **ncur) /* output cursor */
393{
394 struct xfs_buf *bp; /* btree block's buffer pointer */
395 int error; /* error return value */
396 int i; /* level number of btree block */
397 xfs_mount_t *mp; /* mount structure for filesystem */
398 xfs_btree_cur_t *new; /* new cursor value */
399 xfs_trans_t *tp; /* transaction pointer, can be NULL */
400
401 tp = cur->bc_tp;
402 mp = cur->bc_mp;
403
404 /*
405 * Allocate a new cursor like the old one.
406 */
407 new = cur->bc_ops->dup_cursor(cur);
408
409 /*
410 * Copy the record currently in the cursor.
411 */
412 new->bc_rec = cur->bc_rec;
413
414 /*
415 * For each level current, re-get the buffer and copy the ptr value.
416 */
417 for (i = 0; i < new->bc_nlevels; i++) {
418 new->bc_ptrs[i] = cur->bc_ptrs[i];
419 new->bc_ra[i] = cur->bc_ra[i];
420 bp = cur->bc_bufs[i];
421 if (bp) {
422 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
423 XFS_BUF_ADDR(bp), mp->m_bsize,
424 0, &bp,
425 cur->bc_ops->buf_ops);
426 if (error) {
427 xfs_btree_del_cursor(new, error);
428 *ncur = NULL;
429 return error;
430 }
431 }
432 new->bc_bufs[i] = bp;
433 }
434 *ncur = new;
435 return 0;
436}
437
438/*
439 * XFS btree block layout and addressing:
440 *
441 * There are two types of blocks in the btree: leaf and non-leaf blocks.
442 *
443 * The leaf record start with a header then followed by records containing
444 * the values. A non-leaf block also starts with the same header, and
445 * then first contains lookup keys followed by an equal number of pointers
446 * to the btree blocks at the previous level.
447 *
448 * +--------+-------+-------+-------+-------+-------+-------+
449 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
450 * +--------+-------+-------+-------+-------+-------+-------+
451 *
452 * +--------+-------+-------+-------+-------+-------+-------+
453 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
454 * +--------+-------+-------+-------+-------+-------+-------+
455 *
456 * The header is called struct xfs_btree_block for reasons better left unknown
457 * and comes in different versions for short (32bit) and long (64bit) block
458 * pointers. The record and key structures are defined by the btree instances
459 * and opaque to the btree core. The block pointers are simple disk endian
460 * integers, available in a short (32bit) and long (64bit) variant.
461 *
462 * The helpers below calculate the offset of a given record, key or pointer
463 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
464 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
465 * inside the btree block is done using indices starting at one, not zero!
466 *
467 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
468 * overlapping intervals. In such a tree, records are still sorted lowest to
469 * highest and indexed by the smallest key value that refers to the record.
470 * However, nodes are different: each pointer has two associated keys -- one
471 * indexing the lowest key available in the block(s) below (the same behavior
472 * as the key in a regular btree) and another indexing the highest key
473 * available in the block(s) below. Because records are /not/ sorted by the
474 * highest key, all leaf block updates require us to compute the highest key
475 * that matches any record in the leaf and to recursively update the high keys
476 * in the nodes going further up in the tree, if necessary. Nodes look like
477 * this:
478 *
479 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
480 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
481 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
482 *
483 * To perform an interval query on an overlapped tree, perform the usual
484 * depth-first search and use the low and high keys to decide if we can skip
485 * that particular node. If a leaf node is reached, return the records that
486 * intersect the interval. Note that an interval query may return numerous
487 * entries. For a non-overlapped tree, simply search for the record associated
488 * with the lowest key and iterate forward until a non-matching record is
489 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
490 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
491 * more detail.
492 *
493 * Why do we care about overlapping intervals? Let's say you have a bunch of
494 * reverse mapping records on a reflink filesystem:
495 *
496 * 1: +- file A startblock B offset C length D -----------+
497 * 2: +- file E startblock F offset G length H --------------+
498 * 3: +- file I startblock F offset J length K --+
499 * 4: +- file L... --+
500 *
501 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
502 * we'd simply increment the length of record 1. But how do we find the record
503 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
504 * record 3 because the keys are ordered first by startblock. An interval
505 * query would return records 1 and 2 because they both overlap (B+D-1), and
506 * from that we can pick out record 1 as the appropriate left neighbor.
507 *
508 * In the non-overlapped case you can do a LE lookup and decrement the cursor
509 * because a record's interval must end before the next record.
510 */
511
512/*
513 * Return size of the btree block header for this btree instance.
514 */
515static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
516{
517 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
518 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
519 return XFS_BTREE_LBLOCK_CRC_LEN;
520 return XFS_BTREE_LBLOCK_LEN;
521 }
522 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
523 return XFS_BTREE_SBLOCK_CRC_LEN;
524 return XFS_BTREE_SBLOCK_LEN;
525}
526
527/*
528 * Return size of btree block pointers for this btree instance.
529 */
530static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
531{
532 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
533 sizeof(__be64) : sizeof(__be32);
534}
535
536/*
537 * Calculate offset of the n-th record in a btree block.
538 */
539STATIC size_t
540xfs_btree_rec_offset(
541 struct xfs_btree_cur *cur,
542 int n)
543{
544 return xfs_btree_block_len(cur) +
545 (n - 1) * cur->bc_ops->rec_len;
546}
547
548/*
549 * Calculate offset of the n-th key in a btree block.
550 */
551STATIC size_t
552xfs_btree_key_offset(
553 struct xfs_btree_cur *cur,
554 int n)
555{
556 return xfs_btree_block_len(cur) +
557 (n - 1) * cur->bc_ops->key_len;
558}
559
560/*
561 * Calculate offset of the n-th high key in a btree block.
562 */
563STATIC size_t
564xfs_btree_high_key_offset(
565 struct xfs_btree_cur *cur,
566 int n)
567{
568 return xfs_btree_block_len(cur) +
569 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
570}
571
572/*
573 * Calculate offset of the n-th block pointer in a btree block.
574 */
575STATIC size_t
576xfs_btree_ptr_offset(
577 struct xfs_btree_cur *cur,
578 int n,
579 int level)
580{
581 return xfs_btree_block_len(cur) +
582 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
583 (n - 1) * xfs_btree_ptr_len(cur);
584}
585
586/*
587 * Return a pointer to the n-th record in the btree block.
588 */
589union xfs_btree_rec *
590xfs_btree_rec_addr(
591 struct xfs_btree_cur *cur,
592 int n,
593 struct xfs_btree_block *block)
594{
595 return (union xfs_btree_rec *)
596 ((char *)block + xfs_btree_rec_offset(cur, n));
597}
598
599/*
600 * Return a pointer to the n-th key in the btree block.
601 */
602union xfs_btree_key *
603xfs_btree_key_addr(
604 struct xfs_btree_cur *cur,
605 int n,
606 struct xfs_btree_block *block)
607{
608 return (union xfs_btree_key *)
609 ((char *)block + xfs_btree_key_offset(cur, n));
610}
611
612/*
613 * Return a pointer to the n-th high key in the btree block.
614 */
615union xfs_btree_key *
616xfs_btree_high_key_addr(
617 struct xfs_btree_cur *cur,
618 int n,
619 struct xfs_btree_block *block)
620{
621 return (union xfs_btree_key *)
622 ((char *)block + xfs_btree_high_key_offset(cur, n));
623}
624
625/*
626 * Return a pointer to the n-th block pointer in the btree block.
627 */
628union xfs_btree_ptr *
629xfs_btree_ptr_addr(
630 struct xfs_btree_cur *cur,
631 int n,
632 struct xfs_btree_block *block)
633{
634 int level = xfs_btree_get_level(block);
635
636 ASSERT(block->bb_level != 0);
637
638 return (union xfs_btree_ptr *)
639 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
640}
641
642struct xfs_ifork *
643xfs_btree_ifork_ptr(
644 struct xfs_btree_cur *cur)
645{
646 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
647
648 if (cur->bc_flags & XFS_BTREE_STAGING)
649 return cur->bc_ino.ifake->if_fork;
650 return XFS_IFORK_PTR(cur->bc_ino.ip, cur->bc_ino.whichfork);
651}
652
653/*
654 * Get the root block which is stored in the inode.
655 *
656 * For now this btree implementation assumes the btree root is always
657 * stored in the if_broot field of an inode fork.
658 */
659STATIC struct xfs_btree_block *
660xfs_btree_get_iroot(
661 struct xfs_btree_cur *cur)
662{
663 struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
664
665 return (struct xfs_btree_block *)ifp->if_broot;
666}
667
668/*
669 * Retrieve the block pointer from the cursor at the given level.
670 * This may be an inode btree root or from a buffer.
671 */
672struct xfs_btree_block * /* generic btree block pointer */
673xfs_btree_get_block(
674 struct xfs_btree_cur *cur, /* btree cursor */
675 int level, /* level in btree */
676 struct xfs_buf **bpp) /* buffer containing the block */
677{
678 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
679 (level == cur->bc_nlevels - 1)) {
680 *bpp = NULL;
681 return xfs_btree_get_iroot(cur);
682 }
683
684 *bpp = cur->bc_bufs[level];
685 return XFS_BUF_TO_BLOCK(*bpp);
686}
687
688/*
689 * Change the cursor to point to the first record at the given level.
690 * Other levels are unaffected.
691 */
692STATIC int /* success=1, failure=0 */
693xfs_btree_firstrec(
694 xfs_btree_cur_t *cur, /* btree cursor */
695 int level) /* level to change */
696{
697 struct xfs_btree_block *block; /* generic btree block pointer */
698 struct xfs_buf *bp; /* buffer containing block */
699
700 /*
701 * Get the block pointer for this level.
702 */
703 block = xfs_btree_get_block(cur, level, &bp);
704 if (xfs_btree_check_block(cur, block, level, bp))
705 return 0;
706 /*
707 * It's empty, there is no such record.
708 */
709 if (!block->bb_numrecs)
710 return 0;
711 /*
712 * Set the ptr value to 1, that's the first record/key.
713 */
714 cur->bc_ptrs[level] = 1;
715 return 1;
716}
717
718/*
719 * Change the cursor to point to the last record in the current block
720 * at the given level. Other levels are unaffected.
721 */
722STATIC int /* success=1, failure=0 */
723xfs_btree_lastrec(
724 xfs_btree_cur_t *cur, /* btree cursor */
725 int level) /* level to change */
726{
727 struct xfs_btree_block *block; /* generic btree block pointer */
728 struct xfs_buf *bp; /* buffer containing block */
729
730 /*
731 * Get the block pointer for this level.
732 */
733 block = xfs_btree_get_block(cur, level, &bp);
734 if (xfs_btree_check_block(cur, block, level, bp))
735 return 0;
736 /*
737 * It's empty, there is no such record.
738 */
739 if (!block->bb_numrecs)
740 return 0;
741 /*
742 * Set the ptr value to numrecs, that's the last record/key.
743 */
744 cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
745 return 1;
746}
747
748/*
749 * Compute first and last byte offsets for the fields given.
750 * Interprets the offsets table, which contains struct field offsets.
751 */
752void
753xfs_btree_offsets(
754 int64_t fields, /* bitmask of fields */
755 const short *offsets, /* table of field offsets */
756 int nbits, /* number of bits to inspect */
757 int *first, /* output: first byte offset */
758 int *last) /* output: last byte offset */
759{
760 int i; /* current bit number */
761 int64_t imask; /* mask for current bit number */
762
763 ASSERT(fields != 0);
764 /*
765 * Find the lowest bit, so the first byte offset.
766 */
767 for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
768 if (imask & fields) {
769 *first = offsets[i];
770 break;
771 }
772 }
773 /*
774 * Find the highest bit, so the last byte offset.
775 */
776 for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
777 if (imask & fields) {
778 *last = offsets[i + 1] - 1;
779 break;
780 }
781 }
782}
783
784/*
785 * Get a buffer for the block, return it read in.
786 * Long-form addressing.
787 */
788int
789xfs_btree_read_bufl(
790 struct xfs_mount *mp, /* file system mount point */
791 struct xfs_trans *tp, /* transaction pointer */
792 xfs_fsblock_t fsbno, /* file system block number */
793 struct xfs_buf **bpp, /* buffer for fsbno */
794 int refval, /* ref count value for buffer */
795 const struct xfs_buf_ops *ops)
796{
797 struct xfs_buf *bp; /* return value */
798 xfs_daddr_t d; /* real disk block address */
799 int error;
800
801 if (!xfs_verify_fsbno(mp, fsbno))
802 return -EFSCORRUPTED;
803 d = XFS_FSB_TO_DADDR(mp, fsbno);
804 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
805 mp->m_bsize, 0, &bp, ops);
806 if (error)
807 return error;
808 if (bp)
809 xfs_buf_set_ref(bp, refval);
810 *bpp = bp;
811 return 0;
812}
813
814/*
815 * Read-ahead the block, don't wait for it, don't return a buffer.
816 * Long-form addressing.
817 */
818/* ARGSUSED */
819void
820xfs_btree_reada_bufl(
821 struct xfs_mount *mp, /* file system mount point */
822 xfs_fsblock_t fsbno, /* file system block number */
823 xfs_extlen_t count, /* count of filesystem blocks */
824 const struct xfs_buf_ops *ops)
825{
826 xfs_daddr_t d;
827
828 ASSERT(fsbno != NULLFSBLOCK);
829 d = XFS_FSB_TO_DADDR(mp, fsbno);
830 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
831}
832
833/*
834 * Read-ahead the block, don't wait for it, don't return a buffer.
835 * Short-form addressing.
836 */
837/* ARGSUSED */
838void
839xfs_btree_reada_bufs(
840 struct xfs_mount *mp, /* file system mount point */
841 xfs_agnumber_t agno, /* allocation group number */
842 xfs_agblock_t agbno, /* allocation group block number */
843 xfs_extlen_t count, /* count of filesystem blocks */
844 const struct xfs_buf_ops *ops)
845{
846 xfs_daddr_t d;
847
848 ASSERT(agno != NULLAGNUMBER);
849 ASSERT(agbno != NULLAGBLOCK);
850 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
851 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
852}
853
854STATIC int
855xfs_btree_readahead_lblock(
856 struct xfs_btree_cur *cur,
857 int lr,
858 struct xfs_btree_block *block)
859{
860 int rval = 0;
861 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
862 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
863
864 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
865 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
866 cur->bc_ops->buf_ops);
867 rval++;
868 }
869
870 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
871 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
872 cur->bc_ops->buf_ops);
873 rval++;
874 }
875
876 return rval;
877}
878
879STATIC int
880xfs_btree_readahead_sblock(
881 struct xfs_btree_cur *cur,
882 int lr,
883 struct xfs_btree_block *block)
884{
885 int rval = 0;
886 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
887 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
888
889
890 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
891 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
892 left, 1, cur->bc_ops->buf_ops);
893 rval++;
894 }
895
896 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
897 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
898 right, 1, cur->bc_ops->buf_ops);
899 rval++;
900 }
901
902 return rval;
903}
904
905/*
906 * Read-ahead btree blocks, at the given level.
907 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
908 */
909STATIC int
910xfs_btree_readahead(
911 struct xfs_btree_cur *cur, /* btree cursor */
912 int lev, /* level in btree */
913 int lr) /* left/right bits */
914{
915 struct xfs_btree_block *block;
916
917 /*
918 * No readahead needed if we are at the root level and the
919 * btree root is stored in the inode.
920 */
921 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
922 (lev == cur->bc_nlevels - 1))
923 return 0;
924
925 if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
926 return 0;
927
928 cur->bc_ra[lev] |= lr;
929 block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
930
931 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
932 return xfs_btree_readahead_lblock(cur, lr, block);
933 return xfs_btree_readahead_sblock(cur, lr, block);
934}
935
936STATIC int
937xfs_btree_ptr_to_daddr(
938 struct xfs_btree_cur *cur,
939 union xfs_btree_ptr *ptr,
940 xfs_daddr_t *daddr)
941{
942 xfs_fsblock_t fsbno;
943 xfs_agblock_t agbno;
944 int error;
945
946 error = xfs_btree_check_ptr(cur, ptr, 0, 1);
947 if (error)
948 return error;
949
950 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
951 fsbno = be64_to_cpu(ptr->l);
952 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
953 } else {
954 agbno = be32_to_cpu(ptr->s);
955 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno,
956 agbno);
957 }
958
959 return 0;
960}
961
962/*
963 * Readahead @count btree blocks at the given @ptr location.
964 *
965 * We don't need to care about long or short form btrees here as we have a
966 * method of converting the ptr directly to a daddr available to us.
967 */
968STATIC void
969xfs_btree_readahead_ptr(
970 struct xfs_btree_cur *cur,
971 union xfs_btree_ptr *ptr,
972 xfs_extlen_t count)
973{
974 xfs_daddr_t daddr;
975
976 if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
977 return;
978 xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
979 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
980}
981
982/*
983 * Set the buffer for level "lev" in the cursor to bp, releasing
984 * any previous buffer.
985 */
986STATIC void
987xfs_btree_setbuf(
988 xfs_btree_cur_t *cur, /* btree cursor */
989 int lev, /* level in btree */
990 struct xfs_buf *bp) /* new buffer to set */
991{
992 struct xfs_btree_block *b; /* btree block */
993
994 if (cur->bc_bufs[lev])
995 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
996 cur->bc_bufs[lev] = bp;
997 cur->bc_ra[lev] = 0;
998
999 b = XFS_BUF_TO_BLOCK(bp);
1000 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1001 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1002 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1003 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1004 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1005 } else {
1006 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1007 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1008 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1009 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1010 }
1011}
1012
1013bool
1014xfs_btree_ptr_is_null(
1015 struct xfs_btree_cur *cur,
1016 union xfs_btree_ptr *ptr)
1017{
1018 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1019 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1020 else
1021 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1022}
1023
1024void
1025xfs_btree_set_ptr_null(
1026 struct xfs_btree_cur *cur,
1027 union xfs_btree_ptr *ptr)
1028{
1029 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1030 ptr->l = cpu_to_be64(NULLFSBLOCK);
1031 else
1032 ptr->s = cpu_to_be32(NULLAGBLOCK);
1033}
1034
1035/*
1036 * Get/set/init sibling pointers
1037 */
1038void
1039xfs_btree_get_sibling(
1040 struct xfs_btree_cur *cur,
1041 struct xfs_btree_block *block,
1042 union xfs_btree_ptr *ptr,
1043 int lr)
1044{
1045 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1046
1047 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1048 if (lr == XFS_BB_RIGHTSIB)
1049 ptr->l = block->bb_u.l.bb_rightsib;
1050 else
1051 ptr->l = block->bb_u.l.bb_leftsib;
1052 } else {
1053 if (lr == XFS_BB_RIGHTSIB)
1054 ptr->s = block->bb_u.s.bb_rightsib;
1055 else
1056 ptr->s = block->bb_u.s.bb_leftsib;
1057 }
1058}
1059
1060void
1061xfs_btree_set_sibling(
1062 struct xfs_btree_cur *cur,
1063 struct xfs_btree_block *block,
1064 union xfs_btree_ptr *ptr,
1065 int lr)
1066{
1067 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1068
1069 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1070 if (lr == XFS_BB_RIGHTSIB)
1071 block->bb_u.l.bb_rightsib = ptr->l;
1072 else
1073 block->bb_u.l.bb_leftsib = ptr->l;
1074 } else {
1075 if (lr == XFS_BB_RIGHTSIB)
1076 block->bb_u.s.bb_rightsib = ptr->s;
1077 else
1078 block->bb_u.s.bb_leftsib = ptr->s;
1079 }
1080}
1081
1082void
1083xfs_btree_init_block_int(
1084 struct xfs_mount *mp,
1085 struct xfs_btree_block *buf,
1086 xfs_daddr_t blkno,
1087 xfs_btnum_t btnum,
1088 __u16 level,
1089 __u16 numrecs,
1090 __u64 owner,
1091 unsigned int flags)
1092{
1093 int crc = xfs_sb_version_hascrc(&mp->m_sb);
1094 __u32 magic = xfs_btree_magic(crc, btnum);
1095
1096 buf->bb_magic = cpu_to_be32(magic);
1097 buf->bb_level = cpu_to_be16(level);
1098 buf->bb_numrecs = cpu_to_be16(numrecs);
1099
1100 if (flags & XFS_BTREE_LONG_PTRS) {
1101 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1102 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1103 if (crc) {
1104 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1105 buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1106 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1107 buf->bb_u.l.bb_pad = 0;
1108 buf->bb_u.l.bb_lsn = 0;
1109 }
1110 } else {
1111 /* owner is a 32 bit value on short blocks */
1112 __u32 __owner = (__u32)owner;
1113
1114 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1115 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1116 if (crc) {
1117 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1118 buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1119 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1120 buf->bb_u.s.bb_lsn = 0;
1121 }
1122 }
1123}
1124
1125void
1126xfs_btree_init_block(
1127 struct xfs_mount *mp,
1128 struct xfs_buf *bp,
1129 xfs_btnum_t btnum,
1130 __u16 level,
1131 __u16 numrecs,
1132 __u64 owner)
1133{
1134 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1135 btnum, level, numrecs, owner, 0);
1136}
1137
1138void
1139xfs_btree_init_block_cur(
1140 struct xfs_btree_cur *cur,
1141 struct xfs_buf *bp,
1142 int level,
1143 int numrecs)
1144{
1145 __u64 owner;
1146
1147 /*
1148 * we can pull the owner from the cursor right now as the different
1149 * owners align directly with the pointer size of the btree. This may
1150 * change in future, but is safe for current users of the generic btree
1151 * code.
1152 */
1153 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1154 owner = cur->bc_ino.ip->i_ino;
1155 else
1156 owner = cur->bc_ag.pag->pag_agno;
1157
1158 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1159 cur->bc_btnum, level, numrecs,
1160 owner, cur->bc_flags);
1161}
1162
1163/*
1164 * Return true if ptr is the last record in the btree and
1165 * we need to track updates to this record. The decision
1166 * will be further refined in the update_lastrec method.
1167 */
1168STATIC int
1169xfs_btree_is_lastrec(
1170 struct xfs_btree_cur *cur,
1171 struct xfs_btree_block *block,
1172 int level)
1173{
1174 union xfs_btree_ptr ptr;
1175
1176 if (level > 0)
1177 return 0;
1178 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1179 return 0;
1180
1181 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1182 if (!xfs_btree_ptr_is_null(cur, &ptr))
1183 return 0;
1184 return 1;
1185}
1186
1187STATIC void
1188xfs_btree_buf_to_ptr(
1189 struct xfs_btree_cur *cur,
1190 struct xfs_buf *bp,
1191 union xfs_btree_ptr *ptr)
1192{
1193 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1194 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1195 XFS_BUF_ADDR(bp)));
1196 else {
1197 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1198 XFS_BUF_ADDR(bp)));
1199 }
1200}
1201
1202STATIC void
1203xfs_btree_set_refs(
1204 struct xfs_btree_cur *cur,
1205 struct xfs_buf *bp)
1206{
1207 switch (cur->bc_btnum) {
1208 case XFS_BTNUM_BNO:
1209 case XFS_BTNUM_CNT:
1210 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1211 break;
1212 case XFS_BTNUM_INO:
1213 case XFS_BTNUM_FINO:
1214 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1215 break;
1216 case XFS_BTNUM_BMAP:
1217 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1218 break;
1219 case XFS_BTNUM_RMAP:
1220 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1221 break;
1222 case XFS_BTNUM_REFC:
1223 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1224 break;
1225 default:
1226 ASSERT(0);
1227 }
1228}
1229
1230int
1231xfs_btree_get_buf_block(
1232 struct xfs_btree_cur *cur,
1233 union xfs_btree_ptr *ptr,
1234 struct xfs_btree_block **block,
1235 struct xfs_buf **bpp)
1236{
1237 struct xfs_mount *mp = cur->bc_mp;
1238 xfs_daddr_t d;
1239 int error;
1240
1241 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1242 if (error)
1243 return error;
1244 error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize,
1245 0, bpp);
1246 if (error)
1247 return error;
1248
1249 (*bpp)->b_ops = cur->bc_ops->buf_ops;
1250 *block = XFS_BUF_TO_BLOCK(*bpp);
1251 return 0;
1252}
1253
1254/*
1255 * Read in the buffer at the given ptr and return the buffer and
1256 * the block pointer within the buffer.
1257 */
1258STATIC int
1259xfs_btree_read_buf_block(
1260 struct xfs_btree_cur *cur,
1261 union xfs_btree_ptr *ptr,
1262 int flags,
1263 struct xfs_btree_block **block,
1264 struct xfs_buf **bpp)
1265{
1266 struct xfs_mount *mp = cur->bc_mp;
1267 xfs_daddr_t d;
1268 int error;
1269
1270 /* need to sort out how callers deal with failures first */
1271 ASSERT(!(flags & XBF_TRYLOCK));
1272
1273 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1274 if (error)
1275 return error;
1276 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1277 mp->m_bsize, flags, bpp,
1278 cur->bc_ops->buf_ops);
1279 if (error)
1280 return error;
1281
1282 xfs_btree_set_refs(cur, *bpp);
1283 *block = XFS_BUF_TO_BLOCK(*bpp);
1284 return 0;
1285}
1286
1287/*
1288 * Copy keys from one btree block to another.
1289 */
1290void
1291xfs_btree_copy_keys(
1292 struct xfs_btree_cur *cur,
1293 union xfs_btree_key *dst_key,
1294 union xfs_btree_key *src_key,
1295 int numkeys)
1296{
1297 ASSERT(numkeys >= 0);
1298 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1299}
1300
1301/*
1302 * Copy records from one btree block to another.
1303 */
1304STATIC void
1305xfs_btree_copy_recs(
1306 struct xfs_btree_cur *cur,
1307 union xfs_btree_rec *dst_rec,
1308 union xfs_btree_rec *src_rec,
1309 int numrecs)
1310{
1311 ASSERT(numrecs >= 0);
1312 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1313}
1314
1315/*
1316 * Copy block pointers from one btree block to another.
1317 */
1318void
1319xfs_btree_copy_ptrs(
1320 struct xfs_btree_cur *cur,
1321 union xfs_btree_ptr *dst_ptr,
1322 const union xfs_btree_ptr *src_ptr,
1323 int numptrs)
1324{
1325 ASSERT(numptrs >= 0);
1326 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1327}
1328
1329/*
1330 * Shift keys one index left/right inside a single btree block.
1331 */
1332STATIC void
1333xfs_btree_shift_keys(
1334 struct xfs_btree_cur *cur,
1335 union xfs_btree_key *key,
1336 int dir,
1337 int numkeys)
1338{
1339 char *dst_key;
1340
1341 ASSERT(numkeys >= 0);
1342 ASSERT(dir == 1 || dir == -1);
1343
1344 dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1345 memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1346}
1347
1348/*
1349 * Shift records one index left/right inside a single btree block.
1350 */
1351STATIC void
1352xfs_btree_shift_recs(
1353 struct xfs_btree_cur *cur,
1354 union xfs_btree_rec *rec,
1355 int dir,
1356 int numrecs)
1357{
1358 char *dst_rec;
1359
1360 ASSERT(numrecs >= 0);
1361 ASSERT(dir == 1 || dir == -1);
1362
1363 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1364 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1365}
1366
1367/*
1368 * Shift block pointers one index left/right inside a single btree block.
1369 */
1370STATIC void
1371xfs_btree_shift_ptrs(
1372 struct xfs_btree_cur *cur,
1373 union xfs_btree_ptr *ptr,
1374 int dir,
1375 int numptrs)
1376{
1377 char *dst_ptr;
1378
1379 ASSERT(numptrs >= 0);
1380 ASSERT(dir == 1 || dir == -1);
1381
1382 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1383 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1384}
1385
1386/*
1387 * Log key values from the btree block.
1388 */
1389STATIC void
1390xfs_btree_log_keys(
1391 struct xfs_btree_cur *cur,
1392 struct xfs_buf *bp,
1393 int first,
1394 int last)
1395{
1396
1397 if (bp) {
1398 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1399 xfs_trans_log_buf(cur->bc_tp, bp,
1400 xfs_btree_key_offset(cur, first),
1401 xfs_btree_key_offset(cur, last + 1) - 1);
1402 } else {
1403 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1404 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1405 }
1406}
1407
1408/*
1409 * Log record values from the btree block.
1410 */
1411void
1412xfs_btree_log_recs(
1413 struct xfs_btree_cur *cur,
1414 struct xfs_buf *bp,
1415 int first,
1416 int last)
1417{
1418
1419 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1420 xfs_trans_log_buf(cur->bc_tp, bp,
1421 xfs_btree_rec_offset(cur, first),
1422 xfs_btree_rec_offset(cur, last + 1) - 1);
1423
1424}
1425
1426/*
1427 * Log block pointer fields from a btree block (nonleaf).
1428 */
1429STATIC void
1430xfs_btree_log_ptrs(
1431 struct xfs_btree_cur *cur, /* btree cursor */
1432 struct xfs_buf *bp, /* buffer containing btree block */
1433 int first, /* index of first pointer to log */
1434 int last) /* index of last pointer to log */
1435{
1436
1437 if (bp) {
1438 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
1439 int level = xfs_btree_get_level(block);
1440
1441 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1442 xfs_trans_log_buf(cur->bc_tp, bp,
1443 xfs_btree_ptr_offset(cur, first, level),
1444 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1445 } else {
1446 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1447 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1448 }
1449
1450}
1451
1452/*
1453 * Log fields from a btree block header.
1454 */
1455void
1456xfs_btree_log_block(
1457 struct xfs_btree_cur *cur, /* btree cursor */
1458 struct xfs_buf *bp, /* buffer containing btree block */
1459 int fields) /* mask of fields: XFS_BB_... */
1460{
1461 int first; /* first byte offset logged */
1462 int last; /* last byte offset logged */
1463 static const short soffsets[] = { /* table of offsets (short) */
1464 offsetof(struct xfs_btree_block, bb_magic),
1465 offsetof(struct xfs_btree_block, bb_level),
1466 offsetof(struct xfs_btree_block, bb_numrecs),
1467 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1468 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1469 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1470 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1471 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1472 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1473 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1474 XFS_BTREE_SBLOCK_CRC_LEN
1475 };
1476 static const short loffsets[] = { /* table of offsets (long) */
1477 offsetof(struct xfs_btree_block, bb_magic),
1478 offsetof(struct xfs_btree_block, bb_level),
1479 offsetof(struct xfs_btree_block, bb_numrecs),
1480 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1481 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1482 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1483 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1484 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1485 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1486 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1487 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1488 XFS_BTREE_LBLOCK_CRC_LEN
1489 };
1490
1491 if (bp) {
1492 int nbits;
1493
1494 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1495 /*
1496 * We don't log the CRC when updating a btree
1497 * block but instead recreate it during log
1498 * recovery. As the log buffers have checksums
1499 * of their own this is safe and avoids logging a crc
1500 * update in a lot of places.
1501 */
1502 if (fields == XFS_BB_ALL_BITS)
1503 fields = XFS_BB_ALL_BITS_CRC;
1504 nbits = XFS_BB_NUM_BITS_CRC;
1505 } else {
1506 nbits = XFS_BB_NUM_BITS;
1507 }
1508 xfs_btree_offsets(fields,
1509 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1510 loffsets : soffsets,
1511 nbits, &first, &last);
1512 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1513 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1514 } else {
1515 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1516 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1517 }
1518}
1519
1520/*
1521 * Increment cursor by one record at the level.
1522 * For nonzero levels the leaf-ward information is untouched.
1523 */
1524int /* error */
1525xfs_btree_increment(
1526 struct xfs_btree_cur *cur,
1527 int level,
1528 int *stat) /* success/failure */
1529{
1530 struct xfs_btree_block *block;
1531 union xfs_btree_ptr ptr;
1532 struct xfs_buf *bp;
1533 int error; /* error return value */
1534 int lev;
1535
1536 ASSERT(level < cur->bc_nlevels);
1537
1538 /* Read-ahead to the right at this level. */
1539 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1540
1541 /* Get a pointer to the btree block. */
1542 block = xfs_btree_get_block(cur, level, &bp);
1543
1544#ifdef DEBUG
1545 error = xfs_btree_check_block(cur, block, level, bp);
1546 if (error)
1547 goto error0;
1548#endif
1549
1550 /* We're done if we remain in the block after the increment. */
1551 if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1552 goto out1;
1553
1554 /* Fail if we just went off the right edge of the tree. */
1555 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1556 if (xfs_btree_ptr_is_null(cur, &ptr))
1557 goto out0;
1558
1559 XFS_BTREE_STATS_INC(cur, increment);
1560
1561 /*
1562 * March up the tree incrementing pointers.
1563 * Stop when we don't go off the right edge of a block.
1564 */
1565 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1566 block = xfs_btree_get_block(cur, lev, &bp);
1567
1568#ifdef DEBUG
1569 error = xfs_btree_check_block(cur, block, lev, bp);
1570 if (error)
1571 goto error0;
1572#endif
1573
1574 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1575 break;
1576
1577 /* Read-ahead the right block for the next loop. */
1578 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1579 }
1580
1581 /*
1582 * If we went off the root then we are either seriously
1583 * confused or have the tree root in an inode.
1584 */
1585 if (lev == cur->bc_nlevels) {
1586 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1587 goto out0;
1588 ASSERT(0);
1589 error = -EFSCORRUPTED;
1590 goto error0;
1591 }
1592 ASSERT(lev < cur->bc_nlevels);
1593
1594 /*
1595 * Now walk back down the tree, fixing up the cursor's buffer
1596 * pointers and key numbers.
1597 */
1598 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1599 union xfs_btree_ptr *ptrp;
1600
1601 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1602 --lev;
1603 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1604 if (error)
1605 goto error0;
1606
1607 xfs_btree_setbuf(cur, lev, bp);
1608 cur->bc_ptrs[lev] = 1;
1609 }
1610out1:
1611 *stat = 1;
1612 return 0;
1613
1614out0:
1615 *stat = 0;
1616 return 0;
1617
1618error0:
1619 return error;
1620}
1621
1622/*
1623 * Decrement cursor by one record at the level.
1624 * For nonzero levels the leaf-ward information is untouched.
1625 */
1626int /* error */
1627xfs_btree_decrement(
1628 struct xfs_btree_cur *cur,
1629 int level,
1630 int *stat) /* success/failure */
1631{
1632 struct xfs_btree_block *block;
1633 struct xfs_buf *bp;
1634 int error; /* error return value */
1635 int lev;
1636 union xfs_btree_ptr ptr;
1637
1638 ASSERT(level < cur->bc_nlevels);
1639
1640 /* Read-ahead to the left at this level. */
1641 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1642
1643 /* We're done if we remain in the block after the decrement. */
1644 if (--cur->bc_ptrs[level] > 0)
1645 goto out1;
1646
1647 /* Get a pointer to the btree block. */
1648 block = xfs_btree_get_block(cur, level, &bp);
1649
1650#ifdef DEBUG
1651 error = xfs_btree_check_block(cur, block, level, bp);
1652 if (error)
1653 goto error0;
1654#endif
1655
1656 /* Fail if we just went off the left edge of the tree. */
1657 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1658 if (xfs_btree_ptr_is_null(cur, &ptr))
1659 goto out0;
1660
1661 XFS_BTREE_STATS_INC(cur, decrement);
1662
1663 /*
1664 * March up the tree decrementing pointers.
1665 * Stop when we don't go off the left edge of a block.
1666 */
1667 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1668 if (--cur->bc_ptrs[lev] > 0)
1669 break;
1670 /* Read-ahead the left block for the next loop. */
1671 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1672 }
1673
1674 /*
1675 * If we went off the root then we are seriously confused.
1676 * or the root of the tree is in an inode.
1677 */
1678 if (lev == cur->bc_nlevels) {
1679 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1680 goto out0;
1681 ASSERT(0);
1682 error = -EFSCORRUPTED;
1683 goto error0;
1684 }
1685 ASSERT(lev < cur->bc_nlevels);
1686
1687 /*
1688 * Now walk back down the tree, fixing up the cursor's buffer
1689 * pointers and key numbers.
1690 */
1691 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1692 union xfs_btree_ptr *ptrp;
1693
1694 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1695 --lev;
1696 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1697 if (error)
1698 goto error0;
1699 xfs_btree_setbuf(cur, lev, bp);
1700 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1701 }
1702out1:
1703 *stat = 1;
1704 return 0;
1705
1706out0:
1707 *stat = 0;
1708 return 0;
1709
1710error0:
1711 return error;
1712}
1713
1714int
1715xfs_btree_lookup_get_block(
1716 struct xfs_btree_cur *cur, /* btree cursor */
1717 int level, /* level in the btree */
1718 union xfs_btree_ptr *pp, /* ptr to btree block */
1719 struct xfs_btree_block **blkp) /* return btree block */
1720{
1721 struct xfs_buf *bp; /* buffer pointer for btree block */
1722 xfs_daddr_t daddr;
1723 int error = 0;
1724
1725 /* special case the root block if in an inode */
1726 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1727 (level == cur->bc_nlevels - 1)) {
1728 *blkp = xfs_btree_get_iroot(cur);
1729 return 0;
1730 }
1731
1732 /*
1733 * If the old buffer at this level for the disk address we are
1734 * looking for re-use it.
1735 *
1736 * Otherwise throw it away and get a new one.
1737 */
1738 bp = cur->bc_bufs[level];
1739 error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1740 if (error)
1741 return error;
1742 if (bp && XFS_BUF_ADDR(bp) == daddr) {
1743 *blkp = XFS_BUF_TO_BLOCK(bp);
1744 return 0;
1745 }
1746
1747 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1748 if (error)
1749 return error;
1750
1751 /* Check the inode owner since the verifiers don't. */
1752 if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1753 !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) &&
1754 (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1755 be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1756 cur->bc_ino.ip->i_ino)
1757 goto out_bad;
1758
1759 /* Did we get the level we were looking for? */
1760 if (be16_to_cpu((*blkp)->bb_level) != level)
1761 goto out_bad;
1762
1763 /* Check that internal nodes have at least one record. */
1764 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1765 goto out_bad;
1766
1767 xfs_btree_setbuf(cur, level, bp);
1768 return 0;
1769
1770out_bad:
1771 *blkp = NULL;
1772 xfs_buf_mark_corrupt(bp);
1773 xfs_trans_brelse(cur->bc_tp, bp);
1774 return -EFSCORRUPTED;
1775}
1776
1777/*
1778 * Get current search key. For level 0 we don't actually have a key
1779 * structure so we make one up from the record. For all other levels
1780 * we just return the right key.
1781 */
1782STATIC union xfs_btree_key *
1783xfs_lookup_get_search_key(
1784 struct xfs_btree_cur *cur,
1785 int level,
1786 int keyno,
1787 struct xfs_btree_block *block,
1788 union xfs_btree_key *kp)
1789{
1790 if (level == 0) {
1791 cur->bc_ops->init_key_from_rec(kp,
1792 xfs_btree_rec_addr(cur, keyno, block));
1793 return kp;
1794 }
1795
1796 return xfs_btree_key_addr(cur, keyno, block);
1797}
1798
1799/*
1800 * Lookup the record. The cursor is made to point to it, based on dir.
1801 * stat is set to 0 if can't find any such record, 1 for success.
1802 */
1803int /* error */
1804xfs_btree_lookup(
1805 struct xfs_btree_cur *cur, /* btree cursor */
1806 xfs_lookup_t dir, /* <=, ==, or >= */
1807 int *stat) /* success/failure */
1808{
1809 struct xfs_btree_block *block; /* current btree block */
1810 int64_t diff; /* difference for the current key */
1811 int error; /* error return value */
1812 int keyno; /* current key number */
1813 int level; /* level in the btree */
1814 union xfs_btree_ptr *pp; /* ptr to btree block */
1815 union xfs_btree_ptr ptr; /* ptr to btree block */
1816
1817 XFS_BTREE_STATS_INC(cur, lookup);
1818
1819 /* No such thing as a zero-level tree. */
1820 if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0))
1821 return -EFSCORRUPTED;
1822
1823 block = NULL;
1824 keyno = 0;
1825
1826 /* initialise start pointer from cursor */
1827 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1828 pp = &ptr;
1829
1830 /*
1831 * Iterate over each level in the btree, starting at the root.
1832 * For each level above the leaves, find the key we need, based
1833 * on the lookup record, then follow the corresponding block
1834 * pointer down to the next level.
1835 */
1836 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1837 /* Get the block we need to do the lookup on. */
1838 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1839 if (error)
1840 goto error0;
1841
1842 if (diff == 0) {
1843 /*
1844 * If we already had a key match at a higher level, we
1845 * know we need to use the first entry in this block.
1846 */
1847 keyno = 1;
1848 } else {
1849 /* Otherwise search this block. Do a binary search. */
1850
1851 int high; /* high entry number */
1852 int low; /* low entry number */
1853
1854 /* Set low and high entry numbers, 1-based. */
1855 low = 1;
1856 high = xfs_btree_get_numrecs(block);
1857 if (!high) {
1858 /* Block is empty, must be an empty leaf. */
1859 if (level != 0 || cur->bc_nlevels != 1) {
1860 XFS_CORRUPTION_ERROR(__func__,
1861 XFS_ERRLEVEL_LOW,
1862 cur->bc_mp, block,
1863 sizeof(*block));
1864 return -EFSCORRUPTED;
1865 }
1866
1867 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1868 *stat = 0;
1869 return 0;
1870 }
1871
1872 /* Binary search the block. */
1873 while (low <= high) {
1874 union xfs_btree_key key;
1875 union xfs_btree_key *kp;
1876
1877 XFS_BTREE_STATS_INC(cur, compare);
1878
1879 /* keyno is average of low and high. */
1880 keyno = (low + high) >> 1;
1881
1882 /* Get current search key */
1883 kp = xfs_lookup_get_search_key(cur, level,
1884 keyno, block, &key);
1885
1886 /*
1887 * Compute difference to get next direction:
1888 * - less than, move right
1889 * - greater than, move left
1890 * - equal, we're done
1891 */
1892 diff = cur->bc_ops->key_diff(cur, kp);
1893 if (diff < 0)
1894 low = keyno + 1;
1895 else if (diff > 0)
1896 high = keyno - 1;
1897 else
1898 break;
1899 }
1900 }
1901
1902 /*
1903 * If there are more levels, set up for the next level
1904 * by getting the block number and filling in the cursor.
1905 */
1906 if (level > 0) {
1907 /*
1908 * If we moved left, need the previous key number,
1909 * unless there isn't one.
1910 */
1911 if (diff > 0 && --keyno < 1)
1912 keyno = 1;
1913 pp = xfs_btree_ptr_addr(cur, keyno, block);
1914
1915 error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1916 if (error)
1917 goto error0;
1918
1919 cur->bc_ptrs[level] = keyno;
1920 }
1921 }
1922
1923 /* Done with the search. See if we need to adjust the results. */
1924 if (dir != XFS_LOOKUP_LE && diff < 0) {
1925 keyno++;
1926 /*
1927 * If ge search and we went off the end of the block, but it's
1928 * not the last block, we're in the wrong block.
1929 */
1930 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1931 if (dir == XFS_LOOKUP_GE &&
1932 keyno > xfs_btree_get_numrecs(block) &&
1933 !xfs_btree_ptr_is_null(cur, &ptr)) {
1934 int i;
1935
1936 cur->bc_ptrs[0] = keyno;
1937 error = xfs_btree_increment(cur, 0, &i);
1938 if (error)
1939 goto error0;
1940 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1941 return -EFSCORRUPTED;
1942 *stat = 1;
1943 return 0;
1944 }
1945 } else if (dir == XFS_LOOKUP_LE && diff > 0)
1946 keyno--;
1947 cur->bc_ptrs[0] = keyno;
1948
1949 /* Return if we succeeded or not. */
1950 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1951 *stat = 0;
1952 else if (dir != XFS_LOOKUP_EQ || diff == 0)
1953 *stat = 1;
1954 else
1955 *stat = 0;
1956 return 0;
1957
1958error0:
1959 return error;
1960}
1961
1962/* Find the high key storage area from a regular key. */
1963union xfs_btree_key *
1964xfs_btree_high_key_from_key(
1965 struct xfs_btree_cur *cur,
1966 union xfs_btree_key *key)
1967{
1968 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
1969 return (union xfs_btree_key *)((char *)key +
1970 (cur->bc_ops->key_len / 2));
1971}
1972
1973/* Determine the low (and high if overlapped) keys of a leaf block */
1974STATIC void
1975xfs_btree_get_leaf_keys(
1976 struct xfs_btree_cur *cur,
1977 struct xfs_btree_block *block,
1978 union xfs_btree_key *key)
1979{
1980 union xfs_btree_key max_hkey;
1981 union xfs_btree_key hkey;
1982 union xfs_btree_rec *rec;
1983 union xfs_btree_key *high;
1984 int n;
1985
1986 rec = xfs_btree_rec_addr(cur, 1, block);
1987 cur->bc_ops->init_key_from_rec(key, rec);
1988
1989 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
1990
1991 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
1992 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
1993 rec = xfs_btree_rec_addr(cur, n, block);
1994 cur->bc_ops->init_high_key_from_rec(&hkey, rec);
1995 if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
1996 > 0)
1997 max_hkey = hkey;
1998 }
1999
2000 high = xfs_btree_high_key_from_key(cur, key);
2001 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2002 }
2003}
2004
2005/* Determine the low (and high if overlapped) keys of a node block */
2006STATIC void
2007xfs_btree_get_node_keys(
2008 struct xfs_btree_cur *cur,
2009 struct xfs_btree_block *block,
2010 union xfs_btree_key *key)
2011{
2012 union xfs_btree_key *hkey;
2013 union xfs_btree_key *max_hkey;
2014 union xfs_btree_key *high;
2015 int n;
2016
2017 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2018 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2019 cur->bc_ops->key_len / 2);
2020
2021 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2022 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2023 hkey = xfs_btree_high_key_addr(cur, n, block);
2024 if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2025 max_hkey = hkey;
2026 }
2027
2028 high = xfs_btree_high_key_from_key(cur, key);
2029 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2030 } else {
2031 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2032 cur->bc_ops->key_len);
2033 }
2034}
2035
2036/* Derive the keys for any btree block. */
2037void
2038xfs_btree_get_keys(
2039 struct xfs_btree_cur *cur,
2040 struct xfs_btree_block *block,
2041 union xfs_btree_key *key)
2042{
2043 if (be16_to_cpu(block->bb_level) == 0)
2044 xfs_btree_get_leaf_keys(cur, block, key);
2045 else
2046 xfs_btree_get_node_keys(cur, block, key);
2047}
2048
2049/*
2050 * Decide if we need to update the parent keys of a btree block. For
2051 * a standard btree this is only necessary if we're updating the first
2052 * record/key. For an overlapping btree, we must always update the
2053 * keys because the highest key can be in any of the records or keys
2054 * in the block.
2055 */
2056static inline bool
2057xfs_btree_needs_key_update(
2058 struct xfs_btree_cur *cur,
2059 int ptr)
2060{
2061 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2062}
2063
2064/*
2065 * Update the low and high parent keys of the given level, progressing
2066 * towards the root. If force_all is false, stop if the keys for a given
2067 * level do not need updating.
2068 */
2069STATIC int
2070__xfs_btree_updkeys(
2071 struct xfs_btree_cur *cur,
2072 int level,
2073 struct xfs_btree_block *block,
2074 struct xfs_buf *bp0,
2075 bool force_all)
2076{
2077 union xfs_btree_key key; /* keys from current level */
2078 union xfs_btree_key *lkey; /* keys from the next level up */
2079 union xfs_btree_key *hkey;
2080 union xfs_btree_key *nlkey; /* keys from the next level up */
2081 union xfs_btree_key *nhkey;
2082 struct xfs_buf *bp;
2083 int ptr;
2084
2085 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2086
2087 /* Exit if there aren't any parent levels to update. */
2088 if (level + 1 >= cur->bc_nlevels)
2089 return 0;
2090
2091 trace_xfs_btree_updkeys(cur, level, bp0);
2092
2093 lkey = &key;
2094 hkey = xfs_btree_high_key_from_key(cur, lkey);
2095 xfs_btree_get_keys(cur, block, lkey);
2096 for (level++; level < cur->bc_nlevels; level++) {
2097#ifdef DEBUG
2098 int error;
2099#endif
2100 block = xfs_btree_get_block(cur, level, &bp);
2101 trace_xfs_btree_updkeys(cur, level, bp);
2102#ifdef DEBUG
2103 error = xfs_btree_check_block(cur, block, level, bp);
2104 if (error)
2105 return error;
2106#endif
2107 ptr = cur->bc_ptrs[level];
2108 nlkey = xfs_btree_key_addr(cur, ptr, block);
2109 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2110 if (!force_all &&
2111 !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2112 cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2113 break;
2114 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2115 xfs_btree_log_keys(cur, bp, ptr, ptr);
2116 if (level + 1 >= cur->bc_nlevels)
2117 break;
2118 xfs_btree_get_node_keys(cur, block, lkey);
2119 }
2120
2121 return 0;
2122}
2123
2124/* Update all the keys from some level in cursor back to the root. */
2125STATIC int
2126xfs_btree_updkeys_force(
2127 struct xfs_btree_cur *cur,
2128 int level)
2129{
2130 struct xfs_buf *bp;
2131 struct xfs_btree_block *block;
2132
2133 block = xfs_btree_get_block(cur, level, &bp);
2134 return __xfs_btree_updkeys(cur, level, block, bp, true);
2135}
2136
2137/*
2138 * Update the parent keys of the given level, progressing towards the root.
2139 */
2140STATIC int
2141xfs_btree_update_keys(
2142 struct xfs_btree_cur *cur,
2143 int level)
2144{
2145 struct xfs_btree_block *block;
2146 struct xfs_buf *bp;
2147 union xfs_btree_key *kp;
2148 union xfs_btree_key key;
2149 int ptr;
2150
2151 ASSERT(level >= 0);
2152
2153 block = xfs_btree_get_block(cur, level, &bp);
2154 if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2155 return __xfs_btree_updkeys(cur, level, block, bp, false);
2156
2157 /*
2158 * Go up the tree from this level toward the root.
2159 * At each level, update the key value to the value input.
2160 * Stop when we reach a level where the cursor isn't pointing
2161 * at the first entry in the block.
2162 */
2163 xfs_btree_get_keys(cur, block, &key);
2164 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2165#ifdef DEBUG
2166 int error;
2167#endif
2168 block = xfs_btree_get_block(cur, level, &bp);
2169#ifdef DEBUG
2170 error = xfs_btree_check_block(cur, block, level, bp);
2171 if (error)
2172 return error;
2173#endif
2174 ptr = cur->bc_ptrs[level];
2175 kp = xfs_btree_key_addr(cur, ptr, block);
2176 xfs_btree_copy_keys(cur, kp, &key, 1);
2177 xfs_btree_log_keys(cur, bp, ptr, ptr);
2178 }
2179
2180 return 0;
2181}
2182
2183/*
2184 * Update the record referred to by cur to the value in the
2185 * given record. This either works (return 0) or gets an
2186 * EFSCORRUPTED error.
2187 */
2188int
2189xfs_btree_update(
2190 struct xfs_btree_cur *cur,
2191 union xfs_btree_rec *rec)
2192{
2193 struct xfs_btree_block *block;
2194 struct xfs_buf *bp;
2195 int error;
2196 int ptr;
2197 union xfs_btree_rec *rp;
2198
2199 /* Pick up the current block. */
2200 block = xfs_btree_get_block(cur, 0, &bp);
2201
2202#ifdef DEBUG
2203 error = xfs_btree_check_block(cur, block, 0, bp);
2204 if (error)
2205 goto error0;
2206#endif
2207 /* Get the address of the rec to be updated. */
2208 ptr = cur->bc_ptrs[0];
2209 rp = xfs_btree_rec_addr(cur, ptr, block);
2210
2211 /* Fill in the new contents and log them. */
2212 xfs_btree_copy_recs(cur, rp, rec, 1);
2213 xfs_btree_log_recs(cur, bp, ptr, ptr);
2214
2215 /*
2216 * If we are tracking the last record in the tree and
2217 * we are at the far right edge of the tree, update it.
2218 */
2219 if (xfs_btree_is_lastrec(cur, block, 0)) {
2220 cur->bc_ops->update_lastrec(cur, block, rec,
2221 ptr, LASTREC_UPDATE);
2222 }
2223
2224 /* Pass new key value up to our parent. */
2225 if (xfs_btree_needs_key_update(cur, ptr)) {
2226 error = xfs_btree_update_keys(cur, 0);
2227 if (error)
2228 goto error0;
2229 }
2230
2231 return 0;
2232
2233error0:
2234 return error;
2235}
2236
2237/*
2238 * Move 1 record left from cur/level if possible.
2239 * Update cur to reflect the new path.
2240 */
2241STATIC int /* error */
2242xfs_btree_lshift(
2243 struct xfs_btree_cur *cur,
2244 int level,
2245 int *stat) /* success/failure */
2246{
2247 struct xfs_buf *lbp; /* left buffer pointer */
2248 struct xfs_btree_block *left; /* left btree block */
2249 int lrecs; /* left record count */
2250 struct xfs_buf *rbp; /* right buffer pointer */
2251 struct xfs_btree_block *right; /* right btree block */
2252 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2253 int rrecs; /* right record count */
2254 union xfs_btree_ptr lptr; /* left btree pointer */
2255 union xfs_btree_key *rkp = NULL; /* right btree key */
2256 union xfs_btree_ptr *rpp = NULL; /* right address pointer */
2257 union xfs_btree_rec *rrp = NULL; /* right record pointer */
2258 int error; /* error return value */
2259 int i;
2260
2261 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2262 level == cur->bc_nlevels - 1)
2263 goto out0;
2264
2265 /* Set up variables for this block as "right". */
2266 right = xfs_btree_get_block(cur, level, &rbp);
2267
2268#ifdef DEBUG
2269 error = xfs_btree_check_block(cur, right, level, rbp);
2270 if (error)
2271 goto error0;
2272#endif
2273
2274 /* If we've got no left sibling then we can't shift an entry left. */
2275 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2276 if (xfs_btree_ptr_is_null(cur, &lptr))
2277 goto out0;
2278
2279 /*
2280 * If the cursor entry is the one that would be moved, don't
2281 * do it... it's too complicated.
2282 */
2283 if (cur->bc_ptrs[level] <= 1)
2284 goto out0;
2285
2286 /* Set up the left neighbor as "left". */
2287 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2288 if (error)
2289 goto error0;
2290
2291 /* If it's full, it can't take another entry. */
2292 lrecs = xfs_btree_get_numrecs(left);
2293 if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2294 goto out0;
2295
2296 rrecs = xfs_btree_get_numrecs(right);
2297
2298 /*
2299 * We add one entry to the left side and remove one for the right side.
2300 * Account for it here, the changes will be updated on disk and logged
2301 * later.
2302 */
2303 lrecs++;
2304 rrecs--;
2305
2306 XFS_BTREE_STATS_INC(cur, lshift);
2307 XFS_BTREE_STATS_ADD(cur, moves, 1);
2308
2309 /*
2310 * If non-leaf, copy a key and a ptr to the left block.
2311 * Log the changes to the left block.
2312 */
2313 if (level > 0) {
2314 /* It's a non-leaf. Move keys and pointers. */
2315 union xfs_btree_key *lkp; /* left btree key */
2316 union xfs_btree_ptr *lpp; /* left address pointer */
2317
2318 lkp = xfs_btree_key_addr(cur, lrecs, left);
2319 rkp = xfs_btree_key_addr(cur, 1, right);
2320
2321 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2322 rpp = xfs_btree_ptr_addr(cur, 1, right);
2323
2324 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2325 if (error)
2326 goto error0;
2327
2328 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2329 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2330
2331 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2332 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2333
2334 ASSERT(cur->bc_ops->keys_inorder(cur,
2335 xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2336 } else {
2337 /* It's a leaf. Move records. */
2338 union xfs_btree_rec *lrp; /* left record pointer */
2339
2340 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2341 rrp = xfs_btree_rec_addr(cur, 1, right);
2342
2343 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2344 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2345
2346 ASSERT(cur->bc_ops->recs_inorder(cur,
2347 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2348 }
2349
2350 xfs_btree_set_numrecs(left, lrecs);
2351 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2352
2353 xfs_btree_set_numrecs(right, rrecs);
2354 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2355
2356 /*
2357 * Slide the contents of right down one entry.
2358 */
2359 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2360 if (level > 0) {
2361 /* It's a nonleaf. operate on keys and ptrs */
2362 for (i = 0; i < rrecs; i++) {
2363 error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2364 if (error)
2365 goto error0;
2366 }
2367
2368 xfs_btree_shift_keys(cur,
2369 xfs_btree_key_addr(cur, 2, right),
2370 -1, rrecs);
2371 xfs_btree_shift_ptrs(cur,
2372 xfs_btree_ptr_addr(cur, 2, right),
2373 -1, rrecs);
2374
2375 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2376 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2377 } else {
2378 /* It's a leaf. operate on records */
2379 xfs_btree_shift_recs(cur,
2380 xfs_btree_rec_addr(cur, 2, right),
2381 -1, rrecs);
2382 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2383 }
2384
2385 /*
2386 * Using a temporary cursor, update the parent key values of the
2387 * block on the left.
2388 */
2389 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2390 error = xfs_btree_dup_cursor(cur, &tcur);
2391 if (error)
2392 goto error0;
2393 i = xfs_btree_firstrec(tcur, level);
2394 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2395 error = -EFSCORRUPTED;
2396 goto error0;
2397 }
2398
2399 error = xfs_btree_decrement(tcur, level, &i);
2400 if (error)
2401 goto error1;
2402
2403 /* Update the parent high keys of the left block, if needed. */
2404 error = xfs_btree_update_keys(tcur, level);
2405 if (error)
2406 goto error1;
2407
2408 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2409 }
2410
2411 /* Update the parent keys of the right block. */
2412 error = xfs_btree_update_keys(cur, level);
2413 if (error)
2414 goto error0;
2415
2416 /* Slide the cursor value left one. */
2417 cur->bc_ptrs[level]--;
2418
2419 *stat = 1;
2420 return 0;
2421
2422out0:
2423 *stat = 0;
2424 return 0;
2425
2426error0:
2427 return error;
2428
2429error1:
2430 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2431 return error;
2432}
2433
2434/*
2435 * Move 1 record right from cur/level if possible.
2436 * Update cur to reflect the new path.
2437 */
2438STATIC int /* error */
2439xfs_btree_rshift(
2440 struct xfs_btree_cur *cur,
2441 int level,
2442 int *stat) /* success/failure */
2443{
2444 struct xfs_buf *lbp; /* left buffer pointer */
2445 struct xfs_btree_block *left; /* left btree block */
2446 struct xfs_buf *rbp; /* right buffer pointer */
2447 struct xfs_btree_block *right; /* right btree block */
2448 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2449 union xfs_btree_ptr rptr; /* right block pointer */
2450 union xfs_btree_key *rkp; /* right btree key */
2451 int rrecs; /* right record count */
2452 int lrecs; /* left record count */
2453 int error; /* error return value */
2454 int i; /* loop counter */
2455
2456 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2457 (level == cur->bc_nlevels - 1))
2458 goto out0;
2459
2460 /* Set up variables for this block as "left". */
2461 left = xfs_btree_get_block(cur, level, &lbp);
2462
2463#ifdef DEBUG
2464 error = xfs_btree_check_block(cur, left, level, lbp);
2465 if (error)
2466 goto error0;
2467#endif
2468
2469 /* If we've got no right sibling then we can't shift an entry right. */
2470 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2471 if (xfs_btree_ptr_is_null(cur, &rptr))
2472 goto out0;
2473
2474 /*
2475 * If the cursor entry is the one that would be moved, don't
2476 * do it... it's too complicated.
2477 */
2478 lrecs = xfs_btree_get_numrecs(left);
2479 if (cur->bc_ptrs[level] >= lrecs)
2480 goto out0;
2481
2482 /* Set up the right neighbor as "right". */
2483 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2484 if (error)
2485 goto error0;
2486
2487 /* If it's full, it can't take another entry. */
2488 rrecs = xfs_btree_get_numrecs(right);
2489 if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2490 goto out0;
2491
2492 XFS_BTREE_STATS_INC(cur, rshift);
2493 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2494
2495 /*
2496 * Make a hole at the start of the right neighbor block, then
2497 * copy the last left block entry to the hole.
2498 */
2499 if (level > 0) {
2500 /* It's a nonleaf. make a hole in the keys and ptrs */
2501 union xfs_btree_key *lkp;
2502 union xfs_btree_ptr *lpp;
2503 union xfs_btree_ptr *rpp;
2504
2505 lkp = xfs_btree_key_addr(cur, lrecs, left);
2506 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2507 rkp = xfs_btree_key_addr(cur, 1, right);
2508 rpp = xfs_btree_ptr_addr(cur, 1, right);
2509
2510 for (i = rrecs - 1; i >= 0; i--) {
2511 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2512 if (error)
2513 goto error0;
2514 }
2515
2516 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2517 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2518
2519 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2520 if (error)
2521 goto error0;
2522
2523 /* Now put the new data in, and log it. */
2524 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2525 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2526
2527 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2528 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2529
2530 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2531 xfs_btree_key_addr(cur, 2, right)));
2532 } else {
2533 /* It's a leaf. make a hole in the records */
2534 union xfs_btree_rec *lrp;
2535 union xfs_btree_rec *rrp;
2536
2537 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2538 rrp = xfs_btree_rec_addr(cur, 1, right);
2539
2540 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2541
2542 /* Now put the new data in, and log it. */
2543 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2544 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2545 }
2546
2547 /*
2548 * Decrement and log left's numrecs, bump and log right's numrecs.
2549 */
2550 xfs_btree_set_numrecs(left, --lrecs);
2551 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2552
2553 xfs_btree_set_numrecs(right, ++rrecs);
2554 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2555
2556 /*
2557 * Using a temporary cursor, update the parent key values of the
2558 * block on the right.
2559 */
2560 error = xfs_btree_dup_cursor(cur, &tcur);
2561 if (error)
2562 goto error0;
2563 i = xfs_btree_lastrec(tcur, level);
2564 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2565 error = -EFSCORRUPTED;
2566 goto error0;
2567 }
2568
2569 error = xfs_btree_increment(tcur, level, &i);
2570 if (error)
2571 goto error1;
2572
2573 /* Update the parent high keys of the left block, if needed. */
2574 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2575 error = xfs_btree_update_keys(cur, level);
2576 if (error)
2577 goto error1;
2578 }
2579
2580 /* Update the parent keys of the right block. */
2581 error = xfs_btree_update_keys(tcur, level);
2582 if (error)
2583 goto error1;
2584
2585 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2586
2587 *stat = 1;
2588 return 0;
2589
2590out0:
2591 *stat = 0;
2592 return 0;
2593
2594error0:
2595 return error;
2596
2597error1:
2598 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2599 return error;
2600}
2601
2602/*
2603 * Split cur/level block in half.
2604 * Return new block number and the key to its first
2605 * record (to be inserted into parent).
2606 */
2607STATIC int /* error */
2608__xfs_btree_split(
2609 struct xfs_btree_cur *cur,
2610 int level,
2611 union xfs_btree_ptr *ptrp,
2612 union xfs_btree_key *key,
2613 struct xfs_btree_cur **curp,
2614 int *stat) /* success/failure */
2615{
2616 union xfs_btree_ptr lptr; /* left sibling block ptr */
2617 struct xfs_buf *lbp; /* left buffer pointer */
2618 struct xfs_btree_block *left; /* left btree block */
2619 union xfs_btree_ptr rptr; /* right sibling block ptr */
2620 struct xfs_buf *rbp; /* right buffer pointer */
2621 struct xfs_btree_block *right; /* right btree block */
2622 union xfs_btree_ptr rrptr; /* right-right sibling ptr */
2623 struct xfs_buf *rrbp; /* right-right buffer pointer */
2624 struct xfs_btree_block *rrblock; /* right-right btree block */
2625 int lrecs;
2626 int rrecs;
2627 int src_index;
2628 int error; /* error return value */
2629 int i;
2630
2631 XFS_BTREE_STATS_INC(cur, split);
2632
2633 /* Set up left block (current one). */
2634 left = xfs_btree_get_block(cur, level, &lbp);
2635
2636#ifdef DEBUG
2637 error = xfs_btree_check_block(cur, left, level, lbp);
2638 if (error)
2639 goto error0;
2640#endif
2641
2642 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2643
2644 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2645 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2646 if (error)
2647 goto error0;
2648 if (*stat == 0)
2649 goto out0;
2650 XFS_BTREE_STATS_INC(cur, alloc);
2651
2652 /* Set up the new block as "right". */
2653 error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2654 if (error)
2655 goto error0;
2656
2657 /* Fill in the btree header for the new right block. */
2658 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2659
2660 /*
2661 * Split the entries between the old and the new block evenly.
2662 * Make sure that if there's an odd number of entries now, that
2663 * each new block will have the same number of entries.
2664 */
2665 lrecs = xfs_btree_get_numrecs(left);
2666 rrecs = lrecs / 2;
2667 if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2668 rrecs++;
2669 src_index = (lrecs - rrecs + 1);
2670
2671 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2672
2673 /* Adjust numrecs for the later get_*_keys() calls. */
2674 lrecs -= rrecs;
2675 xfs_btree_set_numrecs(left, lrecs);
2676 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2677
2678 /*
2679 * Copy btree block entries from the left block over to the
2680 * new block, the right. Update the right block and log the
2681 * changes.
2682 */
2683 if (level > 0) {
2684 /* It's a non-leaf. Move keys and pointers. */
2685 union xfs_btree_key *lkp; /* left btree key */
2686 union xfs_btree_ptr *lpp; /* left address pointer */
2687 union xfs_btree_key *rkp; /* right btree key */
2688 union xfs_btree_ptr *rpp; /* right address pointer */
2689
2690 lkp = xfs_btree_key_addr(cur, src_index, left);
2691 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2692 rkp = xfs_btree_key_addr(cur, 1, right);
2693 rpp = xfs_btree_ptr_addr(cur, 1, right);
2694
2695 for (i = src_index; i < rrecs; i++) {
2696 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2697 if (error)
2698 goto error0;
2699 }
2700
2701 /* Copy the keys & pointers to the new block. */
2702 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2703 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2704
2705 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2706 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2707
2708 /* Stash the keys of the new block for later insertion. */
2709 xfs_btree_get_node_keys(cur, right, key);
2710 } else {
2711 /* It's a leaf. Move records. */
2712 union xfs_btree_rec *lrp; /* left record pointer */
2713 union xfs_btree_rec *rrp; /* right record pointer */
2714
2715 lrp = xfs_btree_rec_addr(cur, src_index, left);
2716 rrp = xfs_btree_rec_addr(cur, 1, right);
2717
2718 /* Copy records to the new block. */
2719 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2720 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2721
2722 /* Stash the keys of the new block for later insertion. */
2723 xfs_btree_get_leaf_keys(cur, right, key);
2724 }
2725
2726 /*
2727 * Find the left block number by looking in the buffer.
2728 * Adjust sibling pointers.
2729 */
2730 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2731 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2732 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2733 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2734
2735 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2736 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2737
2738 /*
2739 * If there's a block to the new block's right, make that block
2740 * point back to right instead of to left.
2741 */
2742 if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2743 error = xfs_btree_read_buf_block(cur, &rrptr,
2744 0, &rrblock, &rrbp);
2745 if (error)
2746 goto error0;
2747 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2748 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2749 }
2750
2751 /* Update the parent high keys of the left block, if needed. */
2752 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2753 error = xfs_btree_update_keys(cur, level);
2754 if (error)
2755 goto error0;
2756 }
2757
2758 /*
2759 * If the cursor is really in the right block, move it there.
2760 * If it's just pointing past the last entry in left, then we'll
2761 * insert there, so don't change anything in that case.
2762 */
2763 if (cur->bc_ptrs[level] > lrecs + 1) {
2764 xfs_btree_setbuf(cur, level, rbp);
2765 cur->bc_ptrs[level] -= lrecs;
2766 }
2767 /*
2768 * If there are more levels, we'll need another cursor which refers
2769 * the right block, no matter where this cursor was.
2770 */
2771 if (level + 1 < cur->bc_nlevels) {
2772 error = xfs_btree_dup_cursor(cur, curp);
2773 if (error)
2774 goto error0;
2775 (*curp)->bc_ptrs[level + 1]++;
2776 }
2777 *ptrp = rptr;
2778 *stat = 1;
2779 return 0;
2780out0:
2781 *stat = 0;
2782 return 0;
2783
2784error0:
2785 return error;
2786}
2787
2788struct xfs_btree_split_args {
2789 struct xfs_btree_cur *cur;
2790 int level;
2791 union xfs_btree_ptr *ptrp;
2792 union xfs_btree_key *key;
2793 struct xfs_btree_cur **curp;
2794 int *stat; /* success/failure */
2795 int result;
2796 bool kswapd; /* allocation in kswapd context */
2797 struct completion *done;
2798 struct work_struct work;
2799};
2800
2801/*
2802 * Stack switching interfaces for allocation
2803 */
2804static void
2805xfs_btree_split_worker(
2806 struct work_struct *work)
2807{
2808 struct xfs_btree_split_args *args = container_of(work,
2809 struct xfs_btree_split_args, work);
2810 unsigned long pflags;
2811 unsigned long new_pflags = 0;
2812
2813 /*
2814 * we are in a transaction context here, but may also be doing work
2815 * in kswapd context, and hence we may need to inherit that state
2816 * temporarily to ensure that we don't block waiting for memory reclaim
2817 * in any way.
2818 */
2819 if (args->kswapd)
2820 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2821
2822 current_set_flags_nested(&pflags, new_pflags);
2823 xfs_trans_set_context(args->cur->bc_tp);
2824
2825 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2826 args->key, args->curp, args->stat);
2827
2828 xfs_trans_clear_context(args->cur->bc_tp);
2829 current_restore_flags_nested(&pflags, new_pflags);
2830
2831 /*
2832 * Do not access args after complete() has run here. We don't own args
2833 * and the owner may run and free args before we return here.
2834 */
2835 complete(args->done);
2836
2837}
2838
2839/*
2840 * BMBT split requests often come in with little stack to work on. Push
2841 * them off to a worker thread so there is lots of stack to use. For the other
2842 * btree types, just call directly to avoid the context switch overhead here.
2843 */
2844STATIC int /* error */
2845xfs_btree_split(
2846 struct xfs_btree_cur *cur,
2847 int level,
2848 union xfs_btree_ptr *ptrp,
2849 union xfs_btree_key *key,
2850 struct xfs_btree_cur **curp,
2851 int *stat) /* success/failure */
2852{
2853 struct xfs_btree_split_args args;
2854 DECLARE_COMPLETION_ONSTACK(done);
2855
2856 if (cur->bc_btnum != XFS_BTNUM_BMAP)
2857 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2858
2859 args.cur = cur;
2860 args.level = level;
2861 args.ptrp = ptrp;
2862 args.key = key;
2863 args.curp = curp;
2864 args.stat = stat;
2865 args.done = &done;
2866 args.kswapd = current_is_kswapd();
2867 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2868 queue_work(xfs_alloc_wq, &args.work);
2869 wait_for_completion(&done);
2870 destroy_work_on_stack(&args.work);
2871 return args.result;
2872}
2873
2874
2875/*
2876 * Copy the old inode root contents into a real block and make the
2877 * broot point to it.
2878 */
2879int /* error */
2880xfs_btree_new_iroot(
2881 struct xfs_btree_cur *cur, /* btree cursor */
2882 int *logflags, /* logging flags for inode */
2883 int *stat) /* return status - 0 fail */
2884{
2885 struct xfs_buf *cbp; /* buffer for cblock */
2886 struct xfs_btree_block *block; /* btree block */
2887 struct xfs_btree_block *cblock; /* child btree block */
2888 union xfs_btree_key *ckp; /* child key pointer */
2889 union xfs_btree_ptr *cpp; /* child ptr pointer */
2890 union xfs_btree_key *kp; /* pointer to btree key */
2891 union xfs_btree_ptr *pp; /* pointer to block addr */
2892 union xfs_btree_ptr nptr; /* new block addr */
2893 int level; /* btree level */
2894 int error; /* error return code */
2895 int i; /* loop counter */
2896
2897 XFS_BTREE_STATS_INC(cur, newroot);
2898
2899 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2900
2901 level = cur->bc_nlevels - 1;
2902
2903 block = xfs_btree_get_iroot(cur);
2904 pp = xfs_btree_ptr_addr(cur, 1, block);
2905
2906 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2907 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2908 if (error)
2909 goto error0;
2910 if (*stat == 0)
2911 return 0;
2912
2913 XFS_BTREE_STATS_INC(cur, alloc);
2914
2915 /* Copy the root into a real block. */
2916 error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
2917 if (error)
2918 goto error0;
2919
2920 /*
2921 * we can't just memcpy() the root in for CRC enabled btree blocks.
2922 * In that case have to also ensure the blkno remains correct
2923 */
2924 memcpy(cblock, block, xfs_btree_block_len(cur));
2925 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2926 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2927 cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2928 else
2929 cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2930 }
2931
2932 be16_add_cpu(&block->bb_level, 1);
2933 xfs_btree_set_numrecs(block, 1);
2934 cur->bc_nlevels++;
2935 cur->bc_ptrs[level + 1] = 1;
2936
2937 kp = xfs_btree_key_addr(cur, 1, block);
2938 ckp = xfs_btree_key_addr(cur, 1, cblock);
2939 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2940
2941 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2942 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2943 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
2944 if (error)
2945 goto error0;
2946 }
2947
2948 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2949
2950 error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
2951 if (error)
2952 goto error0;
2953
2954 xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2955
2956 xfs_iroot_realloc(cur->bc_ino.ip,
2957 1 - xfs_btree_get_numrecs(cblock),
2958 cur->bc_ino.whichfork);
2959
2960 xfs_btree_setbuf(cur, level, cbp);
2961
2962 /*
2963 * Do all this logging at the end so that
2964 * the root is at the right level.
2965 */
2966 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
2967 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2968 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2969
2970 *logflags |=
2971 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
2972 *stat = 1;
2973 return 0;
2974error0:
2975 return error;
2976}
2977
2978/*
2979 * Allocate a new root block, fill it in.
2980 */
2981STATIC int /* error */
2982xfs_btree_new_root(
2983 struct xfs_btree_cur *cur, /* btree cursor */
2984 int *stat) /* success/failure */
2985{
2986 struct xfs_btree_block *block; /* one half of the old root block */
2987 struct xfs_buf *bp; /* buffer containing block */
2988 int error; /* error return value */
2989 struct xfs_buf *lbp; /* left buffer pointer */
2990 struct xfs_btree_block *left; /* left btree block */
2991 struct xfs_buf *nbp; /* new (root) buffer */
2992 struct xfs_btree_block *new; /* new (root) btree block */
2993 int nptr; /* new value for key index, 1 or 2 */
2994 struct xfs_buf *rbp; /* right buffer pointer */
2995 struct xfs_btree_block *right; /* right btree block */
2996 union xfs_btree_ptr rptr;
2997 union xfs_btree_ptr lptr;
2998
2999 XFS_BTREE_STATS_INC(cur, newroot);
3000
3001 /* initialise our start point from the cursor */
3002 cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3003
3004 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3005 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3006 if (error)
3007 goto error0;
3008 if (*stat == 0)
3009 goto out0;
3010 XFS_BTREE_STATS_INC(cur, alloc);
3011
3012 /* Set up the new block. */
3013 error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3014 if (error)
3015 goto error0;
3016
3017 /* Set the root in the holding structure increasing the level by 1. */
3018 cur->bc_ops->set_root(cur, &lptr, 1);
3019
3020 /*
3021 * At the previous root level there are now two blocks: the old root,
3022 * and the new block generated when it was split. We don't know which
3023 * one the cursor is pointing at, so we set up variables "left" and
3024 * "right" for each case.
3025 */
3026 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3027
3028#ifdef DEBUG
3029 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3030 if (error)
3031 goto error0;
3032#endif
3033
3034 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3035 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3036 /* Our block is left, pick up the right block. */
3037 lbp = bp;
3038 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3039 left = block;
3040 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3041 if (error)
3042 goto error0;
3043 bp = rbp;
3044 nptr = 1;
3045 } else {
3046 /* Our block is right, pick up the left block. */
3047 rbp = bp;
3048 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3049 right = block;
3050 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3051 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3052 if (error)
3053 goto error0;
3054 bp = lbp;
3055 nptr = 2;
3056 }
3057
3058 /* Fill in the new block's btree header and log it. */
3059 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3060 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3061 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3062 !xfs_btree_ptr_is_null(cur, &rptr));
3063
3064 /* Fill in the key data in the new root. */
3065 if (xfs_btree_get_level(left) > 0) {
3066 /*
3067 * Get the keys for the left block's keys and put them directly
3068 * in the parent block. Do the same for the right block.
3069 */
3070 xfs_btree_get_node_keys(cur, left,
3071 xfs_btree_key_addr(cur, 1, new));
3072 xfs_btree_get_node_keys(cur, right,
3073 xfs_btree_key_addr(cur, 2, new));
3074 } else {
3075 /*
3076 * Get the keys for the left block's records and put them
3077 * directly in the parent block. Do the same for the right
3078 * block.
3079 */
3080 xfs_btree_get_leaf_keys(cur, left,
3081 xfs_btree_key_addr(cur, 1, new));
3082 xfs_btree_get_leaf_keys(cur, right,
3083 xfs_btree_key_addr(cur, 2, new));
3084 }
3085 xfs_btree_log_keys(cur, nbp, 1, 2);
3086
3087 /* Fill in the pointer data in the new root. */
3088 xfs_btree_copy_ptrs(cur,
3089 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3090 xfs_btree_copy_ptrs(cur,
3091 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3092 xfs_btree_log_ptrs(cur, nbp, 1, 2);
3093
3094 /* Fix up the cursor. */
3095 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3096 cur->bc_ptrs[cur->bc_nlevels] = nptr;
3097 cur->bc_nlevels++;
3098 *stat = 1;
3099 return 0;
3100error0:
3101 return error;
3102out0:
3103 *stat = 0;
3104 return 0;
3105}
3106
3107STATIC int
3108xfs_btree_make_block_unfull(
3109 struct xfs_btree_cur *cur, /* btree cursor */
3110 int level, /* btree level */
3111 int numrecs,/* # of recs in block */
3112 int *oindex,/* old tree index */
3113 int *index, /* new tree index */
3114 union xfs_btree_ptr *nptr, /* new btree ptr */
3115 struct xfs_btree_cur **ncur, /* new btree cursor */
3116 union xfs_btree_key *key, /* key of new block */
3117 int *stat)
3118{
3119 int error = 0;
3120
3121 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3122 level == cur->bc_nlevels - 1) {
3123 struct xfs_inode *ip = cur->bc_ino.ip;
3124
3125 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3126 /* A root block that can be made bigger. */
3127 xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3128 *stat = 1;
3129 } else {
3130 /* A root block that needs replacing */
3131 int logflags = 0;
3132
3133 error = xfs_btree_new_iroot(cur, &logflags, stat);
3134 if (error || *stat == 0)
3135 return error;
3136
3137 xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3138 }
3139
3140 return 0;
3141 }
3142
3143 /* First, try shifting an entry to the right neighbor. */
3144 error = xfs_btree_rshift(cur, level, stat);
3145 if (error || *stat)
3146 return error;
3147
3148 /* Next, try shifting an entry to the left neighbor. */
3149 error = xfs_btree_lshift(cur, level, stat);
3150 if (error)
3151 return error;
3152
3153 if (*stat) {
3154 *oindex = *index = cur->bc_ptrs[level];
3155 return 0;
3156 }
3157
3158 /*
3159 * Next, try splitting the current block in half.
3160 *
3161 * If this works we have to re-set our variables because we
3162 * could be in a different block now.
3163 */
3164 error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3165 if (error || *stat == 0)
3166 return error;
3167
3168
3169 *index = cur->bc_ptrs[level];
3170 return 0;
3171}
3172
3173/*
3174 * Insert one record/level. Return information to the caller
3175 * allowing the next level up to proceed if necessary.
3176 */
3177STATIC int
3178xfs_btree_insrec(
3179 struct xfs_btree_cur *cur, /* btree cursor */
3180 int level, /* level to insert record at */
3181 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
3182 union xfs_btree_rec *rec, /* record to insert */
3183 union xfs_btree_key *key, /* i/o: block key for ptrp */
3184 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
3185 int *stat) /* success/failure */
3186{
3187 struct xfs_btree_block *block; /* btree block */
3188 struct xfs_buf *bp; /* buffer for block */
3189 union xfs_btree_ptr nptr; /* new block ptr */
3190 struct xfs_btree_cur *ncur; /* new btree cursor */
3191 union xfs_btree_key nkey; /* new block key */
3192 union xfs_btree_key *lkey;
3193 int optr; /* old key/record index */
3194 int ptr; /* key/record index */
3195 int numrecs;/* number of records */
3196 int error; /* error return value */
3197 int i;
3198 xfs_daddr_t old_bn;
3199
3200 ncur = NULL;
3201 lkey = &nkey;
3202
3203 /*
3204 * If we have an external root pointer, and we've made it to the
3205 * root level, allocate a new root block and we're done.
3206 */
3207 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3208 (level >= cur->bc_nlevels)) {
3209 error = xfs_btree_new_root(cur, stat);
3210 xfs_btree_set_ptr_null(cur, ptrp);
3211
3212 return error;
3213 }
3214
3215 /* If we're off the left edge, return failure. */
3216 ptr = cur->bc_ptrs[level];
3217 if (ptr == 0) {
3218 *stat = 0;
3219 return 0;
3220 }
3221
3222 optr = ptr;
3223
3224 XFS_BTREE_STATS_INC(cur, insrec);
3225
3226 /* Get pointers to the btree buffer and block. */
3227 block = xfs_btree_get_block(cur, level, &bp);
3228 old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3229 numrecs = xfs_btree_get_numrecs(block);
3230
3231#ifdef DEBUG
3232 error = xfs_btree_check_block(cur, block, level, bp);
3233 if (error)
3234 goto error0;
3235
3236 /* Check that the new entry is being inserted in the right place. */
3237 if (ptr <= numrecs) {
3238 if (level == 0) {
3239 ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3240 xfs_btree_rec_addr(cur, ptr, block)));
3241 } else {
3242 ASSERT(cur->bc_ops->keys_inorder(cur, key,
3243 xfs_btree_key_addr(cur, ptr, block)));
3244 }
3245 }
3246#endif
3247
3248 /*
3249 * If the block is full, we can't insert the new entry until we
3250 * make the block un-full.
3251 */
3252 xfs_btree_set_ptr_null(cur, &nptr);
3253 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3254 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3255 &optr, &ptr, &nptr, &ncur, lkey, stat);
3256 if (error || *stat == 0)
3257 goto error0;
3258 }
3259
3260 /*
3261 * The current block may have changed if the block was
3262 * previously full and we have just made space in it.
3263 */
3264 block = xfs_btree_get_block(cur, level, &bp);
3265 numrecs = xfs_btree_get_numrecs(block);
3266
3267#ifdef DEBUG
3268 error = xfs_btree_check_block(cur, block, level, bp);
3269 if (error)
3270 return error;
3271#endif
3272
3273 /*
3274 * At this point we know there's room for our new entry in the block
3275 * we're pointing at.
3276 */
3277 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3278
3279 if (level > 0) {
3280 /* It's a nonleaf. make a hole in the keys and ptrs */
3281 union xfs_btree_key *kp;
3282 union xfs_btree_ptr *pp;
3283
3284 kp = xfs_btree_key_addr(cur, ptr, block);
3285 pp = xfs_btree_ptr_addr(cur, ptr, block);
3286
3287 for (i = numrecs - ptr; i >= 0; i--) {
3288 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3289 if (error)
3290 return error;
3291 }
3292
3293 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3294 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3295
3296 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3297 if (error)
3298 goto error0;
3299
3300 /* Now put the new data in, bump numrecs and log it. */
3301 xfs_btree_copy_keys(cur, kp, key, 1);
3302 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3303 numrecs++;
3304 xfs_btree_set_numrecs(block, numrecs);
3305 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3306 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3307#ifdef DEBUG
3308 if (ptr < numrecs) {
3309 ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3310 xfs_btree_key_addr(cur, ptr + 1, block)));
3311 }
3312#endif
3313 } else {
3314 /* It's a leaf. make a hole in the records */
3315 union xfs_btree_rec *rp;
3316
3317 rp = xfs_btree_rec_addr(cur, ptr, block);
3318
3319 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3320
3321 /* Now put the new data in, bump numrecs and log it. */
3322 xfs_btree_copy_recs(cur, rp, rec, 1);
3323 xfs_btree_set_numrecs(block, ++numrecs);
3324 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3325#ifdef DEBUG
3326 if (ptr < numrecs) {
3327 ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3328 xfs_btree_rec_addr(cur, ptr + 1, block)));
3329 }
3330#endif
3331 }
3332
3333 /* Log the new number of records in the btree header. */
3334 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3335
3336 /*
3337 * If we just inserted into a new tree block, we have to
3338 * recalculate nkey here because nkey is out of date.
3339 *
3340 * Otherwise we're just updating an existing block (having shoved
3341 * some records into the new tree block), so use the regular key
3342 * update mechanism.
3343 */
3344 if (bp && bp->b_bn != old_bn) {
3345 xfs_btree_get_keys(cur, block, lkey);
3346 } else if (xfs_btree_needs_key_update(cur, optr)) {
3347 error = xfs_btree_update_keys(cur, level);
3348 if (error)
3349 goto error0;
3350 }
3351
3352 /*
3353 * If we are tracking the last record in the tree and
3354 * we are at the far right edge of the tree, update it.
3355 */
3356 if (xfs_btree_is_lastrec(cur, block, level)) {
3357 cur->bc_ops->update_lastrec(cur, block, rec,
3358 ptr, LASTREC_INSREC);
3359 }
3360
3361 /*
3362 * Return the new block number, if any.
3363 * If there is one, give back a record value and a cursor too.
3364 */
3365 *ptrp = nptr;
3366 if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3367 xfs_btree_copy_keys(cur, key, lkey, 1);
3368 *curp = ncur;
3369 }
3370
3371 *stat = 1;
3372 return 0;
3373
3374error0:
3375 return error;
3376}
3377
3378/*
3379 * Insert the record at the point referenced by cur.
3380 *
3381 * A multi-level split of the tree on insert will invalidate the original
3382 * cursor. All callers of this function should assume that the cursor is
3383 * no longer valid and revalidate it.
3384 */
3385int
3386xfs_btree_insert(
3387 struct xfs_btree_cur *cur,
3388 int *stat)
3389{
3390 int error; /* error return value */
3391 int i; /* result value, 0 for failure */
3392 int level; /* current level number in btree */
3393 union xfs_btree_ptr nptr; /* new block number (split result) */
3394 struct xfs_btree_cur *ncur; /* new cursor (split result) */
3395 struct xfs_btree_cur *pcur; /* previous level's cursor */
3396 union xfs_btree_key bkey; /* key of block to insert */
3397 union xfs_btree_key *key;
3398 union xfs_btree_rec rec; /* record to insert */
3399
3400 level = 0;
3401 ncur = NULL;
3402 pcur = cur;
3403 key = &bkey;
3404
3405 xfs_btree_set_ptr_null(cur, &nptr);
3406
3407 /* Make a key out of the record data to be inserted, and save it. */
3408 cur->bc_ops->init_rec_from_cur(cur, &rec);
3409 cur->bc_ops->init_key_from_rec(key, &rec);
3410
3411 /*
3412 * Loop going up the tree, starting at the leaf level.
3413 * Stop when we don't get a split block, that must mean that
3414 * the insert is finished with this level.
3415 */
3416 do {
3417 /*
3418 * Insert nrec/nptr into this level of the tree.
3419 * Note if we fail, nptr will be null.
3420 */
3421 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3422 &ncur, &i);
3423 if (error) {
3424 if (pcur != cur)
3425 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3426 goto error0;
3427 }
3428
3429 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3430 error = -EFSCORRUPTED;
3431 goto error0;
3432 }
3433 level++;
3434
3435 /*
3436 * See if the cursor we just used is trash.
3437 * Can't trash the caller's cursor, but otherwise we should
3438 * if ncur is a new cursor or we're about to be done.
3439 */
3440 if (pcur != cur &&
3441 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3442 /* Save the state from the cursor before we trash it */
3443 if (cur->bc_ops->update_cursor)
3444 cur->bc_ops->update_cursor(pcur, cur);
3445 cur->bc_nlevels = pcur->bc_nlevels;
3446 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3447 }
3448 /* If we got a new cursor, switch to it. */
3449 if (ncur) {
3450 pcur = ncur;
3451 ncur = NULL;
3452 }
3453 } while (!xfs_btree_ptr_is_null(cur, &nptr));
3454
3455 *stat = i;
3456 return 0;
3457error0:
3458 return error;
3459}
3460
3461/*
3462 * Try to merge a non-leaf block back into the inode root.
3463 *
3464 * Note: the killroot names comes from the fact that we're effectively
3465 * killing the old root block. But because we can't just delete the
3466 * inode we have to copy the single block it was pointing to into the
3467 * inode.
3468 */
3469STATIC int
3470xfs_btree_kill_iroot(
3471 struct xfs_btree_cur *cur)
3472{
3473 int whichfork = cur->bc_ino.whichfork;
3474 struct xfs_inode *ip = cur->bc_ino.ip;
3475 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
3476 struct xfs_btree_block *block;
3477 struct xfs_btree_block *cblock;
3478 union xfs_btree_key *kp;
3479 union xfs_btree_key *ckp;
3480 union xfs_btree_ptr *pp;
3481 union xfs_btree_ptr *cpp;
3482 struct xfs_buf *cbp;
3483 int level;
3484 int index;
3485 int numrecs;
3486 int error;
3487#ifdef DEBUG
3488 union xfs_btree_ptr ptr;
3489#endif
3490 int i;
3491
3492 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3493 ASSERT(cur->bc_nlevels > 1);
3494
3495 /*
3496 * Don't deal with the root block needs to be a leaf case.
3497 * We're just going to turn the thing back into extents anyway.
3498 */
3499 level = cur->bc_nlevels - 1;
3500 if (level == 1)
3501 goto out0;
3502
3503 /*
3504 * Give up if the root has multiple children.
3505 */
3506 block = xfs_btree_get_iroot(cur);
3507 if (xfs_btree_get_numrecs(block) != 1)
3508 goto out0;
3509
3510 cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3511 numrecs = xfs_btree_get_numrecs(cblock);
3512
3513 /*
3514 * Only do this if the next level will fit.
3515 * Then the data must be copied up to the inode,
3516 * instead of freeing the root you free the next level.
3517 */
3518 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3519 goto out0;
3520
3521 XFS_BTREE_STATS_INC(cur, killroot);
3522
3523#ifdef DEBUG
3524 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3525 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3526 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3527 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3528#endif
3529
3530 index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3531 if (index) {
3532 xfs_iroot_realloc(cur->bc_ino.ip, index,
3533 cur->bc_ino.whichfork);
3534 block = ifp->if_broot;
3535 }
3536
3537 be16_add_cpu(&block->bb_numrecs, index);
3538 ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3539
3540 kp = xfs_btree_key_addr(cur, 1, block);
3541 ckp = xfs_btree_key_addr(cur, 1, cblock);
3542 xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3543
3544 pp = xfs_btree_ptr_addr(cur, 1, block);
3545 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3546
3547 for (i = 0; i < numrecs; i++) {
3548 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3549 if (error)
3550 return error;
3551 }
3552
3553 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3554
3555 error = xfs_btree_free_block(cur, cbp);
3556 if (error)
3557 return error;
3558
3559 cur->bc_bufs[level - 1] = NULL;
3560 be16_add_cpu(&block->bb_level, -1);
3561 xfs_trans_log_inode(cur->bc_tp, ip,
3562 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3563 cur->bc_nlevels--;
3564out0:
3565 return 0;
3566}
3567
3568/*
3569 * Kill the current root node, and replace it with it's only child node.
3570 */
3571STATIC int
3572xfs_btree_kill_root(
3573 struct xfs_btree_cur *cur,
3574 struct xfs_buf *bp,
3575 int level,
3576 union xfs_btree_ptr *newroot)
3577{
3578 int error;
3579
3580 XFS_BTREE_STATS_INC(cur, killroot);
3581
3582 /*
3583 * Update the root pointer, decreasing the level by 1 and then
3584 * free the old root.
3585 */
3586 cur->bc_ops->set_root(cur, newroot, -1);
3587
3588 error = xfs_btree_free_block(cur, bp);
3589 if (error)
3590 return error;
3591
3592 cur->bc_bufs[level] = NULL;
3593 cur->bc_ra[level] = 0;
3594 cur->bc_nlevels--;
3595
3596 return 0;
3597}
3598
3599STATIC int
3600xfs_btree_dec_cursor(
3601 struct xfs_btree_cur *cur,
3602 int level,
3603 int *stat)
3604{
3605 int error;
3606 int i;
3607
3608 if (level > 0) {
3609 error = xfs_btree_decrement(cur, level, &i);
3610 if (error)
3611 return error;
3612 }
3613
3614 *stat = 1;
3615 return 0;
3616}
3617
3618/*
3619 * Single level of the btree record deletion routine.
3620 * Delete record pointed to by cur/level.
3621 * Remove the record from its block then rebalance the tree.
3622 * Return 0 for error, 1 for done, 2 to go on to the next level.
3623 */
3624STATIC int /* error */
3625xfs_btree_delrec(
3626 struct xfs_btree_cur *cur, /* btree cursor */
3627 int level, /* level removing record from */
3628 int *stat) /* fail/done/go-on */
3629{
3630 struct xfs_btree_block *block; /* btree block */
3631 union xfs_btree_ptr cptr; /* current block ptr */
3632 struct xfs_buf *bp; /* buffer for block */
3633 int error; /* error return value */
3634 int i; /* loop counter */
3635 union xfs_btree_ptr lptr; /* left sibling block ptr */
3636 struct xfs_buf *lbp; /* left buffer pointer */
3637 struct xfs_btree_block *left; /* left btree block */
3638 int lrecs = 0; /* left record count */
3639 int ptr; /* key/record index */
3640 union xfs_btree_ptr rptr; /* right sibling block ptr */
3641 struct xfs_buf *rbp; /* right buffer pointer */
3642 struct xfs_btree_block *right; /* right btree block */
3643 struct xfs_btree_block *rrblock; /* right-right btree block */
3644 struct xfs_buf *rrbp; /* right-right buffer pointer */
3645 int rrecs = 0; /* right record count */
3646 struct xfs_btree_cur *tcur; /* temporary btree cursor */
3647 int numrecs; /* temporary numrec count */
3648
3649 tcur = NULL;
3650
3651 /* Get the index of the entry being deleted, check for nothing there. */
3652 ptr = cur->bc_ptrs[level];
3653 if (ptr == 0) {
3654 *stat = 0;
3655 return 0;
3656 }
3657
3658 /* Get the buffer & block containing the record or key/ptr. */
3659 block = xfs_btree_get_block(cur, level, &bp);
3660 numrecs = xfs_btree_get_numrecs(block);
3661
3662#ifdef DEBUG
3663 error = xfs_btree_check_block(cur, block, level, bp);
3664 if (error)
3665 goto error0;
3666#endif
3667
3668 /* Fail if we're off the end of the block. */
3669 if (ptr > numrecs) {
3670 *stat = 0;
3671 return 0;
3672 }
3673
3674 XFS_BTREE_STATS_INC(cur, delrec);
3675 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3676
3677 /* Excise the entries being deleted. */
3678 if (level > 0) {
3679 /* It's a nonleaf. operate on keys and ptrs */
3680 union xfs_btree_key *lkp;
3681 union xfs_btree_ptr *lpp;
3682
3683 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3684 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3685
3686 for (i = 0; i < numrecs - ptr; i++) {
3687 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3688 if (error)
3689 goto error0;
3690 }
3691
3692 if (ptr < numrecs) {
3693 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3694 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3695 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3696 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3697 }
3698 } else {
3699 /* It's a leaf. operate on records */
3700 if (ptr < numrecs) {
3701 xfs_btree_shift_recs(cur,
3702 xfs_btree_rec_addr(cur, ptr + 1, block),
3703 -1, numrecs - ptr);
3704 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3705 }
3706 }
3707
3708 /*
3709 * Decrement and log the number of entries in the block.
3710 */
3711 xfs_btree_set_numrecs(block, --numrecs);
3712 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3713
3714 /*
3715 * If we are tracking the last record in the tree and
3716 * we are at the far right edge of the tree, update it.
3717 */
3718 if (xfs_btree_is_lastrec(cur, block, level)) {
3719 cur->bc_ops->update_lastrec(cur, block, NULL,
3720 ptr, LASTREC_DELREC);
3721 }
3722
3723 /*
3724 * We're at the root level. First, shrink the root block in-memory.
3725 * Try to get rid of the next level down. If we can't then there's
3726 * nothing left to do.
3727 */
3728 if (level == cur->bc_nlevels - 1) {
3729 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3730 xfs_iroot_realloc(cur->bc_ino.ip, -1,
3731 cur->bc_ino.whichfork);
3732
3733 error = xfs_btree_kill_iroot(cur);
3734 if (error)
3735 goto error0;
3736
3737 error = xfs_btree_dec_cursor(cur, level, stat);
3738 if (error)
3739 goto error0;
3740 *stat = 1;
3741 return 0;
3742 }
3743
3744 /*
3745 * If this is the root level, and there's only one entry left,
3746 * and it's NOT the leaf level, then we can get rid of this
3747 * level.
3748 */
3749 if (numrecs == 1 && level > 0) {
3750 union xfs_btree_ptr *pp;
3751 /*
3752 * pp is still set to the first pointer in the block.
3753 * Make it the new root of the btree.
3754 */
3755 pp = xfs_btree_ptr_addr(cur, 1, block);
3756 error = xfs_btree_kill_root(cur, bp, level, pp);
3757 if (error)
3758 goto error0;
3759 } else if (level > 0) {
3760 error = xfs_btree_dec_cursor(cur, level, stat);
3761 if (error)
3762 goto error0;
3763 }
3764 *stat = 1;
3765 return 0;
3766 }
3767
3768 /*
3769 * If we deleted the leftmost entry in the block, update the
3770 * key values above us in the tree.
3771 */
3772 if (xfs_btree_needs_key_update(cur, ptr)) {
3773 error = xfs_btree_update_keys(cur, level);
3774 if (error)
3775 goto error0;
3776 }
3777
3778 /*
3779 * If the number of records remaining in the block is at least
3780 * the minimum, we're done.
3781 */
3782 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3783 error = xfs_btree_dec_cursor(cur, level, stat);
3784 if (error)
3785 goto error0;
3786 return 0;
3787 }
3788
3789 /*
3790 * Otherwise, we have to move some records around to keep the
3791 * tree balanced. Look at the left and right sibling blocks to
3792 * see if we can re-balance by moving only one record.
3793 */
3794 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3795 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3796
3797 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3798 /*
3799 * One child of root, need to get a chance to copy its contents
3800 * into the root and delete it. Can't go up to next level,
3801 * there's nothing to delete there.
3802 */
3803 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3804 xfs_btree_ptr_is_null(cur, &lptr) &&
3805 level == cur->bc_nlevels - 2) {
3806 error = xfs_btree_kill_iroot(cur);
3807 if (!error)
3808 error = xfs_btree_dec_cursor(cur, level, stat);
3809 if (error)
3810 goto error0;
3811 return 0;
3812 }
3813 }
3814
3815 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3816 !xfs_btree_ptr_is_null(cur, &lptr));
3817
3818 /*
3819 * Duplicate the cursor so our btree manipulations here won't
3820 * disrupt the next level up.
3821 */
3822 error = xfs_btree_dup_cursor(cur, &tcur);
3823 if (error)
3824 goto error0;
3825
3826 /*
3827 * If there's a right sibling, see if it's ok to shift an entry
3828 * out of it.
3829 */
3830 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3831 /*
3832 * Move the temp cursor to the last entry in the next block.
3833 * Actually any entry but the first would suffice.
3834 */
3835 i = xfs_btree_lastrec(tcur, level);
3836 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3837 error = -EFSCORRUPTED;
3838 goto error0;
3839 }
3840
3841 error = xfs_btree_increment(tcur, level, &i);
3842 if (error)
3843 goto error0;
3844 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3845 error = -EFSCORRUPTED;
3846 goto error0;
3847 }
3848
3849 i = xfs_btree_lastrec(tcur, level);
3850 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3851 error = -EFSCORRUPTED;
3852 goto error0;
3853 }
3854
3855 /* Grab a pointer to the block. */
3856 right = xfs_btree_get_block(tcur, level, &rbp);
3857#ifdef DEBUG
3858 error = xfs_btree_check_block(tcur, right, level, rbp);
3859 if (error)
3860 goto error0;
3861#endif
3862 /* Grab the current block number, for future use. */
3863 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3864
3865 /*
3866 * If right block is full enough so that removing one entry
3867 * won't make it too empty, and left-shifting an entry out
3868 * of right to us works, we're done.
3869 */
3870 if (xfs_btree_get_numrecs(right) - 1 >=
3871 cur->bc_ops->get_minrecs(tcur, level)) {
3872 error = xfs_btree_lshift(tcur, level, &i);
3873 if (error)
3874 goto error0;
3875 if (i) {
3876 ASSERT(xfs_btree_get_numrecs(block) >=
3877 cur->bc_ops->get_minrecs(tcur, level));
3878
3879 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3880 tcur = NULL;
3881
3882 error = xfs_btree_dec_cursor(cur, level, stat);
3883 if (error)
3884 goto error0;
3885 return 0;
3886 }
3887 }
3888
3889 /*
3890 * Otherwise, grab the number of records in right for
3891 * future reference, and fix up the temp cursor to point
3892 * to our block again (last record).
3893 */
3894 rrecs = xfs_btree_get_numrecs(right);
3895 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3896 i = xfs_btree_firstrec(tcur, level);
3897 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3898 error = -EFSCORRUPTED;
3899 goto error0;
3900 }
3901
3902 error = xfs_btree_decrement(tcur, level, &i);
3903 if (error)
3904 goto error0;
3905 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3906 error = -EFSCORRUPTED;
3907 goto error0;
3908 }
3909 }
3910 }
3911
3912 /*
3913 * If there's a left sibling, see if it's ok to shift an entry
3914 * out of it.
3915 */
3916 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3917 /*
3918 * Move the temp cursor to the first entry in the
3919 * previous block.
3920 */
3921 i = xfs_btree_firstrec(tcur, level);
3922 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3923 error = -EFSCORRUPTED;
3924 goto error0;
3925 }
3926
3927 error = xfs_btree_decrement(tcur, level, &i);
3928 if (error)
3929 goto error0;
3930 i = xfs_btree_firstrec(tcur, level);
3931 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3932 error = -EFSCORRUPTED;
3933 goto error0;
3934 }
3935
3936 /* Grab a pointer to the block. */
3937 left = xfs_btree_get_block(tcur, level, &lbp);
3938#ifdef DEBUG
3939 error = xfs_btree_check_block(cur, left, level, lbp);
3940 if (error)
3941 goto error0;
3942#endif
3943 /* Grab the current block number, for future use. */
3944 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3945
3946 /*
3947 * If left block is full enough so that removing one entry
3948 * won't make it too empty, and right-shifting an entry out
3949 * of left to us works, we're done.
3950 */
3951 if (xfs_btree_get_numrecs(left) - 1 >=
3952 cur->bc_ops->get_minrecs(tcur, level)) {
3953 error = xfs_btree_rshift(tcur, level, &i);
3954 if (error)
3955 goto error0;
3956 if (i) {
3957 ASSERT(xfs_btree_get_numrecs(block) >=
3958 cur->bc_ops->get_minrecs(tcur, level));
3959 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3960 tcur = NULL;
3961 if (level == 0)
3962 cur->bc_ptrs[0]++;
3963
3964 *stat = 1;
3965 return 0;
3966 }
3967 }
3968
3969 /*
3970 * Otherwise, grab the number of records in right for
3971 * future reference.
3972 */
3973 lrecs = xfs_btree_get_numrecs(left);
3974 }
3975
3976 /* Delete the temp cursor, we're done with it. */
3977 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3978 tcur = NULL;
3979
3980 /* If here, we need to do a join to keep the tree balanced. */
3981 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
3982
3983 if (!xfs_btree_ptr_is_null(cur, &lptr) &&
3984 lrecs + xfs_btree_get_numrecs(block) <=
3985 cur->bc_ops->get_maxrecs(cur, level)) {
3986 /*
3987 * Set "right" to be the starting block,
3988 * "left" to be the left neighbor.
3989 */
3990 rptr = cptr;
3991 right = block;
3992 rbp = bp;
3993 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3994 if (error)
3995 goto error0;
3996
3997 /*
3998 * If that won't work, see if we can join with the right neighbor block.
3999 */
4000 } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4001 rrecs + xfs_btree_get_numrecs(block) <=
4002 cur->bc_ops->get_maxrecs(cur, level)) {
4003 /*
4004 * Set "left" to be the starting block,
4005 * "right" to be the right neighbor.
4006 */
4007 lptr = cptr;
4008 left = block;
4009 lbp = bp;
4010 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4011 if (error)
4012 goto error0;
4013
4014 /*
4015 * Otherwise, we can't fix the imbalance.
4016 * Just return. This is probably a logic error, but it's not fatal.
4017 */
4018 } else {
4019 error = xfs_btree_dec_cursor(cur, level, stat);
4020 if (error)
4021 goto error0;
4022 return 0;
4023 }
4024
4025 rrecs = xfs_btree_get_numrecs(right);
4026 lrecs = xfs_btree_get_numrecs(left);
4027
4028 /*
4029 * We're now going to join "left" and "right" by moving all the stuff
4030 * in "right" to "left" and deleting "right".
4031 */
4032 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4033 if (level > 0) {
4034 /* It's a non-leaf. Move keys and pointers. */
4035 union xfs_btree_key *lkp; /* left btree key */
4036 union xfs_btree_ptr *lpp; /* left address pointer */
4037 union xfs_btree_key *rkp; /* right btree key */
4038 union xfs_btree_ptr *rpp; /* right address pointer */
4039
4040 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4041 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4042 rkp = xfs_btree_key_addr(cur, 1, right);
4043 rpp = xfs_btree_ptr_addr(cur, 1, right);
4044
4045 for (i = 1; i < rrecs; i++) {
4046 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4047 if (error)
4048 goto error0;
4049 }
4050
4051 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4052 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4053
4054 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4055 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4056 } else {
4057 /* It's a leaf. Move records. */
4058 union xfs_btree_rec *lrp; /* left record pointer */
4059 union xfs_btree_rec *rrp; /* right record pointer */
4060
4061 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4062 rrp = xfs_btree_rec_addr(cur, 1, right);
4063
4064 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4065 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4066 }
4067
4068 XFS_BTREE_STATS_INC(cur, join);
4069
4070 /*
4071 * Fix up the number of records and right block pointer in the
4072 * surviving block, and log it.
4073 */
4074 xfs_btree_set_numrecs(left, lrecs + rrecs);
4075 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4076 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4077 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4078
4079 /* If there is a right sibling, point it to the remaining block. */
4080 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4081 if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4082 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4083 if (error)
4084 goto error0;
4085 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4086 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4087 }
4088
4089 /* Free the deleted block. */
4090 error = xfs_btree_free_block(cur, rbp);
4091 if (error)
4092 goto error0;
4093
4094 /*
4095 * If we joined with the left neighbor, set the buffer in the
4096 * cursor to the left block, and fix up the index.
4097 */
4098 if (bp != lbp) {
4099 cur->bc_bufs[level] = lbp;
4100 cur->bc_ptrs[level] += lrecs;
4101 cur->bc_ra[level] = 0;
4102 }
4103 /*
4104 * If we joined with the right neighbor and there's a level above
4105 * us, increment the cursor at that level.
4106 */
4107 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4108 (level + 1 < cur->bc_nlevels)) {
4109 error = xfs_btree_increment(cur, level + 1, &i);
4110 if (error)
4111 goto error0;
4112 }
4113
4114 /*
4115 * Readjust the ptr at this level if it's not a leaf, since it's
4116 * still pointing at the deletion point, which makes the cursor
4117 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4118 * We can't use decrement because it would change the next level up.
4119 */
4120 if (level > 0)
4121 cur->bc_ptrs[level]--;
4122
4123 /*
4124 * We combined blocks, so we have to update the parent keys if the
4125 * btree supports overlapped intervals. However, bc_ptrs[level + 1]
4126 * points to the old block so that the caller knows which record to
4127 * delete. Therefore, the caller must be savvy enough to call updkeys
4128 * for us if we return stat == 2. The other exit points from this
4129 * function don't require deletions further up the tree, so they can
4130 * call updkeys directly.
4131 */
4132
4133 /* Return value means the next level up has something to do. */
4134 *stat = 2;
4135 return 0;
4136
4137error0:
4138 if (tcur)
4139 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4140 return error;
4141}
4142
4143/*
4144 * Delete the record pointed to by cur.
4145 * The cursor refers to the place where the record was (could be inserted)
4146 * when the operation returns.
4147 */
4148int /* error */
4149xfs_btree_delete(
4150 struct xfs_btree_cur *cur,
4151 int *stat) /* success/failure */
4152{
4153 int error; /* error return value */
4154 int level;
4155 int i;
4156 bool joined = false;
4157
4158 /*
4159 * Go up the tree, starting at leaf level.
4160 *
4161 * If 2 is returned then a join was done; go to the next level.
4162 * Otherwise we are done.
4163 */
4164 for (level = 0, i = 2; i == 2; level++) {
4165 error = xfs_btree_delrec(cur, level, &i);
4166 if (error)
4167 goto error0;
4168 if (i == 2)
4169 joined = true;
4170 }
4171
4172 /*
4173 * If we combined blocks as part of deleting the record, delrec won't
4174 * have updated the parent high keys so we have to do that here.
4175 */
4176 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4177 error = xfs_btree_updkeys_force(cur, 0);
4178 if (error)
4179 goto error0;
4180 }
4181
4182 if (i == 0) {
4183 for (level = 1; level < cur->bc_nlevels; level++) {
4184 if (cur->bc_ptrs[level] == 0) {
4185 error = xfs_btree_decrement(cur, level, &i);
4186 if (error)
4187 goto error0;
4188 break;
4189 }
4190 }
4191 }
4192
4193 *stat = i;
4194 return 0;
4195error0:
4196 return error;
4197}
4198
4199/*
4200 * Get the data from the pointed-to record.
4201 */
4202int /* error */
4203xfs_btree_get_rec(
4204 struct xfs_btree_cur *cur, /* btree cursor */
4205 union xfs_btree_rec **recp, /* output: btree record */
4206 int *stat) /* output: success/failure */
4207{
4208 struct xfs_btree_block *block; /* btree block */
4209 struct xfs_buf *bp; /* buffer pointer */
4210 int ptr; /* record number */
4211#ifdef DEBUG
4212 int error; /* error return value */
4213#endif
4214
4215 ptr = cur->bc_ptrs[0];
4216 block = xfs_btree_get_block(cur, 0, &bp);
4217
4218#ifdef DEBUG
4219 error = xfs_btree_check_block(cur, block, 0, bp);
4220 if (error)
4221 return error;
4222#endif
4223
4224 /*
4225 * Off the right end or left end, return failure.
4226 */
4227 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4228 *stat = 0;
4229 return 0;
4230 }
4231
4232 /*
4233 * Point to the record and extract its data.
4234 */
4235 *recp = xfs_btree_rec_addr(cur, ptr, block);
4236 *stat = 1;
4237 return 0;
4238}
4239
4240/* Visit a block in a btree. */
4241STATIC int
4242xfs_btree_visit_block(
4243 struct xfs_btree_cur *cur,
4244 int level,
4245 xfs_btree_visit_blocks_fn fn,
4246 void *data)
4247{
4248 struct xfs_btree_block *block;
4249 struct xfs_buf *bp;
4250 union xfs_btree_ptr rptr;
4251 int error;
4252
4253 /* do right sibling readahead */
4254 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4255 block = xfs_btree_get_block(cur, level, &bp);
4256
4257 /* process the block */
4258 error = fn(cur, level, data);
4259 if (error)
4260 return error;
4261
4262 /* now read rh sibling block for next iteration */
4263 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4264 if (xfs_btree_ptr_is_null(cur, &rptr))
4265 return -ENOENT;
4266
4267 return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4268}
4269
4270
4271/* Visit every block in a btree. */
4272int
4273xfs_btree_visit_blocks(
4274 struct xfs_btree_cur *cur,
4275 xfs_btree_visit_blocks_fn fn,
4276 unsigned int flags,
4277 void *data)
4278{
4279 union xfs_btree_ptr lptr;
4280 int level;
4281 struct xfs_btree_block *block = NULL;
4282 int error = 0;
4283
4284 cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4285
4286 /* for each level */
4287 for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4288 /* grab the left hand block */
4289 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4290 if (error)
4291 return error;
4292
4293 /* readahead the left most block for the next level down */
4294 if (level > 0) {
4295 union xfs_btree_ptr *ptr;
4296
4297 ptr = xfs_btree_ptr_addr(cur, 1, block);
4298 xfs_btree_readahead_ptr(cur, ptr, 1);
4299
4300 /* save for the next iteration of the loop */
4301 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4302
4303 if (!(flags & XFS_BTREE_VISIT_LEAVES))
4304 continue;
4305 } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4306 continue;
4307 }
4308
4309 /* for each buffer in the level */
4310 do {
4311 error = xfs_btree_visit_block(cur, level, fn, data);
4312 } while (!error);
4313
4314 if (error != -ENOENT)
4315 return error;
4316 }
4317
4318 return 0;
4319}
4320
4321/*
4322 * Change the owner of a btree.
4323 *
4324 * The mechanism we use here is ordered buffer logging. Because we don't know
4325 * how many buffers were are going to need to modify, we don't really want to
4326 * have to make transaction reservations for the worst case of every buffer in a
4327 * full size btree as that may be more space that we can fit in the log....
4328 *
4329 * We do the btree walk in the most optimal manner possible - we have sibling
4330 * pointers so we can just walk all the blocks on each level from left to right
4331 * in a single pass, and then move to the next level and do the same. We can
4332 * also do readahead on the sibling pointers to get IO moving more quickly,
4333 * though for slow disks this is unlikely to make much difference to performance
4334 * as the amount of CPU work we have to do before moving to the next block is
4335 * relatively small.
4336 *
4337 * For each btree block that we load, modify the owner appropriately, set the
4338 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4339 * we mark the region we change dirty so that if the buffer is relogged in
4340 * a subsequent transaction the changes we make here as an ordered buffer are
4341 * correctly relogged in that transaction. If we are in recovery context, then
4342 * just queue the modified buffer as delayed write buffer so the transaction
4343 * recovery completion writes the changes to disk.
4344 */
4345struct xfs_btree_block_change_owner_info {
4346 uint64_t new_owner;
4347 struct list_head *buffer_list;
4348};
4349
4350static int
4351xfs_btree_block_change_owner(
4352 struct xfs_btree_cur *cur,
4353 int level,
4354 void *data)
4355{
4356 struct xfs_btree_block_change_owner_info *bbcoi = data;
4357 struct xfs_btree_block *block;
4358 struct xfs_buf *bp;
4359
4360 /* modify the owner */
4361 block = xfs_btree_get_block(cur, level, &bp);
4362 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4363 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4364 return 0;
4365 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4366 } else {
4367 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4368 return 0;
4369 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4370 }
4371
4372 /*
4373 * If the block is a root block hosted in an inode, we might not have a
4374 * buffer pointer here and we shouldn't attempt to log the change as the
4375 * information is already held in the inode and discarded when the root
4376 * block is formatted into the on-disk inode fork. We still change it,
4377 * though, so everything is consistent in memory.
4378 */
4379 if (!bp) {
4380 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4381 ASSERT(level == cur->bc_nlevels - 1);
4382 return 0;
4383 }
4384
4385 if (cur->bc_tp) {
4386 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4387 xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4388 return -EAGAIN;
4389 }
4390 } else {
4391 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4392 }
4393
4394 return 0;
4395}
4396
4397int
4398xfs_btree_change_owner(
4399 struct xfs_btree_cur *cur,
4400 uint64_t new_owner,
4401 struct list_head *buffer_list)
4402{
4403 struct xfs_btree_block_change_owner_info bbcoi;
4404
4405 bbcoi.new_owner = new_owner;
4406 bbcoi.buffer_list = buffer_list;
4407
4408 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4409 XFS_BTREE_VISIT_ALL, &bbcoi);
4410}
4411
4412/* Verify the v5 fields of a long-format btree block. */
4413xfs_failaddr_t
4414xfs_btree_lblock_v5hdr_verify(
4415 struct xfs_buf *bp,
4416 uint64_t owner)
4417{
4418 struct xfs_mount *mp = bp->b_mount;
4419 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4420
4421 if (!xfs_sb_version_hascrc(&mp->m_sb))
4422 return __this_address;
4423 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4424 return __this_address;
4425 if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn))
4426 return __this_address;
4427 if (owner != XFS_RMAP_OWN_UNKNOWN &&
4428 be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4429 return __this_address;
4430 return NULL;
4431}
4432
4433/* Verify a long-format btree block. */
4434xfs_failaddr_t
4435xfs_btree_lblock_verify(
4436 struct xfs_buf *bp,
4437 unsigned int max_recs)
4438{
4439 struct xfs_mount *mp = bp->b_mount;
4440 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4441
4442 /* numrecs verification */
4443 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4444 return __this_address;
4445
4446 /* sibling pointer verification */
4447 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
4448 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
4449 return __this_address;
4450 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
4451 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
4452 return __this_address;
4453
4454 return NULL;
4455}
4456
4457/**
4458 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4459 * btree block
4460 *
4461 * @bp: buffer containing the btree block
4462 */
4463xfs_failaddr_t
4464xfs_btree_sblock_v5hdr_verify(
4465 struct xfs_buf *bp)
4466{
4467 struct xfs_mount *mp = bp->b_mount;
4468 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4469 struct xfs_perag *pag = bp->b_pag;
4470
4471 if (!xfs_sb_version_hascrc(&mp->m_sb))
4472 return __this_address;
4473 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4474 return __this_address;
4475 if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4476 return __this_address;
4477 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4478 return __this_address;
4479 return NULL;
4480}
4481
4482/**
4483 * xfs_btree_sblock_verify() -- verify a short-format btree block
4484 *
4485 * @bp: buffer containing the btree block
4486 * @max_recs: maximum records allowed in this btree node
4487 */
4488xfs_failaddr_t
4489xfs_btree_sblock_verify(
4490 struct xfs_buf *bp,
4491 unsigned int max_recs)
4492{
4493 struct xfs_mount *mp = bp->b_mount;
4494 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4495 xfs_agblock_t agno;
4496
4497 /* numrecs verification */
4498 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4499 return __this_address;
4500
4501 /* sibling pointer verification */
4502 agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
4503 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
4504 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
4505 return __this_address;
4506 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
4507 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
4508 return __this_address;
4509
4510 return NULL;
4511}
4512
4513/*
4514 * Calculate the number of btree levels needed to store a given number of
4515 * records in a short-format btree.
4516 */
4517uint
4518xfs_btree_compute_maxlevels(
4519 uint *limits,
4520 unsigned long len)
4521{
4522 uint level;
4523 unsigned long maxblocks;
4524
4525 maxblocks = (len + limits[0] - 1) / limits[0];
4526 for (level = 1; maxblocks > 1; level++)
4527 maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4528 return level;
4529}
4530
4531/*
4532 * Query a regular btree for all records overlapping a given interval.
4533 * Start with a LE lookup of the key of low_rec and return all records
4534 * until we find a record with a key greater than the key of high_rec.
4535 */
4536STATIC int
4537xfs_btree_simple_query_range(
4538 struct xfs_btree_cur *cur,
4539 union xfs_btree_key *low_key,
4540 union xfs_btree_key *high_key,
4541 xfs_btree_query_range_fn fn,
4542 void *priv)
4543{
4544 union xfs_btree_rec *recp;
4545 union xfs_btree_key rec_key;
4546 int64_t diff;
4547 int stat;
4548 bool firstrec = true;
4549 int error;
4550
4551 ASSERT(cur->bc_ops->init_high_key_from_rec);
4552 ASSERT(cur->bc_ops->diff_two_keys);
4553
4554 /*
4555 * Find the leftmost record. The btree cursor must be set
4556 * to the low record used to generate low_key.
4557 */
4558 stat = 0;
4559 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4560 if (error)
4561 goto out;
4562
4563 /* Nothing? See if there's anything to the right. */
4564 if (!stat) {
4565 error = xfs_btree_increment(cur, 0, &stat);
4566 if (error)
4567 goto out;
4568 }
4569
4570 while (stat) {
4571 /* Find the record. */
4572 error = xfs_btree_get_rec(cur, &recp, &stat);
4573 if (error || !stat)
4574 break;
4575
4576 /* Skip if high_key(rec) < low_key. */
4577 if (firstrec) {
4578 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4579 firstrec = false;
4580 diff = cur->bc_ops->diff_two_keys(cur, low_key,
4581 &rec_key);
4582 if (diff > 0)
4583 goto advloop;
4584 }
4585
4586 /* Stop if high_key < low_key(rec). */
4587 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4588 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4589 if (diff > 0)
4590 break;
4591
4592 /* Callback */
4593 error = fn(cur, recp, priv);
4594 if (error)
4595 break;
4596
4597advloop:
4598 /* Move on to the next record. */
4599 error = xfs_btree_increment(cur, 0, &stat);
4600 if (error)
4601 break;
4602 }
4603
4604out:
4605 return error;
4606}
4607
4608/*
4609 * Query an overlapped interval btree for all records overlapping a given
4610 * interval. This function roughly follows the algorithm given in
4611 * "Interval Trees" of _Introduction to Algorithms_, which is section
4612 * 14.3 in the 2nd and 3rd editions.
4613 *
4614 * First, generate keys for the low and high records passed in.
4615 *
4616 * For any leaf node, generate the high and low keys for the record.
4617 * If the record keys overlap with the query low/high keys, pass the
4618 * record to the function iterator.
4619 *
4620 * For any internal node, compare the low and high keys of each
4621 * pointer against the query low/high keys. If there's an overlap,
4622 * follow the pointer.
4623 *
4624 * As an optimization, we stop scanning a block when we find a low key
4625 * that is greater than the query's high key.
4626 */
4627STATIC int
4628xfs_btree_overlapped_query_range(
4629 struct xfs_btree_cur *cur,
4630 union xfs_btree_key *low_key,
4631 union xfs_btree_key *high_key,
4632 xfs_btree_query_range_fn fn,
4633 void *priv)
4634{
4635 union xfs_btree_ptr ptr;
4636 union xfs_btree_ptr *pp;
4637 union xfs_btree_key rec_key;
4638 union xfs_btree_key rec_hkey;
4639 union xfs_btree_key *lkp;
4640 union xfs_btree_key *hkp;
4641 union xfs_btree_rec *recp;
4642 struct xfs_btree_block *block;
4643 int64_t ldiff;
4644 int64_t hdiff;
4645 int level;
4646 struct xfs_buf *bp;
4647 int i;
4648 int error;
4649
4650 /* Load the root of the btree. */
4651 level = cur->bc_nlevels - 1;
4652 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4653 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4654 if (error)
4655 return error;
4656 xfs_btree_get_block(cur, level, &bp);
4657 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4658#ifdef DEBUG
4659 error = xfs_btree_check_block(cur, block, level, bp);
4660 if (error)
4661 goto out;
4662#endif
4663 cur->bc_ptrs[level] = 1;
4664
4665 while (level < cur->bc_nlevels) {
4666 block = xfs_btree_get_block(cur, level, &bp);
4667
4668 /* End of node, pop back towards the root. */
4669 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4670pop_up:
4671 if (level < cur->bc_nlevels - 1)
4672 cur->bc_ptrs[level + 1]++;
4673 level++;
4674 continue;
4675 }
4676
4677 if (level == 0) {
4678 /* Handle a leaf node. */
4679 recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4680
4681 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4682 ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4683 low_key);
4684
4685 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4686 hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4687 &rec_key);
4688
4689 /*
4690 * If (record's high key >= query's low key) and
4691 * (query's high key >= record's low key), then
4692 * this record overlaps the query range; callback.
4693 */
4694 if (ldiff >= 0 && hdiff >= 0) {
4695 error = fn(cur, recp, priv);
4696 if (error)
4697 break;
4698 } else if (hdiff < 0) {
4699 /* Record is larger than high key; pop. */
4700 goto pop_up;
4701 }
4702 cur->bc_ptrs[level]++;
4703 continue;
4704 }
4705
4706 /* Handle an internal node. */
4707 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4708 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4709 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4710
4711 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4712 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4713
4714 /*
4715 * If (pointer's high key >= query's low key) and
4716 * (query's high key >= pointer's low key), then
4717 * this record overlaps the query range; follow pointer.
4718 */
4719 if (ldiff >= 0 && hdiff >= 0) {
4720 level--;
4721 error = xfs_btree_lookup_get_block(cur, level, pp,
4722 &block);
4723 if (error)
4724 goto out;
4725 xfs_btree_get_block(cur, level, &bp);
4726 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4727#ifdef DEBUG
4728 error = xfs_btree_check_block(cur, block, level, bp);
4729 if (error)
4730 goto out;
4731#endif
4732 cur->bc_ptrs[level] = 1;
4733 continue;
4734 } else if (hdiff < 0) {
4735 /* The low key is larger than the upper range; pop. */
4736 goto pop_up;
4737 }
4738 cur->bc_ptrs[level]++;
4739 }
4740
4741out:
4742 /*
4743 * If we don't end this function with the cursor pointing at a record
4744 * block, a subsequent non-error cursor deletion will not release
4745 * node-level buffers, causing a buffer leak. This is quite possible
4746 * with a zero-results range query, so release the buffers if we
4747 * failed to return any results.
4748 */
4749 if (cur->bc_bufs[0] == NULL) {
4750 for (i = 0; i < cur->bc_nlevels; i++) {
4751 if (cur->bc_bufs[i]) {
4752 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4753 cur->bc_bufs[i] = NULL;
4754 cur->bc_ptrs[i] = 0;
4755 cur->bc_ra[i] = 0;
4756 }
4757 }
4758 }
4759
4760 return error;
4761}
4762
4763/*
4764 * Query a btree for all records overlapping a given interval of keys. The
4765 * supplied function will be called with each record found; return one of the
4766 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4767 * code. This function returns -ECANCELED, zero, or a negative error code.
4768 */
4769int
4770xfs_btree_query_range(
4771 struct xfs_btree_cur *cur,
4772 union xfs_btree_irec *low_rec,
4773 union xfs_btree_irec *high_rec,
4774 xfs_btree_query_range_fn fn,
4775 void *priv)
4776{
4777 union xfs_btree_rec rec;
4778 union xfs_btree_key low_key;
4779 union xfs_btree_key high_key;
4780
4781 /* Find the keys of both ends of the interval. */
4782 cur->bc_rec = *high_rec;
4783 cur->bc_ops->init_rec_from_cur(cur, &rec);
4784 cur->bc_ops->init_key_from_rec(&high_key, &rec);
4785
4786 cur->bc_rec = *low_rec;
4787 cur->bc_ops->init_rec_from_cur(cur, &rec);
4788 cur->bc_ops->init_key_from_rec(&low_key, &rec);
4789
4790 /* Enforce low key < high key. */
4791 if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4792 return -EINVAL;
4793
4794 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4795 return xfs_btree_simple_query_range(cur, &low_key,
4796 &high_key, fn, priv);
4797 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4798 fn, priv);
4799}
4800
4801/* Query a btree for all records. */
4802int
4803xfs_btree_query_all(
4804 struct xfs_btree_cur *cur,
4805 xfs_btree_query_range_fn fn,
4806 void *priv)
4807{
4808 union xfs_btree_key low_key;
4809 union xfs_btree_key high_key;
4810
4811 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4812 memset(&low_key, 0, sizeof(low_key));
4813 memset(&high_key, 0xFF, sizeof(high_key));
4814
4815 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4816}
4817
4818/*
4819 * Calculate the number of blocks needed to store a given number of records
4820 * in a short-format (per-AG metadata) btree.
4821 */
4822unsigned long long
4823xfs_btree_calc_size(
4824 uint *limits,
4825 unsigned long long len)
4826{
4827 int level;
4828 int maxrecs;
4829 unsigned long long rval;
4830
4831 maxrecs = limits[0];
4832 for (level = 0, rval = 0; len > 1; level++) {
4833 len += maxrecs - 1;
4834 do_div(len, maxrecs);
4835 maxrecs = limits[1];
4836 rval += len;
4837 }
4838 return rval;
4839}
4840
4841static int
4842xfs_btree_count_blocks_helper(
4843 struct xfs_btree_cur *cur,
4844 int level,
4845 void *data)
4846{
4847 xfs_extlen_t *blocks = data;
4848 (*blocks)++;
4849
4850 return 0;
4851}
4852
4853/* Count the blocks in a btree and return the result in *blocks. */
4854int
4855xfs_btree_count_blocks(
4856 struct xfs_btree_cur *cur,
4857 xfs_extlen_t *blocks)
4858{
4859 *blocks = 0;
4860 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4861 XFS_BTREE_VISIT_ALL, blocks);
4862}
4863
4864/* Compare two btree pointers. */
4865int64_t
4866xfs_btree_diff_two_ptrs(
4867 struct xfs_btree_cur *cur,
4868 const union xfs_btree_ptr *a,
4869 const union xfs_btree_ptr *b)
4870{
4871 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4872 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4873 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4874}
4875
4876/* If there's an extent, we're done. */
4877STATIC int
4878xfs_btree_has_record_helper(
4879 struct xfs_btree_cur *cur,
4880 union xfs_btree_rec *rec,
4881 void *priv)
4882{
4883 return -ECANCELED;
4884}
4885
4886/* Is there a record covering a given range of keys? */
4887int
4888xfs_btree_has_record(
4889 struct xfs_btree_cur *cur,
4890 union xfs_btree_irec *low,
4891 union xfs_btree_irec *high,
4892 bool *exists)
4893{
4894 int error;
4895
4896 error = xfs_btree_query_range(cur, low, high,
4897 &xfs_btree_has_record_helper, NULL);
4898 if (error == -ECANCELED) {
4899 *exists = true;
4900 return 0;
4901 }
4902 *exists = false;
4903 return error;
4904}
4905
4906/* Are there more records in this btree? */
4907bool
4908xfs_btree_has_more_records(
4909 struct xfs_btree_cur *cur)
4910{
4911 struct xfs_btree_block *block;
4912 struct xfs_buf *bp;
4913
4914 block = xfs_btree_get_block(cur, 0, &bp);
4915
4916 /* There are still records in this block. */
4917 if (cur->bc_ptrs[0] < xfs_btree_get_numrecs(block))
4918 return true;
4919
4920 /* There are more record blocks. */
4921 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4922 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
4923 else
4924 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
4925}