Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
  4 * using the CPU's debug registers. Derived from
  5 * "arch/x86/kernel/hw_breakpoint.c"
  6 *
  7 * Copyright 2010 IBM Corporation
  8 * Author: K.Prasad <prasad@linux.vnet.ibm.com>
  9 */
 10
 11#include <linux/hw_breakpoint.h>
 12#include <linux/notifier.h>
 13#include <linux/kprobes.h>
 14#include <linux/percpu.h>
 15#include <linux/kernel.h>
 16#include <linux/sched.h>
 17#include <linux/smp.h>
 18#include <linux/spinlock.h>
 19#include <linux/debugfs.h>
 20#include <linux/init.h>
 21
 22#include <asm/hw_breakpoint.h>
 23#include <asm/processor.h>
 24#include <asm/sstep.h>
 25#include <asm/debug.h>
 
 26#include <asm/hvcall.h>
 27#include <asm/inst.h>
 28#include <linux/uaccess.h>
 29
 30/*
 31 * Stores the breakpoints currently in use on each breakpoint address
 32 * register for every cpu
 33 */
 34static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM_MAX]);
 35
 36/*
 37 * Returns total number of data or instruction breakpoints available.
 38 */
 39int hw_breakpoint_slots(int type)
 40{
 41	if (type == TYPE_DATA)
 42		return nr_wp_slots();
 43	return 0;		/* no instruction breakpoints available */
 44}
 45
 46static bool single_step_pending(void)
 47{
 48	int i;
 49
 50	for (i = 0; i < nr_wp_slots(); i++) {
 51		if (current->thread.last_hit_ubp[i])
 52			return true;
 53	}
 54	return false;
 55}
 56
 57/*
 58 * Install a perf counter breakpoint.
 59 *
 60 * We seek a free debug address register and use it for this
 61 * breakpoint.
 62 *
 63 * Atomic: we hold the counter->ctx->lock and we only handle variables
 64 * and registers local to this cpu.
 65 */
 66int arch_install_hw_breakpoint(struct perf_event *bp)
 67{
 68	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
 69	struct perf_event **slot;
 70	int i;
 71
 72	for (i = 0; i < nr_wp_slots(); i++) {
 73		slot = this_cpu_ptr(&bp_per_reg[i]);
 74		if (!*slot) {
 75			*slot = bp;
 76			break;
 77		}
 78	}
 79
 80	if (WARN_ONCE(i == nr_wp_slots(), "Can't find any breakpoint slot"))
 81		return -EBUSY;
 82
 83	/*
 84	 * Do not install DABR values if the instruction must be single-stepped.
 85	 * If so, DABR will be populated in single_step_dabr_instruction().
 86	 */
 87	if (!single_step_pending())
 88		__set_breakpoint(i, info);
 89
 90	return 0;
 91}
 92
 93/*
 94 * Uninstall the breakpoint contained in the given counter.
 95 *
 96 * First we search the debug address register it uses and then we disable
 97 * it.
 98 *
 99 * Atomic: we hold the counter->ctx->lock and we only handle variables
100 * and registers local to this cpu.
101 */
102void arch_uninstall_hw_breakpoint(struct perf_event *bp)
103{
104	struct arch_hw_breakpoint null_brk = {0};
105	struct perf_event **slot;
106	int i;
107
108	for (i = 0; i < nr_wp_slots(); i++) {
109		slot = this_cpu_ptr(&bp_per_reg[i]);
110		if (*slot == bp) {
111			*slot = NULL;
112			break;
113		}
114	}
115
116	if (WARN_ONCE(i == nr_wp_slots(), "Can't find any breakpoint slot"))
117		return;
118
119	__set_breakpoint(i, &null_brk);
120}
121
122static bool is_ptrace_bp(struct perf_event *bp)
123{
124	return bp->overflow_handler == ptrace_triggered;
125}
126
127struct breakpoint {
128	struct list_head list;
129	struct perf_event *bp;
130	bool ptrace_bp;
131};
132
133/*
134 * While kernel/events/hw_breakpoint.c does its own synchronization, we cannot
135 * rely on it safely synchronizing internals here; however, we can rely on it
136 * not requesting more breakpoints than available.
137 */
138static DEFINE_SPINLOCK(cpu_bps_lock);
139static DEFINE_PER_CPU(struct breakpoint *, cpu_bps[HBP_NUM_MAX]);
140static DEFINE_SPINLOCK(task_bps_lock);
141static LIST_HEAD(task_bps);
142
143static struct breakpoint *alloc_breakpoint(struct perf_event *bp)
144{
145	struct breakpoint *tmp;
146
147	tmp = kzalloc(sizeof(*tmp), GFP_KERNEL);
148	if (!tmp)
149		return ERR_PTR(-ENOMEM);
150	tmp->bp = bp;
151	tmp->ptrace_bp = is_ptrace_bp(bp);
152	return tmp;
153}
154
155static bool bp_addr_range_overlap(struct perf_event *bp1, struct perf_event *bp2)
156{
157	__u64 bp1_saddr, bp1_eaddr, bp2_saddr, bp2_eaddr;
158
159	bp1_saddr = ALIGN_DOWN(bp1->attr.bp_addr, HW_BREAKPOINT_SIZE);
160	bp1_eaddr = ALIGN(bp1->attr.bp_addr + bp1->attr.bp_len, HW_BREAKPOINT_SIZE);
161	bp2_saddr = ALIGN_DOWN(bp2->attr.bp_addr, HW_BREAKPOINT_SIZE);
162	bp2_eaddr = ALIGN(bp2->attr.bp_addr + bp2->attr.bp_len, HW_BREAKPOINT_SIZE);
163
164	return (bp1_saddr < bp2_eaddr && bp1_eaddr > bp2_saddr);
165}
166
167static bool alternate_infra_bp(struct breakpoint *b, struct perf_event *bp)
168{
169	return is_ptrace_bp(bp) ? !b->ptrace_bp : b->ptrace_bp;
170}
171
172static bool can_co_exist(struct breakpoint *b, struct perf_event *bp)
173{
174	return !(alternate_infra_bp(b, bp) && bp_addr_range_overlap(b->bp, bp));
175}
176
177static int task_bps_add(struct perf_event *bp)
178{
179	struct breakpoint *tmp;
180
181	tmp = alloc_breakpoint(bp);
182	if (IS_ERR(tmp))
183		return PTR_ERR(tmp);
184
185	spin_lock(&task_bps_lock);
186	list_add(&tmp->list, &task_bps);
187	spin_unlock(&task_bps_lock);
188	return 0;
189}
190
191static void task_bps_remove(struct perf_event *bp)
192{
193	struct list_head *pos, *q;
194
195	spin_lock(&task_bps_lock);
196	list_for_each_safe(pos, q, &task_bps) {
197		struct breakpoint *tmp = list_entry(pos, struct breakpoint, list);
198
199		if (tmp->bp == bp) {
200			list_del(&tmp->list);
201			kfree(tmp);
202			break;
203		}
204	}
205	spin_unlock(&task_bps_lock);
206}
207
208/*
209 * If any task has breakpoint from alternate infrastructure,
210 * return true. Otherwise return false.
211 */
212static bool all_task_bps_check(struct perf_event *bp)
213{
214	struct breakpoint *tmp;
215	bool ret = false;
216
217	spin_lock(&task_bps_lock);
218	list_for_each_entry(tmp, &task_bps, list) {
219		if (!can_co_exist(tmp, bp)) {
220			ret = true;
221			break;
222		}
223	}
224	spin_unlock(&task_bps_lock);
225	return ret;
226}
227
228/*
229 * If same task has breakpoint from alternate infrastructure,
230 * return true. Otherwise return false.
231 */
232static bool same_task_bps_check(struct perf_event *bp)
233{
234	struct breakpoint *tmp;
235	bool ret = false;
236
237	spin_lock(&task_bps_lock);
238	list_for_each_entry(tmp, &task_bps, list) {
239		if (tmp->bp->hw.target == bp->hw.target &&
240		    !can_co_exist(tmp, bp)) {
241			ret = true;
242			break;
243		}
244	}
245	spin_unlock(&task_bps_lock);
246	return ret;
247}
248
249static int cpu_bps_add(struct perf_event *bp)
250{
251	struct breakpoint **cpu_bp;
252	struct breakpoint *tmp;
253	int i = 0;
254
255	tmp = alloc_breakpoint(bp);
256	if (IS_ERR(tmp))
257		return PTR_ERR(tmp);
258
259	spin_lock(&cpu_bps_lock);
260	cpu_bp = per_cpu_ptr(cpu_bps, bp->cpu);
261	for (i = 0; i < nr_wp_slots(); i++) {
262		if (!cpu_bp[i]) {
263			cpu_bp[i] = tmp;
264			break;
265		}
266	}
267	spin_unlock(&cpu_bps_lock);
268	return 0;
269}
270
271static void cpu_bps_remove(struct perf_event *bp)
272{
273	struct breakpoint **cpu_bp;
274	int i = 0;
275
276	spin_lock(&cpu_bps_lock);
277	cpu_bp = per_cpu_ptr(cpu_bps, bp->cpu);
278	for (i = 0; i < nr_wp_slots(); i++) {
279		if (!cpu_bp[i])
280			continue;
281
282		if (cpu_bp[i]->bp == bp) {
283			kfree(cpu_bp[i]);
284			cpu_bp[i] = NULL;
285			break;
286		}
287	}
288	spin_unlock(&cpu_bps_lock);
289}
290
291static bool cpu_bps_check(int cpu, struct perf_event *bp)
292{
293	struct breakpoint **cpu_bp;
294	bool ret = false;
295	int i;
296
297	spin_lock(&cpu_bps_lock);
298	cpu_bp = per_cpu_ptr(cpu_bps, cpu);
299	for (i = 0; i < nr_wp_slots(); i++) {
300		if (cpu_bp[i] && !can_co_exist(cpu_bp[i], bp)) {
301			ret = true;
302			break;
303		}
304	}
305	spin_unlock(&cpu_bps_lock);
306	return ret;
307}
308
309static bool all_cpu_bps_check(struct perf_event *bp)
310{
311	int cpu;
312
313	for_each_online_cpu(cpu) {
314		if (cpu_bps_check(cpu, bp))
315			return true;
316	}
317	return false;
318}
319
 
 
 
 
320int arch_reserve_bp_slot(struct perf_event *bp)
321{
322	int ret;
323
324	/* ptrace breakpoint */
325	if (is_ptrace_bp(bp)) {
326		if (all_cpu_bps_check(bp))
327			return -ENOSPC;
328
329		if (same_task_bps_check(bp))
330			return -ENOSPC;
331
332		return task_bps_add(bp);
333	}
334
335	/* perf breakpoint */
336	if (is_kernel_addr(bp->attr.bp_addr))
337		return 0;
338
339	if (bp->hw.target && bp->cpu == -1) {
340		if (same_task_bps_check(bp))
341			return -ENOSPC;
342
343		return task_bps_add(bp);
344	} else if (!bp->hw.target && bp->cpu != -1) {
345		if (all_task_bps_check(bp))
346			return -ENOSPC;
347
348		return cpu_bps_add(bp);
349	}
350
351	if (same_task_bps_check(bp))
352		return -ENOSPC;
353
354	ret = cpu_bps_add(bp);
355	if (ret)
356		return ret;
357	ret = task_bps_add(bp);
358	if (ret)
359		cpu_bps_remove(bp);
360
361	return ret;
362}
363
364void arch_release_bp_slot(struct perf_event *bp)
365{
366	if (!is_kernel_addr(bp->attr.bp_addr)) {
367		if (bp->hw.target)
368			task_bps_remove(bp);
369		if (bp->cpu != -1)
370			cpu_bps_remove(bp);
371	}
372}
373
374/*
375 * Perform cleanup of arch-specific counters during unregistration
376 * of the perf-event
377 */
378void arch_unregister_hw_breakpoint(struct perf_event *bp)
379{
380	/*
381	 * If the breakpoint is unregistered between a hw_breakpoint_handler()
382	 * and the single_step_dabr_instruction(), then cleanup the breakpoint
383	 * restoration variables to prevent dangling pointers.
384	 * FIXME, this should not be using bp->ctx at all! Sayeth peterz.
385	 */
386	if (bp->ctx && bp->ctx->task && bp->ctx->task != ((void *)-1L)) {
387		int i;
388
389		for (i = 0; i < nr_wp_slots(); i++) {
390			if (bp->ctx->task->thread.last_hit_ubp[i] == bp)
391				bp->ctx->task->thread.last_hit_ubp[i] = NULL;
392		}
393	}
394}
395
396/*
397 * Check for virtual address in kernel space.
398 */
399int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
400{
401	return is_kernel_addr(hw->address);
402}
403
404int arch_bp_generic_fields(int type, int *gen_bp_type)
405{
406	*gen_bp_type = 0;
407	if (type & HW_BRK_TYPE_READ)
408		*gen_bp_type |= HW_BREAKPOINT_R;
409	if (type & HW_BRK_TYPE_WRITE)
410		*gen_bp_type |= HW_BREAKPOINT_W;
411	if (*gen_bp_type == 0)
412		return -EINVAL;
413	return 0;
414}
415
416/*
417 * Watchpoint match range is always doubleword(8 bytes) aligned on
418 * powerpc. If the given range is crossing doubleword boundary, we
419 * need to increase the length such that next doubleword also get
420 * covered. Ex,
421 *
422 *          address   len = 6 bytes
423 *                |=========.
424 *   |------------v--|------v--------|
425 *   | | | | | | | | | | | | | | | | |
426 *   |---------------|---------------|
427 *    <---8 bytes--->
428 *
429 * In this case, we should configure hw as:
430 *   start_addr = address & ~(HW_BREAKPOINT_SIZE - 1)
431 *   len = 16 bytes
432 *
433 * @start_addr is inclusive but @end_addr is exclusive.
434 */
435static int hw_breakpoint_validate_len(struct arch_hw_breakpoint *hw)
436{
437	u16 max_len = DABR_MAX_LEN;
438	u16 hw_len;
439	unsigned long start_addr, end_addr;
440
441	start_addr = ALIGN_DOWN(hw->address, HW_BREAKPOINT_SIZE);
442	end_addr = ALIGN(hw->address + hw->len, HW_BREAKPOINT_SIZE);
443	hw_len = end_addr - start_addr;
444
445	if (dawr_enabled()) {
446		max_len = DAWR_MAX_LEN;
447		/* DAWR region can't cross 512 bytes boundary on p10 predecessors */
448		if (!cpu_has_feature(CPU_FTR_ARCH_31) &&
449		    (ALIGN_DOWN(start_addr, SZ_512) != ALIGN_DOWN(end_addr - 1, SZ_512)))
450			return -EINVAL;
451	} else if (IS_ENABLED(CONFIG_PPC_8xx)) {
452		/* 8xx can setup a range without limitation */
453		max_len = U16_MAX;
454	}
455
456	if (hw_len > max_len)
457		return -EINVAL;
458
459	hw->hw_len = hw_len;
460	return 0;
461}
462
463/*
464 * Validate the arch-specific HW Breakpoint register settings
465 */
466int hw_breakpoint_arch_parse(struct perf_event *bp,
467			     const struct perf_event_attr *attr,
468			     struct arch_hw_breakpoint *hw)
469{
470	int ret = -EINVAL;
471
472	if (!bp || !attr->bp_len)
473		return ret;
474
475	hw->type = HW_BRK_TYPE_TRANSLATE;
476	if (attr->bp_type & HW_BREAKPOINT_R)
477		hw->type |= HW_BRK_TYPE_READ;
478	if (attr->bp_type & HW_BREAKPOINT_W)
479		hw->type |= HW_BRK_TYPE_WRITE;
480	if (hw->type == HW_BRK_TYPE_TRANSLATE)
481		/* must set alteast read or write */
482		return ret;
483	if (!attr->exclude_user)
484		hw->type |= HW_BRK_TYPE_USER;
485	if (!attr->exclude_kernel)
486		hw->type |= HW_BRK_TYPE_KERNEL;
487	if (!attr->exclude_hv)
488		hw->type |= HW_BRK_TYPE_HYP;
489	hw->address = attr->bp_addr;
490	hw->len = attr->bp_len;
491
492	if (!ppc_breakpoint_available())
493		return -ENODEV;
494
495	return hw_breakpoint_validate_len(hw);
496}
497
498/*
499 * Restores the breakpoint on the debug registers.
500 * Invoke this function if it is known that the execution context is
501 * about to change to cause loss of MSR_SE settings.
502 */
503void thread_change_pc(struct task_struct *tsk, struct pt_regs *regs)
504{
505	struct arch_hw_breakpoint *info;
506	int i;
507
508	for (i = 0; i < nr_wp_slots(); i++) {
509		if (unlikely(tsk->thread.last_hit_ubp[i]))
510			goto reset;
511	}
512	return;
513
514reset:
515	regs_set_return_msr(regs, regs->msr & ~MSR_SE);
516	for (i = 0; i < nr_wp_slots(); i++) {
517		info = counter_arch_bp(__this_cpu_read(bp_per_reg[i]));
518		__set_breakpoint(i, info);
519		tsk->thread.last_hit_ubp[i] = NULL;
520	}
521}
522
523static bool is_larx_stcx_instr(int type)
524{
525	return type == LARX || type == STCX;
526}
527
528static bool is_octword_vsx_instr(int type, int size)
529{
530	return ((type == LOAD_VSX || type == STORE_VSX) && size == 32);
531}
532
533/*
534 * We've failed in reliably handling the hw-breakpoint. Unregister
535 * it and throw a warning message to let the user know about it.
536 */
537static void handler_error(struct perf_event *bp, struct arch_hw_breakpoint *info)
538{
539	WARN(1, "Unable to handle hardware breakpoint. Breakpoint at 0x%lx will be disabled.",
540	     info->address);
541	perf_event_disable_inatomic(bp);
542}
543
544static void larx_stcx_err(struct perf_event *bp, struct arch_hw_breakpoint *info)
545{
546	printk_ratelimited("Breakpoint hit on instruction that can't be emulated. Breakpoint at 0x%lx will be disabled.\n",
547			   info->address);
548	perf_event_disable_inatomic(bp);
549}
550
551static bool stepping_handler(struct pt_regs *regs, struct perf_event **bp,
552			     struct arch_hw_breakpoint **info, int *hit,
553			     ppc_inst_t instr)
554{
555	int i;
556	int stepped;
557
558	/* Do not emulate user-space instructions, instead single-step them */
559	if (user_mode(regs)) {
560		for (i = 0; i < nr_wp_slots(); i++) {
561			if (!hit[i])
562				continue;
563			current->thread.last_hit_ubp[i] = bp[i];
564			info[i] = NULL;
565		}
566		regs_set_return_msr(regs, regs->msr | MSR_SE);
567		return false;
568	}
569
570	stepped = emulate_step(regs, instr);
571	if (!stepped) {
572		for (i = 0; i < nr_wp_slots(); i++) {
573			if (!hit[i])
574				continue;
575			handler_error(bp[i], info[i]);
576			info[i] = NULL;
577		}
578		return false;
579	}
580	return true;
581}
582
583static void handle_p10dd1_spurious_exception(struct arch_hw_breakpoint **info,
584					     int *hit, unsigned long ea)
585{
586	int i;
587	unsigned long hw_end_addr;
588
589	/*
590	 * Handle spurious exception only when any bp_per_reg is set.
591	 * Otherwise this might be created by xmon and not actually a
592	 * spurious exception.
593	 */
594	for (i = 0; i < nr_wp_slots(); i++) {
595		if (!info[i])
596			continue;
597
598		hw_end_addr = ALIGN(info[i]->address + info[i]->len, HW_BREAKPOINT_SIZE);
599
600		/*
601		 * Ending address of DAWR range is less than starting
602		 * address of op.
603		 */
604		if ((hw_end_addr - 1) >= ea)
605			continue;
606
607		/*
608		 * Those addresses need to be in the same or in two
609		 * consecutive 512B blocks;
610		 */
611		if (((hw_end_addr - 1) >> 10) != (ea >> 10))
612			continue;
613
614		/*
615		 * 'op address + 64B' generates an address that has a
616		 * carry into bit 52 (crosses 2K boundary).
617		 */
618		if ((ea & 0x800) == ((ea + 64) & 0x800))
619			continue;
620
621		break;
622	}
623
624	if (i == nr_wp_slots())
625		return;
626
627	for (i = 0; i < nr_wp_slots(); i++) {
628		if (info[i]) {
629			hit[i] = 1;
630			info[i]->type |= HW_BRK_TYPE_EXTRANEOUS_IRQ;
631		}
632	}
633}
634
635int hw_breakpoint_handler(struct die_args *args)
636{
637	bool err = false;
638	int rc = NOTIFY_STOP;
639	struct perf_event *bp[HBP_NUM_MAX] = { NULL };
640	struct pt_regs *regs = args->regs;
641	struct arch_hw_breakpoint *info[HBP_NUM_MAX] = { NULL };
642	int i;
643	int hit[HBP_NUM_MAX] = {0};
644	int nr_hit = 0;
645	bool ptrace_bp = false;
646	ppc_inst_t instr = ppc_inst(0);
647	int type = 0;
648	int size = 0;
649	unsigned long ea = 0;
650
651	/* Disable breakpoints during exception handling */
652	hw_breakpoint_disable();
653
654	/*
655	 * The counter may be concurrently released but that can only
656	 * occur from a call_rcu() path. We can then safely fetch
657	 * the breakpoint, use its callback, touch its counter
658	 * while we are in an rcu_read_lock() path.
659	 */
660	rcu_read_lock();
661
662	if (!IS_ENABLED(CONFIG_PPC_8xx))
663		wp_get_instr_detail(regs, &instr, &type, &size, &ea);
664
665	for (i = 0; i < nr_wp_slots(); i++) {
666		bp[i] = __this_cpu_read(bp_per_reg[i]);
667		if (!bp[i])
668			continue;
669
670		info[i] = counter_arch_bp(bp[i]);
671		info[i]->type &= ~HW_BRK_TYPE_EXTRANEOUS_IRQ;
672
673		if (wp_check_constraints(regs, instr, ea, type, size, info[i])) {
674			if (!IS_ENABLED(CONFIG_PPC_8xx) &&
675			    ppc_inst_equal(instr, ppc_inst(0))) {
676				handler_error(bp[i], info[i]);
677				info[i] = NULL;
678				err = 1;
679				continue;
680			}
681
682			if (is_ptrace_bp(bp[i]))
683				ptrace_bp = true;
684			hit[i] = 1;
685			nr_hit++;
686		}
687	}
688
689	if (err)
690		goto reset;
691
692	if (!nr_hit) {
693		/* Workaround for Power10 DD1 */
694		if (!IS_ENABLED(CONFIG_PPC_8xx) && mfspr(SPRN_PVR) == 0x800100 &&
695		    is_octword_vsx_instr(type, size)) {
696			handle_p10dd1_spurious_exception(info, hit, ea);
697		} else {
698			rc = NOTIFY_DONE;
699			goto out;
700		}
701	}
702
703	/*
704	 * Return early after invoking user-callback function without restoring
705	 * DABR if the breakpoint is from ptrace which always operates in
706	 * one-shot mode. The ptrace-ed process will receive the SIGTRAP signal
707	 * generated in do_dabr().
708	 */
709	if (ptrace_bp) {
710		for (i = 0; i < nr_wp_slots(); i++) {
711			if (!hit[i])
712				continue;
713			perf_bp_event(bp[i], regs);
714			info[i] = NULL;
715		}
716		rc = NOTIFY_DONE;
717		goto reset;
718	}
719
720	if (!IS_ENABLED(CONFIG_PPC_8xx)) {
721		if (is_larx_stcx_instr(type)) {
722			for (i = 0; i < nr_wp_slots(); i++) {
723				if (!hit[i])
724					continue;
725				larx_stcx_err(bp[i], info[i]);
726				info[i] = NULL;
727			}
728			goto reset;
729		}
730
731		if (!stepping_handler(regs, bp, info, hit, instr))
732			goto reset;
733	}
734
735	/*
736	 * As a policy, the callback is invoked in a 'trigger-after-execute'
737	 * fashion
738	 */
739	for (i = 0; i < nr_wp_slots(); i++) {
740		if (!hit[i])
741			continue;
742		if (!(info[i]->type & HW_BRK_TYPE_EXTRANEOUS_IRQ))
743			perf_bp_event(bp[i], regs);
744	}
745
746reset:
747	for (i = 0; i < nr_wp_slots(); i++) {
748		if (!info[i])
749			continue;
750		__set_breakpoint(i, info[i]);
751	}
752
753out:
754	rcu_read_unlock();
755	return rc;
756}
757NOKPROBE_SYMBOL(hw_breakpoint_handler);
758
759/*
760 * Handle single-step exceptions following a DABR hit.
761 */
762static int single_step_dabr_instruction(struct die_args *args)
763{
764	struct pt_regs *regs = args->regs;
765	struct perf_event *bp = NULL;
766	struct arch_hw_breakpoint *info;
767	int i;
768	bool found = false;
769
770	/*
771	 * Check if we are single-stepping as a result of a
772	 * previous HW Breakpoint exception
773	 */
774	for (i = 0; i < nr_wp_slots(); i++) {
775		bp = current->thread.last_hit_ubp[i];
776
777		if (!bp)
778			continue;
779
780		found = true;
781		info = counter_arch_bp(bp);
782
783		/*
784		 * We shall invoke the user-defined callback function in the
785		 * single stepping handler to confirm to 'trigger-after-execute'
786		 * semantics
787		 */
788		if (!(info->type & HW_BRK_TYPE_EXTRANEOUS_IRQ))
789			perf_bp_event(bp, regs);
790		current->thread.last_hit_ubp[i] = NULL;
791	}
792
793	if (!found)
794		return NOTIFY_DONE;
795
796	for (i = 0; i < nr_wp_slots(); i++) {
797		bp = __this_cpu_read(bp_per_reg[i]);
798		if (!bp)
799			continue;
800
801		info = counter_arch_bp(bp);
802		__set_breakpoint(i, info);
803	}
804
805	/*
806	 * If the process was being single-stepped by ptrace, let the
807	 * other single-step actions occur (e.g. generate SIGTRAP).
808	 */
809	if (test_thread_flag(TIF_SINGLESTEP))
810		return NOTIFY_DONE;
811
812	return NOTIFY_STOP;
813}
814NOKPROBE_SYMBOL(single_step_dabr_instruction);
815
816/*
817 * Handle debug exception notifications.
818 */
819int hw_breakpoint_exceptions_notify(
820		struct notifier_block *unused, unsigned long val, void *data)
821{
822	int ret = NOTIFY_DONE;
823
824	switch (val) {
825	case DIE_DABR_MATCH:
826		ret = hw_breakpoint_handler(data);
827		break;
828	case DIE_SSTEP:
829		ret = single_step_dabr_instruction(data);
830		break;
831	}
832
833	return ret;
834}
835NOKPROBE_SYMBOL(hw_breakpoint_exceptions_notify);
836
837/*
838 * Release the user breakpoints used by ptrace
839 */
840void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
841{
842	int i;
843	struct thread_struct *t = &tsk->thread;
844
845	for (i = 0; i < nr_wp_slots(); i++) {
846		unregister_hw_breakpoint(t->ptrace_bps[i]);
847		t->ptrace_bps[i] = NULL;
848	}
849}
850
851void hw_breakpoint_pmu_read(struct perf_event *bp)
852{
853	/* TODO */
854}
855
856void ptrace_triggered(struct perf_event *bp,
857		      struct perf_sample_data *data, struct pt_regs *regs)
858{
859	struct perf_event_attr attr;
860
861	/*
862	 * Disable the breakpoint request here since ptrace has defined a
863	 * one-shot behaviour for breakpoint exceptions in PPC64.
864	 * The SIGTRAP signal is generated automatically for us in do_dabr().
865	 * We don't have to do anything about that here
866	 */
867	attr = bp->attr;
868	attr.disabled = true;
869	modify_user_hw_breakpoint(bp, &attr);
870}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
  4 * using the CPU's debug registers. Derived from
  5 * "arch/x86/kernel/hw_breakpoint.c"
  6 *
  7 * Copyright 2010 IBM Corporation
  8 * Author: K.Prasad <prasad@linux.vnet.ibm.com>
  9 */
 10
 11#include <linux/hw_breakpoint.h>
 12#include <linux/notifier.h>
 13#include <linux/kprobes.h>
 14#include <linux/percpu.h>
 15#include <linux/kernel.h>
 16#include <linux/sched.h>
 17#include <linux/smp.h>
 
 18#include <linux/debugfs.h>
 19#include <linux/init.h>
 20
 21#include <asm/hw_breakpoint.h>
 22#include <asm/processor.h>
 23#include <asm/sstep.h>
 24#include <asm/debug.h>
 25#include <asm/debugfs.h>
 26#include <asm/hvcall.h>
 27#include <asm/inst.h>
 28#include <linux/uaccess.h>
 29
 30/*
 31 * Stores the breakpoints currently in use on each breakpoint address
 32 * register for every cpu
 33 */
 34static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM_MAX]);
 35
 36/*
 37 * Returns total number of data or instruction breakpoints available.
 38 */
 39int hw_breakpoint_slots(int type)
 40{
 41	if (type == TYPE_DATA)
 42		return nr_wp_slots();
 43	return 0;		/* no instruction breakpoints available */
 44}
 45
 46static bool single_step_pending(void)
 47{
 48	int i;
 49
 50	for (i = 0; i < nr_wp_slots(); i++) {
 51		if (current->thread.last_hit_ubp[i])
 52			return true;
 53	}
 54	return false;
 55}
 56
 57/*
 58 * Install a perf counter breakpoint.
 59 *
 60 * We seek a free debug address register and use it for this
 61 * breakpoint.
 62 *
 63 * Atomic: we hold the counter->ctx->lock and we only handle variables
 64 * and registers local to this cpu.
 65 */
 66int arch_install_hw_breakpoint(struct perf_event *bp)
 67{
 68	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
 69	struct perf_event **slot;
 70	int i;
 71
 72	for (i = 0; i < nr_wp_slots(); i++) {
 73		slot = this_cpu_ptr(&bp_per_reg[i]);
 74		if (!*slot) {
 75			*slot = bp;
 76			break;
 77		}
 78	}
 79
 80	if (WARN_ONCE(i == nr_wp_slots(), "Can't find any breakpoint slot"))
 81		return -EBUSY;
 82
 83	/*
 84	 * Do not install DABR values if the instruction must be single-stepped.
 85	 * If so, DABR will be populated in single_step_dabr_instruction().
 86	 */
 87	if (!single_step_pending())
 88		__set_breakpoint(i, info);
 89
 90	return 0;
 91}
 92
 93/*
 94 * Uninstall the breakpoint contained in the given counter.
 95 *
 96 * First we search the debug address register it uses and then we disable
 97 * it.
 98 *
 99 * Atomic: we hold the counter->ctx->lock and we only handle variables
100 * and registers local to this cpu.
101 */
102void arch_uninstall_hw_breakpoint(struct perf_event *bp)
103{
104	struct arch_hw_breakpoint null_brk = {0};
105	struct perf_event **slot;
106	int i;
107
108	for (i = 0; i < nr_wp_slots(); i++) {
109		slot = this_cpu_ptr(&bp_per_reg[i]);
110		if (*slot == bp) {
111			*slot = NULL;
112			break;
113		}
114	}
115
116	if (WARN_ONCE(i == nr_wp_slots(), "Can't find any breakpoint slot"))
117		return;
118
119	__set_breakpoint(i, &null_brk);
120}
121
122static bool is_ptrace_bp(struct perf_event *bp)
123{
124	return bp->overflow_handler == ptrace_triggered;
125}
126
127struct breakpoint {
128	struct list_head list;
129	struct perf_event *bp;
130	bool ptrace_bp;
131};
132
 
 
 
 
 
 
133static DEFINE_PER_CPU(struct breakpoint *, cpu_bps[HBP_NUM_MAX]);
 
134static LIST_HEAD(task_bps);
135
136static struct breakpoint *alloc_breakpoint(struct perf_event *bp)
137{
138	struct breakpoint *tmp;
139
140	tmp = kzalloc(sizeof(*tmp), GFP_KERNEL);
141	if (!tmp)
142		return ERR_PTR(-ENOMEM);
143	tmp->bp = bp;
144	tmp->ptrace_bp = is_ptrace_bp(bp);
145	return tmp;
146}
147
148static bool bp_addr_range_overlap(struct perf_event *bp1, struct perf_event *bp2)
149{
150	__u64 bp1_saddr, bp1_eaddr, bp2_saddr, bp2_eaddr;
151
152	bp1_saddr = ALIGN_DOWN(bp1->attr.bp_addr, HW_BREAKPOINT_SIZE);
153	bp1_eaddr = ALIGN(bp1->attr.bp_addr + bp1->attr.bp_len, HW_BREAKPOINT_SIZE);
154	bp2_saddr = ALIGN_DOWN(bp2->attr.bp_addr, HW_BREAKPOINT_SIZE);
155	bp2_eaddr = ALIGN(bp2->attr.bp_addr + bp2->attr.bp_len, HW_BREAKPOINT_SIZE);
156
157	return (bp1_saddr < bp2_eaddr && bp1_eaddr > bp2_saddr);
158}
159
160static bool alternate_infra_bp(struct breakpoint *b, struct perf_event *bp)
161{
162	return is_ptrace_bp(bp) ? !b->ptrace_bp : b->ptrace_bp;
163}
164
165static bool can_co_exist(struct breakpoint *b, struct perf_event *bp)
166{
167	return !(alternate_infra_bp(b, bp) && bp_addr_range_overlap(b->bp, bp));
168}
169
170static int task_bps_add(struct perf_event *bp)
171{
172	struct breakpoint *tmp;
173
174	tmp = alloc_breakpoint(bp);
175	if (IS_ERR(tmp))
176		return PTR_ERR(tmp);
177
 
178	list_add(&tmp->list, &task_bps);
 
179	return 0;
180}
181
182static void task_bps_remove(struct perf_event *bp)
183{
184	struct list_head *pos, *q;
185
 
186	list_for_each_safe(pos, q, &task_bps) {
187		struct breakpoint *tmp = list_entry(pos, struct breakpoint, list);
188
189		if (tmp->bp == bp) {
190			list_del(&tmp->list);
191			kfree(tmp);
192			break;
193		}
194	}
 
195}
196
197/*
198 * If any task has breakpoint from alternate infrastructure,
199 * return true. Otherwise return false.
200 */
201static bool all_task_bps_check(struct perf_event *bp)
202{
203	struct breakpoint *tmp;
 
204
 
205	list_for_each_entry(tmp, &task_bps, list) {
206		if (!can_co_exist(tmp, bp))
207			return true;
 
 
208	}
209	return false;
 
210}
211
212/*
213 * If same task has breakpoint from alternate infrastructure,
214 * return true. Otherwise return false.
215 */
216static bool same_task_bps_check(struct perf_event *bp)
217{
218	struct breakpoint *tmp;
 
219
 
220	list_for_each_entry(tmp, &task_bps, list) {
221		if (tmp->bp->hw.target == bp->hw.target &&
222		    !can_co_exist(tmp, bp))
223			return true;
 
 
224	}
225	return false;
 
226}
227
228static int cpu_bps_add(struct perf_event *bp)
229{
230	struct breakpoint **cpu_bp;
231	struct breakpoint *tmp;
232	int i = 0;
233
234	tmp = alloc_breakpoint(bp);
235	if (IS_ERR(tmp))
236		return PTR_ERR(tmp);
237
 
238	cpu_bp = per_cpu_ptr(cpu_bps, bp->cpu);
239	for (i = 0; i < nr_wp_slots(); i++) {
240		if (!cpu_bp[i]) {
241			cpu_bp[i] = tmp;
242			break;
243		}
244	}
 
245	return 0;
246}
247
248static void cpu_bps_remove(struct perf_event *bp)
249{
250	struct breakpoint **cpu_bp;
251	int i = 0;
252
 
253	cpu_bp = per_cpu_ptr(cpu_bps, bp->cpu);
254	for (i = 0; i < nr_wp_slots(); i++) {
255		if (!cpu_bp[i])
256			continue;
257
258		if (cpu_bp[i]->bp == bp) {
259			kfree(cpu_bp[i]);
260			cpu_bp[i] = NULL;
261			break;
262		}
263	}
 
264}
265
266static bool cpu_bps_check(int cpu, struct perf_event *bp)
267{
268	struct breakpoint **cpu_bp;
 
269	int i;
270
 
271	cpu_bp = per_cpu_ptr(cpu_bps, cpu);
272	for (i = 0; i < nr_wp_slots(); i++) {
273		if (cpu_bp[i] && !can_co_exist(cpu_bp[i], bp))
274			return true;
 
 
275	}
276	return false;
 
277}
278
279static bool all_cpu_bps_check(struct perf_event *bp)
280{
281	int cpu;
282
283	for_each_online_cpu(cpu) {
284		if (cpu_bps_check(cpu, bp))
285			return true;
286	}
287	return false;
288}
289
290/*
291 * We don't use any locks to serialize accesses to cpu_bps or task_bps
292 * because are already inside nr_bp_mutex.
293 */
294int arch_reserve_bp_slot(struct perf_event *bp)
295{
296	int ret;
297
298	/* ptrace breakpoint */
299	if (is_ptrace_bp(bp)) {
300		if (all_cpu_bps_check(bp))
301			return -ENOSPC;
302
303		if (same_task_bps_check(bp))
304			return -ENOSPC;
305
306		return task_bps_add(bp);
307	}
308
309	/* perf breakpoint */
310	if (is_kernel_addr(bp->attr.bp_addr))
311		return 0;
312
313	if (bp->hw.target && bp->cpu == -1) {
314		if (same_task_bps_check(bp))
315			return -ENOSPC;
316
317		return task_bps_add(bp);
318	} else if (!bp->hw.target && bp->cpu != -1) {
319		if (all_task_bps_check(bp))
320			return -ENOSPC;
321
322		return cpu_bps_add(bp);
323	}
324
325	if (same_task_bps_check(bp))
326		return -ENOSPC;
327
328	ret = cpu_bps_add(bp);
329	if (ret)
330		return ret;
331	ret = task_bps_add(bp);
332	if (ret)
333		cpu_bps_remove(bp);
334
335	return ret;
336}
337
338void arch_release_bp_slot(struct perf_event *bp)
339{
340	if (!is_kernel_addr(bp->attr.bp_addr)) {
341		if (bp->hw.target)
342			task_bps_remove(bp);
343		if (bp->cpu != -1)
344			cpu_bps_remove(bp);
345	}
346}
347
348/*
349 * Perform cleanup of arch-specific counters during unregistration
350 * of the perf-event
351 */
352void arch_unregister_hw_breakpoint(struct perf_event *bp)
353{
354	/*
355	 * If the breakpoint is unregistered between a hw_breakpoint_handler()
356	 * and the single_step_dabr_instruction(), then cleanup the breakpoint
357	 * restoration variables to prevent dangling pointers.
358	 * FIXME, this should not be using bp->ctx at all! Sayeth peterz.
359	 */
360	if (bp->ctx && bp->ctx->task && bp->ctx->task != ((void *)-1L)) {
361		int i;
362
363		for (i = 0; i < nr_wp_slots(); i++) {
364			if (bp->ctx->task->thread.last_hit_ubp[i] == bp)
365				bp->ctx->task->thread.last_hit_ubp[i] = NULL;
366		}
367	}
368}
369
370/*
371 * Check for virtual address in kernel space.
372 */
373int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
374{
375	return is_kernel_addr(hw->address);
376}
377
378int arch_bp_generic_fields(int type, int *gen_bp_type)
379{
380	*gen_bp_type = 0;
381	if (type & HW_BRK_TYPE_READ)
382		*gen_bp_type |= HW_BREAKPOINT_R;
383	if (type & HW_BRK_TYPE_WRITE)
384		*gen_bp_type |= HW_BREAKPOINT_W;
385	if (*gen_bp_type == 0)
386		return -EINVAL;
387	return 0;
388}
389
390/*
391 * Watchpoint match range is always doubleword(8 bytes) aligned on
392 * powerpc. If the given range is crossing doubleword boundary, we
393 * need to increase the length such that next doubleword also get
394 * covered. Ex,
395 *
396 *          address   len = 6 bytes
397 *                |=========.
398 *   |------------v--|------v--------|
399 *   | | | | | | | | | | | | | | | | |
400 *   |---------------|---------------|
401 *    <---8 bytes--->
402 *
403 * In this case, we should configure hw as:
404 *   start_addr = address & ~(HW_BREAKPOINT_SIZE - 1)
405 *   len = 16 bytes
406 *
407 * @start_addr is inclusive but @end_addr is exclusive.
408 */
409static int hw_breakpoint_validate_len(struct arch_hw_breakpoint *hw)
410{
411	u16 max_len = DABR_MAX_LEN;
412	u16 hw_len;
413	unsigned long start_addr, end_addr;
414
415	start_addr = ALIGN_DOWN(hw->address, HW_BREAKPOINT_SIZE);
416	end_addr = ALIGN(hw->address + hw->len, HW_BREAKPOINT_SIZE);
417	hw_len = end_addr - start_addr;
418
419	if (dawr_enabled()) {
420		max_len = DAWR_MAX_LEN;
421		/* DAWR region can't cross 512 bytes boundary on p10 predecessors */
422		if (!cpu_has_feature(CPU_FTR_ARCH_31) &&
423		    (ALIGN_DOWN(start_addr, SZ_512) != ALIGN_DOWN(end_addr - 1, SZ_512)))
424			return -EINVAL;
425	} else if (IS_ENABLED(CONFIG_PPC_8xx)) {
426		/* 8xx can setup a range without limitation */
427		max_len = U16_MAX;
428	}
429
430	if (hw_len > max_len)
431		return -EINVAL;
432
433	hw->hw_len = hw_len;
434	return 0;
435}
436
437/*
438 * Validate the arch-specific HW Breakpoint register settings
439 */
440int hw_breakpoint_arch_parse(struct perf_event *bp,
441			     const struct perf_event_attr *attr,
442			     struct arch_hw_breakpoint *hw)
443{
444	int ret = -EINVAL;
445
446	if (!bp || !attr->bp_len)
447		return ret;
448
449	hw->type = HW_BRK_TYPE_TRANSLATE;
450	if (attr->bp_type & HW_BREAKPOINT_R)
451		hw->type |= HW_BRK_TYPE_READ;
452	if (attr->bp_type & HW_BREAKPOINT_W)
453		hw->type |= HW_BRK_TYPE_WRITE;
454	if (hw->type == HW_BRK_TYPE_TRANSLATE)
455		/* must set alteast read or write */
456		return ret;
457	if (!attr->exclude_user)
458		hw->type |= HW_BRK_TYPE_USER;
459	if (!attr->exclude_kernel)
460		hw->type |= HW_BRK_TYPE_KERNEL;
461	if (!attr->exclude_hv)
462		hw->type |= HW_BRK_TYPE_HYP;
463	hw->address = attr->bp_addr;
464	hw->len = attr->bp_len;
465
466	if (!ppc_breakpoint_available())
467		return -ENODEV;
468
469	return hw_breakpoint_validate_len(hw);
470}
471
472/*
473 * Restores the breakpoint on the debug registers.
474 * Invoke this function if it is known that the execution context is
475 * about to change to cause loss of MSR_SE settings.
476 */
477void thread_change_pc(struct task_struct *tsk, struct pt_regs *regs)
478{
479	struct arch_hw_breakpoint *info;
480	int i;
481
482	for (i = 0; i < nr_wp_slots(); i++) {
483		if (unlikely(tsk->thread.last_hit_ubp[i]))
484			goto reset;
485	}
486	return;
487
488reset:
489	regs_set_return_msr(regs, regs->msr & ~MSR_SE);
490	for (i = 0; i < nr_wp_slots(); i++) {
491		info = counter_arch_bp(__this_cpu_read(bp_per_reg[i]));
492		__set_breakpoint(i, info);
493		tsk->thread.last_hit_ubp[i] = NULL;
494	}
495}
496
497static bool is_larx_stcx_instr(int type)
498{
499	return type == LARX || type == STCX;
500}
501
502static bool is_octword_vsx_instr(int type, int size)
503{
504	return ((type == LOAD_VSX || type == STORE_VSX) && size == 32);
505}
506
507/*
508 * We've failed in reliably handling the hw-breakpoint. Unregister
509 * it and throw a warning message to let the user know about it.
510 */
511static void handler_error(struct perf_event *bp, struct arch_hw_breakpoint *info)
512{
513	WARN(1, "Unable to handle hardware breakpoint. Breakpoint at 0x%lx will be disabled.",
514	     info->address);
515	perf_event_disable_inatomic(bp);
516}
517
518static void larx_stcx_err(struct perf_event *bp, struct arch_hw_breakpoint *info)
519{
520	printk_ratelimited("Breakpoint hit on instruction that can't be emulated. Breakpoint at 0x%lx will be disabled.\n",
521			   info->address);
522	perf_event_disable_inatomic(bp);
523}
524
525static bool stepping_handler(struct pt_regs *regs, struct perf_event **bp,
526			     struct arch_hw_breakpoint **info, int *hit,
527			     struct ppc_inst instr)
528{
529	int i;
530	int stepped;
531
532	/* Do not emulate user-space instructions, instead single-step them */
533	if (user_mode(regs)) {
534		for (i = 0; i < nr_wp_slots(); i++) {
535			if (!hit[i])
536				continue;
537			current->thread.last_hit_ubp[i] = bp[i];
538			info[i] = NULL;
539		}
540		regs_set_return_msr(regs, regs->msr | MSR_SE);
541		return false;
542	}
543
544	stepped = emulate_step(regs, instr);
545	if (!stepped) {
546		for (i = 0; i < nr_wp_slots(); i++) {
547			if (!hit[i])
548				continue;
549			handler_error(bp[i], info[i]);
550			info[i] = NULL;
551		}
552		return false;
553	}
554	return true;
555}
556
557static void handle_p10dd1_spurious_exception(struct arch_hw_breakpoint **info,
558					     int *hit, unsigned long ea)
559{
560	int i;
561	unsigned long hw_end_addr;
562
563	/*
564	 * Handle spurious exception only when any bp_per_reg is set.
565	 * Otherwise this might be created by xmon and not actually a
566	 * spurious exception.
567	 */
568	for (i = 0; i < nr_wp_slots(); i++) {
569		if (!info[i])
570			continue;
571
572		hw_end_addr = ALIGN(info[i]->address + info[i]->len, HW_BREAKPOINT_SIZE);
573
574		/*
575		 * Ending address of DAWR range is less than starting
576		 * address of op.
577		 */
578		if ((hw_end_addr - 1) >= ea)
579			continue;
580
581		/*
582		 * Those addresses need to be in the same or in two
583		 * consecutive 512B blocks;
584		 */
585		if (((hw_end_addr - 1) >> 10) != (ea >> 10))
586			continue;
587
588		/*
589		 * 'op address + 64B' generates an address that has a
590		 * carry into bit 52 (crosses 2K boundary).
591		 */
592		if ((ea & 0x800) == ((ea + 64) & 0x800))
593			continue;
594
595		break;
596	}
597
598	if (i == nr_wp_slots())
599		return;
600
601	for (i = 0; i < nr_wp_slots(); i++) {
602		if (info[i]) {
603			hit[i] = 1;
604			info[i]->type |= HW_BRK_TYPE_EXTRANEOUS_IRQ;
605		}
606	}
607}
608
609int hw_breakpoint_handler(struct die_args *args)
610{
611	bool err = false;
612	int rc = NOTIFY_STOP;
613	struct perf_event *bp[HBP_NUM_MAX] = { NULL };
614	struct pt_regs *regs = args->regs;
615	struct arch_hw_breakpoint *info[HBP_NUM_MAX] = { NULL };
616	int i;
617	int hit[HBP_NUM_MAX] = {0};
618	int nr_hit = 0;
619	bool ptrace_bp = false;
620	struct ppc_inst instr = ppc_inst(0);
621	int type = 0;
622	int size = 0;
623	unsigned long ea;
624
625	/* Disable breakpoints during exception handling */
626	hw_breakpoint_disable();
627
628	/*
629	 * The counter may be concurrently released but that can only
630	 * occur from a call_rcu() path. We can then safely fetch
631	 * the breakpoint, use its callback, touch its counter
632	 * while we are in an rcu_read_lock() path.
633	 */
634	rcu_read_lock();
635
636	if (!IS_ENABLED(CONFIG_PPC_8xx))
637		wp_get_instr_detail(regs, &instr, &type, &size, &ea);
638
639	for (i = 0; i < nr_wp_slots(); i++) {
640		bp[i] = __this_cpu_read(bp_per_reg[i]);
641		if (!bp[i])
642			continue;
643
644		info[i] = counter_arch_bp(bp[i]);
645		info[i]->type &= ~HW_BRK_TYPE_EXTRANEOUS_IRQ;
646
647		if (wp_check_constraints(regs, instr, ea, type, size, info[i])) {
648			if (!IS_ENABLED(CONFIG_PPC_8xx) &&
649			    ppc_inst_equal(instr, ppc_inst(0))) {
650				handler_error(bp[i], info[i]);
651				info[i] = NULL;
652				err = 1;
653				continue;
654			}
655
656			if (is_ptrace_bp(bp[i]))
657				ptrace_bp = true;
658			hit[i] = 1;
659			nr_hit++;
660		}
661	}
662
663	if (err)
664		goto reset;
665
666	if (!nr_hit) {
667		/* Workaround for Power10 DD1 */
668		if (!IS_ENABLED(CONFIG_PPC_8xx) && mfspr(SPRN_PVR) == 0x800100 &&
669		    is_octword_vsx_instr(type, size)) {
670			handle_p10dd1_spurious_exception(info, hit, ea);
671		} else {
672			rc = NOTIFY_DONE;
673			goto out;
674		}
675	}
676
677	/*
678	 * Return early after invoking user-callback function without restoring
679	 * DABR if the breakpoint is from ptrace which always operates in
680	 * one-shot mode. The ptrace-ed process will receive the SIGTRAP signal
681	 * generated in do_dabr().
682	 */
683	if (ptrace_bp) {
684		for (i = 0; i < nr_wp_slots(); i++) {
685			if (!hit[i])
686				continue;
687			perf_bp_event(bp[i], regs);
688			info[i] = NULL;
689		}
690		rc = NOTIFY_DONE;
691		goto reset;
692	}
693
694	if (!IS_ENABLED(CONFIG_PPC_8xx)) {
695		if (is_larx_stcx_instr(type)) {
696			for (i = 0; i < nr_wp_slots(); i++) {
697				if (!hit[i])
698					continue;
699				larx_stcx_err(bp[i], info[i]);
700				info[i] = NULL;
701			}
702			goto reset;
703		}
704
705		if (!stepping_handler(regs, bp, info, hit, instr))
706			goto reset;
707	}
708
709	/*
710	 * As a policy, the callback is invoked in a 'trigger-after-execute'
711	 * fashion
712	 */
713	for (i = 0; i < nr_wp_slots(); i++) {
714		if (!hit[i])
715			continue;
716		if (!(info[i]->type & HW_BRK_TYPE_EXTRANEOUS_IRQ))
717			perf_bp_event(bp[i], regs);
718	}
719
720reset:
721	for (i = 0; i < nr_wp_slots(); i++) {
722		if (!info[i])
723			continue;
724		__set_breakpoint(i, info[i]);
725	}
726
727out:
728	rcu_read_unlock();
729	return rc;
730}
731NOKPROBE_SYMBOL(hw_breakpoint_handler);
732
733/*
734 * Handle single-step exceptions following a DABR hit.
735 */
736static int single_step_dabr_instruction(struct die_args *args)
737{
738	struct pt_regs *regs = args->regs;
739	struct perf_event *bp = NULL;
740	struct arch_hw_breakpoint *info;
741	int i;
742	bool found = false;
743
744	/*
745	 * Check if we are single-stepping as a result of a
746	 * previous HW Breakpoint exception
747	 */
748	for (i = 0; i < nr_wp_slots(); i++) {
749		bp = current->thread.last_hit_ubp[i];
750
751		if (!bp)
752			continue;
753
754		found = true;
755		info = counter_arch_bp(bp);
756
757		/*
758		 * We shall invoke the user-defined callback function in the
759		 * single stepping handler to confirm to 'trigger-after-execute'
760		 * semantics
761		 */
762		if (!(info->type & HW_BRK_TYPE_EXTRANEOUS_IRQ))
763			perf_bp_event(bp, regs);
764		current->thread.last_hit_ubp[i] = NULL;
765	}
766
767	if (!found)
768		return NOTIFY_DONE;
769
770	for (i = 0; i < nr_wp_slots(); i++) {
771		bp = __this_cpu_read(bp_per_reg[i]);
772		if (!bp)
773			continue;
774
775		info = counter_arch_bp(bp);
776		__set_breakpoint(i, info);
777	}
778
779	/*
780	 * If the process was being single-stepped by ptrace, let the
781	 * other single-step actions occur (e.g. generate SIGTRAP).
782	 */
783	if (test_thread_flag(TIF_SINGLESTEP))
784		return NOTIFY_DONE;
785
786	return NOTIFY_STOP;
787}
788NOKPROBE_SYMBOL(single_step_dabr_instruction);
789
790/*
791 * Handle debug exception notifications.
792 */
793int hw_breakpoint_exceptions_notify(
794		struct notifier_block *unused, unsigned long val, void *data)
795{
796	int ret = NOTIFY_DONE;
797
798	switch (val) {
799	case DIE_DABR_MATCH:
800		ret = hw_breakpoint_handler(data);
801		break;
802	case DIE_SSTEP:
803		ret = single_step_dabr_instruction(data);
804		break;
805	}
806
807	return ret;
808}
809NOKPROBE_SYMBOL(hw_breakpoint_exceptions_notify);
810
811/*
812 * Release the user breakpoints used by ptrace
813 */
814void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
815{
816	int i;
817	struct thread_struct *t = &tsk->thread;
818
819	for (i = 0; i < nr_wp_slots(); i++) {
820		unregister_hw_breakpoint(t->ptrace_bps[i]);
821		t->ptrace_bps[i] = NULL;
822	}
823}
824
825void hw_breakpoint_pmu_read(struct perf_event *bp)
826{
827	/* TODO */
828}
829
830void ptrace_triggered(struct perf_event *bp,
831		      struct perf_sample_data *data, struct pt_regs *regs)
832{
833	struct perf_event_attr attr;
834
835	/*
836	 * Disable the breakpoint request here since ptrace has defined a
837	 * one-shot behaviour for breakpoint exceptions in PPC64.
838	 * The SIGTRAP signal is generated automatically for us in do_dabr().
839	 * We don't have to do anything about that here
840	 */
841	attr = bp->attr;
842	attr.disabled = true;
843	modify_user_hw_breakpoint(bp, &attr);
844}