Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/clocksource/arm_arch_timer.c
4 *
5 * Copyright (C) 2011 ARM Ltd.
6 * All Rights Reserved
7 */
8
9#define pr_fmt(fmt) "arch_timer: " fmt
10
11#include <linux/init.h>
12#include <linux/kernel.h>
13#include <linux/device.h>
14#include <linux/smp.h>
15#include <linux/cpu.h>
16#include <linux/cpu_pm.h>
17#include <linux/clockchips.h>
18#include <linux/clocksource.h>
19#include <linux/clocksource_ids.h>
20#include <linux/interrupt.h>
21#include <linux/kstrtox.h>
22#include <linux/of_irq.h>
23#include <linux/of_address.h>
24#include <linux/io.h>
25#include <linux/slab.h>
26#include <linux/sched/clock.h>
27#include <linux/sched_clock.h>
28#include <linux/acpi.h>
29#include <linux/arm-smccc.h>
30#include <linux/ptp_kvm.h>
31
32#include <asm/arch_timer.h>
33#include <asm/virt.h>
34
35#include <clocksource/arm_arch_timer.h>
36
37#define CNTTIDR 0x08
38#define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
39
40#define CNTACR(n) (0x40 + ((n) * 4))
41#define CNTACR_RPCT BIT(0)
42#define CNTACR_RVCT BIT(1)
43#define CNTACR_RFRQ BIT(2)
44#define CNTACR_RVOFF BIT(3)
45#define CNTACR_RWVT BIT(4)
46#define CNTACR_RWPT BIT(5)
47
48#define CNTPCT_LO 0x00
49#define CNTVCT_LO 0x08
50#define CNTFRQ 0x10
51#define CNTP_CVAL_LO 0x20
52#define CNTP_CTL 0x2c
53#define CNTV_CVAL_LO 0x30
54#define CNTV_CTL 0x3c
55
56/*
57 * The minimum amount of time a generic counter is guaranteed to not roll over
58 * (40 years)
59 */
60#define MIN_ROLLOVER_SECS (40ULL * 365 * 24 * 3600)
61
62static unsigned arch_timers_present __initdata;
63
64struct arch_timer {
65 void __iomem *base;
66 struct clock_event_device evt;
67};
68
69static struct arch_timer *arch_timer_mem __ro_after_init;
70
71#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
72
73static u32 arch_timer_rate __ro_after_init;
74static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
75
76static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
77 [ARCH_TIMER_PHYS_SECURE_PPI] = "sec-phys",
78 [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys",
79 [ARCH_TIMER_VIRT_PPI] = "virt",
80 [ARCH_TIMER_HYP_PPI] = "hyp-phys",
81 [ARCH_TIMER_HYP_VIRT_PPI] = "hyp-virt",
82};
83
84static struct clock_event_device __percpu *arch_timer_evt;
85
86static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
87static bool arch_timer_c3stop __ro_after_init;
88static bool arch_timer_mem_use_virtual __ro_after_init;
89static bool arch_counter_suspend_stop __ro_after_init;
90#ifdef CONFIG_GENERIC_GETTIMEOFDAY
91static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
92#else
93static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
94#endif /* CONFIG_GENERIC_GETTIMEOFDAY */
95
96static cpumask_t evtstrm_available = CPU_MASK_NONE;
97static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
98
99static int __init early_evtstrm_cfg(char *buf)
100{
101 return kstrtobool(buf, &evtstrm_enable);
102}
103early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
104
105/*
106 * Makes an educated guess at a valid counter width based on the Generic Timer
107 * specification. Of note:
108 * 1) the system counter is at least 56 bits wide
109 * 2) a roll-over time of not less than 40 years
110 *
111 * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details.
112 */
113static int arch_counter_get_width(void)
114{
115 u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate;
116
117 /* guarantee the returned width is within the valid range */
118 return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64);
119}
120
121/*
122 * Architected system timer support.
123 */
124
125static __always_inline
126void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val,
127 struct clock_event_device *clk)
128{
129 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
130 struct arch_timer *timer = to_arch_timer(clk);
131 switch (reg) {
132 case ARCH_TIMER_REG_CTRL:
133 writel_relaxed((u32)val, timer->base + CNTP_CTL);
134 break;
135 case ARCH_TIMER_REG_CVAL:
136 /*
137 * Not guaranteed to be atomic, so the timer
138 * must be disabled at this point.
139 */
140 writeq_relaxed(val, timer->base + CNTP_CVAL_LO);
141 break;
142 default:
143 BUILD_BUG();
144 }
145 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
146 struct arch_timer *timer = to_arch_timer(clk);
147 switch (reg) {
148 case ARCH_TIMER_REG_CTRL:
149 writel_relaxed((u32)val, timer->base + CNTV_CTL);
150 break;
151 case ARCH_TIMER_REG_CVAL:
152 /* Same restriction as above */
153 writeq_relaxed(val, timer->base + CNTV_CVAL_LO);
154 break;
155 default:
156 BUILD_BUG();
157 }
158 } else {
159 arch_timer_reg_write_cp15(access, reg, val);
160 }
161}
162
163static __always_inline
164u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
165 struct clock_event_device *clk)
166{
167 u32 val;
168
169 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
170 struct arch_timer *timer = to_arch_timer(clk);
171 switch (reg) {
172 case ARCH_TIMER_REG_CTRL:
173 val = readl_relaxed(timer->base + CNTP_CTL);
174 break;
175 default:
176 BUILD_BUG();
177 }
178 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
179 struct arch_timer *timer = to_arch_timer(clk);
180 switch (reg) {
181 case ARCH_TIMER_REG_CTRL:
182 val = readl_relaxed(timer->base + CNTV_CTL);
183 break;
184 default:
185 BUILD_BUG();
186 }
187 } else {
188 val = arch_timer_reg_read_cp15(access, reg);
189 }
190
191 return val;
192}
193
194static notrace u64 arch_counter_get_cntpct_stable(void)
195{
196 return __arch_counter_get_cntpct_stable();
197}
198
199static notrace u64 arch_counter_get_cntpct(void)
200{
201 return __arch_counter_get_cntpct();
202}
203
204static notrace u64 arch_counter_get_cntvct_stable(void)
205{
206 return __arch_counter_get_cntvct_stable();
207}
208
209static notrace u64 arch_counter_get_cntvct(void)
210{
211 return __arch_counter_get_cntvct();
212}
213
214/*
215 * Default to cp15 based access because arm64 uses this function for
216 * sched_clock() before DT is probed and the cp15 method is guaranteed
217 * to exist on arm64. arm doesn't use this before DT is probed so even
218 * if we don't have the cp15 accessors we won't have a problem.
219 */
220u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
221EXPORT_SYMBOL_GPL(arch_timer_read_counter);
222
223static u64 arch_counter_read(struct clocksource *cs)
224{
225 return arch_timer_read_counter();
226}
227
228static u64 arch_counter_read_cc(const struct cyclecounter *cc)
229{
230 return arch_timer_read_counter();
231}
232
233static struct clocksource clocksource_counter = {
234 .name = "arch_sys_counter",
235 .id = CSID_ARM_ARCH_COUNTER,
236 .rating = 400,
237 .read = arch_counter_read,
238 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
239};
240
241static struct cyclecounter cyclecounter __ro_after_init = {
242 .read = arch_counter_read_cc,
243};
244
245struct ate_acpi_oem_info {
246 char oem_id[ACPI_OEM_ID_SIZE + 1];
247 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
248 u32 oem_revision;
249};
250
251#ifdef CONFIG_FSL_ERRATUM_A008585
252/*
253 * The number of retries is an arbitrary value well beyond the highest number
254 * of iterations the loop has been observed to take.
255 */
256#define __fsl_a008585_read_reg(reg) ({ \
257 u64 _old, _new; \
258 int _retries = 200; \
259 \
260 do { \
261 _old = read_sysreg(reg); \
262 _new = read_sysreg(reg); \
263 _retries--; \
264 } while (unlikely(_old != _new) && _retries); \
265 \
266 WARN_ON_ONCE(!_retries); \
267 _new; \
268})
269
270static u64 notrace fsl_a008585_read_cntpct_el0(void)
271{
272 return __fsl_a008585_read_reg(cntpct_el0);
273}
274
275static u64 notrace fsl_a008585_read_cntvct_el0(void)
276{
277 return __fsl_a008585_read_reg(cntvct_el0);
278}
279#endif
280
281#ifdef CONFIG_HISILICON_ERRATUM_161010101
282/*
283 * Verify whether the value of the second read is larger than the first by
284 * less than 32 is the only way to confirm the value is correct, so clear the
285 * lower 5 bits to check whether the difference is greater than 32 or not.
286 * Theoretically the erratum should not occur more than twice in succession
287 * when reading the system counter, but it is possible that some interrupts
288 * may lead to more than twice read errors, triggering the warning, so setting
289 * the number of retries far beyond the number of iterations the loop has been
290 * observed to take.
291 */
292#define __hisi_161010101_read_reg(reg) ({ \
293 u64 _old, _new; \
294 int _retries = 50; \
295 \
296 do { \
297 _old = read_sysreg(reg); \
298 _new = read_sysreg(reg); \
299 _retries--; \
300 } while (unlikely((_new - _old) >> 5) && _retries); \
301 \
302 WARN_ON_ONCE(!_retries); \
303 _new; \
304})
305
306static u64 notrace hisi_161010101_read_cntpct_el0(void)
307{
308 return __hisi_161010101_read_reg(cntpct_el0);
309}
310
311static u64 notrace hisi_161010101_read_cntvct_el0(void)
312{
313 return __hisi_161010101_read_reg(cntvct_el0);
314}
315
316static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
317 /*
318 * Note that trailing spaces are required to properly match
319 * the OEM table information.
320 */
321 {
322 .oem_id = "HISI ",
323 .oem_table_id = "HIP05 ",
324 .oem_revision = 0,
325 },
326 {
327 .oem_id = "HISI ",
328 .oem_table_id = "HIP06 ",
329 .oem_revision = 0,
330 },
331 {
332 .oem_id = "HISI ",
333 .oem_table_id = "HIP07 ",
334 .oem_revision = 0,
335 },
336 { /* Sentinel indicating the end of the OEM array */ },
337};
338#endif
339
340#ifdef CONFIG_ARM64_ERRATUM_858921
341static u64 notrace arm64_858921_read_cntpct_el0(void)
342{
343 u64 old, new;
344
345 old = read_sysreg(cntpct_el0);
346 new = read_sysreg(cntpct_el0);
347 return (((old ^ new) >> 32) & 1) ? old : new;
348}
349
350static u64 notrace arm64_858921_read_cntvct_el0(void)
351{
352 u64 old, new;
353
354 old = read_sysreg(cntvct_el0);
355 new = read_sysreg(cntvct_el0);
356 return (((old ^ new) >> 32) & 1) ? old : new;
357}
358#endif
359
360#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
361/*
362 * The low bits of the counter registers are indeterminate while bit 10 or
363 * greater is rolling over. Since the counter value can jump both backward
364 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
365 * with all ones or all zeros in the low bits. Bound the loop by the maximum
366 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
367 */
368#define __sun50i_a64_read_reg(reg) ({ \
369 u64 _val; \
370 int _retries = 150; \
371 \
372 do { \
373 _val = read_sysreg(reg); \
374 _retries--; \
375 } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries); \
376 \
377 WARN_ON_ONCE(!_retries); \
378 _val; \
379})
380
381static u64 notrace sun50i_a64_read_cntpct_el0(void)
382{
383 return __sun50i_a64_read_reg(cntpct_el0);
384}
385
386static u64 notrace sun50i_a64_read_cntvct_el0(void)
387{
388 return __sun50i_a64_read_reg(cntvct_el0);
389}
390#endif
391
392#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
393DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
394EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
395
396static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
397
398/*
399 * Force the inlining of this function so that the register accesses
400 * can be themselves correctly inlined.
401 */
402static __always_inline
403void erratum_set_next_event_generic(const int access, unsigned long evt,
404 struct clock_event_device *clk)
405{
406 unsigned long ctrl;
407 u64 cval;
408
409 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
410 ctrl |= ARCH_TIMER_CTRL_ENABLE;
411 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
412
413 if (access == ARCH_TIMER_PHYS_ACCESS) {
414 cval = evt + arch_counter_get_cntpct_stable();
415 write_sysreg(cval, cntp_cval_el0);
416 } else {
417 cval = evt + arch_counter_get_cntvct_stable();
418 write_sysreg(cval, cntv_cval_el0);
419 }
420
421 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
422}
423
424static __maybe_unused int erratum_set_next_event_virt(unsigned long evt,
425 struct clock_event_device *clk)
426{
427 erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
428 return 0;
429}
430
431static __maybe_unused int erratum_set_next_event_phys(unsigned long evt,
432 struct clock_event_device *clk)
433{
434 erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
435 return 0;
436}
437
438static const struct arch_timer_erratum_workaround ool_workarounds[] = {
439#ifdef CONFIG_FSL_ERRATUM_A008585
440 {
441 .match_type = ate_match_dt,
442 .id = "fsl,erratum-a008585",
443 .desc = "Freescale erratum a005858",
444 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
445 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
446 .set_next_event_phys = erratum_set_next_event_phys,
447 .set_next_event_virt = erratum_set_next_event_virt,
448 },
449#endif
450#ifdef CONFIG_HISILICON_ERRATUM_161010101
451 {
452 .match_type = ate_match_dt,
453 .id = "hisilicon,erratum-161010101",
454 .desc = "HiSilicon erratum 161010101",
455 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
456 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
457 .set_next_event_phys = erratum_set_next_event_phys,
458 .set_next_event_virt = erratum_set_next_event_virt,
459 },
460 {
461 .match_type = ate_match_acpi_oem_info,
462 .id = hisi_161010101_oem_info,
463 .desc = "HiSilicon erratum 161010101",
464 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
465 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
466 .set_next_event_phys = erratum_set_next_event_phys,
467 .set_next_event_virt = erratum_set_next_event_virt,
468 },
469#endif
470#ifdef CONFIG_ARM64_ERRATUM_858921
471 {
472 .match_type = ate_match_local_cap_id,
473 .id = (void *)ARM64_WORKAROUND_858921,
474 .desc = "ARM erratum 858921",
475 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
476 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
477 .set_next_event_phys = erratum_set_next_event_phys,
478 .set_next_event_virt = erratum_set_next_event_virt,
479 },
480#endif
481#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
482 {
483 .match_type = ate_match_dt,
484 .id = "allwinner,erratum-unknown1",
485 .desc = "Allwinner erratum UNKNOWN1",
486 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
487 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
488 .set_next_event_phys = erratum_set_next_event_phys,
489 .set_next_event_virt = erratum_set_next_event_virt,
490 },
491#endif
492#ifdef CONFIG_ARM64_ERRATUM_1418040
493 {
494 .match_type = ate_match_local_cap_id,
495 .id = (void *)ARM64_WORKAROUND_1418040,
496 .desc = "ARM erratum 1418040",
497 .disable_compat_vdso = true,
498 },
499#endif
500};
501
502typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
503 const void *);
504
505static
506bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
507 const void *arg)
508{
509 const struct device_node *np = arg;
510
511 return of_property_read_bool(np, wa->id);
512}
513
514static
515bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
516 const void *arg)
517{
518 return this_cpu_has_cap((uintptr_t)wa->id);
519}
520
521
522static
523bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
524 const void *arg)
525{
526 static const struct ate_acpi_oem_info empty_oem_info = {};
527 const struct ate_acpi_oem_info *info = wa->id;
528 const struct acpi_table_header *table = arg;
529
530 /* Iterate over the ACPI OEM info array, looking for a match */
531 while (memcmp(info, &empty_oem_info, sizeof(*info))) {
532 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
533 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
534 info->oem_revision == table->oem_revision)
535 return true;
536
537 info++;
538 }
539
540 return false;
541}
542
543static const struct arch_timer_erratum_workaround *
544arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
545 ate_match_fn_t match_fn,
546 void *arg)
547{
548 int i;
549
550 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
551 if (ool_workarounds[i].match_type != type)
552 continue;
553
554 if (match_fn(&ool_workarounds[i], arg))
555 return &ool_workarounds[i];
556 }
557
558 return NULL;
559}
560
561static
562void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
563 bool local)
564{
565 int i;
566
567 if (local) {
568 __this_cpu_write(timer_unstable_counter_workaround, wa);
569 } else {
570 for_each_possible_cpu(i)
571 per_cpu(timer_unstable_counter_workaround, i) = wa;
572 }
573
574 if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
575 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
576
577 /*
578 * Don't use the vdso fastpath if errata require using the
579 * out-of-line counter accessor. We may change our mind pretty
580 * late in the game (with a per-CPU erratum, for example), so
581 * change both the default value and the vdso itself.
582 */
583 if (wa->read_cntvct_el0) {
584 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
585 vdso_default = VDSO_CLOCKMODE_NONE;
586 } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
587 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
588 clocksource_counter.vdso_clock_mode = vdso_default;
589 }
590}
591
592static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
593 void *arg)
594{
595 const struct arch_timer_erratum_workaround *wa, *__wa;
596 ate_match_fn_t match_fn = NULL;
597 bool local = false;
598
599 switch (type) {
600 case ate_match_dt:
601 match_fn = arch_timer_check_dt_erratum;
602 break;
603 case ate_match_local_cap_id:
604 match_fn = arch_timer_check_local_cap_erratum;
605 local = true;
606 break;
607 case ate_match_acpi_oem_info:
608 match_fn = arch_timer_check_acpi_oem_erratum;
609 break;
610 default:
611 WARN_ON(1);
612 return;
613 }
614
615 wa = arch_timer_iterate_errata(type, match_fn, arg);
616 if (!wa)
617 return;
618
619 __wa = __this_cpu_read(timer_unstable_counter_workaround);
620 if (__wa && wa != __wa)
621 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
622 wa->desc, __wa->desc);
623
624 if (__wa)
625 return;
626
627 arch_timer_enable_workaround(wa, local);
628 pr_info("Enabling %s workaround for %s\n",
629 local ? "local" : "global", wa->desc);
630}
631
632static bool arch_timer_this_cpu_has_cntvct_wa(void)
633{
634 return has_erratum_handler(read_cntvct_el0);
635}
636
637static bool arch_timer_counter_has_wa(void)
638{
639 return atomic_read(&timer_unstable_counter_workaround_in_use);
640}
641#else
642#define arch_timer_check_ool_workaround(t,a) do { } while(0)
643#define arch_timer_this_cpu_has_cntvct_wa() ({false;})
644#define arch_timer_counter_has_wa() ({false;})
645#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
646
647static __always_inline irqreturn_t timer_handler(const int access,
648 struct clock_event_device *evt)
649{
650 unsigned long ctrl;
651
652 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
653 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
654 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
655 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
656 evt->event_handler(evt);
657 return IRQ_HANDLED;
658 }
659
660 return IRQ_NONE;
661}
662
663static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
664{
665 struct clock_event_device *evt = dev_id;
666
667 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
668}
669
670static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
671{
672 struct clock_event_device *evt = dev_id;
673
674 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
675}
676
677static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
678{
679 struct clock_event_device *evt = dev_id;
680
681 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
682}
683
684static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
685{
686 struct clock_event_device *evt = dev_id;
687
688 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
689}
690
691static __always_inline int arch_timer_shutdown(const int access,
692 struct clock_event_device *clk)
693{
694 unsigned long ctrl;
695
696 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
697 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
698 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
699
700 return 0;
701}
702
703static int arch_timer_shutdown_virt(struct clock_event_device *clk)
704{
705 return arch_timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
706}
707
708static int arch_timer_shutdown_phys(struct clock_event_device *clk)
709{
710 return arch_timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
711}
712
713static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
714{
715 return arch_timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
716}
717
718static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
719{
720 return arch_timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
721}
722
723static __always_inline void set_next_event(const int access, unsigned long evt,
724 struct clock_event_device *clk)
725{
726 unsigned long ctrl;
727 u64 cnt;
728
729 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
730 ctrl |= ARCH_TIMER_CTRL_ENABLE;
731 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
732
733 if (access == ARCH_TIMER_PHYS_ACCESS)
734 cnt = __arch_counter_get_cntpct();
735 else
736 cnt = __arch_counter_get_cntvct();
737
738 arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
739 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
740}
741
742static int arch_timer_set_next_event_virt(unsigned long evt,
743 struct clock_event_device *clk)
744{
745 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
746 return 0;
747}
748
749static int arch_timer_set_next_event_phys(unsigned long evt,
750 struct clock_event_device *clk)
751{
752 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
753 return 0;
754}
755
756static u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo)
757{
758 u32 cnt_lo, cnt_hi, tmp_hi;
759
760 do {
761 cnt_hi = readl_relaxed(t->base + offset_lo + 4);
762 cnt_lo = readl_relaxed(t->base + offset_lo);
763 tmp_hi = readl_relaxed(t->base + offset_lo + 4);
764 } while (cnt_hi != tmp_hi);
765
766 return ((u64) cnt_hi << 32) | cnt_lo;
767}
768
769static __always_inline void set_next_event_mem(const int access, unsigned long evt,
770 struct clock_event_device *clk)
771{
772 struct arch_timer *timer = to_arch_timer(clk);
773 unsigned long ctrl;
774 u64 cnt;
775
776 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
777 ctrl |= ARCH_TIMER_CTRL_ENABLE;
778 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
779
780 if (access == ARCH_TIMER_MEM_VIRT_ACCESS)
781 cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO);
782 else
783 cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO);
784
785 arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
786 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
787}
788
789static int arch_timer_set_next_event_virt_mem(unsigned long evt,
790 struct clock_event_device *clk)
791{
792 set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
793 return 0;
794}
795
796static int arch_timer_set_next_event_phys_mem(unsigned long evt,
797 struct clock_event_device *clk)
798{
799 set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
800 return 0;
801}
802
803static u64 __arch_timer_check_delta(void)
804{
805#ifdef CONFIG_ARM64
806 const struct midr_range broken_cval_midrs[] = {
807 /*
808 * XGene-1 implements CVAL in terms of TVAL, meaning
809 * that the maximum timer range is 32bit. Shame on them.
810 *
811 * Note that TVAL is signed, thus has only 31 of its
812 * 32 bits to express magnitude.
813 */
814 MIDR_ALL_VERSIONS(MIDR_CPU_MODEL(ARM_CPU_IMP_APM,
815 APM_CPU_PART_POTENZA)),
816 {},
817 };
818
819 if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs)) {
820 pr_warn_once("Broken CNTx_CVAL_EL1, using 31 bit TVAL instead.\n");
821 return CLOCKSOURCE_MASK(31);
822 }
823#endif
824 return CLOCKSOURCE_MASK(arch_counter_get_width());
825}
826
827static void __arch_timer_setup(unsigned type,
828 struct clock_event_device *clk)
829{
830 u64 max_delta;
831
832 clk->features = CLOCK_EVT_FEAT_ONESHOT;
833
834 if (type == ARCH_TIMER_TYPE_CP15) {
835 typeof(clk->set_next_event) sne;
836
837 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
838
839 if (arch_timer_c3stop)
840 clk->features |= CLOCK_EVT_FEAT_C3STOP;
841 clk->name = "arch_sys_timer";
842 clk->rating = 450;
843 clk->cpumask = cpumask_of(smp_processor_id());
844 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
845 switch (arch_timer_uses_ppi) {
846 case ARCH_TIMER_VIRT_PPI:
847 clk->set_state_shutdown = arch_timer_shutdown_virt;
848 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
849 sne = erratum_handler(set_next_event_virt);
850 break;
851 case ARCH_TIMER_PHYS_SECURE_PPI:
852 case ARCH_TIMER_PHYS_NONSECURE_PPI:
853 case ARCH_TIMER_HYP_PPI:
854 clk->set_state_shutdown = arch_timer_shutdown_phys;
855 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
856 sne = erratum_handler(set_next_event_phys);
857 break;
858 default:
859 BUG();
860 }
861
862 clk->set_next_event = sne;
863 max_delta = __arch_timer_check_delta();
864 } else {
865 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
866 clk->name = "arch_mem_timer";
867 clk->rating = 400;
868 clk->cpumask = cpu_possible_mask;
869 if (arch_timer_mem_use_virtual) {
870 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
871 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
872 clk->set_next_event =
873 arch_timer_set_next_event_virt_mem;
874 } else {
875 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
876 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
877 clk->set_next_event =
878 arch_timer_set_next_event_phys_mem;
879 }
880
881 max_delta = CLOCKSOURCE_MASK(56);
882 }
883
884 clk->set_state_shutdown(clk);
885
886 clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta);
887}
888
889static void arch_timer_evtstrm_enable(unsigned int divider)
890{
891 u32 cntkctl = arch_timer_get_cntkctl();
892
893#ifdef CONFIG_ARM64
894 /* ECV is likely to require a large divider. Use the EVNTIS flag. */
895 if (cpus_have_const_cap(ARM64_HAS_ECV) && divider > 15) {
896 cntkctl |= ARCH_TIMER_EVT_INTERVAL_SCALE;
897 divider -= 8;
898 }
899#endif
900
901 divider = min(divider, 15U);
902 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
903 /* Set the divider and enable virtual event stream */
904 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
905 | ARCH_TIMER_VIRT_EVT_EN;
906 arch_timer_set_cntkctl(cntkctl);
907 arch_timer_set_evtstrm_feature();
908 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
909}
910
911static void arch_timer_configure_evtstream(void)
912{
913 int evt_stream_div, lsb;
914
915 /*
916 * As the event stream can at most be generated at half the frequency
917 * of the counter, use half the frequency when computing the divider.
918 */
919 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
920
921 /*
922 * Find the closest power of two to the divisor. If the adjacent bit
923 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
924 */
925 lsb = fls(evt_stream_div) - 1;
926 if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
927 lsb++;
928
929 /* enable event stream */
930 arch_timer_evtstrm_enable(max(0, lsb));
931}
932
933static void arch_counter_set_user_access(void)
934{
935 u32 cntkctl = arch_timer_get_cntkctl();
936
937 /* Disable user access to the timers and both counters */
938 /* Also disable virtual event stream */
939 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
940 | ARCH_TIMER_USR_VT_ACCESS_EN
941 | ARCH_TIMER_USR_VCT_ACCESS_EN
942 | ARCH_TIMER_VIRT_EVT_EN
943 | ARCH_TIMER_USR_PCT_ACCESS_EN);
944
945 /*
946 * Enable user access to the virtual counter if it doesn't
947 * need to be workaround. The vdso may have been already
948 * disabled though.
949 */
950 if (arch_timer_this_cpu_has_cntvct_wa())
951 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
952 else
953 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
954
955 arch_timer_set_cntkctl(cntkctl);
956}
957
958static bool arch_timer_has_nonsecure_ppi(void)
959{
960 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
961 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
962}
963
964static u32 check_ppi_trigger(int irq)
965{
966 u32 flags = irq_get_trigger_type(irq);
967
968 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
969 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
970 pr_warn("WARNING: Please fix your firmware\n");
971 flags = IRQF_TRIGGER_LOW;
972 }
973
974 return flags;
975}
976
977static int arch_timer_starting_cpu(unsigned int cpu)
978{
979 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
980 u32 flags;
981
982 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
983
984 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
985 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
986
987 if (arch_timer_has_nonsecure_ppi()) {
988 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
989 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
990 flags);
991 }
992
993 arch_counter_set_user_access();
994 if (evtstrm_enable)
995 arch_timer_configure_evtstream();
996
997 return 0;
998}
999
1000static int validate_timer_rate(void)
1001{
1002 if (!arch_timer_rate)
1003 return -EINVAL;
1004
1005 /* Arch timer frequency < 1MHz can cause trouble */
1006 WARN_ON(arch_timer_rate < 1000000);
1007
1008 return 0;
1009}
1010
1011/*
1012 * For historical reasons, when probing with DT we use whichever (non-zero)
1013 * rate was probed first, and don't verify that others match. If the first node
1014 * probed has a clock-frequency property, this overrides the HW register.
1015 */
1016static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
1017{
1018 /* Who has more than one independent system counter? */
1019 if (arch_timer_rate)
1020 return;
1021
1022 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
1023 arch_timer_rate = rate;
1024
1025 /* Check the timer frequency. */
1026 if (validate_timer_rate())
1027 pr_warn("frequency not available\n");
1028}
1029
1030static void __init arch_timer_banner(unsigned type)
1031{
1032 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
1033 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
1034 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
1035 " and " : "",
1036 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
1037 (unsigned long)arch_timer_rate / 1000000,
1038 (unsigned long)(arch_timer_rate / 10000) % 100,
1039 type & ARCH_TIMER_TYPE_CP15 ?
1040 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
1041 "",
1042 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
1043 type & ARCH_TIMER_TYPE_MEM ?
1044 arch_timer_mem_use_virtual ? "virt" : "phys" :
1045 "");
1046}
1047
1048u32 arch_timer_get_rate(void)
1049{
1050 return arch_timer_rate;
1051}
1052
1053bool arch_timer_evtstrm_available(void)
1054{
1055 /*
1056 * We might get called from a preemptible context. This is fine
1057 * because availability of the event stream should be always the same
1058 * for a preemptible context and context where we might resume a task.
1059 */
1060 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
1061}
1062
1063static u64 arch_counter_get_cntvct_mem(void)
1064{
1065 return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO);
1066}
1067
1068static struct arch_timer_kvm_info arch_timer_kvm_info;
1069
1070struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1071{
1072 return &arch_timer_kvm_info;
1073}
1074
1075static void __init arch_counter_register(unsigned type)
1076{
1077 u64 start_count;
1078 int width;
1079
1080 /* Register the CP15 based counter if we have one */
1081 if (type & ARCH_TIMER_TYPE_CP15) {
1082 u64 (*rd)(void);
1083
1084 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1085 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1086 if (arch_timer_counter_has_wa())
1087 rd = arch_counter_get_cntvct_stable;
1088 else
1089 rd = arch_counter_get_cntvct;
1090 } else {
1091 if (arch_timer_counter_has_wa())
1092 rd = arch_counter_get_cntpct_stable;
1093 else
1094 rd = arch_counter_get_cntpct;
1095 }
1096
1097 arch_timer_read_counter = rd;
1098 clocksource_counter.vdso_clock_mode = vdso_default;
1099 } else {
1100 arch_timer_read_counter = arch_counter_get_cntvct_mem;
1101 }
1102
1103 width = arch_counter_get_width();
1104 clocksource_counter.mask = CLOCKSOURCE_MASK(width);
1105 cyclecounter.mask = CLOCKSOURCE_MASK(width);
1106
1107 if (!arch_counter_suspend_stop)
1108 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1109 start_count = arch_timer_read_counter();
1110 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1111 cyclecounter.mult = clocksource_counter.mult;
1112 cyclecounter.shift = clocksource_counter.shift;
1113 timecounter_init(&arch_timer_kvm_info.timecounter,
1114 &cyclecounter, start_count);
1115
1116 sched_clock_register(arch_timer_read_counter, width, arch_timer_rate);
1117}
1118
1119static void arch_timer_stop(struct clock_event_device *clk)
1120{
1121 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1122
1123 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1124 if (arch_timer_has_nonsecure_ppi())
1125 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1126
1127 clk->set_state_shutdown(clk);
1128}
1129
1130static int arch_timer_dying_cpu(unsigned int cpu)
1131{
1132 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1133
1134 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1135
1136 arch_timer_stop(clk);
1137 return 0;
1138}
1139
1140#ifdef CONFIG_CPU_PM
1141static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1142static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1143 unsigned long action, void *hcpu)
1144{
1145 if (action == CPU_PM_ENTER) {
1146 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1147
1148 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1149 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1150 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1151
1152 if (arch_timer_have_evtstrm_feature())
1153 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1154 }
1155 return NOTIFY_OK;
1156}
1157
1158static struct notifier_block arch_timer_cpu_pm_notifier = {
1159 .notifier_call = arch_timer_cpu_pm_notify,
1160};
1161
1162static int __init arch_timer_cpu_pm_init(void)
1163{
1164 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1165}
1166
1167static void __init arch_timer_cpu_pm_deinit(void)
1168{
1169 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1170}
1171
1172#else
1173static int __init arch_timer_cpu_pm_init(void)
1174{
1175 return 0;
1176}
1177
1178static void __init arch_timer_cpu_pm_deinit(void)
1179{
1180}
1181#endif
1182
1183static int __init arch_timer_register(void)
1184{
1185 int err;
1186 int ppi;
1187
1188 arch_timer_evt = alloc_percpu(struct clock_event_device);
1189 if (!arch_timer_evt) {
1190 err = -ENOMEM;
1191 goto out;
1192 }
1193
1194 ppi = arch_timer_ppi[arch_timer_uses_ppi];
1195 switch (arch_timer_uses_ppi) {
1196 case ARCH_TIMER_VIRT_PPI:
1197 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1198 "arch_timer", arch_timer_evt);
1199 break;
1200 case ARCH_TIMER_PHYS_SECURE_PPI:
1201 case ARCH_TIMER_PHYS_NONSECURE_PPI:
1202 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1203 "arch_timer", arch_timer_evt);
1204 if (!err && arch_timer_has_nonsecure_ppi()) {
1205 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1206 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1207 "arch_timer", arch_timer_evt);
1208 if (err)
1209 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1210 arch_timer_evt);
1211 }
1212 break;
1213 case ARCH_TIMER_HYP_PPI:
1214 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1215 "arch_timer", arch_timer_evt);
1216 break;
1217 default:
1218 BUG();
1219 }
1220
1221 if (err) {
1222 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1223 goto out_free;
1224 }
1225
1226 err = arch_timer_cpu_pm_init();
1227 if (err)
1228 goto out_unreg_notify;
1229
1230 /* Register and immediately configure the timer on the boot CPU */
1231 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1232 "clockevents/arm/arch_timer:starting",
1233 arch_timer_starting_cpu, arch_timer_dying_cpu);
1234 if (err)
1235 goto out_unreg_cpupm;
1236 return 0;
1237
1238out_unreg_cpupm:
1239 arch_timer_cpu_pm_deinit();
1240
1241out_unreg_notify:
1242 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1243 if (arch_timer_has_nonsecure_ppi())
1244 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1245 arch_timer_evt);
1246
1247out_free:
1248 free_percpu(arch_timer_evt);
1249out:
1250 return err;
1251}
1252
1253static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1254{
1255 int ret;
1256 irq_handler_t func;
1257
1258 arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL);
1259 if (!arch_timer_mem)
1260 return -ENOMEM;
1261
1262 arch_timer_mem->base = base;
1263 arch_timer_mem->evt.irq = irq;
1264 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt);
1265
1266 if (arch_timer_mem_use_virtual)
1267 func = arch_timer_handler_virt_mem;
1268 else
1269 func = arch_timer_handler_phys_mem;
1270
1271 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt);
1272 if (ret) {
1273 pr_err("Failed to request mem timer irq\n");
1274 kfree(arch_timer_mem);
1275 arch_timer_mem = NULL;
1276 }
1277
1278 return ret;
1279}
1280
1281static const struct of_device_id arch_timer_of_match[] __initconst = {
1282 { .compatible = "arm,armv7-timer", },
1283 { .compatible = "arm,armv8-timer", },
1284 {},
1285};
1286
1287static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1288 { .compatible = "arm,armv7-timer-mem", },
1289 {},
1290};
1291
1292static bool __init arch_timer_needs_of_probing(void)
1293{
1294 struct device_node *dn;
1295 bool needs_probing = false;
1296 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1297
1298 /* We have two timers, and both device-tree nodes are probed. */
1299 if ((arch_timers_present & mask) == mask)
1300 return false;
1301
1302 /*
1303 * Only one type of timer is probed,
1304 * check if we have another type of timer node in device-tree.
1305 */
1306 if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1307 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1308 else
1309 dn = of_find_matching_node(NULL, arch_timer_of_match);
1310
1311 if (dn && of_device_is_available(dn))
1312 needs_probing = true;
1313
1314 of_node_put(dn);
1315
1316 return needs_probing;
1317}
1318
1319static int __init arch_timer_common_init(void)
1320{
1321 arch_timer_banner(arch_timers_present);
1322 arch_counter_register(arch_timers_present);
1323 return arch_timer_arch_init();
1324}
1325
1326/**
1327 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1328 *
1329 * If HYP mode is available, we know that the physical timer
1330 * has been configured to be accessible from PL1. Use it, so
1331 * that a guest can use the virtual timer instead.
1332 *
1333 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1334 * accesses to CNTP_*_EL1 registers are silently redirected to
1335 * their CNTHP_*_EL2 counterparts, and use a different PPI
1336 * number.
1337 *
1338 * If no interrupt provided for virtual timer, we'll have to
1339 * stick to the physical timer. It'd better be accessible...
1340 * For arm64 we never use the secure interrupt.
1341 *
1342 * Return: a suitable PPI type for the current system.
1343 */
1344static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1345{
1346 if (is_kernel_in_hyp_mode())
1347 return ARCH_TIMER_HYP_PPI;
1348
1349 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1350 return ARCH_TIMER_VIRT_PPI;
1351
1352 if (IS_ENABLED(CONFIG_ARM64))
1353 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1354
1355 return ARCH_TIMER_PHYS_SECURE_PPI;
1356}
1357
1358static void __init arch_timer_populate_kvm_info(void)
1359{
1360 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1361 if (is_kernel_in_hyp_mode())
1362 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1363}
1364
1365static int __init arch_timer_of_init(struct device_node *np)
1366{
1367 int i, irq, ret;
1368 u32 rate;
1369 bool has_names;
1370
1371 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1372 pr_warn("multiple nodes in dt, skipping\n");
1373 return 0;
1374 }
1375
1376 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1377
1378 has_names = of_property_read_bool(np, "interrupt-names");
1379
1380 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1381 if (has_names)
1382 irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1383 else
1384 irq = of_irq_get(np, i);
1385 if (irq > 0)
1386 arch_timer_ppi[i] = irq;
1387 }
1388
1389 arch_timer_populate_kvm_info();
1390
1391 rate = arch_timer_get_cntfrq();
1392 arch_timer_of_configure_rate(rate, np);
1393
1394 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1395
1396 /* Check for globally applicable workarounds */
1397 arch_timer_check_ool_workaround(ate_match_dt, np);
1398
1399 /*
1400 * If we cannot rely on firmware initializing the timer registers then
1401 * we should use the physical timers instead.
1402 */
1403 if (IS_ENABLED(CONFIG_ARM) &&
1404 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1405 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1406 else
1407 arch_timer_uses_ppi = arch_timer_select_ppi();
1408
1409 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1410 pr_err("No interrupt available, giving up\n");
1411 return -EINVAL;
1412 }
1413
1414 /* On some systems, the counter stops ticking when in suspend. */
1415 arch_counter_suspend_stop = of_property_read_bool(np,
1416 "arm,no-tick-in-suspend");
1417
1418 ret = arch_timer_register();
1419 if (ret)
1420 return ret;
1421
1422 if (arch_timer_needs_of_probing())
1423 return 0;
1424
1425 return arch_timer_common_init();
1426}
1427TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1428TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1429
1430static u32 __init
1431arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1432{
1433 void __iomem *base;
1434 u32 rate;
1435
1436 base = ioremap(frame->cntbase, frame->size);
1437 if (!base) {
1438 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1439 return 0;
1440 }
1441
1442 rate = readl_relaxed(base + CNTFRQ);
1443
1444 iounmap(base);
1445
1446 return rate;
1447}
1448
1449static struct arch_timer_mem_frame * __init
1450arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1451{
1452 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1453 void __iomem *cntctlbase;
1454 u32 cnttidr;
1455 int i;
1456
1457 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1458 if (!cntctlbase) {
1459 pr_err("Can't map CNTCTLBase @ %pa\n",
1460 &timer_mem->cntctlbase);
1461 return NULL;
1462 }
1463
1464 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1465
1466 /*
1467 * Try to find a virtual capable frame. Otherwise fall back to a
1468 * physical capable frame.
1469 */
1470 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1471 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1472 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1473
1474 frame = &timer_mem->frame[i];
1475 if (!frame->valid)
1476 continue;
1477
1478 /* Try enabling everything, and see what sticks */
1479 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1480 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1481
1482 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1483 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1484 best_frame = frame;
1485 arch_timer_mem_use_virtual = true;
1486 break;
1487 }
1488
1489 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1490 continue;
1491
1492 best_frame = frame;
1493 }
1494
1495 iounmap(cntctlbase);
1496
1497 return best_frame;
1498}
1499
1500static int __init
1501arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1502{
1503 void __iomem *base;
1504 int ret, irq = 0;
1505
1506 if (arch_timer_mem_use_virtual)
1507 irq = frame->virt_irq;
1508 else
1509 irq = frame->phys_irq;
1510
1511 if (!irq) {
1512 pr_err("Frame missing %s irq.\n",
1513 arch_timer_mem_use_virtual ? "virt" : "phys");
1514 return -EINVAL;
1515 }
1516
1517 if (!request_mem_region(frame->cntbase, frame->size,
1518 "arch_mem_timer"))
1519 return -EBUSY;
1520
1521 base = ioremap(frame->cntbase, frame->size);
1522 if (!base) {
1523 pr_err("Can't map frame's registers\n");
1524 return -ENXIO;
1525 }
1526
1527 ret = arch_timer_mem_register(base, irq);
1528 if (ret) {
1529 iounmap(base);
1530 return ret;
1531 }
1532
1533 arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1534
1535 return 0;
1536}
1537
1538static int __init arch_timer_mem_of_init(struct device_node *np)
1539{
1540 struct arch_timer_mem *timer_mem;
1541 struct arch_timer_mem_frame *frame;
1542 struct device_node *frame_node;
1543 struct resource res;
1544 int ret = -EINVAL;
1545 u32 rate;
1546
1547 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1548 if (!timer_mem)
1549 return -ENOMEM;
1550
1551 if (of_address_to_resource(np, 0, &res))
1552 goto out;
1553 timer_mem->cntctlbase = res.start;
1554 timer_mem->size = resource_size(&res);
1555
1556 for_each_available_child_of_node(np, frame_node) {
1557 u32 n;
1558 struct arch_timer_mem_frame *frame;
1559
1560 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1561 pr_err(FW_BUG "Missing frame-number.\n");
1562 of_node_put(frame_node);
1563 goto out;
1564 }
1565 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1566 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1567 ARCH_TIMER_MEM_MAX_FRAMES - 1);
1568 of_node_put(frame_node);
1569 goto out;
1570 }
1571 frame = &timer_mem->frame[n];
1572
1573 if (frame->valid) {
1574 pr_err(FW_BUG "Duplicated frame-number.\n");
1575 of_node_put(frame_node);
1576 goto out;
1577 }
1578
1579 if (of_address_to_resource(frame_node, 0, &res)) {
1580 of_node_put(frame_node);
1581 goto out;
1582 }
1583 frame->cntbase = res.start;
1584 frame->size = resource_size(&res);
1585
1586 frame->virt_irq = irq_of_parse_and_map(frame_node,
1587 ARCH_TIMER_VIRT_SPI);
1588 frame->phys_irq = irq_of_parse_and_map(frame_node,
1589 ARCH_TIMER_PHYS_SPI);
1590
1591 frame->valid = true;
1592 }
1593
1594 frame = arch_timer_mem_find_best_frame(timer_mem);
1595 if (!frame) {
1596 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1597 &timer_mem->cntctlbase);
1598 ret = -EINVAL;
1599 goto out;
1600 }
1601
1602 rate = arch_timer_mem_frame_get_cntfrq(frame);
1603 arch_timer_of_configure_rate(rate, np);
1604
1605 ret = arch_timer_mem_frame_register(frame);
1606 if (!ret && !arch_timer_needs_of_probing())
1607 ret = arch_timer_common_init();
1608out:
1609 kfree(timer_mem);
1610 return ret;
1611}
1612TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1613 arch_timer_mem_of_init);
1614
1615#ifdef CONFIG_ACPI_GTDT
1616static int __init
1617arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1618{
1619 struct arch_timer_mem_frame *frame;
1620 u32 rate;
1621 int i;
1622
1623 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1624 frame = &timer_mem->frame[i];
1625
1626 if (!frame->valid)
1627 continue;
1628
1629 rate = arch_timer_mem_frame_get_cntfrq(frame);
1630 if (rate == arch_timer_rate)
1631 continue;
1632
1633 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1634 &frame->cntbase,
1635 (unsigned long)rate, (unsigned long)arch_timer_rate);
1636
1637 return -EINVAL;
1638 }
1639
1640 return 0;
1641}
1642
1643static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1644{
1645 struct arch_timer_mem *timers, *timer;
1646 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1647 int timer_count, i, ret = 0;
1648
1649 timers = kcalloc(platform_timer_count, sizeof(*timers),
1650 GFP_KERNEL);
1651 if (!timers)
1652 return -ENOMEM;
1653
1654 ret = acpi_arch_timer_mem_init(timers, &timer_count);
1655 if (ret || !timer_count)
1656 goto out;
1657
1658 /*
1659 * While unlikely, it's theoretically possible that none of the frames
1660 * in a timer expose the combination of feature we want.
1661 */
1662 for (i = 0; i < timer_count; i++) {
1663 timer = &timers[i];
1664
1665 frame = arch_timer_mem_find_best_frame(timer);
1666 if (!best_frame)
1667 best_frame = frame;
1668
1669 ret = arch_timer_mem_verify_cntfrq(timer);
1670 if (ret) {
1671 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1672 goto out;
1673 }
1674
1675 if (!best_frame) /* implies !frame */
1676 /*
1677 * Only complain about missing suitable frames if we
1678 * haven't already found one in a previous iteration.
1679 */
1680 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1681 &timer->cntctlbase);
1682 }
1683
1684 if (best_frame)
1685 ret = arch_timer_mem_frame_register(best_frame);
1686out:
1687 kfree(timers);
1688 return ret;
1689}
1690
1691/* Initialize per-processor generic timer and memory-mapped timer(if present) */
1692static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1693{
1694 int ret, platform_timer_count;
1695
1696 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1697 pr_warn("already initialized, skipping\n");
1698 return -EINVAL;
1699 }
1700
1701 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1702
1703 ret = acpi_gtdt_init(table, &platform_timer_count);
1704 if (ret)
1705 return ret;
1706
1707 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1708 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1709
1710 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1711 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1712
1713 arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1714 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1715
1716 arch_timer_populate_kvm_info();
1717
1718 /*
1719 * When probing via ACPI, we have no mechanism to override the sysreg
1720 * CNTFRQ value. This *must* be correct.
1721 */
1722 arch_timer_rate = arch_timer_get_cntfrq();
1723 ret = validate_timer_rate();
1724 if (ret) {
1725 pr_err(FW_BUG "frequency not available.\n");
1726 return ret;
1727 }
1728
1729 arch_timer_uses_ppi = arch_timer_select_ppi();
1730 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1731 pr_err("No interrupt available, giving up\n");
1732 return -EINVAL;
1733 }
1734
1735 /* Always-on capability */
1736 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1737
1738 /* Check for globally applicable workarounds */
1739 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1740
1741 ret = arch_timer_register();
1742 if (ret)
1743 return ret;
1744
1745 if (platform_timer_count &&
1746 arch_timer_mem_acpi_init(platform_timer_count))
1747 pr_err("Failed to initialize memory-mapped timer.\n");
1748
1749 return arch_timer_common_init();
1750}
1751TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1752#endif
1753
1754int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1755 struct clocksource **cs)
1756{
1757 struct arm_smccc_res hvc_res;
1758 u32 ptp_counter;
1759 ktime_t ktime;
1760
1761 if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1762 return -EOPNOTSUPP;
1763
1764 if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1765 ptp_counter = KVM_PTP_VIRT_COUNTER;
1766 else
1767 ptp_counter = KVM_PTP_PHYS_COUNTER;
1768
1769 arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1770 ptp_counter, &hvc_res);
1771
1772 if ((int)(hvc_res.a0) < 0)
1773 return -EOPNOTSUPP;
1774
1775 ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1776 *ts = ktime_to_timespec64(ktime);
1777 if (cycle)
1778 *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1779 if (cs)
1780 *cs = &clocksource_counter;
1781
1782 return 0;
1783}
1784EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/clocksource/arm_arch_timer.c
4 *
5 * Copyright (C) 2011 ARM Ltd.
6 * All Rights Reserved
7 */
8
9#define pr_fmt(fmt) "arch_timer: " fmt
10
11#include <linux/init.h>
12#include <linux/kernel.h>
13#include <linux/device.h>
14#include <linux/smp.h>
15#include <linux/cpu.h>
16#include <linux/cpu_pm.h>
17#include <linux/clockchips.h>
18#include <linux/clocksource.h>
19#include <linux/clocksource_ids.h>
20#include <linux/interrupt.h>
21#include <linux/of_irq.h>
22#include <linux/of_address.h>
23#include <linux/io.h>
24#include <linux/slab.h>
25#include <linux/sched/clock.h>
26#include <linux/sched_clock.h>
27#include <linux/acpi.h>
28#include <linux/arm-smccc.h>
29#include <linux/ptp_kvm.h>
30
31#include <asm/arch_timer.h>
32#include <asm/virt.h>
33
34#include <clocksource/arm_arch_timer.h>
35
36#define CNTTIDR 0x08
37#define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
38
39#define CNTACR(n) (0x40 + ((n) * 4))
40#define CNTACR_RPCT BIT(0)
41#define CNTACR_RVCT BIT(1)
42#define CNTACR_RFRQ BIT(2)
43#define CNTACR_RVOFF BIT(3)
44#define CNTACR_RWVT BIT(4)
45#define CNTACR_RWPT BIT(5)
46
47#define CNTVCT_LO 0x08
48#define CNTVCT_HI 0x0c
49#define CNTFRQ 0x10
50#define CNTP_TVAL 0x28
51#define CNTP_CTL 0x2c
52#define CNTV_TVAL 0x38
53#define CNTV_CTL 0x3c
54
55static unsigned arch_timers_present __initdata;
56
57static void __iomem *arch_counter_base __ro_after_init;
58
59struct arch_timer {
60 void __iomem *base;
61 struct clock_event_device evt;
62};
63
64#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
65
66static u32 arch_timer_rate __ro_after_init;
67static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
68
69static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
70 [ARCH_TIMER_PHYS_SECURE_PPI] = "sec-phys",
71 [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys",
72 [ARCH_TIMER_VIRT_PPI] = "virt",
73 [ARCH_TIMER_HYP_PPI] = "hyp-phys",
74 [ARCH_TIMER_HYP_VIRT_PPI] = "hyp-virt",
75};
76
77static struct clock_event_device __percpu *arch_timer_evt;
78
79static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
80static bool arch_timer_c3stop __ro_after_init;
81static bool arch_timer_mem_use_virtual __ro_after_init;
82static bool arch_counter_suspend_stop __ro_after_init;
83#ifdef CONFIG_GENERIC_GETTIMEOFDAY
84static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
85#else
86static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
87#endif /* CONFIG_GENERIC_GETTIMEOFDAY */
88
89static cpumask_t evtstrm_available = CPU_MASK_NONE;
90static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
91
92static int __init early_evtstrm_cfg(char *buf)
93{
94 return strtobool(buf, &evtstrm_enable);
95}
96early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
97
98/*
99 * Architected system timer support.
100 */
101
102static __always_inline
103void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
104 struct clock_event_device *clk)
105{
106 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
107 struct arch_timer *timer = to_arch_timer(clk);
108 switch (reg) {
109 case ARCH_TIMER_REG_CTRL:
110 writel_relaxed(val, timer->base + CNTP_CTL);
111 break;
112 case ARCH_TIMER_REG_TVAL:
113 writel_relaxed(val, timer->base + CNTP_TVAL);
114 break;
115 }
116 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
117 struct arch_timer *timer = to_arch_timer(clk);
118 switch (reg) {
119 case ARCH_TIMER_REG_CTRL:
120 writel_relaxed(val, timer->base + CNTV_CTL);
121 break;
122 case ARCH_TIMER_REG_TVAL:
123 writel_relaxed(val, timer->base + CNTV_TVAL);
124 break;
125 }
126 } else {
127 arch_timer_reg_write_cp15(access, reg, val);
128 }
129}
130
131static __always_inline
132u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
133 struct clock_event_device *clk)
134{
135 u32 val;
136
137 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
138 struct arch_timer *timer = to_arch_timer(clk);
139 switch (reg) {
140 case ARCH_TIMER_REG_CTRL:
141 val = readl_relaxed(timer->base + CNTP_CTL);
142 break;
143 case ARCH_TIMER_REG_TVAL:
144 val = readl_relaxed(timer->base + CNTP_TVAL);
145 break;
146 }
147 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
148 struct arch_timer *timer = to_arch_timer(clk);
149 switch (reg) {
150 case ARCH_TIMER_REG_CTRL:
151 val = readl_relaxed(timer->base + CNTV_CTL);
152 break;
153 case ARCH_TIMER_REG_TVAL:
154 val = readl_relaxed(timer->base + CNTV_TVAL);
155 break;
156 }
157 } else {
158 val = arch_timer_reg_read_cp15(access, reg);
159 }
160
161 return val;
162}
163
164static notrace u64 arch_counter_get_cntpct_stable(void)
165{
166 return __arch_counter_get_cntpct_stable();
167}
168
169static notrace u64 arch_counter_get_cntpct(void)
170{
171 return __arch_counter_get_cntpct();
172}
173
174static notrace u64 arch_counter_get_cntvct_stable(void)
175{
176 return __arch_counter_get_cntvct_stable();
177}
178
179static notrace u64 arch_counter_get_cntvct(void)
180{
181 return __arch_counter_get_cntvct();
182}
183
184/*
185 * Default to cp15 based access because arm64 uses this function for
186 * sched_clock() before DT is probed and the cp15 method is guaranteed
187 * to exist on arm64. arm doesn't use this before DT is probed so even
188 * if we don't have the cp15 accessors we won't have a problem.
189 */
190u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
191EXPORT_SYMBOL_GPL(arch_timer_read_counter);
192
193static u64 arch_counter_read(struct clocksource *cs)
194{
195 return arch_timer_read_counter();
196}
197
198static u64 arch_counter_read_cc(const struct cyclecounter *cc)
199{
200 return arch_timer_read_counter();
201}
202
203static struct clocksource clocksource_counter = {
204 .name = "arch_sys_counter",
205 .id = CSID_ARM_ARCH_COUNTER,
206 .rating = 400,
207 .read = arch_counter_read,
208 .mask = CLOCKSOURCE_MASK(56),
209 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
210};
211
212static struct cyclecounter cyclecounter __ro_after_init = {
213 .read = arch_counter_read_cc,
214 .mask = CLOCKSOURCE_MASK(56),
215};
216
217struct ate_acpi_oem_info {
218 char oem_id[ACPI_OEM_ID_SIZE + 1];
219 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
220 u32 oem_revision;
221};
222
223#ifdef CONFIG_FSL_ERRATUM_A008585
224/*
225 * The number of retries is an arbitrary value well beyond the highest number
226 * of iterations the loop has been observed to take.
227 */
228#define __fsl_a008585_read_reg(reg) ({ \
229 u64 _old, _new; \
230 int _retries = 200; \
231 \
232 do { \
233 _old = read_sysreg(reg); \
234 _new = read_sysreg(reg); \
235 _retries--; \
236 } while (unlikely(_old != _new) && _retries); \
237 \
238 WARN_ON_ONCE(!_retries); \
239 _new; \
240})
241
242static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
243{
244 return __fsl_a008585_read_reg(cntp_tval_el0);
245}
246
247static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
248{
249 return __fsl_a008585_read_reg(cntv_tval_el0);
250}
251
252static u64 notrace fsl_a008585_read_cntpct_el0(void)
253{
254 return __fsl_a008585_read_reg(cntpct_el0);
255}
256
257static u64 notrace fsl_a008585_read_cntvct_el0(void)
258{
259 return __fsl_a008585_read_reg(cntvct_el0);
260}
261#endif
262
263#ifdef CONFIG_HISILICON_ERRATUM_161010101
264/*
265 * Verify whether the value of the second read is larger than the first by
266 * less than 32 is the only way to confirm the value is correct, so clear the
267 * lower 5 bits to check whether the difference is greater than 32 or not.
268 * Theoretically the erratum should not occur more than twice in succession
269 * when reading the system counter, but it is possible that some interrupts
270 * may lead to more than twice read errors, triggering the warning, so setting
271 * the number of retries far beyond the number of iterations the loop has been
272 * observed to take.
273 */
274#define __hisi_161010101_read_reg(reg) ({ \
275 u64 _old, _new; \
276 int _retries = 50; \
277 \
278 do { \
279 _old = read_sysreg(reg); \
280 _new = read_sysreg(reg); \
281 _retries--; \
282 } while (unlikely((_new - _old) >> 5) && _retries); \
283 \
284 WARN_ON_ONCE(!_retries); \
285 _new; \
286})
287
288static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
289{
290 return __hisi_161010101_read_reg(cntp_tval_el0);
291}
292
293static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
294{
295 return __hisi_161010101_read_reg(cntv_tval_el0);
296}
297
298static u64 notrace hisi_161010101_read_cntpct_el0(void)
299{
300 return __hisi_161010101_read_reg(cntpct_el0);
301}
302
303static u64 notrace hisi_161010101_read_cntvct_el0(void)
304{
305 return __hisi_161010101_read_reg(cntvct_el0);
306}
307
308static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
309 /*
310 * Note that trailing spaces are required to properly match
311 * the OEM table information.
312 */
313 {
314 .oem_id = "HISI ",
315 .oem_table_id = "HIP05 ",
316 .oem_revision = 0,
317 },
318 {
319 .oem_id = "HISI ",
320 .oem_table_id = "HIP06 ",
321 .oem_revision = 0,
322 },
323 {
324 .oem_id = "HISI ",
325 .oem_table_id = "HIP07 ",
326 .oem_revision = 0,
327 },
328 { /* Sentinel indicating the end of the OEM array */ },
329};
330#endif
331
332#ifdef CONFIG_ARM64_ERRATUM_858921
333static u64 notrace arm64_858921_read_cntpct_el0(void)
334{
335 u64 old, new;
336
337 old = read_sysreg(cntpct_el0);
338 new = read_sysreg(cntpct_el0);
339 return (((old ^ new) >> 32) & 1) ? old : new;
340}
341
342static u64 notrace arm64_858921_read_cntvct_el0(void)
343{
344 u64 old, new;
345
346 old = read_sysreg(cntvct_el0);
347 new = read_sysreg(cntvct_el0);
348 return (((old ^ new) >> 32) & 1) ? old : new;
349}
350#endif
351
352#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
353/*
354 * The low bits of the counter registers are indeterminate while bit 10 or
355 * greater is rolling over. Since the counter value can jump both backward
356 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
357 * with all ones or all zeros in the low bits. Bound the loop by the maximum
358 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
359 */
360#define __sun50i_a64_read_reg(reg) ({ \
361 u64 _val; \
362 int _retries = 150; \
363 \
364 do { \
365 _val = read_sysreg(reg); \
366 _retries--; \
367 } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries); \
368 \
369 WARN_ON_ONCE(!_retries); \
370 _val; \
371})
372
373static u64 notrace sun50i_a64_read_cntpct_el0(void)
374{
375 return __sun50i_a64_read_reg(cntpct_el0);
376}
377
378static u64 notrace sun50i_a64_read_cntvct_el0(void)
379{
380 return __sun50i_a64_read_reg(cntvct_el0);
381}
382
383static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
384{
385 return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
386}
387
388static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
389{
390 return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
391}
392#endif
393
394#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
395DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
396EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
397
398static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
399
400static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
401 struct clock_event_device *clk)
402{
403 unsigned long ctrl;
404 u64 cval;
405
406 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
407 ctrl |= ARCH_TIMER_CTRL_ENABLE;
408 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
409
410 if (access == ARCH_TIMER_PHYS_ACCESS) {
411 cval = evt + arch_counter_get_cntpct_stable();
412 write_sysreg(cval, cntp_cval_el0);
413 } else {
414 cval = evt + arch_counter_get_cntvct_stable();
415 write_sysreg(cval, cntv_cval_el0);
416 }
417
418 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
419}
420
421static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
422 struct clock_event_device *clk)
423{
424 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
425 return 0;
426}
427
428static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
429 struct clock_event_device *clk)
430{
431 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
432 return 0;
433}
434
435static const struct arch_timer_erratum_workaround ool_workarounds[] = {
436#ifdef CONFIG_FSL_ERRATUM_A008585
437 {
438 .match_type = ate_match_dt,
439 .id = "fsl,erratum-a008585",
440 .desc = "Freescale erratum a005858",
441 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
442 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
443 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
444 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
445 .set_next_event_phys = erratum_set_next_event_tval_phys,
446 .set_next_event_virt = erratum_set_next_event_tval_virt,
447 },
448#endif
449#ifdef CONFIG_HISILICON_ERRATUM_161010101
450 {
451 .match_type = ate_match_dt,
452 .id = "hisilicon,erratum-161010101",
453 .desc = "HiSilicon erratum 161010101",
454 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
455 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
456 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
457 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
458 .set_next_event_phys = erratum_set_next_event_tval_phys,
459 .set_next_event_virt = erratum_set_next_event_tval_virt,
460 },
461 {
462 .match_type = ate_match_acpi_oem_info,
463 .id = hisi_161010101_oem_info,
464 .desc = "HiSilicon erratum 161010101",
465 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
466 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
467 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
468 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
469 .set_next_event_phys = erratum_set_next_event_tval_phys,
470 .set_next_event_virt = erratum_set_next_event_tval_virt,
471 },
472#endif
473#ifdef CONFIG_ARM64_ERRATUM_858921
474 {
475 .match_type = ate_match_local_cap_id,
476 .id = (void *)ARM64_WORKAROUND_858921,
477 .desc = "ARM erratum 858921",
478 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
479 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
480 },
481#endif
482#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
483 {
484 .match_type = ate_match_dt,
485 .id = "allwinner,erratum-unknown1",
486 .desc = "Allwinner erratum UNKNOWN1",
487 .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
488 .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
489 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
490 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
491 .set_next_event_phys = erratum_set_next_event_tval_phys,
492 .set_next_event_virt = erratum_set_next_event_tval_virt,
493 },
494#endif
495#ifdef CONFIG_ARM64_ERRATUM_1418040
496 {
497 .match_type = ate_match_local_cap_id,
498 .id = (void *)ARM64_WORKAROUND_1418040,
499 .desc = "ARM erratum 1418040",
500 .disable_compat_vdso = true,
501 },
502#endif
503};
504
505typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
506 const void *);
507
508static
509bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
510 const void *arg)
511{
512 const struct device_node *np = arg;
513
514 return of_property_read_bool(np, wa->id);
515}
516
517static
518bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
519 const void *arg)
520{
521 return this_cpu_has_cap((uintptr_t)wa->id);
522}
523
524
525static
526bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
527 const void *arg)
528{
529 static const struct ate_acpi_oem_info empty_oem_info = {};
530 const struct ate_acpi_oem_info *info = wa->id;
531 const struct acpi_table_header *table = arg;
532
533 /* Iterate over the ACPI OEM info array, looking for a match */
534 while (memcmp(info, &empty_oem_info, sizeof(*info))) {
535 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
536 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
537 info->oem_revision == table->oem_revision)
538 return true;
539
540 info++;
541 }
542
543 return false;
544}
545
546static const struct arch_timer_erratum_workaround *
547arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
548 ate_match_fn_t match_fn,
549 void *arg)
550{
551 int i;
552
553 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
554 if (ool_workarounds[i].match_type != type)
555 continue;
556
557 if (match_fn(&ool_workarounds[i], arg))
558 return &ool_workarounds[i];
559 }
560
561 return NULL;
562}
563
564static
565void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
566 bool local)
567{
568 int i;
569
570 if (local) {
571 __this_cpu_write(timer_unstable_counter_workaround, wa);
572 } else {
573 for_each_possible_cpu(i)
574 per_cpu(timer_unstable_counter_workaround, i) = wa;
575 }
576
577 if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
578 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
579
580 /*
581 * Don't use the vdso fastpath if errata require using the
582 * out-of-line counter accessor. We may change our mind pretty
583 * late in the game (with a per-CPU erratum, for example), so
584 * change both the default value and the vdso itself.
585 */
586 if (wa->read_cntvct_el0) {
587 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
588 vdso_default = VDSO_CLOCKMODE_NONE;
589 } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
590 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
591 clocksource_counter.vdso_clock_mode = vdso_default;
592 }
593}
594
595static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
596 void *arg)
597{
598 const struct arch_timer_erratum_workaround *wa, *__wa;
599 ate_match_fn_t match_fn = NULL;
600 bool local = false;
601
602 switch (type) {
603 case ate_match_dt:
604 match_fn = arch_timer_check_dt_erratum;
605 break;
606 case ate_match_local_cap_id:
607 match_fn = arch_timer_check_local_cap_erratum;
608 local = true;
609 break;
610 case ate_match_acpi_oem_info:
611 match_fn = arch_timer_check_acpi_oem_erratum;
612 break;
613 default:
614 WARN_ON(1);
615 return;
616 }
617
618 wa = arch_timer_iterate_errata(type, match_fn, arg);
619 if (!wa)
620 return;
621
622 __wa = __this_cpu_read(timer_unstable_counter_workaround);
623 if (__wa && wa != __wa)
624 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
625 wa->desc, __wa->desc);
626
627 if (__wa)
628 return;
629
630 arch_timer_enable_workaround(wa, local);
631 pr_info("Enabling %s workaround for %s\n",
632 local ? "local" : "global", wa->desc);
633}
634
635static bool arch_timer_this_cpu_has_cntvct_wa(void)
636{
637 return has_erratum_handler(read_cntvct_el0);
638}
639
640static bool arch_timer_counter_has_wa(void)
641{
642 return atomic_read(&timer_unstable_counter_workaround_in_use);
643}
644#else
645#define arch_timer_check_ool_workaround(t,a) do { } while(0)
646#define arch_timer_this_cpu_has_cntvct_wa() ({false;})
647#define arch_timer_counter_has_wa() ({false;})
648#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
649
650static __always_inline irqreturn_t timer_handler(const int access,
651 struct clock_event_device *evt)
652{
653 unsigned long ctrl;
654
655 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
656 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
657 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
658 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
659 evt->event_handler(evt);
660 return IRQ_HANDLED;
661 }
662
663 return IRQ_NONE;
664}
665
666static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
667{
668 struct clock_event_device *evt = dev_id;
669
670 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
671}
672
673static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
674{
675 struct clock_event_device *evt = dev_id;
676
677 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
678}
679
680static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
681{
682 struct clock_event_device *evt = dev_id;
683
684 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
685}
686
687static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
688{
689 struct clock_event_device *evt = dev_id;
690
691 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
692}
693
694static __always_inline int timer_shutdown(const int access,
695 struct clock_event_device *clk)
696{
697 unsigned long ctrl;
698
699 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
700 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
701 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
702
703 return 0;
704}
705
706static int arch_timer_shutdown_virt(struct clock_event_device *clk)
707{
708 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
709}
710
711static int arch_timer_shutdown_phys(struct clock_event_device *clk)
712{
713 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
714}
715
716static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
717{
718 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
719}
720
721static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
722{
723 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
724}
725
726static __always_inline void set_next_event(const int access, unsigned long evt,
727 struct clock_event_device *clk)
728{
729 unsigned long ctrl;
730 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
731 ctrl |= ARCH_TIMER_CTRL_ENABLE;
732 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
733 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
734 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
735}
736
737static int arch_timer_set_next_event_virt(unsigned long evt,
738 struct clock_event_device *clk)
739{
740 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
741 return 0;
742}
743
744static int arch_timer_set_next_event_phys(unsigned long evt,
745 struct clock_event_device *clk)
746{
747 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
748 return 0;
749}
750
751static int arch_timer_set_next_event_virt_mem(unsigned long evt,
752 struct clock_event_device *clk)
753{
754 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
755 return 0;
756}
757
758static int arch_timer_set_next_event_phys_mem(unsigned long evt,
759 struct clock_event_device *clk)
760{
761 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
762 return 0;
763}
764
765static void __arch_timer_setup(unsigned type,
766 struct clock_event_device *clk)
767{
768 clk->features = CLOCK_EVT_FEAT_ONESHOT;
769
770 if (type == ARCH_TIMER_TYPE_CP15) {
771 typeof(clk->set_next_event) sne;
772
773 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
774
775 if (arch_timer_c3stop)
776 clk->features |= CLOCK_EVT_FEAT_C3STOP;
777 clk->name = "arch_sys_timer";
778 clk->rating = 450;
779 clk->cpumask = cpumask_of(smp_processor_id());
780 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
781 switch (arch_timer_uses_ppi) {
782 case ARCH_TIMER_VIRT_PPI:
783 clk->set_state_shutdown = arch_timer_shutdown_virt;
784 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
785 sne = erratum_handler(set_next_event_virt);
786 break;
787 case ARCH_TIMER_PHYS_SECURE_PPI:
788 case ARCH_TIMER_PHYS_NONSECURE_PPI:
789 case ARCH_TIMER_HYP_PPI:
790 clk->set_state_shutdown = arch_timer_shutdown_phys;
791 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
792 sne = erratum_handler(set_next_event_phys);
793 break;
794 default:
795 BUG();
796 }
797
798 clk->set_next_event = sne;
799 } else {
800 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
801 clk->name = "arch_mem_timer";
802 clk->rating = 400;
803 clk->cpumask = cpu_possible_mask;
804 if (arch_timer_mem_use_virtual) {
805 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
806 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
807 clk->set_next_event =
808 arch_timer_set_next_event_virt_mem;
809 } else {
810 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
811 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
812 clk->set_next_event =
813 arch_timer_set_next_event_phys_mem;
814 }
815 }
816
817 clk->set_state_shutdown(clk);
818
819 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
820}
821
822static void arch_timer_evtstrm_enable(int divider)
823{
824 u32 cntkctl = arch_timer_get_cntkctl();
825
826 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
827 /* Set the divider and enable virtual event stream */
828 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
829 | ARCH_TIMER_VIRT_EVT_EN;
830 arch_timer_set_cntkctl(cntkctl);
831 arch_timer_set_evtstrm_feature();
832 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
833}
834
835static void arch_timer_configure_evtstream(void)
836{
837 int evt_stream_div, lsb;
838
839 /*
840 * As the event stream can at most be generated at half the frequency
841 * of the counter, use half the frequency when computing the divider.
842 */
843 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
844
845 /*
846 * Find the closest power of two to the divisor. If the adjacent bit
847 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
848 */
849 lsb = fls(evt_stream_div) - 1;
850 if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
851 lsb++;
852
853 /* enable event stream */
854 arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
855}
856
857static void arch_counter_set_user_access(void)
858{
859 u32 cntkctl = arch_timer_get_cntkctl();
860
861 /* Disable user access to the timers and both counters */
862 /* Also disable virtual event stream */
863 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
864 | ARCH_TIMER_USR_VT_ACCESS_EN
865 | ARCH_TIMER_USR_VCT_ACCESS_EN
866 | ARCH_TIMER_VIRT_EVT_EN
867 | ARCH_TIMER_USR_PCT_ACCESS_EN);
868
869 /*
870 * Enable user access to the virtual counter if it doesn't
871 * need to be workaround. The vdso may have been already
872 * disabled though.
873 */
874 if (arch_timer_this_cpu_has_cntvct_wa())
875 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
876 else
877 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
878
879 arch_timer_set_cntkctl(cntkctl);
880}
881
882static bool arch_timer_has_nonsecure_ppi(void)
883{
884 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
885 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
886}
887
888static u32 check_ppi_trigger(int irq)
889{
890 u32 flags = irq_get_trigger_type(irq);
891
892 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
893 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
894 pr_warn("WARNING: Please fix your firmware\n");
895 flags = IRQF_TRIGGER_LOW;
896 }
897
898 return flags;
899}
900
901static int arch_timer_starting_cpu(unsigned int cpu)
902{
903 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
904 u32 flags;
905
906 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
907
908 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
909 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
910
911 if (arch_timer_has_nonsecure_ppi()) {
912 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
913 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
914 flags);
915 }
916
917 arch_counter_set_user_access();
918 if (evtstrm_enable)
919 arch_timer_configure_evtstream();
920
921 return 0;
922}
923
924static int validate_timer_rate(void)
925{
926 if (!arch_timer_rate)
927 return -EINVAL;
928
929 /* Arch timer frequency < 1MHz can cause trouble */
930 WARN_ON(arch_timer_rate < 1000000);
931
932 return 0;
933}
934
935/*
936 * For historical reasons, when probing with DT we use whichever (non-zero)
937 * rate was probed first, and don't verify that others match. If the first node
938 * probed has a clock-frequency property, this overrides the HW register.
939 */
940static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
941{
942 /* Who has more than one independent system counter? */
943 if (arch_timer_rate)
944 return;
945
946 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
947 arch_timer_rate = rate;
948
949 /* Check the timer frequency. */
950 if (validate_timer_rate())
951 pr_warn("frequency not available\n");
952}
953
954static void __init arch_timer_banner(unsigned type)
955{
956 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
957 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
958 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
959 " and " : "",
960 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
961 (unsigned long)arch_timer_rate / 1000000,
962 (unsigned long)(arch_timer_rate / 10000) % 100,
963 type & ARCH_TIMER_TYPE_CP15 ?
964 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
965 "",
966 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
967 type & ARCH_TIMER_TYPE_MEM ?
968 arch_timer_mem_use_virtual ? "virt" : "phys" :
969 "");
970}
971
972u32 arch_timer_get_rate(void)
973{
974 return arch_timer_rate;
975}
976
977bool arch_timer_evtstrm_available(void)
978{
979 /*
980 * We might get called from a preemptible context. This is fine
981 * because availability of the event stream should be always the same
982 * for a preemptible context and context where we might resume a task.
983 */
984 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
985}
986
987static u64 arch_counter_get_cntvct_mem(void)
988{
989 u32 vct_lo, vct_hi, tmp_hi;
990
991 do {
992 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
993 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
994 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
995 } while (vct_hi != tmp_hi);
996
997 return ((u64) vct_hi << 32) | vct_lo;
998}
999
1000static struct arch_timer_kvm_info arch_timer_kvm_info;
1001
1002struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1003{
1004 return &arch_timer_kvm_info;
1005}
1006
1007static void __init arch_counter_register(unsigned type)
1008{
1009 u64 start_count;
1010
1011 /* Register the CP15 based counter if we have one */
1012 if (type & ARCH_TIMER_TYPE_CP15) {
1013 u64 (*rd)(void);
1014
1015 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1016 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1017 if (arch_timer_counter_has_wa())
1018 rd = arch_counter_get_cntvct_stable;
1019 else
1020 rd = arch_counter_get_cntvct;
1021 } else {
1022 if (arch_timer_counter_has_wa())
1023 rd = arch_counter_get_cntpct_stable;
1024 else
1025 rd = arch_counter_get_cntpct;
1026 }
1027
1028 arch_timer_read_counter = rd;
1029 clocksource_counter.vdso_clock_mode = vdso_default;
1030 } else {
1031 arch_timer_read_counter = arch_counter_get_cntvct_mem;
1032 }
1033
1034 if (!arch_counter_suspend_stop)
1035 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1036 start_count = arch_timer_read_counter();
1037 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1038 cyclecounter.mult = clocksource_counter.mult;
1039 cyclecounter.shift = clocksource_counter.shift;
1040 timecounter_init(&arch_timer_kvm_info.timecounter,
1041 &cyclecounter, start_count);
1042
1043 /* 56 bits minimum, so we assume worst case rollover */
1044 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1045}
1046
1047static void arch_timer_stop(struct clock_event_device *clk)
1048{
1049 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1050
1051 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1052 if (arch_timer_has_nonsecure_ppi())
1053 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1054
1055 clk->set_state_shutdown(clk);
1056}
1057
1058static int arch_timer_dying_cpu(unsigned int cpu)
1059{
1060 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1061
1062 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1063
1064 arch_timer_stop(clk);
1065 return 0;
1066}
1067
1068#ifdef CONFIG_CPU_PM
1069static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1070static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1071 unsigned long action, void *hcpu)
1072{
1073 if (action == CPU_PM_ENTER) {
1074 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1075
1076 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1077 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1078 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1079
1080 if (arch_timer_have_evtstrm_feature())
1081 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1082 }
1083 return NOTIFY_OK;
1084}
1085
1086static struct notifier_block arch_timer_cpu_pm_notifier = {
1087 .notifier_call = arch_timer_cpu_pm_notify,
1088};
1089
1090static int __init arch_timer_cpu_pm_init(void)
1091{
1092 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1093}
1094
1095static void __init arch_timer_cpu_pm_deinit(void)
1096{
1097 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1098}
1099
1100#else
1101static int __init arch_timer_cpu_pm_init(void)
1102{
1103 return 0;
1104}
1105
1106static void __init arch_timer_cpu_pm_deinit(void)
1107{
1108}
1109#endif
1110
1111static int __init arch_timer_register(void)
1112{
1113 int err;
1114 int ppi;
1115
1116 arch_timer_evt = alloc_percpu(struct clock_event_device);
1117 if (!arch_timer_evt) {
1118 err = -ENOMEM;
1119 goto out;
1120 }
1121
1122 ppi = arch_timer_ppi[arch_timer_uses_ppi];
1123 switch (arch_timer_uses_ppi) {
1124 case ARCH_TIMER_VIRT_PPI:
1125 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1126 "arch_timer", arch_timer_evt);
1127 break;
1128 case ARCH_TIMER_PHYS_SECURE_PPI:
1129 case ARCH_TIMER_PHYS_NONSECURE_PPI:
1130 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1131 "arch_timer", arch_timer_evt);
1132 if (!err && arch_timer_has_nonsecure_ppi()) {
1133 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1134 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1135 "arch_timer", arch_timer_evt);
1136 if (err)
1137 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1138 arch_timer_evt);
1139 }
1140 break;
1141 case ARCH_TIMER_HYP_PPI:
1142 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1143 "arch_timer", arch_timer_evt);
1144 break;
1145 default:
1146 BUG();
1147 }
1148
1149 if (err) {
1150 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1151 goto out_free;
1152 }
1153
1154 err = arch_timer_cpu_pm_init();
1155 if (err)
1156 goto out_unreg_notify;
1157
1158 /* Register and immediately configure the timer on the boot CPU */
1159 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1160 "clockevents/arm/arch_timer:starting",
1161 arch_timer_starting_cpu, arch_timer_dying_cpu);
1162 if (err)
1163 goto out_unreg_cpupm;
1164 return 0;
1165
1166out_unreg_cpupm:
1167 arch_timer_cpu_pm_deinit();
1168
1169out_unreg_notify:
1170 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1171 if (arch_timer_has_nonsecure_ppi())
1172 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1173 arch_timer_evt);
1174
1175out_free:
1176 free_percpu(arch_timer_evt);
1177out:
1178 return err;
1179}
1180
1181static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1182{
1183 int ret;
1184 irq_handler_t func;
1185 struct arch_timer *t;
1186
1187 t = kzalloc(sizeof(*t), GFP_KERNEL);
1188 if (!t)
1189 return -ENOMEM;
1190
1191 t->base = base;
1192 t->evt.irq = irq;
1193 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1194
1195 if (arch_timer_mem_use_virtual)
1196 func = arch_timer_handler_virt_mem;
1197 else
1198 func = arch_timer_handler_phys_mem;
1199
1200 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1201 if (ret) {
1202 pr_err("Failed to request mem timer irq\n");
1203 kfree(t);
1204 }
1205
1206 return ret;
1207}
1208
1209static const struct of_device_id arch_timer_of_match[] __initconst = {
1210 { .compatible = "arm,armv7-timer", },
1211 { .compatible = "arm,armv8-timer", },
1212 {},
1213};
1214
1215static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1216 { .compatible = "arm,armv7-timer-mem", },
1217 {},
1218};
1219
1220static bool __init arch_timer_needs_of_probing(void)
1221{
1222 struct device_node *dn;
1223 bool needs_probing = false;
1224 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1225
1226 /* We have two timers, and both device-tree nodes are probed. */
1227 if ((arch_timers_present & mask) == mask)
1228 return false;
1229
1230 /*
1231 * Only one type of timer is probed,
1232 * check if we have another type of timer node in device-tree.
1233 */
1234 if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1235 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1236 else
1237 dn = of_find_matching_node(NULL, arch_timer_of_match);
1238
1239 if (dn && of_device_is_available(dn))
1240 needs_probing = true;
1241
1242 of_node_put(dn);
1243
1244 return needs_probing;
1245}
1246
1247static int __init arch_timer_common_init(void)
1248{
1249 arch_timer_banner(arch_timers_present);
1250 arch_counter_register(arch_timers_present);
1251 return arch_timer_arch_init();
1252}
1253
1254/**
1255 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1256 *
1257 * If HYP mode is available, we know that the physical timer
1258 * has been configured to be accessible from PL1. Use it, so
1259 * that a guest can use the virtual timer instead.
1260 *
1261 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1262 * accesses to CNTP_*_EL1 registers are silently redirected to
1263 * their CNTHP_*_EL2 counterparts, and use a different PPI
1264 * number.
1265 *
1266 * If no interrupt provided for virtual timer, we'll have to
1267 * stick to the physical timer. It'd better be accessible...
1268 * For arm64 we never use the secure interrupt.
1269 *
1270 * Return: a suitable PPI type for the current system.
1271 */
1272static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1273{
1274 if (is_kernel_in_hyp_mode())
1275 return ARCH_TIMER_HYP_PPI;
1276
1277 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1278 return ARCH_TIMER_VIRT_PPI;
1279
1280 if (IS_ENABLED(CONFIG_ARM64))
1281 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1282
1283 return ARCH_TIMER_PHYS_SECURE_PPI;
1284}
1285
1286static void __init arch_timer_populate_kvm_info(void)
1287{
1288 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1289 if (is_kernel_in_hyp_mode())
1290 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1291}
1292
1293static int __init arch_timer_of_init(struct device_node *np)
1294{
1295 int i, irq, ret;
1296 u32 rate;
1297 bool has_names;
1298
1299 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1300 pr_warn("multiple nodes in dt, skipping\n");
1301 return 0;
1302 }
1303
1304 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1305
1306 has_names = of_property_read_bool(np, "interrupt-names");
1307
1308 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1309 if (has_names)
1310 irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1311 else
1312 irq = of_irq_get(np, i);
1313 if (irq > 0)
1314 arch_timer_ppi[i] = irq;
1315 }
1316
1317 arch_timer_populate_kvm_info();
1318
1319 rate = arch_timer_get_cntfrq();
1320 arch_timer_of_configure_rate(rate, np);
1321
1322 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1323
1324 /* Check for globally applicable workarounds */
1325 arch_timer_check_ool_workaround(ate_match_dt, np);
1326
1327 /*
1328 * If we cannot rely on firmware initializing the timer registers then
1329 * we should use the physical timers instead.
1330 */
1331 if (IS_ENABLED(CONFIG_ARM) &&
1332 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1333 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1334 else
1335 arch_timer_uses_ppi = arch_timer_select_ppi();
1336
1337 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1338 pr_err("No interrupt available, giving up\n");
1339 return -EINVAL;
1340 }
1341
1342 /* On some systems, the counter stops ticking when in suspend. */
1343 arch_counter_suspend_stop = of_property_read_bool(np,
1344 "arm,no-tick-in-suspend");
1345
1346 ret = arch_timer_register();
1347 if (ret)
1348 return ret;
1349
1350 if (arch_timer_needs_of_probing())
1351 return 0;
1352
1353 return arch_timer_common_init();
1354}
1355TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1356TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1357
1358static u32 __init
1359arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1360{
1361 void __iomem *base;
1362 u32 rate;
1363
1364 base = ioremap(frame->cntbase, frame->size);
1365 if (!base) {
1366 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1367 return 0;
1368 }
1369
1370 rate = readl_relaxed(base + CNTFRQ);
1371
1372 iounmap(base);
1373
1374 return rate;
1375}
1376
1377static struct arch_timer_mem_frame * __init
1378arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1379{
1380 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1381 void __iomem *cntctlbase;
1382 u32 cnttidr;
1383 int i;
1384
1385 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1386 if (!cntctlbase) {
1387 pr_err("Can't map CNTCTLBase @ %pa\n",
1388 &timer_mem->cntctlbase);
1389 return NULL;
1390 }
1391
1392 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1393
1394 /*
1395 * Try to find a virtual capable frame. Otherwise fall back to a
1396 * physical capable frame.
1397 */
1398 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1399 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1400 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1401
1402 frame = &timer_mem->frame[i];
1403 if (!frame->valid)
1404 continue;
1405
1406 /* Try enabling everything, and see what sticks */
1407 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1408 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1409
1410 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1411 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1412 best_frame = frame;
1413 arch_timer_mem_use_virtual = true;
1414 break;
1415 }
1416
1417 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1418 continue;
1419
1420 best_frame = frame;
1421 }
1422
1423 iounmap(cntctlbase);
1424
1425 return best_frame;
1426}
1427
1428static int __init
1429arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1430{
1431 void __iomem *base;
1432 int ret, irq = 0;
1433
1434 if (arch_timer_mem_use_virtual)
1435 irq = frame->virt_irq;
1436 else
1437 irq = frame->phys_irq;
1438
1439 if (!irq) {
1440 pr_err("Frame missing %s irq.\n",
1441 arch_timer_mem_use_virtual ? "virt" : "phys");
1442 return -EINVAL;
1443 }
1444
1445 if (!request_mem_region(frame->cntbase, frame->size,
1446 "arch_mem_timer"))
1447 return -EBUSY;
1448
1449 base = ioremap(frame->cntbase, frame->size);
1450 if (!base) {
1451 pr_err("Can't map frame's registers\n");
1452 return -ENXIO;
1453 }
1454
1455 ret = arch_timer_mem_register(base, irq);
1456 if (ret) {
1457 iounmap(base);
1458 return ret;
1459 }
1460
1461 arch_counter_base = base;
1462 arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1463
1464 return 0;
1465}
1466
1467static int __init arch_timer_mem_of_init(struct device_node *np)
1468{
1469 struct arch_timer_mem *timer_mem;
1470 struct arch_timer_mem_frame *frame;
1471 struct device_node *frame_node;
1472 struct resource res;
1473 int ret = -EINVAL;
1474 u32 rate;
1475
1476 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1477 if (!timer_mem)
1478 return -ENOMEM;
1479
1480 if (of_address_to_resource(np, 0, &res))
1481 goto out;
1482 timer_mem->cntctlbase = res.start;
1483 timer_mem->size = resource_size(&res);
1484
1485 for_each_available_child_of_node(np, frame_node) {
1486 u32 n;
1487 struct arch_timer_mem_frame *frame;
1488
1489 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1490 pr_err(FW_BUG "Missing frame-number.\n");
1491 of_node_put(frame_node);
1492 goto out;
1493 }
1494 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1495 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1496 ARCH_TIMER_MEM_MAX_FRAMES - 1);
1497 of_node_put(frame_node);
1498 goto out;
1499 }
1500 frame = &timer_mem->frame[n];
1501
1502 if (frame->valid) {
1503 pr_err(FW_BUG "Duplicated frame-number.\n");
1504 of_node_put(frame_node);
1505 goto out;
1506 }
1507
1508 if (of_address_to_resource(frame_node, 0, &res)) {
1509 of_node_put(frame_node);
1510 goto out;
1511 }
1512 frame->cntbase = res.start;
1513 frame->size = resource_size(&res);
1514
1515 frame->virt_irq = irq_of_parse_and_map(frame_node,
1516 ARCH_TIMER_VIRT_SPI);
1517 frame->phys_irq = irq_of_parse_and_map(frame_node,
1518 ARCH_TIMER_PHYS_SPI);
1519
1520 frame->valid = true;
1521 }
1522
1523 frame = arch_timer_mem_find_best_frame(timer_mem);
1524 if (!frame) {
1525 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1526 &timer_mem->cntctlbase);
1527 ret = -EINVAL;
1528 goto out;
1529 }
1530
1531 rate = arch_timer_mem_frame_get_cntfrq(frame);
1532 arch_timer_of_configure_rate(rate, np);
1533
1534 ret = arch_timer_mem_frame_register(frame);
1535 if (!ret && !arch_timer_needs_of_probing())
1536 ret = arch_timer_common_init();
1537out:
1538 kfree(timer_mem);
1539 return ret;
1540}
1541TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1542 arch_timer_mem_of_init);
1543
1544#ifdef CONFIG_ACPI_GTDT
1545static int __init
1546arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1547{
1548 struct arch_timer_mem_frame *frame;
1549 u32 rate;
1550 int i;
1551
1552 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1553 frame = &timer_mem->frame[i];
1554
1555 if (!frame->valid)
1556 continue;
1557
1558 rate = arch_timer_mem_frame_get_cntfrq(frame);
1559 if (rate == arch_timer_rate)
1560 continue;
1561
1562 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1563 &frame->cntbase,
1564 (unsigned long)rate, (unsigned long)arch_timer_rate);
1565
1566 return -EINVAL;
1567 }
1568
1569 return 0;
1570}
1571
1572static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1573{
1574 struct arch_timer_mem *timers, *timer;
1575 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1576 int timer_count, i, ret = 0;
1577
1578 timers = kcalloc(platform_timer_count, sizeof(*timers),
1579 GFP_KERNEL);
1580 if (!timers)
1581 return -ENOMEM;
1582
1583 ret = acpi_arch_timer_mem_init(timers, &timer_count);
1584 if (ret || !timer_count)
1585 goto out;
1586
1587 /*
1588 * While unlikely, it's theoretically possible that none of the frames
1589 * in a timer expose the combination of feature we want.
1590 */
1591 for (i = 0; i < timer_count; i++) {
1592 timer = &timers[i];
1593
1594 frame = arch_timer_mem_find_best_frame(timer);
1595 if (!best_frame)
1596 best_frame = frame;
1597
1598 ret = arch_timer_mem_verify_cntfrq(timer);
1599 if (ret) {
1600 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1601 goto out;
1602 }
1603
1604 if (!best_frame) /* implies !frame */
1605 /*
1606 * Only complain about missing suitable frames if we
1607 * haven't already found one in a previous iteration.
1608 */
1609 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1610 &timer->cntctlbase);
1611 }
1612
1613 if (best_frame)
1614 ret = arch_timer_mem_frame_register(best_frame);
1615out:
1616 kfree(timers);
1617 return ret;
1618}
1619
1620/* Initialize per-processor generic timer and memory-mapped timer(if present) */
1621static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1622{
1623 int ret, platform_timer_count;
1624
1625 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1626 pr_warn("already initialized, skipping\n");
1627 return -EINVAL;
1628 }
1629
1630 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1631
1632 ret = acpi_gtdt_init(table, &platform_timer_count);
1633 if (ret)
1634 return ret;
1635
1636 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1637 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1638
1639 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1640 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1641
1642 arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1643 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1644
1645 arch_timer_populate_kvm_info();
1646
1647 /*
1648 * When probing via ACPI, we have no mechanism to override the sysreg
1649 * CNTFRQ value. This *must* be correct.
1650 */
1651 arch_timer_rate = arch_timer_get_cntfrq();
1652 ret = validate_timer_rate();
1653 if (ret) {
1654 pr_err(FW_BUG "frequency not available.\n");
1655 return ret;
1656 }
1657
1658 arch_timer_uses_ppi = arch_timer_select_ppi();
1659 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1660 pr_err("No interrupt available, giving up\n");
1661 return -EINVAL;
1662 }
1663
1664 /* Always-on capability */
1665 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1666
1667 /* Check for globally applicable workarounds */
1668 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1669
1670 ret = arch_timer_register();
1671 if (ret)
1672 return ret;
1673
1674 if (platform_timer_count &&
1675 arch_timer_mem_acpi_init(platform_timer_count))
1676 pr_err("Failed to initialize memory-mapped timer.\n");
1677
1678 return arch_timer_common_init();
1679}
1680TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1681#endif
1682
1683int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1684 struct clocksource **cs)
1685{
1686 struct arm_smccc_res hvc_res;
1687 u32 ptp_counter;
1688 ktime_t ktime;
1689
1690 if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1691 return -EOPNOTSUPP;
1692
1693 if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1694 ptp_counter = KVM_PTP_VIRT_COUNTER;
1695 else
1696 ptp_counter = KVM_PTP_PHYS_COUNTER;
1697
1698 arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1699 ptp_counter, &hvc_res);
1700
1701 if ((int)(hvc_res.a0) < 0)
1702 return -EOPNOTSUPP;
1703
1704 ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1705 *ts = ktime_to_timespec64(ktime);
1706 if (cycle)
1707 *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1708 if (cs)
1709 *cs = &clocksource_counter;
1710
1711 return 0;
1712}
1713EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);