Linux Audio

Check our new training course

Loading...
v6.2
  1/*
  2 * Copyright © 2008-2018 Intel Corporation
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice (including the next
 12 * paragraph) shall be included in all copies or substantial portions of the
 13 * Software.
 14 *
 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 21 * IN THE SOFTWARE.
 22 *
 23 */
 24
 25#ifndef I915_REQUEST_H
 26#define I915_REQUEST_H
 27
 28#include <linux/dma-fence.h>
 29#include <linux/hrtimer.h>
 30#include <linux/irq_work.h>
 31#include <linux/llist.h>
 32#include <linux/lockdep.h>
 33
 34#include "gem/i915_gem_context_types.h"
 35#include "gt/intel_context_types.h"
 36#include "gt/intel_engine_types.h"
 37#include "gt/intel_timeline_types.h"
 38
 39#include "i915_gem.h"
 40#include "i915_scheduler.h"
 41#include "i915_selftest.h"
 42#include "i915_sw_fence.h"
 43#include "i915_vma_resource.h"
 44
 45#include <uapi/drm/i915_drm.h>
 46
 47struct drm_file;
 48struct drm_i915_gem_object;
 49struct drm_printer;
 50struct i915_deps;
 51struct i915_request;
 52
 53#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
 54struct i915_capture_list {
 55	struct i915_vma_resource *vma_res;
 56	struct i915_capture_list *next;
 
 57};
 58
 59void i915_request_free_capture_list(struct i915_capture_list *capture);
 60#else
 61#define i915_request_free_capture_list(_a) do {} while (0)
 62#endif
 63
 64#define RQ_TRACE(rq, fmt, ...) do {					\
 65	const struct i915_request *rq__ = (rq);				\
 66	ENGINE_TRACE(rq__->engine, "fence %llx:%lld, current %d " fmt,	\
 67		     rq__->fence.context, rq__->fence.seqno,		\
 68		     hwsp_seqno(rq__), ##__VA_ARGS__);			\
 69} while (0)
 70
 71enum {
 72	/*
 73	 * I915_FENCE_FLAG_ACTIVE - this request is currently submitted to HW.
 74	 *
 75	 * Set by __i915_request_submit() on handing over to HW, and cleared
 76	 * by __i915_request_unsubmit() if we preempt this request.
 77	 *
 78	 * Finally cleared for consistency on retiring the request, when
 79	 * we know the HW is no longer running this request.
 80	 *
 81	 * See i915_request_is_active()
 82	 */
 83	I915_FENCE_FLAG_ACTIVE = DMA_FENCE_FLAG_USER_BITS,
 84
 85	/*
 86	 * I915_FENCE_FLAG_PQUEUE - this request is ready for execution
 87	 *
 88	 * Using the scheduler, when a request is ready for execution it is put
 89	 * into the priority queue, and removed from that queue when transferred
 90	 * to the HW runlists. We want to track its membership within the
 91	 * priority queue so that we can easily check before rescheduling.
 92	 *
 93	 * See i915_request_in_priority_queue()
 94	 */
 95	I915_FENCE_FLAG_PQUEUE,
 96
 97	/*
 98	 * I915_FENCE_FLAG_HOLD - this request is currently on hold
 99	 *
100	 * This request has been suspended, pending an ongoing investigation.
101	 */
102	I915_FENCE_FLAG_HOLD,
103
104	/*
105	 * I915_FENCE_FLAG_INITIAL_BREADCRUMB - this request has the initial
106	 * breadcrumb that marks the end of semaphore waits and start of the
107	 * user payload.
108	 */
109	I915_FENCE_FLAG_INITIAL_BREADCRUMB,
110
111	/*
112	 * I915_FENCE_FLAG_SIGNAL - this request is currently on signal_list
113	 *
114	 * Internal bookkeeping used by the breadcrumb code to track when
115	 * a request is on the various signal_list.
116	 */
117	I915_FENCE_FLAG_SIGNAL,
118
119	/*
120	 * I915_FENCE_FLAG_NOPREEMPT - this request should not be preempted
121	 *
122	 * The execution of some requests should not be interrupted. This is
123	 * a sensitive operation as it makes the request super important,
124	 * blocking other higher priority work. Abuse of this flag will
125	 * lead to quality of service issues.
126	 */
127	I915_FENCE_FLAG_NOPREEMPT,
128
129	/*
130	 * I915_FENCE_FLAG_SENTINEL - this request should be last in the queue
131	 *
132	 * A high priority sentinel request may be submitted to clear the
133	 * submission queue. As it will be the only request in-flight, upon
134	 * execution all other active requests will have been preempted and
135	 * unsubmitted. This preemptive pulse is used to re-evaluate the
136	 * in-flight requests, particularly in cases where an active context
137	 * is banned and those active requests need to be cancelled.
138	 */
139	I915_FENCE_FLAG_SENTINEL,
140
141	/*
142	 * I915_FENCE_FLAG_BOOST - upclock the gpu for this request
143	 *
144	 * Some requests are more important than others! In particular, a
145	 * request that the user is waiting on is typically required for
146	 * interactive latency, for which we want to minimise by upclocking
147	 * the GPU. Here we track such boost requests on a per-request basis.
148	 */
149	I915_FENCE_FLAG_BOOST,
150
151	/*
152	 * I915_FENCE_FLAG_SUBMIT_PARALLEL - request with a context in a
153	 * parent-child relationship (parallel submission, multi-lrc) should
154	 * trigger a submission to the GuC rather than just moving the context
155	 * tail.
156	 */
157	I915_FENCE_FLAG_SUBMIT_PARALLEL,
158
159	/*
160	 * I915_FENCE_FLAG_SKIP_PARALLEL - request with a context in a
161	 * parent-child relationship (parallel submission, multi-lrc) that
162	 * hit an error while generating requests in the execbuf IOCTL.
163	 * Indicates this request should be skipped as another request in
164	 * submission / relationship encoutered an error.
165	 */
166	I915_FENCE_FLAG_SKIP_PARALLEL,
167
168	/*
169	 * I915_FENCE_FLAG_COMPOSITE - Indicates fence is part of a composite
170	 * fence (dma_fence_array) and i915 generated for parallel submission.
171	 */
172	I915_FENCE_FLAG_COMPOSITE,
173};
174
175/**
176 * Request queue structure.
177 *
178 * The request queue allows us to note sequence numbers that have been emitted
179 * and may be associated with active buffers to be retired.
180 *
181 * By keeping this list, we can avoid having to do questionable sequence
182 * number comparisons on buffer last_read|write_seqno. It also allows an
183 * emission time to be associated with the request for tracking how far ahead
184 * of the GPU the submission is.
185 *
186 * When modifying this structure be very aware that we perform a lockless
187 * RCU lookup of it that may race against reallocation of the struct
188 * from the slab freelist. We intentionally do not zero the structure on
189 * allocation so that the lookup can use the dangling pointers (and is
190 * cogniscent that those pointers may be wrong). Instead, everything that
191 * needs to be initialised must be done so explicitly.
192 *
193 * The requests are reference counted.
194 */
195struct i915_request {
196	struct dma_fence fence;
197	spinlock_t lock;
198
199	struct drm_i915_private *i915;
200
201	/**
202	 * Context and ring buffer related to this request
203	 * Contexts are refcounted, so when this request is associated with a
204	 * context, we must increment the context's refcount, to guarantee that
205	 * it persists while any request is linked to it. Requests themselves
206	 * are also refcounted, so the request will only be freed when the last
207	 * reference to it is dismissed, and the code in
208	 * i915_request_free() will then decrement the refcount on the
209	 * context.
210	 */
211	struct intel_engine_cs *engine;
212	struct intel_context *context;
213	struct intel_ring *ring;
214	struct intel_timeline __rcu *timeline;
215
216	struct list_head signal_link;
217	struct llist_node signal_node;
218
219	/*
220	 * The rcu epoch of when this request was allocated. Used to judiciously
221	 * apply backpressure on future allocations to ensure that under
222	 * mempressure there is sufficient RCU ticks for us to reclaim our
223	 * RCU protected slabs.
224	 */
225	unsigned long rcustate;
226
227	/*
228	 * We pin the timeline->mutex while constructing the request to
229	 * ensure that no caller accidentally drops it during construction.
230	 * The timeline->mutex must be held to ensure that only this caller
231	 * can use the ring and manipulate the associated timeline during
232	 * construction.
233	 */
234	struct pin_cookie cookie;
235
236	/*
237	 * Fences for the various phases in the request's lifetime.
238	 *
239	 * The submit fence is used to await upon all of the request's
240	 * dependencies. When it is signaled, the request is ready to run.
241	 * It is used by the driver to then queue the request for execution.
242	 */
243	struct i915_sw_fence submit;
244	union {
245		wait_queue_entry_t submitq;
246		struct i915_sw_dma_fence_cb dmaq;
247		struct i915_request_duration_cb {
248			struct dma_fence_cb cb;
249			ktime_t emitted;
250		} duration;
251	};
252	struct llist_head execute_cb;
253	struct i915_sw_fence semaphore;
254	/**
255	 * @submit_work: complete submit fence from an IRQ if needed for
256	 * locking hierarchy reasons.
257	 */
258	struct irq_work submit_work;
259
260	/*
261	 * A list of everyone we wait upon, and everyone who waits upon us.
262	 * Even though we will not be submitted to the hardware before the
263	 * submit fence is signaled (it waits for all external events as well
264	 * as our own requests), the scheduler still needs to know the
265	 * dependency tree for the lifetime of the request (from execbuf
266	 * to retirement), i.e. bidirectional dependency information for the
267	 * request not tied to individual fences.
268	 */
269	struct i915_sched_node sched;
270	struct i915_dependency dep;
271	intel_engine_mask_t execution_mask;
272
273	/*
274	 * A convenience pointer to the current breadcrumb value stored in
275	 * the HW status page (or our timeline's local equivalent). The full
276	 * path would be rq->hw_context->ring->timeline->hwsp_seqno.
277	 */
278	const u32 *hwsp_seqno;
279
280	/** Position in the ring of the start of the request */
281	u32 head;
282
283	/** Position in the ring of the start of the user packets */
284	u32 infix;
285
286	/**
287	 * Position in the ring of the start of the postfix.
288	 * This is required to calculate the maximum available ring space
289	 * without overwriting the postfix.
290	 */
291	u32 postfix;
292
293	/** Position in the ring of the end of the whole request */
294	u32 tail;
295
296	/** Position in the ring of the end of any workarounds after the tail */
297	u32 wa_tail;
298
299	/** Preallocate space in the ring for the emitting the request */
300	u32 reserved_space;
301
302	/** Batch buffer pointer for selftest internal use. */
303	I915_SELFTEST_DECLARE(struct i915_vma *batch);
304
305	struct i915_vma_resource *batch_res;
306
307#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
308	/**
309	 * Additional buffers requested by userspace to be captured upon
310	 * a GPU hang. The vma/obj on this list are protected by their
311	 * active reference - all objects on this list must also be
312	 * on the active_list (of their final request).
313	 */
314	struct i915_capture_list *capture_list;
315#endif
316
317	/** Time at which this request was emitted, in jiffies. */
318	unsigned long emitted_jiffies;
319
320	/** timeline->request entry for this request */
321	struct list_head link;
322
323	/** Watchdog support fields. */
324	struct i915_request_watchdog {
325		struct llist_node link;
326		struct hrtimer timer;
327	} watchdog;
328
329	/**
330	 * @guc_fence_link: Requests may need to be stalled when using GuC
331	 * submission waiting for certain GuC operations to complete. If that is
332	 * the case, stalled requests are added to a per context list of stalled
333	 * requests. The below list_head is the link in that list. Protected by
334	 * ce->guc_state.lock.
335	 */
336	struct list_head guc_fence_link;
337
338	/**
339	 * @guc_prio: Priority level while the request is in flight. Differs
340	 * from i915 scheduler priority. See comment above
341	 * I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP for details. Protected by
342	 * ce->guc_active.lock. Two special values (GUC_PRIO_INIT and
343	 * GUC_PRIO_FINI) outside the GuC priority range are used to indicate
344	 * if the priority has not been initialized yet or if no more updates
345	 * are possible because the request has completed.
346	 */
347#define	GUC_PRIO_INIT	0xff
348#define	GUC_PRIO_FINI	0xfe
349	u8 guc_prio;
350
351	/**
352	 * @hucq: wait queue entry used to wait on the HuC load to complete
353	 */
354	wait_queue_entry_t hucq;
355
356	I915_SELFTEST_DECLARE(struct {
357		struct list_head link;
358		unsigned long delay;
359	} mock;)
360};
361
362#define I915_FENCE_GFP (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
363
364extern const struct dma_fence_ops i915_fence_ops;
365
366static inline bool dma_fence_is_i915(const struct dma_fence *fence)
367{
368	return fence->ops == &i915_fence_ops;
369}
370
371struct kmem_cache *i915_request_slab_cache(void);
372
373struct i915_request * __must_check
374__i915_request_create(struct intel_context *ce, gfp_t gfp);
375struct i915_request * __must_check
376i915_request_create(struct intel_context *ce);
377
378void __i915_request_skip(struct i915_request *rq);
379bool i915_request_set_error_once(struct i915_request *rq, int error);
380struct i915_request *i915_request_mark_eio(struct i915_request *rq);
381
382struct i915_request *__i915_request_commit(struct i915_request *request);
383void __i915_request_queue(struct i915_request *rq,
384			  const struct i915_sched_attr *attr);
385void __i915_request_queue_bh(struct i915_request *rq);
386
387bool i915_request_retire(struct i915_request *rq);
388void i915_request_retire_upto(struct i915_request *rq);
389
390static inline struct i915_request *
391to_request(struct dma_fence *fence)
392{
393	/* We assume that NULL fence/request are interoperable */
394	BUILD_BUG_ON(offsetof(struct i915_request, fence) != 0);
395	GEM_BUG_ON(fence && !dma_fence_is_i915(fence));
396	return container_of(fence, struct i915_request, fence);
397}
398
399static inline struct i915_request *
400i915_request_get(struct i915_request *rq)
401{
402	return to_request(dma_fence_get(&rq->fence));
403}
404
405static inline struct i915_request *
406i915_request_get_rcu(struct i915_request *rq)
407{
408	return to_request(dma_fence_get_rcu(&rq->fence));
409}
410
411static inline void
412i915_request_put(struct i915_request *rq)
413{
414	dma_fence_put(&rq->fence);
415}
416
417int i915_request_await_object(struct i915_request *to,
418			      struct drm_i915_gem_object *obj,
419			      bool write);
420int i915_request_await_dma_fence(struct i915_request *rq,
421				 struct dma_fence *fence);
422int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps);
423int i915_request_await_execution(struct i915_request *rq,
424				 struct dma_fence *fence);
 
 
425
426void i915_request_add(struct i915_request *rq);
427
428bool __i915_request_submit(struct i915_request *request);
429void i915_request_submit(struct i915_request *request);
430
431void __i915_request_unsubmit(struct i915_request *request);
432void i915_request_unsubmit(struct i915_request *request);
433
434void i915_request_cancel(struct i915_request *rq, int error);
435
436long i915_request_wait_timeout(struct i915_request *rq,
437			       unsigned int flags,
438			       long timeout)
439	__attribute__((nonnull(1)));
440
441long i915_request_wait(struct i915_request *rq,
442		       unsigned int flags,
443		       long timeout)
444	__attribute__((nonnull(1)));
445#define I915_WAIT_INTERRUPTIBLE	BIT(0)
446#define I915_WAIT_PRIORITY	BIT(1) /* small priority bump for the request */
447#define I915_WAIT_ALL		BIT(2) /* used by i915_gem_object_wait() */
448
449void i915_request_show(struct drm_printer *m,
450		       const struct i915_request *rq,
451		       const char *prefix,
452		       int indent);
453
454static inline bool i915_request_signaled(const struct i915_request *rq)
455{
456	/* The request may live longer than its HWSP, so check flags first! */
457	return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags);
458}
459
460static inline bool i915_request_is_active(const struct i915_request *rq)
461{
462	return test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
463}
464
465static inline bool i915_request_in_priority_queue(const struct i915_request *rq)
466{
467	return test_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
468}
469
470static inline bool
471i915_request_has_initial_breadcrumb(const struct i915_request *rq)
472{
473	return test_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags);
474}
475
476/**
477 * Returns true if seq1 is later than seq2.
478 */
479static inline bool i915_seqno_passed(u32 seq1, u32 seq2)
480{
481	return (s32)(seq1 - seq2) >= 0;
482}
483
484static inline u32 __hwsp_seqno(const struct i915_request *rq)
485{
486	const u32 *hwsp = READ_ONCE(rq->hwsp_seqno);
487
488	return READ_ONCE(*hwsp);
489}
490
491/**
492 * hwsp_seqno - the current breadcrumb value in the HW status page
493 * @rq: the request, to chase the relevant HW status page
494 *
495 * The emphasis in naming here is that hwsp_seqno() is not a property of the
496 * request, but an indication of the current HW state (associated with this
497 * request). Its value will change as the GPU executes more requests.
498 *
499 * Returns the current breadcrumb value in the associated HW status page (or
500 * the local timeline's equivalent) for this request. The request itself
501 * has the associated breadcrumb value of rq->fence.seqno, when the HW
502 * status page has that breadcrumb or later, this request is complete.
503 */
504static inline u32 hwsp_seqno(const struct i915_request *rq)
505{
506	u32 seqno;
507
508	rcu_read_lock(); /* the HWSP may be freed at runtime */
509	seqno = __hwsp_seqno(rq);
510	rcu_read_unlock();
511
512	return seqno;
513}
514
515static inline bool __i915_request_has_started(const struct i915_request *rq)
516{
517	return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno - 1);
518}
519
520/**
521 * i915_request_started - check if the request has begun being executed
522 * @rq: the request
523 *
524 * If the timeline is not using initial breadcrumbs, a request is
525 * considered started if the previous request on its timeline (i.e.
526 * context) has been signaled.
527 *
528 * If the timeline is using semaphores, it will also be emitting an
529 * "initial breadcrumb" after the semaphores are complete and just before
530 * it began executing the user payload. A request can therefore be active
531 * on the HW and not yet started as it is still busywaiting on its
532 * dependencies (via HW semaphores).
533 *
534 * If the request has started, its dependencies will have been signaled
535 * (either by fences or by semaphores) and it will have begun processing
536 * the user payload.
537 *
538 * However, even if a request has started, it may have been preempted and
539 * so no longer active, or it may have already completed.
540 *
541 * See also i915_request_is_active().
542 *
543 * Returns true if the request has begun executing the user payload, or
544 * has completed:
545 */
546static inline bool i915_request_started(const struct i915_request *rq)
547{
548	bool result;
549
550	if (i915_request_signaled(rq))
551		return true;
552
553	result = true;
554	rcu_read_lock(); /* the HWSP may be freed at runtime */
555	if (likely(!i915_request_signaled(rq)))
556		/* Remember: started but may have since been preempted! */
557		result = __i915_request_has_started(rq);
558	rcu_read_unlock();
559
560	return result;
561}
562
563/**
564 * i915_request_is_running - check if the request may actually be executing
565 * @rq: the request
566 *
567 * Returns true if the request is currently submitted to hardware, has passed
568 * its start point (i.e. the context is setup and not busywaiting). Note that
569 * it may no longer be running by the time the function returns!
570 */
571static inline bool i915_request_is_running(const struct i915_request *rq)
572{
573	bool result;
574
575	if (!i915_request_is_active(rq))
576		return false;
577
578	rcu_read_lock();
579	result = __i915_request_has_started(rq) && i915_request_is_active(rq);
580	rcu_read_unlock();
581
582	return result;
583}
584
585/**
586 * i915_request_is_ready - check if the request is ready for execution
587 * @rq: the request
588 *
589 * Upon construction, the request is instructed to wait upon various
590 * signals before it is ready to be executed by the HW. That is, we do
591 * not want to start execution and read data before it is written. In practice,
592 * this is controlled with a mixture of interrupts and semaphores. Once
593 * the submit fence is completed, the backend scheduler will place the
594 * request into its queue and from there submit it for execution. So we
595 * can detect when a request is eligible for execution (and is under control
596 * of the scheduler) by querying where it is in any of the scheduler's lists.
597 *
598 * Returns true if the request is ready for execution (it may be inflight),
599 * false otherwise.
600 */
601static inline bool i915_request_is_ready(const struct i915_request *rq)
602{
603	return !list_empty(&rq->sched.link);
604}
605
606static inline bool __i915_request_is_complete(const struct i915_request *rq)
607{
608	return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno);
609}
610
611static inline bool i915_request_completed(const struct i915_request *rq)
612{
613	bool result;
614
615	if (i915_request_signaled(rq))
616		return true;
617
618	result = true;
619	rcu_read_lock(); /* the HWSP may be freed at runtime */
620	if (likely(!i915_request_signaled(rq)))
621		result = __i915_request_is_complete(rq);
622	rcu_read_unlock();
623
624	return result;
625}
626
627static inline void i915_request_mark_complete(struct i915_request *rq)
628{
629	WRITE_ONCE(rq->hwsp_seqno, /* decouple from HWSP */
630		   (u32 *)&rq->fence.seqno);
631}
632
633static inline bool i915_request_has_waitboost(const struct i915_request *rq)
634{
635	return test_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags);
636}
637
638static inline bool i915_request_has_nopreempt(const struct i915_request *rq)
639{
640	/* Preemption should only be disabled very rarely */
641	return unlikely(test_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags));
642}
643
644static inline bool i915_request_has_sentinel(const struct i915_request *rq)
645{
646	return unlikely(test_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags));
647}
648
649static inline bool i915_request_on_hold(const struct i915_request *rq)
650{
651	return unlikely(test_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags));
652}
653
654static inline void i915_request_set_hold(struct i915_request *rq)
655{
656	set_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
657}
658
659static inline void i915_request_clear_hold(struct i915_request *rq)
660{
661	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
662}
663
664static inline struct intel_timeline *
665i915_request_timeline(const struct i915_request *rq)
666{
667	/* Valid only while the request is being constructed (or retired). */
668	return rcu_dereference_protected(rq->timeline,
669					 lockdep_is_held(&rcu_access_pointer(rq->timeline)->mutex) ||
670					 test_bit(CONTEXT_IS_PARKING, &rq->context->flags));
671}
672
673static inline struct i915_gem_context *
674i915_request_gem_context(const struct i915_request *rq)
675{
676	/* Valid only while the request is being constructed (or retired). */
677	return rcu_dereference_protected(rq->context->gem_context, true);
678}
679
680static inline struct intel_timeline *
681i915_request_active_timeline(const struct i915_request *rq)
682{
683	/*
684	 * When in use during submission, we are protected by a guarantee that
685	 * the context/timeline is pinned and must remain pinned until after
686	 * this submission.
687	 */
688	return rcu_dereference_protected(rq->timeline,
689					 lockdep_is_held(&rq->engine->sched_engine->lock));
690}
691
692static inline u32
693i915_request_active_seqno(const struct i915_request *rq)
694{
695	u32 hwsp_phys_base =
696		page_mask_bits(i915_request_active_timeline(rq)->hwsp_offset);
697	u32 hwsp_relative_offset = offset_in_page(rq->hwsp_seqno);
698
699	/*
700	 * Because of wraparound, we cannot simply take tl->hwsp_offset,
701	 * but instead use the fact that the relative for vaddr is the
702	 * offset as for hwsp_offset. Take the top bits from tl->hwsp_offset
703	 * and combine them with the relative offset in rq->hwsp_seqno.
704	 *
705	 * As rw->hwsp_seqno is rewritten when signaled, this only works
706	 * when the request isn't signaled yet, but at that point you
707	 * no longer need the offset.
708	 */
709
710	return hwsp_phys_base + hwsp_relative_offset;
711}
712
713bool
714i915_request_active_engine(struct i915_request *rq,
715			   struct intel_engine_cs **active);
716
717void i915_request_notify_execute_cb_imm(struct i915_request *rq);
718
719enum i915_request_state {
720	I915_REQUEST_UNKNOWN = 0,
721	I915_REQUEST_COMPLETE,
722	I915_REQUEST_PENDING,
723	I915_REQUEST_QUEUED,
724	I915_REQUEST_ACTIVE,
725};
726
727enum i915_request_state i915_test_request_state(struct i915_request *rq);
728
729void i915_request_module_exit(void);
730int i915_request_module_init(void);
731
732#endif /* I915_REQUEST_H */
v5.14.15
  1/*
  2 * Copyright © 2008-2018 Intel Corporation
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice (including the next
 12 * paragraph) shall be included in all copies or substantial portions of the
 13 * Software.
 14 *
 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 21 * IN THE SOFTWARE.
 22 *
 23 */
 24
 25#ifndef I915_REQUEST_H
 26#define I915_REQUEST_H
 27
 28#include <linux/dma-fence.h>
 29#include <linux/hrtimer.h>
 30#include <linux/irq_work.h>
 31#include <linux/llist.h>
 32#include <linux/lockdep.h>
 33
 34#include "gem/i915_gem_context_types.h"
 35#include "gt/intel_context_types.h"
 36#include "gt/intel_engine_types.h"
 37#include "gt/intel_timeline_types.h"
 38
 39#include "i915_gem.h"
 40#include "i915_scheduler.h"
 41#include "i915_selftest.h"
 42#include "i915_sw_fence.h"
 
 43
 44#include <uapi/drm/i915_drm.h>
 45
 46struct drm_file;
 47struct drm_i915_gem_object;
 48struct drm_printer;
 
 49struct i915_request;
 50
 
 51struct i915_capture_list {
 
 52	struct i915_capture_list *next;
 53	struct i915_vma *vma;
 54};
 55
 
 
 
 
 
 56#define RQ_TRACE(rq, fmt, ...) do {					\
 57	const struct i915_request *rq__ = (rq);				\
 58	ENGINE_TRACE(rq__->engine, "fence %llx:%lld, current %d " fmt,	\
 59		     rq__->fence.context, rq__->fence.seqno,		\
 60		     hwsp_seqno(rq__), ##__VA_ARGS__);			\
 61} while (0)
 62
 63enum {
 64	/*
 65	 * I915_FENCE_FLAG_ACTIVE - this request is currently submitted to HW.
 66	 *
 67	 * Set by __i915_request_submit() on handing over to HW, and cleared
 68	 * by __i915_request_unsubmit() if we preempt this request.
 69	 *
 70	 * Finally cleared for consistency on retiring the request, when
 71	 * we know the HW is no longer running this request.
 72	 *
 73	 * See i915_request_is_active()
 74	 */
 75	I915_FENCE_FLAG_ACTIVE = DMA_FENCE_FLAG_USER_BITS,
 76
 77	/*
 78	 * I915_FENCE_FLAG_PQUEUE - this request is ready for execution
 79	 *
 80	 * Using the scheduler, when a request is ready for execution it is put
 81	 * into the priority queue, and removed from that queue when transferred
 82	 * to the HW runlists. We want to track its membership within the
 83	 * priority queue so that we can easily check before rescheduling.
 84	 *
 85	 * See i915_request_in_priority_queue()
 86	 */
 87	I915_FENCE_FLAG_PQUEUE,
 88
 89	/*
 90	 * I915_FENCE_FLAG_HOLD - this request is currently on hold
 91	 *
 92	 * This request has been suspended, pending an ongoing investigation.
 93	 */
 94	I915_FENCE_FLAG_HOLD,
 95
 96	/*
 97	 * I915_FENCE_FLAG_INITIAL_BREADCRUMB - this request has the initial
 98	 * breadcrumb that marks the end of semaphore waits and start of the
 99	 * user payload.
100	 */
101	I915_FENCE_FLAG_INITIAL_BREADCRUMB,
102
103	/*
104	 * I915_FENCE_FLAG_SIGNAL - this request is currently on signal_list
105	 *
106	 * Internal bookkeeping used by the breadcrumb code to track when
107	 * a request is on the various signal_list.
108	 */
109	I915_FENCE_FLAG_SIGNAL,
110
111	/*
112	 * I915_FENCE_FLAG_NOPREEMPT - this request should not be preempted
113	 *
114	 * The execution of some requests should not be interrupted. This is
115	 * a sensitive operation as it makes the request super important,
116	 * blocking other higher priority work. Abuse of this flag will
117	 * lead to quality of service issues.
118	 */
119	I915_FENCE_FLAG_NOPREEMPT,
120
121	/*
122	 * I915_FENCE_FLAG_SENTINEL - this request should be last in the queue
123	 *
124	 * A high priority sentinel request may be submitted to clear the
125	 * submission queue. As it will be the only request in-flight, upon
126	 * execution all other active requests will have been preempted and
127	 * unsubmitted. This preemptive pulse is used to re-evaluate the
128	 * in-flight requests, particularly in cases where an active context
129	 * is banned and those active requests need to be cancelled.
130	 */
131	I915_FENCE_FLAG_SENTINEL,
132
133	/*
134	 * I915_FENCE_FLAG_BOOST - upclock the gpu for this request
135	 *
136	 * Some requests are more important than others! In particular, a
137	 * request that the user is waiting on is typically required for
138	 * interactive latency, for which we want to minimise by upclocking
139	 * the GPU. Here we track such boost requests on a per-request basis.
140	 */
141	I915_FENCE_FLAG_BOOST,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142};
143
144/**
145 * Request queue structure.
146 *
147 * The request queue allows us to note sequence numbers that have been emitted
148 * and may be associated with active buffers to be retired.
149 *
150 * By keeping this list, we can avoid having to do questionable sequence
151 * number comparisons on buffer last_read|write_seqno. It also allows an
152 * emission time to be associated with the request for tracking how far ahead
153 * of the GPU the submission is.
154 *
155 * When modifying this structure be very aware that we perform a lockless
156 * RCU lookup of it that may race against reallocation of the struct
157 * from the slab freelist. We intentionally do not zero the structure on
158 * allocation so that the lookup can use the dangling pointers (and is
159 * cogniscent that those pointers may be wrong). Instead, everything that
160 * needs to be initialised must be done so explicitly.
161 *
162 * The requests are reference counted.
163 */
164struct i915_request {
165	struct dma_fence fence;
166	spinlock_t lock;
167
 
 
168	/**
169	 * Context and ring buffer related to this request
170	 * Contexts are refcounted, so when this request is associated with a
171	 * context, we must increment the context's refcount, to guarantee that
172	 * it persists while any request is linked to it. Requests themselves
173	 * are also refcounted, so the request will only be freed when the last
174	 * reference to it is dismissed, and the code in
175	 * i915_request_free() will then decrement the refcount on the
176	 * context.
177	 */
178	struct intel_engine_cs *engine;
179	struct intel_context *context;
180	struct intel_ring *ring;
181	struct intel_timeline __rcu *timeline;
182
183	struct list_head signal_link;
184	struct llist_node signal_node;
185
186	/*
187	 * The rcu epoch of when this request was allocated. Used to judiciously
188	 * apply backpressure on future allocations to ensure that under
189	 * mempressure there is sufficient RCU ticks for us to reclaim our
190	 * RCU protected slabs.
191	 */
192	unsigned long rcustate;
193
194	/*
195	 * We pin the timeline->mutex while constructing the request to
196	 * ensure that no caller accidentally drops it during construction.
197	 * The timeline->mutex must be held to ensure that only this caller
198	 * can use the ring and manipulate the associated timeline during
199	 * construction.
200	 */
201	struct pin_cookie cookie;
202
203	/*
204	 * Fences for the various phases in the request's lifetime.
205	 *
206	 * The submit fence is used to await upon all of the request's
207	 * dependencies. When it is signaled, the request is ready to run.
208	 * It is used by the driver to then queue the request for execution.
209	 */
210	struct i915_sw_fence submit;
211	union {
212		wait_queue_entry_t submitq;
213		struct i915_sw_dma_fence_cb dmaq;
214		struct i915_request_duration_cb {
215			struct dma_fence_cb cb;
216			ktime_t emitted;
217		} duration;
218	};
219	struct llist_head execute_cb;
220	struct i915_sw_fence semaphore;
 
 
 
 
 
221
222	/*
223	 * A list of everyone we wait upon, and everyone who waits upon us.
224	 * Even though we will not be submitted to the hardware before the
225	 * submit fence is signaled (it waits for all external events as well
226	 * as our own requests), the scheduler still needs to know the
227	 * dependency tree for the lifetime of the request (from execbuf
228	 * to retirement), i.e. bidirectional dependency information for the
229	 * request not tied to individual fences.
230	 */
231	struct i915_sched_node sched;
232	struct i915_dependency dep;
233	intel_engine_mask_t execution_mask;
234
235	/*
236	 * A convenience pointer to the current breadcrumb value stored in
237	 * the HW status page (or our timeline's local equivalent). The full
238	 * path would be rq->hw_context->ring->timeline->hwsp_seqno.
239	 */
240	const u32 *hwsp_seqno;
241
242	/** Position in the ring of the start of the request */
243	u32 head;
244
245	/** Position in the ring of the start of the user packets */
246	u32 infix;
247
248	/**
249	 * Position in the ring of the start of the postfix.
250	 * This is required to calculate the maximum available ring space
251	 * without overwriting the postfix.
252	 */
253	u32 postfix;
254
255	/** Position in the ring of the end of the whole request */
256	u32 tail;
257
258	/** Position in the ring of the end of any workarounds after the tail */
259	u32 wa_tail;
260
261	/** Preallocate space in the ring for the emitting the request */
262	u32 reserved_space;
263
264	/** Batch buffer related to this request if any (used for
265	 * error state dump only).
266	 */
267	struct i915_vma *batch;
 
 
268	/**
269	 * Additional buffers requested by userspace to be captured upon
270	 * a GPU hang. The vma/obj on this list are protected by their
271	 * active reference - all objects on this list must also be
272	 * on the active_list (of their final request).
273	 */
274	struct i915_capture_list *capture_list;
 
275
276	/** Time at which this request was emitted, in jiffies. */
277	unsigned long emitted_jiffies;
278
279	/** timeline->request entry for this request */
280	struct list_head link;
281
282	/** Watchdog support fields. */
283	struct i915_request_watchdog {
284		struct llist_node link;
285		struct hrtimer timer;
286	} watchdog;
287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
288	I915_SELFTEST_DECLARE(struct {
289		struct list_head link;
290		unsigned long delay;
291	} mock;)
292};
293
294#define I915_FENCE_GFP (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
295
296extern const struct dma_fence_ops i915_fence_ops;
297
298static inline bool dma_fence_is_i915(const struct dma_fence *fence)
299{
300	return fence->ops == &i915_fence_ops;
301}
302
303struct kmem_cache *i915_request_slab_cache(void);
304
305struct i915_request * __must_check
306__i915_request_create(struct intel_context *ce, gfp_t gfp);
307struct i915_request * __must_check
308i915_request_create(struct intel_context *ce);
309
310void __i915_request_skip(struct i915_request *rq);
311bool i915_request_set_error_once(struct i915_request *rq, int error);
312struct i915_request *i915_request_mark_eio(struct i915_request *rq);
313
314struct i915_request *__i915_request_commit(struct i915_request *request);
315void __i915_request_queue(struct i915_request *rq,
316			  const struct i915_sched_attr *attr);
317void __i915_request_queue_bh(struct i915_request *rq);
318
319bool i915_request_retire(struct i915_request *rq);
320void i915_request_retire_upto(struct i915_request *rq);
321
322static inline struct i915_request *
323to_request(struct dma_fence *fence)
324{
325	/* We assume that NULL fence/request are interoperable */
326	BUILD_BUG_ON(offsetof(struct i915_request, fence) != 0);
327	GEM_BUG_ON(fence && !dma_fence_is_i915(fence));
328	return container_of(fence, struct i915_request, fence);
329}
330
331static inline struct i915_request *
332i915_request_get(struct i915_request *rq)
333{
334	return to_request(dma_fence_get(&rq->fence));
335}
336
337static inline struct i915_request *
338i915_request_get_rcu(struct i915_request *rq)
339{
340	return to_request(dma_fence_get_rcu(&rq->fence));
341}
342
343static inline void
344i915_request_put(struct i915_request *rq)
345{
346	dma_fence_put(&rq->fence);
347}
348
349int i915_request_await_object(struct i915_request *to,
350			      struct drm_i915_gem_object *obj,
351			      bool write);
352int i915_request_await_dma_fence(struct i915_request *rq,
353				 struct dma_fence *fence);
 
354int i915_request_await_execution(struct i915_request *rq,
355				 struct dma_fence *fence,
356				 void (*hook)(struct i915_request *rq,
357					      struct dma_fence *signal));
358
359void i915_request_add(struct i915_request *rq);
360
361bool __i915_request_submit(struct i915_request *request);
362void i915_request_submit(struct i915_request *request);
363
364void __i915_request_unsubmit(struct i915_request *request);
365void i915_request_unsubmit(struct i915_request *request);
366
367void i915_request_cancel(struct i915_request *rq, int error);
368
 
 
 
 
 
369long i915_request_wait(struct i915_request *rq,
370		       unsigned int flags,
371		       long timeout)
372	__attribute__((nonnull(1)));
373#define I915_WAIT_INTERRUPTIBLE	BIT(0)
374#define I915_WAIT_PRIORITY	BIT(1) /* small priority bump for the request */
375#define I915_WAIT_ALL		BIT(2) /* used by i915_gem_object_wait() */
376
377void i915_request_show(struct drm_printer *m,
378		       const struct i915_request *rq,
379		       const char *prefix,
380		       int indent);
381
382static inline bool i915_request_signaled(const struct i915_request *rq)
383{
384	/* The request may live longer than its HWSP, so check flags first! */
385	return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags);
386}
387
388static inline bool i915_request_is_active(const struct i915_request *rq)
389{
390	return test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
391}
392
393static inline bool i915_request_in_priority_queue(const struct i915_request *rq)
394{
395	return test_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
396}
397
398static inline bool
399i915_request_has_initial_breadcrumb(const struct i915_request *rq)
400{
401	return test_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags);
402}
403
404/**
405 * Returns true if seq1 is later than seq2.
406 */
407static inline bool i915_seqno_passed(u32 seq1, u32 seq2)
408{
409	return (s32)(seq1 - seq2) >= 0;
410}
411
412static inline u32 __hwsp_seqno(const struct i915_request *rq)
413{
414	const u32 *hwsp = READ_ONCE(rq->hwsp_seqno);
415
416	return READ_ONCE(*hwsp);
417}
418
419/**
420 * hwsp_seqno - the current breadcrumb value in the HW status page
421 * @rq: the request, to chase the relevant HW status page
422 *
423 * The emphasis in naming here is that hwsp_seqno() is not a property of the
424 * request, but an indication of the current HW state (associated with this
425 * request). Its value will change as the GPU executes more requests.
426 *
427 * Returns the current breadcrumb value in the associated HW status page (or
428 * the local timeline's equivalent) for this request. The request itself
429 * has the associated breadcrumb value of rq->fence.seqno, when the HW
430 * status page has that breadcrumb or later, this request is complete.
431 */
432static inline u32 hwsp_seqno(const struct i915_request *rq)
433{
434	u32 seqno;
435
436	rcu_read_lock(); /* the HWSP may be freed at runtime */
437	seqno = __hwsp_seqno(rq);
438	rcu_read_unlock();
439
440	return seqno;
441}
442
443static inline bool __i915_request_has_started(const struct i915_request *rq)
444{
445	return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno - 1);
446}
447
448/**
449 * i915_request_started - check if the request has begun being executed
450 * @rq: the request
451 *
452 * If the timeline is not using initial breadcrumbs, a request is
453 * considered started if the previous request on its timeline (i.e.
454 * context) has been signaled.
455 *
456 * If the timeline is using semaphores, it will also be emitting an
457 * "initial breadcrumb" after the semaphores are complete and just before
458 * it began executing the user payload. A request can therefore be active
459 * on the HW and not yet started as it is still busywaiting on its
460 * dependencies (via HW semaphores).
461 *
462 * If the request has started, its dependencies will have been signaled
463 * (either by fences or by semaphores) and it will have begun processing
464 * the user payload.
465 *
466 * However, even if a request has started, it may have been preempted and
467 * so no longer active, or it may have already completed.
468 *
469 * See also i915_request_is_active().
470 *
471 * Returns true if the request has begun executing the user payload, or
472 * has completed:
473 */
474static inline bool i915_request_started(const struct i915_request *rq)
475{
476	bool result;
477
478	if (i915_request_signaled(rq))
479		return true;
480
481	result = true;
482	rcu_read_lock(); /* the HWSP may be freed at runtime */
483	if (likely(!i915_request_signaled(rq)))
484		/* Remember: started but may have since been preempted! */
485		result = __i915_request_has_started(rq);
486	rcu_read_unlock();
487
488	return result;
489}
490
491/**
492 * i915_request_is_running - check if the request may actually be executing
493 * @rq: the request
494 *
495 * Returns true if the request is currently submitted to hardware, has passed
496 * its start point (i.e. the context is setup and not busywaiting). Note that
497 * it may no longer be running by the time the function returns!
498 */
499static inline bool i915_request_is_running(const struct i915_request *rq)
500{
501	bool result;
502
503	if (!i915_request_is_active(rq))
504		return false;
505
506	rcu_read_lock();
507	result = __i915_request_has_started(rq) && i915_request_is_active(rq);
508	rcu_read_unlock();
509
510	return result;
511}
512
513/**
514 * i915_request_is_ready - check if the request is ready for execution
515 * @rq: the request
516 *
517 * Upon construction, the request is instructed to wait upon various
518 * signals before it is ready to be executed by the HW. That is, we do
519 * not want to start execution and read data before it is written. In practice,
520 * this is controlled with a mixture of interrupts and semaphores. Once
521 * the submit fence is completed, the backend scheduler will place the
522 * request into its queue and from there submit it for execution. So we
523 * can detect when a request is eligible for execution (and is under control
524 * of the scheduler) by querying where it is in any of the scheduler's lists.
525 *
526 * Returns true if the request is ready for execution (it may be inflight),
527 * false otherwise.
528 */
529static inline bool i915_request_is_ready(const struct i915_request *rq)
530{
531	return !list_empty(&rq->sched.link);
532}
533
534static inline bool __i915_request_is_complete(const struct i915_request *rq)
535{
536	return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno);
537}
538
539static inline bool i915_request_completed(const struct i915_request *rq)
540{
541	bool result;
542
543	if (i915_request_signaled(rq))
544		return true;
545
546	result = true;
547	rcu_read_lock(); /* the HWSP may be freed at runtime */
548	if (likely(!i915_request_signaled(rq)))
549		result = __i915_request_is_complete(rq);
550	rcu_read_unlock();
551
552	return result;
553}
554
555static inline void i915_request_mark_complete(struct i915_request *rq)
556{
557	WRITE_ONCE(rq->hwsp_seqno, /* decouple from HWSP */
558		   (u32 *)&rq->fence.seqno);
559}
560
561static inline bool i915_request_has_waitboost(const struct i915_request *rq)
562{
563	return test_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags);
564}
565
566static inline bool i915_request_has_nopreempt(const struct i915_request *rq)
567{
568	/* Preemption should only be disabled very rarely */
569	return unlikely(test_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags));
570}
571
572static inline bool i915_request_has_sentinel(const struct i915_request *rq)
573{
574	return unlikely(test_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags));
575}
576
577static inline bool i915_request_on_hold(const struct i915_request *rq)
578{
579	return unlikely(test_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags));
580}
581
582static inline void i915_request_set_hold(struct i915_request *rq)
583{
584	set_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
585}
586
587static inline void i915_request_clear_hold(struct i915_request *rq)
588{
589	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
590}
591
592static inline struct intel_timeline *
593i915_request_timeline(const struct i915_request *rq)
594{
595	/* Valid only while the request is being constructed (or retired). */
596	return rcu_dereference_protected(rq->timeline,
597					 lockdep_is_held(&rcu_access_pointer(rq->timeline)->mutex));
 
598}
599
600static inline struct i915_gem_context *
601i915_request_gem_context(const struct i915_request *rq)
602{
603	/* Valid only while the request is being constructed (or retired). */
604	return rcu_dereference_protected(rq->context->gem_context, true);
605}
606
607static inline struct intel_timeline *
608i915_request_active_timeline(const struct i915_request *rq)
609{
610	/*
611	 * When in use during submission, we are protected by a guarantee that
612	 * the context/timeline is pinned and must remain pinned until after
613	 * this submission.
614	 */
615	return rcu_dereference_protected(rq->timeline,
616					 lockdep_is_held(&rq->engine->active.lock));
617}
618
619static inline u32
620i915_request_active_seqno(const struct i915_request *rq)
621{
622	u32 hwsp_phys_base =
623		page_mask_bits(i915_request_active_timeline(rq)->hwsp_offset);
624	u32 hwsp_relative_offset = offset_in_page(rq->hwsp_seqno);
625
626	/*
627	 * Because of wraparound, we cannot simply take tl->hwsp_offset,
628	 * but instead use the fact that the relative for vaddr is the
629	 * offset as for hwsp_offset. Take the top bits from tl->hwsp_offset
630	 * and combine them with the relative offset in rq->hwsp_seqno.
631	 *
632	 * As rw->hwsp_seqno is rewritten when signaled, this only works
633	 * when the request isn't signaled yet, but at that point you
634	 * no longer need the offset.
635	 */
636
637	return hwsp_phys_base + hwsp_relative_offset;
638}
639
640bool
641i915_request_active_engine(struct i915_request *rq,
642			   struct intel_engine_cs **active);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
643
644#endif /* I915_REQUEST_H */