Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * nvmem framework core.
   4 *
   5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
   6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
   7 */
   8
   9#include <linux/device.h>
  10#include <linux/export.h>
  11#include <linux/fs.h>
  12#include <linux/idr.h>
  13#include <linux/init.h>
  14#include <linux/kref.h>
  15#include <linux/module.h>
  16#include <linux/nvmem-consumer.h>
  17#include <linux/nvmem-provider.h>
  18#include <linux/gpio/consumer.h>
  19#include <linux/of.h>
  20#include <linux/slab.h>
  21
  22struct nvmem_device {
  23	struct module		*owner;
  24	struct device		dev;
  25	int			stride;
  26	int			word_size;
  27	int			id;
  28	struct kref		refcnt;
  29	size_t			size;
  30	bool			read_only;
  31	bool			root_only;
  32	int			flags;
  33	enum nvmem_type		type;
  34	struct bin_attribute	eeprom;
  35	struct device		*base_dev;
  36	struct list_head	cells;
  37	const struct nvmem_keepout *keepout;
  38	unsigned int		nkeepout;
  39	nvmem_reg_read_t	reg_read;
  40	nvmem_reg_write_t	reg_write;
  41	nvmem_cell_post_process_t cell_post_process;
  42	struct gpio_desc	*wp_gpio;
  43	void *priv;
  44};
  45
  46#define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
  47
  48#define FLAG_COMPAT		BIT(0)
  49struct nvmem_cell_entry {
 
  50	const char		*name;
  51	int			offset;
  52	int			bytes;
  53	int			bit_offset;
  54	int			nbits;
  55	struct device_node	*np;
  56	struct nvmem_device	*nvmem;
  57	struct list_head	node;
  58};
  59
  60struct nvmem_cell {
  61	struct nvmem_cell_entry *entry;
  62	const char		*id;
  63};
  64
  65static DEFINE_MUTEX(nvmem_mutex);
  66static DEFINE_IDA(nvmem_ida);
  67
  68static DEFINE_MUTEX(nvmem_cell_mutex);
  69static LIST_HEAD(nvmem_cell_tables);
  70
  71static DEFINE_MUTEX(nvmem_lookup_mutex);
  72static LIST_HEAD(nvmem_lookup_list);
  73
  74static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
  75
  76static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
  77			    void *val, size_t bytes)
  78{
  79	if (nvmem->reg_read)
  80		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
  81
  82	return -EINVAL;
  83}
  84
  85static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
  86			     void *val, size_t bytes)
  87{
  88	int ret;
  89
  90	if (nvmem->reg_write) {
  91		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
  92		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
  93		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
  94		return ret;
  95	}
  96
  97	return -EINVAL;
  98}
  99
 100static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
 101				      unsigned int offset, void *val,
 102				      size_t bytes, int write)
 103{
 104
 105	unsigned int end = offset + bytes;
 106	unsigned int kend, ksize;
 107	const struct nvmem_keepout *keepout = nvmem->keepout;
 108	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
 109	int rc;
 110
 111	/*
 112	 * Skip all keepouts before the range being accessed.
 113	 * Keepouts are sorted.
 114	 */
 115	while ((keepout < keepoutend) && (keepout->end <= offset))
 116		keepout++;
 117
 118	while ((offset < end) && (keepout < keepoutend)) {
 119		/* Access the valid portion before the keepout. */
 120		if (offset < keepout->start) {
 121			kend = min(end, keepout->start);
 122			ksize = kend - offset;
 123			if (write)
 124				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
 125			else
 126				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
 127
 128			if (rc)
 129				return rc;
 130
 131			offset += ksize;
 132			val += ksize;
 133		}
 134
 135		/*
 136		 * Now we're aligned to the start of this keepout zone. Go
 137		 * through it.
 138		 */
 139		kend = min(end, keepout->end);
 140		ksize = kend - offset;
 141		if (!write)
 142			memset(val, keepout->value, ksize);
 143
 144		val += ksize;
 145		offset += ksize;
 146		keepout++;
 147	}
 148
 149	/*
 150	 * If we ran out of keepouts but there's still stuff to do, send it
 151	 * down directly
 152	 */
 153	if (offset < end) {
 154		ksize = end - offset;
 155		if (write)
 156			return __nvmem_reg_write(nvmem, offset, val, ksize);
 157		else
 158			return __nvmem_reg_read(nvmem, offset, val, ksize);
 159	}
 160
 161	return 0;
 162}
 163
 164static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
 165			  void *val, size_t bytes)
 166{
 167	if (!nvmem->nkeepout)
 168		return __nvmem_reg_read(nvmem, offset, val, bytes);
 169
 170	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
 171}
 172
 173static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
 174			   void *val, size_t bytes)
 175{
 176	if (!nvmem->nkeepout)
 177		return __nvmem_reg_write(nvmem, offset, val, bytes);
 178
 179	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
 180}
 181
 182#ifdef CONFIG_NVMEM_SYSFS
 183static const char * const nvmem_type_str[] = {
 184	[NVMEM_TYPE_UNKNOWN] = "Unknown",
 185	[NVMEM_TYPE_EEPROM] = "EEPROM",
 186	[NVMEM_TYPE_OTP] = "OTP",
 187	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
 188	[NVMEM_TYPE_FRAM] = "FRAM",
 189};
 190
 191#ifdef CONFIG_DEBUG_LOCK_ALLOC
 192static struct lock_class_key eeprom_lock_key;
 193#endif
 194
 195static ssize_t type_show(struct device *dev,
 196			 struct device_attribute *attr, char *buf)
 197{
 198	struct nvmem_device *nvmem = to_nvmem_device(dev);
 199
 200	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
 201}
 202
 203static DEVICE_ATTR_RO(type);
 204
 205static struct attribute *nvmem_attrs[] = {
 206	&dev_attr_type.attr,
 207	NULL,
 208};
 209
 210static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
 211				   struct bin_attribute *attr, char *buf,
 212				   loff_t pos, size_t count)
 213{
 214	struct device *dev;
 215	struct nvmem_device *nvmem;
 216	int rc;
 217
 218	if (attr->private)
 219		dev = attr->private;
 220	else
 221		dev = kobj_to_dev(kobj);
 222	nvmem = to_nvmem_device(dev);
 223
 224	/* Stop the user from reading */
 225	if (pos >= nvmem->size)
 226		return 0;
 227
 228	if (!IS_ALIGNED(pos, nvmem->stride))
 229		return -EINVAL;
 230
 231	if (count < nvmem->word_size)
 232		return -EINVAL;
 233
 234	if (pos + count > nvmem->size)
 235		count = nvmem->size - pos;
 236
 237	count = round_down(count, nvmem->word_size);
 238
 239	if (!nvmem->reg_read)
 240		return -EPERM;
 241
 242	rc = nvmem_reg_read(nvmem, pos, buf, count);
 243
 244	if (rc)
 245		return rc;
 246
 247	return count;
 248}
 249
 250static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
 251				    struct bin_attribute *attr, char *buf,
 252				    loff_t pos, size_t count)
 253{
 254	struct device *dev;
 255	struct nvmem_device *nvmem;
 256	int rc;
 257
 258	if (attr->private)
 259		dev = attr->private;
 260	else
 261		dev = kobj_to_dev(kobj);
 262	nvmem = to_nvmem_device(dev);
 263
 264	/* Stop the user from writing */
 265	if (pos >= nvmem->size)
 266		return -EFBIG;
 267
 268	if (!IS_ALIGNED(pos, nvmem->stride))
 269		return -EINVAL;
 270
 271	if (count < nvmem->word_size)
 272		return -EINVAL;
 273
 274	if (pos + count > nvmem->size)
 275		count = nvmem->size - pos;
 276
 277	count = round_down(count, nvmem->word_size);
 278
 279	if (!nvmem->reg_write)
 280		return -EPERM;
 281
 282	rc = nvmem_reg_write(nvmem, pos, buf, count);
 283
 284	if (rc)
 285		return rc;
 286
 287	return count;
 288}
 289
 290static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
 291{
 292	umode_t mode = 0400;
 293
 294	if (!nvmem->root_only)
 295		mode |= 0044;
 296
 297	if (!nvmem->read_only)
 298		mode |= 0200;
 299
 300	if (!nvmem->reg_write)
 301		mode &= ~0200;
 302
 303	if (!nvmem->reg_read)
 304		mode &= ~0444;
 305
 306	return mode;
 307}
 308
 309static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
 310					 struct bin_attribute *attr, int i)
 311{
 312	struct device *dev = kobj_to_dev(kobj);
 313	struct nvmem_device *nvmem = to_nvmem_device(dev);
 314
 315	attr->size = nvmem->size;
 316
 317	return nvmem_bin_attr_get_umode(nvmem);
 318}
 319
 320/* default read/write permissions */
 321static struct bin_attribute bin_attr_rw_nvmem = {
 322	.attr	= {
 323		.name	= "nvmem",
 324		.mode	= 0644,
 325	},
 326	.read	= bin_attr_nvmem_read,
 327	.write	= bin_attr_nvmem_write,
 328};
 329
 330static struct bin_attribute *nvmem_bin_attributes[] = {
 331	&bin_attr_rw_nvmem,
 332	NULL,
 333};
 334
 335static const struct attribute_group nvmem_bin_group = {
 336	.bin_attrs	= nvmem_bin_attributes,
 337	.attrs		= nvmem_attrs,
 338	.is_bin_visible = nvmem_bin_attr_is_visible,
 339};
 340
 341static const struct attribute_group *nvmem_dev_groups[] = {
 342	&nvmem_bin_group,
 343	NULL,
 344};
 345
 346static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
 347	.attr	= {
 348		.name	= "eeprom",
 349	},
 350	.read	= bin_attr_nvmem_read,
 351	.write	= bin_attr_nvmem_write,
 352};
 353
 354/*
 355 * nvmem_setup_compat() - Create an additional binary entry in
 356 * drivers sys directory, to be backwards compatible with the older
 357 * drivers/misc/eeprom drivers.
 358 */
 359static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
 360				    const struct nvmem_config *config)
 361{
 362	int rval;
 363
 364	if (!config->compat)
 365		return 0;
 366
 367	if (!config->base_dev)
 368		return -EINVAL;
 369
 370	if (config->type == NVMEM_TYPE_FRAM)
 371		bin_attr_nvmem_eeprom_compat.attr.name = "fram";
 372
 373	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
 374	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
 375	nvmem->eeprom.size = nvmem->size;
 376#ifdef CONFIG_DEBUG_LOCK_ALLOC
 377	nvmem->eeprom.attr.key = &eeprom_lock_key;
 378#endif
 379	nvmem->eeprom.private = &nvmem->dev;
 380	nvmem->base_dev = config->base_dev;
 381
 382	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
 383	if (rval) {
 384		dev_err(&nvmem->dev,
 385			"Failed to create eeprom binary file %d\n", rval);
 386		return rval;
 387	}
 388
 389	nvmem->flags |= FLAG_COMPAT;
 390
 391	return 0;
 392}
 393
 394static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
 395			      const struct nvmem_config *config)
 396{
 397	if (config->compat)
 398		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
 399}
 400
 401#else /* CONFIG_NVMEM_SYSFS */
 402
 403static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
 404				    const struct nvmem_config *config)
 405{
 406	return -ENOSYS;
 407}
 408static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
 409				      const struct nvmem_config *config)
 410{
 411}
 412
 413#endif /* CONFIG_NVMEM_SYSFS */
 414
 415static void nvmem_release(struct device *dev)
 416{
 417	struct nvmem_device *nvmem = to_nvmem_device(dev);
 418
 419	ida_free(&nvmem_ida, nvmem->id);
 420	gpiod_put(nvmem->wp_gpio);
 421	kfree(nvmem);
 422}
 423
 424static const struct device_type nvmem_provider_type = {
 425	.release	= nvmem_release,
 426};
 427
 428static struct bus_type nvmem_bus_type = {
 429	.name		= "nvmem",
 430};
 431
 432static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
 433{
 434	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
 435	mutex_lock(&nvmem_mutex);
 436	list_del(&cell->node);
 437	mutex_unlock(&nvmem_mutex);
 438	of_node_put(cell->np);
 439	kfree_const(cell->name);
 440	kfree(cell);
 441}
 442
 443static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
 444{
 445	struct nvmem_cell_entry *cell, *p;
 446
 447	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
 448		nvmem_cell_entry_drop(cell);
 449}
 450
 451static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
 452{
 453	mutex_lock(&nvmem_mutex);
 454	list_add_tail(&cell->node, &cell->nvmem->cells);
 455	mutex_unlock(&nvmem_mutex);
 456	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
 457}
 458
 459static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
 460						     const struct nvmem_cell_info *info,
 461						     struct nvmem_cell_entry *cell)
 462{
 463	cell->nvmem = nvmem;
 464	cell->offset = info->offset;
 465	cell->bytes = info->bytes;
 466	cell->name = info->name;
 467
 468	cell->bit_offset = info->bit_offset;
 469	cell->nbits = info->nbits;
 470	cell->np = info->np;
 471
 472	if (cell->nbits)
 473		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
 474					   BITS_PER_BYTE);
 475
 476	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
 477		dev_err(&nvmem->dev,
 478			"cell %s unaligned to nvmem stride %d\n",
 479			cell->name ?: "<unknown>", nvmem->stride);
 480		return -EINVAL;
 481	}
 482
 483	return 0;
 484}
 485
 486static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
 487					       const struct nvmem_cell_info *info,
 488					       struct nvmem_cell_entry *cell)
 489{
 490	int err;
 491
 492	err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
 493	if (err)
 494		return err;
 495
 496	cell->name = kstrdup_const(info->name, GFP_KERNEL);
 497	if (!cell->name)
 498		return -ENOMEM;
 499
 500	return 0;
 501}
 502
 503/**
 504 * nvmem_add_cells() - Add cell information to an nvmem device
 505 *
 506 * @nvmem: nvmem device to add cells to.
 507 * @info: nvmem cell info to add to the device
 508 * @ncells: number of cells in info
 509 *
 510 * Return: 0 or negative error code on failure.
 511 */
 512static int nvmem_add_cells(struct nvmem_device *nvmem,
 513		    const struct nvmem_cell_info *info,
 514		    int ncells)
 515{
 516	struct nvmem_cell_entry **cells;
 517	int i, rval;
 518
 519	cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
 520	if (!cells)
 521		return -ENOMEM;
 522
 523	for (i = 0; i < ncells; i++) {
 524		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
 525		if (!cells[i]) {
 526			rval = -ENOMEM;
 527			goto err;
 528		}
 529
 530		rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, &info[i], cells[i]);
 531		if (rval) {
 532			kfree(cells[i]);
 533			goto err;
 534		}
 535
 536		nvmem_cell_entry_add(cells[i]);
 537	}
 538
 539	/* remove tmp array */
 540	kfree(cells);
 541
 542	return 0;
 543err:
 544	while (i--)
 545		nvmem_cell_entry_drop(cells[i]);
 546
 547	kfree(cells);
 548
 549	return rval;
 550}
 551
 552/**
 553 * nvmem_register_notifier() - Register a notifier block for nvmem events.
 554 *
 555 * @nb: notifier block to be called on nvmem events.
 556 *
 557 * Return: 0 on success, negative error number on failure.
 558 */
 559int nvmem_register_notifier(struct notifier_block *nb)
 560{
 561	return blocking_notifier_chain_register(&nvmem_notifier, nb);
 562}
 563EXPORT_SYMBOL_GPL(nvmem_register_notifier);
 564
 565/**
 566 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
 567 *
 568 * @nb: notifier block to be unregistered.
 569 *
 570 * Return: 0 on success, negative error number on failure.
 571 */
 572int nvmem_unregister_notifier(struct notifier_block *nb)
 573{
 574	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
 575}
 576EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
 577
 578static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
 579{
 580	const struct nvmem_cell_info *info;
 581	struct nvmem_cell_table *table;
 582	struct nvmem_cell_entry *cell;
 583	int rval = 0, i;
 584
 585	mutex_lock(&nvmem_cell_mutex);
 586	list_for_each_entry(table, &nvmem_cell_tables, node) {
 587		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
 588			for (i = 0; i < table->ncells; i++) {
 589				info = &table->cells[i];
 590
 591				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
 592				if (!cell) {
 593					rval = -ENOMEM;
 594					goto out;
 595				}
 596
 597				rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
 
 
 598				if (rval) {
 599					kfree(cell);
 600					goto out;
 601				}
 602
 603				nvmem_cell_entry_add(cell);
 604			}
 605		}
 606	}
 607
 608out:
 609	mutex_unlock(&nvmem_cell_mutex);
 610	return rval;
 611}
 612
 613static struct nvmem_cell_entry *
 614nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
 615{
 616	struct nvmem_cell_entry *iter, *cell = NULL;
 617
 618	mutex_lock(&nvmem_mutex);
 619	list_for_each_entry(iter, &nvmem->cells, node) {
 620		if (strcmp(cell_id, iter->name) == 0) {
 621			cell = iter;
 622			break;
 623		}
 624	}
 625	mutex_unlock(&nvmem_mutex);
 626
 627	return cell;
 628}
 629
 630static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
 631{
 632	unsigned int cur = 0;
 633	const struct nvmem_keepout *keepout = nvmem->keepout;
 634	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
 635
 636	while (keepout < keepoutend) {
 637		/* Ensure keepouts are sorted and don't overlap. */
 638		if (keepout->start < cur) {
 639			dev_err(&nvmem->dev,
 640				"Keepout regions aren't sorted or overlap.\n");
 641
 642			return -ERANGE;
 643		}
 644
 645		if (keepout->end < keepout->start) {
 646			dev_err(&nvmem->dev,
 647				"Invalid keepout region.\n");
 648
 649			return -EINVAL;
 650		}
 651
 652		/*
 653		 * Validate keepouts (and holes between) don't violate
 654		 * word_size constraints.
 655		 */
 656		if ((keepout->end - keepout->start < nvmem->word_size) ||
 657		    ((keepout->start != cur) &&
 658		     (keepout->start - cur < nvmem->word_size))) {
 659
 660			dev_err(&nvmem->dev,
 661				"Keepout regions violate word_size constraints.\n");
 662
 663			return -ERANGE;
 664		}
 665
 666		/* Validate keepouts don't violate stride (alignment). */
 667		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
 668		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
 669
 670			dev_err(&nvmem->dev,
 671				"Keepout regions violate stride.\n");
 672
 673			return -EINVAL;
 674		}
 675
 676		cur = keepout->end;
 677		keepout++;
 678	}
 679
 680	return 0;
 681}
 682
 683static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
 684{
 685	struct device_node *parent, *child;
 686	struct device *dev = &nvmem->dev;
 687	struct nvmem_cell_entry *cell;
 688	const __be32 *addr;
 689	int len;
 690
 691	parent = dev->of_node;
 692
 693	for_each_child_of_node(parent, child) {
 694		addr = of_get_property(child, "reg", &len);
 695		if (!addr)
 696			continue;
 697		if (len < 2 * sizeof(u32)) {
 698			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
 699			of_node_put(child);
 700			return -EINVAL;
 701		}
 702
 703		cell = kzalloc(sizeof(*cell), GFP_KERNEL);
 704		if (!cell) {
 705			of_node_put(child);
 706			return -ENOMEM;
 707		}
 708
 709		cell->nvmem = nvmem;
 710		cell->offset = be32_to_cpup(addr++);
 711		cell->bytes = be32_to_cpup(addr);
 712		cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
 713
 714		addr = of_get_property(child, "bits", &len);
 715		if (addr && len == (2 * sizeof(u32))) {
 716			cell->bit_offset = be32_to_cpup(addr++);
 717			cell->nbits = be32_to_cpup(addr);
 718		}
 719
 720		if (cell->nbits)
 721			cell->bytes = DIV_ROUND_UP(
 722					cell->nbits + cell->bit_offset,
 723					BITS_PER_BYTE);
 724
 725		if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
 726			dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
 727				cell->name, nvmem->stride);
 728			/* Cells already added will be freed later. */
 729			kfree_const(cell->name);
 730			kfree(cell);
 731			of_node_put(child);
 732			return -EINVAL;
 733		}
 734
 735		cell->np = of_node_get(child);
 736		nvmem_cell_entry_add(cell);
 737	}
 738
 739	return 0;
 740}
 741
 742/**
 743 * nvmem_register() - Register a nvmem device for given nvmem_config.
 744 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
 745 *
 746 * @config: nvmem device configuration with which nvmem device is created.
 747 *
 748 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
 749 * on success.
 750 */
 751
 752struct nvmem_device *nvmem_register(const struct nvmem_config *config)
 753{
 754	struct nvmem_device *nvmem;
 755	int rval;
 756
 757	if (!config->dev)
 758		return ERR_PTR(-EINVAL);
 759
 760	if (!config->reg_read && !config->reg_write)
 761		return ERR_PTR(-EINVAL);
 762
 763	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
 764	if (!nvmem)
 765		return ERR_PTR(-ENOMEM);
 766
 767	rval  = ida_alloc(&nvmem_ida, GFP_KERNEL);
 768	if (rval < 0) {
 769		kfree(nvmem);
 770		return ERR_PTR(rval);
 771	}
 772
 773	nvmem->id = rval;
 774
 775	nvmem->dev.type = &nvmem_provider_type;
 776	nvmem->dev.bus = &nvmem_bus_type;
 777	nvmem->dev.parent = config->dev;
 778
 779	device_initialize(&nvmem->dev);
 780
 781	if (!config->ignore_wp)
 782		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
 783						    GPIOD_OUT_HIGH);
 784	if (IS_ERR(nvmem->wp_gpio)) {
 
 785		rval = PTR_ERR(nvmem->wp_gpio);
 786		nvmem->wp_gpio = NULL;
 787		goto err_put_device;
 788	}
 789
 790	kref_init(&nvmem->refcnt);
 791	INIT_LIST_HEAD(&nvmem->cells);
 792
 
 793	nvmem->owner = config->owner;
 794	if (!nvmem->owner && config->dev->driver)
 795		nvmem->owner = config->dev->driver->owner;
 796	nvmem->stride = config->stride ?: 1;
 797	nvmem->word_size = config->word_size ?: 1;
 798	nvmem->size = config->size;
 
 
 
 799	nvmem->root_only = config->root_only;
 800	nvmem->priv = config->priv;
 801	nvmem->type = config->type;
 802	nvmem->reg_read = config->reg_read;
 803	nvmem->reg_write = config->reg_write;
 804	nvmem->cell_post_process = config->cell_post_process;
 805	nvmem->keepout = config->keepout;
 806	nvmem->nkeepout = config->nkeepout;
 807	if (config->of_node)
 808		nvmem->dev.of_node = config->of_node;
 809	else if (!config->no_of_node)
 810		nvmem->dev.of_node = config->dev->of_node;
 811
 812	switch (config->id) {
 813	case NVMEM_DEVID_NONE:
 814		rval = dev_set_name(&nvmem->dev, "%s", config->name);
 815		break;
 816	case NVMEM_DEVID_AUTO:
 817		rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
 818		break;
 819	default:
 820		rval = dev_set_name(&nvmem->dev, "%s%d",
 821			     config->name ? : "nvmem",
 822			     config->name ? config->id : nvmem->id);
 823		break;
 824	}
 825
 826	if (rval)
 827		goto err_put_device;
 828
 829	nvmem->read_only = device_property_present(config->dev, "read-only") ||
 830			   config->read_only || !nvmem->reg_write;
 831
 832#ifdef CONFIG_NVMEM_SYSFS
 833	nvmem->dev.groups = nvmem_dev_groups;
 834#endif
 835
 836	if (nvmem->nkeepout) {
 837		rval = nvmem_validate_keepouts(nvmem);
 838		if (rval)
 839			goto err_put_device;
 
 
 
 840	}
 841
 
 
 
 
 
 
 842	if (config->compat) {
 843		rval = nvmem_sysfs_setup_compat(nvmem, config);
 844		if (rval)
 845			goto err_put_device;
 846	}
 847
 848	if (config->cells) {
 849		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
 850		if (rval)
 851			goto err_remove_cells;
 852	}
 853
 854	rval = nvmem_add_cells_from_table(nvmem);
 855	if (rval)
 856		goto err_remove_cells;
 857
 858	rval = nvmem_add_cells_from_of(nvmem);
 859	if (rval)
 860		goto err_remove_cells;
 861
 862	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
 863
 864	rval = device_add(&nvmem->dev);
 865	if (rval)
 866		goto err_remove_cells;
 867
 868	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
 869
 870	return nvmem;
 871
 872err_remove_cells:
 873	nvmem_device_remove_all_cells(nvmem);
 
 874	if (config->compat)
 875		nvmem_sysfs_remove_compat(nvmem, config);
 
 
 876err_put_device:
 877	put_device(&nvmem->dev);
 878
 879	return ERR_PTR(rval);
 880}
 881EXPORT_SYMBOL_GPL(nvmem_register);
 882
 883static void nvmem_device_release(struct kref *kref)
 884{
 885	struct nvmem_device *nvmem;
 886
 887	nvmem = container_of(kref, struct nvmem_device, refcnt);
 888
 889	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
 890
 891	if (nvmem->flags & FLAG_COMPAT)
 892		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
 893
 894	nvmem_device_remove_all_cells(nvmem);
 895	device_unregister(&nvmem->dev);
 896}
 897
 898/**
 899 * nvmem_unregister() - Unregister previously registered nvmem device
 900 *
 901 * @nvmem: Pointer to previously registered nvmem device.
 902 */
 903void nvmem_unregister(struct nvmem_device *nvmem)
 904{
 905	if (nvmem)
 906		kref_put(&nvmem->refcnt, nvmem_device_release);
 907}
 908EXPORT_SYMBOL_GPL(nvmem_unregister);
 909
 910static void devm_nvmem_unregister(void *nvmem)
 911{
 912	nvmem_unregister(nvmem);
 913}
 914
 915/**
 916 * devm_nvmem_register() - Register a managed nvmem device for given
 917 * nvmem_config.
 918 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
 919 *
 920 * @dev: Device that uses the nvmem device.
 921 * @config: nvmem device configuration with which nvmem device is created.
 922 *
 923 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
 924 * on success.
 925 */
 926struct nvmem_device *devm_nvmem_register(struct device *dev,
 927					 const struct nvmem_config *config)
 928{
 929	struct nvmem_device *nvmem;
 930	int ret;
 
 
 
 931
 932	nvmem = nvmem_register(config);
 933	if (IS_ERR(nvmem))
 934		return nvmem;
 935
 936	ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
 937	if (ret)
 938		return ERR_PTR(ret);
 
 
 
 939
 940	return nvmem;
 941}
 942EXPORT_SYMBOL_GPL(devm_nvmem_register);
 943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 944static struct nvmem_device *__nvmem_device_get(void *data,
 945			int (*match)(struct device *dev, const void *data))
 946{
 947	struct nvmem_device *nvmem = NULL;
 948	struct device *dev;
 949
 950	mutex_lock(&nvmem_mutex);
 951	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
 952	if (dev)
 953		nvmem = to_nvmem_device(dev);
 954	mutex_unlock(&nvmem_mutex);
 955	if (!nvmem)
 956		return ERR_PTR(-EPROBE_DEFER);
 957
 958	if (!try_module_get(nvmem->owner)) {
 959		dev_err(&nvmem->dev,
 960			"could not increase module refcount for cell %s\n",
 961			nvmem_dev_name(nvmem));
 962
 963		put_device(&nvmem->dev);
 964		return ERR_PTR(-EINVAL);
 965	}
 966
 967	kref_get(&nvmem->refcnt);
 968
 969	return nvmem;
 970}
 971
 972static void __nvmem_device_put(struct nvmem_device *nvmem)
 973{
 974	put_device(&nvmem->dev);
 975	module_put(nvmem->owner);
 976	kref_put(&nvmem->refcnt, nvmem_device_release);
 977}
 978
 979#if IS_ENABLED(CONFIG_OF)
 980/**
 981 * of_nvmem_device_get() - Get nvmem device from a given id
 982 *
 983 * @np: Device tree node that uses the nvmem device.
 984 * @id: nvmem name from nvmem-names property.
 985 *
 986 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
 987 * on success.
 988 */
 989struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
 990{
 991
 992	struct device_node *nvmem_np;
 993	struct nvmem_device *nvmem;
 994	int index = 0;
 995
 996	if (id)
 997		index = of_property_match_string(np, "nvmem-names", id);
 998
 999	nvmem_np = of_parse_phandle(np, "nvmem", index);
1000	if (!nvmem_np)
1001		return ERR_PTR(-ENOENT);
1002
1003	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1004	of_node_put(nvmem_np);
1005	return nvmem;
1006}
1007EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1008#endif
1009
1010/**
1011 * nvmem_device_get() - Get nvmem device from a given id
1012 *
1013 * @dev: Device that uses the nvmem device.
1014 * @dev_name: name of the requested nvmem device.
1015 *
1016 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1017 * on success.
1018 */
1019struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1020{
1021	if (dev->of_node) { /* try dt first */
1022		struct nvmem_device *nvmem;
1023
1024		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1025
1026		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1027			return nvmem;
1028
1029	}
1030
1031	return __nvmem_device_get((void *)dev_name, device_match_name);
1032}
1033EXPORT_SYMBOL_GPL(nvmem_device_get);
1034
1035/**
1036 * nvmem_device_find() - Find nvmem device with matching function
1037 *
1038 * @data: Data to pass to match function
1039 * @match: Callback function to check device
1040 *
1041 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1042 * on success.
1043 */
1044struct nvmem_device *nvmem_device_find(void *data,
1045			int (*match)(struct device *dev, const void *data))
1046{
1047	return __nvmem_device_get(data, match);
1048}
1049EXPORT_SYMBOL_GPL(nvmem_device_find);
1050
1051static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1052{
1053	struct nvmem_device **nvmem = res;
1054
1055	if (WARN_ON(!nvmem || !*nvmem))
1056		return 0;
1057
1058	return *nvmem == data;
1059}
1060
1061static void devm_nvmem_device_release(struct device *dev, void *res)
1062{
1063	nvmem_device_put(*(struct nvmem_device **)res);
1064}
1065
1066/**
1067 * devm_nvmem_device_put() - put alredy got nvmem device
1068 *
1069 * @dev: Device that uses the nvmem device.
1070 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1071 * that needs to be released.
1072 */
1073void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1074{
1075	int ret;
1076
1077	ret = devres_release(dev, devm_nvmem_device_release,
1078			     devm_nvmem_device_match, nvmem);
1079
1080	WARN_ON(ret);
1081}
1082EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1083
1084/**
1085 * nvmem_device_put() - put alredy got nvmem device
1086 *
1087 * @nvmem: pointer to nvmem device that needs to be released.
1088 */
1089void nvmem_device_put(struct nvmem_device *nvmem)
1090{
1091	__nvmem_device_put(nvmem);
1092}
1093EXPORT_SYMBOL_GPL(nvmem_device_put);
1094
1095/**
1096 * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1097 *
1098 * @dev: Device that requests the nvmem device.
1099 * @id: name id for the requested nvmem device.
1100 *
1101 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1102 * on success.  The nvmem_cell will be freed by the automatically once the
1103 * device is freed.
1104 */
1105struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1106{
1107	struct nvmem_device **ptr, *nvmem;
1108
1109	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1110	if (!ptr)
1111		return ERR_PTR(-ENOMEM);
1112
1113	nvmem = nvmem_device_get(dev, id);
1114	if (!IS_ERR(nvmem)) {
1115		*ptr = nvmem;
1116		devres_add(dev, ptr);
1117	} else {
1118		devres_free(ptr);
1119	}
1120
1121	return nvmem;
1122}
1123EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1124
1125static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry, const char *id)
1126{
1127	struct nvmem_cell *cell;
1128	const char *name = NULL;
1129
1130	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1131	if (!cell)
1132		return ERR_PTR(-ENOMEM);
1133
1134	if (id) {
1135		name = kstrdup_const(id, GFP_KERNEL);
1136		if (!name) {
1137			kfree(cell);
1138			return ERR_PTR(-ENOMEM);
1139		}
1140	}
1141
1142	cell->id = name;
1143	cell->entry = entry;
1144
1145	return cell;
1146}
1147
1148static struct nvmem_cell *
1149nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1150{
1151	struct nvmem_cell_entry *cell_entry;
1152	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1153	struct nvmem_cell_lookup *lookup;
1154	struct nvmem_device *nvmem;
1155	const char *dev_id;
1156
1157	if (!dev)
1158		return ERR_PTR(-EINVAL);
1159
1160	dev_id = dev_name(dev);
1161
1162	mutex_lock(&nvmem_lookup_mutex);
1163
1164	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1165		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1166		    (strcmp(lookup->con_id, con_id) == 0)) {
1167			/* This is the right entry. */
1168			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1169						   device_match_name);
1170			if (IS_ERR(nvmem)) {
1171				/* Provider may not be registered yet. */
1172				cell = ERR_CAST(nvmem);
1173				break;
1174			}
1175
1176			cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1177								   lookup->cell_name);
1178			if (!cell_entry) {
1179				__nvmem_device_put(nvmem);
1180				cell = ERR_PTR(-ENOENT);
1181			} else {
1182				cell = nvmem_create_cell(cell_entry, con_id);
1183				if (IS_ERR(cell))
1184					__nvmem_device_put(nvmem);
1185			}
1186			break;
1187		}
1188	}
1189
1190	mutex_unlock(&nvmem_lookup_mutex);
1191	return cell;
1192}
1193
1194#if IS_ENABLED(CONFIG_OF)
1195static struct nvmem_cell_entry *
1196nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1197{
1198	struct nvmem_cell_entry *iter, *cell = NULL;
1199
1200	mutex_lock(&nvmem_mutex);
1201	list_for_each_entry(iter, &nvmem->cells, node) {
1202		if (np == iter->np) {
1203			cell = iter;
1204			break;
1205		}
1206	}
1207	mutex_unlock(&nvmem_mutex);
1208
1209	return cell;
1210}
1211
1212/**
1213 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1214 *
1215 * @np: Device tree node that uses the nvmem cell.
1216 * @id: nvmem cell name from nvmem-cell-names property, or NULL
1217 *      for the cell at index 0 (the lone cell with no accompanying
1218 *      nvmem-cell-names property).
1219 *
1220 * Return: Will be an ERR_PTR() on error or a valid pointer
1221 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1222 * nvmem_cell_put().
1223 */
1224struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1225{
1226	struct device_node *cell_np, *nvmem_np;
1227	struct nvmem_device *nvmem;
1228	struct nvmem_cell_entry *cell_entry;
1229	struct nvmem_cell *cell;
1230	int index = 0;
1231
1232	/* if cell name exists, find index to the name */
1233	if (id)
1234		index = of_property_match_string(np, "nvmem-cell-names", id);
1235
1236	cell_np = of_parse_phandle(np, "nvmem-cells", index);
1237	if (!cell_np)
1238		return ERR_PTR(-ENOENT);
1239
1240	nvmem_np = of_get_parent(cell_np);
1241	if (!nvmem_np) {
1242		of_node_put(cell_np);
1243		return ERR_PTR(-EINVAL);
1244	}
1245
1246	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1247	of_node_put(nvmem_np);
1248	if (IS_ERR(nvmem)) {
1249		of_node_put(cell_np);
1250		return ERR_CAST(nvmem);
1251	}
1252
1253	cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1254	of_node_put(cell_np);
1255	if (!cell_entry) {
1256		__nvmem_device_put(nvmem);
1257		return ERR_PTR(-ENOENT);
1258	}
1259
1260	cell = nvmem_create_cell(cell_entry, id);
1261	if (IS_ERR(cell))
1262		__nvmem_device_put(nvmem);
1263
1264	return cell;
1265}
1266EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1267#endif
1268
1269/**
1270 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1271 *
1272 * @dev: Device that requests the nvmem cell.
1273 * @id: nvmem cell name to get (this corresponds with the name from the
1274 *      nvmem-cell-names property for DT systems and with the con_id from
1275 *      the lookup entry for non-DT systems).
1276 *
1277 * Return: Will be an ERR_PTR() on error or a valid pointer
1278 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1279 * nvmem_cell_put().
1280 */
1281struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1282{
1283	struct nvmem_cell *cell;
1284
1285	if (dev->of_node) { /* try dt first */
1286		cell = of_nvmem_cell_get(dev->of_node, id);
1287		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1288			return cell;
1289	}
1290
1291	/* NULL cell id only allowed for device tree; invalid otherwise */
1292	if (!id)
1293		return ERR_PTR(-EINVAL);
1294
1295	return nvmem_cell_get_from_lookup(dev, id);
1296}
1297EXPORT_SYMBOL_GPL(nvmem_cell_get);
1298
1299static void devm_nvmem_cell_release(struct device *dev, void *res)
1300{
1301	nvmem_cell_put(*(struct nvmem_cell **)res);
1302}
1303
1304/**
1305 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1306 *
1307 * @dev: Device that requests the nvmem cell.
1308 * @id: nvmem cell name id to get.
1309 *
1310 * Return: Will be an ERR_PTR() on error or a valid pointer
1311 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1312 * automatically once the device is freed.
1313 */
1314struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1315{
1316	struct nvmem_cell **ptr, *cell;
1317
1318	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1319	if (!ptr)
1320		return ERR_PTR(-ENOMEM);
1321
1322	cell = nvmem_cell_get(dev, id);
1323	if (!IS_ERR(cell)) {
1324		*ptr = cell;
1325		devres_add(dev, ptr);
1326	} else {
1327		devres_free(ptr);
1328	}
1329
1330	return cell;
1331}
1332EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1333
1334static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1335{
1336	struct nvmem_cell **c = res;
1337
1338	if (WARN_ON(!c || !*c))
1339		return 0;
1340
1341	return *c == data;
1342}
1343
1344/**
1345 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1346 * from devm_nvmem_cell_get.
1347 *
1348 * @dev: Device that requests the nvmem cell.
1349 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1350 */
1351void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1352{
1353	int ret;
1354
1355	ret = devres_release(dev, devm_nvmem_cell_release,
1356				devm_nvmem_cell_match, cell);
1357
1358	WARN_ON(ret);
1359}
1360EXPORT_SYMBOL(devm_nvmem_cell_put);
1361
1362/**
1363 * nvmem_cell_put() - Release previously allocated nvmem cell.
1364 *
1365 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1366 */
1367void nvmem_cell_put(struct nvmem_cell *cell)
1368{
1369	struct nvmem_device *nvmem = cell->entry->nvmem;
1370
1371	if (cell->id)
1372		kfree_const(cell->id);
1373
1374	kfree(cell);
1375	__nvmem_device_put(nvmem);
1376}
1377EXPORT_SYMBOL_GPL(nvmem_cell_put);
1378
1379static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1380{
1381	u8 *p, *b;
1382	int i, extra, bit_offset = cell->bit_offset;
1383
1384	p = b = buf;
1385	if (bit_offset) {
1386		/* First shift */
1387		*b++ >>= bit_offset;
1388
1389		/* setup rest of the bytes if any */
1390		for (i = 1; i < cell->bytes; i++) {
1391			/* Get bits from next byte and shift them towards msb */
1392			*p |= *b << (BITS_PER_BYTE - bit_offset);
1393
1394			p = b;
1395			*b++ >>= bit_offset;
1396		}
1397	} else {
1398		/* point to the msb */
1399		p += cell->bytes - 1;
1400	}
1401
1402	/* result fits in less bytes */
1403	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1404	while (--extra >= 0)
1405		*p-- = 0;
1406
1407	/* clear msb bits if any leftover in the last byte */
1408	if (cell->nbits % BITS_PER_BYTE)
1409		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1410}
1411
1412static int __nvmem_cell_read(struct nvmem_device *nvmem,
1413		      struct nvmem_cell_entry *cell,
1414		      void *buf, size_t *len, const char *id)
1415{
1416	int rc;
1417
1418	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1419
1420	if (rc)
1421		return rc;
1422
1423	/* shift bits in-place */
1424	if (cell->bit_offset || cell->nbits)
1425		nvmem_shift_read_buffer_in_place(cell, buf);
1426
1427	if (nvmem->cell_post_process) {
1428		rc = nvmem->cell_post_process(nvmem->priv, id,
1429					      cell->offset, buf, cell->bytes);
1430		if (rc)
1431			return rc;
1432	}
1433
1434	if (len)
1435		*len = cell->bytes;
1436
1437	return 0;
1438}
1439
1440/**
1441 * nvmem_cell_read() - Read a given nvmem cell
1442 *
1443 * @cell: nvmem cell to be read.
1444 * @len: pointer to length of cell which will be populated on successful read;
1445 *	 can be NULL.
1446 *
1447 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1448 * buffer should be freed by the consumer with a kfree().
1449 */
1450void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1451{
1452	struct nvmem_device *nvmem = cell->entry->nvmem;
1453	u8 *buf;
1454	int rc;
1455
1456	if (!nvmem)
1457		return ERR_PTR(-EINVAL);
1458
1459	buf = kzalloc(cell->entry->bytes, GFP_KERNEL);
1460	if (!buf)
1461		return ERR_PTR(-ENOMEM);
1462
1463	rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id);
1464	if (rc) {
1465		kfree(buf);
1466		return ERR_PTR(rc);
1467	}
1468
1469	return buf;
1470}
1471EXPORT_SYMBOL_GPL(nvmem_cell_read);
1472
1473static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1474					     u8 *_buf, int len)
1475{
1476	struct nvmem_device *nvmem = cell->nvmem;
1477	int i, rc, nbits, bit_offset = cell->bit_offset;
1478	u8 v, *p, *buf, *b, pbyte, pbits;
1479
1480	nbits = cell->nbits;
1481	buf = kzalloc(cell->bytes, GFP_KERNEL);
1482	if (!buf)
1483		return ERR_PTR(-ENOMEM);
1484
1485	memcpy(buf, _buf, len);
1486	p = b = buf;
1487
1488	if (bit_offset) {
1489		pbyte = *b;
1490		*b <<= bit_offset;
1491
1492		/* setup the first byte with lsb bits from nvmem */
1493		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1494		if (rc)
1495			goto err;
1496		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1497
1498		/* setup rest of the byte if any */
1499		for (i = 1; i < cell->bytes; i++) {
1500			/* Get last byte bits and shift them towards lsb */
1501			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1502			pbyte = *b;
1503			p = b;
1504			*b <<= bit_offset;
1505			*b++ |= pbits;
1506		}
1507	}
1508
1509	/* if it's not end on byte boundary */
1510	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1511		/* setup the last byte with msb bits from nvmem */
1512		rc = nvmem_reg_read(nvmem,
1513				    cell->offset + cell->bytes - 1, &v, 1);
1514		if (rc)
1515			goto err;
1516		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1517
1518	}
1519
1520	return buf;
1521err:
1522	kfree(buf);
1523	return ERR_PTR(rc);
1524}
1525
1526static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
 
 
 
 
 
 
 
 
 
1527{
1528	struct nvmem_device *nvmem = cell->nvmem;
1529	int rc;
1530
1531	if (!nvmem || nvmem->read_only ||
1532	    (cell->bit_offset == 0 && len != cell->bytes))
1533		return -EINVAL;
1534
1535	if (cell->bit_offset || cell->nbits) {
1536		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1537		if (IS_ERR(buf))
1538			return PTR_ERR(buf);
1539	}
1540
1541	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1542
1543	/* free the tmp buffer */
1544	if (cell->bit_offset || cell->nbits)
1545		kfree(buf);
1546
1547	if (rc)
1548		return rc;
1549
1550	return len;
1551}
1552
1553/**
1554 * nvmem_cell_write() - Write to a given nvmem cell
1555 *
1556 * @cell: nvmem cell to be written.
1557 * @buf: Buffer to be written.
1558 * @len: length of buffer to be written to nvmem cell.
1559 *
1560 * Return: length of bytes written or negative on failure.
1561 */
1562int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1563{
1564	return __nvmem_cell_entry_write(cell->entry, buf, len);
1565}
1566
1567EXPORT_SYMBOL_GPL(nvmem_cell_write);
1568
1569static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1570				  void *val, size_t count)
1571{
1572	struct nvmem_cell *cell;
1573	void *buf;
1574	size_t len;
1575
1576	cell = nvmem_cell_get(dev, cell_id);
1577	if (IS_ERR(cell))
1578		return PTR_ERR(cell);
1579
1580	buf = nvmem_cell_read(cell, &len);
1581	if (IS_ERR(buf)) {
1582		nvmem_cell_put(cell);
1583		return PTR_ERR(buf);
1584	}
1585	if (len != count) {
1586		kfree(buf);
1587		nvmem_cell_put(cell);
1588		return -EINVAL;
1589	}
1590	memcpy(val, buf, count);
1591	kfree(buf);
1592	nvmem_cell_put(cell);
1593
1594	return 0;
1595}
1596
1597/**
1598 * nvmem_cell_read_u8() - Read a cell value as a u8
1599 *
1600 * @dev: Device that requests the nvmem cell.
1601 * @cell_id: Name of nvmem cell to read.
1602 * @val: pointer to output value.
1603 *
1604 * Return: 0 on success or negative errno.
1605 */
1606int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1607{
1608	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1609}
1610EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1611
1612/**
1613 * nvmem_cell_read_u16() - Read a cell value as a u16
1614 *
1615 * @dev: Device that requests the nvmem cell.
1616 * @cell_id: Name of nvmem cell to read.
1617 * @val: pointer to output value.
1618 *
1619 * Return: 0 on success or negative errno.
1620 */
1621int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1622{
1623	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1624}
1625EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1626
1627/**
1628 * nvmem_cell_read_u32() - Read a cell value as a u32
1629 *
1630 * @dev: Device that requests the nvmem cell.
1631 * @cell_id: Name of nvmem cell to read.
1632 * @val: pointer to output value.
1633 *
1634 * Return: 0 on success or negative errno.
1635 */
1636int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1637{
1638	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1639}
1640EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1641
1642/**
1643 * nvmem_cell_read_u64() - Read a cell value as a u64
1644 *
1645 * @dev: Device that requests the nvmem cell.
1646 * @cell_id: Name of nvmem cell to read.
1647 * @val: pointer to output value.
1648 *
1649 * Return: 0 on success or negative errno.
1650 */
1651int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1652{
1653	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1654}
1655EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1656
1657static const void *nvmem_cell_read_variable_common(struct device *dev,
1658						   const char *cell_id,
1659						   size_t max_len, size_t *len)
1660{
1661	struct nvmem_cell *cell;
1662	int nbits;
1663	void *buf;
1664
1665	cell = nvmem_cell_get(dev, cell_id);
1666	if (IS_ERR(cell))
1667		return cell;
1668
1669	nbits = cell->entry->nbits;
1670	buf = nvmem_cell_read(cell, len);
1671	nvmem_cell_put(cell);
1672	if (IS_ERR(buf))
1673		return buf;
1674
1675	/*
1676	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1677	 * the length of the real data. Throw away the extra junk.
1678	 */
1679	if (nbits)
1680		*len = DIV_ROUND_UP(nbits, 8);
1681
1682	if (*len > max_len) {
1683		kfree(buf);
1684		return ERR_PTR(-ERANGE);
1685	}
1686
1687	return buf;
1688}
1689
1690/**
1691 * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1692 *
1693 * @dev: Device that requests the nvmem cell.
1694 * @cell_id: Name of nvmem cell to read.
1695 * @val: pointer to output value.
1696 *
1697 * Return: 0 on success or negative errno.
1698 */
1699int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1700				    u32 *val)
1701{
1702	size_t len;
1703	const u8 *buf;
1704	int i;
1705
1706	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1707	if (IS_ERR(buf))
1708		return PTR_ERR(buf);
1709
1710	/* Copy w/ implicit endian conversion */
1711	*val = 0;
1712	for (i = 0; i < len; i++)
1713		*val |= buf[i] << (8 * i);
1714
1715	kfree(buf);
1716
1717	return 0;
1718}
1719EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1720
1721/**
1722 * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1723 *
1724 * @dev: Device that requests the nvmem cell.
1725 * @cell_id: Name of nvmem cell to read.
1726 * @val: pointer to output value.
1727 *
1728 * Return: 0 on success or negative errno.
1729 */
1730int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1731				    u64 *val)
1732{
1733	size_t len;
1734	const u8 *buf;
1735	int i;
1736
1737	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1738	if (IS_ERR(buf))
1739		return PTR_ERR(buf);
1740
1741	/* Copy w/ implicit endian conversion */
1742	*val = 0;
1743	for (i = 0; i < len; i++)
1744		*val |= (uint64_t)buf[i] << (8 * i);
1745
1746	kfree(buf);
1747
1748	return 0;
1749}
1750EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1751
1752/**
1753 * nvmem_device_cell_read() - Read a given nvmem device and cell
1754 *
1755 * @nvmem: nvmem device to read from.
1756 * @info: nvmem cell info to be read.
1757 * @buf: buffer pointer which will be populated on successful read.
1758 *
1759 * Return: length of successful bytes read on success and negative
1760 * error code on error.
1761 */
1762ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1763			   struct nvmem_cell_info *info, void *buf)
1764{
1765	struct nvmem_cell_entry cell;
1766	int rc;
1767	ssize_t len;
1768
1769	if (!nvmem)
1770		return -EINVAL;
1771
1772	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1773	if (rc)
1774		return rc;
1775
1776	rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL);
1777	if (rc)
1778		return rc;
1779
1780	return len;
1781}
1782EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1783
1784/**
1785 * nvmem_device_cell_write() - Write cell to a given nvmem device
1786 *
1787 * @nvmem: nvmem device to be written to.
1788 * @info: nvmem cell info to be written.
1789 * @buf: buffer to be written to cell.
1790 *
1791 * Return: length of bytes written or negative error code on failure.
1792 */
1793int nvmem_device_cell_write(struct nvmem_device *nvmem,
1794			    struct nvmem_cell_info *info, void *buf)
1795{
1796	struct nvmem_cell_entry cell;
1797	int rc;
1798
1799	if (!nvmem)
1800		return -EINVAL;
1801
1802	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1803	if (rc)
1804		return rc;
1805
1806	return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
1807}
1808EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1809
1810/**
1811 * nvmem_device_read() - Read from a given nvmem device
1812 *
1813 * @nvmem: nvmem device to read from.
1814 * @offset: offset in nvmem device.
1815 * @bytes: number of bytes to read.
1816 * @buf: buffer pointer which will be populated on successful read.
1817 *
1818 * Return: length of successful bytes read on success and negative
1819 * error code on error.
1820 */
1821int nvmem_device_read(struct nvmem_device *nvmem,
1822		      unsigned int offset,
1823		      size_t bytes, void *buf)
1824{
1825	int rc;
1826
1827	if (!nvmem)
1828		return -EINVAL;
1829
1830	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1831
1832	if (rc)
1833		return rc;
1834
1835	return bytes;
1836}
1837EXPORT_SYMBOL_GPL(nvmem_device_read);
1838
1839/**
1840 * nvmem_device_write() - Write cell to a given nvmem device
1841 *
1842 * @nvmem: nvmem device to be written to.
1843 * @offset: offset in nvmem device.
1844 * @bytes: number of bytes to write.
1845 * @buf: buffer to be written.
1846 *
1847 * Return: length of bytes written or negative error code on failure.
1848 */
1849int nvmem_device_write(struct nvmem_device *nvmem,
1850		       unsigned int offset,
1851		       size_t bytes, void *buf)
1852{
1853	int rc;
1854
1855	if (!nvmem)
1856		return -EINVAL;
1857
1858	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1859
1860	if (rc)
1861		return rc;
1862
1863
1864	return bytes;
1865}
1866EXPORT_SYMBOL_GPL(nvmem_device_write);
1867
1868/**
1869 * nvmem_add_cell_table() - register a table of cell info entries
1870 *
1871 * @table: table of cell info entries
1872 */
1873void nvmem_add_cell_table(struct nvmem_cell_table *table)
1874{
1875	mutex_lock(&nvmem_cell_mutex);
1876	list_add_tail(&table->node, &nvmem_cell_tables);
1877	mutex_unlock(&nvmem_cell_mutex);
1878}
1879EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1880
1881/**
1882 * nvmem_del_cell_table() - remove a previously registered cell info table
1883 *
1884 * @table: table of cell info entries
1885 */
1886void nvmem_del_cell_table(struct nvmem_cell_table *table)
1887{
1888	mutex_lock(&nvmem_cell_mutex);
1889	list_del(&table->node);
1890	mutex_unlock(&nvmem_cell_mutex);
1891}
1892EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1893
1894/**
1895 * nvmem_add_cell_lookups() - register a list of cell lookup entries
1896 *
1897 * @entries: array of cell lookup entries
1898 * @nentries: number of cell lookup entries in the array
1899 */
1900void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1901{
1902	int i;
1903
1904	mutex_lock(&nvmem_lookup_mutex);
1905	for (i = 0; i < nentries; i++)
1906		list_add_tail(&entries[i].node, &nvmem_lookup_list);
1907	mutex_unlock(&nvmem_lookup_mutex);
1908}
1909EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1910
1911/**
1912 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1913 *                            entries
1914 *
1915 * @entries: array of cell lookup entries
1916 * @nentries: number of cell lookup entries in the array
1917 */
1918void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1919{
1920	int i;
1921
1922	mutex_lock(&nvmem_lookup_mutex);
1923	for (i = 0; i < nentries; i++)
1924		list_del(&entries[i].node);
1925	mutex_unlock(&nvmem_lookup_mutex);
1926}
1927EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1928
1929/**
1930 * nvmem_dev_name() - Get the name of a given nvmem device.
1931 *
1932 * @nvmem: nvmem device.
1933 *
1934 * Return: name of the nvmem device.
1935 */
1936const char *nvmem_dev_name(struct nvmem_device *nvmem)
1937{
1938	return dev_name(&nvmem->dev);
1939}
1940EXPORT_SYMBOL_GPL(nvmem_dev_name);
1941
1942static int __init nvmem_init(void)
1943{
1944	return bus_register(&nvmem_bus_type);
1945}
1946
1947static void __exit nvmem_exit(void)
1948{
1949	bus_unregister(&nvmem_bus_type);
1950}
1951
1952subsys_initcall(nvmem_init);
1953module_exit(nvmem_exit);
1954
1955MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1956MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1957MODULE_DESCRIPTION("nvmem Driver Core");
1958MODULE_LICENSE("GPL v2");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * nvmem framework core.
   4 *
   5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
   6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
   7 */
   8
   9#include <linux/device.h>
  10#include <linux/export.h>
  11#include <linux/fs.h>
  12#include <linux/idr.h>
  13#include <linux/init.h>
  14#include <linux/kref.h>
  15#include <linux/module.h>
  16#include <linux/nvmem-consumer.h>
  17#include <linux/nvmem-provider.h>
  18#include <linux/gpio/consumer.h>
  19#include <linux/of.h>
  20#include <linux/slab.h>
  21
  22struct nvmem_device {
  23	struct module		*owner;
  24	struct device		dev;
  25	int			stride;
  26	int			word_size;
  27	int			id;
  28	struct kref		refcnt;
  29	size_t			size;
  30	bool			read_only;
  31	bool			root_only;
  32	int			flags;
  33	enum nvmem_type		type;
  34	struct bin_attribute	eeprom;
  35	struct device		*base_dev;
  36	struct list_head	cells;
  37	const struct nvmem_keepout *keepout;
  38	unsigned int		nkeepout;
  39	nvmem_reg_read_t	reg_read;
  40	nvmem_reg_write_t	reg_write;
 
  41	struct gpio_desc	*wp_gpio;
  42	void *priv;
  43};
  44
  45#define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
  46
  47#define FLAG_COMPAT		BIT(0)
  48
  49struct nvmem_cell {
  50	const char		*name;
  51	int			offset;
  52	int			bytes;
  53	int			bit_offset;
  54	int			nbits;
  55	struct device_node	*np;
  56	struct nvmem_device	*nvmem;
  57	struct list_head	node;
  58};
  59
 
 
 
 
 
  60static DEFINE_MUTEX(nvmem_mutex);
  61static DEFINE_IDA(nvmem_ida);
  62
  63static DEFINE_MUTEX(nvmem_cell_mutex);
  64static LIST_HEAD(nvmem_cell_tables);
  65
  66static DEFINE_MUTEX(nvmem_lookup_mutex);
  67static LIST_HEAD(nvmem_lookup_list);
  68
  69static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
  70
  71static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
  72			    void *val, size_t bytes)
  73{
  74	if (nvmem->reg_read)
  75		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
  76
  77	return -EINVAL;
  78}
  79
  80static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
  81			     void *val, size_t bytes)
  82{
  83	int ret;
  84
  85	if (nvmem->reg_write) {
  86		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
  87		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
  88		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
  89		return ret;
  90	}
  91
  92	return -EINVAL;
  93}
  94
  95static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
  96				      unsigned int offset, void *val,
  97				      size_t bytes, int write)
  98{
  99
 100	unsigned int end = offset + bytes;
 101	unsigned int kend, ksize;
 102	const struct nvmem_keepout *keepout = nvmem->keepout;
 103	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
 104	int rc;
 105
 106	/*
 107	 * Skip all keepouts before the range being accessed.
 108	 * Keepouts are sorted.
 109	 */
 110	while ((keepout < keepoutend) && (keepout->end <= offset))
 111		keepout++;
 112
 113	while ((offset < end) && (keepout < keepoutend)) {
 114		/* Access the valid portion before the keepout. */
 115		if (offset < keepout->start) {
 116			kend = min(end, keepout->start);
 117			ksize = kend - offset;
 118			if (write)
 119				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
 120			else
 121				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
 122
 123			if (rc)
 124				return rc;
 125
 126			offset += ksize;
 127			val += ksize;
 128		}
 129
 130		/*
 131		 * Now we're aligned to the start of this keepout zone. Go
 132		 * through it.
 133		 */
 134		kend = min(end, keepout->end);
 135		ksize = kend - offset;
 136		if (!write)
 137			memset(val, keepout->value, ksize);
 138
 139		val += ksize;
 140		offset += ksize;
 141		keepout++;
 142	}
 143
 144	/*
 145	 * If we ran out of keepouts but there's still stuff to do, send it
 146	 * down directly
 147	 */
 148	if (offset < end) {
 149		ksize = end - offset;
 150		if (write)
 151			return __nvmem_reg_write(nvmem, offset, val, ksize);
 152		else
 153			return __nvmem_reg_read(nvmem, offset, val, ksize);
 154	}
 155
 156	return 0;
 157}
 158
 159static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
 160			  void *val, size_t bytes)
 161{
 162	if (!nvmem->nkeepout)
 163		return __nvmem_reg_read(nvmem, offset, val, bytes);
 164
 165	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
 166}
 167
 168static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
 169			   void *val, size_t bytes)
 170{
 171	if (!nvmem->nkeepout)
 172		return __nvmem_reg_write(nvmem, offset, val, bytes);
 173
 174	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
 175}
 176
 177#ifdef CONFIG_NVMEM_SYSFS
 178static const char * const nvmem_type_str[] = {
 179	[NVMEM_TYPE_UNKNOWN] = "Unknown",
 180	[NVMEM_TYPE_EEPROM] = "EEPROM",
 181	[NVMEM_TYPE_OTP] = "OTP",
 182	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
 183	[NVMEM_TYPE_FRAM] = "FRAM",
 184};
 185
 186#ifdef CONFIG_DEBUG_LOCK_ALLOC
 187static struct lock_class_key eeprom_lock_key;
 188#endif
 189
 190static ssize_t type_show(struct device *dev,
 191			 struct device_attribute *attr, char *buf)
 192{
 193	struct nvmem_device *nvmem = to_nvmem_device(dev);
 194
 195	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
 196}
 197
 198static DEVICE_ATTR_RO(type);
 199
 200static struct attribute *nvmem_attrs[] = {
 201	&dev_attr_type.attr,
 202	NULL,
 203};
 204
 205static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
 206				   struct bin_attribute *attr, char *buf,
 207				   loff_t pos, size_t count)
 208{
 209	struct device *dev;
 210	struct nvmem_device *nvmem;
 211	int rc;
 212
 213	if (attr->private)
 214		dev = attr->private;
 215	else
 216		dev = kobj_to_dev(kobj);
 217	nvmem = to_nvmem_device(dev);
 218
 219	/* Stop the user from reading */
 220	if (pos >= nvmem->size)
 221		return 0;
 222
 223	if (!IS_ALIGNED(pos, nvmem->stride))
 224		return -EINVAL;
 225
 226	if (count < nvmem->word_size)
 227		return -EINVAL;
 228
 229	if (pos + count > nvmem->size)
 230		count = nvmem->size - pos;
 231
 232	count = round_down(count, nvmem->word_size);
 233
 234	if (!nvmem->reg_read)
 235		return -EPERM;
 236
 237	rc = nvmem_reg_read(nvmem, pos, buf, count);
 238
 239	if (rc)
 240		return rc;
 241
 242	return count;
 243}
 244
 245static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
 246				    struct bin_attribute *attr, char *buf,
 247				    loff_t pos, size_t count)
 248{
 249	struct device *dev;
 250	struct nvmem_device *nvmem;
 251	int rc;
 252
 253	if (attr->private)
 254		dev = attr->private;
 255	else
 256		dev = kobj_to_dev(kobj);
 257	nvmem = to_nvmem_device(dev);
 258
 259	/* Stop the user from writing */
 260	if (pos >= nvmem->size)
 261		return -EFBIG;
 262
 263	if (!IS_ALIGNED(pos, nvmem->stride))
 264		return -EINVAL;
 265
 266	if (count < nvmem->word_size)
 267		return -EINVAL;
 268
 269	if (pos + count > nvmem->size)
 270		count = nvmem->size - pos;
 271
 272	count = round_down(count, nvmem->word_size);
 273
 274	if (!nvmem->reg_write)
 275		return -EPERM;
 276
 277	rc = nvmem_reg_write(nvmem, pos, buf, count);
 278
 279	if (rc)
 280		return rc;
 281
 282	return count;
 283}
 284
 285static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
 286{
 287	umode_t mode = 0400;
 288
 289	if (!nvmem->root_only)
 290		mode |= 0044;
 291
 292	if (!nvmem->read_only)
 293		mode |= 0200;
 294
 295	if (!nvmem->reg_write)
 296		mode &= ~0200;
 297
 298	if (!nvmem->reg_read)
 299		mode &= ~0444;
 300
 301	return mode;
 302}
 303
 304static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
 305					 struct bin_attribute *attr, int i)
 306{
 307	struct device *dev = kobj_to_dev(kobj);
 308	struct nvmem_device *nvmem = to_nvmem_device(dev);
 309
 
 
 310	return nvmem_bin_attr_get_umode(nvmem);
 311}
 312
 313/* default read/write permissions */
 314static struct bin_attribute bin_attr_rw_nvmem = {
 315	.attr	= {
 316		.name	= "nvmem",
 317		.mode	= 0644,
 318	},
 319	.read	= bin_attr_nvmem_read,
 320	.write	= bin_attr_nvmem_write,
 321};
 322
 323static struct bin_attribute *nvmem_bin_attributes[] = {
 324	&bin_attr_rw_nvmem,
 325	NULL,
 326};
 327
 328static const struct attribute_group nvmem_bin_group = {
 329	.bin_attrs	= nvmem_bin_attributes,
 330	.attrs		= nvmem_attrs,
 331	.is_bin_visible = nvmem_bin_attr_is_visible,
 332};
 333
 334static const struct attribute_group *nvmem_dev_groups[] = {
 335	&nvmem_bin_group,
 336	NULL,
 337};
 338
 339static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
 340	.attr	= {
 341		.name	= "eeprom",
 342	},
 343	.read	= bin_attr_nvmem_read,
 344	.write	= bin_attr_nvmem_write,
 345};
 346
 347/*
 348 * nvmem_setup_compat() - Create an additional binary entry in
 349 * drivers sys directory, to be backwards compatible with the older
 350 * drivers/misc/eeprom drivers.
 351 */
 352static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
 353				    const struct nvmem_config *config)
 354{
 355	int rval;
 356
 357	if (!config->compat)
 358		return 0;
 359
 360	if (!config->base_dev)
 361		return -EINVAL;
 362
 363	if (config->type == NVMEM_TYPE_FRAM)
 364		bin_attr_nvmem_eeprom_compat.attr.name = "fram";
 365
 366	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
 367	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
 368	nvmem->eeprom.size = nvmem->size;
 369#ifdef CONFIG_DEBUG_LOCK_ALLOC
 370	nvmem->eeprom.attr.key = &eeprom_lock_key;
 371#endif
 372	nvmem->eeprom.private = &nvmem->dev;
 373	nvmem->base_dev = config->base_dev;
 374
 375	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
 376	if (rval) {
 377		dev_err(&nvmem->dev,
 378			"Failed to create eeprom binary file %d\n", rval);
 379		return rval;
 380	}
 381
 382	nvmem->flags |= FLAG_COMPAT;
 383
 384	return 0;
 385}
 386
 387static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
 388			      const struct nvmem_config *config)
 389{
 390	if (config->compat)
 391		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
 392}
 393
 394#else /* CONFIG_NVMEM_SYSFS */
 395
 396static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
 397				    const struct nvmem_config *config)
 398{
 399	return -ENOSYS;
 400}
 401static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
 402				      const struct nvmem_config *config)
 403{
 404}
 405
 406#endif /* CONFIG_NVMEM_SYSFS */
 407
 408static void nvmem_release(struct device *dev)
 409{
 410	struct nvmem_device *nvmem = to_nvmem_device(dev);
 411
 412	ida_free(&nvmem_ida, nvmem->id);
 413	gpiod_put(nvmem->wp_gpio);
 414	kfree(nvmem);
 415}
 416
 417static const struct device_type nvmem_provider_type = {
 418	.release	= nvmem_release,
 419};
 420
 421static struct bus_type nvmem_bus_type = {
 422	.name		= "nvmem",
 423};
 424
 425static void nvmem_cell_drop(struct nvmem_cell *cell)
 426{
 427	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
 428	mutex_lock(&nvmem_mutex);
 429	list_del(&cell->node);
 430	mutex_unlock(&nvmem_mutex);
 431	of_node_put(cell->np);
 432	kfree_const(cell->name);
 433	kfree(cell);
 434}
 435
 436static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
 437{
 438	struct nvmem_cell *cell, *p;
 439
 440	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
 441		nvmem_cell_drop(cell);
 442}
 443
 444static void nvmem_cell_add(struct nvmem_cell *cell)
 445{
 446	mutex_lock(&nvmem_mutex);
 447	list_add_tail(&cell->node, &cell->nvmem->cells);
 448	mutex_unlock(&nvmem_mutex);
 449	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
 450}
 451
 452static int nvmem_cell_info_to_nvmem_cell_nodup(struct nvmem_device *nvmem,
 453					const struct nvmem_cell_info *info,
 454					struct nvmem_cell *cell)
 455{
 456	cell->nvmem = nvmem;
 457	cell->offset = info->offset;
 458	cell->bytes = info->bytes;
 459	cell->name = info->name;
 460
 461	cell->bit_offset = info->bit_offset;
 462	cell->nbits = info->nbits;
 
 463
 464	if (cell->nbits)
 465		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
 466					   BITS_PER_BYTE);
 467
 468	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
 469		dev_err(&nvmem->dev,
 470			"cell %s unaligned to nvmem stride %d\n",
 471			cell->name ?: "<unknown>", nvmem->stride);
 472		return -EINVAL;
 473	}
 474
 475	return 0;
 476}
 477
 478static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
 479				const struct nvmem_cell_info *info,
 480				struct nvmem_cell *cell)
 481{
 482	int err;
 483
 484	err = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, cell);
 485	if (err)
 486		return err;
 487
 488	cell->name = kstrdup_const(info->name, GFP_KERNEL);
 489	if (!cell->name)
 490		return -ENOMEM;
 491
 492	return 0;
 493}
 494
 495/**
 496 * nvmem_add_cells() - Add cell information to an nvmem device
 497 *
 498 * @nvmem: nvmem device to add cells to.
 499 * @info: nvmem cell info to add to the device
 500 * @ncells: number of cells in info
 501 *
 502 * Return: 0 or negative error code on failure.
 503 */
 504static int nvmem_add_cells(struct nvmem_device *nvmem,
 505		    const struct nvmem_cell_info *info,
 506		    int ncells)
 507{
 508	struct nvmem_cell **cells;
 509	int i, rval;
 510
 511	cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
 512	if (!cells)
 513		return -ENOMEM;
 514
 515	for (i = 0; i < ncells; i++) {
 516		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
 517		if (!cells[i]) {
 518			rval = -ENOMEM;
 519			goto err;
 520		}
 521
 522		rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
 523		if (rval) {
 524			kfree(cells[i]);
 525			goto err;
 526		}
 527
 528		nvmem_cell_add(cells[i]);
 529	}
 530
 531	/* remove tmp array */
 532	kfree(cells);
 533
 534	return 0;
 535err:
 536	while (i--)
 537		nvmem_cell_drop(cells[i]);
 538
 539	kfree(cells);
 540
 541	return rval;
 542}
 543
 544/**
 545 * nvmem_register_notifier() - Register a notifier block for nvmem events.
 546 *
 547 * @nb: notifier block to be called on nvmem events.
 548 *
 549 * Return: 0 on success, negative error number on failure.
 550 */
 551int nvmem_register_notifier(struct notifier_block *nb)
 552{
 553	return blocking_notifier_chain_register(&nvmem_notifier, nb);
 554}
 555EXPORT_SYMBOL_GPL(nvmem_register_notifier);
 556
 557/**
 558 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
 559 *
 560 * @nb: notifier block to be unregistered.
 561 *
 562 * Return: 0 on success, negative error number on failure.
 563 */
 564int nvmem_unregister_notifier(struct notifier_block *nb)
 565{
 566	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
 567}
 568EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
 569
 570static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
 571{
 572	const struct nvmem_cell_info *info;
 573	struct nvmem_cell_table *table;
 574	struct nvmem_cell *cell;
 575	int rval = 0, i;
 576
 577	mutex_lock(&nvmem_cell_mutex);
 578	list_for_each_entry(table, &nvmem_cell_tables, node) {
 579		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
 580			for (i = 0; i < table->ncells; i++) {
 581				info = &table->cells[i];
 582
 583				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
 584				if (!cell) {
 585					rval = -ENOMEM;
 586					goto out;
 587				}
 588
 589				rval = nvmem_cell_info_to_nvmem_cell(nvmem,
 590								     info,
 591								     cell);
 592				if (rval) {
 593					kfree(cell);
 594					goto out;
 595				}
 596
 597				nvmem_cell_add(cell);
 598			}
 599		}
 600	}
 601
 602out:
 603	mutex_unlock(&nvmem_cell_mutex);
 604	return rval;
 605}
 606
 607static struct nvmem_cell *
 608nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
 609{
 610	struct nvmem_cell *iter, *cell = NULL;
 611
 612	mutex_lock(&nvmem_mutex);
 613	list_for_each_entry(iter, &nvmem->cells, node) {
 614		if (strcmp(cell_id, iter->name) == 0) {
 615			cell = iter;
 616			break;
 617		}
 618	}
 619	mutex_unlock(&nvmem_mutex);
 620
 621	return cell;
 622}
 623
 624static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
 625{
 626	unsigned int cur = 0;
 627	const struct nvmem_keepout *keepout = nvmem->keepout;
 628	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
 629
 630	while (keepout < keepoutend) {
 631		/* Ensure keepouts are sorted and don't overlap. */
 632		if (keepout->start < cur) {
 633			dev_err(&nvmem->dev,
 634				"Keepout regions aren't sorted or overlap.\n");
 635
 636			return -ERANGE;
 637		}
 638
 639		if (keepout->end < keepout->start) {
 640			dev_err(&nvmem->dev,
 641				"Invalid keepout region.\n");
 642
 643			return -EINVAL;
 644		}
 645
 646		/*
 647		 * Validate keepouts (and holes between) don't violate
 648		 * word_size constraints.
 649		 */
 650		if ((keepout->end - keepout->start < nvmem->word_size) ||
 651		    ((keepout->start != cur) &&
 652		     (keepout->start - cur < nvmem->word_size))) {
 653
 654			dev_err(&nvmem->dev,
 655				"Keepout regions violate word_size constraints.\n");
 656
 657			return -ERANGE;
 658		}
 659
 660		/* Validate keepouts don't violate stride (alignment). */
 661		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
 662		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
 663
 664			dev_err(&nvmem->dev,
 665				"Keepout regions violate stride.\n");
 666
 667			return -EINVAL;
 668		}
 669
 670		cur = keepout->end;
 671		keepout++;
 672	}
 673
 674	return 0;
 675}
 676
 677static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
 678{
 679	struct device_node *parent, *child;
 680	struct device *dev = &nvmem->dev;
 681	struct nvmem_cell *cell;
 682	const __be32 *addr;
 683	int len;
 684
 685	parent = dev->of_node;
 686
 687	for_each_child_of_node(parent, child) {
 688		addr = of_get_property(child, "reg", &len);
 689		if (!addr)
 690			continue;
 691		if (len < 2 * sizeof(u32)) {
 692			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
 693			of_node_put(child);
 694			return -EINVAL;
 695		}
 696
 697		cell = kzalloc(sizeof(*cell), GFP_KERNEL);
 698		if (!cell) {
 699			of_node_put(child);
 700			return -ENOMEM;
 701		}
 702
 703		cell->nvmem = nvmem;
 704		cell->offset = be32_to_cpup(addr++);
 705		cell->bytes = be32_to_cpup(addr);
 706		cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
 707
 708		addr = of_get_property(child, "bits", &len);
 709		if (addr && len == (2 * sizeof(u32))) {
 710			cell->bit_offset = be32_to_cpup(addr++);
 711			cell->nbits = be32_to_cpup(addr);
 712		}
 713
 714		if (cell->nbits)
 715			cell->bytes = DIV_ROUND_UP(
 716					cell->nbits + cell->bit_offset,
 717					BITS_PER_BYTE);
 718
 719		if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
 720			dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
 721				cell->name, nvmem->stride);
 722			/* Cells already added will be freed later. */
 723			kfree_const(cell->name);
 724			kfree(cell);
 725			of_node_put(child);
 726			return -EINVAL;
 727		}
 728
 729		cell->np = of_node_get(child);
 730		nvmem_cell_add(cell);
 731	}
 732
 733	return 0;
 734}
 735
 736/**
 737 * nvmem_register() - Register a nvmem device for given nvmem_config.
 738 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
 739 *
 740 * @config: nvmem device configuration with which nvmem device is created.
 741 *
 742 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
 743 * on success.
 744 */
 745
 746struct nvmem_device *nvmem_register(const struct nvmem_config *config)
 747{
 748	struct nvmem_device *nvmem;
 749	int rval;
 750
 751	if (!config->dev)
 752		return ERR_PTR(-EINVAL);
 753
 754	if (!config->reg_read && !config->reg_write)
 755		return ERR_PTR(-EINVAL);
 756
 757	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
 758	if (!nvmem)
 759		return ERR_PTR(-ENOMEM);
 760
 761	rval  = ida_alloc(&nvmem_ida, GFP_KERNEL);
 762	if (rval < 0) {
 763		kfree(nvmem);
 764		return ERR_PTR(rval);
 765	}
 766
 767	if (config->wp_gpio)
 768		nvmem->wp_gpio = config->wp_gpio;
 769	else
 
 
 
 
 
 
 770		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
 771						    GPIOD_OUT_HIGH);
 772	if (IS_ERR(nvmem->wp_gpio)) {
 773		ida_free(&nvmem_ida, nvmem->id);
 774		rval = PTR_ERR(nvmem->wp_gpio);
 775		kfree(nvmem);
 776		return ERR_PTR(rval);
 777	}
 778
 779	kref_init(&nvmem->refcnt);
 780	INIT_LIST_HEAD(&nvmem->cells);
 781
 782	nvmem->id = rval;
 783	nvmem->owner = config->owner;
 784	if (!nvmem->owner && config->dev->driver)
 785		nvmem->owner = config->dev->driver->owner;
 786	nvmem->stride = config->stride ?: 1;
 787	nvmem->word_size = config->word_size ?: 1;
 788	nvmem->size = config->size;
 789	nvmem->dev.type = &nvmem_provider_type;
 790	nvmem->dev.bus = &nvmem_bus_type;
 791	nvmem->dev.parent = config->dev;
 792	nvmem->root_only = config->root_only;
 793	nvmem->priv = config->priv;
 794	nvmem->type = config->type;
 795	nvmem->reg_read = config->reg_read;
 796	nvmem->reg_write = config->reg_write;
 
 797	nvmem->keepout = config->keepout;
 798	nvmem->nkeepout = config->nkeepout;
 799	if (config->of_node)
 800		nvmem->dev.of_node = config->of_node;
 801	else if (!config->no_of_node)
 802		nvmem->dev.of_node = config->dev->of_node;
 803
 804	switch (config->id) {
 805	case NVMEM_DEVID_NONE:
 806		dev_set_name(&nvmem->dev, "%s", config->name);
 807		break;
 808	case NVMEM_DEVID_AUTO:
 809		dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
 810		break;
 811	default:
 812		dev_set_name(&nvmem->dev, "%s%d",
 813			     config->name ? : "nvmem",
 814			     config->name ? config->id : nvmem->id);
 815		break;
 816	}
 817
 
 
 
 818	nvmem->read_only = device_property_present(config->dev, "read-only") ||
 819			   config->read_only || !nvmem->reg_write;
 820
 821#ifdef CONFIG_NVMEM_SYSFS
 822	nvmem->dev.groups = nvmem_dev_groups;
 823#endif
 824
 825	if (nvmem->nkeepout) {
 826		rval = nvmem_validate_keepouts(nvmem);
 827		if (rval) {
 828			ida_free(&nvmem_ida, nvmem->id);
 829			kfree(nvmem);
 830			return ERR_PTR(rval);
 831		}
 832	}
 833
 834	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
 835
 836	rval = device_register(&nvmem->dev);
 837	if (rval)
 838		goto err_put_device;
 839
 840	if (config->compat) {
 841		rval = nvmem_sysfs_setup_compat(nvmem, config);
 842		if (rval)
 843			goto err_device_del;
 844	}
 845
 846	if (config->cells) {
 847		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
 848		if (rval)
 849			goto err_teardown_compat;
 850	}
 851
 852	rval = nvmem_add_cells_from_table(nvmem);
 853	if (rval)
 854		goto err_remove_cells;
 855
 856	rval = nvmem_add_cells_from_of(nvmem);
 857	if (rval)
 858		goto err_remove_cells;
 859
 
 
 
 
 
 
 860	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
 861
 862	return nvmem;
 863
 864err_remove_cells:
 865	nvmem_device_remove_all_cells(nvmem);
 866err_teardown_compat:
 867	if (config->compat)
 868		nvmem_sysfs_remove_compat(nvmem, config);
 869err_device_del:
 870	device_del(&nvmem->dev);
 871err_put_device:
 872	put_device(&nvmem->dev);
 873
 874	return ERR_PTR(rval);
 875}
 876EXPORT_SYMBOL_GPL(nvmem_register);
 877
 878static void nvmem_device_release(struct kref *kref)
 879{
 880	struct nvmem_device *nvmem;
 881
 882	nvmem = container_of(kref, struct nvmem_device, refcnt);
 883
 884	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
 885
 886	if (nvmem->flags & FLAG_COMPAT)
 887		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
 888
 889	nvmem_device_remove_all_cells(nvmem);
 890	device_unregister(&nvmem->dev);
 891}
 892
 893/**
 894 * nvmem_unregister() - Unregister previously registered nvmem device
 895 *
 896 * @nvmem: Pointer to previously registered nvmem device.
 897 */
 898void nvmem_unregister(struct nvmem_device *nvmem)
 899{
 900	kref_put(&nvmem->refcnt, nvmem_device_release);
 
 901}
 902EXPORT_SYMBOL_GPL(nvmem_unregister);
 903
 904static void devm_nvmem_release(struct device *dev, void *res)
 905{
 906	nvmem_unregister(*(struct nvmem_device **)res);
 907}
 908
 909/**
 910 * devm_nvmem_register() - Register a managed nvmem device for given
 911 * nvmem_config.
 912 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
 913 *
 914 * @dev: Device that uses the nvmem device.
 915 * @config: nvmem device configuration with which nvmem device is created.
 916 *
 917 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
 918 * on success.
 919 */
 920struct nvmem_device *devm_nvmem_register(struct device *dev,
 921					 const struct nvmem_config *config)
 922{
 923	struct nvmem_device **ptr, *nvmem;
 924
 925	ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
 926	if (!ptr)
 927		return ERR_PTR(-ENOMEM);
 928
 929	nvmem = nvmem_register(config);
 
 
 930
 931	if (!IS_ERR(nvmem)) {
 932		*ptr = nvmem;
 933		devres_add(dev, ptr);
 934	} else {
 935		devres_free(ptr);
 936	}
 937
 938	return nvmem;
 939}
 940EXPORT_SYMBOL_GPL(devm_nvmem_register);
 941
 942static int devm_nvmem_match(struct device *dev, void *res, void *data)
 943{
 944	struct nvmem_device **r = res;
 945
 946	return *r == data;
 947}
 948
 949/**
 950 * devm_nvmem_unregister() - Unregister previously registered managed nvmem
 951 * device.
 952 *
 953 * @dev: Device that uses the nvmem device.
 954 * @nvmem: Pointer to previously registered nvmem device.
 955 *
 956 * Return: Will be negative on error or zero on success.
 957 */
 958int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
 959{
 960	return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
 961}
 962EXPORT_SYMBOL(devm_nvmem_unregister);
 963
 964static struct nvmem_device *__nvmem_device_get(void *data,
 965			int (*match)(struct device *dev, const void *data))
 966{
 967	struct nvmem_device *nvmem = NULL;
 968	struct device *dev;
 969
 970	mutex_lock(&nvmem_mutex);
 971	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
 972	if (dev)
 973		nvmem = to_nvmem_device(dev);
 974	mutex_unlock(&nvmem_mutex);
 975	if (!nvmem)
 976		return ERR_PTR(-EPROBE_DEFER);
 977
 978	if (!try_module_get(nvmem->owner)) {
 979		dev_err(&nvmem->dev,
 980			"could not increase module refcount for cell %s\n",
 981			nvmem_dev_name(nvmem));
 982
 983		put_device(&nvmem->dev);
 984		return ERR_PTR(-EINVAL);
 985	}
 986
 987	kref_get(&nvmem->refcnt);
 988
 989	return nvmem;
 990}
 991
 992static void __nvmem_device_put(struct nvmem_device *nvmem)
 993{
 994	put_device(&nvmem->dev);
 995	module_put(nvmem->owner);
 996	kref_put(&nvmem->refcnt, nvmem_device_release);
 997}
 998
 999#if IS_ENABLED(CONFIG_OF)
1000/**
1001 * of_nvmem_device_get() - Get nvmem device from a given id
1002 *
1003 * @np: Device tree node that uses the nvmem device.
1004 * @id: nvmem name from nvmem-names property.
1005 *
1006 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1007 * on success.
1008 */
1009struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1010{
1011
1012	struct device_node *nvmem_np;
1013	struct nvmem_device *nvmem;
1014	int index = 0;
1015
1016	if (id)
1017		index = of_property_match_string(np, "nvmem-names", id);
1018
1019	nvmem_np = of_parse_phandle(np, "nvmem", index);
1020	if (!nvmem_np)
1021		return ERR_PTR(-ENOENT);
1022
1023	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1024	of_node_put(nvmem_np);
1025	return nvmem;
1026}
1027EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1028#endif
1029
1030/**
1031 * nvmem_device_get() - Get nvmem device from a given id
1032 *
1033 * @dev: Device that uses the nvmem device.
1034 * @dev_name: name of the requested nvmem device.
1035 *
1036 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1037 * on success.
1038 */
1039struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1040{
1041	if (dev->of_node) { /* try dt first */
1042		struct nvmem_device *nvmem;
1043
1044		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1045
1046		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1047			return nvmem;
1048
1049	}
1050
1051	return __nvmem_device_get((void *)dev_name, device_match_name);
1052}
1053EXPORT_SYMBOL_GPL(nvmem_device_get);
1054
1055/**
1056 * nvmem_device_find() - Find nvmem device with matching function
1057 *
1058 * @data: Data to pass to match function
1059 * @match: Callback function to check device
1060 *
1061 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1062 * on success.
1063 */
1064struct nvmem_device *nvmem_device_find(void *data,
1065			int (*match)(struct device *dev, const void *data))
1066{
1067	return __nvmem_device_get(data, match);
1068}
1069EXPORT_SYMBOL_GPL(nvmem_device_find);
1070
1071static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1072{
1073	struct nvmem_device **nvmem = res;
1074
1075	if (WARN_ON(!nvmem || !*nvmem))
1076		return 0;
1077
1078	return *nvmem == data;
1079}
1080
1081static void devm_nvmem_device_release(struct device *dev, void *res)
1082{
1083	nvmem_device_put(*(struct nvmem_device **)res);
1084}
1085
1086/**
1087 * devm_nvmem_device_put() - put alredy got nvmem device
1088 *
1089 * @dev: Device that uses the nvmem device.
1090 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1091 * that needs to be released.
1092 */
1093void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1094{
1095	int ret;
1096
1097	ret = devres_release(dev, devm_nvmem_device_release,
1098			     devm_nvmem_device_match, nvmem);
1099
1100	WARN_ON(ret);
1101}
1102EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1103
1104/**
1105 * nvmem_device_put() - put alredy got nvmem device
1106 *
1107 * @nvmem: pointer to nvmem device that needs to be released.
1108 */
1109void nvmem_device_put(struct nvmem_device *nvmem)
1110{
1111	__nvmem_device_put(nvmem);
1112}
1113EXPORT_SYMBOL_GPL(nvmem_device_put);
1114
1115/**
1116 * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1117 *
1118 * @dev: Device that requests the nvmem device.
1119 * @id: name id for the requested nvmem device.
1120 *
1121 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1122 * on success.  The nvmem_cell will be freed by the automatically once the
1123 * device is freed.
1124 */
1125struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1126{
1127	struct nvmem_device **ptr, *nvmem;
1128
1129	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1130	if (!ptr)
1131		return ERR_PTR(-ENOMEM);
1132
1133	nvmem = nvmem_device_get(dev, id);
1134	if (!IS_ERR(nvmem)) {
1135		*ptr = nvmem;
1136		devres_add(dev, ptr);
1137	} else {
1138		devres_free(ptr);
1139	}
1140
1141	return nvmem;
1142}
1143EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1145static struct nvmem_cell *
1146nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1147{
 
1148	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1149	struct nvmem_cell_lookup *lookup;
1150	struct nvmem_device *nvmem;
1151	const char *dev_id;
1152
1153	if (!dev)
1154		return ERR_PTR(-EINVAL);
1155
1156	dev_id = dev_name(dev);
1157
1158	mutex_lock(&nvmem_lookup_mutex);
1159
1160	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1161		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1162		    (strcmp(lookup->con_id, con_id) == 0)) {
1163			/* This is the right entry. */
1164			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1165						   device_match_name);
1166			if (IS_ERR(nvmem)) {
1167				/* Provider may not be registered yet. */
1168				cell = ERR_CAST(nvmem);
1169				break;
1170			}
1171
1172			cell = nvmem_find_cell_by_name(nvmem,
1173						       lookup->cell_name);
1174			if (!cell) {
1175				__nvmem_device_put(nvmem);
1176				cell = ERR_PTR(-ENOENT);
 
 
 
 
1177			}
1178			break;
1179		}
1180	}
1181
1182	mutex_unlock(&nvmem_lookup_mutex);
1183	return cell;
1184}
1185
1186#if IS_ENABLED(CONFIG_OF)
1187static struct nvmem_cell *
1188nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
1189{
1190	struct nvmem_cell *iter, *cell = NULL;
1191
1192	mutex_lock(&nvmem_mutex);
1193	list_for_each_entry(iter, &nvmem->cells, node) {
1194		if (np == iter->np) {
1195			cell = iter;
1196			break;
1197		}
1198	}
1199	mutex_unlock(&nvmem_mutex);
1200
1201	return cell;
1202}
1203
1204/**
1205 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1206 *
1207 * @np: Device tree node that uses the nvmem cell.
1208 * @id: nvmem cell name from nvmem-cell-names property, or NULL
1209 *      for the cell at index 0 (the lone cell with no accompanying
1210 *      nvmem-cell-names property).
1211 *
1212 * Return: Will be an ERR_PTR() on error or a valid pointer
1213 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1214 * nvmem_cell_put().
1215 */
1216struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1217{
1218	struct device_node *cell_np, *nvmem_np;
1219	struct nvmem_device *nvmem;
 
1220	struct nvmem_cell *cell;
1221	int index = 0;
1222
1223	/* if cell name exists, find index to the name */
1224	if (id)
1225		index = of_property_match_string(np, "nvmem-cell-names", id);
1226
1227	cell_np = of_parse_phandle(np, "nvmem-cells", index);
1228	if (!cell_np)
1229		return ERR_PTR(-ENOENT);
1230
1231	nvmem_np = of_get_next_parent(cell_np);
1232	if (!nvmem_np)
 
1233		return ERR_PTR(-EINVAL);
 
1234
1235	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1236	of_node_put(nvmem_np);
1237	if (IS_ERR(nvmem))
 
1238		return ERR_CAST(nvmem);
 
1239
1240	cell = nvmem_find_cell_by_node(nvmem, cell_np);
1241	if (!cell) {
 
1242		__nvmem_device_put(nvmem);
1243		return ERR_PTR(-ENOENT);
1244	}
1245
 
 
 
 
1246	return cell;
1247}
1248EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1249#endif
1250
1251/**
1252 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1253 *
1254 * @dev: Device that requests the nvmem cell.
1255 * @id: nvmem cell name to get (this corresponds with the name from the
1256 *      nvmem-cell-names property for DT systems and with the con_id from
1257 *      the lookup entry for non-DT systems).
1258 *
1259 * Return: Will be an ERR_PTR() on error or a valid pointer
1260 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1261 * nvmem_cell_put().
1262 */
1263struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1264{
1265	struct nvmem_cell *cell;
1266
1267	if (dev->of_node) { /* try dt first */
1268		cell = of_nvmem_cell_get(dev->of_node, id);
1269		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1270			return cell;
1271	}
1272
1273	/* NULL cell id only allowed for device tree; invalid otherwise */
1274	if (!id)
1275		return ERR_PTR(-EINVAL);
1276
1277	return nvmem_cell_get_from_lookup(dev, id);
1278}
1279EXPORT_SYMBOL_GPL(nvmem_cell_get);
1280
1281static void devm_nvmem_cell_release(struct device *dev, void *res)
1282{
1283	nvmem_cell_put(*(struct nvmem_cell **)res);
1284}
1285
1286/**
1287 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1288 *
1289 * @dev: Device that requests the nvmem cell.
1290 * @id: nvmem cell name id to get.
1291 *
1292 * Return: Will be an ERR_PTR() on error or a valid pointer
1293 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1294 * automatically once the device is freed.
1295 */
1296struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1297{
1298	struct nvmem_cell **ptr, *cell;
1299
1300	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1301	if (!ptr)
1302		return ERR_PTR(-ENOMEM);
1303
1304	cell = nvmem_cell_get(dev, id);
1305	if (!IS_ERR(cell)) {
1306		*ptr = cell;
1307		devres_add(dev, ptr);
1308	} else {
1309		devres_free(ptr);
1310	}
1311
1312	return cell;
1313}
1314EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1315
1316static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1317{
1318	struct nvmem_cell **c = res;
1319
1320	if (WARN_ON(!c || !*c))
1321		return 0;
1322
1323	return *c == data;
1324}
1325
1326/**
1327 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1328 * from devm_nvmem_cell_get.
1329 *
1330 * @dev: Device that requests the nvmem cell.
1331 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1332 */
1333void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1334{
1335	int ret;
1336
1337	ret = devres_release(dev, devm_nvmem_cell_release,
1338				devm_nvmem_cell_match, cell);
1339
1340	WARN_ON(ret);
1341}
1342EXPORT_SYMBOL(devm_nvmem_cell_put);
1343
1344/**
1345 * nvmem_cell_put() - Release previously allocated nvmem cell.
1346 *
1347 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1348 */
1349void nvmem_cell_put(struct nvmem_cell *cell)
1350{
1351	struct nvmem_device *nvmem = cell->nvmem;
 
 
 
1352
 
1353	__nvmem_device_put(nvmem);
1354}
1355EXPORT_SYMBOL_GPL(nvmem_cell_put);
1356
1357static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1358{
1359	u8 *p, *b;
1360	int i, extra, bit_offset = cell->bit_offset;
1361
1362	p = b = buf;
1363	if (bit_offset) {
1364		/* First shift */
1365		*b++ >>= bit_offset;
1366
1367		/* setup rest of the bytes if any */
1368		for (i = 1; i < cell->bytes; i++) {
1369			/* Get bits from next byte and shift them towards msb */
1370			*p |= *b << (BITS_PER_BYTE - bit_offset);
1371
1372			p = b;
1373			*b++ >>= bit_offset;
1374		}
1375	} else {
1376		/* point to the msb */
1377		p += cell->bytes - 1;
1378	}
1379
1380	/* result fits in less bytes */
1381	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1382	while (--extra >= 0)
1383		*p-- = 0;
1384
1385	/* clear msb bits if any leftover in the last byte */
1386	if (cell->nbits % BITS_PER_BYTE)
1387		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1388}
1389
1390static int __nvmem_cell_read(struct nvmem_device *nvmem,
1391		      struct nvmem_cell *cell,
1392		      void *buf, size_t *len)
1393{
1394	int rc;
1395
1396	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1397
1398	if (rc)
1399		return rc;
1400
1401	/* shift bits in-place */
1402	if (cell->bit_offset || cell->nbits)
1403		nvmem_shift_read_buffer_in_place(cell, buf);
1404
 
 
 
 
 
 
 
1405	if (len)
1406		*len = cell->bytes;
1407
1408	return 0;
1409}
1410
1411/**
1412 * nvmem_cell_read() - Read a given nvmem cell
1413 *
1414 * @cell: nvmem cell to be read.
1415 * @len: pointer to length of cell which will be populated on successful read;
1416 *	 can be NULL.
1417 *
1418 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1419 * buffer should be freed by the consumer with a kfree().
1420 */
1421void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1422{
1423	struct nvmem_device *nvmem = cell->nvmem;
1424	u8 *buf;
1425	int rc;
1426
1427	if (!nvmem)
1428		return ERR_PTR(-EINVAL);
1429
1430	buf = kzalloc(cell->bytes, GFP_KERNEL);
1431	if (!buf)
1432		return ERR_PTR(-ENOMEM);
1433
1434	rc = __nvmem_cell_read(nvmem, cell, buf, len);
1435	if (rc) {
1436		kfree(buf);
1437		return ERR_PTR(rc);
1438	}
1439
1440	return buf;
1441}
1442EXPORT_SYMBOL_GPL(nvmem_cell_read);
1443
1444static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1445					     u8 *_buf, int len)
1446{
1447	struct nvmem_device *nvmem = cell->nvmem;
1448	int i, rc, nbits, bit_offset = cell->bit_offset;
1449	u8 v, *p, *buf, *b, pbyte, pbits;
1450
1451	nbits = cell->nbits;
1452	buf = kzalloc(cell->bytes, GFP_KERNEL);
1453	if (!buf)
1454		return ERR_PTR(-ENOMEM);
1455
1456	memcpy(buf, _buf, len);
1457	p = b = buf;
1458
1459	if (bit_offset) {
1460		pbyte = *b;
1461		*b <<= bit_offset;
1462
1463		/* setup the first byte with lsb bits from nvmem */
1464		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1465		if (rc)
1466			goto err;
1467		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1468
1469		/* setup rest of the byte if any */
1470		for (i = 1; i < cell->bytes; i++) {
1471			/* Get last byte bits and shift them towards lsb */
1472			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1473			pbyte = *b;
1474			p = b;
1475			*b <<= bit_offset;
1476			*b++ |= pbits;
1477		}
1478	}
1479
1480	/* if it's not end on byte boundary */
1481	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1482		/* setup the last byte with msb bits from nvmem */
1483		rc = nvmem_reg_read(nvmem,
1484				    cell->offset + cell->bytes - 1, &v, 1);
1485		if (rc)
1486			goto err;
1487		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1488
1489	}
1490
1491	return buf;
1492err:
1493	kfree(buf);
1494	return ERR_PTR(rc);
1495}
1496
1497/**
1498 * nvmem_cell_write() - Write to a given nvmem cell
1499 *
1500 * @cell: nvmem cell to be written.
1501 * @buf: Buffer to be written.
1502 * @len: length of buffer to be written to nvmem cell.
1503 *
1504 * Return: length of bytes written or negative on failure.
1505 */
1506int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1507{
1508	struct nvmem_device *nvmem = cell->nvmem;
1509	int rc;
1510
1511	if (!nvmem || nvmem->read_only ||
1512	    (cell->bit_offset == 0 && len != cell->bytes))
1513		return -EINVAL;
1514
1515	if (cell->bit_offset || cell->nbits) {
1516		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1517		if (IS_ERR(buf))
1518			return PTR_ERR(buf);
1519	}
1520
1521	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1522
1523	/* free the tmp buffer */
1524	if (cell->bit_offset || cell->nbits)
1525		kfree(buf);
1526
1527	if (rc)
1528		return rc;
1529
1530	return len;
1531}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1532EXPORT_SYMBOL_GPL(nvmem_cell_write);
1533
1534static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1535				  void *val, size_t count)
1536{
1537	struct nvmem_cell *cell;
1538	void *buf;
1539	size_t len;
1540
1541	cell = nvmem_cell_get(dev, cell_id);
1542	if (IS_ERR(cell))
1543		return PTR_ERR(cell);
1544
1545	buf = nvmem_cell_read(cell, &len);
1546	if (IS_ERR(buf)) {
1547		nvmem_cell_put(cell);
1548		return PTR_ERR(buf);
1549	}
1550	if (len != count) {
1551		kfree(buf);
1552		nvmem_cell_put(cell);
1553		return -EINVAL;
1554	}
1555	memcpy(val, buf, count);
1556	kfree(buf);
1557	nvmem_cell_put(cell);
1558
1559	return 0;
1560}
1561
1562/**
1563 * nvmem_cell_read_u8() - Read a cell value as a u8
1564 *
1565 * @dev: Device that requests the nvmem cell.
1566 * @cell_id: Name of nvmem cell to read.
1567 * @val: pointer to output value.
1568 *
1569 * Return: 0 on success or negative errno.
1570 */
1571int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1572{
1573	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1574}
1575EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1576
1577/**
1578 * nvmem_cell_read_u16() - Read a cell value as a u16
1579 *
1580 * @dev: Device that requests the nvmem cell.
1581 * @cell_id: Name of nvmem cell to read.
1582 * @val: pointer to output value.
1583 *
1584 * Return: 0 on success or negative errno.
1585 */
1586int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1587{
1588	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1589}
1590EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1591
1592/**
1593 * nvmem_cell_read_u32() - Read a cell value as a u32
1594 *
1595 * @dev: Device that requests the nvmem cell.
1596 * @cell_id: Name of nvmem cell to read.
1597 * @val: pointer to output value.
1598 *
1599 * Return: 0 on success or negative errno.
1600 */
1601int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1602{
1603	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1604}
1605EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1606
1607/**
1608 * nvmem_cell_read_u64() - Read a cell value as a u64
1609 *
1610 * @dev: Device that requests the nvmem cell.
1611 * @cell_id: Name of nvmem cell to read.
1612 * @val: pointer to output value.
1613 *
1614 * Return: 0 on success or negative errno.
1615 */
1616int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1617{
1618	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1619}
1620EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1621
1622static const void *nvmem_cell_read_variable_common(struct device *dev,
1623						   const char *cell_id,
1624						   size_t max_len, size_t *len)
1625{
1626	struct nvmem_cell *cell;
1627	int nbits;
1628	void *buf;
1629
1630	cell = nvmem_cell_get(dev, cell_id);
1631	if (IS_ERR(cell))
1632		return cell;
1633
1634	nbits = cell->nbits;
1635	buf = nvmem_cell_read(cell, len);
1636	nvmem_cell_put(cell);
1637	if (IS_ERR(buf))
1638		return buf;
1639
1640	/*
1641	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1642	 * the length of the real data. Throw away the extra junk.
1643	 */
1644	if (nbits)
1645		*len = DIV_ROUND_UP(nbits, 8);
1646
1647	if (*len > max_len) {
1648		kfree(buf);
1649		return ERR_PTR(-ERANGE);
1650	}
1651
1652	return buf;
1653}
1654
1655/**
1656 * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1657 *
1658 * @dev: Device that requests the nvmem cell.
1659 * @cell_id: Name of nvmem cell to read.
1660 * @val: pointer to output value.
1661 *
1662 * Return: 0 on success or negative errno.
1663 */
1664int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1665				    u32 *val)
1666{
1667	size_t len;
1668	const u8 *buf;
1669	int i;
1670
1671	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1672	if (IS_ERR(buf))
1673		return PTR_ERR(buf);
1674
1675	/* Copy w/ implicit endian conversion */
1676	*val = 0;
1677	for (i = 0; i < len; i++)
1678		*val |= buf[i] << (8 * i);
1679
1680	kfree(buf);
1681
1682	return 0;
1683}
1684EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1685
1686/**
1687 * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1688 *
1689 * @dev: Device that requests the nvmem cell.
1690 * @cell_id: Name of nvmem cell to read.
1691 * @val: pointer to output value.
1692 *
1693 * Return: 0 on success or negative errno.
1694 */
1695int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1696				    u64 *val)
1697{
1698	size_t len;
1699	const u8 *buf;
1700	int i;
1701
1702	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1703	if (IS_ERR(buf))
1704		return PTR_ERR(buf);
1705
1706	/* Copy w/ implicit endian conversion */
1707	*val = 0;
1708	for (i = 0; i < len; i++)
1709		*val |= (uint64_t)buf[i] << (8 * i);
1710
1711	kfree(buf);
1712
1713	return 0;
1714}
1715EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1716
1717/**
1718 * nvmem_device_cell_read() - Read a given nvmem device and cell
1719 *
1720 * @nvmem: nvmem device to read from.
1721 * @info: nvmem cell info to be read.
1722 * @buf: buffer pointer which will be populated on successful read.
1723 *
1724 * Return: length of successful bytes read on success and negative
1725 * error code on error.
1726 */
1727ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1728			   struct nvmem_cell_info *info, void *buf)
1729{
1730	struct nvmem_cell cell;
1731	int rc;
1732	ssize_t len;
1733
1734	if (!nvmem)
1735		return -EINVAL;
1736
1737	rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1738	if (rc)
1739		return rc;
1740
1741	rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1742	if (rc)
1743		return rc;
1744
1745	return len;
1746}
1747EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1748
1749/**
1750 * nvmem_device_cell_write() - Write cell to a given nvmem device
1751 *
1752 * @nvmem: nvmem device to be written to.
1753 * @info: nvmem cell info to be written.
1754 * @buf: buffer to be written to cell.
1755 *
1756 * Return: length of bytes written or negative error code on failure.
1757 */
1758int nvmem_device_cell_write(struct nvmem_device *nvmem,
1759			    struct nvmem_cell_info *info, void *buf)
1760{
1761	struct nvmem_cell cell;
1762	int rc;
1763
1764	if (!nvmem)
1765		return -EINVAL;
1766
1767	rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1768	if (rc)
1769		return rc;
1770
1771	return nvmem_cell_write(&cell, buf, cell.bytes);
1772}
1773EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1774
1775/**
1776 * nvmem_device_read() - Read from a given nvmem device
1777 *
1778 * @nvmem: nvmem device to read from.
1779 * @offset: offset in nvmem device.
1780 * @bytes: number of bytes to read.
1781 * @buf: buffer pointer which will be populated on successful read.
1782 *
1783 * Return: length of successful bytes read on success and negative
1784 * error code on error.
1785 */
1786int nvmem_device_read(struct nvmem_device *nvmem,
1787		      unsigned int offset,
1788		      size_t bytes, void *buf)
1789{
1790	int rc;
1791
1792	if (!nvmem)
1793		return -EINVAL;
1794
1795	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1796
1797	if (rc)
1798		return rc;
1799
1800	return bytes;
1801}
1802EXPORT_SYMBOL_GPL(nvmem_device_read);
1803
1804/**
1805 * nvmem_device_write() - Write cell to a given nvmem device
1806 *
1807 * @nvmem: nvmem device to be written to.
1808 * @offset: offset in nvmem device.
1809 * @bytes: number of bytes to write.
1810 * @buf: buffer to be written.
1811 *
1812 * Return: length of bytes written or negative error code on failure.
1813 */
1814int nvmem_device_write(struct nvmem_device *nvmem,
1815		       unsigned int offset,
1816		       size_t bytes, void *buf)
1817{
1818	int rc;
1819
1820	if (!nvmem)
1821		return -EINVAL;
1822
1823	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1824
1825	if (rc)
1826		return rc;
1827
1828
1829	return bytes;
1830}
1831EXPORT_SYMBOL_GPL(nvmem_device_write);
1832
1833/**
1834 * nvmem_add_cell_table() - register a table of cell info entries
1835 *
1836 * @table: table of cell info entries
1837 */
1838void nvmem_add_cell_table(struct nvmem_cell_table *table)
1839{
1840	mutex_lock(&nvmem_cell_mutex);
1841	list_add_tail(&table->node, &nvmem_cell_tables);
1842	mutex_unlock(&nvmem_cell_mutex);
1843}
1844EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1845
1846/**
1847 * nvmem_del_cell_table() - remove a previously registered cell info table
1848 *
1849 * @table: table of cell info entries
1850 */
1851void nvmem_del_cell_table(struct nvmem_cell_table *table)
1852{
1853	mutex_lock(&nvmem_cell_mutex);
1854	list_del(&table->node);
1855	mutex_unlock(&nvmem_cell_mutex);
1856}
1857EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1858
1859/**
1860 * nvmem_add_cell_lookups() - register a list of cell lookup entries
1861 *
1862 * @entries: array of cell lookup entries
1863 * @nentries: number of cell lookup entries in the array
1864 */
1865void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1866{
1867	int i;
1868
1869	mutex_lock(&nvmem_lookup_mutex);
1870	for (i = 0; i < nentries; i++)
1871		list_add_tail(&entries[i].node, &nvmem_lookup_list);
1872	mutex_unlock(&nvmem_lookup_mutex);
1873}
1874EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1875
1876/**
1877 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1878 *                            entries
1879 *
1880 * @entries: array of cell lookup entries
1881 * @nentries: number of cell lookup entries in the array
1882 */
1883void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1884{
1885	int i;
1886
1887	mutex_lock(&nvmem_lookup_mutex);
1888	for (i = 0; i < nentries; i++)
1889		list_del(&entries[i].node);
1890	mutex_unlock(&nvmem_lookup_mutex);
1891}
1892EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1893
1894/**
1895 * nvmem_dev_name() - Get the name of a given nvmem device.
1896 *
1897 * @nvmem: nvmem device.
1898 *
1899 * Return: name of the nvmem device.
1900 */
1901const char *nvmem_dev_name(struct nvmem_device *nvmem)
1902{
1903	return dev_name(&nvmem->dev);
1904}
1905EXPORT_SYMBOL_GPL(nvmem_dev_name);
1906
1907static int __init nvmem_init(void)
1908{
1909	return bus_register(&nvmem_bus_type);
1910}
1911
1912static void __exit nvmem_exit(void)
1913{
1914	bus_unregister(&nvmem_bus_type);
1915}
1916
1917subsys_initcall(nvmem_init);
1918module_exit(nvmem_exit);
1919
1920MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1921MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1922MODULE_DESCRIPTION("nvmem Driver Core");
1923MODULE_LICENSE("GPL v2");