Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* binder_alloc.c
   3 *
   4 * Android IPC Subsystem
   5 *
   6 * Copyright (C) 2007-2017 Google, Inc.
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/list.h>
  12#include <linux/sched/mm.h>
  13#include <linux/module.h>
  14#include <linux/rtmutex.h>
  15#include <linux/rbtree.h>
  16#include <linux/seq_file.h>
  17#include <linux/vmalloc.h>
  18#include <linux/slab.h>
  19#include <linux/sched.h>
  20#include <linux/list_lru.h>
  21#include <linux/ratelimit.h>
  22#include <asm/cacheflush.h>
  23#include <linux/uaccess.h>
  24#include <linux/highmem.h>
  25#include <linux/sizes.h>
  26#include "binder_alloc.h"
  27#include "binder_trace.h"
  28
  29struct list_lru binder_alloc_lru;
  30
  31static DEFINE_MUTEX(binder_alloc_mmap_lock);
  32
  33enum {
  34	BINDER_DEBUG_USER_ERROR             = 1U << 0,
  35	BINDER_DEBUG_OPEN_CLOSE             = 1U << 1,
  36	BINDER_DEBUG_BUFFER_ALLOC           = 1U << 2,
  37	BINDER_DEBUG_BUFFER_ALLOC_ASYNC     = 1U << 3,
  38};
  39static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR;
  40
  41module_param_named(debug_mask, binder_alloc_debug_mask,
  42		   uint, 0644);
  43
  44#define binder_alloc_debug(mask, x...) \
  45	do { \
  46		if (binder_alloc_debug_mask & mask) \
  47			pr_info_ratelimited(x); \
  48	} while (0)
  49
  50static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer)
  51{
  52	return list_entry(buffer->entry.next, struct binder_buffer, entry);
  53}
  54
  55static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer)
  56{
  57	return list_entry(buffer->entry.prev, struct binder_buffer, entry);
  58}
  59
  60static size_t binder_alloc_buffer_size(struct binder_alloc *alloc,
  61				       struct binder_buffer *buffer)
  62{
  63	if (list_is_last(&buffer->entry, &alloc->buffers))
  64		return alloc->buffer + alloc->buffer_size - buffer->user_data;
  65	return binder_buffer_next(buffer)->user_data - buffer->user_data;
  66}
  67
  68static void binder_insert_free_buffer(struct binder_alloc *alloc,
  69				      struct binder_buffer *new_buffer)
  70{
  71	struct rb_node **p = &alloc->free_buffers.rb_node;
  72	struct rb_node *parent = NULL;
  73	struct binder_buffer *buffer;
  74	size_t buffer_size;
  75	size_t new_buffer_size;
  76
  77	BUG_ON(!new_buffer->free);
  78
  79	new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer);
  80
  81	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
  82		     "%d: add free buffer, size %zd, at %pK\n",
  83		      alloc->pid, new_buffer_size, new_buffer);
  84
  85	while (*p) {
  86		parent = *p;
  87		buffer = rb_entry(parent, struct binder_buffer, rb_node);
  88		BUG_ON(!buffer->free);
  89
  90		buffer_size = binder_alloc_buffer_size(alloc, buffer);
  91
  92		if (new_buffer_size < buffer_size)
  93			p = &parent->rb_left;
  94		else
  95			p = &parent->rb_right;
  96	}
  97	rb_link_node(&new_buffer->rb_node, parent, p);
  98	rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers);
  99}
 100
 101static void binder_insert_allocated_buffer_locked(
 102		struct binder_alloc *alloc, struct binder_buffer *new_buffer)
 103{
 104	struct rb_node **p = &alloc->allocated_buffers.rb_node;
 105	struct rb_node *parent = NULL;
 106	struct binder_buffer *buffer;
 107
 108	BUG_ON(new_buffer->free);
 109
 110	while (*p) {
 111		parent = *p;
 112		buffer = rb_entry(parent, struct binder_buffer, rb_node);
 113		BUG_ON(buffer->free);
 114
 115		if (new_buffer->user_data < buffer->user_data)
 116			p = &parent->rb_left;
 117		else if (new_buffer->user_data > buffer->user_data)
 118			p = &parent->rb_right;
 119		else
 120			BUG();
 121	}
 122	rb_link_node(&new_buffer->rb_node, parent, p);
 123	rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers);
 124}
 125
 126static struct binder_buffer *binder_alloc_prepare_to_free_locked(
 127		struct binder_alloc *alloc,
 128		uintptr_t user_ptr)
 129{
 130	struct rb_node *n = alloc->allocated_buffers.rb_node;
 131	struct binder_buffer *buffer;
 132	void __user *uptr;
 133
 134	uptr = (void __user *)user_ptr;
 135
 136	while (n) {
 137		buffer = rb_entry(n, struct binder_buffer, rb_node);
 138		BUG_ON(buffer->free);
 139
 140		if (uptr < buffer->user_data)
 141			n = n->rb_left;
 142		else if (uptr > buffer->user_data)
 143			n = n->rb_right;
 144		else {
 145			/*
 146			 * Guard against user threads attempting to
 147			 * free the buffer when in use by kernel or
 148			 * after it's already been freed.
 149			 */
 150			if (!buffer->allow_user_free)
 151				return ERR_PTR(-EPERM);
 152			buffer->allow_user_free = 0;
 153			return buffer;
 154		}
 155	}
 156	return NULL;
 157}
 158
 159/**
 160 * binder_alloc_prepare_to_free() - get buffer given user ptr
 161 * @alloc:	binder_alloc for this proc
 162 * @user_ptr:	User pointer to buffer data
 163 *
 164 * Validate userspace pointer to buffer data and return buffer corresponding to
 165 * that user pointer. Search the rb tree for buffer that matches user data
 166 * pointer.
 167 *
 168 * Return:	Pointer to buffer or NULL
 169 */
 170struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc,
 171						   uintptr_t user_ptr)
 172{
 173	struct binder_buffer *buffer;
 174
 175	mutex_lock(&alloc->mutex);
 176	buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr);
 177	mutex_unlock(&alloc->mutex);
 178	return buffer;
 179}
 180
 181static int binder_update_page_range(struct binder_alloc *alloc, int allocate,
 182				    void __user *start, void __user *end)
 183{
 184	void __user *page_addr;
 185	unsigned long user_page_addr;
 186	struct binder_lru_page *page;
 187	struct vm_area_struct *vma = NULL;
 188	struct mm_struct *mm = NULL;
 189	bool need_mm = false;
 190
 191	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 192		     "%d: %s pages %pK-%pK\n", alloc->pid,
 193		     allocate ? "allocate" : "free", start, end);
 194
 195	if (end <= start)
 196		return 0;
 197
 198	trace_binder_update_page_range(alloc, allocate, start, end);
 199
 200	if (allocate == 0)
 201		goto free_range;
 202
 203	for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
 204		page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE];
 205		if (!page->page_ptr) {
 206			need_mm = true;
 207			break;
 208		}
 209	}
 210
 211	if (need_mm && mmget_not_zero(alloc->mm))
 212		mm = alloc->mm;
 213
 214	if (mm) {
 215		mmap_read_lock(mm);
 216		vma = vma_lookup(mm, alloc->vma_addr);
 217	}
 218
 219	if (!vma && need_mm) {
 220		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
 221				   "%d: binder_alloc_buf failed to map pages in userspace, no vma\n",
 222				   alloc->pid);
 223		goto err_no_vma;
 224	}
 225
 226	for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
 227		int ret;
 228		bool on_lru;
 229		size_t index;
 230
 231		index = (page_addr - alloc->buffer) / PAGE_SIZE;
 232		page = &alloc->pages[index];
 233
 234		if (page->page_ptr) {
 235			trace_binder_alloc_lru_start(alloc, index);
 236
 237			on_lru = list_lru_del(&binder_alloc_lru, &page->lru);
 238			WARN_ON(!on_lru);
 239
 240			trace_binder_alloc_lru_end(alloc, index);
 241			continue;
 242		}
 243
 244		if (WARN_ON(!vma))
 245			goto err_page_ptr_cleared;
 246
 247		trace_binder_alloc_page_start(alloc, index);
 248		page->page_ptr = alloc_page(GFP_KERNEL |
 249					    __GFP_HIGHMEM |
 250					    __GFP_ZERO);
 251		if (!page->page_ptr) {
 252			pr_err("%d: binder_alloc_buf failed for page at %pK\n",
 253				alloc->pid, page_addr);
 254			goto err_alloc_page_failed;
 255		}
 256		page->alloc = alloc;
 257		INIT_LIST_HEAD(&page->lru);
 258
 259		user_page_addr = (uintptr_t)page_addr;
 260		ret = vm_insert_page(vma, user_page_addr, page[0].page_ptr);
 261		if (ret) {
 262			pr_err("%d: binder_alloc_buf failed to map page at %lx in userspace\n",
 263			       alloc->pid, user_page_addr);
 264			goto err_vm_insert_page_failed;
 265		}
 266
 267		if (index + 1 > alloc->pages_high)
 268			alloc->pages_high = index + 1;
 269
 270		trace_binder_alloc_page_end(alloc, index);
 271	}
 272	if (mm) {
 273		mmap_read_unlock(mm);
 274		mmput(mm);
 275	}
 276	return 0;
 277
 278free_range:
 279	for (page_addr = end - PAGE_SIZE; 1; page_addr -= PAGE_SIZE) {
 280		bool ret;
 281		size_t index;
 282
 283		index = (page_addr - alloc->buffer) / PAGE_SIZE;
 284		page = &alloc->pages[index];
 285
 286		trace_binder_free_lru_start(alloc, index);
 287
 288		ret = list_lru_add(&binder_alloc_lru, &page->lru);
 289		WARN_ON(!ret);
 290
 291		trace_binder_free_lru_end(alloc, index);
 292		if (page_addr == start)
 293			break;
 294		continue;
 295
 296err_vm_insert_page_failed:
 297		__free_page(page->page_ptr);
 298		page->page_ptr = NULL;
 299err_alloc_page_failed:
 300err_page_ptr_cleared:
 301		if (page_addr == start)
 302			break;
 303	}
 304err_no_vma:
 305	if (mm) {
 306		mmap_read_unlock(mm);
 307		mmput(mm);
 308	}
 309	return vma ? -ENOMEM : -ESRCH;
 310}
 311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 312static inline struct vm_area_struct *binder_alloc_get_vma(
 313		struct binder_alloc *alloc)
 314{
 315	struct vm_area_struct *vma = NULL;
 316
 317	if (alloc->vma_addr)
 318		vma = vma_lookup(alloc->mm, alloc->vma_addr);
 319
 
 
 320	return vma;
 321}
 322
 323static bool debug_low_async_space_locked(struct binder_alloc *alloc, int pid)
 324{
 325	/*
 326	 * Find the amount and size of buffers allocated by the current caller;
 327	 * The idea is that once we cross the threshold, whoever is responsible
 328	 * for the low async space is likely to try to send another async txn,
 329	 * and at some point we'll catch them in the act. This is more efficient
 330	 * than keeping a map per pid.
 331	 */
 332	struct rb_node *n;
 333	struct binder_buffer *buffer;
 334	size_t total_alloc_size = 0;
 335	size_t num_buffers = 0;
 336
 337	for (n = rb_first(&alloc->allocated_buffers); n != NULL;
 338		 n = rb_next(n)) {
 339		buffer = rb_entry(n, struct binder_buffer, rb_node);
 340		if (buffer->pid != pid)
 341			continue;
 342		if (!buffer->async_transaction)
 343			continue;
 344		total_alloc_size += binder_alloc_buffer_size(alloc, buffer)
 345			+ sizeof(struct binder_buffer);
 346		num_buffers++;
 347	}
 348
 349	/*
 350	 * Warn if this pid has more than 50 transactions, or more than 50% of
 351	 * async space (which is 25% of total buffer size). Oneway spam is only
 352	 * detected when the threshold is exceeded.
 353	 */
 354	if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) {
 355		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
 356			     "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n",
 357			      alloc->pid, pid, num_buffers, total_alloc_size);
 358		if (!alloc->oneway_spam_detected) {
 359			alloc->oneway_spam_detected = true;
 360			return true;
 361		}
 362	}
 363	return false;
 364}
 365
 366static struct binder_buffer *binder_alloc_new_buf_locked(
 367				struct binder_alloc *alloc,
 368				size_t data_size,
 369				size_t offsets_size,
 370				size_t extra_buffers_size,
 371				int is_async,
 372				int pid)
 373{
 374	struct rb_node *n = alloc->free_buffers.rb_node;
 375	struct binder_buffer *buffer;
 376	size_t buffer_size;
 377	struct rb_node *best_fit = NULL;
 378	void __user *has_page_addr;
 379	void __user *end_page_addr;
 380	size_t size, data_offsets_size;
 381	int ret;
 382
 383	mmap_read_lock(alloc->mm);
 384	if (!binder_alloc_get_vma(alloc)) {
 385		mmap_read_unlock(alloc->mm);
 386		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
 387				   "%d: binder_alloc_buf, no vma\n",
 388				   alloc->pid);
 389		return ERR_PTR(-ESRCH);
 390	}
 391	mmap_read_unlock(alloc->mm);
 392
 393	data_offsets_size = ALIGN(data_size, sizeof(void *)) +
 394		ALIGN(offsets_size, sizeof(void *));
 395
 396	if (data_offsets_size < data_size || data_offsets_size < offsets_size) {
 397		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 398				"%d: got transaction with invalid size %zd-%zd\n",
 399				alloc->pid, data_size, offsets_size);
 400		return ERR_PTR(-EINVAL);
 401	}
 402	size = data_offsets_size + ALIGN(extra_buffers_size, sizeof(void *));
 403	if (size < data_offsets_size || size < extra_buffers_size) {
 404		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 405				"%d: got transaction with invalid extra_buffers_size %zd\n",
 406				alloc->pid, extra_buffers_size);
 407		return ERR_PTR(-EINVAL);
 408	}
 409	if (is_async &&
 410	    alloc->free_async_space < size + sizeof(struct binder_buffer)) {
 411		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 412			     "%d: binder_alloc_buf size %zd failed, no async space left\n",
 413			      alloc->pid, size);
 414		return ERR_PTR(-ENOSPC);
 415	}
 416
 417	/* Pad 0-size buffers so they get assigned unique addresses */
 418	size = max(size, sizeof(void *));
 419
 420	while (n) {
 421		buffer = rb_entry(n, struct binder_buffer, rb_node);
 422		BUG_ON(!buffer->free);
 423		buffer_size = binder_alloc_buffer_size(alloc, buffer);
 424
 425		if (size < buffer_size) {
 426			best_fit = n;
 427			n = n->rb_left;
 428		} else if (size > buffer_size)
 429			n = n->rb_right;
 430		else {
 431			best_fit = n;
 432			break;
 433		}
 434	}
 435	if (best_fit == NULL) {
 436		size_t allocated_buffers = 0;
 437		size_t largest_alloc_size = 0;
 438		size_t total_alloc_size = 0;
 439		size_t free_buffers = 0;
 440		size_t largest_free_size = 0;
 441		size_t total_free_size = 0;
 442
 443		for (n = rb_first(&alloc->allocated_buffers); n != NULL;
 444		     n = rb_next(n)) {
 445			buffer = rb_entry(n, struct binder_buffer, rb_node);
 446			buffer_size = binder_alloc_buffer_size(alloc, buffer);
 447			allocated_buffers++;
 448			total_alloc_size += buffer_size;
 449			if (buffer_size > largest_alloc_size)
 450				largest_alloc_size = buffer_size;
 451		}
 452		for (n = rb_first(&alloc->free_buffers); n != NULL;
 453		     n = rb_next(n)) {
 454			buffer = rb_entry(n, struct binder_buffer, rb_node);
 455			buffer_size = binder_alloc_buffer_size(alloc, buffer);
 456			free_buffers++;
 457			total_free_size += buffer_size;
 458			if (buffer_size > largest_free_size)
 459				largest_free_size = buffer_size;
 460		}
 461		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
 462				   "%d: binder_alloc_buf size %zd failed, no address space\n",
 463				   alloc->pid, size);
 464		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
 465				   "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n",
 466				   total_alloc_size, allocated_buffers,
 467				   largest_alloc_size, total_free_size,
 468				   free_buffers, largest_free_size);
 469		return ERR_PTR(-ENOSPC);
 470	}
 471	if (n == NULL) {
 472		buffer = rb_entry(best_fit, struct binder_buffer, rb_node);
 473		buffer_size = binder_alloc_buffer_size(alloc, buffer);
 474	}
 475
 476	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 477		     "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n",
 478		      alloc->pid, size, buffer, buffer_size);
 479
 480	has_page_addr = (void __user *)
 481		(((uintptr_t)buffer->user_data + buffer_size) & PAGE_MASK);
 482	WARN_ON(n && buffer_size != size);
 483	end_page_addr =
 484		(void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data + size);
 485	if (end_page_addr > has_page_addr)
 486		end_page_addr = has_page_addr;
 487	ret = binder_update_page_range(alloc, 1, (void __user *)
 488		PAGE_ALIGN((uintptr_t)buffer->user_data), end_page_addr);
 489	if (ret)
 490		return ERR_PTR(ret);
 491
 492	if (buffer_size != size) {
 493		struct binder_buffer *new_buffer;
 494
 495		new_buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
 496		if (!new_buffer) {
 497			pr_err("%s: %d failed to alloc new buffer struct\n",
 498			       __func__, alloc->pid);
 499			goto err_alloc_buf_struct_failed;
 500		}
 501		new_buffer->user_data = (u8 __user *)buffer->user_data + size;
 502		list_add(&new_buffer->entry, &buffer->entry);
 503		new_buffer->free = 1;
 504		binder_insert_free_buffer(alloc, new_buffer);
 505	}
 506
 507	rb_erase(best_fit, &alloc->free_buffers);
 508	buffer->free = 0;
 509	buffer->allow_user_free = 0;
 510	binder_insert_allocated_buffer_locked(alloc, buffer);
 511	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 512		     "%d: binder_alloc_buf size %zd got %pK\n",
 513		      alloc->pid, size, buffer);
 514	buffer->data_size = data_size;
 515	buffer->offsets_size = offsets_size;
 516	buffer->async_transaction = is_async;
 517	buffer->extra_buffers_size = extra_buffers_size;
 518	buffer->pid = pid;
 519	buffer->oneway_spam_suspect = false;
 520	if (is_async) {
 521		alloc->free_async_space -= size + sizeof(struct binder_buffer);
 522		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
 523			     "%d: binder_alloc_buf size %zd async free %zd\n",
 524			      alloc->pid, size, alloc->free_async_space);
 525		if (alloc->free_async_space < alloc->buffer_size / 10) {
 526			/*
 527			 * Start detecting spammers once we have less than 20%
 528			 * of async space left (which is less than 10% of total
 529			 * buffer size).
 530			 */
 531			buffer->oneway_spam_suspect = debug_low_async_space_locked(alloc, pid);
 532		} else {
 533			alloc->oneway_spam_detected = false;
 534		}
 535	}
 536	return buffer;
 537
 538err_alloc_buf_struct_failed:
 539	binder_update_page_range(alloc, 0, (void __user *)
 540				 PAGE_ALIGN((uintptr_t)buffer->user_data),
 541				 end_page_addr);
 542	return ERR_PTR(-ENOMEM);
 543}
 544
 545/**
 546 * binder_alloc_new_buf() - Allocate a new binder buffer
 547 * @alloc:              binder_alloc for this proc
 548 * @data_size:          size of user data buffer
 549 * @offsets_size:       user specified buffer offset
 550 * @extra_buffers_size: size of extra space for meta-data (eg, security context)
 551 * @is_async:           buffer for async transaction
 552 * @pid:				pid to attribute allocation to (used for debugging)
 553 *
 554 * Allocate a new buffer given the requested sizes. Returns
 555 * the kernel version of the buffer pointer. The size allocated
 556 * is the sum of the three given sizes (each rounded up to
 557 * pointer-sized boundary)
 558 *
 559 * Return:	The allocated buffer or %NULL if error
 560 */
 561struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc,
 562					   size_t data_size,
 563					   size_t offsets_size,
 564					   size_t extra_buffers_size,
 565					   int is_async,
 566					   int pid)
 567{
 568	struct binder_buffer *buffer;
 569
 570	mutex_lock(&alloc->mutex);
 571	buffer = binder_alloc_new_buf_locked(alloc, data_size, offsets_size,
 572					     extra_buffers_size, is_async, pid);
 573	mutex_unlock(&alloc->mutex);
 574	return buffer;
 575}
 576
 577static void __user *buffer_start_page(struct binder_buffer *buffer)
 578{
 579	return (void __user *)((uintptr_t)buffer->user_data & PAGE_MASK);
 580}
 581
 582static void __user *prev_buffer_end_page(struct binder_buffer *buffer)
 583{
 584	return (void __user *)
 585		(((uintptr_t)(buffer->user_data) - 1) & PAGE_MASK);
 586}
 587
 588static void binder_delete_free_buffer(struct binder_alloc *alloc,
 589				      struct binder_buffer *buffer)
 590{
 591	struct binder_buffer *prev, *next = NULL;
 592	bool to_free = true;
 593
 594	BUG_ON(alloc->buffers.next == &buffer->entry);
 595	prev = binder_buffer_prev(buffer);
 596	BUG_ON(!prev->free);
 597	if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) {
 598		to_free = false;
 599		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 600				   "%d: merge free, buffer %pK share page with %pK\n",
 601				   alloc->pid, buffer->user_data,
 602				   prev->user_data);
 603	}
 604
 605	if (!list_is_last(&buffer->entry, &alloc->buffers)) {
 606		next = binder_buffer_next(buffer);
 607		if (buffer_start_page(next) == buffer_start_page(buffer)) {
 608			to_free = false;
 609			binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 610					   "%d: merge free, buffer %pK share page with %pK\n",
 611					   alloc->pid,
 612					   buffer->user_data,
 613					   next->user_data);
 614		}
 615	}
 616
 617	if (PAGE_ALIGNED(buffer->user_data)) {
 618		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 619				   "%d: merge free, buffer start %pK is page aligned\n",
 620				   alloc->pid, buffer->user_data);
 621		to_free = false;
 622	}
 623
 624	if (to_free) {
 625		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 626				   "%d: merge free, buffer %pK do not share page with %pK or %pK\n",
 627				   alloc->pid, buffer->user_data,
 628				   prev->user_data,
 629				   next ? next->user_data : NULL);
 630		binder_update_page_range(alloc, 0, buffer_start_page(buffer),
 631					 buffer_start_page(buffer) + PAGE_SIZE);
 632	}
 633	list_del(&buffer->entry);
 634	kfree(buffer);
 635}
 636
 637static void binder_free_buf_locked(struct binder_alloc *alloc,
 638				   struct binder_buffer *buffer)
 639{
 640	size_t size, buffer_size;
 641
 642	buffer_size = binder_alloc_buffer_size(alloc, buffer);
 643
 644	size = ALIGN(buffer->data_size, sizeof(void *)) +
 645		ALIGN(buffer->offsets_size, sizeof(void *)) +
 646		ALIGN(buffer->extra_buffers_size, sizeof(void *));
 647
 648	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 649		     "%d: binder_free_buf %pK size %zd buffer_size %zd\n",
 650		      alloc->pid, buffer, size, buffer_size);
 651
 652	BUG_ON(buffer->free);
 653	BUG_ON(size > buffer_size);
 654	BUG_ON(buffer->transaction != NULL);
 655	BUG_ON(buffer->user_data < alloc->buffer);
 656	BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size);
 657
 658	if (buffer->async_transaction) {
 659		alloc->free_async_space += buffer_size + sizeof(struct binder_buffer);
 660
 661		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
 662			     "%d: binder_free_buf size %zd async free %zd\n",
 663			      alloc->pid, size, alloc->free_async_space);
 664	}
 665
 666	binder_update_page_range(alloc, 0,
 667		(void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data),
 668		(void __user *)(((uintptr_t)
 669			  buffer->user_data + buffer_size) & PAGE_MASK));
 670
 671	rb_erase(&buffer->rb_node, &alloc->allocated_buffers);
 672	buffer->free = 1;
 673	if (!list_is_last(&buffer->entry, &alloc->buffers)) {
 674		struct binder_buffer *next = binder_buffer_next(buffer);
 675
 676		if (next->free) {
 677			rb_erase(&next->rb_node, &alloc->free_buffers);
 678			binder_delete_free_buffer(alloc, next);
 679		}
 680	}
 681	if (alloc->buffers.next != &buffer->entry) {
 682		struct binder_buffer *prev = binder_buffer_prev(buffer);
 683
 684		if (prev->free) {
 685			binder_delete_free_buffer(alloc, buffer);
 686			rb_erase(&prev->rb_node, &alloc->free_buffers);
 687			buffer = prev;
 688		}
 689	}
 690	binder_insert_free_buffer(alloc, buffer);
 691}
 692
 693static void binder_alloc_clear_buf(struct binder_alloc *alloc,
 694				   struct binder_buffer *buffer);
 695/**
 696 * binder_alloc_free_buf() - free a binder buffer
 697 * @alloc:	binder_alloc for this proc
 698 * @buffer:	kernel pointer to buffer
 699 *
 700 * Free the buffer allocated via binder_alloc_new_buf()
 701 */
 702void binder_alloc_free_buf(struct binder_alloc *alloc,
 703			    struct binder_buffer *buffer)
 704{
 705	/*
 706	 * We could eliminate the call to binder_alloc_clear_buf()
 707	 * from binder_alloc_deferred_release() by moving this to
 708	 * binder_alloc_free_buf_locked(). However, that could
 709	 * increase contention for the alloc mutex if clear_on_free
 710	 * is used frequently for large buffers. The mutex is not
 711	 * needed for correctness here.
 712	 */
 713	if (buffer->clear_on_free) {
 714		binder_alloc_clear_buf(alloc, buffer);
 715		buffer->clear_on_free = false;
 716	}
 717	mutex_lock(&alloc->mutex);
 718	binder_free_buf_locked(alloc, buffer);
 719	mutex_unlock(&alloc->mutex);
 720}
 721
 722/**
 723 * binder_alloc_mmap_handler() - map virtual address space for proc
 724 * @alloc:	alloc structure for this proc
 725 * @vma:	vma passed to mmap()
 726 *
 727 * Called by binder_mmap() to initialize the space specified in
 728 * vma for allocating binder buffers
 729 *
 730 * Return:
 731 *      0 = success
 732 *      -EBUSY = address space already mapped
 733 *      -ENOMEM = failed to map memory to given address space
 734 */
 735int binder_alloc_mmap_handler(struct binder_alloc *alloc,
 736			      struct vm_area_struct *vma)
 737{
 738	int ret;
 739	const char *failure_string;
 740	struct binder_buffer *buffer;
 741
 742	if (unlikely(vma->vm_mm != alloc->mm)) {
 743		ret = -EINVAL;
 744		failure_string = "invalid vma->vm_mm";
 745		goto err_invalid_mm;
 746	}
 747
 748	mutex_lock(&binder_alloc_mmap_lock);
 749	if (alloc->buffer_size) {
 750		ret = -EBUSY;
 751		failure_string = "already mapped";
 752		goto err_already_mapped;
 753	}
 754	alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start,
 755				   SZ_4M);
 756	mutex_unlock(&binder_alloc_mmap_lock);
 757
 758	alloc->buffer = (void __user *)vma->vm_start;
 759
 760	alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE,
 761			       sizeof(alloc->pages[0]),
 762			       GFP_KERNEL);
 763	if (alloc->pages == NULL) {
 764		ret = -ENOMEM;
 765		failure_string = "alloc page array";
 766		goto err_alloc_pages_failed;
 767	}
 768
 769	buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
 770	if (!buffer) {
 771		ret = -ENOMEM;
 772		failure_string = "alloc buffer struct";
 773		goto err_alloc_buf_struct_failed;
 774	}
 775
 776	buffer->user_data = alloc->buffer;
 777	list_add(&buffer->entry, &alloc->buffers);
 778	buffer->free = 1;
 779	binder_insert_free_buffer(alloc, buffer);
 780	alloc->free_async_space = alloc->buffer_size / 2;
 781	alloc->vma_addr = vma->vm_start;
 
 782
 783	return 0;
 784
 785err_alloc_buf_struct_failed:
 786	kfree(alloc->pages);
 787	alloc->pages = NULL;
 788err_alloc_pages_failed:
 789	alloc->buffer = NULL;
 790	mutex_lock(&binder_alloc_mmap_lock);
 791	alloc->buffer_size = 0;
 792err_already_mapped:
 793	mutex_unlock(&binder_alloc_mmap_lock);
 794err_invalid_mm:
 795	binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
 796			   "%s: %d %lx-%lx %s failed %d\n", __func__,
 797			   alloc->pid, vma->vm_start, vma->vm_end,
 798			   failure_string, ret);
 799	return ret;
 800}
 801
 802
 803void binder_alloc_deferred_release(struct binder_alloc *alloc)
 804{
 805	struct rb_node *n;
 806	int buffers, page_count;
 807	struct binder_buffer *buffer;
 808
 809	buffers = 0;
 810	mutex_lock(&alloc->mutex);
 811	BUG_ON(alloc->vma_addr &&
 812	       vma_lookup(alloc->mm, alloc->vma_addr));
 813
 814	while ((n = rb_first(&alloc->allocated_buffers))) {
 815		buffer = rb_entry(n, struct binder_buffer, rb_node);
 816
 817		/* Transaction should already have been freed */
 818		BUG_ON(buffer->transaction);
 819
 820		if (buffer->clear_on_free) {
 821			binder_alloc_clear_buf(alloc, buffer);
 822			buffer->clear_on_free = false;
 823		}
 824		binder_free_buf_locked(alloc, buffer);
 825		buffers++;
 826	}
 827
 828	while (!list_empty(&alloc->buffers)) {
 829		buffer = list_first_entry(&alloc->buffers,
 830					  struct binder_buffer, entry);
 831		WARN_ON(!buffer->free);
 832
 833		list_del(&buffer->entry);
 834		WARN_ON_ONCE(!list_empty(&alloc->buffers));
 835		kfree(buffer);
 836	}
 837
 838	page_count = 0;
 839	if (alloc->pages) {
 840		int i;
 841
 842		for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
 843			void __user *page_addr;
 844			bool on_lru;
 845
 846			if (!alloc->pages[i].page_ptr)
 847				continue;
 848
 849			on_lru = list_lru_del(&binder_alloc_lru,
 850					      &alloc->pages[i].lru);
 851			page_addr = alloc->buffer + i * PAGE_SIZE;
 852			binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 853				     "%s: %d: page %d at %pK %s\n",
 854				     __func__, alloc->pid, i, page_addr,
 855				     on_lru ? "on lru" : "active");
 856			__free_page(alloc->pages[i].page_ptr);
 857			page_count++;
 858		}
 859		kfree(alloc->pages);
 860	}
 861	mutex_unlock(&alloc->mutex);
 862	if (alloc->mm)
 863		mmdrop(alloc->mm);
 864
 865	binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE,
 866		     "%s: %d buffers %d, pages %d\n",
 867		     __func__, alloc->pid, buffers, page_count);
 868}
 869
 870static void print_binder_buffer(struct seq_file *m, const char *prefix,
 871				struct binder_buffer *buffer)
 872{
 873	seq_printf(m, "%s %d: %pK size %zd:%zd:%zd %s\n",
 874		   prefix, buffer->debug_id, buffer->user_data,
 875		   buffer->data_size, buffer->offsets_size,
 876		   buffer->extra_buffers_size,
 877		   buffer->transaction ? "active" : "delivered");
 878}
 879
 880/**
 881 * binder_alloc_print_allocated() - print buffer info
 882 * @m:     seq_file for output via seq_printf()
 883 * @alloc: binder_alloc for this proc
 884 *
 885 * Prints information about every buffer associated with
 886 * the binder_alloc state to the given seq_file
 887 */
 888void binder_alloc_print_allocated(struct seq_file *m,
 889				  struct binder_alloc *alloc)
 890{
 891	struct rb_node *n;
 892
 893	mutex_lock(&alloc->mutex);
 894	for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
 895		print_binder_buffer(m, "  buffer",
 896				    rb_entry(n, struct binder_buffer, rb_node));
 897	mutex_unlock(&alloc->mutex);
 898}
 899
 900/**
 901 * binder_alloc_print_pages() - print page usage
 902 * @m:     seq_file for output via seq_printf()
 903 * @alloc: binder_alloc for this proc
 904 */
 905void binder_alloc_print_pages(struct seq_file *m,
 906			      struct binder_alloc *alloc)
 907{
 908	struct binder_lru_page *page;
 909	int i;
 910	int active = 0;
 911	int lru = 0;
 912	int free = 0;
 913
 914	mutex_lock(&alloc->mutex);
 915	/*
 916	 * Make sure the binder_alloc is fully initialized, otherwise we might
 917	 * read inconsistent state.
 918	 */
 919
 920	mmap_read_lock(alloc->mm);
 921	if (binder_alloc_get_vma(alloc) == NULL) {
 922		mmap_read_unlock(alloc->mm);
 923		goto uninitialized;
 924	}
 925
 926	mmap_read_unlock(alloc->mm);
 927	for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
 928		page = &alloc->pages[i];
 929		if (!page->page_ptr)
 930			free++;
 931		else if (list_empty(&page->lru))
 932			active++;
 933		else
 934			lru++;
 935	}
 936
 937uninitialized:
 938	mutex_unlock(&alloc->mutex);
 939	seq_printf(m, "  pages: %d:%d:%d\n", active, lru, free);
 940	seq_printf(m, "  pages high watermark: %zu\n", alloc->pages_high);
 941}
 942
 943/**
 944 * binder_alloc_get_allocated_count() - return count of buffers
 945 * @alloc: binder_alloc for this proc
 946 *
 947 * Return: count of allocated buffers
 948 */
 949int binder_alloc_get_allocated_count(struct binder_alloc *alloc)
 950{
 951	struct rb_node *n;
 952	int count = 0;
 953
 954	mutex_lock(&alloc->mutex);
 955	for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
 956		count++;
 957	mutex_unlock(&alloc->mutex);
 958	return count;
 959}
 960
 961
 962/**
 963 * binder_alloc_vma_close() - invalidate address space
 964 * @alloc: binder_alloc for this proc
 965 *
 966 * Called from binder_vma_close() when releasing address space.
 967 * Clears alloc->vma to prevent new incoming transactions from
 968 * allocating more buffers.
 969 */
 970void binder_alloc_vma_close(struct binder_alloc *alloc)
 971{
 972	alloc->vma_addr = 0;
 973}
 974
 975/**
 976 * binder_alloc_free_page() - shrinker callback to free pages
 977 * @item:   item to free
 978 * @lock:   lock protecting the item
 979 * @cb_arg: callback argument
 980 *
 981 * Called from list_lru_walk() in binder_shrink_scan() to free
 982 * up pages when the system is under memory pressure.
 983 */
 984enum lru_status binder_alloc_free_page(struct list_head *item,
 985				       struct list_lru_one *lru,
 986				       spinlock_t *lock,
 987				       void *cb_arg)
 988	__must_hold(lock)
 989{
 990	struct mm_struct *mm = NULL;
 991	struct binder_lru_page *page = container_of(item,
 992						    struct binder_lru_page,
 993						    lru);
 994	struct binder_alloc *alloc;
 995	uintptr_t page_addr;
 996	size_t index;
 997	struct vm_area_struct *vma;
 998
 999	alloc = page->alloc;
1000	if (!mutex_trylock(&alloc->mutex))
1001		goto err_get_alloc_mutex_failed;
1002
1003	if (!page->page_ptr)
1004		goto err_page_already_freed;
1005
1006	index = page - alloc->pages;
1007	page_addr = (uintptr_t)alloc->buffer + index * PAGE_SIZE;
1008
1009	mm = alloc->mm;
1010	if (!mmget_not_zero(mm))
1011		goto err_mmget;
1012	if (!mmap_read_trylock(mm))
1013		goto err_mmap_read_lock_failed;
1014	vma = binder_alloc_get_vma(alloc);
1015
1016	list_lru_isolate(lru, item);
1017	spin_unlock(lock);
1018
1019	if (vma) {
1020		trace_binder_unmap_user_start(alloc, index);
1021
1022		zap_page_range(vma, page_addr, PAGE_SIZE);
1023
1024		trace_binder_unmap_user_end(alloc, index);
1025	}
1026	mmap_read_unlock(mm);
1027	mmput_async(mm);
1028
1029	trace_binder_unmap_kernel_start(alloc, index);
1030
1031	__free_page(page->page_ptr);
1032	page->page_ptr = NULL;
1033
1034	trace_binder_unmap_kernel_end(alloc, index);
1035
1036	spin_lock(lock);
1037	mutex_unlock(&alloc->mutex);
1038	return LRU_REMOVED_RETRY;
1039
1040err_mmap_read_lock_failed:
1041	mmput_async(mm);
1042err_mmget:
1043err_page_already_freed:
1044	mutex_unlock(&alloc->mutex);
1045err_get_alloc_mutex_failed:
1046	return LRU_SKIP;
1047}
1048
1049static unsigned long
1050binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1051{
1052	return list_lru_count(&binder_alloc_lru);
 
1053}
1054
1055static unsigned long
1056binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1057{
1058	return list_lru_walk(&binder_alloc_lru, binder_alloc_free_page,
 
 
1059			    NULL, sc->nr_to_scan);
 
1060}
1061
1062static struct shrinker binder_shrinker = {
1063	.count_objects = binder_shrink_count,
1064	.scan_objects = binder_shrink_scan,
1065	.seeks = DEFAULT_SEEKS,
1066};
1067
1068/**
1069 * binder_alloc_init() - called by binder_open() for per-proc initialization
1070 * @alloc: binder_alloc for this proc
1071 *
1072 * Called from binder_open() to initialize binder_alloc fields for
1073 * new binder proc
1074 */
1075void binder_alloc_init(struct binder_alloc *alloc)
1076{
1077	alloc->pid = current->group_leader->pid;
1078	alloc->mm = current->mm;
1079	mmgrab(alloc->mm);
1080	mutex_init(&alloc->mutex);
1081	INIT_LIST_HEAD(&alloc->buffers);
1082}
1083
1084int binder_alloc_shrinker_init(void)
1085{
1086	int ret = list_lru_init(&binder_alloc_lru);
1087
1088	if (ret == 0) {
1089		ret = register_shrinker(&binder_shrinker, "android-binder");
1090		if (ret)
1091			list_lru_destroy(&binder_alloc_lru);
1092	}
1093	return ret;
1094}
1095
1096/**
1097 * check_buffer() - verify that buffer/offset is safe to access
1098 * @alloc: binder_alloc for this proc
1099 * @buffer: binder buffer to be accessed
1100 * @offset: offset into @buffer data
1101 * @bytes: bytes to access from offset
1102 *
1103 * Check that the @offset/@bytes are within the size of the given
1104 * @buffer and that the buffer is currently active and not freeable.
1105 * Offsets must also be multiples of sizeof(u32). The kernel is
1106 * allowed to touch the buffer in two cases:
1107 *
1108 * 1) when the buffer is being created:
1109 *     (buffer->free == 0 && buffer->allow_user_free == 0)
1110 * 2) when the buffer is being torn down:
1111 *     (buffer->free == 0 && buffer->transaction == NULL).
1112 *
1113 * Return: true if the buffer is safe to access
1114 */
1115static inline bool check_buffer(struct binder_alloc *alloc,
1116				struct binder_buffer *buffer,
1117				binder_size_t offset, size_t bytes)
1118{
1119	size_t buffer_size = binder_alloc_buffer_size(alloc, buffer);
1120
1121	return buffer_size >= bytes &&
1122		offset <= buffer_size - bytes &&
1123		IS_ALIGNED(offset, sizeof(u32)) &&
1124		!buffer->free &&
1125		(!buffer->allow_user_free || !buffer->transaction);
1126}
1127
1128/**
1129 * binder_alloc_get_page() - get kernel pointer for given buffer offset
1130 * @alloc: binder_alloc for this proc
1131 * @buffer: binder buffer to be accessed
1132 * @buffer_offset: offset into @buffer data
1133 * @pgoffp: address to copy final page offset to
1134 *
1135 * Lookup the struct page corresponding to the address
1136 * at @buffer_offset into @buffer->user_data. If @pgoffp is not
1137 * NULL, the byte-offset into the page is written there.
1138 *
1139 * The caller is responsible to ensure that the offset points
1140 * to a valid address within the @buffer and that @buffer is
1141 * not freeable by the user. Since it can't be freed, we are
1142 * guaranteed that the corresponding elements of @alloc->pages[]
1143 * cannot change.
1144 *
1145 * Return: struct page
1146 */
1147static struct page *binder_alloc_get_page(struct binder_alloc *alloc,
1148					  struct binder_buffer *buffer,
1149					  binder_size_t buffer_offset,
1150					  pgoff_t *pgoffp)
1151{
1152	binder_size_t buffer_space_offset = buffer_offset +
1153		(buffer->user_data - alloc->buffer);
1154	pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK;
1155	size_t index = buffer_space_offset >> PAGE_SHIFT;
1156	struct binder_lru_page *lru_page;
1157
1158	lru_page = &alloc->pages[index];
1159	*pgoffp = pgoff;
1160	return lru_page->page_ptr;
1161}
1162
1163/**
1164 * binder_alloc_clear_buf() - zero out buffer
1165 * @alloc: binder_alloc for this proc
1166 * @buffer: binder buffer to be cleared
1167 *
1168 * memset the given buffer to 0
1169 */
1170static void binder_alloc_clear_buf(struct binder_alloc *alloc,
1171				   struct binder_buffer *buffer)
1172{
1173	size_t bytes = binder_alloc_buffer_size(alloc, buffer);
1174	binder_size_t buffer_offset = 0;
1175
1176	while (bytes) {
1177		unsigned long size;
1178		struct page *page;
1179		pgoff_t pgoff;
 
1180
1181		page = binder_alloc_get_page(alloc, buffer,
1182					     buffer_offset, &pgoff);
1183		size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1184		memset_page(page, pgoff, 0, size);
 
 
1185		bytes -= size;
1186		buffer_offset += size;
1187	}
1188}
1189
1190/**
1191 * binder_alloc_copy_user_to_buffer() - copy src user to tgt user
1192 * @alloc: binder_alloc for this proc
1193 * @buffer: binder buffer to be accessed
1194 * @buffer_offset: offset into @buffer data
1195 * @from: userspace pointer to source buffer
1196 * @bytes: bytes to copy
1197 *
1198 * Copy bytes from source userspace to target buffer.
1199 *
1200 * Return: bytes remaining to be copied
1201 */
1202unsigned long
1203binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc,
1204				 struct binder_buffer *buffer,
1205				 binder_size_t buffer_offset,
1206				 const void __user *from,
1207				 size_t bytes)
1208{
1209	if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1210		return bytes;
1211
1212	while (bytes) {
1213		unsigned long size;
1214		unsigned long ret;
1215		struct page *page;
1216		pgoff_t pgoff;
1217		void *kptr;
1218
1219		page = binder_alloc_get_page(alloc, buffer,
1220					     buffer_offset, &pgoff);
1221		size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1222		kptr = kmap_local_page(page) + pgoff;
1223		ret = copy_from_user(kptr, from, size);
1224		kunmap_local(kptr);
1225		if (ret)
1226			return bytes - size + ret;
1227		bytes -= size;
1228		from += size;
1229		buffer_offset += size;
1230	}
1231	return 0;
1232}
1233
1234static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc,
1235				       bool to_buffer,
1236				       struct binder_buffer *buffer,
1237				       binder_size_t buffer_offset,
1238				       void *ptr,
1239				       size_t bytes)
1240{
1241	/* All copies must be 32-bit aligned and 32-bit size */
1242	if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1243		return -EINVAL;
1244
1245	while (bytes) {
1246		unsigned long size;
1247		struct page *page;
1248		pgoff_t pgoff;
 
 
1249
1250		page = binder_alloc_get_page(alloc, buffer,
1251					     buffer_offset, &pgoff);
1252		size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
 
 
1253		if (to_buffer)
1254			memcpy_to_page(page, pgoff, ptr, size);
1255		else
1256			memcpy_from_page(ptr, page, pgoff, size);
 
 
 
 
 
1257		bytes -= size;
1258		pgoff = 0;
1259		ptr = ptr + size;
1260		buffer_offset += size;
1261	}
1262	return 0;
1263}
1264
1265int binder_alloc_copy_to_buffer(struct binder_alloc *alloc,
1266				struct binder_buffer *buffer,
1267				binder_size_t buffer_offset,
1268				void *src,
1269				size_t bytes)
1270{
1271	return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset,
1272					   src, bytes);
1273}
1274
1275int binder_alloc_copy_from_buffer(struct binder_alloc *alloc,
1276				  void *dest,
1277				  struct binder_buffer *buffer,
1278				  binder_size_t buffer_offset,
1279				  size_t bytes)
1280{
1281	return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset,
1282					   dest, bytes);
1283}
1284
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* binder_alloc.c
   3 *
   4 * Android IPC Subsystem
   5 *
   6 * Copyright (C) 2007-2017 Google, Inc.
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/list.h>
  12#include <linux/sched/mm.h>
  13#include <linux/module.h>
  14#include <linux/rtmutex.h>
  15#include <linux/rbtree.h>
  16#include <linux/seq_file.h>
  17#include <linux/vmalloc.h>
  18#include <linux/slab.h>
  19#include <linux/sched.h>
  20#include <linux/list_lru.h>
  21#include <linux/ratelimit.h>
  22#include <asm/cacheflush.h>
  23#include <linux/uaccess.h>
  24#include <linux/highmem.h>
  25#include <linux/sizes.h>
  26#include "binder_alloc.h"
  27#include "binder_trace.h"
  28
  29struct list_lru binder_alloc_lru;
  30
  31static DEFINE_MUTEX(binder_alloc_mmap_lock);
  32
  33enum {
  34	BINDER_DEBUG_USER_ERROR             = 1U << 0,
  35	BINDER_DEBUG_OPEN_CLOSE             = 1U << 1,
  36	BINDER_DEBUG_BUFFER_ALLOC           = 1U << 2,
  37	BINDER_DEBUG_BUFFER_ALLOC_ASYNC     = 1U << 3,
  38};
  39static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR;
  40
  41module_param_named(debug_mask, binder_alloc_debug_mask,
  42		   uint, 0644);
  43
  44#define binder_alloc_debug(mask, x...) \
  45	do { \
  46		if (binder_alloc_debug_mask & mask) \
  47			pr_info_ratelimited(x); \
  48	} while (0)
  49
  50static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer)
  51{
  52	return list_entry(buffer->entry.next, struct binder_buffer, entry);
  53}
  54
  55static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer)
  56{
  57	return list_entry(buffer->entry.prev, struct binder_buffer, entry);
  58}
  59
  60static size_t binder_alloc_buffer_size(struct binder_alloc *alloc,
  61				       struct binder_buffer *buffer)
  62{
  63	if (list_is_last(&buffer->entry, &alloc->buffers))
  64		return alloc->buffer + alloc->buffer_size - buffer->user_data;
  65	return binder_buffer_next(buffer)->user_data - buffer->user_data;
  66}
  67
  68static void binder_insert_free_buffer(struct binder_alloc *alloc,
  69				      struct binder_buffer *new_buffer)
  70{
  71	struct rb_node **p = &alloc->free_buffers.rb_node;
  72	struct rb_node *parent = NULL;
  73	struct binder_buffer *buffer;
  74	size_t buffer_size;
  75	size_t new_buffer_size;
  76
  77	BUG_ON(!new_buffer->free);
  78
  79	new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer);
  80
  81	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
  82		     "%d: add free buffer, size %zd, at %pK\n",
  83		      alloc->pid, new_buffer_size, new_buffer);
  84
  85	while (*p) {
  86		parent = *p;
  87		buffer = rb_entry(parent, struct binder_buffer, rb_node);
  88		BUG_ON(!buffer->free);
  89
  90		buffer_size = binder_alloc_buffer_size(alloc, buffer);
  91
  92		if (new_buffer_size < buffer_size)
  93			p = &parent->rb_left;
  94		else
  95			p = &parent->rb_right;
  96	}
  97	rb_link_node(&new_buffer->rb_node, parent, p);
  98	rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers);
  99}
 100
 101static void binder_insert_allocated_buffer_locked(
 102		struct binder_alloc *alloc, struct binder_buffer *new_buffer)
 103{
 104	struct rb_node **p = &alloc->allocated_buffers.rb_node;
 105	struct rb_node *parent = NULL;
 106	struct binder_buffer *buffer;
 107
 108	BUG_ON(new_buffer->free);
 109
 110	while (*p) {
 111		parent = *p;
 112		buffer = rb_entry(parent, struct binder_buffer, rb_node);
 113		BUG_ON(buffer->free);
 114
 115		if (new_buffer->user_data < buffer->user_data)
 116			p = &parent->rb_left;
 117		else if (new_buffer->user_data > buffer->user_data)
 118			p = &parent->rb_right;
 119		else
 120			BUG();
 121	}
 122	rb_link_node(&new_buffer->rb_node, parent, p);
 123	rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers);
 124}
 125
 126static struct binder_buffer *binder_alloc_prepare_to_free_locked(
 127		struct binder_alloc *alloc,
 128		uintptr_t user_ptr)
 129{
 130	struct rb_node *n = alloc->allocated_buffers.rb_node;
 131	struct binder_buffer *buffer;
 132	void __user *uptr;
 133
 134	uptr = (void __user *)user_ptr;
 135
 136	while (n) {
 137		buffer = rb_entry(n, struct binder_buffer, rb_node);
 138		BUG_ON(buffer->free);
 139
 140		if (uptr < buffer->user_data)
 141			n = n->rb_left;
 142		else if (uptr > buffer->user_data)
 143			n = n->rb_right;
 144		else {
 145			/*
 146			 * Guard against user threads attempting to
 147			 * free the buffer when in use by kernel or
 148			 * after it's already been freed.
 149			 */
 150			if (!buffer->allow_user_free)
 151				return ERR_PTR(-EPERM);
 152			buffer->allow_user_free = 0;
 153			return buffer;
 154		}
 155	}
 156	return NULL;
 157}
 158
 159/**
 160 * binder_alloc_prepare_to_free() - get buffer given user ptr
 161 * @alloc:	binder_alloc for this proc
 162 * @user_ptr:	User pointer to buffer data
 163 *
 164 * Validate userspace pointer to buffer data and return buffer corresponding to
 165 * that user pointer. Search the rb tree for buffer that matches user data
 166 * pointer.
 167 *
 168 * Return:	Pointer to buffer or NULL
 169 */
 170struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc,
 171						   uintptr_t user_ptr)
 172{
 173	struct binder_buffer *buffer;
 174
 175	mutex_lock(&alloc->mutex);
 176	buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr);
 177	mutex_unlock(&alloc->mutex);
 178	return buffer;
 179}
 180
 181static int binder_update_page_range(struct binder_alloc *alloc, int allocate,
 182				    void __user *start, void __user *end)
 183{
 184	void __user *page_addr;
 185	unsigned long user_page_addr;
 186	struct binder_lru_page *page;
 187	struct vm_area_struct *vma = NULL;
 188	struct mm_struct *mm = NULL;
 189	bool need_mm = false;
 190
 191	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 192		     "%d: %s pages %pK-%pK\n", alloc->pid,
 193		     allocate ? "allocate" : "free", start, end);
 194
 195	if (end <= start)
 196		return 0;
 197
 198	trace_binder_update_page_range(alloc, allocate, start, end);
 199
 200	if (allocate == 0)
 201		goto free_range;
 202
 203	for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
 204		page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE];
 205		if (!page->page_ptr) {
 206			need_mm = true;
 207			break;
 208		}
 209	}
 210
 211	if (need_mm && mmget_not_zero(alloc->vma_vm_mm))
 212		mm = alloc->vma_vm_mm;
 213
 214	if (mm) {
 215		mmap_read_lock(mm);
 216		vma = alloc->vma;
 217	}
 218
 219	if (!vma && need_mm) {
 220		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
 221				   "%d: binder_alloc_buf failed to map pages in userspace, no vma\n",
 222				   alloc->pid);
 223		goto err_no_vma;
 224	}
 225
 226	for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
 227		int ret;
 228		bool on_lru;
 229		size_t index;
 230
 231		index = (page_addr - alloc->buffer) / PAGE_SIZE;
 232		page = &alloc->pages[index];
 233
 234		if (page->page_ptr) {
 235			trace_binder_alloc_lru_start(alloc, index);
 236
 237			on_lru = list_lru_del(&binder_alloc_lru, &page->lru);
 238			WARN_ON(!on_lru);
 239
 240			trace_binder_alloc_lru_end(alloc, index);
 241			continue;
 242		}
 243
 244		if (WARN_ON(!vma))
 245			goto err_page_ptr_cleared;
 246
 247		trace_binder_alloc_page_start(alloc, index);
 248		page->page_ptr = alloc_page(GFP_KERNEL |
 249					    __GFP_HIGHMEM |
 250					    __GFP_ZERO);
 251		if (!page->page_ptr) {
 252			pr_err("%d: binder_alloc_buf failed for page at %pK\n",
 253				alloc->pid, page_addr);
 254			goto err_alloc_page_failed;
 255		}
 256		page->alloc = alloc;
 257		INIT_LIST_HEAD(&page->lru);
 258
 259		user_page_addr = (uintptr_t)page_addr;
 260		ret = vm_insert_page(vma, user_page_addr, page[0].page_ptr);
 261		if (ret) {
 262			pr_err("%d: binder_alloc_buf failed to map page at %lx in userspace\n",
 263			       alloc->pid, user_page_addr);
 264			goto err_vm_insert_page_failed;
 265		}
 266
 267		if (index + 1 > alloc->pages_high)
 268			alloc->pages_high = index + 1;
 269
 270		trace_binder_alloc_page_end(alloc, index);
 271	}
 272	if (mm) {
 273		mmap_read_unlock(mm);
 274		mmput(mm);
 275	}
 276	return 0;
 277
 278free_range:
 279	for (page_addr = end - PAGE_SIZE; 1; page_addr -= PAGE_SIZE) {
 280		bool ret;
 281		size_t index;
 282
 283		index = (page_addr - alloc->buffer) / PAGE_SIZE;
 284		page = &alloc->pages[index];
 285
 286		trace_binder_free_lru_start(alloc, index);
 287
 288		ret = list_lru_add(&binder_alloc_lru, &page->lru);
 289		WARN_ON(!ret);
 290
 291		trace_binder_free_lru_end(alloc, index);
 292		if (page_addr == start)
 293			break;
 294		continue;
 295
 296err_vm_insert_page_failed:
 297		__free_page(page->page_ptr);
 298		page->page_ptr = NULL;
 299err_alloc_page_failed:
 300err_page_ptr_cleared:
 301		if (page_addr == start)
 302			break;
 303	}
 304err_no_vma:
 305	if (mm) {
 306		mmap_read_unlock(mm);
 307		mmput(mm);
 308	}
 309	return vma ? -ENOMEM : -ESRCH;
 310}
 311
 312
 313static inline void binder_alloc_set_vma(struct binder_alloc *alloc,
 314		struct vm_area_struct *vma)
 315{
 316	if (vma)
 317		alloc->vma_vm_mm = vma->vm_mm;
 318	/*
 319	 * If we see alloc->vma is not NULL, buffer data structures set up
 320	 * completely. Look at smp_rmb side binder_alloc_get_vma.
 321	 * We also want to guarantee new alloc->vma_vm_mm is always visible
 322	 * if alloc->vma is set.
 323	 */
 324	smp_wmb();
 325	alloc->vma = vma;
 326}
 327
 328static inline struct vm_area_struct *binder_alloc_get_vma(
 329		struct binder_alloc *alloc)
 330{
 331	struct vm_area_struct *vma = NULL;
 332
 333	if (alloc->vma) {
 334		/* Look at description in binder_alloc_set_vma */
 335		smp_rmb();
 336		vma = alloc->vma;
 337	}
 338	return vma;
 339}
 340
 341static bool debug_low_async_space_locked(struct binder_alloc *alloc, int pid)
 342{
 343	/*
 344	 * Find the amount and size of buffers allocated by the current caller;
 345	 * The idea is that once we cross the threshold, whoever is responsible
 346	 * for the low async space is likely to try to send another async txn,
 347	 * and at some point we'll catch them in the act. This is more efficient
 348	 * than keeping a map per pid.
 349	 */
 350	struct rb_node *n;
 351	struct binder_buffer *buffer;
 352	size_t total_alloc_size = 0;
 353	size_t num_buffers = 0;
 354
 355	for (n = rb_first(&alloc->allocated_buffers); n != NULL;
 356		 n = rb_next(n)) {
 357		buffer = rb_entry(n, struct binder_buffer, rb_node);
 358		if (buffer->pid != pid)
 359			continue;
 360		if (!buffer->async_transaction)
 361			continue;
 362		total_alloc_size += binder_alloc_buffer_size(alloc, buffer)
 363			+ sizeof(struct binder_buffer);
 364		num_buffers++;
 365	}
 366
 367	/*
 368	 * Warn if this pid has more than 50 transactions, or more than 50% of
 369	 * async space (which is 25% of total buffer size). Oneway spam is only
 370	 * detected when the threshold is exceeded.
 371	 */
 372	if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) {
 373		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
 374			     "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n",
 375			      alloc->pid, pid, num_buffers, total_alloc_size);
 376		if (!alloc->oneway_spam_detected) {
 377			alloc->oneway_spam_detected = true;
 378			return true;
 379		}
 380	}
 381	return false;
 382}
 383
 384static struct binder_buffer *binder_alloc_new_buf_locked(
 385				struct binder_alloc *alloc,
 386				size_t data_size,
 387				size_t offsets_size,
 388				size_t extra_buffers_size,
 389				int is_async,
 390				int pid)
 391{
 392	struct rb_node *n = alloc->free_buffers.rb_node;
 393	struct binder_buffer *buffer;
 394	size_t buffer_size;
 395	struct rb_node *best_fit = NULL;
 396	void __user *has_page_addr;
 397	void __user *end_page_addr;
 398	size_t size, data_offsets_size;
 399	int ret;
 400
 
 401	if (!binder_alloc_get_vma(alloc)) {
 
 402		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
 403				   "%d: binder_alloc_buf, no vma\n",
 404				   alloc->pid);
 405		return ERR_PTR(-ESRCH);
 406	}
 
 407
 408	data_offsets_size = ALIGN(data_size, sizeof(void *)) +
 409		ALIGN(offsets_size, sizeof(void *));
 410
 411	if (data_offsets_size < data_size || data_offsets_size < offsets_size) {
 412		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 413				"%d: got transaction with invalid size %zd-%zd\n",
 414				alloc->pid, data_size, offsets_size);
 415		return ERR_PTR(-EINVAL);
 416	}
 417	size = data_offsets_size + ALIGN(extra_buffers_size, sizeof(void *));
 418	if (size < data_offsets_size || size < extra_buffers_size) {
 419		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 420				"%d: got transaction with invalid extra_buffers_size %zd\n",
 421				alloc->pid, extra_buffers_size);
 422		return ERR_PTR(-EINVAL);
 423	}
 424	if (is_async &&
 425	    alloc->free_async_space < size + sizeof(struct binder_buffer)) {
 426		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 427			     "%d: binder_alloc_buf size %zd failed, no async space left\n",
 428			      alloc->pid, size);
 429		return ERR_PTR(-ENOSPC);
 430	}
 431
 432	/* Pad 0-size buffers so they get assigned unique addresses */
 433	size = max(size, sizeof(void *));
 434
 435	while (n) {
 436		buffer = rb_entry(n, struct binder_buffer, rb_node);
 437		BUG_ON(!buffer->free);
 438		buffer_size = binder_alloc_buffer_size(alloc, buffer);
 439
 440		if (size < buffer_size) {
 441			best_fit = n;
 442			n = n->rb_left;
 443		} else if (size > buffer_size)
 444			n = n->rb_right;
 445		else {
 446			best_fit = n;
 447			break;
 448		}
 449	}
 450	if (best_fit == NULL) {
 451		size_t allocated_buffers = 0;
 452		size_t largest_alloc_size = 0;
 453		size_t total_alloc_size = 0;
 454		size_t free_buffers = 0;
 455		size_t largest_free_size = 0;
 456		size_t total_free_size = 0;
 457
 458		for (n = rb_first(&alloc->allocated_buffers); n != NULL;
 459		     n = rb_next(n)) {
 460			buffer = rb_entry(n, struct binder_buffer, rb_node);
 461			buffer_size = binder_alloc_buffer_size(alloc, buffer);
 462			allocated_buffers++;
 463			total_alloc_size += buffer_size;
 464			if (buffer_size > largest_alloc_size)
 465				largest_alloc_size = buffer_size;
 466		}
 467		for (n = rb_first(&alloc->free_buffers); n != NULL;
 468		     n = rb_next(n)) {
 469			buffer = rb_entry(n, struct binder_buffer, rb_node);
 470			buffer_size = binder_alloc_buffer_size(alloc, buffer);
 471			free_buffers++;
 472			total_free_size += buffer_size;
 473			if (buffer_size > largest_free_size)
 474				largest_free_size = buffer_size;
 475		}
 476		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
 477				   "%d: binder_alloc_buf size %zd failed, no address space\n",
 478				   alloc->pid, size);
 479		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
 480				   "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n",
 481				   total_alloc_size, allocated_buffers,
 482				   largest_alloc_size, total_free_size,
 483				   free_buffers, largest_free_size);
 484		return ERR_PTR(-ENOSPC);
 485	}
 486	if (n == NULL) {
 487		buffer = rb_entry(best_fit, struct binder_buffer, rb_node);
 488		buffer_size = binder_alloc_buffer_size(alloc, buffer);
 489	}
 490
 491	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 492		     "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n",
 493		      alloc->pid, size, buffer, buffer_size);
 494
 495	has_page_addr = (void __user *)
 496		(((uintptr_t)buffer->user_data + buffer_size) & PAGE_MASK);
 497	WARN_ON(n && buffer_size != size);
 498	end_page_addr =
 499		(void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data + size);
 500	if (end_page_addr > has_page_addr)
 501		end_page_addr = has_page_addr;
 502	ret = binder_update_page_range(alloc, 1, (void __user *)
 503		PAGE_ALIGN((uintptr_t)buffer->user_data), end_page_addr);
 504	if (ret)
 505		return ERR_PTR(ret);
 506
 507	if (buffer_size != size) {
 508		struct binder_buffer *new_buffer;
 509
 510		new_buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
 511		if (!new_buffer) {
 512			pr_err("%s: %d failed to alloc new buffer struct\n",
 513			       __func__, alloc->pid);
 514			goto err_alloc_buf_struct_failed;
 515		}
 516		new_buffer->user_data = (u8 __user *)buffer->user_data + size;
 517		list_add(&new_buffer->entry, &buffer->entry);
 518		new_buffer->free = 1;
 519		binder_insert_free_buffer(alloc, new_buffer);
 520	}
 521
 522	rb_erase(best_fit, &alloc->free_buffers);
 523	buffer->free = 0;
 524	buffer->allow_user_free = 0;
 525	binder_insert_allocated_buffer_locked(alloc, buffer);
 526	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 527		     "%d: binder_alloc_buf size %zd got %pK\n",
 528		      alloc->pid, size, buffer);
 529	buffer->data_size = data_size;
 530	buffer->offsets_size = offsets_size;
 531	buffer->async_transaction = is_async;
 532	buffer->extra_buffers_size = extra_buffers_size;
 533	buffer->pid = pid;
 534	buffer->oneway_spam_suspect = false;
 535	if (is_async) {
 536		alloc->free_async_space -= size + sizeof(struct binder_buffer);
 537		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
 538			     "%d: binder_alloc_buf size %zd async free %zd\n",
 539			      alloc->pid, size, alloc->free_async_space);
 540		if (alloc->free_async_space < alloc->buffer_size / 10) {
 541			/*
 542			 * Start detecting spammers once we have less than 20%
 543			 * of async space left (which is less than 10% of total
 544			 * buffer size).
 545			 */
 546			buffer->oneway_spam_suspect = debug_low_async_space_locked(alloc, pid);
 547		} else {
 548			alloc->oneway_spam_detected = false;
 549		}
 550	}
 551	return buffer;
 552
 553err_alloc_buf_struct_failed:
 554	binder_update_page_range(alloc, 0, (void __user *)
 555				 PAGE_ALIGN((uintptr_t)buffer->user_data),
 556				 end_page_addr);
 557	return ERR_PTR(-ENOMEM);
 558}
 559
 560/**
 561 * binder_alloc_new_buf() - Allocate a new binder buffer
 562 * @alloc:              binder_alloc for this proc
 563 * @data_size:          size of user data buffer
 564 * @offsets_size:       user specified buffer offset
 565 * @extra_buffers_size: size of extra space for meta-data (eg, security context)
 566 * @is_async:           buffer for async transaction
 567 * @pid:				pid to attribute allocation to (used for debugging)
 568 *
 569 * Allocate a new buffer given the requested sizes. Returns
 570 * the kernel version of the buffer pointer. The size allocated
 571 * is the sum of the three given sizes (each rounded up to
 572 * pointer-sized boundary)
 573 *
 574 * Return:	The allocated buffer or %NULL if error
 575 */
 576struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc,
 577					   size_t data_size,
 578					   size_t offsets_size,
 579					   size_t extra_buffers_size,
 580					   int is_async,
 581					   int pid)
 582{
 583	struct binder_buffer *buffer;
 584
 585	mutex_lock(&alloc->mutex);
 586	buffer = binder_alloc_new_buf_locked(alloc, data_size, offsets_size,
 587					     extra_buffers_size, is_async, pid);
 588	mutex_unlock(&alloc->mutex);
 589	return buffer;
 590}
 591
 592static void __user *buffer_start_page(struct binder_buffer *buffer)
 593{
 594	return (void __user *)((uintptr_t)buffer->user_data & PAGE_MASK);
 595}
 596
 597static void __user *prev_buffer_end_page(struct binder_buffer *buffer)
 598{
 599	return (void __user *)
 600		(((uintptr_t)(buffer->user_data) - 1) & PAGE_MASK);
 601}
 602
 603static void binder_delete_free_buffer(struct binder_alloc *alloc,
 604				      struct binder_buffer *buffer)
 605{
 606	struct binder_buffer *prev, *next = NULL;
 607	bool to_free = true;
 608
 609	BUG_ON(alloc->buffers.next == &buffer->entry);
 610	prev = binder_buffer_prev(buffer);
 611	BUG_ON(!prev->free);
 612	if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) {
 613		to_free = false;
 614		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 615				   "%d: merge free, buffer %pK share page with %pK\n",
 616				   alloc->pid, buffer->user_data,
 617				   prev->user_data);
 618	}
 619
 620	if (!list_is_last(&buffer->entry, &alloc->buffers)) {
 621		next = binder_buffer_next(buffer);
 622		if (buffer_start_page(next) == buffer_start_page(buffer)) {
 623			to_free = false;
 624			binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 625					   "%d: merge free, buffer %pK share page with %pK\n",
 626					   alloc->pid,
 627					   buffer->user_data,
 628					   next->user_data);
 629		}
 630	}
 631
 632	if (PAGE_ALIGNED(buffer->user_data)) {
 633		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 634				   "%d: merge free, buffer start %pK is page aligned\n",
 635				   alloc->pid, buffer->user_data);
 636		to_free = false;
 637	}
 638
 639	if (to_free) {
 640		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 641				   "%d: merge free, buffer %pK do not share page with %pK or %pK\n",
 642				   alloc->pid, buffer->user_data,
 643				   prev->user_data,
 644				   next ? next->user_data : NULL);
 645		binder_update_page_range(alloc, 0, buffer_start_page(buffer),
 646					 buffer_start_page(buffer) + PAGE_SIZE);
 647	}
 648	list_del(&buffer->entry);
 649	kfree(buffer);
 650}
 651
 652static void binder_free_buf_locked(struct binder_alloc *alloc,
 653				   struct binder_buffer *buffer)
 654{
 655	size_t size, buffer_size;
 656
 657	buffer_size = binder_alloc_buffer_size(alloc, buffer);
 658
 659	size = ALIGN(buffer->data_size, sizeof(void *)) +
 660		ALIGN(buffer->offsets_size, sizeof(void *)) +
 661		ALIGN(buffer->extra_buffers_size, sizeof(void *));
 662
 663	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 664		     "%d: binder_free_buf %pK size %zd buffer_size %zd\n",
 665		      alloc->pid, buffer, size, buffer_size);
 666
 667	BUG_ON(buffer->free);
 668	BUG_ON(size > buffer_size);
 669	BUG_ON(buffer->transaction != NULL);
 670	BUG_ON(buffer->user_data < alloc->buffer);
 671	BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size);
 672
 673	if (buffer->async_transaction) {
 674		alloc->free_async_space += size + sizeof(struct binder_buffer);
 675
 676		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
 677			     "%d: binder_free_buf size %zd async free %zd\n",
 678			      alloc->pid, size, alloc->free_async_space);
 679	}
 680
 681	binder_update_page_range(alloc, 0,
 682		(void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data),
 683		(void __user *)(((uintptr_t)
 684			  buffer->user_data + buffer_size) & PAGE_MASK));
 685
 686	rb_erase(&buffer->rb_node, &alloc->allocated_buffers);
 687	buffer->free = 1;
 688	if (!list_is_last(&buffer->entry, &alloc->buffers)) {
 689		struct binder_buffer *next = binder_buffer_next(buffer);
 690
 691		if (next->free) {
 692			rb_erase(&next->rb_node, &alloc->free_buffers);
 693			binder_delete_free_buffer(alloc, next);
 694		}
 695	}
 696	if (alloc->buffers.next != &buffer->entry) {
 697		struct binder_buffer *prev = binder_buffer_prev(buffer);
 698
 699		if (prev->free) {
 700			binder_delete_free_buffer(alloc, buffer);
 701			rb_erase(&prev->rb_node, &alloc->free_buffers);
 702			buffer = prev;
 703		}
 704	}
 705	binder_insert_free_buffer(alloc, buffer);
 706}
 707
 708static void binder_alloc_clear_buf(struct binder_alloc *alloc,
 709				   struct binder_buffer *buffer);
 710/**
 711 * binder_alloc_free_buf() - free a binder buffer
 712 * @alloc:	binder_alloc for this proc
 713 * @buffer:	kernel pointer to buffer
 714 *
 715 * Free the buffer allocated via binder_alloc_new_buf()
 716 */
 717void binder_alloc_free_buf(struct binder_alloc *alloc,
 718			    struct binder_buffer *buffer)
 719{
 720	/*
 721	 * We could eliminate the call to binder_alloc_clear_buf()
 722	 * from binder_alloc_deferred_release() by moving this to
 723	 * binder_alloc_free_buf_locked(). However, that could
 724	 * increase contention for the alloc mutex if clear_on_free
 725	 * is used frequently for large buffers. The mutex is not
 726	 * needed for correctness here.
 727	 */
 728	if (buffer->clear_on_free) {
 729		binder_alloc_clear_buf(alloc, buffer);
 730		buffer->clear_on_free = false;
 731	}
 732	mutex_lock(&alloc->mutex);
 733	binder_free_buf_locked(alloc, buffer);
 734	mutex_unlock(&alloc->mutex);
 735}
 736
 737/**
 738 * binder_alloc_mmap_handler() - map virtual address space for proc
 739 * @alloc:	alloc structure for this proc
 740 * @vma:	vma passed to mmap()
 741 *
 742 * Called by binder_mmap() to initialize the space specified in
 743 * vma for allocating binder buffers
 744 *
 745 * Return:
 746 *      0 = success
 747 *      -EBUSY = address space already mapped
 748 *      -ENOMEM = failed to map memory to given address space
 749 */
 750int binder_alloc_mmap_handler(struct binder_alloc *alloc,
 751			      struct vm_area_struct *vma)
 752{
 753	int ret;
 754	const char *failure_string;
 755	struct binder_buffer *buffer;
 756
 
 
 
 
 
 
 757	mutex_lock(&binder_alloc_mmap_lock);
 758	if (alloc->buffer_size) {
 759		ret = -EBUSY;
 760		failure_string = "already mapped";
 761		goto err_already_mapped;
 762	}
 763	alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start,
 764				   SZ_4M);
 765	mutex_unlock(&binder_alloc_mmap_lock);
 766
 767	alloc->buffer = (void __user *)vma->vm_start;
 768
 769	alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE,
 770			       sizeof(alloc->pages[0]),
 771			       GFP_KERNEL);
 772	if (alloc->pages == NULL) {
 773		ret = -ENOMEM;
 774		failure_string = "alloc page array";
 775		goto err_alloc_pages_failed;
 776	}
 777
 778	buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
 779	if (!buffer) {
 780		ret = -ENOMEM;
 781		failure_string = "alloc buffer struct";
 782		goto err_alloc_buf_struct_failed;
 783	}
 784
 785	buffer->user_data = alloc->buffer;
 786	list_add(&buffer->entry, &alloc->buffers);
 787	buffer->free = 1;
 788	binder_insert_free_buffer(alloc, buffer);
 789	alloc->free_async_space = alloc->buffer_size / 2;
 790	binder_alloc_set_vma(alloc, vma);
 791	mmgrab(alloc->vma_vm_mm);
 792
 793	return 0;
 794
 795err_alloc_buf_struct_failed:
 796	kfree(alloc->pages);
 797	alloc->pages = NULL;
 798err_alloc_pages_failed:
 799	alloc->buffer = NULL;
 800	mutex_lock(&binder_alloc_mmap_lock);
 801	alloc->buffer_size = 0;
 802err_already_mapped:
 803	mutex_unlock(&binder_alloc_mmap_lock);
 
 804	binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
 805			   "%s: %d %lx-%lx %s failed %d\n", __func__,
 806			   alloc->pid, vma->vm_start, vma->vm_end,
 807			   failure_string, ret);
 808	return ret;
 809}
 810
 811
 812void binder_alloc_deferred_release(struct binder_alloc *alloc)
 813{
 814	struct rb_node *n;
 815	int buffers, page_count;
 816	struct binder_buffer *buffer;
 817
 818	buffers = 0;
 819	mutex_lock(&alloc->mutex);
 820	BUG_ON(alloc->vma);
 
 821
 822	while ((n = rb_first(&alloc->allocated_buffers))) {
 823		buffer = rb_entry(n, struct binder_buffer, rb_node);
 824
 825		/* Transaction should already have been freed */
 826		BUG_ON(buffer->transaction);
 827
 828		if (buffer->clear_on_free) {
 829			binder_alloc_clear_buf(alloc, buffer);
 830			buffer->clear_on_free = false;
 831		}
 832		binder_free_buf_locked(alloc, buffer);
 833		buffers++;
 834	}
 835
 836	while (!list_empty(&alloc->buffers)) {
 837		buffer = list_first_entry(&alloc->buffers,
 838					  struct binder_buffer, entry);
 839		WARN_ON(!buffer->free);
 840
 841		list_del(&buffer->entry);
 842		WARN_ON_ONCE(!list_empty(&alloc->buffers));
 843		kfree(buffer);
 844	}
 845
 846	page_count = 0;
 847	if (alloc->pages) {
 848		int i;
 849
 850		for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
 851			void __user *page_addr;
 852			bool on_lru;
 853
 854			if (!alloc->pages[i].page_ptr)
 855				continue;
 856
 857			on_lru = list_lru_del(&binder_alloc_lru,
 858					      &alloc->pages[i].lru);
 859			page_addr = alloc->buffer + i * PAGE_SIZE;
 860			binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 861				     "%s: %d: page %d at %pK %s\n",
 862				     __func__, alloc->pid, i, page_addr,
 863				     on_lru ? "on lru" : "active");
 864			__free_page(alloc->pages[i].page_ptr);
 865			page_count++;
 866		}
 867		kfree(alloc->pages);
 868	}
 869	mutex_unlock(&alloc->mutex);
 870	if (alloc->vma_vm_mm)
 871		mmdrop(alloc->vma_vm_mm);
 872
 873	binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE,
 874		     "%s: %d buffers %d, pages %d\n",
 875		     __func__, alloc->pid, buffers, page_count);
 876}
 877
 878static void print_binder_buffer(struct seq_file *m, const char *prefix,
 879				struct binder_buffer *buffer)
 880{
 881	seq_printf(m, "%s %d: %pK size %zd:%zd:%zd %s\n",
 882		   prefix, buffer->debug_id, buffer->user_data,
 883		   buffer->data_size, buffer->offsets_size,
 884		   buffer->extra_buffers_size,
 885		   buffer->transaction ? "active" : "delivered");
 886}
 887
 888/**
 889 * binder_alloc_print_allocated() - print buffer info
 890 * @m:     seq_file for output via seq_printf()
 891 * @alloc: binder_alloc for this proc
 892 *
 893 * Prints information about every buffer associated with
 894 * the binder_alloc state to the given seq_file
 895 */
 896void binder_alloc_print_allocated(struct seq_file *m,
 897				  struct binder_alloc *alloc)
 898{
 899	struct rb_node *n;
 900
 901	mutex_lock(&alloc->mutex);
 902	for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
 903		print_binder_buffer(m, "  buffer",
 904				    rb_entry(n, struct binder_buffer, rb_node));
 905	mutex_unlock(&alloc->mutex);
 906}
 907
 908/**
 909 * binder_alloc_print_pages() - print page usage
 910 * @m:     seq_file for output via seq_printf()
 911 * @alloc: binder_alloc for this proc
 912 */
 913void binder_alloc_print_pages(struct seq_file *m,
 914			      struct binder_alloc *alloc)
 915{
 916	struct binder_lru_page *page;
 917	int i;
 918	int active = 0;
 919	int lru = 0;
 920	int free = 0;
 921
 922	mutex_lock(&alloc->mutex);
 923	/*
 924	 * Make sure the binder_alloc is fully initialized, otherwise we might
 925	 * read inconsistent state.
 926	 */
 927	if (binder_alloc_get_vma(alloc) != NULL) {
 928		for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
 929			page = &alloc->pages[i];
 930			if (!page->page_ptr)
 931				free++;
 932			else if (list_empty(&page->lru))
 933				active++;
 934			else
 935				lru++;
 936		}
 
 
 
 
 
 
 937	}
 
 
 938	mutex_unlock(&alloc->mutex);
 939	seq_printf(m, "  pages: %d:%d:%d\n", active, lru, free);
 940	seq_printf(m, "  pages high watermark: %zu\n", alloc->pages_high);
 941}
 942
 943/**
 944 * binder_alloc_get_allocated_count() - return count of buffers
 945 * @alloc: binder_alloc for this proc
 946 *
 947 * Return: count of allocated buffers
 948 */
 949int binder_alloc_get_allocated_count(struct binder_alloc *alloc)
 950{
 951	struct rb_node *n;
 952	int count = 0;
 953
 954	mutex_lock(&alloc->mutex);
 955	for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
 956		count++;
 957	mutex_unlock(&alloc->mutex);
 958	return count;
 959}
 960
 961
 962/**
 963 * binder_alloc_vma_close() - invalidate address space
 964 * @alloc: binder_alloc for this proc
 965 *
 966 * Called from binder_vma_close() when releasing address space.
 967 * Clears alloc->vma to prevent new incoming transactions from
 968 * allocating more buffers.
 969 */
 970void binder_alloc_vma_close(struct binder_alloc *alloc)
 971{
 972	binder_alloc_set_vma(alloc, NULL);
 973}
 974
 975/**
 976 * binder_alloc_free_page() - shrinker callback to free pages
 977 * @item:   item to free
 978 * @lock:   lock protecting the item
 979 * @cb_arg: callback argument
 980 *
 981 * Called from list_lru_walk() in binder_shrink_scan() to free
 982 * up pages when the system is under memory pressure.
 983 */
 984enum lru_status binder_alloc_free_page(struct list_head *item,
 985				       struct list_lru_one *lru,
 986				       spinlock_t *lock,
 987				       void *cb_arg)
 988	__must_hold(lock)
 989{
 990	struct mm_struct *mm = NULL;
 991	struct binder_lru_page *page = container_of(item,
 992						    struct binder_lru_page,
 993						    lru);
 994	struct binder_alloc *alloc;
 995	uintptr_t page_addr;
 996	size_t index;
 997	struct vm_area_struct *vma;
 998
 999	alloc = page->alloc;
1000	if (!mutex_trylock(&alloc->mutex))
1001		goto err_get_alloc_mutex_failed;
1002
1003	if (!page->page_ptr)
1004		goto err_page_already_freed;
1005
1006	index = page - alloc->pages;
1007	page_addr = (uintptr_t)alloc->buffer + index * PAGE_SIZE;
1008
1009	mm = alloc->vma_vm_mm;
1010	if (!mmget_not_zero(mm))
1011		goto err_mmget;
1012	if (!mmap_read_trylock(mm))
1013		goto err_mmap_read_lock_failed;
1014	vma = binder_alloc_get_vma(alloc);
1015
1016	list_lru_isolate(lru, item);
1017	spin_unlock(lock);
1018
1019	if (vma) {
1020		trace_binder_unmap_user_start(alloc, index);
1021
1022		zap_page_range(vma, page_addr, PAGE_SIZE);
1023
1024		trace_binder_unmap_user_end(alloc, index);
1025	}
1026	mmap_read_unlock(mm);
1027	mmput_async(mm);
1028
1029	trace_binder_unmap_kernel_start(alloc, index);
1030
1031	__free_page(page->page_ptr);
1032	page->page_ptr = NULL;
1033
1034	trace_binder_unmap_kernel_end(alloc, index);
1035
1036	spin_lock(lock);
1037	mutex_unlock(&alloc->mutex);
1038	return LRU_REMOVED_RETRY;
1039
1040err_mmap_read_lock_failed:
1041	mmput_async(mm);
1042err_mmget:
1043err_page_already_freed:
1044	mutex_unlock(&alloc->mutex);
1045err_get_alloc_mutex_failed:
1046	return LRU_SKIP;
1047}
1048
1049static unsigned long
1050binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1051{
1052	unsigned long ret = list_lru_count(&binder_alloc_lru);
1053	return ret;
1054}
1055
1056static unsigned long
1057binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1058{
1059	unsigned long ret;
1060
1061	ret = list_lru_walk(&binder_alloc_lru, binder_alloc_free_page,
1062			    NULL, sc->nr_to_scan);
1063	return ret;
1064}
1065
1066static struct shrinker binder_shrinker = {
1067	.count_objects = binder_shrink_count,
1068	.scan_objects = binder_shrink_scan,
1069	.seeks = DEFAULT_SEEKS,
1070};
1071
1072/**
1073 * binder_alloc_init() - called by binder_open() for per-proc initialization
1074 * @alloc: binder_alloc for this proc
1075 *
1076 * Called from binder_open() to initialize binder_alloc fields for
1077 * new binder proc
1078 */
1079void binder_alloc_init(struct binder_alloc *alloc)
1080{
1081	alloc->pid = current->group_leader->pid;
 
 
1082	mutex_init(&alloc->mutex);
1083	INIT_LIST_HEAD(&alloc->buffers);
1084}
1085
1086int binder_alloc_shrinker_init(void)
1087{
1088	int ret = list_lru_init(&binder_alloc_lru);
1089
1090	if (ret == 0) {
1091		ret = register_shrinker(&binder_shrinker);
1092		if (ret)
1093			list_lru_destroy(&binder_alloc_lru);
1094	}
1095	return ret;
1096}
1097
1098/**
1099 * check_buffer() - verify that buffer/offset is safe to access
1100 * @alloc: binder_alloc for this proc
1101 * @buffer: binder buffer to be accessed
1102 * @offset: offset into @buffer data
1103 * @bytes: bytes to access from offset
1104 *
1105 * Check that the @offset/@bytes are within the size of the given
1106 * @buffer and that the buffer is currently active and not freeable.
1107 * Offsets must also be multiples of sizeof(u32). The kernel is
1108 * allowed to touch the buffer in two cases:
1109 *
1110 * 1) when the buffer is being created:
1111 *     (buffer->free == 0 && buffer->allow_user_free == 0)
1112 * 2) when the buffer is being torn down:
1113 *     (buffer->free == 0 && buffer->transaction == NULL).
1114 *
1115 * Return: true if the buffer is safe to access
1116 */
1117static inline bool check_buffer(struct binder_alloc *alloc,
1118				struct binder_buffer *buffer,
1119				binder_size_t offset, size_t bytes)
1120{
1121	size_t buffer_size = binder_alloc_buffer_size(alloc, buffer);
1122
1123	return buffer_size >= bytes &&
1124		offset <= buffer_size - bytes &&
1125		IS_ALIGNED(offset, sizeof(u32)) &&
1126		!buffer->free &&
1127		(!buffer->allow_user_free || !buffer->transaction);
1128}
1129
1130/**
1131 * binder_alloc_get_page() - get kernel pointer for given buffer offset
1132 * @alloc: binder_alloc for this proc
1133 * @buffer: binder buffer to be accessed
1134 * @buffer_offset: offset into @buffer data
1135 * @pgoffp: address to copy final page offset to
1136 *
1137 * Lookup the struct page corresponding to the address
1138 * at @buffer_offset into @buffer->user_data. If @pgoffp is not
1139 * NULL, the byte-offset into the page is written there.
1140 *
1141 * The caller is responsible to ensure that the offset points
1142 * to a valid address within the @buffer and that @buffer is
1143 * not freeable by the user. Since it can't be freed, we are
1144 * guaranteed that the corresponding elements of @alloc->pages[]
1145 * cannot change.
1146 *
1147 * Return: struct page
1148 */
1149static struct page *binder_alloc_get_page(struct binder_alloc *alloc,
1150					  struct binder_buffer *buffer,
1151					  binder_size_t buffer_offset,
1152					  pgoff_t *pgoffp)
1153{
1154	binder_size_t buffer_space_offset = buffer_offset +
1155		(buffer->user_data - alloc->buffer);
1156	pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK;
1157	size_t index = buffer_space_offset >> PAGE_SHIFT;
1158	struct binder_lru_page *lru_page;
1159
1160	lru_page = &alloc->pages[index];
1161	*pgoffp = pgoff;
1162	return lru_page->page_ptr;
1163}
1164
1165/**
1166 * binder_alloc_clear_buf() - zero out buffer
1167 * @alloc: binder_alloc for this proc
1168 * @buffer: binder buffer to be cleared
1169 *
1170 * memset the given buffer to 0
1171 */
1172static void binder_alloc_clear_buf(struct binder_alloc *alloc,
1173				   struct binder_buffer *buffer)
1174{
1175	size_t bytes = binder_alloc_buffer_size(alloc, buffer);
1176	binder_size_t buffer_offset = 0;
1177
1178	while (bytes) {
1179		unsigned long size;
1180		struct page *page;
1181		pgoff_t pgoff;
1182		void *kptr;
1183
1184		page = binder_alloc_get_page(alloc, buffer,
1185					     buffer_offset, &pgoff);
1186		size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1187		kptr = kmap(page) + pgoff;
1188		memset(kptr, 0, size);
1189		kunmap(page);
1190		bytes -= size;
1191		buffer_offset += size;
1192	}
1193}
1194
1195/**
1196 * binder_alloc_copy_user_to_buffer() - copy src user to tgt user
1197 * @alloc: binder_alloc for this proc
1198 * @buffer: binder buffer to be accessed
1199 * @buffer_offset: offset into @buffer data
1200 * @from: userspace pointer to source buffer
1201 * @bytes: bytes to copy
1202 *
1203 * Copy bytes from source userspace to target buffer.
1204 *
1205 * Return: bytes remaining to be copied
1206 */
1207unsigned long
1208binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc,
1209				 struct binder_buffer *buffer,
1210				 binder_size_t buffer_offset,
1211				 const void __user *from,
1212				 size_t bytes)
1213{
1214	if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1215		return bytes;
1216
1217	while (bytes) {
1218		unsigned long size;
1219		unsigned long ret;
1220		struct page *page;
1221		pgoff_t pgoff;
1222		void *kptr;
1223
1224		page = binder_alloc_get_page(alloc, buffer,
1225					     buffer_offset, &pgoff);
1226		size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1227		kptr = kmap(page) + pgoff;
1228		ret = copy_from_user(kptr, from, size);
1229		kunmap(page);
1230		if (ret)
1231			return bytes - size + ret;
1232		bytes -= size;
1233		from += size;
1234		buffer_offset += size;
1235	}
1236	return 0;
1237}
1238
1239static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc,
1240				       bool to_buffer,
1241				       struct binder_buffer *buffer,
1242				       binder_size_t buffer_offset,
1243				       void *ptr,
1244				       size_t bytes)
1245{
1246	/* All copies must be 32-bit aligned and 32-bit size */
1247	if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1248		return -EINVAL;
1249
1250	while (bytes) {
1251		unsigned long size;
1252		struct page *page;
1253		pgoff_t pgoff;
1254		void *tmpptr;
1255		void *base_ptr;
1256
1257		page = binder_alloc_get_page(alloc, buffer,
1258					     buffer_offset, &pgoff);
1259		size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1260		base_ptr = kmap_atomic(page);
1261		tmpptr = base_ptr + pgoff;
1262		if (to_buffer)
1263			memcpy(tmpptr, ptr, size);
1264		else
1265			memcpy(ptr, tmpptr, size);
1266		/*
1267		 * kunmap_atomic() takes care of flushing the cache
1268		 * if this device has VIVT cache arch
1269		 */
1270		kunmap_atomic(base_ptr);
1271		bytes -= size;
1272		pgoff = 0;
1273		ptr = ptr + size;
1274		buffer_offset += size;
1275	}
1276	return 0;
1277}
1278
1279int binder_alloc_copy_to_buffer(struct binder_alloc *alloc,
1280				struct binder_buffer *buffer,
1281				binder_size_t buffer_offset,
1282				void *src,
1283				size_t bytes)
1284{
1285	return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset,
1286					   src, bytes);
1287}
1288
1289int binder_alloc_copy_from_buffer(struct binder_alloc *alloc,
1290				  void *dest,
1291				  struct binder_buffer *buffer,
1292				  binder_size_t buffer_offset,
1293				  size_t bytes)
1294{
1295	return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset,
1296					   dest, bytes);
1297}
1298