Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright 2019 Google LLC
  4 */
  5
  6/*
  7 * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
  8 */
  9
 10#define pr_fmt(fmt) "blk-crypto-fallback: " fmt
 11
 12#include <crypto/skcipher.h>
 
 13#include <linux/blk-crypto.h>
 14#include <linux/blk-crypto-profile.h>
 15#include <linux/blkdev.h>
 16#include <linux/crypto.h>
 
 17#include <linux/mempool.h>
 18#include <linux/module.h>
 19#include <linux/random.h>
 20#include <linux/scatterlist.h>
 21
 22#include "blk-cgroup.h"
 23#include "blk-crypto-internal.h"
 24
 25static unsigned int num_prealloc_bounce_pg = 32;
 26module_param(num_prealloc_bounce_pg, uint, 0);
 27MODULE_PARM_DESC(num_prealloc_bounce_pg,
 28		 "Number of preallocated bounce pages for the blk-crypto crypto API fallback");
 29
 30static unsigned int blk_crypto_num_keyslots = 100;
 31module_param_named(num_keyslots, blk_crypto_num_keyslots, uint, 0);
 32MODULE_PARM_DESC(num_keyslots,
 33		 "Number of keyslots for the blk-crypto crypto API fallback");
 34
 35static unsigned int num_prealloc_fallback_crypt_ctxs = 128;
 36module_param(num_prealloc_fallback_crypt_ctxs, uint, 0);
 37MODULE_PARM_DESC(num_prealloc_crypt_fallback_ctxs,
 38		 "Number of preallocated bio fallback crypto contexts for blk-crypto to use during crypto API fallback");
 39
 40struct bio_fallback_crypt_ctx {
 41	struct bio_crypt_ctx crypt_ctx;
 42	/*
 43	 * Copy of the bvec_iter when this bio was submitted.
 44	 * We only want to en/decrypt the part of the bio as described by the
 45	 * bvec_iter upon submission because bio might be split before being
 46	 * resubmitted
 47	 */
 48	struct bvec_iter crypt_iter;
 49	union {
 50		struct {
 51			struct work_struct work;
 52			struct bio *bio;
 53		};
 54		struct {
 55			void *bi_private_orig;
 56			bio_end_io_t *bi_end_io_orig;
 57		};
 58	};
 59};
 60
 61static struct kmem_cache *bio_fallback_crypt_ctx_cache;
 62static mempool_t *bio_fallback_crypt_ctx_pool;
 63
 64/*
 65 * Allocating a crypto tfm during I/O can deadlock, so we have to preallocate
 66 * all of a mode's tfms when that mode starts being used. Since each mode may
 67 * need all the keyslots at some point, each mode needs its own tfm for each
 68 * keyslot; thus, a keyslot may contain tfms for multiple modes.  However, to
 69 * match the behavior of real inline encryption hardware (which only supports a
 70 * single encryption context per keyslot), we only allow one tfm per keyslot to
 71 * be used at a time - the rest of the unused tfms have their keys cleared.
 72 */
 73static DEFINE_MUTEX(tfms_init_lock);
 74static bool tfms_inited[BLK_ENCRYPTION_MODE_MAX];
 75
 76static struct blk_crypto_fallback_keyslot {
 77	enum blk_crypto_mode_num crypto_mode;
 78	struct crypto_skcipher *tfms[BLK_ENCRYPTION_MODE_MAX];
 79} *blk_crypto_keyslots;
 80
 81static struct blk_crypto_profile blk_crypto_fallback_profile;
 82static struct workqueue_struct *blk_crypto_wq;
 83static mempool_t *blk_crypto_bounce_page_pool;
 84static struct bio_set crypto_bio_split;
 85
 86/*
 87 * This is the key we set when evicting a keyslot. This *should* be the all 0's
 88 * key, but AES-XTS rejects that key, so we use some random bytes instead.
 89 */
 90static u8 blank_key[BLK_CRYPTO_MAX_KEY_SIZE];
 91
 92static void blk_crypto_fallback_evict_keyslot(unsigned int slot)
 93{
 94	struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot];
 95	enum blk_crypto_mode_num crypto_mode = slotp->crypto_mode;
 96	int err;
 97
 98	WARN_ON(slotp->crypto_mode == BLK_ENCRYPTION_MODE_INVALID);
 99
100	/* Clear the key in the skcipher */
101	err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], blank_key,
102				     blk_crypto_modes[crypto_mode].keysize);
103	WARN_ON(err);
104	slotp->crypto_mode = BLK_ENCRYPTION_MODE_INVALID;
105}
106
107static int
108blk_crypto_fallback_keyslot_program(struct blk_crypto_profile *profile,
109				    const struct blk_crypto_key *key,
110				    unsigned int slot)
111{
112	struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot];
113	const enum blk_crypto_mode_num crypto_mode =
114						key->crypto_cfg.crypto_mode;
115	int err;
116
117	if (crypto_mode != slotp->crypto_mode &&
118	    slotp->crypto_mode != BLK_ENCRYPTION_MODE_INVALID)
119		blk_crypto_fallback_evict_keyslot(slot);
120
121	slotp->crypto_mode = crypto_mode;
122	err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], key->raw,
123				     key->size);
124	if (err) {
125		blk_crypto_fallback_evict_keyslot(slot);
126		return err;
127	}
128	return 0;
129}
130
131static int blk_crypto_fallback_keyslot_evict(struct blk_crypto_profile *profile,
132					     const struct blk_crypto_key *key,
133					     unsigned int slot)
134{
135	blk_crypto_fallback_evict_keyslot(slot);
136	return 0;
137}
138
139static const struct blk_crypto_ll_ops blk_crypto_fallback_ll_ops = {
140	.keyslot_program        = blk_crypto_fallback_keyslot_program,
141	.keyslot_evict          = blk_crypto_fallback_keyslot_evict,
 
 
 
 
 
142};
143
144static void blk_crypto_fallback_encrypt_endio(struct bio *enc_bio)
145{
146	struct bio *src_bio = enc_bio->bi_private;
147	int i;
148
149	for (i = 0; i < enc_bio->bi_vcnt; i++)
150		mempool_free(enc_bio->bi_io_vec[i].bv_page,
151			     blk_crypto_bounce_page_pool);
152
153	src_bio->bi_status = enc_bio->bi_status;
154
155	bio_uninit(enc_bio);
156	kfree(enc_bio);
157	bio_endio(src_bio);
158}
159
160static struct bio *blk_crypto_fallback_clone_bio(struct bio *bio_src)
161{
162	unsigned int nr_segs = bio_segments(bio_src);
163	struct bvec_iter iter;
164	struct bio_vec bv;
165	struct bio *bio;
166
167	bio = bio_kmalloc(nr_segs, GFP_NOIO);
168	if (!bio)
169		return NULL;
170	bio_init(bio, bio_src->bi_bdev, bio->bi_inline_vecs, nr_segs,
171		 bio_src->bi_opf);
172	if (bio_flagged(bio_src, BIO_REMAPPED))
173		bio_set_flag(bio, BIO_REMAPPED);
 
174	bio->bi_ioprio		= bio_src->bi_ioprio;
 
175	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
176	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
177
178	bio_for_each_segment(bv, bio_src, iter)
179		bio->bi_io_vec[bio->bi_vcnt++] = bv;
180
181	bio_clone_blkg_association(bio, bio_src);
 
182
183	return bio;
184}
185
186static bool
187blk_crypto_fallback_alloc_cipher_req(struct blk_crypto_keyslot *slot,
188				     struct skcipher_request **ciph_req_ret,
189				     struct crypto_wait *wait)
190{
191	struct skcipher_request *ciph_req;
192	const struct blk_crypto_fallback_keyslot *slotp;
193	int keyslot_idx = blk_crypto_keyslot_index(slot);
194
195	slotp = &blk_crypto_keyslots[keyslot_idx];
196	ciph_req = skcipher_request_alloc(slotp->tfms[slotp->crypto_mode],
197					  GFP_NOIO);
198	if (!ciph_req)
199		return false;
200
201	skcipher_request_set_callback(ciph_req,
202				      CRYPTO_TFM_REQ_MAY_BACKLOG |
203				      CRYPTO_TFM_REQ_MAY_SLEEP,
204				      crypto_req_done, wait);
205	*ciph_req_ret = ciph_req;
206
207	return true;
208}
209
210static bool blk_crypto_fallback_split_bio_if_needed(struct bio **bio_ptr)
211{
212	struct bio *bio = *bio_ptr;
213	unsigned int i = 0;
214	unsigned int num_sectors = 0;
215	struct bio_vec bv;
216	struct bvec_iter iter;
217
218	bio_for_each_segment(bv, bio, iter) {
219		num_sectors += bv.bv_len >> SECTOR_SHIFT;
220		if (++i == BIO_MAX_VECS)
221			break;
222	}
223	if (num_sectors < bio_sectors(bio)) {
224		struct bio *split_bio;
225
226		split_bio = bio_split(bio, num_sectors, GFP_NOIO,
227				      &crypto_bio_split);
228		if (!split_bio) {
229			bio->bi_status = BLK_STS_RESOURCE;
230			return false;
231		}
232		bio_chain(split_bio, bio);
233		submit_bio_noacct(bio);
234		*bio_ptr = split_bio;
235	}
236
237	return true;
238}
239
240union blk_crypto_iv {
241	__le64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
242	u8 bytes[BLK_CRYPTO_MAX_IV_SIZE];
243};
244
245static void blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
246				 union blk_crypto_iv *iv)
247{
248	int i;
249
250	for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++)
251		iv->dun[i] = cpu_to_le64(dun[i]);
252}
253
254/*
255 * The crypto API fallback's encryption routine.
256 * Allocate a bounce bio for encryption, encrypt the input bio using crypto API,
257 * and replace *bio_ptr with the bounce bio. May split input bio if it's too
258 * large. Returns true on success. Returns false and sets bio->bi_status on
259 * error.
260 */
261static bool blk_crypto_fallback_encrypt_bio(struct bio **bio_ptr)
262{
263	struct bio *src_bio, *enc_bio;
264	struct bio_crypt_ctx *bc;
265	struct blk_crypto_keyslot *slot;
266	int data_unit_size;
267	struct skcipher_request *ciph_req = NULL;
268	DECLARE_CRYPTO_WAIT(wait);
269	u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
270	struct scatterlist src, dst;
271	union blk_crypto_iv iv;
272	unsigned int i, j;
273	bool ret = false;
274	blk_status_t blk_st;
275
276	/* Split the bio if it's too big for single page bvec */
277	if (!blk_crypto_fallback_split_bio_if_needed(bio_ptr))
278		return false;
279
280	src_bio = *bio_ptr;
281	bc = src_bio->bi_crypt_context;
282	data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
283
284	/* Allocate bounce bio for encryption */
285	enc_bio = blk_crypto_fallback_clone_bio(src_bio);
286	if (!enc_bio) {
287		src_bio->bi_status = BLK_STS_RESOURCE;
288		return false;
289	}
290
291	/*
292	 * Get a blk-crypto-fallback keyslot that contains a crypto_skcipher for
293	 * this bio's algorithm and key.
294	 */
295	blk_st = blk_crypto_get_keyslot(&blk_crypto_fallback_profile,
296					bc->bc_key, &slot);
297	if (blk_st != BLK_STS_OK) {
298		src_bio->bi_status = blk_st;
299		goto out_put_enc_bio;
300	}
301
302	/* and then allocate an skcipher_request for it */
303	if (!blk_crypto_fallback_alloc_cipher_req(slot, &ciph_req, &wait)) {
304		src_bio->bi_status = BLK_STS_RESOURCE;
305		goto out_release_keyslot;
306	}
307
308	memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
309	sg_init_table(&src, 1);
310	sg_init_table(&dst, 1);
311
312	skcipher_request_set_crypt(ciph_req, &src, &dst, data_unit_size,
313				   iv.bytes);
314
315	/* Encrypt each page in the bounce bio */
316	for (i = 0; i < enc_bio->bi_vcnt; i++) {
317		struct bio_vec *enc_bvec = &enc_bio->bi_io_vec[i];
318		struct page *plaintext_page = enc_bvec->bv_page;
319		struct page *ciphertext_page =
320			mempool_alloc(blk_crypto_bounce_page_pool, GFP_NOIO);
321
322		enc_bvec->bv_page = ciphertext_page;
323
324		if (!ciphertext_page) {
325			src_bio->bi_status = BLK_STS_RESOURCE;
326			goto out_free_bounce_pages;
327		}
328
329		sg_set_page(&src, plaintext_page, data_unit_size,
330			    enc_bvec->bv_offset);
331		sg_set_page(&dst, ciphertext_page, data_unit_size,
332			    enc_bvec->bv_offset);
333
334		/* Encrypt each data unit in this page */
335		for (j = 0; j < enc_bvec->bv_len; j += data_unit_size) {
336			blk_crypto_dun_to_iv(curr_dun, &iv);
337			if (crypto_wait_req(crypto_skcipher_encrypt(ciph_req),
338					    &wait)) {
339				i++;
340				src_bio->bi_status = BLK_STS_IOERR;
341				goto out_free_bounce_pages;
342			}
343			bio_crypt_dun_increment(curr_dun, 1);
344			src.offset += data_unit_size;
345			dst.offset += data_unit_size;
346		}
347	}
348
349	enc_bio->bi_private = src_bio;
350	enc_bio->bi_end_io = blk_crypto_fallback_encrypt_endio;
351	*bio_ptr = enc_bio;
352	ret = true;
353
354	enc_bio = NULL;
355	goto out_free_ciph_req;
356
357out_free_bounce_pages:
358	while (i > 0)
359		mempool_free(enc_bio->bi_io_vec[--i].bv_page,
360			     blk_crypto_bounce_page_pool);
361out_free_ciph_req:
362	skcipher_request_free(ciph_req);
363out_release_keyslot:
364	blk_crypto_put_keyslot(slot);
365out_put_enc_bio:
366	if (enc_bio)
367		bio_uninit(enc_bio);
368	kfree(enc_bio);
369	return ret;
370}
371
372/*
373 * The crypto API fallback's main decryption routine.
374 * Decrypts input bio in place, and calls bio_endio on the bio.
375 */
376static void blk_crypto_fallback_decrypt_bio(struct work_struct *work)
377{
378	struct bio_fallback_crypt_ctx *f_ctx =
379		container_of(work, struct bio_fallback_crypt_ctx, work);
380	struct bio *bio = f_ctx->bio;
381	struct bio_crypt_ctx *bc = &f_ctx->crypt_ctx;
382	struct blk_crypto_keyslot *slot;
383	struct skcipher_request *ciph_req = NULL;
384	DECLARE_CRYPTO_WAIT(wait);
385	u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
386	union blk_crypto_iv iv;
387	struct scatterlist sg;
388	struct bio_vec bv;
389	struct bvec_iter iter;
390	const int data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
391	unsigned int i;
392	blk_status_t blk_st;
393
394	/*
395	 * Get a blk-crypto-fallback keyslot that contains a crypto_skcipher for
396	 * this bio's algorithm and key.
397	 */
398	blk_st = blk_crypto_get_keyslot(&blk_crypto_fallback_profile,
399					bc->bc_key, &slot);
400	if (blk_st != BLK_STS_OK) {
401		bio->bi_status = blk_st;
402		goto out_no_keyslot;
403	}
404
405	/* and then allocate an skcipher_request for it */
406	if (!blk_crypto_fallback_alloc_cipher_req(slot, &ciph_req, &wait)) {
407		bio->bi_status = BLK_STS_RESOURCE;
408		goto out;
409	}
410
411	memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
412	sg_init_table(&sg, 1);
413	skcipher_request_set_crypt(ciph_req, &sg, &sg, data_unit_size,
414				   iv.bytes);
415
416	/* Decrypt each segment in the bio */
417	__bio_for_each_segment(bv, bio, iter, f_ctx->crypt_iter) {
418		struct page *page = bv.bv_page;
419
420		sg_set_page(&sg, page, data_unit_size, bv.bv_offset);
421
422		/* Decrypt each data unit in the segment */
423		for (i = 0; i < bv.bv_len; i += data_unit_size) {
424			blk_crypto_dun_to_iv(curr_dun, &iv);
425			if (crypto_wait_req(crypto_skcipher_decrypt(ciph_req),
426					    &wait)) {
427				bio->bi_status = BLK_STS_IOERR;
428				goto out;
429			}
430			bio_crypt_dun_increment(curr_dun, 1);
431			sg.offset += data_unit_size;
432		}
433	}
434
435out:
436	skcipher_request_free(ciph_req);
437	blk_crypto_put_keyslot(slot);
438out_no_keyslot:
439	mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
440	bio_endio(bio);
441}
442
443/**
444 * blk_crypto_fallback_decrypt_endio - queue bio for fallback decryption
445 *
446 * @bio: the bio to queue
447 *
448 * Restore bi_private and bi_end_io, and queue the bio for decryption into a
449 * workqueue, since this function will be called from an atomic context.
450 */
451static void blk_crypto_fallback_decrypt_endio(struct bio *bio)
452{
453	struct bio_fallback_crypt_ctx *f_ctx = bio->bi_private;
454
455	bio->bi_private = f_ctx->bi_private_orig;
456	bio->bi_end_io = f_ctx->bi_end_io_orig;
457
458	/* If there was an IO error, don't queue for decrypt. */
459	if (bio->bi_status) {
460		mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
461		bio_endio(bio);
462		return;
463	}
464
465	INIT_WORK(&f_ctx->work, blk_crypto_fallback_decrypt_bio);
466	f_ctx->bio = bio;
467	queue_work(blk_crypto_wq, &f_ctx->work);
468}
469
470/**
471 * blk_crypto_fallback_bio_prep - Prepare a bio to use fallback en/decryption
472 *
473 * @bio_ptr: pointer to the bio to prepare
474 *
475 * If bio is doing a WRITE operation, this splits the bio into two parts if it's
476 * too big (see blk_crypto_fallback_split_bio_if_needed()). It then allocates a
477 * bounce bio for the first part, encrypts it, and updates bio_ptr to point to
478 * the bounce bio.
479 *
480 * For a READ operation, we mark the bio for decryption by using bi_private and
481 * bi_end_io.
482 *
483 * In either case, this function will make the bio look like a regular bio (i.e.
484 * as if no encryption context was ever specified) for the purposes of the rest
485 * of the stack except for blk-integrity (blk-integrity and blk-crypto are not
486 * currently supported together).
487 *
488 * Return: true on success. Sets bio->bi_status and returns false on error.
489 */
490bool blk_crypto_fallback_bio_prep(struct bio **bio_ptr)
491{
492	struct bio *bio = *bio_ptr;
493	struct bio_crypt_ctx *bc = bio->bi_crypt_context;
494	struct bio_fallback_crypt_ctx *f_ctx;
495
496	if (WARN_ON_ONCE(!tfms_inited[bc->bc_key->crypto_cfg.crypto_mode])) {
497		/* User didn't call blk_crypto_start_using_key() first */
498		bio->bi_status = BLK_STS_IOERR;
499		return false;
500	}
501
502	if (!__blk_crypto_cfg_supported(&blk_crypto_fallback_profile,
503					&bc->bc_key->crypto_cfg)) {
504		bio->bi_status = BLK_STS_NOTSUPP;
505		return false;
506	}
507
508	if (bio_data_dir(bio) == WRITE)
509		return blk_crypto_fallback_encrypt_bio(bio_ptr);
510
511	/*
512	 * bio READ case: Set up a f_ctx in the bio's bi_private and set the
513	 * bi_end_io appropriately to trigger decryption when the bio is ended.
514	 */
515	f_ctx = mempool_alloc(bio_fallback_crypt_ctx_pool, GFP_NOIO);
516	f_ctx->crypt_ctx = *bc;
517	f_ctx->crypt_iter = bio->bi_iter;
518	f_ctx->bi_private_orig = bio->bi_private;
519	f_ctx->bi_end_io_orig = bio->bi_end_io;
520	bio->bi_private = (void *)f_ctx;
521	bio->bi_end_io = blk_crypto_fallback_decrypt_endio;
522	bio_crypt_free_ctx(bio);
523
524	return true;
525}
526
527int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key)
528{
529	return __blk_crypto_evict_key(&blk_crypto_fallback_profile, key);
530}
531
532static bool blk_crypto_fallback_inited;
533static int blk_crypto_fallback_init(void)
534{
535	int i;
536	int err;
537	struct blk_crypto_profile *profile = &blk_crypto_fallback_profile;
538
539	if (blk_crypto_fallback_inited)
540		return 0;
541
542	get_random_bytes(blank_key, BLK_CRYPTO_MAX_KEY_SIZE);
543
544	err = bioset_init(&crypto_bio_split, 64, 0, 0);
545	if (err)
546		goto out;
547
548	err = blk_crypto_profile_init(profile, blk_crypto_num_keyslots);
549	if (err)
550		goto fail_free_bioset;
551	err = -ENOMEM;
552
553	profile->ll_ops = blk_crypto_fallback_ll_ops;
554	profile->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
555
556	/* All blk-crypto modes have a crypto API fallback. */
557	for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++)
558		profile->modes_supported[i] = 0xFFFFFFFF;
559	profile->modes_supported[BLK_ENCRYPTION_MODE_INVALID] = 0;
560
561	blk_crypto_wq = alloc_workqueue("blk_crypto_wq",
562					WQ_UNBOUND | WQ_HIGHPRI |
563					WQ_MEM_RECLAIM, num_online_cpus());
564	if (!blk_crypto_wq)
565		goto fail_destroy_profile;
566
567	blk_crypto_keyslots = kcalloc(blk_crypto_num_keyslots,
568				      sizeof(blk_crypto_keyslots[0]),
569				      GFP_KERNEL);
570	if (!blk_crypto_keyslots)
571		goto fail_free_wq;
572
573	blk_crypto_bounce_page_pool =
574		mempool_create_page_pool(num_prealloc_bounce_pg, 0);
575	if (!blk_crypto_bounce_page_pool)
576		goto fail_free_keyslots;
577
578	bio_fallback_crypt_ctx_cache = KMEM_CACHE(bio_fallback_crypt_ctx, 0);
579	if (!bio_fallback_crypt_ctx_cache)
580		goto fail_free_bounce_page_pool;
581
582	bio_fallback_crypt_ctx_pool =
583		mempool_create_slab_pool(num_prealloc_fallback_crypt_ctxs,
584					 bio_fallback_crypt_ctx_cache);
585	if (!bio_fallback_crypt_ctx_pool)
586		goto fail_free_crypt_ctx_cache;
587
588	blk_crypto_fallback_inited = true;
589
590	return 0;
591fail_free_crypt_ctx_cache:
592	kmem_cache_destroy(bio_fallback_crypt_ctx_cache);
593fail_free_bounce_page_pool:
594	mempool_destroy(blk_crypto_bounce_page_pool);
595fail_free_keyslots:
596	kfree(blk_crypto_keyslots);
597fail_free_wq:
598	destroy_workqueue(blk_crypto_wq);
599fail_destroy_profile:
600	blk_crypto_profile_destroy(profile);
601fail_free_bioset:
602	bioset_exit(&crypto_bio_split);
603out:
604	return err;
605}
606
607/*
608 * Prepare blk-crypto-fallback for the specified crypto mode.
609 * Returns -ENOPKG if the needed crypto API support is missing.
610 */
611int blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num)
612{
613	const char *cipher_str = blk_crypto_modes[mode_num].cipher_str;
614	struct blk_crypto_fallback_keyslot *slotp;
615	unsigned int i;
616	int err = 0;
617
618	/*
619	 * Fast path
620	 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
621	 * for each i are visible before we try to access them.
622	 */
623	if (likely(smp_load_acquire(&tfms_inited[mode_num])))
624		return 0;
625
626	mutex_lock(&tfms_init_lock);
627	if (tfms_inited[mode_num])
628		goto out;
629
630	err = blk_crypto_fallback_init();
631	if (err)
632		goto out;
633
634	for (i = 0; i < blk_crypto_num_keyslots; i++) {
635		slotp = &blk_crypto_keyslots[i];
636		slotp->tfms[mode_num] = crypto_alloc_skcipher(cipher_str, 0, 0);
637		if (IS_ERR(slotp->tfms[mode_num])) {
638			err = PTR_ERR(slotp->tfms[mode_num]);
639			if (err == -ENOENT) {
640				pr_warn_once("Missing crypto API support for \"%s\"\n",
641					     cipher_str);
642				err = -ENOPKG;
643			}
644			slotp->tfms[mode_num] = NULL;
645			goto out_free_tfms;
646		}
647
648		crypto_skcipher_set_flags(slotp->tfms[mode_num],
649					  CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
650	}
651
652	/*
653	 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
654	 * for each i are visible before we set tfms_inited[mode_num].
655	 */
656	smp_store_release(&tfms_inited[mode_num], true);
657	goto out;
658
659out_free_tfms:
660	for (i = 0; i < blk_crypto_num_keyslots; i++) {
661		slotp = &blk_crypto_keyslots[i];
662		crypto_free_skcipher(slotp->tfms[mode_num]);
663		slotp->tfms[mode_num] = NULL;
664	}
665out:
666	mutex_unlock(&tfms_init_lock);
667	return err;
668}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright 2019 Google LLC
  4 */
  5
  6/*
  7 * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
  8 */
  9
 10#define pr_fmt(fmt) "blk-crypto-fallback: " fmt
 11
 12#include <crypto/skcipher.h>
 13#include <linux/blk-cgroup.h>
 14#include <linux/blk-crypto.h>
 
 15#include <linux/blkdev.h>
 16#include <linux/crypto.h>
 17#include <linux/keyslot-manager.h>
 18#include <linux/mempool.h>
 19#include <linux/module.h>
 20#include <linux/random.h>
 
 21
 
 22#include "blk-crypto-internal.h"
 23
 24static unsigned int num_prealloc_bounce_pg = 32;
 25module_param(num_prealloc_bounce_pg, uint, 0);
 26MODULE_PARM_DESC(num_prealloc_bounce_pg,
 27		 "Number of preallocated bounce pages for the blk-crypto crypto API fallback");
 28
 29static unsigned int blk_crypto_num_keyslots = 100;
 30module_param_named(num_keyslots, blk_crypto_num_keyslots, uint, 0);
 31MODULE_PARM_DESC(num_keyslots,
 32		 "Number of keyslots for the blk-crypto crypto API fallback");
 33
 34static unsigned int num_prealloc_fallback_crypt_ctxs = 128;
 35module_param(num_prealloc_fallback_crypt_ctxs, uint, 0);
 36MODULE_PARM_DESC(num_prealloc_crypt_fallback_ctxs,
 37		 "Number of preallocated bio fallback crypto contexts for blk-crypto to use during crypto API fallback");
 38
 39struct bio_fallback_crypt_ctx {
 40	struct bio_crypt_ctx crypt_ctx;
 41	/*
 42	 * Copy of the bvec_iter when this bio was submitted.
 43	 * We only want to en/decrypt the part of the bio as described by the
 44	 * bvec_iter upon submission because bio might be split before being
 45	 * resubmitted
 46	 */
 47	struct bvec_iter crypt_iter;
 48	union {
 49		struct {
 50			struct work_struct work;
 51			struct bio *bio;
 52		};
 53		struct {
 54			void *bi_private_orig;
 55			bio_end_io_t *bi_end_io_orig;
 56		};
 57	};
 58};
 59
 60static struct kmem_cache *bio_fallback_crypt_ctx_cache;
 61static mempool_t *bio_fallback_crypt_ctx_pool;
 62
 63/*
 64 * Allocating a crypto tfm during I/O can deadlock, so we have to preallocate
 65 * all of a mode's tfms when that mode starts being used. Since each mode may
 66 * need all the keyslots at some point, each mode needs its own tfm for each
 67 * keyslot; thus, a keyslot may contain tfms for multiple modes.  However, to
 68 * match the behavior of real inline encryption hardware (which only supports a
 69 * single encryption context per keyslot), we only allow one tfm per keyslot to
 70 * be used at a time - the rest of the unused tfms have their keys cleared.
 71 */
 72static DEFINE_MUTEX(tfms_init_lock);
 73static bool tfms_inited[BLK_ENCRYPTION_MODE_MAX];
 74
 75static struct blk_crypto_keyslot {
 76	enum blk_crypto_mode_num crypto_mode;
 77	struct crypto_skcipher *tfms[BLK_ENCRYPTION_MODE_MAX];
 78} *blk_crypto_keyslots;
 79
 80static struct blk_keyslot_manager blk_crypto_ksm;
 81static struct workqueue_struct *blk_crypto_wq;
 82static mempool_t *blk_crypto_bounce_page_pool;
 83static struct bio_set crypto_bio_split;
 84
 85/*
 86 * This is the key we set when evicting a keyslot. This *should* be the all 0's
 87 * key, but AES-XTS rejects that key, so we use some random bytes instead.
 88 */
 89static u8 blank_key[BLK_CRYPTO_MAX_KEY_SIZE];
 90
 91static void blk_crypto_evict_keyslot(unsigned int slot)
 92{
 93	struct blk_crypto_keyslot *slotp = &blk_crypto_keyslots[slot];
 94	enum blk_crypto_mode_num crypto_mode = slotp->crypto_mode;
 95	int err;
 96
 97	WARN_ON(slotp->crypto_mode == BLK_ENCRYPTION_MODE_INVALID);
 98
 99	/* Clear the key in the skcipher */
100	err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], blank_key,
101				     blk_crypto_modes[crypto_mode].keysize);
102	WARN_ON(err);
103	slotp->crypto_mode = BLK_ENCRYPTION_MODE_INVALID;
104}
105
106static int blk_crypto_keyslot_program(struct blk_keyslot_manager *ksm,
107				      const struct blk_crypto_key *key,
108				      unsigned int slot)
 
109{
110	struct blk_crypto_keyslot *slotp = &blk_crypto_keyslots[slot];
111	const enum blk_crypto_mode_num crypto_mode =
112						key->crypto_cfg.crypto_mode;
113	int err;
114
115	if (crypto_mode != slotp->crypto_mode &&
116	    slotp->crypto_mode != BLK_ENCRYPTION_MODE_INVALID)
117		blk_crypto_evict_keyslot(slot);
118
119	slotp->crypto_mode = crypto_mode;
120	err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], key->raw,
121				     key->size);
122	if (err) {
123		blk_crypto_evict_keyslot(slot);
124		return err;
125	}
126	return 0;
127}
128
129static int blk_crypto_keyslot_evict(struct blk_keyslot_manager *ksm,
130				    const struct blk_crypto_key *key,
131				    unsigned int slot)
132{
133	blk_crypto_evict_keyslot(slot);
134	return 0;
135}
136
137/*
138 * The crypto API fallback KSM ops - only used for a bio when it specifies a
139 * blk_crypto_key that was not supported by the device's inline encryption
140 * hardware.
141 */
142static const struct blk_ksm_ll_ops blk_crypto_ksm_ll_ops = {
143	.keyslot_program	= blk_crypto_keyslot_program,
144	.keyslot_evict		= blk_crypto_keyslot_evict,
145};
146
147static void blk_crypto_fallback_encrypt_endio(struct bio *enc_bio)
148{
149	struct bio *src_bio = enc_bio->bi_private;
150	int i;
151
152	for (i = 0; i < enc_bio->bi_vcnt; i++)
153		mempool_free(enc_bio->bi_io_vec[i].bv_page,
154			     blk_crypto_bounce_page_pool);
155
156	src_bio->bi_status = enc_bio->bi_status;
157
158	bio_put(enc_bio);
 
159	bio_endio(src_bio);
160}
161
162static struct bio *blk_crypto_clone_bio(struct bio *bio_src)
163{
 
164	struct bvec_iter iter;
165	struct bio_vec bv;
166	struct bio *bio;
167
168	bio = bio_kmalloc(GFP_NOIO, bio_segments(bio_src));
169	if (!bio)
170		return NULL;
171	bio->bi_bdev		= bio_src->bi_bdev;
 
172	if (bio_flagged(bio_src, BIO_REMAPPED))
173		bio_set_flag(bio, BIO_REMAPPED);
174	bio->bi_opf		= bio_src->bi_opf;
175	bio->bi_ioprio		= bio_src->bi_ioprio;
176	bio->bi_write_hint	= bio_src->bi_write_hint;
177	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
178	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
179
180	bio_for_each_segment(bv, bio_src, iter)
181		bio->bi_io_vec[bio->bi_vcnt++] = bv;
182
183	bio_clone_blkg_association(bio, bio_src);
184	blkcg_bio_issue_init(bio);
185
186	return bio;
187}
188
189static bool blk_crypto_alloc_cipher_req(struct blk_ksm_keyslot *slot,
190					struct skcipher_request **ciph_req_ret,
191					struct crypto_wait *wait)
 
192{
193	struct skcipher_request *ciph_req;
194	const struct blk_crypto_keyslot *slotp;
195	int keyslot_idx = blk_ksm_get_slot_idx(slot);
196
197	slotp = &blk_crypto_keyslots[keyslot_idx];
198	ciph_req = skcipher_request_alloc(slotp->tfms[slotp->crypto_mode],
199					  GFP_NOIO);
200	if (!ciph_req)
201		return false;
202
203	skcipher_request_set_callback(ciph_req,
204				      CRYPTO_TFM_REQ_MAY_BACKLOG |
205				      CRYPTO_TFM_REQ_MAY_SLEEP,
206				      crypto_req_done, wait);
207	*ciph_req_ret = ciph_req;
208
209	return true;
210}
211
212static bool blk_crypto_split_bio_if_needed(struct bio **bio_ptr)
213{
214	struct bio *bio = *bio_ptr;
215	unsigned int i = 0;
216	unsigned int num_sectors = 0;
217	struct bio_vec bv;
218	struct bvec_iter iter;
219
220	bio_for_each_segment(bv, bio, iter) {
221		num_sectors += bv.bv_len >> SECTOR_SHIFT;
222		if (++i == BIO_MAX_VECS)
223			break;
224	}
225	if (num_sectors < bio_sectors(bio)) {
226		struct bio *split_bio;
227
228		split_bio = bio_split(bio, num_sectors, GFP_NOIO,
229				      &crypto_bio_split);
230		if (!split_bio) {
231			bio->bi_status = BLK_STS_RESOURCE;
232			return false;
233		}
234		bio_chain(split_bio, bio);
235		submit_bio_noacct(bio);
236		*bio_ptr = split_bio;
237	}
238
239	return true;
240}
241
242union blk_crypto_iv {
243	__le64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
244	u8 bytes[BLK_CRYPTO_MAX_IV_SIZE];
245};
246
247static void blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
248				 union blk_crypto_iv *iv)
249{
250	int i;
251
252	for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++)
253		iv->dun[i] = cpu_to_le64(dun[i]);
254}
255
256/*
257 * The crypto API fallback's encryption routine.
258 * Allocate a bounce bio for encryption, encrypt the input bio using crypto API,
259 * and replace *bio_ptr with the bounce bio. May split input bio if it's too
260 * large. Returns true on success. Returns false and sets bio->bi_status on
261 * error.
262 */
263static bool blk_crypto_fallback_encrypt_bio(struct bio **bio_ptr)
264{
265	struct bio *src_bio, *enc_bio;
266	struct bio_crypt_ctx *bc;
267	struct blk_ksm_keyslot *slot;
268	int data_unit_size;
269	struct skcipher_request *ciph_req = NULL;
270	DECLARE_CRYPTO_WAIT(wait);
271	u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
272	struct scatterlist src, dst;
273	union blk_crypto_iv iv;
274	unsigned int i, j;
275	bool ret = false;
276	blk_status_t blk_st;
277
278	/* Split the bio if it's too big for single page bvec */
279	if (!blk_crypto_split_bio_if_needed(bio_ptr))
280		return false;
281
282	src_bio = *bio_ptr;
283	bc = src_bio->bi_crypt_context;
284	data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
285
286	/* Allocate bounce bio for encryption */
287	enc_bio = blk_crypto_clone_bio(src_bio);
288	if (!enc_bio) {
289		src_bio->bi_status = BLK_STS_RESOURCE;
290		return false;
291	}
292
293	/*
294	 * Use the crypto API fallback keyslot manager to get a crypto_skcipher
295	 * for the algorithm and key specified for this bio.
296	 */
297	blk_st = blk_ksm_get_slot_for_key(&blk_crypto_ksm, bc->bc_key, &slot);
 
298	if (blk_st != BLK_STS_OK) {
299		src_bio->bi_status = blk_st;
300		goto out_put_enc_bio;
301	}
302
303	/* and then allocate an skcipher_request for it */
304	if (!blk_crypto_alloc_cipher_req(slot, &ciph_req, &wait)) {
305		src_bio->bi_status = BLK_STS_RESOURCE;
306		goto out_release_keyslot;
307	}
308
309	memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
310	sg_init_table(&src, 1);
311	sg_init_table(&dst, 1);
312
313	skcipher_request_set_crypt(ciph_req, &src, &dst, data_unit_size,
314				   iv.bytes);
315
316	/* Encrypt each page in the bounce bio */
317	for (i = 0; i < enc_bio->bi_vcnt; i++) {
318		struct bio_vec *enc_bvec = &enc_bio->bi_io_vec[i];
319		struct page *plaintext_page = enc_bvec->bv_page;
320		struct page *ciphertext_page =
321			mempool_alloc(blk_crypto_bounce_page_pool, GFP_NOIO);
322
323		enc_bvec->bv_page = ciphertext_page;
324
325		if (!ciphertext_page) {
326			src_bio->bi_status = BLK_STS_RESOURCE;
327			goto out_free_bounce_pages;
328		}
329
330		sg_set_page(&src, plaintext_page, data_unit_size,
331			    enc_bvec->bv_offset);
332		sg_set_page(&dst, ciphertext_page, data_unit_size,
333			    enc_bvec->bv_offset);
334
335		/* Encrypt each data unit in this page */
336		for (j = 0; j < enc_bvec->bv_len; j += data_unit_size) {
337			blk_crypto_dun_to_iv(curr_dun, &iv);
338			if (crypto_wait_req(crypto_skcipher_encrypt(ciph_req),
339					    &wait)) {
340				i++;
341				src_bio->bi_status = BLK_STS_IOERR;
342				goto out_free_bounce_pages;
343			}
344			bio_crypt_dun_increment(curr_dun, 1);
345			src.offset += data_unit_size;
346			dst.offset += data_unit_size;
347		}
348	}
349
350	enc_bio->bi_private = src_bio;
351	enc_bio->bi_end_io = blk_crypto_fallback_encrypt_endio;
352	*bio_ptr = enc_bio;
353	ret = true;
354
355	enc_bio = NULL;
356	goto out_free_ciph_req;
357
358out_free_bounce_pages:
359	while (i > 0)
360		mempool_free(enc_bio->bi_io_vec[--i].bv_page,
361			     blk_crypto_bounce_page_pool);
362out_free_ciph_req:
363	skcipher_request_free(ciph_req);
364out_release_keyslot:
365	blk_ksm_put_slot(slot);
366out_put_enc_bio:
367	if (enc_bio)
368		bio_put(enc_bio);
369
370	return ret;
371}
372
373/*
374 * The crypto API fallback's main decryption routine.
375 * Decrypts input bio in place, and calls bio_endio on the bio.
376 */
377static void blk_crypto_fallback_decrypt_bio(struct work_struct *work)
378{
379	struct bio_fallback_crypt_ctx *f_ctx =
380		container_of(work, struct bio_fallback_crypt_ctx, work);
381	struct bio *bio = f_ctx->bio;
382	struct bio_crypt_ctx *bc = &f_ctx->crypt_ctx;
383	struct blk_ksm_keyslot *slot;
384	struct skcipher_request *ciph_req = NULL;
385	DECLARE_CRYPTO_WAIT(wait);
386	u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
387	union blk_crypto_iv iv;
388	struct scatterlist sg;
389	struct bio_vec bv;
390	struct bvec_iter iter;
391	const int data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
392	unsigned int i;
393	blk_status_t blk_st;
394
395	/*
396	 * Use the crypto API fallback keyslot manager to get a crypto_skcipher
397	 * for the algorithm and key specified for this bio.
398	 */
399	blk_st = blk_ksm_get_slot_for_key(&blk_crypto_ksm, bc->bc_key, &slot);
 
400	if (blk_st != BLK_STS_OK) {
401		bio->bi_status = blk_st;
402		goto out_no_keyslot;
403	}
404
405	/* and then allocate an skcipher_request for it */
406	if (!blk_crypto_alloc_cipher_req(slot, &ciph_req, &wait)) {
407		bio->bi_status = BLK_STS_RESOURCE;
408		goto out;
409	}
410
411	memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
412	sg_init_table(&sg, 1);
413	skcipher_request_set_crypt(ciph_req, &sg, &sg, data_unit_size,
414				   iv.bytes);
415
416	/* Decrypt each segment in the bio */
417	__bio_for_each_segment(bv, bio, iter, f_ctx->crypt_iter) {
418		struct page *page = bv.bv_page;
419
420		sg_set_page(&sg, page, data_unit_size, bv.bv_offset);
421
422		/* Decrypt each data unit in the segment */
423		for (i = 0; i < bv.bv_len; i += data_unit_size) {
424			blk_crypto_dun_to_iv(curr_dun, &iv);
425			if (crypto_wait_req(crypto_skcipher_decrypt(ciph_req),
426					    &wait)) {
427				bio->bi_status = BLK_STS_IOERR;
428				goto out;
429			}
430			bio_crypt_dun_increment(curr_dun, 1);
431			sg.offset += data_unit_size;
432		}
433	}
434
435out:
436	skcipher_request_free(ciph_req);
437	blk_ksm_put_slot(slot);
438out_no_keyslot:
439	mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
440	bio_endio(bio);
441}
442
443/**
444 * blk_crypto_fallback_decrypt_endio - queue bio for fallback decryption
445 *
446 * @bio: the bio to queue
447 *
448 * Restore bi_private and bi_end_io, and queue the bio for decryption into a
449 * workqueue, since this function will be called from an atomic context.
450 */
451static void blk_crypto_fallback_decrypt_endio(struct bio *bio)
452{
453	struct bio_fallback_crypt_ctx *f_ctx = bio->bi_private;
454
455	bio->bi_private = f_ctx->bi_private_orig;
456	bio->bi_end_io = f_ctx->bi_end_io_orig;
457
458	/* If there was an IO error, don't queue for decrypt. */
459	if (bio->bi_status) {
460		mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
461		bio_endio(bio);
462		return;
463	}
464
465	INIT_WORK(&f_ctx->work, blk_crypto_fallback_decrypt_bio);
466	f_ctx->bio = bio;
467	queue_work(blk_crypto_wq, &f_ctx->work);
468}
469
470/**
471 * blk_crypto_fallback_bio_prep - Prepare a bio to use fallback en/decryption
472 *
473 * @bio_ptr: pointer to the bio to prepare
474 *
475 * If bio is doing a WRITE operation, this splits the bio into two parts if it's
476 * too big (see blk_crypto_split_bio_if_needed). It then allocates a bounce bio
477 * for the first part, encrypts it, and update bio_ptr to point to the bounce
478 * bio.
479 *
480 * For a READ operation, we mark the bio for decryption by using bi_private and
481 * bi_end_io.
482 *
483 * In either case, this function will make the bio look like a regular bio (i.e.
484 * as if no encryption context was ever specified) for the purposes of the rest
485 * of the stack except for blk-integrity (blk-integrity and blk-crypto are not
486 * currently supported together).
487 *
488 * Return: true on success. Sets bio->bi_status and returns false on error.
489 */
490bool blk_crypto_fallback_bio_prep(struct bio **bio_ptr)
491{
492	struct bio *bio = *bio_ptr;
493	struct bio_crypt_ctx *bc = bio->bi_crypt_context;
494	struct bio_fallback_crypt_ctx *f_ctx;
495
496	if (WARN_ON_ONCE(!tfms_inited[bc->bc_key->crypto_cfg.crypto_mode])) {
497		/* User didn't call blk_crypto_start_using_key() first */
498		bio->bi_status = BLK_STS_IOERR;
499		return false;
500	}
501
502	if (!blk_ksm_crypto_cfg_supported(&blk_crypto_ksm,
503					  &bc->bc_key->crypto_cfg)) {
504		bio->bi_status = BLK_STS_NOTSUPP;
505		return false;
506	}
507
508	if (bio_data_dir(bio) == WRITE)
509		return blk_crypto_fallback_encrypt_bio(bio_ptr);
510
511	/*
512	 * bio READ case: Set up a f_ctx in the bio's bi_private and set the
513	 * bi_end_io appropriately to trigger decryption when the bio is ended.
514	 */
515	f_ctx = mempool_alloc(bio_fallback_crypt_ctx_pool, GFP_NOIO);
516	f_ctx->crypt_ctx = *bc;
517	f_ctx->crypt_iter = bio->bi_iter;
518	f_ctx->bi_private_orig = bio->bi_private;
519	f_ctx->bi_end_io_orig = bio->bi_end_io;
520	bio->bi_private = (void *)f_ctx;
521	bio->bi_end_io = blk_crypto_fallback_decrypt_endio;
522	bio_crypt_free_ctx(bio);
523
524	return true;
525}
526
527int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key)
528{
529	return blk_ksm_evict_key(&blk_crypto_ksm, key);
530}
531
532static bool blk_crypto_fallback_inited;
533static int blk_crypto_fallback_init(void)
534{
535	int i;
536	int err;
 
537
538	if (blk_crypto_fallback_inited)
539		return 0;
540
541	prandom_bytes(blank_key, BLK_CRYPTO_MAX_KEY_SIZE);
542
543	err = bioset_init(&crypto_bio_split, 64, 0, 0);
544	if (err)
545		goto out;
546
547	err = blk_ksm_init(&blk_crypto_ksm, blk_crypto_num_keyslots);
548	if (err)
549		goto fail_free_bioset;
550	err = -ENOMEM;
551
552	blk_crypto_ksm.ksm_ll_ops = blk_crypto_ksm_ll_ops;
553	blk_crypto_ksm.max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
554
555	/* All blk-crypto modes have a crypto API fallback. */
556	for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++)
557		blk_crypto_ksm.crypto_modes_supported[i] = 0xFFFFFFFF;
558	blk_crypto_ksm.crypto_modes_supported[BLK_ENCRYPTION_MODE_INVALID] = 0;
559
560	blk_crypto_wq = alloc_workqueue("blk_crypto_wq",
561					WQ_UNBOUND | WQ_HIGHPRI |
562					WQ_MEM_RECLAIM, num_online_cpus());
563	if (!blk_crypto_wq)
564		goto fail_free_ksm;
565
566	blk_crypto_keyslots = kcalloc(blk_crypto_num_keyslots,
567				      sizeof(blk_crypto_keyslots[0]),
568				      GFP_KERNEL);
569	if (!blk_crypto_keyslots)
570		goto fail_free_wq;
571
572	blk_crypto_bounce_page_pool =
573		mempool_create_page_pool(num_prealloc_bounce_pg, 0);
574	if (!blk_crypto_bounce_page_pool)
575		goto fail_free_keyslots;
576
577	bio_fallback_crypt_ctx_cache = KMEM_CACHE(bio_fallback_crypt_ctx, 0);
578	if (!bio_fallback_crypt_ctx_cache)
579		goto fail_free_bounce_page_pool;
580
581	bio_fallback_crypt_ctx_pool =
582		mempool_create_slab_pool(num_prealloc_fallback_crypt_ctxs,
583					 bio_fallback_crypt_ctx_cache);
584	if (!bio_fallback_crypt_ctx_pool)
585		goto fail_free_crypt_ctx_cache;
586
587	blk_crypto_fallback_inited = true;
588
589	return 0;
590fail_free_crypt_ctx_cache:
591	kmem_cache_destroy(bio_fallback_crypt_ctx_cache);
592fail_free_bounce_page_pool:
593	mempool_destroy(blk_crypto_bounce_page_pool);
594fail_free_keyslots:
595	kfree(blk_crypto_keyslots);
596fail_free_wq:
597	destroy_workqueue(blk_crypto_wq);
598fail_free_ksm:
599	blk_ksm_destroy(&blk_crypto_ksm);
600fail_free_bioset:
601	bioset_exit(&crypto_bio_split);
602out:
603	return err;
604}
605
606/*
607 * Prepare blk-crypto-fallback for the specified crypto mode.
608 * Returns -ENOPKG if the needed crypto API support is missing.
609 */
610int blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num)
611{
612	const char *cipher_str = blk_crypto_modes[mode_num].cipher_str;
613	struct blk_crypto_keyslot *slotp;
614	unsigned int i;
615	int err = 0;
616
617	/*
618	 * Fast path
619	 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
620	 * for each i are visible before we try to access them.
621	 */
622	if (likely(smp_load_acquire(&tfms_inited[mode_num])))
623		return 0;
624
625	mutex_lock(&tfms_init_lock);
626	if (tfms_inited[mode_num])
627		goto out;
628
629	err = blk_crypto_fallback_init();
630	if (err)
631		goto out;
632
633	for (i = 0; i < blk_crypto_num_keyslots; i++) {
634		slotp = &blk_crypto_keyslots[i];
635		slotp->tfms[mode_num] = crypto_alloc_skcipher(cipher_str, 0, 0);
636		if (IS_ERR(slotp->tfms[mode_num])) {
637			err = PTR_ERR(slotp->tfms[mode_num]);
638			if (err == -ENOENT) {
639				pr_warn_once("Missing crypto API support for \"%s\"\n",
640					     cipher_str);
641				err = -ENOPKG;
642			}
643			slotp->tfms[mode_num] = NULL;
644			goto out_free_tfms;
645		}
646
647		crypto_skcipher_set_flags(slotp->tfms[mode_num],
648					  CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
649	}
650
651	/*
652	 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
653	 * for each i are visible before we set tfms_inited[mode_num].
654	 */
655	smp_store_release(&tfms_inited[mode_num], true);
656	goto out;
657
658out_free_tfms:
659	for (i = 0; i < blk_crypto_num_keyslots; i++) {
660		slotp = &blk_crypto_keyslots[i];
661		crypto_free_skcipher(slotp->tfms[mode_num]);
662		slotp->tfms[mode_num] = NULL;
663	}
664out:
665	mutex_unlock(&tfms_init_lock);
666	return err;
667}