Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/* Copyright (c)  2018 Intel Corporation */
  3
  4#include <linux/delay.h>
  5
  6#include "igc_hw.h"
  7
  8/**
  9 * igc_acquire_nvm_i225 - Acquire exclusive access to EEPROM
 10 * @hw: pointer to the HW structure
 11 *
 12 * Acquire the necessary semaphores for exclusive access to the EEPROM.
 13 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
 14 * Return successful if access grant bit set, else clear the request for
 15 * EEPROM access and return -IGC_ERR_NVM (-1).
 16 */
 17static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
 18{
 19	return igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
 20}
 21
 22/**
 23 * igc_release_nvm_i225 - Release exclusive access to EEPROM
 24 * @hw: pointer to the HW structure
 25 *
 26 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
 27 * then release the semaphores acquired.
 28 */
 29static void igc_release_nvm_i225(struct igc_hw *hw)
 30{
 31	igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
 32}
 33
 34/**
 35 * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
 36 * @hw: pointer to the HW structure
 37 *
 38 * Acquire the HW semaphore to access the PHY or NVM
 39 */
 40static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw)
 41{
 42	s32 timeout = hw->nvm.word_size + 1;
 43	s32 i = 0;
 44	u32 swsm;
 45
 46	/* Get the SW semaphore */
 47	while (i < timeout) {
 48		swsm = rd32(IGC_SWSM);
 49		if (!(swsm & IGC_SWSM_SMBI))
 50			break;
 51
 52		usleep_range(500, 600);
 53		i++;
 54	}
 55
 56	if (i == timeout) {
 57		/* In rare circumstances, the SW semaphore may already be held
 58		 * unintentionally. Clear the semaphore once before giving up.
 59		 */
 60		if (hw->dev_spec._base.clear_semaphore_once) {
 61			hw->dev_spec._base.clear_semaphore_once = false;
 62			igc_put_hw_semaphore(hw);
 63			for (i = 0; i < timeout; i++) {
 64				swsm = rd32(IGC_SWSM);
 65				if (!(swsm & IGC_SWSM_SMBI))
 66					break;
 67
 68				usleep_range(500, 600);
 69			}
 70		}
 71
 72		/* If we do not have the semaphore here, we have to give up. */
 73		if (i == timeout) {
 74			hw_dbg("Driver can't access device - SMBI bit is set.\n");
 75			return -IGC_ERR_NVM;
 76		}
 77	}
 78
 79	/* Get the FW semaphore. */
 80	for (i = 0; i < timeout; i++) {
 81		swsm = rd32(IGC_SWSM);
 82		wr32(IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
 83
 84		/* Semaphore acquired if bit latched */
 85		if (rd32(IGC_SWSM) & IGC_SWSM_SWESMBI)
 86			break;
 87
 88		usleep_range(500, 600);
 89	}
 90
 91	if (i == timeout) {
 92		/* Release semaphores */
 93		igc_put_hw_semaphore(hw);
 94		hw_dbg("Driver can't access the NVM\n");
 95		return -IGC_ERR_NVM;
 96	}
 97
 98	return 0;
 99}
100
101/**
102 * igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
103 * @hw: pointer to the HW structure
104 * @mask: specifies which semaphore to acquire
105 *
106 * Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
107 * will also specify which port we're acquiring the lock for.
108 */
109s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask)
110{
111	s32 i = 0, timeout = 200;
112	u32 fwmask = mask << 16;
113	u32 swmask = mask;
114	s32 ret_val = 0;
115	u32 swfw_sync;
116
117	while (i < timeout) {
118		if (igc_get_hw_semaphore_i225(hw)) {
119			ret_val = -IGC_ERR_SWFW_SYNC;
120			goto out;
121		}
122
123		swfw_sync = rd32(IGC_SW_FW_SYNC);
124		if (!(swfw_sync & (fwmask | swmask)))
125			break;
126
127		/* Firmware currently using resource (fwmask) */
128		igc_put_hw_semaphore(hw);
129		mdelay(5);
130		i++;
131	}
132
133	if (i == timeout) {
134		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
135		ret_val = -IGC_ERR_SWFW_SYNC;
136		goto out;
137	}
138
139	swfw_sync |= swmask;
140	wr32(IGC_SW_FW_SYNC, swfw_sync);
141
142	igc_put_hw_semaphore(hw);
143out:
144	return ret_val;
145}
146
147/**
148 * igc_release_swfw_sync_i225 - Release SW/FW semaphore
149 * @hw: pointer to the HW structure
150 * @mask: specifies which semaphore to acquire
151 *
152 * Release the SW/FW semaphore used to access the PHY or NVM.  The mask
153 * will also specify which port we're releasing the lock for.
154 */
155void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
156{
157	u32 swfw_sync;
158
159	/* Releasing the resource requires first getting the HW semaphore.
160	 * If we fail to get the semaphore, there is nothing we can do,
161	 * except log an error and quit. We are not allowed to hang here
162	 * indefinitely, as it may cause denial of service or system crash.
163	 */
164	if (igc_get_hw_semaphore_i225(hw)) {
165		hw_dbg("Failed to release SW_FW_SYNC.\n");
166		return;
167	}
168
169	swfw_sync = rd32(IGC_SW_FW_SYNC);
170	swfw_sync &= ~mask;
171	wr32(IGC_SW_FW_SYNC, swfw_sync);
172
173	igc_put_hw_semaphore(hw);
174}
175
176/**
177 * igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
178 * @hw: pointer to the HW structure
179 * @offset: offset of word in the Shadow Ram to read
180 * @words: number of words to read
181 * @data: word read from the Shadow Ram
182 *
183 * Reads a 16 bit word from the Shadow Ram using the EERD register.
184 * Uses necessary synchronization semaphores.
185 */
186static s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
187				  u16 *data)
188{
189	s32 status = 0;
190	u16 i, count;
191
192	/* We cannot hold synchronization semaphores for too long,
193	 * because of forceful takeover procedure. However it is more efficient
194	 * to read in bursts than synchronizing access for each word.
195	 */
196	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
197		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
198			IGC_EERD_EEWR_MAX_COUNT : (words - i);
199
200		status = hw->nvm.ops.acquire(hw);
201		if (status)
202			break;
203
204		status = igc_read_nvm_eerd(hw, offset, count, data + i);
205		hw->nvm.ops.release(hw);
206		if (status)
207			break;
208	}
209
210	return status;
211}
212
213/**
214 * igc_write_nvm_srwr - Write to Shadow Ram using EEWR
215 * @hw: pointer to the HW structure
216 * @offset: offset within the Shadow Ram to be written to
217 * @words: number of words to write
218 * @data: 16 bit word(s) to be written to the Shadow Ram
219 *
220 * Writes data to Shadow Ram at offset using EEWR register.
221 *
222 * If igc_update_nvm_checksum is not called after this function , the
223 * Shadow Ram will most likely contain an invalid checksum.
224 */
225static s32 igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
226			      u16 *data)
227{
228	struct igc_nvm_info *nvm = &hw->nvm;
229	s32 ret_val = -IGC_ERR_NVM;
230	u32 attempts = 100000;
231	u32 i, k, eewr = 0;
232
233	/* A check for invalid values:  offset too large, too many words,
234	 * too many words for the offset, and not enough words.
235	 */
236	if (offset >= nvm->word_size || (words > (nvm->word_size - offset)) ||
237	    words == 0) {
238		hw_dbg("nvm parameter(s) out of bounds\n");
239		return ret_val;
240	}
241
242	for (i = 0; i < words; i++) {
243		ret_val = -IGC_ERR_NVM;
244		eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
245			(data[i] << IGC_NVM_RW_REG_DATA) |
246			IGC_NVM_RW_REG_START;
247
248		wr32(IGC_SRWR, eewr);
249
250		for (k = 0; k < attempts; k++) {
251			if (IGC_NVM_RW_REG_DONE &
252			    rd32(IGC_SRWR)) {
253				ret_val = 0;
254				break;
255			}
256			udelay(5);
257		}
258
259		if (ret_val) {
260			hw_dbg("Shadow RAM write EEWR timed out\n");
261			break;
262		}
263	}
264
265	return ret_val;
266}
267
268/**
269 * igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
270 * @hw: pointer to the HW structure
271 * @offset: offset within the Shadow RAM to be written to
272 * @words: number of words to write
273 * @data: 16 bit word(s) to be written to the Shadow RAM
274 *
275 * Writes data to Shadow RAM at offset using EEWR register.
276 *
277 * If igc_update_nvm_checksum is not called after this function , the
278 * data will not be committed to FLASH and also Shadow RAM will most likely
279 * contain an invalid checksum.
280 *
281 * If error code is returned, data and Shadow RAM may be inconsistent - buffer
282 * partially written.
283 */
284static s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
285				   u16 *data)
286{
287	s32 status = 0;
288	u16 i, count;
289
290	/* We cannot hold synchronization semaphores for too long,
291	 * because of forceful takeover procedure. However it is more efficient
292	 * to write in bursts than synchronizing access for each word.
293	 */
294	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
295		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
296			IGC_EERD_EEWR_MAX_COUNT : (words - i);
297
298		status = hw->nvm.ops.acquire(hw);
299		if (status)
300			break;
301
302		status = igc_write_nvm_srwr(hw, offset, count, data + i);
303		hw->nvm.ops.release(hw);
304		if (status)
305			break;
306	}
307
308	return status;
309}
310
311/**
312 * igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
313 * @hw: pointer to the HW structure
314 *
315 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
316 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
317 */
318static s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
319{
320	s32 (*read_op_ptr)(struct igc_hw *hw, u16 offset, u16 count,
321			   u16 *data);
322	s32 status = 0;
323
324	status = hw->nvm.ops.acquire(hw);
325	if (status)
326		goto out;
327
328	/* Replace the read function with semaphore grabbing with
329	 * the one that skips this for a while.
330	 * We have semaphore taken already here.
331	 */
332	read_op_ptr = hw->nvm.ops.read;
333	hw->nvm.ops.read = igc_read_nvm_eerd;
334
335	status = igc_validate_nvm_checksum(hw);
336
337	/* Revert original read operation. */
338	hw->nvm.ops.read = read_op_ptr;
339
340	hw->nvm.ops.release(hw);
341
342out:
343	return status;
344}
345
346/**
347 * igc_pool_flash_update_done_i225 - Pool FLUDONE status
348 * @hw: pointer to the HW structure
349 */
350static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
351{
352	s32 ret_val = -IGC_ERR_NVM;
353	u32 i, reg;
354
355	for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
356		reg = rd32(IGC_EECD);
357		if (reg & IGC_EECD_FLUDONE_I225) {
358			ret_val = 0;
359			break;
360		}
361		udelay(5);
362	}
363
364	return ret_val;
365}
366
367/**
368 * igc_update_flash_i225 - Commit EEPROM to the flash
369 * @hw: pointer to the HW structure
370 */
371static s32 igc_update_flash_i225(struct igc_hw *hw)
372{
373	s32 ret_val = 0;
374	u32 flup;
375
376	ret_val = igc_pool_flash_update_done_i225(hw);
377	if (ret_val == -IGC_ERR_NVM) {
378		hw_dbg("Flash update time out\n");
379		goto out;
380	}
381
382	flup = rd32(IGC_EECD) | IGC_EECD_FLUPD_I225;
383	wr32(IGC_EECD, flup);
384
385	ret_val = igc_pool_flash_update_done_i225(hw);
386	if (ret_val)
387		hw_dbg("Flash update time out\n");
388	else
389		hw_dbg("Flash update complete\n");
390
391out:
392	return ret_val;
393}
394
395/**
396 * igc_update_nvm_checksum_i225 - Update EEPROM checksum
397 * @hw: pointer to the HW structure
398 *
399 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
400 * up to the checksum.  Then calculates the EEPROM checksum and writes the
401 * value to the EEPROM. Next commit EEPROM data onto the Flash.
402 */
403static s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
404{
405	u16 checksum = 0;
406	s32 ret_val = 0;
407	u16 i, nvm_data;
408
409	/* Read the first word from the EEPROM. If this times out or fails, do
410	 * not continue or we could be in for a very long wait while every
411	 * EEPROM read fails
412	 */
413	ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
414	if (ret_val) {
415		hw_dbg("EEPROM read failed\n");
416		goto out;
417	}
418
419	ret_val = hw->nvm.ops.acquire(hw);
420	if (ret_val)
421		goto out;
422
423	/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
424	 * because we do not want to take the synchronization
425	 * semaphores twice here.
426	 */
427
428	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
429		ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
430		if (ret_val) {
431			hw->nvm.ops.release(hw);
432			hw_dbg("NVM Read Error while updating checksum.\n");
433			goto out;
434		}
435		checksum += nvm_data;
436	}
437	checksum = (u16)NVM_SUM - checksum;
438	ret_val = igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
439				     &checksum);
440	if (ret_val) {
441		hw->nvm.ops.release(hw);
442		hw_dbg("NVM Write Error while updating checksum.\n");
443		goto out;
444	}
445
446	hw->nvm.ops.release(hw);
447
448	ret_val = igc_update_flash_i225(hw);
449
450out:
451	return ret_val;
452}
453
454/**
455 * igc_get_flash_presence_i225 - Check if flash device is detected
456 * @hw: pointer to the HW structure
457 */
458bool igc_get_flash_presence_i225(struct igc_hw *hw)
459{
460	bool ret_val = false;
461	u32 eec = 0;
462
463	eec = rd32(IGC_EECD);
464	if (eec & IGC_EECD_FLASH_DETECTED_I225)
465		ret_val = true;
466
467	return ret_val;
468}
469
470/**
471 * igc_init_nvm_params_i225 - Init NVM func ptrs.
472 * @hw: pointer to the HW structure
473 */
474s32 igc_init_nvm_params_i225(struct igc_hw *hw)
475{
476	struct igc_nvm_info *nvm = &hw->nvm;
477
478	nvm->ops.acquire = igc_acquire_nvm_i225;
479	nvm->ops.release = igc_release_nvm_i225;
480
481	/* NVM Function Pointers */
482	if (igc_get_flash_presence_i225(hw)) {
 
483		nvm->ops.read = igc_read_nvm_srrd_i225;
484		nvm->ops.write = igc_write_nvm_srwr_i225;
485		nvm->ops.validate = igc_validate_nvm_checksum_i225;
486		nvm->ops.update = igc_update_nvm_checksum_i225;
487	} else {
 
488		nvm->ops.read = igc_read_nvm_eerd;
489		nvm->ops.write = NULL;
490		nvm->ops.validate = NULL;
491		nvm->ops.update = NULL;
492	}
493	return 0;
494}
495
496/**
497 *  igc_set_eee_i225 - Enable/disable EEE support
498 *  @hw: pointer to the HW structure
499 *  @adv2p5G: boolean flag enabling 2.5G EEE advertisement
500 *  @adv1G: boolean flag enabling 1G EEE advertisement
501 *  @adv100M: boolean flag enabling 100M EEE advertisement
502 *
503 *  Enable/disable EEE based on setting in dev_spec structure.
504 **/
505s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
506		     bool adv100M)
507{
508	u32 ipcnfg, eeer;
509
510	ipcnfg = rd32(IGC_IPCNFG);
511	eeer = rd32(IGC_EEER);
512
513	/* enable or disable per user setting */
514	if (hw->dev_spec._base.eee_enable) {
515		u32 eee_su = rd32(IGC_EEE_SU);
516
517		if (adv100M)
518			ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
519		else
520			ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
521
522		if (adv1G)
523			ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
524		else
525			ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
526
527		if (adv2p5G)
528			ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
529		else
530			ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
531
532		eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
533			 IGC_EEER_LPI_FC);
534
535		/* This bit should not be set in normal operation. */
536		if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
537			hw_dbg("LPI Clock Stop Bit should not be set!\n");
538	} else {
539		ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
540			    IGC_IPCNFG_EEE_100M_AN);
541		eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
542			  IGC_EEER_LPI_FC);
543	}
544	wr32(IGC_IPCNFG, ipcnfg);
545	wr32(IGC_EEER, eeer);
546	rd32(IGC_IPCNFG);
547	rd32(IGC_EEER);
548
549	return IGC_SUCCESS;
550}
551
552/* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds
553 * @hw: pointer to the HW structure
554 * @link: bool indicating link status
555 *
556 * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
557 * settings, otherwise specify that there is no LTR requirement.
558 */
559s32 igc_set_ltr_i225(struct igc_hw *hw, bool link)
560{
561	u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
562	u16 speed, duplex;
563	s32 size;
564
565	/* If we do not have link, LTR thresholds are zero. */
566	if (link) {
567		hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
568
569		/* Check if using copper interface with EEE enabled or if the
570		 * link speed is 10 Mbps.
571		 */
572		if (hw->dev_spec._base.eee_enable &&
573		    speed != SPEED_10) {
574			/* EEE enabled, so send LTRMAX threshold. */
575			ltrc = rd32(IGC_LTRC) |
576			       IGC_LTRC_EEEMS_EN;
577			wr32(IGC_LTRC, ltrc);
578
579			/* Calculate tw_system (nsec). */
580			if (speed == SPEED_100) {
581				tw_system = ((rd32(IGC_EEE_SU) &
582					     IGC_TW_SYSTEM_100_MASK) >>
583					     IGC_TW_SYSTEM_100_SHIFT) * 500;
584			} else {
585				tw_system = (rd32(IGC_EEE_SU) &
586					     IGC_TW_SYSTEM_1000_MASK) * 500;
587			}
588		} else {
589			tw_system = 0;
590		}
591
592		/* Get the Rx packet buffer size. */
593		size = rd32(IGC_RXPBS) &
594		       IGC_RXPBS_SIZE_I225_MASK;
595
596		/* Calculations vary based on DMAC settings. */
597		if (rd32(IGC_DMACR) & IGC_DMACR_DMAC_EN) {
598			size -= (rd32(IGC_DMACR) &
599				 IGC_DMACR_DMACTHR_MASK) >>
600				 IGC_DMACR_DMACTHR_SHIFT;
601			/* Convert size to bits. */
602			size *= 1024 * 8;
603		} else {
604			/* Convert size to bytes, subtract the MTU, and then
605			 * convert the size to bits.
606			 */
607			size *= 1024;
608			size *= 8;
609		}
610
611		if (size < 0) {
612			hw_dbg("Invalid effective Rx buffer size %d\n",
613			       size);
614			return -IGC_ERR_CONFIG;
615		}
616
617		/* Calculate the thresholds. Since speed is in Mbps, simplify
618		 * the calculation by multiplying size/speed by 1000 for result
619		 * to be in nsec before dividing by the scale in nsec. Set the
620		 * scale such that the LTR threshold fits in the register.
621		 */
622		ltr_min = (1000 * size) / speed;
623		ltr_max = ltr_min + tw_system;
624		scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
625			    IGC_LTRMINV_SCALE_32768;
626		scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
627			    IGC_LTRMAXV_SCALE_32768;
628		ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
629		ltr_min -= 1;
630		ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
631		ltr_max -= 1;
632
633		/* Only write the LTR thresholds if they differ from before. */
634		ltrv = rd32(IGC_LTRMINV);
635		if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
636			ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
637			       (scale_min << IGC_LTRMINV_SCALE_SHIFT);
638			wr32(IGC_LTRMINV, ltrv);
639		}
640
641		ltrv = rd32(IGC_LTRMAXV);
642		if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
643			ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
644			       (scale_max << IGC_LTRMAXV_SCALE_SHIFT);
645			wr32(IGC_LTRMAXV, ltrv);
646		}
647	}
648
649	return IGC_SUCCESS;
650}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/* Copyright (c)  2018 Intel Corporation */
  3
  4#include <linux/delay.h>
  5
  6#include "igc_hw.h"
  7
  8/**
  9 * igc_acquire_nvm_i225 - Acquire exclusive access to EEPROM
 10 * @hw: pointer to the HW structure
 11 *
 12 * Acquire the necessary semaphores for exclusive access to the EEPROM.
 13 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
 14 * Return successful if access grant bit set, else clear the request for
 15 * EEPROM access and return -IGC_ERR_NVM (-1).
 16 */
 17static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
 18{
 19	return igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
 20}
 21
 22/**
 23 * igc_release_nvm_i225 - Release exclusive access to EEPROM
 24 * @hw: pointer to the HW structure
 25 *
 26 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
 27 * then release the semaphores acquired.
 28 */
 29static void igc_release_nvm_i225(struct igc_hw *hw)
 30{
 31	igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
 32}
 33
 34/**
 35 * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
 36 * @hw: pointer to the HW structure
 37 *
 38 * Acquire the HW semaphore to access the PHY or NVM
 39 */
 40static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw)
 41{
 42	s32 timeout = hw->nvm.word_size + 1;
 43	s32 i = 0;
 44	u32 swsm;
 45
 46	/* Get the SW semaphore */
 47	while (i < timeout) {
 48		swsm = rd32(IGC_SWSM);
 49		if (!(swsm & IGC_SWSM_SMBI))
 50			break;
 51
 52		usleep_range(500, 600);
 53		i++;
 54	}
 55
 56	if (i == timeout) {
 57		/* In rare circumstances, the SW semaphore may already be held
 58		 * unintentionally. Clear the semaphore once before giving up.
 59		 */
 60		if (hw->dev_spec._base.clear_semaphore_once) {
 61			hw->dev_spec._base.clear_semaphore_once = false;
 62			igc_put_hw_semaphore(hw);
 63			for (i = 0; i < timeout; i++) {
 64				swsm = rd32(IGC_SWSM);
 65				if (!(swsm & IGC_SWSM_SMBI))
 66					break;
 67
 68				usleep_range(500, 600);
 69			}
 70		}
 71
 72		/* If we do not have the semaphore here, we have to give up. */
 73		if (i == timeout) {
 74			hw_dbg("Driver can't access device - SMBI bit is set.\n");
 75			return -IGC_ERR_NVM;
 76		}
 77	}
 78
 79	/* Get the FW semaphore. */
 80	for (i = 0; i < timeout; i++) {
 81		swsm = rd32(IGC_SWSM);
 82		wr32(IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
 83
 84		/* Semaphore acquired if bit latched */
 85		if (rd32(IGC_SWSM) & IGC_SWSM_SWESMBI)
 86			break;
 87
 88		usleep_range(500, 600);
 89	}
 90
 91	if (i == timeout) {
 92		/* Release semaphores */
 93		igc_put_hw_semaphore(hw);
 94		hw_dbg("Driver can't access the NVM\n");
 95		return -IGC_ERR_NVM;
 96	}
 97
 98	return 0;
 99}
100
101/**
102 * igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
103 * @hw: pointer to the HW structure
104 * @mask: specifies which semaphore to acquire
105 *
106 * Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
107 * will also specify which port we're acquiring the lock for.
108 */
109s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask)
110{
111	s32 i = 0, timeout = 200;
112	u32 fwmask = mask << 16;
113	u32 swmask = mask;
114	s32 ret_val = 0;
115	u32 swfw_sync;
116
117	while (i < timeout) {
118		if (igc_get_hw_semaphore_i225(hw)) {
119			ret_val = -IGC_ERR_SWFW_SYNC;
120			goto out;
121		}
122
123		swfw_sync = rd32(IGC_SW_FW_SYNC);
124		if (!(swfw_sync & (fwmask | swmask)))
125			break;
126
127		/* Firmware currently using resource (fwmask) */
128		igc_put_hw_semaphore(hw);
129		mdelay(5);
130		i++;
131	}
132
133	if (i == timeout) {
134		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
135		ret_val = -IGC_ERR_SWFW_SYNC;
136		goto out;
137	}
138
139	swfw_sync |= swmask;
140	wr32(IGC_SW_FW_SYNC, swfw_sync);
141
142	igc_put_hw_semaphore(hw);
143out:
144	return ret_val;
145}
146
147/**
148 * igc_release_swfw_sync_i225 - Release SW/FW semaphore
149 * @hw: pointer to the HW structure
150 * @mask: specifies which semaphore to acquire
151 *
152 * Release the SW/FW semaphore used to access the PHY or NVM.  The mask
153 * will also specify which port we're releasing the lock for.
154 */
155void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
156{
157	u32 swfw_sync;
158
159	while (igc_get_hw_semaphore_i225(hw))
160		; /* Empty */
 
 
 
 
 
 
 
161
162	swfw_sync = rd32(IGC_SW_FW_SYNC);
163	swfw_sync &= ~mask;
164	wr32(IGC_SW_FW_SYNC, swfw_sync);
165
166	igc_put_hw_semaphore(hw);
167}
168
169/**
170 * igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
171 * @hw: pointer to the HW structure
172 * @offset: offset of word in the Shadow Ram to read
173 * @words: number of words to read
174 * @data: word read from the Shadow Ram
175 *
176 * Reads a 16 bit word from the Shadow Ram using the EERD register.
177 * Uses necessary synchronization semaphores.
178 */
179static s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
180				  u16 *data)
181{
182	s32 status = 0;
183	u16 i, count;
184
185	/* We cannot hold synchronization semaphores for too long,
186	 * because of forceful takeover procedure. However it is more efficient
187	 * to read in bursts than synchronizing access for each word.
188	 */
189	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
190		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
191			IGC_EERD_EEWR_MAX_COUNT : (words - i);
192
193		status = hw->nvm.ops.acquire(hw);
194		if (status)
195			break;
196
197		status = igc_read_nvm_eerd(hw, offset, count, data + i);
198		hw->nvm.ops.release(hw);
199		if (status)
200			break;
201	}
202
203	return status;
204}
205
206/**
207 * igc_write_nvm_srwr - Write to Shadow Ram using EEWR
208 * @hw: pointer to the HW structure
209 * @offset: offset within the Shadow Ram to be written to
210 * @words: number of words to write
211 * @data: 16 bit word(s) to be written to the Shadow Ram
212 *
213 * Writes data to Shadow Ram at offset using EEWR register.
214 *
215 * If igc_update_nvm_checksum is not called after this function , the
216 * Shadow Ram will most likely contain an invalid checksum.
217 */
218static s32 igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
219			      u16 *data)
220{
221	struct igc_nvm_info *nvm = &hw->nvm;
222	s32 ret_val = -IGC_ERR_NVM;
223	u32 attempts = 100000;
224	u32 i, k, eewr = 0;
225
226	/* A check for invalid values:  offset too large, too many words,
227	 * too many words for the offset, and not enough words.
228	 */
229	if (offset >= nvm->word_size || (words > (nvm->word_size - offset)) ||
230	    words == 0) {
231		hw_dbg("nvm parameter(s) out of bounds\n");
232		return ret_val;
233	}
234
235	for (i = 0; i < words; i++) {
236		ret_val = -IGC_ERR_NVM;
237		eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
238			(data[i] << IGC_NVM_RW_REG_DATA) |
239			IGC_NVM_RW_REG_START;
240
241		wr32(IGC_SRWR, eewr);
242
243		for (k = 0; k < attempts; k++) {
244			if (IGC_NVM_RW_REG_DONE &
245			    rd32(IGC_SRWR)) {
246				ret_val = 0;
247				break;
248			}
249			udelay(5);
250		}
251
252		if (ret_val) {
253			hw_dbg("Shadow RAM write EEWR timed out\n");
254			break;
255		}
256	}
257
258	return ret_val;
259}
260
261/**
262 * igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
263 * @hw: pointer to the HW structure
264 * @offset: offset within the Shadow RAM to be written to
265 * @words: number of words to write
266 * @data: 16 bit word(s) to be written to the Shadow RAM
267 *
268 * Writes data to Shadow RAM at offset using EEWR register.
269 *
270 * If igc_update_nvm_checksum is not called after this function , the
271 * data will not be committed to FLASH and also Shadow RAM will most likely
272 * contain an invalid checksum.
273 *
274 * If error code is returned, data and Shadow RAM may be inconsistent - buffer
275 * partially written.
276 */
277static s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
278				   u16 *data)
279{
280	s32 status = 0;
281	u16 i, count;
282
283	/* We cannot hold synchronization semaphores for too long,
284	 * because of forceful takeover procedure. However it is more efficient
285	 * to write in bursts than synchronizing access for each word.
286	 */
287	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
288		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
289			IGC_EERD_EEWR_MAX_COUNT : (words - i);
290
291		status = hw->nvm.ops.acquire(hw);
292		if (status)
293			break;
294
295		status = igc_write_nvm_srwr(hw, offset, count, data + i);
296		hw->nvm.ops.release(hw);
297		if (status)
298			break;
299	}
300
301	return status;
302}
303
304/**
305 * igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
306 * @hw: pointer to the HW structure
307 *
308 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
309 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
310 */
311static s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
312{
313	s32 (*read_op_ptr)(struct igc_hw *hw, u16 offset, u16 count,
314			   u16 *data);
315	s32 status = 0;
316
317	status = hw->nvm.ops.acquire(hw);
318	if (status)
319		goto out;
320
321	/* Replace the read function with semaphore grabbing with
322	 * the one that skips this for a while.
323	 * We have semaphore taken already here.
324	 */
325	read_op_ptr = hw->nvm.ops.read;
326	hw->nvm.ops.read = igc_read_nvm_eerd;
327
328	status = igc_validate_nvm_checksum(hw);
329
330	/* Revert original read operation. */
331	hw->nvm.ops.read = read_op_ptr;
332
333	hw->nvm.ops.release(hw);
334
335out:
336	return status;
337}
338
339/**
340 * igc_pool_flash_update_done_i225 - Pool FLUDONE status
341 * @hw: pointer to the HW structure
342 */
343static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
344{
345	s32 ret_val = -IGC_ERR_NVM;
346	u32 i, reg;
347
348	for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
349		reg = rd32(IGC_EECD);
350		if (reg & IGC_EECD_FLUDONE_I225) {
351			ret_val = 0;
352			break;
353		}
354		udelay(5);
355	}
356
357	return ret_val;
358}
359
360/**
361 * igc_update_flash_i225 - Commit EEPROM to the flash
362 * @hw: pointer to the HW structure
363 */
364static s32 igc_update_flash_i225(struct igc_hw *hw)
365{
366	s32 ret_val = 0;
367	u32 flup;
368
369	ret_val = igc_pool_flash_update_done_i225(hw);
370	if (ret_val == -IGC_ERR_NVM) {
371		hw_dbg("Flash update time out\n");
372		goto out;
373	}
374
375	flup = rd32(IGC_EECD) | IGC_EECD_FLUPD_I225;
376	wr32(IGC_EECD, flup);
377
378	ret_val = igc_pool_flash_update_done_i225(hw);
379	if (ret_val)
380		hw_dbg("Flash update time out\n");
381	else
382		hw_dbg("Flash update complete\n");
383
384out:
385	return ret_val;
386}
387
388/**
389 * igc_update_nvm_checksum_i225 - Update EEPROM checksum
390 * @hw: pointer to the HW structure
391 *
392 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
393 * up to the checksum.  Then calculates the EEPROM checksum and writes the
394 * value to the EEPROM. Next commit EEPROM data onto the Flash.
395 */
396static s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
397{
398	u16 checksum = 0;
399	s32 ret_val = 0;
400	u16 i, nvm_data;
401
402	/* Read the first word from the EEPROM. If this times out or fails, do
403	 * not continue or we could be in for a very long wait while every
404	 * EEPROM read fails
405	 */
406	ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
407	if (ret_val) {
408		hw_dbg("EEPROM read failed\n");
409		goto out;
410	}
411
412	ret_val = hw->nvm.ops.acquire(hw);
413	if (ret_val)
414		goto out;
415
416	/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
417	 * because we do not want to take the synchronization
418	 * semaphores twice here.
419	 */
420
421	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
422		ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
423		if (ret_val) {
424			hw->nvm.ops.release(hw);
425			hw_dbg("NVM Read Error while updating checksum.\n");
426			goto out;
427		}
428		checksum += nvm_data;
429	}
430	checksum = (u16)NVM_SUM - checksum;
431	ret_val = igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
432				     &checksum);
433	if (ret_val) {
434		hw->nvm.ops.release(hw);
435		hw_dbg("NVM Write Error while updating checksum.\n");
436		goto out;
437	}
438
439	hw->nvm.ops.release(hw);
440
441	ret_val = igc_update_flash_i225(hw);
442
443out:
444	return ret_val;
445}
446
447/**
448 * igc_get_flash_presence_i225 - Check if flash device is detected
449 * @hw: pointer to the HW structure
450 */
451bool igc_get_flash_presence_i225(struct igc_hw *hw)
452{
453	bool ret_val = false;
454	u32 eec = 0;
455
456	eec = rd32(IGC_EECD);
457	if (eec & IGC_EECD_FLASH_DETECTED_I225)
458		ret_val = true;
459
460	return ret_val;
461}
462
463/**
464 * igc_init_nvm_params_i225 - Init NVM func ptrs.
465 * @hw: pointer to the HW structure
466 */
467s32 igc_init_nvm_params_i225(struct igc_hw *hw)
468{
469	struct igc_nvm_info *nvm = &hw->nvm;
470
471	nvm->ops.acquire = igc_acquire_nvm_i225;
472	nvm->ops.release = igc_release_nvm_i225;
473
474	/* NVM Function Pointers */
475	if (igc_get_flash_presence_i225(hw)) {
476		hw->nvm.type = igc_nvm_flash_hw;
477		nvm->ops.read = igc_read_nvm_srrd_i225;
478		nvm->ops.write = igc_write_nvm_srwr_i225;
479		nvm->ops.validate = igc_validate_nvm_checksum_i225;
480		nvm->ops.update = igc_update_nvm_checksum_i225;
481	} else {
482		hw->nvm.type = igc_nvm_invm;
483		nvm->ops.read = igc_read_nvm_eerd;
484		nvm->ops.write = NULL;
485		nvm->ops.validate = NULL;
486		nvm->ops.update = NULL;
487	}
488	return 0;
489}
490
491/**
492 *  igc_set_eee_i225 - Enable/disable EEE support
493 *  @hw: pointer to the HW structure
494 *  @adv2p5G: boolean flag enabling 2.5G EEE advertisement
495 *  @adv1G: boolean flag enabling 1G EEE advertisement
496 *  @adv100M: boolean flag enabling 100M EEE advertisement
497 *
498 *  Enable/disable EEE based on setting in dev_spec structure.
499 **/
500s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
501		     bool adv100M)
502{
503	u32 ipcnfg, eeer;
504
505	ipcnfg = rd32(IGC_IPCNFG);
506	eeer = rd32(IGC_EEER);
507
508	/* enable or disable per user setting */
509	if (hw->dev_spec._base.eee_enable) {
510		u32 eee_su = rd32(IGC_EEE_SU);
511
512		if (adv100M)
513			ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
514		else
515			ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
516
517		if (adv1G)
518			ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
519		else
520			ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
521
522		if (adv2p5G)
523			ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
524		else
525			ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
526
527		eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
528			 IGC_EEER_LPI_FC);
529
530		/* This bit should not be set in normal operation. */
531		if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
532			hw_dbg("LPI Clock Stop Bit should not be set!\n");
533	} else {
534		ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
535			    IGC_IPCNFG_EEE_100M_AN);
536		eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
537			  IGC_EEER_LPI_FC);
538	}
539	wr32(IGC_IPCNFG, ipcnfg);
540	wr32(IGC_EEER, eeer);
541	rd32(IGC_IPCNFG);
542	rd32(IGC_EEER);
543
544	return IGC_SUCCESS;
545}
546
547/* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds
548 * @hw: pointer to the HW structure
549 * @link: bool indicating link status
550 *
551 * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
552 * settings, otherwise specify that there is no LTR requirement.
553 */
554s32 igc_set_ltr_i225(struct igc_hw *hw, bool link)
555{
556	u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
557	u16 speed, duplex;
558	s32 size;
559
560	/* If we do not have link, LTR thresholds are zero. */
561	if (link) {
562		hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
563
564		/* Check if using copper interface with EEE enabled or if the
565		 * link speed is 10 Mbps.
566		 */
567		if (hw->dev_spec._base.eee_enable &&
568		    speed != SPEED_10) {
569			/* EEE enabled, so send LTRMAX threshold. */
570			ltrc = rd32(IGC_LTRC) |
571			       IGC_LTRC_EEEMS_EN;
572			wr32(IGC_LTRC, ltrc);
573
574			/* Calculate tw_system (nsec). */
575			if (speed == SPEED_100) {
576				tw_system = ((rd32(IGC_EEE_SU) &
577					     IGC_TW_SYSTEM_100_MASK) >>
578					     IGC_TW_SYSTEM_100_SHIFT) * 500;
579			} else {
580				tw_system = (rd32(IGC_EEE_SU) &
581					     IGC_TW_SYSTEM_1000_MASK) * 500;
582			}
583		} else {
584			tw_system = 0;
585		}
586
587		/* Get the Rx packet buffer size. */
588		size = rd32(IGC_RXPBS) &
589		       IGC_RXPBS_SIZE_I225_MASK;
590
591		/* Calculations vary based on DMAC settings. */
592		if (rd32(IGC_DMACR) & IGC_DMACR_DMAC_EN) {
593			size -= (rd32(IGC_DMACR) &
594				 IGC_DMACR_DMACTHR_MASK) >>
595				 IGC_DMACR_DMACTHR_SHIFT;
596			/* Convert size to bits. */
597			size *= 1024 * 8;
598		} else {
599			/* Convert size to bytes, subtract the MTU, and then
600			 * convert the size to bits.
601			 */
602			size *= 1024;
603			size *= 8;
604		}
605
606		if (size < 0) {
607			hw_dbg("Invalid effective Rx buffer size %d\n",
608			       size);
609			return -IGC_ERR_CONFIG;
610		}
611
612		/* Calculate the thresholds. Since speed is in Mbps, simplify
613		 * the calculation by multiplying size/speed by 1000 for result
614		 * to be in nsec before dividing by the scale in nsec. Set the
615		 * scale such that the LTR threshold fits in the register.
616		 */
617		ltr_min = (1000 * size) / speed;
618		ltr_max = ltr_min + tw_system;
619		scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
620			    IGC_LTRMINV_SCALE_32768;
621		scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
622			    IGC_LTRMAXV_SCALE_32768;
623		ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
624		ltr_min -= 1;
625		ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
626		ltr_max -= 1;
627
628		/* Only write the LTR thresholds if they differ from before. */
629		ltrv = rd32(IGC_LTRMINV);
630		if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
631			ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
632			       (scale_min << IGC_LTRMINV_SCALE_SHIFT);
633			wr32(IGC_LTRMINV, ltrv);
634		}
635
636		ltrv = rd32(IGC_LTRMAXV);
637		if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
638			ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
639			       (scale_min << IGC_LTRMAXV_SCALE_SHIFT);
640			wr32(IGC_LTRMAXV, ltrv);
641		}
642	}
643
644	return IGC_SUCCESS;
645}