Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: MIPS specific KVM APIs
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12#include <linux/bitops.h>
13#include <linux/errno.h>
14#include <linux/err.h>
15#include <linux/kdebug.h>
16#include <linux/module.h>
17#include <linux/uaccess.h>
18#include <linux/vmalloc.h>
19#include <linux/sched/signal.h>
20#include <linux/fs.h>
21#include <linux/memblock.h>
22#include <linux/pgtable.h>
23
24#include <asm/fpu.h>
25#include <asm/page.h>
26#include <asm/cacheflush.h>
27#include <asm/mmu_context.h>
28#include <asm/pgalloc.h>
29
30#include <linux/kvm_host.h>
31
32#include "interrupt.h"
33
34#define CREATE_TRACE_POINTS
35#include "trace.h"
36
37#ifndef VECTORSPACING
38#define VECTORSPACING 0x100 /* for EI/VI mode */
39#endif
40
41const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
42 KVM_GENERIC_VM_STATS()
43};
44
45const struct kvm_stats_header kvm_vm_stats_header = {
46 .name_size = KVM_STATS_NAME_SIZE,
47 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
48 .id_offset = sizeof(struct kvm_stats_header),
49 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
50 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
51 sizeof(kvm_vm_stats_desc),
52};
53
54const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
55 KVM_GENERIC_VCPU_STATS(),
56 STATS_DESC_COUNTER(VCPU, wait_exits),
57 STATS_DESC_COUNTER(VCPU, cache_exits),
58 STATS_DESC_COUNTER(VCPU, signal_exits),
59 STATS_DESC_COUNTER(VCPU, int_exits),
60 STATS_DESC_COUNTER(VCPU, cop_unusable_exits),
61 STATS_DESC_COUNTER(VCPU, tlbmod_exits),
62 STATS_DESC_COUNTER(VCPU, tlbmiss_ld_exits),
63 STATS_DESC_COUNTER(VCPU, tlbmiss_st_exits),
64 STATS_DESC_COUNTER(VCPU, addrerr_st_exits),
65 STATS_DESC_COUNTER(VCPU, addrerr_ld_exits),
66 STATS_DESC_COUNTER(VCPU, syscall_exits),
67 STATS_DESC_COUNTER(VCPU, resvd_inst_exits),
68 STATS_DESC_COUNTER(VCPU, break_inst_exits),
69 STATS_DESC_COUNTER(VCPU, trap_inst_exits),
70 STATS_DESC_COUNTER(VCPU, msa_fpe_exits),
71 STATS_DESC_COUNTER(VCPU, fpe_exits),
72 STATS_DESC_COUNTER(VCPU, msa_disabled_exits),
73 STATS_DESC_COUNTER(VCPU, flush_dcache_exits),
74 STATS_DESC_COUNTER(VCPU, vz_gpsi_exits),
75 STATS_DESC_COUNTER(VCPU, vz_gsfc_exits),
76 STATS_DESC_COUNTER(VCPU, vz_hc_exits),
77 STATS_DESC_COUNTER(VCPU, vz_grr_exits),
78 STATS_DESC_COUNTER(VCPU, vz_gva_exits),
79 STATS_DESC_COUNTER(VCPU, vz_ghfc_exits),
80 STATS_DESC_COUNTER(VCPU, vz_gpa_exits),
81 STATS_DESC_COUNTER(VCPU, vz_resvd_exits),
82#ifdef CONFIG_CPU_LOONGSON64
83 STATS_DESC_COUNTER(VCPU, vz_cpucfg_exits),
84#endif
85};
86
87const struct kvm_stats_header kvm_vcpu_stats_header = {
88 .name_size = KVM_STATS_NAME_SIZE,
89 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
90 .id_offset = sizeof(struct kvm_stats_header),
91 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
92 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
93 sizeof(kvm_vcpu_stats_desc),
94};
95
96bool kvm_trace_guest_mode_change;
97
98int kvm_guest_mode_change_trace_reg(void)
99{
100 kvm_trace_guest_mode_change = true;
101 return 0;
102}
103
104void kvm_guest_mode_change_trace_unreg(void)
105{
106 kvm_trace_guest_mode_change = false;
107}
108
109/*
110 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
111 * Config7, so we are "runnable" if interrupts are pending
112 */
113int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
114{
115 return !!(vcpu->arch.pending_exceptions);
116}
117
118bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
119{
120 return false;
121}
122
123int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
124{
125 return 1;
126}
127
128int kvm_arch_hardware_enable(void)
129{
130 return kvm_mips_callbacks->hardware_enable();
131}
132
133void kvm_arch_hardware_disable(void)
134{
135 kvm_mips_callbacks->hardware_disable();
136}
137
138int kvm_arch_hardware_setup(void *opaque)
139{
140 return 0;
141}
142
143int kvm_arch_check_processor_compat(void *opaque)
144{
145 return 0;
146}
147
148extern void kvm_init_loongson_ipi(struct kvm *kvm);
149
150int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
151{
152 switch (type) {
153 case KVM_VM_MIPS_AUTO:
154 break;
155 case KVM_VM_MIPS_VZ:
156 break;
157 default:
158 /* Unsupported KVM type */
159 return -EINVAL;
160 }
161
162 /* Allocate page table to map GPA -> RPA */
163 kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
164 if (!kvm->arch.gpa_mm.pgd)
165 return -ENOMEM;
166
167#ifdef CONFIG_CPU_LOONGSON64
168 kvm_init_loongson_ipi(kvm);
169#endif
170
171 return 0;
172}
173
174static void kvm_mips_free_gpa_pt(struct kvm *kvm)
175{
176 /* It should always be safe to remove after flushing the whole range */
177 WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
178 pgd_free(NULL, kvm->arch.gpa_mm.pgd);
179}
180
181void kvm_arch_destroy_vm(struct kvm *kvm)
182{
183 kvm_destroy_vcpus(kvm);
184 kvm_mips_free_gpa_pt(kvm);
185}
186
187long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
188 unsigned long arg)
189{
190 return -ENOIOCTLCMD;
191}
192
193void kvm_arch_flush_shadow_all(struct kvm *kvm)
194{
195 /* Flush whole GPA */
196 kvm_mips_flush_gpa_pt(kvm, 0, ~0);
197 kvm_flush_remote_tlbs(kvm);
198}
199
200void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
201 struct kvm_memory_slot *slot)
202{
203 /*
204 * The slot has been made invalid (ready for moving or deletion), so we
205 * need to ensure that it can no longer be accessed by any guest VCPUs.
206 */
207
208 spin_lock(&kvm->mmu_lock);
209 /* Flush slot from GPA */
210 kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
211 slot->base_gfn + slot->npages - 1);
212 kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
213 spin_unlock(&kvm->mmu_lock);
214}
215
216int kvm_arch_prepare_memory_region(struct kvm *kvm,
217 const struct kvm_memory_slot *old,
218 struct kvm_memory_slot *new,
219 enum kvm_mr_change change)
220{
221 return 0;
222}
223
224void kvm_arch_commit_memory_region(struct kvm *kvm,
225 struct kvm_memory_slot *old,
226 const struct kvm_memory_slot *new,
227 enum kvm_mr_change change)
228{
229 int needs_flush;
230
231 /*
232 * If dirty page logging is enabled, write protect all pages in the slot
233 * ready for dirty logging.
234 *
235 * There is no need to do this in any of the following cases:
236 * CREATE: No dirty mappings will already exist.
237 * MOVE/DELETE: The old mappings will already have been cleaned up by
238 * kvm_arch_flush_shadow_memslot()
239 */
240 if (change == KVM_MR_FLAGS_ONLY &&
241 (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
242 new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
243 spin_lock(&kvm->mmu_lock);
244 /* Write protect GPA page table entries */
245 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
246 new->base_gfn + new->npages - 1);
247 if (needs_flush)
248 kvm_arch_flush_remote_tlbs_memslot(kvm, new);
249 spin_unlock(&kvm->mmu_lock);
250 }
251}
252
253static inline void dump_handler(const char *symbol, void *start, void *end)
254{
255 u32 *p;
256
257 pr_debug("LEAF(%s)\n", symbol);
258
259 pr_debug("\t.set push\n");
260 pr_debug("\t.set noreorder\n");
261
262 for (p = start; p < (u32 *)end; ++p)
263 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
264
265 pr_debug("\t.set\tpop\n");
266
267 pr_debug("\tEND(%s)\n", symbol);
268}
269
270/* low level hrtimer wake routine */
271static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
272{
273 struct kvm_vcpu *vcpu;
274
275 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
276
277 kvm_mips_callbacks->queue_timer_int(vcpu);
278
279 vcpu->arch.wait = 0;
280 rcuwait_wake_up(&vcpu->wait);
281
282 return kvm_mips_count_timeout(vcpu);
283}
284
285int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
286{
287 return 0;
288}
289
290int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
291{
292 int err, size;
293 void *gebase, *p, *handler, *refill_start, *refill_end;
294 int i;
295
296 kvm_debug("kvm @ %p: create cpu %d at %p\n",
297 vcpu->kvm, vcpu->vcpu_id, vcpu);
298
299 err = kvm_mips_callbacks->vcpu_init(vcpu);
300 if (err)
301 return err;
302
303 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
304 HRTIMER_MODE_REL);
305 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
306
307 /*
308 * Allocate space for host mode exception handlers that handle
309 * guest mode exits
310 */
311 if (cpu_has_veic || cpu_has_vint)
312 size = 0x200 + VECTORSPACING * 64;
313 else
314 size = 0x4000;
315
316 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
317
318 if (!gebase) {
319 err = -ENOMEM;
320 goto out_uninit_vcpu;
321 }
322 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
323 ALIGN(size, PAGE_SIZE), gebase);
324
325 /*
326 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
327 * limits us to the low 512MB of physical address space. If the memory
328 * we allocate is out of range, just give up now.
329 */
330 if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
331 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
332 gebase);
333 err = -ENOMEM;
334 goto out_free_gebase;
335 }
336
337 /* Save new ebase */
338 vcpu->arch.guest_ebase = gebase;
339
340 /* Build guest exception vectors dynamically in unmapped memory */
341 handler = gebase + 0x2000;
342
343 /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
344 refill_start = gebase;
345 if (IS_ENABLED(CONFIG_64BIT))
346 refill_start += 0x080;
347 refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
348
349 /* General Exception Entry point */
350 kvm_mips_build_exception(gebase + 0x180, handler);
351
352 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
353 for (i = 0; i < 8; i++) {
354 kvm_debug("L1 Vectored handler @ %p\n",
355 gebase + 0x200 + (i * VECTORSPACING));
356 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
357 handler);
358 }
359
360 /* General exit handler */
361 p = handler;
362 p = kvm_mips_build_exit(p);
363
364 /* Guest entry routine */
365 vcpu->arch.vcpu_run = p;
366 p = kvm_mips_build_vcpu_run(p);
367
368 /* Dump the generated code */
369 pr_debug("#include <asm/asm.h>\n");
370 pr_debug("#include <asm/regdef.h>\n");
371 pr_debug("\n");
372 dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
373 dump_handler("kvm_tlb_refill", refill_start, refill_end);
374 dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
375 dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
376
377 /* Invalidate the icache for these ranges */
378 flush_icache_range((unsigned long)gebase,
379 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
380
381 /* Init */
382 vcpu->arch.last_sched_cpu = -1;
383 vcpu->arch.last_exec_cpu = -1;
384
385 /* Initial guest state */
386 err = kvm_mips_callbacks->vcpu_setup(vcpu);
387 if (err)
388 goto out_free_gebase;
389
390 return 0;
391
392out_free_gebase:
393 kfree(gebase);
394out_uninit_vcpu:
395 kvm_mips_callbacks->vcpu_uninit(vcpu);
396 return err;
397}
398
399void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
400{
401 hrtimer_cancel(&vcpu->arch.comparecount_timer);
402
403 kvm_mips_dump_stats(vcpu);
404
405 kvm_mmu_free_memory_caches(vcpu);
406 kfree(vcpu->arch.guest_ebase);
407
408 kvm_mips_callbacks->vcpu_uninit(vcpu);
409}
410
411int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
412 struct kvm_guest_debug *dbg)
413{
414 return -ENOIOCTLCMD;
415}
416
417/*
418 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
419 * the vCPU is running.
420 *
421 * This must be noinstr as instrumentation may make use of RCU, and this is not
422 * safe during the EQS.
423 */
424static int noinstr kvm_mips_vcpu_enter_exit(struct kvm_vcpu *vcpu)
425{
426 int ret;
427
428 guest_state_enter_irqoff();
429 ret = kvm_mips_callbacks->vcpu_run(vcpu);
430 guest_state_exit_irqoff();
431
432 return ret;
433}
434
435int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
436{
437 int r = -EINTR;
438
439 vcpu_load(vcpu);
440
441 kvm_sigset_activate(vcpu);
442
443 if (vcpu->mmio_needed) {
444 if (!vcpu->mmio_is_write)
445 kvm_mips_complete_mmio_load(vcpu);
446 vcpu->mmio_needed = 0;
447 }
448
449 if (vcpu->run->immediate_exit)
450 goto out;
451
452 lose_fpu(1);
453
454 local_irq_disable();
455 guest_timing_enter_irqoff();
456 trace_kvm_enter(vcpu);
457
458 /*
459 * Make sure the read of VCPU requests in vcpu_run() callback is not
460 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
461 * flush request while the requester sees the VCPU as outside of guest
462 * mode and not needing an IPI.
463 */
464 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
465
466 r = kvm_mips_vcpu_enter_exit(vcpu);
467
468 /*
469 * We must ensure that any pending interrupts are taken before
470 * we exit guest timing so that timer ticks are accounted as
471 * guest time. Transiently unmask interrupts so that any
472 * pending interrupts are taken.
473 *
474 * TODO: is there a barrier which ensures that pending interrupts are
475 * recognised? Currently this just hopes that the CPU takes any pending
476 * interrupts between the enable and disable.
477 */
478 local_irq_enable();
479 local_irq_disable();
480
481 trace_kvm_out(vcpu);
482 guest_timing_exit_irqoff();
483 local_irq_enable();
484
485out:
486 kvm_sigset_deactivate(vcpu);
487
488 vcpu_put(vcpu);
489 return r;
490}
491
492int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
493 struct kvm_mips_interrupt *irq)
494{
495 int intr = (int)irq->irq;
496 struct kvm_vcpu *dvcpu = NULL;
497
498 if (intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_1] ||
499 intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_2] ||
500 intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_1]) ||
501 intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_2]))
502 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
503 (int)intr);
504
505 if (irq->cpu == -1)
506 dvcpu = vcpu;
507 else
508 dvcpu = kvm_get_vcpu(vcpu->kvm, irq->cpu);
509
510 if (intr == 2 || intr == 3 || intr == 4 || intr == 6) {
511 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
512
513 } else if (intr == -2 || intr == -3 || intr == -4 || intr == -6) {
514 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
515 } else {
516 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
517 irq->cpu, irq->irq);
518 return -EINVAL;
519 }
520
521 dvcpu->arch.wait = 0;
522
523 rcuwait_wake_up(&dvcpu->wait);
524
525 return 0;
526}
527
528int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
529 struct kvm_mp_state *mp_state)
530{
531 return -ENOIOCTLCMD;
532}
533
534int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
535 struct kvm_mp_state *mp_state)
536{
537 return -ENOIOCTLCMD;
538}
539
540static u64 kvm_mips_get_one_regs[] = {
541 KVM_REG_MIPS_R0,
542 KVM_REG_MIPS_R1,
543 KVM_REG_MIPS_R2,
544 KVM_REG_MIPS_R3,
545 KVM_REG_MIPS_R4,
546 KVM_REG_MIPS_R5,
547 KVM_REG_MIPS_R6,
548 KVM_REG_MIPS_R7,
549 KVM_REG_MIPS_R8,
550 KVM_REG_MIPS_R9,
551 KVM_REG_MIPS_R10,
552 KVM_REG_MIPS_R11,
553 KVM_REG_MIPS_R12,
554 KVM_REG_MIPS_R13,
555 KVM_REG_MIPS_R14,
556 KVM_REG_MIPS_R15,
557 KVM_REG_MIPS_R16,
558 KVM_REG_MIPS_R17,
559 KVM_REG_MIPS_R18,
560 KVM_REG_MIPS_R19,
561 KVM_REG_MIPS_R20,
562 KVM_REG_MIPS_R21,
563 KVM_REG_MIPS_R22,
564 KVM_REG_MIPS_R23,
565 KVM_REG_MIPS_R24,
566 KVM_REG_MIPS_R25,
567 KVM_REG_MIPS_R26,
568 KVM_REG_MIPS_R27,
569 KVM_REG_MIPS_R28,
570 KVM_REG_MIPS_R29,
571 KVM_REG_MIPS_R30,
572 KVM_REG_MIPS_R31,
573
574#ifndef CONFIG_CPU_MIPSR6
575 KVM_REG_MIPS_HI,
576 KVM_REG_MIPS_LO,
577#endif
578 KVM_REG_MIPS_PC,
579};
580
581static u64 kvm_mips_get_one_regs_fpu[] = {
582 KVM_REG_MIPS_FCR_IR,
583 KVM_REG_MIPS_FCR_CSR,
584};
585
586static u64 kvm_mips_get_one_regs_msa[] = {
587 KVM_REG_MIPS_MSA_IR,
588 KVM_REG_MIPS_MSA_CSR,
589};
590
591static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
592{
593 unsigned long ret;
594
595 ret = ARRAY_SIZE(kvm_mips_get_one_regs);
596 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
597 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
598 /* odd doubles */
599 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
600 ret += 16;
601 }
602 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
603 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
604 ret += kvm_mips_callbacks->num_regs(vcpu);
605
606 return ret;
607}
608
609static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
610{
611 u64 index;
612 unsigned int i;
613
614 if (copy_to_user(indices, kvm_mips_get_one_regs,
615 sizeof(kvm_mips_get_one_regs)))
616 return -EFAULT;
617 indices += ARRAY_SIZE(kvm_mips_get_one_regs);
618
619 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
620 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
621 sizeof(kvm_mips_get_one_regs_fpu)))
622 return -EFAULT;
623 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
624
625 for (i = 0; i < 32; ++i) {
626 index = KVM_REG_MIPS_FPR_32(i);
627 if (copy_to_user(indices, &index, sizeof(index)))
628 return -EFAULT;
629 ++indices;
630
631 /* skip odd doubles if no F64 */
632 if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
633 continue;
634
635 index = KVM_REG_MIPS_FPR_64(i);
636 if (copy_to_user(indices, &index, sizeof(index)))
637 return -EFAULT;
638 ++indices;
639 }
640 }
641
642 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
643 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
644 sizeof(kvm_mips_get_one_regs_msa)))
645 return -EFAULT;
646 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
647
648 for (i = 0; i < 32; ++i) {
649 index = KVM_REG_MIPS_VEC_128(i);
650 if (copy_to_user(indices, &index, sizeof(index)))
651 return -EFAULT;
652 ++indices;
653 }
654 }
655
656 return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
657}
658
659static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
660 const struct kvm_one_reg *reg)
661{
662 struct mips_coproc *cop0 = vcpu->arch.cop0;
663 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
664 int ret;
665 s64 v;
666 s64 vs[2];
667 unsigned int idx;
668
669 switch (reg->id) {
670 /* General purpose registers */
671 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
672 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
673 break;
674#ifndef CONFIG_CPU_MIPSR6
675 case KVM_REG_MIPS_HI:
676 v = (long)vcpu->arch.hi;
677 break;
678 case KVM_REG_MIPS_LO:
679 v = (long)vcpu->arch.lo;
680 break;
681#endif
682 case KVM_REG_MIPS_PC:
683 v = (long)vcpu->arch.pc;
684 break;
685
686 /* Floating point registers */
687 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
688 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
689 return -EINVAL;
690 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
691 /* Odd singles in top of even double when FR=0 */
692 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
693 v = get_fpr32(&fpu->fpr[idx], 0);
694 else
695 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
696 break;
697 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
698 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
699 return -EINVAL;
700 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
701 /* Can't access odd doubles in FR=0 mode */
702 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
703 return -EINVAL;
704 v = get_fpr64(&fpu->fpr[idx], 0);
705 break;
706 case KVM_REG_MIPS_FCR_IR:
707 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
708 return -EINVAL;
709 v = boot_cpu_data.fpu_id;
710 break;
711 case KVM_REG_MIPS_FCR_CSR:
712 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
713 return -EINVAL;
714 v = fpu->fcr31;
715 break;
716
717 /* MIPS SIMD Architecture (MSA) registers */
718 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
719 if (!kvm_mips_guest_has_msa(&vcpu->arch))
720 return -EINVAL;
721 /* Can't access MSA registers in FR=0 mode */
722 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
723 return -EINVAL;
724 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
725#ifdef CONFIG_CPU_LITTLE_ENDIAN
726 /* least significant byte first */
727 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
728 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
729#else
730 /* most significant byte first */
731 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
732 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
733#endif
734 break;
735 case KVM_REG_MIPS_MSA_IR:
736 if (!kvm_mips_guest_has_msa(&vcpu->arch))
737 return -EINVAL;
738 v = boot_cpu_data.msa_id;
739 break;
740 case KVM_REG_MIPS_MSA_CSR:
741 if (!kvm_mips_guest_has_msa(&vcpu->arch))
742 return -EINVAL;
743 v = fpu->msacsr;
744 break;
745
746 /* registers to be handled specially */
747 default:
748 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
749 if (ret)
750 return ret;
751 break;
752 }
753 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
754 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
755
756 return put_user(v, uaddr64);
757 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
758 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
759 u32 v32 = (u32)v;
760
761 return put_user(v32, uaddr32);
762 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
763 void __user *uaddr = (void __user *)(long)reg->addr;
764
765 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
766 } else {
767 return -EINVAL;
768 }
769}
770
771static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
772 const struct kvm_one_reg *reg)
773{
774 struct mips_coproc *cop0 = vcpu->arch.cop0;
775 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
776 s64 v;
777 s64 vs[2];
778 unsigned int idx;
779
780 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
781 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
782
783 if (get_user(v, uaddr64) != 0)
784 return -EFAULT;
785 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
786 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
787 s32 v32;
788
789 if (get_user(v32, uaddr32) != 0)
790 return -EFAULT;
791 v = (s64)v32;
792 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
793 void __user *uaddr = (void __user *)(long)reg->addr;
794
795 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
796 } else {
797 return -EINVAL;
798 }
799
800 switch (reg->id) {
801 /* General purpose registers */
802 case KVM_REG_MIPS_R0:
803 /* Silently ignore requests to set $0 */
804 break;
805 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
806 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
807 break;
808#ifndef CONFIG_CPU_MIPSR6
809 case KVM_REG_MIPS_HI:
810 vcpu->arch.hi = v;
811 break;
812 case KVM_REG_MIPS_LO:
813 vcpu->arch.lo = v;
814 break;
815#endif
816 case KVM_REG_MIPS_PC:
817 vcpu->arch.pc = v;
818 break;
819
820 /* Floating point registers */
821 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
822 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
823 return -EINVAL;
824 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
825 /* Odd singles in top of even double when FR=0 */
826 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
827 set_fpr32(&fpu->fpr[idx], 0, v);
828 else
829 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
830 break;
831 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
832 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
833 return -EINVAL;
834 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
835 /* Can't access odd doubles in FR=0 mode */
836 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
837 return -EINVAL;
838 set_fpr64(&fpu->fpr[idx], 0, v);
839 break;
840 case KVM_REG_MIPS_FCR_IR:
841 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
842 return -EINVAL;
843 /* Read-only */
844 break;
845 case KVM_REG_MIPS_FCR_CSR:
846 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
847 return -EINVAL;
848 fpu->fcr31 = v;
849 break;
850
851 /* MIPS SIMD Architecture (MSA) registers */
852 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
853 if (!kvm_mips_guest_has_msa(&vcpu->arch))
854 return -EINVAL;
855 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
856#ifdef CONFIG_CPU_LITTLE_ENDIAN
857 /* least significant byte first */
858 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
859 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
860#else
861 /* most significant byte first */
862 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
863 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
864#endif
865 break;
866 case KVM_REG_MIPS_MSA_IR:
867 if (!kvm_mips_guest_has_msa(&vcpu->arch))
868 return -EINVAL;
869 /* Read-only */
870 break;
871 case KVM_REG_MIPS_MSA_CSR:
872 if (!kvm_mips_guest_has_msa(&vcpu->arch))
873 return -EINVAL;
874 fpu->msacsr = v;
875 break;
876
877 /* registers to be handled specially */
878 default:
879 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
880 }
881 return 0;
882}
883
884static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
885 struct kvm_enable_cap *cap)
886{
887 int r = 0;
888
889 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
890 return -EINVAL;
891 if (cap->flags)
892 return -EINVAL;
893 if (cap->args[0])
894 return -EINVAL;
895
896 switch (cap->cap) {
897 case KVM_CAP_MIPS_FPU:
898 vcpu->arch.fpu_enabled = true;
899 break;
900 case KVM_CAP_MIPS_MSA:
901 vcpu->arch.msa_enabled = true;
902 break;
903 default:
904 r = -EINVAL;
905 break;
906 }
907
908 return r;
909}
910
911long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
912 unsigned long arg)
913{
914 struct kvm_vcpu *vcpu = filp->private_data;
915 void __user *argp = (void __user *)arg;
916
917 if (ioctl == KVM_INTERRUPT) {
918 struct kvm_mips_interrupt irq;
919
920 if (copy_from_user(&irq, argp, sizeof(irq)))
921 return -EFAULT;
922 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
923 irq.irq);
924
925 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
926 }
927
928 return -ENOIOCTLCMD;
929}
930
931long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
932 unsigned long arg)
933{
934 struct kvm_vcpu *vcpu = filp->private_data;
935 void __user *argp = (void __user *)arg;
936 long r;
937
938 vcpu_load(vcpu);
939
940 switch (ioctl) {
941 case KVM_SET_ONE_REG:
942 case KVM_GET_ONE_REG: {
943 struct kvm_one_reg reg;
944
945 r = -EFAULT;
946 if (copy_from_user(®, argp, sizeof(reg)))
947 break;
948 if (ioctl == KVM_SET_ONE_REG)
949 r = kvm_mips_set_reg(vcpu, ®);
950 else
951 r = kvm_mips_get_reg(vcpu, ®);
952 break;
953 }
954 case KVM_GET_REG_LIST: {
955 struct kvm_reg_list __user *user_list = argp;
956 struct kvm_reg_list reg_list;
957 unsigned n;
958
959 r = -EFAULT;
960 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
961 break;
962 n = reg_list.n;
963 reg_list.n = kvm_mips_num_regs(vcpu);
964 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
965 break;
966 r = -E2BIG;
967 if (n < reg_list.n)
968 break;
969 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
970 break;
971 }
972 case KVM_ENABLE_CAP: {
973 struct kvm_enable_cap cap;
974
975 r = -EFAULT;
976 if (copy_from_user(&cap, argp, sizeof(cap)))
977 break;
978 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
979 break;
980 }
981 default:
982 r = -ENOIOCTLCMD;
983 }
984
985 vcpu_put(vcpu);
986 return r;
987}
988
989void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
990{
991
992}
993
994int kvm_arch_flush_remote_tlb(struct kvm *kvm)
995{
996 kvm_mips_callbacks->prepare_flush_shadow(kvm);
997 return 1;
998}
999
1000void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1001 const struct kvm_memory_slot *memslot)
1002{
1003 kvm_flush_remote_tlbs(kvm);
1004}
1005
1006long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1007{
1008 long r;
1009
1010 switch (ioctl) {
1011 default:
1012 r = -ENOIOCTLCMD;
1013 }
1014
1015 return r;
1016}
1017
1018int kvm_arch_init(void *opaque)
1019{
1020 if (kvm_mips_callbacks) {
1021 kvm_err("kvm: module already exists\n");
1022 return -EEXIST;
1023 }
1024
1025 return kvm_mips_emulation_init(&kvm_mips_callbacks);
1026}
1027
1028void kvm_arch_exit(void)
1029{
1030 kvm_mips_callbacks = NULL;
1031}
1032
1033int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1034 struct kvm_sregs *sregs)
1035{
1036 return -ENOIOCTLCMD;
1037}
1038
1039int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1040 struct kvm_sregs *sregs)
1041{
1042 return -ENOIOCTLCMD;
1043}
1044
1045void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1046{
1047}
1048
1049int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1050{
1051 return -ENOIOCTLCMD;
1052}
1053
1054int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1055{
1056 return -ENOIOCTLCMD;
1057}
1058
1059vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1060{
1061 return VM_FAULT_SIGBUS;
1062}
1063
1064int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1065{
1066 int r;
1067
1068 switch (ext) {
1069 case KVM_CAP_ONE_REG:
1070 case KVM_CAP_ENABLE_CAP:
1071 case KVM_CAP_READONLY_MEM:
1072 case KVM_CAP_SYNC_MMU:
1073 case KVM_CAP_IMMEDIATE_EXIT:
1074 r = 1;
1075 break;
1076 case KVM_CAP_NR_VCPUS:
1077 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
1078 break;
1079 case KVM_CAP_MAX_VCPUS:
1080 r = KVM_MAX_VCPUS;
1081 break;
1082 case KVM_CAP_MAX_VCPU_ID:
1083 r = KVM_MAX_VCPU_IDS;
1084 break;
1085 case KVM_CAP_MIPS_FPU:
1086 /* We don't handle systems with inconsistent cpu_has_fpu */
1087 r = !!raw_cpu_has_fpu;
1088 break;
1089 case KVM_CAP_MIPS_MSA:
1090 /*
1091 * We don't support MSA vector partitioning yet:
1092 * 1) It would require explicit support which can't be tested
1093 * yet due to lack of support in current hardware.
1094 * 2) It extends the state that would need to be saved/restored
1095 * by e.g. QEMU for migration.
1096 *
1097 * When vector partitioning hardware becomes available, support
1098 * could be added by requiring a flag when enabling
1099 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1100 * to save/restore the appropriate extra state.
1101 */
1102 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1103 break;
1104 default:
1105 r = kvm_mips_callbacks->check_extension(kvm, ext);
1106 break;
1107 }
1108 return r;
1109}
1110
1111int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1112{
1113 return kvm_mips_pending_timer(vcpu) ||
1114 kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1115}
1116
1117int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1118{
1119 int i;
1120 struct mips_coproc *cop0;
1121
1122 if (!vcpu)
1123 return -1;
1124
1125 kvm_debug("VCPU Register Dump:\n");
1126 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1127 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1128
1129 for (i = 0; i < 32; i += 4) {
1130 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1131 vcpu->arch.gprs[i],
1132 vcpu->arch.gprs[i + 1],
1133 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1134 }
1135 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1136 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1137
1138 cop0 = vcpu->arch.cop0;
1139 kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1140 kvm_read_c0_guest_status(cop0),
1141 kvm_read_c0_guest_cause(cop0));
1142
1143 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1144
1145 return 0;
1146}
1147
1148int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1149{
1150 int i;
1151
1152 vcpu_load(vcpu);
1153
1154 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1155 vcpu->arch.gprs[i] = regs->gpr[i];
1156 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1157 vcpu->arch.hi = regs->hi;
1158 vcpu->arch.lo = regs->lo;
1159 vcpu->arch.pc = regs->pc;
1160
1161 vcpu_put(vcpu);
1162 return 0;
1163}
1164
1165int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1166{
1167 int i;
1168
1169 vcpu_load(vcpu);
1170
1171 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1172 regs->gpr[i] = vcpu->arch.gprs[i];
1173
1174 regs->hi = vcpu->arch.hi;
1175 regs->lo = vcpu->arch.lo;
1176 regs->pc = vcpu->arch.pc;
1177
1178 vcpu_put(vcpu);
1179 return 0;
1180}
1181
1182int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1183 struct kvm_translation *tr)
1184{
1185 return 0;
1186}
1187
1188static void kvm_mips_set_c0_status(void)
1189{
1190 u32 status = read_c0_status();
1191
1192 if (cpu_has_dsp)
1193 status |= (ST0_MX);
1194
1195 write_c0_status(status);
1196 ehb();
1197}
1198
1199/*
1200 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1201 */
1202static int __kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1203{
1204 struct kvm_run *run = vcpu->run;
1205 u32 cause = vcpu->arch.host_cp0_cause;
1206 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1207 u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1208 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1209 enum emulation_result er = EMULATE_DONE;
1210 u32 inst;
1211 int ret = RESUME_GUEST;
1212
1213 vcpu->mode = OUTSIDE_GUEST_MODE;
1214
1215 /* Set a default exit reason */
1216 run->exit_reason = KVM_EXIT_UNKNOWN;
1217 run->ready_for_interrupt_injection = 1;
1218
1219 /*
1220 * Set the appropriate status bits based on host CPU features,
1221 * before we hit the scheduler
1222 */
1223 kvm_mips_set_c0_status();
1224
1225 local_irq_enable();
1226
1227 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1228 cause, opc, run, vcpu);
1229 trace_kvm_exit(vcpu, exccode);
1230
1231 switch (exccode) {
1232 case EXCCODE_INT:
1233 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1234
1235 ++vcpu->stat.int_exits;
1236
1237 if (need_resched())
1238 cond_resched();
1239
1240 ret = RESUME_GUEST;
1241 break;
1242
1243 case EXCCODE_CPU:
1244 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1245
1246 ++vcpu->stat.cop_unusable_exits;
1247 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1248 /* XXXKYMA: Might need to return to user space */
1249 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1250 ret = RESUME_HOST;
1251 break;
1252
1253 case EXCCODE_MOD:
1254 ++vcpu->stat.tlbmod_exits;
1255 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1256 break;
1257
1258 case EXCCODE_TLBS:
1259 kvm_debug("TLB ST fault: cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1260 cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1261 badvaddr);
1262
1263 ++vcpu->stat.tlbmiss_st_exits;
1264 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1265 break;
1266
1267 case EXCCODE_TLBL:
1268 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1269 cause, opc, badvaddr);
1270
1271 ++vcpu->stat.tlbmiss_ld_exits;
1272 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1273 break;
1274
1275 case EXCCODE_ADES:
1276 ++vcpu->stat.addrerr_st_exits;
1277 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1278 break;
1279
1280 case EXCCODE_ADEL:
1281 ++vcpu->stat.addrerr_ld_exits;
1282 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1283 break;
1284
1285 case EXCCODE_SYS:
1286 ++vcpu->stat.syscall_exits;
1287 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1288 break;
1289
1290 case EXCCODE_RI:
1291 ++vcpu->stat.resvd_inst_exits;
1292 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1293 break;
1294
1295 case EXCCODE_BP:
1296 ++vcpu->stat.break_inst_exits;
1297 ret = kvm_mips_callbacks->handle_break(vcpu);
1298 break;
1299
1300 case EXCCODE_TR:
1301 ++vcpu->stat.trap_inst_exits;
1302 ret = kvm_mips_callbacks->handle_trap(vcpu);
1303 break;
1304
1305 case EXCCODE_MSAFPE:
1306 ++vcpu->stat.msa_fpe_exits;
1307 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1308 break;
1309
1310 case EXCCODE_FPE:
1311 ++vcpu->stat.fpe_exits;
1312 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1313 break;
1314
1315 case EXCCODE_MSADIS:
1316 ++vcpu->stat.msa_disabled_exits;
1317 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1318 break;
1319
1320 case EXCCODE_GE:
1321 /* defer exit accounting to handler */
1322 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1323 break;
1324
1325 default:
1326 if (cause & CAUSEF_BD)
1327 opc += 1;
1328 inst = 0;
1329 kvm_get_badinstr(opc, vcpu, &inst);
1330 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
1331 exccode, opc, inst, badvaddr,
1332 kvm_read_c0_guest_status(vcpu->arch.cop0));
1333 kvm_arch_vcpu_dump_regs(vcpu);
1334 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1335 ret = RESUME_HOST;
1336 break;
1337
1338 }
1339
1340 local_irq_disable();
1341
1342 if (ret == RESUME_GUEST)
1343 kvm_vz_acquire_htimer(vcpu);
1344
1345 if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1346 kvm_mips_deliver_interrupts(vcpu, cause);
1347
1348 if (!(ret & RESUME_HOST)) {
1349 /* Only check for signals if not already exiting to userspace */
1350 if (signal_pending(current)) {
1351 run->exit_reason = KVM_EXIT_INTR;
1352 ret = (-EINTR << 2) | RESUME_HOST;
1353 ++vcpu->stat.signal_exits;
1354 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1355 }
1356 }
1357
1358 if (ret == RESUME_GUEST) {
1359 trace_kvm_reenter(vcpu);
1360
1361 /*
1362 * Make sure the read of VCPU requests in vcpu_reenter()
1363 * callback is not reordered ahead of the write to vcpu->mode,
1364 * or we could miss a TLB flush request while the requester sees
1365 * the VCPU as outside of guest mode and not needing an IPI.
1366 */
1367 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1368
1369 kvm_mips_callbacks->vcpu_reenter(vcpu);
1370
1371 /*
1372 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1373 * is live), restore FCR31 / MSACSR.
1374 *
1375 * This should be before returning to the guest exception
1376 * vector, as it may well cause an [MSA] FP exception if there
1377 * are pending exception bits unmasked. (see
1378 * kvm_mips_csr_die_notifier() for how that is handled).
1379 */
1380 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1381 read_c0_status() & ST0_CU1)
1382 __kvm_restore_fcsr(&vcpu->arch);
1383
1384 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1385 read_c0_config5() & MIPS_CONF5_MSAEN)
1386 __kvm_restore_msacsr(&vcpu->arch);
1387 }
1388 return ret;
1389}
1390
1391int noinstr kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1392{
1393 int ret;
1394
1395 guest_state_exit_irqoff();
1396 ret = __kvm_mips_handle_exit(vcpu);
1397 guest_state_enter_irqoff();
1398
1399 return ret;
1400}
1401
1402/* Enable FPU for guest and restore context */
1403void kvm_own_fpu(struct kvm_vcpu *vcpu)
1404{
1405 struct mips_coproc *cop0 = vcpu->arch.cop0;
1406 unsigned int sr, cfg5;
1407
1408 preempt_disable();
1409
1410 sr = kvm_read_c0_guest_status(cop0);
1411
1412 /*
1413 * If MSA state is already live, it is undefined how it interacts with
1414 * FR=0 FPU state, and we don't want to hit reserved instruction
1415 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1416 * play it safe and save it first.
1417 */
1418 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1419 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1420 kvm_lose_fpu(vcpu);
1421
1422 /*
1423 * Enable FPU for guest
1424 * We set FR and FRE according to guest context
1425 */
1426 change_c0_status(ST0_CU1 | ST0_FR, sr);
1427 if (cpu_has_fre) {
1428 cfg5 = kvm_read_c0_guest_config5(cop0);
1429 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1430 }
1431 enable_fpu_hazard();
1432
1433 /* If guest FPU state not active, restore it now */
1434 if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1435 __kvm_restore_fpu(&vcpu->arch);
1436 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1437 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1438 } else {
1439 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1440 }
1441
1442 preempt_enable();
1443}
1444
1445#ifdef CONFIG_CPU_HAS_MSA
1446/* Enable MSA for guest and restore context */
1447void kvm_own_msa(struct kvm_vcpu *vcpu)
1448{
1449 struct mips_coproc *cop0 = vcpu->arch.cop0;
1450 unsigned int sr, cfg5;
1451
1452 preempt_disable();
1453
1454 /*
1455 * Enable FPU if enabled in guest, since we're restoring FPU context
1456 * anyway. We set FR and FRE according to guest context.
1457 */
1458 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1459 sr = kvm_read_c0_guest_status(cop0);
1460
1461 /*
1462 * If FR=0 FPU state is already live, it is undefined how it
1463 * interacts with MSA state, so play it safe and save it first.
1464 */
1465 if (!(sr & ST0_FR) &&
1466 (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1467 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1468 kvm_lose_fpu(vcpu);
1469
1470 change_c0_status(ST0_CU1 | ST0_FR, sr);
1471 if (sr & ST0_CU1 && cpu_has_fre) {
1472 cfg5 = kvm_read_c0_guest_config5(cop0);
1473 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1474 }
1475 }
1476
1477 /* Enable MSA for guest */
1478 set_c0_config5(MIPS_CONF5_MSAEN);
1479 enable_fpu_hazard();
1480
1481 switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1482 case KVM_MIPS_AUX_FPU:
1483 /*
1484 * Guest FPU state already loaded, only restore upper MSA state
1485 */
1486 __kvm_restore_msa_upper(&vcpu->arch);
1487 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1488 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1489 break;
1490 case 0:
1491 /* Neither FPU or MSA already active, restore full MSA state */
1492 __kvm_restore_msa(&vcpu->arch);
1493 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1494 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1495 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1496 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1497 KVM_TRACE_AUX_FPU_MSA);
1498 break;
1499 default:
1500 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1501 break;
1502 }
1503
1504 preempt_enable();
1505}
1506#endif
1507
1508/* Drop FPU & MSA without saving it */
1509void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1510{
1511 preempt_disable();
1512 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1513 disable_msa();
1514 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1515 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1516 }
1517 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1518 clear_c0_status(ST0_CU1 | ST0_FR);
1519 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1520 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1521 }
1522 preempt_enable();
1523}
1524
1525/* Save and disable FPU & MSA */
1526void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1527{
1528 /*
1529 * With T&E, FPU & MSA get disabled in root context (hardware) when it
1530 * is disabled in guest context (software), but the register state in
1531 * the hardware may still be in use.
1532 * This is why we explicitly re-enable the hardware before saving.
1533 */
1534
1535 preempt_disable();
1536 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1537 __kvm_save_msa(&vcpu->arch);
1538 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1539
1540 /* Disable MSA & FPU */
1541 disable_msa();
1542 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1543 clear_c0_status(ST0_CU1 | ST0_FR);
1544 disable_fpu_hazard();
1545 }
1546 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1547 } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1548 __kvm_save_fpu(&vcpu->arch);
1549 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1550 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1551
1552 /* Disable FPU */
1553 clear_c0_status(ST0_CU1 | ST0_FR);
1554 disable_fpu_hazard();
1555 }
1556 preempt_enable();
1557}
1558
1559/*
1560 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1561 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1562 * exception if cause bits are set in the value being written.
1563 */
1564static int kvm_mips_csr_die_notify(struct notifier_block *self,
1565 unsigned long cmd, void *ptr)
1566{
1567 struct die_args *args = (struct die_args *)ptr;
1568 struct pt_regs *regs = args->regs;
1569 unsigned long pc;
1570
1571 /* Only interested in FPE and MSAFPE */
1572 if (cmd != DIE_FP && cmd != DIE_MSAFP)
1573 return NOTIFY_DONE;
1574
1575 /* Return immediately if guest context isn't active */
1576 if (!(current->flags & PF_VCPU))
1577 return NOTIFY_DONE;
1578
1579 /* Should never get here from user mode */
1580 BUG_ON(user_mode(regs));
1581
1582 pc = instruction_pointer(regs);
1583 switch (cmd) {
1584 case DIE_FP:
1585 /* match 2nd instruction in __kvm_restore_fcsr */
1586 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1587 return NOTIFY_DONE;
1588 break;
1589 case DIE_MSAFP:
1590 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1591 if (!cpu_has_msa ||
1592 pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1593 pc > (unsigned long)&__kvm_restore_msacsr + 8)
1594 return NOTIFY_DONE;
1595 break;
1596 }
1597
1598 /* Move PC forward a little and continue executing */
1599 instruction_pointer(regs) += 4;
1600
1601 return NOTIFY_STOP;
1602}
1603
1604static struct notifier_block kvm_mips_csr_die_notifier = {
1605 .notifier_call = kvm_mips_csr_die_notify,
1606};
1607
1608static u32 kvm_default_priority_to_irq[MIPS_EXC_MAX] = {
1609 [MIPS_EXC_INT_TIMER] = C_IRQ5,
1610 [MIPS_EXC_INT_IO_1] = C_IRQ0,
1611 [MIPS_EXC_INT_IPI_1] = C_IRQ1,
1612 [MIPS_EXC_INT_IPI_2] = C_IRQ2,
1613};
1614
1615static u32 kvm_loongson3_priority_to_irq[MIPS_EXC_MAX] = {
1616 [MIPS_EXC_INT_TIMER] = C_IRQ5,
1617 [MIPS_EXC_INT_IO_1] = C_IRQ0,
1618 [MIPS_EXC_INT_IO_2] = C_IRQ1,
1619 [MIPS_EXC_INT_IPI_1] = C_IRQ4,
1620};
1621
1622u32 *kvm_priority_to_irq = kvm_default_priority_to_irq;
1623
1624u32 kvm_irq_to_priority(u32 irq)
1625{
1626 int i;
1627
1628 for (i = MIPS_EXC_INT_TIMER; i < MIPS_EXC_MAX; i++) {
1629 if (kvm_priority_to_irq[i] == (1 << (irq + 8)))
1630 return i;
1631 }
1632
1633 return MIPS_EXC_MAX;
1634}
1635
1636static int __init kvm_mips_init(void)
1637{
1638 int ret;
1639
1640 if (cpu_has_mmid) {
1641 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1642 return -EOPNOTSUPP;
1643 }
1644
1645 ret = kvm_mips_entry_setup();
1646 if (ret)
1647 return ret;
1648
1649 ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1650
1651 if (ret)
1652 return ret;
1653
1654 if (boot_cpu_type() == CPU_LOONGSON64)
1655 kvm_priority_to_irq = kvm_loongson3_priority_to_irq;
1656
1657 register_die_notifier(&kvm_mips_csr_die_notifier);
1658
1659 return 0;
1660}
1661
1662static void __exit kvm_mips_exit(void)
1663{
1664 kvm_exit();
1665
1666 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1667}
1668
1669module_init(kvm_mips_init);
1670module_exit(kvm_mips_exit);
1671
1672EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: MIPS specific KVM APIs
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12#include <linux/bitops.h>
13#include <linux/errno.h>
14#include <linux/err.h>
15#include <linux/kdebug.h>
16#include <linux/module.h>
17#include <linux/uaccess.h>
18#include <linux/vmalloc.h>
19#include <linux/sched/signal.h>
20#include <linux/fs.h>
21#include <linux/memblock.h>
22#include <linux/pgtable.h>
23
24#include <asm/fpu.h>
25#include <asm/page.h>
26#include <asm/cacheflush.h>
27#include <asm/mmu_context.h>
28#include <asm/pgalloc.h>
29
30#include <linux/kvm_host.h>
31
32#include "interrupt.h"
33
34#define CREATE_TRACE_POINTS
35#include "trace.h"
36
37#ifndef VECTORSPACING
38#define VECTORSPACING 0x100 /* for EI/VI mode */
39#endif
40
41const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
42 KVM_GENERIC_VM_STATS()
43};
44static_assert(ARRAY_SIZE(kvm_vm_stats_desc) ==
45 sizeof(struct kvm_vm_stat) / sizeof(u64));
46
47const struct kvm_stats_header kvm_vm_stats_header = {
48 .name_size = KVM_STATS_NAME_SIZE,
49 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
50 .id_offset = sizeof(struct kvm_stats_header),
51 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
52 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
53 sizeof(kvm_vm_stats_desc),
54};
55
56const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
57 KVM_GENERIC_VCPU_STATS(),
58 STATS_DESC_COUNTER(VCPU, wait_exits),
59 STATS_DESC_COUNTER(VCPU, cache_exits),
60 STATS_DESC_COUNTER(VCPU, signal_exits),
61 STATS_DESC_COUNTER(VCPU, int_exits),
62 STATS_DESC_COUNTER(VCPU, cop_unusable_exits),
63 STATS_DESC_COUNTER(VCPU, tlbmod_exits),
64 STATS_DESC_COUNTER(VCPU, tlbmiss_ld_exits),
65 STATS_DESC_COUNTER(VCPU, tlbmiss_st_exits),
66 STATS_DESC_COUNTER(VCPU, addrerr_st_exits),
67 STATS_DESC_COUNTER(VCPU, addrerr_ld_exits),
68 STATS_DESC_COUNTER(VCPU, syscall_exits),
69 STATS_DESC_COUNTER(VCPU, resvd_inst_exits),
70 STATS_DESC_COUNTER(VCPU, break_inst_exits),
71 STATS_DESC_COUNTER(VCPU, trap_inst_exits),
72 STATS_DESC_COUNTER(VCPU, msa_fpe_exits),
73 STATS_DESC_COUNTER(VCPU, fpe_exits),
74 STATS_DESC_COUNTER(VCPU, msa_disabled_exits),
75 STATS_DESC_COUNTER(VCPU, flush_dcache_exits),
76 STATS_DESC_COUNTER(VCPU, vz_gpsi_exits),
77 STATS_DESC_COUNTER(VCPU, vz_gsfc_exits),
78 STATS_DESC_COUNTER(VCPU, vz_hc_exits),
79 STATS_DESC_COUNTER(VCPU, vz_grr_exits),
80 STATS_DESC_COUNTER(VCPU, vz_gva_exits),
81 STATS_DESC_COUNTER(VCPU, vz_ghfc_exits),
82 STATS_DESC_COUNTER(VCPU, vz_gpa_exits),
83 STATS_DESC_COUNTER(VCPU, vz_resvd_exits),
84#ifdef CONFIG_CPU_LOONGSON64
85 STATS_DESC_COUNTER(VCPU, vz_cpucfg_exits),
86#endif
87};
88static_assert(ARRAY_SIZE(kvm_vcpu_stats_desc) ==
89 sizeof(struct kvm_vcpu_stat) / sizeof(u64));
90
91const struct kvm_stats_header kvm_vcpu_stats_header = {
92 .name_size = KVM_STATS_NAME_SIZE,
93 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
94 .id_offset = sizeof(struct kvm_stats_header),
95 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
96 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
97 sizeof(kvm_vcpu_stats_desc),
98};
99
100bool kvm_trace_guest_mode_change;
101
102int kvm_guest_mode_change_trace_reg(void)
103{
104 kvm_trace_guest_mode_change = true;
105 return 0;
106}
107
108void kvm_guest_mode_change_trace_unreg(void)
109{
110 kvm_trace_guest_mode_change = false;
111}
112
113/*
114 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
115 * Config7, so we are "runnable" if interrupts are pending
116 */
117int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
118{
119 return !!(vcpu->arch.pending_exceptions);
120}
121
122bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
123{
124 return false;
125}
126
127int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
128{
129 return 1;
130}
131
132int kvm_arch_hardware_enable(void)
133{
134 return kvm_mips_callbacks->hardware_enable();
135}
136
137void kvm_arch_hardware_disable(void)
138{
139 kvm_mips_callbacks->hardware_disable();
140}
141
142int kvm_arch_hardware_setup(void *opaque)
143{
144 return 0;
145}
146
147int kvm_arch_check_processor_compat(void *opaque)
148{
149 return 0;
150}
151
152extern void kvm_init_loongson_ipi(struct kvm *kvm);
153
154int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
155{
156 switch (type) {
157 case KVM_VM_MIPS_AUTO:
158 break;
159 case KVM_VM_MIPS_VZ:
160 break;
161 default:
162 /* Unsupported KVM type */
163 return -EINVAL;
164 }
165
166 /* Allocate page table to map GPA -> RPA */
167 kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
168 if (!kvm->arch.gpa_mm.pgd)
169 return -ENOMEM;
170
171#ifdef CONFIG_CPU_LOONGSON64
172 kvm_init_loongson_ipi(kvm);
173#endif
174
175 return 0;
176}
177
178void kvm_mips_free_vcpus(struct kvm *kvm)
179{
180 unsigned int i;
181 struct kvm_vcpu *vcpu;
182
183 kvm_for_each_vcpu(i, vcpu, kvm) {
184 kvm_vcpu_destroy(vcpu);
185 }
186
187 mutex_lock(&kvm->lock);
188
189 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
190 kvm->vcpus[i] = NULL;
191
192 atomic_set(&kvm->online_vcpus, 0);
193
194 mutex_unlock(&kvm->lock);
195}
196
197static void kvm_mips_free_gpa_pt(struct kvm *kvm)
198{
199 /* It should always be safe to remove after flushing the whole range */
200 WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
201 pgd_free(NULL, kvm->arch.gpa_mm.pgd);
202}
203
204void kvm_arch_destroy_vm(struct kvm *kvm)
205{
206 kvm_mips_free_vcpus(kvm);
207 kvm_mips_free_gpa_pt(kvm);
208}
209
210long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
211 unsigned long arg)
212{
213 return -ENOIOCTLCMD;
214}
215
216void kvm_arch_flush_shadow_all(struct kvm *kvm)
217{
218 /* Flush whole GPA */
219 kvm_mips_flush_gpa_pt(kvm, 0, ~0);
220 kvm_flush_remote_tlbs(kvm);
221}
222
223void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
224 struct kvm_memory_slot *slot)
225{
226 /*
227 * The slot has been made invalid (ready for moving or deletion), so we
228 * need to ensure that it can no longer be accessed by any guest VCPUs.
229 */
230
231 spin_lock(&kvm->mmu_lock);
232 /* Flush slot from GPA */
233 kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
234 slot->base_gfn + slot->npages - 1);
235 kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
236 spin_unlock(&kvm->mmu_lock);
237}
238
239int kvm_arch_prepare_memory_region(struct kvm *kvm,
240 struct kvm_memory_slot *memslot,
241 const struct kvm_userspace_memory_region *mem,
242 enum kvm_mr_change change)
243{
244 return 0;
245}
246
247void kvm_arch_commit_memory_region(struct kvm *kvm,
248 const struct kvm_userspace_memory_region *mem,
249 struct kvm_memory_slot *old,
250 const struct kvm_memory_slot *new,
251 enum kvm_mr_change change)
252{
253 int needs_flush;
254
255 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
256 __func__, kvm, mem->slot, mem->guest_phys_addr,
257 mem->memory_size, mem->userspace_addr);
258
259 /*
260 * If dirty page logging is enabled, write protect all pages in the slot
261 * ready for dirty logging.
262 *
263 * There is no need to do this in any of the following cases:
264 * CREATE: No dirty mappings will already exist.
265 * MOVE/DELETE: The old mappings will already have been cleaned up by
266 * kvm_arch_flush_shadow_memslot()
267 */
268 if (change == KVM_MR_FLAGS_ONLY &&
269 (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
270 new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
271 spin_lock(&kvm->mmu_lock);
272 /* Write protect GPA page table entries */
273 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
274 new->base_gfn + new->npages - 1);
275 if (needs_flush)
276 kvm_arch_flush_remote_tlbs_memslot(kvm, new);
277 spin_unlock(&kvm->mmu_lock);
278 }
279}
280
281static inline void dump_handler(const char *symbol, void *start, void *end)
282{
283 u32 *p;
284
285 pr_debug("LEAF(%s)\n", symbol);
286
287 pr_debug("\t.set push\n");
288 pr_debug("\t.set noreorder\n");
289
290 for (p = start; p < (u32 *)end; ++p)
291 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
292
293 pr_debug("\t.set\tpop\n");
294
295 pr_debug("\tEND(%s)\n", symbol);
296}
297
298/* low level hrtimer wake routine */
299static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
300{
301 struct kvm_vcpu *vcpu;
302
303 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
304
305 kvm_mips_callbacks->queue_timer_int(vcpu);
306
307 vcpu->arch.wait = 0;
308 rcuwait_wake_up(&vcpu->wait);
309
310 return kvm_mips_count_timeout(vcpu);
311}
312
313int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
314{
315 return 0;
316}
317
318int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
319{
320 int err, size;
321 void *gebase, *p, *handler, *refill_start, *refill_end;
322 int i;
323
324 kvm_debug("kvm @ %p: create cpu %d at %p\n",
325 vcpu->kvm, vcpu->vcpu_id, vcpu);
326
327 err = kvm_mips_callbacks->vcpu_init(vcpu);
328 if (err)
329 return err;
330
331 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
332 HRTIMER_MODE_REL);
333 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
334
335 /*
336 * Allocate space for host mode exception handlers that handle
337 * guest mode exits
338 */
339 if (cpu_has_veic || cpu_has_vint)
340 size = 0x200 + VECTORSPACING * 64;
341 else
342 size = 0x4000;
343
344 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
345
346 if (!gebase) {
347 err = -ENOMEM;
348 goto out_uninit_vcpu;
349 }
350 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
351 ALIGN(size, PAGE_SIZE), gebase);
352
353 /*
354 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
355 * limits us to the low 512MB of physical address space. If the memory
356 * we allocate is out of range, just give up now.
357 */
358 if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
359 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
360 gebase);
361 err = -ENOMEM;
362 goto out_free_gebase;
363 }
364
365 /* Save new ebase */
366 vcpu->arch.guest_ebase = gebase;
367
368 /* Build guest exception vectors dynamically in unmapped memory */
369 handler = gebase + 0x2000;
370
371 /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
372 refill_start = gebase;
373 if (IS_ENABLED(CONFIG_64BIT))
374 refill_start += 0x080;
375 refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
376
377 /* General Exception Entry point */
378 kvm_mips_build_exception(gebase + 0x180, handler);
379
380 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
381 for (i = 0; i < 8; i++) {
382 kvm_debug("L1 Vectored handler @ %p\n",
383 gebase + 0x200 + (i * VECTORSPACING));
384 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
385 handler);
386 }
387
388 /* General exit handler */
389 p = handler;
390 p = kvm_mips_build_exit(p);
391
392 /* Guest entry routine */
393 vcpu->arch.vcpu_run = p;
394 p = kvm_mips_build_vcpu_run(p);
395
396 /* Dump the generated code */
397 pr_debug("#include <asm/asm.h>\n");
398 pr_debug("#include <asm/regdef.h>\n");
399 pr_debug("\n");
400 dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
401 dump_handler("kvm_tlb_refill", refill_start, refill_end);
402 dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
403 dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
404
405 /* Invalidate the icache for these ranges */
406 flush_icache_range((unsigned long)gebase,
407 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
408
409 /* Init */
410 vcpu->arch.last_sched_cpu = -1;
411 vcpu->arch.last_exec_cpu = -1;
412
413 /* Initial guest state */
414 err = kvm_mips_callbacks->vcpu_setup(vcpu);
415 if (err)
416 goto out_free_gebase;
417
418 return 0;
419
420out_free_gebase:
421 kfree(gebase);
422out_uninit_vcpu:
423 kvm_mips_callbacks->vcpu_uninit(vcpu);
424 return err;
425}
426
427void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
428{
429 hrtimer_cancel(&vcpu->arch.comparecount_timer);
430
431 kvm_mips_dump_stats(vcpu);
432
433 kvm_mmu_free_memory_caches(vcpu);
434 kfree(vcpu->arch.guest_ebase);
435
436 kvm_mips_callbacks->vcpu_uninit(vcpu);
437}
438
439int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
440 struct kvm_guest_debug *dbg)
441{
442 return -ENOIOCTLCMD;
443}
444
445int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
446{
447 int r = -EINTR;
448
449 vcpu_load(vcpu);
450
451 kvm_sigset_activate(vcpu);
452
453 if (vcpu->mmio_needed) {
454 if (!vcpu->mmio_is_write)
455 kvm_mips_complete_mmio_load(vcpu);
456 vcpu->mmio_needed = 0;
457 }
458
459 if (vcpu->run->immediate_exit)
460 goto out;
461
462 lose_fpu(1);
463
464 local_irq_disable();
465 guest_enter_irqoff();
466 trace_kvm_enter(vcpu);
467
468 /*
469 * Make sure the read of VCPU requests in vcpu_run() callback is not
470 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
471 * flush request while the requester sees the VCPU as outside of guest
472 * mode and not needing an IPI.
473 */
474 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
475
476 r = kvm_mips_callbacks->vcpu_run(vcpu);
477
478 trace_kvm_out(vcpu);
479 guest_exit_irqoff();
480 local_irq_enable();
481
482out:
483 kvm_sigset_deactivate(vcpu);
484
485 vcpu_put(vcpu);
486 return r;
487}
488
489int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
490 struct kvm_mips_interrupt *irq)
491{
492 int intr = (int)irq->irq;
493 struct kvm_vcpu *dvcpu = NULL;
494
495 if (intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_1] ||
496 intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_2] ||
497 intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_1]) ||
498 intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_2]))
499 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
500 (int)intr);
501
502 if (irq->cpu == -1)
503 dvcpu = vcpu;
504 else
505 dvcpu = vcpu->kvm->vcpus[irq->cpu];
506
507 if (intr == 2 || intr == 3 || intr == 4 || intr == 6) {
508 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
509
510 } else if (intr == -2 || intr == -3 || intr == -4 || intr == -6) {
511 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
512 } else {
513 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
514 irq->cpu, irq->irq);
515 return -EINVAL;
516 }
517
518 dvcpu->arch.wait = 0;
519
520 rcuwait_wake_up(&dvcpu->wait);
521
522 return 0;
523}
524
525int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
526 struct kvm_mp_state *mp_state)
527{
528 return -ENOIOCTLCMD;
529}
530
531int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
532 struct kvm_mp_state *mp_state)
533{
534 return -ENOIOCTLCMD;
535}
536
537static u64 kvm_mips_get_one_regs[] = {
538 KVM_REG_MIPS_R0,
539 KVM_REG_MIPS_R1,
540 KVM_REG_MIPS_R2,
541 KVM_REG_MIPS_R3,
542 KVM_REG_MIPS_R4,
543 KVM_REG_MIPS_R5,
544 KVM_REG_MIPS_R6,
545 KVM_REG_MIPS_R7,
546 KVM_REG_MIPS_R8,
547 KVM_REG_MIPS_R9,
548 KVM_REG_MIPS_R10,
549 KVM_REG_MIPS_R11,
550 KVM_REG_MIPS_R12,
551 KVM_REG_MIPS_R13,
552 KVM_REG_MIPS_R14,
553 KVM_REG_MIPS_R15,
554 KVM_REG_MIPS_R16,
555 KVM_REG_MIPS_R17,
556 KVM_REG_MIPS_R18,
557 KVM_REG_MIPS_R19,
558 KVM_REG_MIPS_R20,
559 KVM_REG_MIPS_R21,
560 KVM_REG_MIPS_R22,
561 KVM_REG_MIPS_R23,
562 KVM_REG_MIPS_R24,
563 KVM_REG_MIPS_R25,
564 KVM_REG_MIPS_R26,
565 KVM_REG_MIPS_R27,
566 KVM_REG_MIPS_R28,
567 KVM_REG_MIPS_R29,
568 KVM_REG_MIPS_R30,
569 KVM_REG_MIPS_R31,
570
571#ifndef CONFIG_CPU_MIPSR6
572 KVM_REG_MIPS_HI,
573 KVM_REG_MIPS_LO,
574#endif
575 KVM_REG_MIPS_PC,
576};
577
578static u64 kvm_mips_get_one_regs_fpu[] = {
579 KVM_REG_MIPS_FCR_IR,
580 KVM_REG_MIPS_FCR_CSR,
581};
582
583static u64 kvm_mips_get_one_regs_msa[] = {
584 KVM_REG_MIPS_MSA_IR,
585 KVM_REG_MIPS_MSA_CSR,
586};
587
588static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
589{
590 unsigned long ret;
591
592 ret = ARRAY_SIZE(kvm_mips_get_one_regs);
593 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
594 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
595 /* odd doubles */
596 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
597 ret += 16;
598 }
599 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
600 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
601 ret += kvm_mips_callbacks->num_regs(vcpu);
602
603 return ret;
604}
605
606static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
607{
608 u64 index;
609 unsigned int i;
610
611 if (copy_to_user(indices, kvm_mips_get_one_regs,
612 sizeof(kvm_mips_get_one_regs)))
613 return -EFAULT;
614 indices += ARRAY_SIZE(kvm_mips_get_one_regs);
615
616 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
617 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
618 sizeof(kvm_mips_get_one_regs_fpu)))
619 return -EFAULT;
620 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
621
622 for (i = 0; i < 32; ++i) {
623 index = KVM_REG_MIPS_FPR_32(i);
624 if (copy_to_user(indices, &index, sizeof(index)))
625 return -EFAULT;
626 ++indices;
627
628 /* skip odd doubles if no F64 */
629 if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
630 continue;
631
632 index = KVM_REG_MIPS_FPR_64(i);
633 if (copy_to_user(indices, &index, sizeof(index)))
634 return -EFAULT;
635 ++indices;
636 }
637 }
638
639 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
640 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
641 sizeof(kvm_mips_get_one_regs_msa)))
642 return -EFAULT;
643 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
644
645 for (i = 0; i < 32; ++i) {
646 index = KVM_REG_MIPS_VEC_128(i);
647 if (copy_to_user(indices, &index, sizeof(index)))
648 return -EFAULT;
649 ++indices;
650 }
651 }
652
653 return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
654}
655
656static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
657 const struct kvm_one_reg *reg)
658{
659 struct mips_coproc *cop0 = vcpu->arch.cop0;
660 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
661 int ret;
662 s64 v;
663 s64 vs[2];
664 unsigned int idx;
665
666 switch (reg->id) {
667 /* General purpose registers */
668 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
669 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
670 break;
671#ifndef CONFIG_CPU_MIPSR6
672 case KVM_REG_MIPS_HI:
673 v = (long)vcpu->arch.hi;
674 break;
675 case KVM_REG_MIPS_LO:
676 v = (long)vcpu->arch.lo;
677 break;
678#endif
679 case KVM_REG_MIPS_PC:
680 v = (long)vcpu->arch.pc;
681 break;
682
683 /* Floating point registers */
684 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
685 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
686 return -EINVAL;
687 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
688 /* Odd singles in top of even double when FR=0 */
689 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
690 v = get_fpr32(&fpu->fpr[idx], 0);
691 else
692 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
693 break;
694 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
695 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
696 return -EINVAL;
697 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
698 /* Can't access odd doubles in FR=0 mode */
699 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
700 return -EINVAL;
701 v = get_fpr64(&fpu->fpr[idx], 0);
702 break;
703 case KVM_REG_MIPS_FCR_IR:
704 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
705 return -EINVAL;
706 v = boot_cpu_data.fpu_id;
707 break;
708 case KVM_REG_MIPS_FCR_CSR:
709 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
710 return -EINVAL;
711 v = fpu->fcr31;
712 break;
713
714 /* MIPS SIMD Architecture (MSA) registers */
715 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
716 if (!kvm_mips_guest_has_msa(&vcpu->arch))
717 return -EINVAL;
718 /* Can't access MSA registers in FR=0 mode */
719 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
720 return -EINVAL;
721 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
722#ifdef CONFIG_CPU_LITTLE_ENDIAN
723 /* least significant byte first */
724 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
725 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
726#else
727 /* most significant byte first */
728 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
729 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
730#endif
731 break;
732 case KVM_REG_MIPS_MSA_IR:
733 if (!kvm_mips_guest_has_msa(&vcpu->arch))
734 return -EINVAL;
735 v = boot_cpu_data.msa_id;
736 break;
737 case KVM_REG_MIPS_MSA_CSR:
738 if (!kvm_mips_guest_has_msa(&vcpu->arch))
739 return -EINVAL;
740 v = fpu->msacsr;
741 break;
742
743 /* registers to be handled specially */
744 default:
745 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
746 if (ret)
747 return ret;
748 break;
749 }
750 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
751 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
752
753 return put_user(v, uaddr64);
754 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
755 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
756 u32 v32 = (u32)v;
757
758 return put_user(v32, uaddr32);
759 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
760 void __user *uaddr = (void __user *)(long)reg->addr;
761
762 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
763 } else {
764 return -EINVAL;
765 }
766}
767
768static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
769 const struct kvm_one_reg *reg)
770{
771 struct mips_coproc *cop0 = vcpu->arch.cop0;
772 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
773 s64 v;
774 s64 vs[2];
775 unsigned int idx;
776
777 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
778 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
779
780 if (get_user(v, uaddr64) != 0)
781 return -EFAULT;
782 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
783 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
784 s32 v32;
785
786 if (get_user(v32, uaddr32) != 0)
787 return -EFAULT;
788 v = (s64)v32;
789 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
790 void __user *uaddr = (void __user *)(long)reg->addr;
791
792 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
793 } else {
794 return -EINVAL;
795 }
796
797 switch (reg->id) {
798 /* General purpose registers */
799 case KVM_REG_MIPS_R0:
800 /* Silently ignore requests to set $0 */
801 break;
802 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
803 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
804 break;
805#ifndef CONFIG_CPU_MIPSR6
806 case KVM_REG_MIPS_HI:
807 vcpu->arch.hi = v;
808 break;
809 case KVM_REG_MIPS_LO:
810 vcpu->arch.lo = v;
811 break;
812#endif
813 case KVM_REG_MIPS_PC:
814 vcpu->arch.pc = v;
815 break;
816
817 /* Floating point registers */
818 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
819 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
820 return -EINVAL;
821 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
822 /* Odd singles in top of even double when FR=0 */
823 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
824 set_fpr32(&fpu->fpr[idx], 0, v);
825 else
826 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
827 break;
828 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
829 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
830 return -EINVAL;
831 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
832 /* Can't access odd doubles in FR=0 mode */
833 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
834 return -EINVAL;
835 set_fpr64(&fpu->fpr[idx], 0, v);
836 break;
837 case KVM_REG_MIPS_FCR_IR:
838 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
839 return -EINVAL;
840 /* Read-only */
841 break;
842 case KVM_REG_MIPS_FCR_CSR:
843 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
844 return -EINVAL;
845 fpu->fcr31 = v;
846 break;
847
848 /* MIPS SIMD Architecture (MSA) registers */
849 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
850 if (!kvm_mips_guest_has_msa(&vcpu->arch))
851 return -EINVAL;
852 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
853#ifdef CONFIG_CPU_LITTLE_ENDIAN
854 /* least significant byte first */
855 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
856 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
857#else
858 /* most significant byte first */
859 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
860 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
861#endif
862 break;
863 case KVM_REG_MIPS_MSA_IR:
864 if (!kvm_mips_guest_has_msa(&vcpu->arch))
865 return -EINVAL;
866 /* Read-only */
867 break;
868 case KVM_REG_MIPS_MSA_CSR:
869 if (!kvm_mips_guest_has_msa(&vcpu->arch))
870 return -EINVAL;
871 fpu->msacsr = v;
872 break;
873
874 /* registers to be handled specially */
875 default:
876 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
877 }
878 return 0;
879}
880
881static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
882 struct kvm_enable_cap *cap)
883{
884 int r = 0;
885
886 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
887 return -EINVAL;
888 if (cap->flags)
889 return -EINVAL;
890 if (cap->args[0])
891 return -EINVAL;
892
893 switch (cap->cap) {
894 case KVM_CAP_MIPS_FPU:
895 vcpu->arch.fpu_enabled = true;
896 break;
897 case KVM_CAP_MIPS_MSA:
898 vcpu->arch.msa_enabled = true;
899 break;
900 default:
901 r = -EINVAL;
902 break;
903 }
904
905 return r;
906}
907
908long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
909 unsigned long arg)
910{
911 struct kvm_vcpu *vcpu = filp->private_data;
912 void __user *argp = (void __user *)arg;
913
914 if (ioctl == KVM_INTERRUPT) {
915 struct kvm_mips_interrupt irq;
916
917 if (copy_from_user(&irq, argp, sizeof(irq)))
918 return -EFAULT;
919 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
920 irq.irq);
921
922 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
923 }
924
925 return -ENOIOCTLCMD;
926}
927
928long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
929 unsigned long arg)
930{
931 struct kvm_vcpu *vcpu = filp->private_data;
932 void __user *argp = (void __user *)arg;
933 long r;
934
935 vcpu_load(vcpu);
936
937 switch (ioctl) {
938 case KVM_SET_ONE_REG:
939 case KVM_GET_ONE_REG: {
940 struct kvm_one_reg reg;
941
942 r = -EFAULT;
943 if (copy_from_user(®, argp, sizeof(reg)))
944 break;
945 if (ioctl == KVM_SET_ONE_REG)
946 r = kvm_mips_set_reg(vcpu, ®);
947 else
948 r = kvm_mips_get_reg(vcpu, ®);
949 break;
950 }
951 case KVM_GET_REG_LIST: {
952 struct kvm_reg_list __user *user_list = argp;
953 struct kvm_reg_list reg_list;
954 unsigned n;
955
956 r = -EFAULT;
957 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
958 break;
959 n = reg_list.n;
960 reg_list.n = kvm_mips_num_regs(vcpu);
961 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
962 break;
963 r = -E2BIG;
964 if (n < reg_list.n)
965 break;
966 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
967 break;
968 }
969 case KVM_ENABLE_CAP: {
970 struct kvm_enable_cap cap;
971
972 r = -EFAULT;
973 if (copy_from_user(&cap, argp, sizeof(cap)))
974 break;
975 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
976 break;
977 }
978 default:
979 r = -ENOIOCTLCMD;
980 }
981
982 vcpu_put(vcpu);
983 return r;
984}
985
986void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
987{
988
989}
990
991int kvm_arch_flush_remote_tlb(struct kvm *kvm)
992{
993 kvm_mips_callbacks->prepare_flush_shadow(kvm);
994 return 1;
995}
996
997void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
998 const struct kvm_memory_slot *memslot)
999{
1000 kvm_flush_remote_tlbs(kvm);
1001}
1002
1003long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1004{
1005 long r;
1006
1007 switch (ioctl) {
1008 default:
1009 r = -ENOIOCTLCMD;
1010 }
1011
1012 return r;
1013}
1014
1015int kvm_arch_init(void *opaque)
1016{
1017 if (kvm_mips_callbacks) {
1018 kvm_err("kvm: module already exists\n");
1019 return -EEXIST;
1020 }
1021
1022 return kvm_mips_emulation_init(&kvm_mips_callbacks);
1023}
1024
1025void kvm_arch_exit(void)
1026{
1027 kvm_mips_callbacks = NULL;
1028}
1029
1030int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1031 struct kvm_sregs *sregs)
1032{
1033 return -ENOIOCTLCMD;
1034}
1035
1036int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1037 struct kvm_sregs *sregs)
1038{
1039 return -ENOIOCTLCMD;
1040}
1041
1042void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1043{
1044}
1045
1046int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1047{
1048 return -ENOIOCTLCMD;
1049}
1050
1051int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1052{
1053 return -ENOIOCTLCMD;
1054}
1055
1056vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1057{
1058 return VM_FAULT_SIGBUS;
1059}
1060
1061int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1062{
1063 int r;
1064
1065 switch (ext) {
1066 case KVM_CAP_ONE_REG:
1067 case KVM_CAP_ENABLE_CAP:
1068 case KVM_CAP_READONLY_MEM:
1069 case KVM_CAP_SYNC_MMU:
1070 case KVM_CAP_IMMEDIATE_EXIT:
1071 r = 1;
1072 break;
1073 case KVM_CAP_NR_VCPUS:
1074 r = num_online_cpus();
1075 break;
1076 case KVM_CAP_MAX_VCPUS:
1077 r = KVM_MAX_VCPUS;
1078 break;
1079 case KVM_CAP_MAX_VCPU_ID:
1080 r = KVM_MAX_VCPU_ID;
1081 break;
1082 case KVM_CAP_MIPS_FPU:
1083 /* We don't handle systems with inconsistent cpu_has_fpu */
1084 r = !!raw_cpu_has_fpu;
1085 break;
1086 case KVM_CAP_MIPS_MSA:
1087 /*
1088 * We don't support MSA vector partitioning yet:
1089 * 1) It would require explicit support which can't be tested
1090 * yet due to lack of support in current hardware.
1091 * 2) It extends the state that would need to be saved/restored
1092 * by e.g. QEMU for migration.
1093 *
1094 * When vector partitioning hardware becomes available, support
1095 * could be added by requiring a flag when enabling
1096 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1097 * to save/restore the appropriate extra state.
1098 */
1099 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1100 break;
1101 default:
1102 r = kvm_mips_callbacks->check_extension(kvm, ext);
1103 break;
1104 }
1105 return r;
1106}
1107
1108int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1109{
1110 return kvm_mips_pending_timer(vcpu) ||
1111 kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1112}
1113
1114int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1115{
1116 int i;
1117 struct mips_coproc *cop0;
1118
1119 if (!vcpu)
1120 return -1;
1121
1122 kvm_debug("VCPU Register Dump:\n");
1123 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1124 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1125
1126 for (i = 0; i < 32; i += 4) {
1127 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1128 vcpu->arch.gprs[i],
1129 vcpu->arch.gprs[i + 1],
1130 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1131 }
1132 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1133 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1134
1135 cop0 = vcpu->arch.cop0;
1136 kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1137 kvm_read_c0_guest_status(cop0),
1138 kvm_read_c0_guest_cause(cop0));
1139
1140 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1141
1142 return 0;
1143}
1144
1145int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1146{
1147 int i;
1148
1149 vcpu_load(vcpu);
1150
1151 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1152 vcpu->arch.gprs[i] = regs->gpr[i];
1153 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1154 vcpu->arch.hi = regs->hi;
1155 vcpu->arch.lo = regs->lo;
1156 vcpu->arch.pc = regs->pc;
1157
1158 vcpu_put(vcpu);
1159 return 0;
1160}
1161
1162int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1163{
1164 int i;
1165
1166 vcpu_load(vcpu);
1167
1168 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1169 regs->gpr[i] = vcpu->arch.gprs[i];
1170
1171 regs->hi = vcpu->arch.hi;
1172 regs->lo = vcpu->arch.lo;
1173 regs->pc = vcpu->arch.pc;
1174
1175 vcpu_put(vcpu);
1176 return 0;
1177}
1178
1179int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1180 struct kvm_translation *tr)
1181{
1182 return 0;
1183}
1184
1185static void kvm_mips_set_c0_status(void)
1186{
1187 u32 status = read_c0_status();
1188
1189 if (cpu_has_dsp)
1190 status |= (ST0_MX);
1191
1192 write_c0_status(status);
1193 ehb();
1194}
1195
1196/*
1197 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1198 */
1199int kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1200{
1201 struct kvm_run *run = vcpu->run;
1202 u32 cause = vcpu->arch.host_cp0_cause;
1203 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1204 u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1205 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1206 enum emulation_result er = EMULATE_DONE;
1207 u32 inst;
1208 int ret = RESUME_GUEST;
1209
1210 vcpu->mode = OUTSIDE_GUEST_MODE;
1211
1212 /* Set a default exit reason */
1213 run->exit_reason = KVM_EXIT_UNKNOWN;
1214 run->ready_for_interrupt_injection = 1;
1215
1216 /*
1217 * Set the appropriate status bits based on host CPU features,
1218 * before we hit the scheduler
1219 */
1220 kvm_mips_set_c0_status();
1221
1222 local_irq_enable();
1223
1224 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1225 cause, opc, run, vcpu);
1226 trace_kvm_exit(vcpu, exccode);
1227
1228 switch (exccode) {
1229 case EXCCODE_INT:
1230 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1231
1232 ++vcpu->stat.int_exits;
1233
1234 if (need_resched())
1235 cond_resched();
1236
1237 ret = RESUME_GUEST;
1238 break;
1239
1240 case EXCCODE_CPU:
1241 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1242
1243 ++vcpu->stat.cop_unusable_exits;
1244 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1245 /* XXXKYMA: Might need to return to user space */
1246 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1247 ret = RESUME_HOST;
1248 break;
1249
1250 case EXCCODE_MOD:
1251 ++vcpu->stat.tlbmod_exits;
1252 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1253 break;
1254
1255 case EXCCODE_TLBS:
1256 kvm_debug("TLB ST fault: cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1257 cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1258 badvaddr);
1259
1260 ++vcpu->stat.tlbmiss_st_exits;
1261 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1262 break;
1263
1264 case EXCCODE_TLBL:
1265 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1266 cause, opc, badvaddr);
1267
1268 ++vcpu->stat.tlbmiss_ld_exits;
1269 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1270 break;
1271
1272 case EXCCODE_ADES:
1273 ++vcpu->stat.addrerr_st_exits;
1274 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1275 break;
1276
1277 case EXCCODE_ADEL:
1278 ++vcpu->stat.addrerr_ld_exits;
1279 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1280 break;
1281
1282 case EXCCODE_SYS:
1283 ++vcpu->stat.syscall_exits;
1284 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1285 break;
1286
1287 case EXCCODE_RI:
1288 ++vcpu->stat.resvd_inst_exits;
1289 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1290 break;
1291
1292 case EXCCODE_BP:
1293 ++vcpu->stat.break_inst_exits;
1294 ret = kvm_mips_callbacks->handle_break(vcpu);
1295 break;
1296
1297 case EXCCODE_TR:
1298 ++vcpu->stat.trap_inst_exits;
1299 ret = kvm_mips_callbacks->handle_trap(vcpu);
1300 break;
1301
1302 case EXCCODE_MSAFPE:
1303 ++vcpu->stat.msa_fpe_exits;
1304 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1305 break;
1306
1307 case EXCCODE_FPE:
1308 ++vcpu->stat.fpe_exits;
1309 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1310 break;
1311
1312 case EXCCODE_MSADIS:
1313 ++vcpu->stat.msa_disabled_exits;
1314 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1315 break;
1316
1317 case EXCCODE_GE:
1318 /* defer exit accounting to handler */
1319 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1320 break;
1321
1322 default:
1323 if (cause & CAUSEF_BD)
1324 opc += 1;
1325 inst = 0;
1326 kvm_get_badinstr(opc, vcpu, &inst);
1327 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
1328 exccode, opc, inst, badvaddr,
1329 kvm_read_c0_guest_status(vcpu->arch.cop0));
1330 kvm_arch_vcpu_dump_regs(vcpu);
1331 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1332 ret = RESUME_HOST;
1333 break;
1334
1335 }
1336
1337 local_irq_disable();
1338
1339 if (ret == RESUME_GUEST)
1340 kvm_vz_acquire_htimer(vcpu);
1341
1342 if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1343 kvm_mips_deliver_interrupts(vcpu, cause);
1344
1345 if (!(ret & RESUME_HOST)) {
1346 /* Only check for signals if not already exiting to userspace */
1347 if (signal_pending(current)) {
1348 run->exit_reason = KVM_EXIT_INTR;
1349 ret = (-EINTR << 2) | RESUME_HOST;
1350 ++vcpu->stat.signal_exits;
1351 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1352 }
1353 }
1354
1355 if (ret == RESUME_GUEST) {
1356 trace_kvm_reenter(vcpu);
1357
1358 /*
1359 * Make sure the read of VCPU requests in vcpu_reenter()
1360 * callback is not reordered ahead of the write to vcpu->mode,
1361 * or we could miss a TLB flush request while the requester sees
1362 * the VCPU as outside of guest mode and not needing an IPI.
1363 */
1364 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1365
1366 kvm_mips_callbacks->vcpu_reenter(vcpu);
1367
1368 /*
1369 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1370 * is live), restore FCR31 / MSACSR.
1371 *
1372 * This should be before returning to the guest exception
1373 * vector, as it may well cause an [MSA] FP exception if there
1374 * are pending exception bits unmasked. (see
1375 * kvm_mips_csr_die_notifier() for how that is handled).
1376 */
1377 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1378 read_c0_status() & ST0_CU1)
1379 __kvm_restore_fcsr(&vcpu->arch);
1380
1381 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1382 read_c0_config5() & MIPS_CONF5_MSAEN)
1383 __kvm_restore_msacsr(&vcpu->arch);
1384 }
1385 return ret;
1386}
1387
1388/* Enable FPU for guest and restore context */
1389void kvm_own_fpu(struct kvm_vcpu *vcpu)
1390{
1391 struct mips_coproc *cop0 = vcpu->arch.cop0;
1392 unsigned int sr, cfg5;
1393
1394 preempt_disable();
1395
1396 sr = kvm_read_c0_guest_status(cop0);
1397
1398 /*
1399 * If MSA state is already live, it is undefined how it interacts with
1400 * FR=0 FPU state, and we don't want to hit reserved instruction
1401 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1402 * play it safe and save it first.
1403 */
1404 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1405 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1406 kvm_lose_fpu(vcpu);
1407
1408 /*
1409 * Enable FPU for guest
1410 * We set FR and FRE according to guest context
1411 */
1412 change_c0_status(ST0_CU1 | ST0_FR, sr);
1413 if (cpu_has_fre) {
1414 cfg5 = kvm_read_c0_guest_config5(cop0);
1415 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1416 }
1417 enable_fpu_hazard();
1418
1419 /* If guest FPU state not active, restore it now */
1420 if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1421 __kvm_restore_fpu(&vcpu->arch);
1422 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1423 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1424 } else {
1425 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1426 }
1427
1428 preempt_enable();
1429}
1430
1431#ifdef CONFIG_CPU_HAS_MSA
1432/* Enable MSA for guest and restore context */
1433void kvm_own_msa(struct kvm_vcpu *vcpu)
1434{
1435 struct mips_coproc *cop0 = vcpu->arch.cop0;
1436 unsigned int sr, cfg5;
1437
1438 preempt_disable();
1439
1440 /*
1441 * Enable FPU if enabled in guest, since we're restoring FPU context
1442 * anyway. We set FR and FRE according to guest context.
1443 */
1444 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1445 sr = kvm_read_c0_guest_status(cop0);
1446
1447 /*
1448 * If FR=0 FPU state is already live, it is undefined how it
1449 * interacts with MSA state, so play it safe and save it first.
1450 */
1451 if (!(sr & ST0_FR) &&
1452 (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1453 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1454 kvm_lose_fpu(vcpu);
1455
1456 change_c0_status(ST0_CU1 | ST0_FR, sr);
1457 if (sr & ST0_CU1 && cpu_has_fre) {
1458 cfg5 = kvm_read_c0_guest_config5(cop0);
1459 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1460 }
1461 }
1462
1463 /* Enable MSA for guest */
1464 set_c0_config5(MIPS_CONF5_MSAEN);
1465 enable_fpu_hazard();
1466
1467 switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1468 case KVM_MIPS_AUX_FPU:
1469 /*
1470 * Guest FPU state already loaded, only restore upper MSA state
1471 */
1472 __kvm_restore_msa_upper(&vcpu->arch);
1473 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1474 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1475 break;
1476 case 0:
1477 /* Neither FPU or MSA already active, restore full MSA state */
1478 __kvm_restore_msa(&vcpu->arch);
1479 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1480 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1481 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1482 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1483 KVM_TRACE_AUX_FPU_MSA);
1484 break;
1485 default:
1486 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1487 break;
1488 }
1489
1490 preempt_enable();
1491}
1492#endif
1493
1494/* Drop FPU & MSA without saving it */
1495void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1496{
1497 preempt_disable();
1498 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1499 disable_msa();
1500 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1501 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1502 }
1503 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1504 clear_c0_status(ST0_CU1 | ST0_FR);
1505 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1506 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1507 }
1508 preempt_enable();
1509}
1510
1511/* Save and disable FPU & MSA */
1512void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1513{
1514 /*
1515 * With T&E, FPU & MSA get disabled in root context (hardware) when it
1516 * is disabled in guest context (software), but the register state in
1517 * the hardware may still be in use.
1518 * This is why we explicitly re-enable the hardware before saving.
1519 */
1520
1521 preempt_disable();
1522 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1523 __kvm_save_msa(&vcpu->arch);
1524 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1525
1526 /* Disable MSA & FPU */
1527 disable_msa();
1528 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1529 clear_c0_status(ST0_CU1 | ST0_FR);
1530 disable_fpu_hazard();
1531 }
1532 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1533 } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1534 __kvm_save_fpu(&vcpu->arch);
1535 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1536 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1537
1538 /* Disable FPU */
1539 clear_c0_status(ST0_CU1 | ST0_FR);
1540 disable_fpu_hazard();
1541 }
1542 preempt_enable();
1543}
1544
1545/*
1546 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1547 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1548 * exception if cause bits are set in the value being written.
1549 */
1550static int kvm_mips_csr_die_notify(struct notifier_block *self,
1551 unsigned long cmd, void *ptr)
1552{
1553 struct die_args *args = (struct die_args *)ptr;
1554 struct pt_regs *regs = args->regs;
1555 unsigned long pc;
1556
1557 /* Only interested in FPE and MSAFPE */
1558 if (cmd != DIE_FP && cmd != DIE_MSAFP)
1559 return NOTIFY_DONE;
1560
1561 /* Return immediately if guest context isn't active */
1562 if (!(current->flags & PF_VCPU))
1563 return NOTIFY_DONE;
1564
1565 /* Should never get here from user mode */
1566 BUG_ON(user_mode(regs));
1567
1568 pc = instruction_pointer(regs);
1569 switch (cmd) {
1570 case DIE_FP:
1571 /* match 2nd instruction in __kvm_restore_fcsr */
1572 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1573 return NOTIFY_DONE;
1574 break;
1575 case DIE_MSAFP:
1576 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1577 if (!cpu_has_msa ||
1578 pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1579 pc > (unsigned long)&__kvm_restore_msacsr + 8)
1580 return NOTIFY_DONE;
1581 break;
1582 }
1583
1584 /* Move PC forward a little and continue executing */
1585 instruction_pointer(regs) += 4;
1586
1587 return NOTIFY_STOP;
1588}
1589
1590static struct notifier_block kvm_mips_csr_die_notifier = {
1591 .notifier_call = kvm_mips_csr_die_notify,
1592};
1593
1594static u32 kvm_default_priority_to_irq[MIPS_EXC_MAX] = {
1595 [MIPS_EXC_INT_TIMER] = C_IRQ5,
1596 [MIPS_EXC_INT_IO_1] = C_IRQ0,
1597 [MIPS_EXC_INT_IPI_1] = C_IRQ1,
1598 [MIPS_EXC_INT_IPI_2] = C_IRQ2,
1599};
1600
1601static u32 kvm_loongson3_priority_to_irq[MIPS_EXC_MAX] = {
1602 [MIPS_EXC_INT_TIMER] = C_IRQ5,
1603 [MIPS_EXC_INT_IO_1] = C_IRQ0,
1604 [MIPS_EXC_INT_IO_2] = C_IRQ1,
1605 [MIPS_EXC_INT_IPI_1] = C_IRQ4,
1606};
1607
1608u32 *kvm_priority_to_irq = kvm_default_priority_to_irq;
1609
1610u32 kvm_irq_to_priority(u32 irq)
1611{
1612 int i;
1613
1614 for (i = MIPS_EXC_INT_TIMER; i < MIPS_EXC_MAX; i++) {
1615 if (kvm_priority_to_irq[i] == (1 << (irq + 8)))
1616 return i;
1617 }
1618
1619 return MIPS_EXC_MAX;
1620}
1621
1622static int __init kvm_mips_init(void)
1623{
1624 int ret;
1625
1626 if (cpu_has_mmid) {
1627 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1628 return -EOPNOTSUPP;
1629 }
1630
1631 ret = kvm_mips_entry_setup();
1632 if (ret)
1633 return ret;
1634
1635 ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1636
1637 if (ret)
1638 return ret;
1639
1640 if (boot_cpu_type() == CPU_LOONGSON64)
1641 kvm_priority_to_irq = kvm_loongson3_priority_to_irq;
1642
1643 register_die_notifier(&kvm_mips_csr_die_notifier);
1644
1645 return 0;
1646}
1647
1648static void __exit kvm_mips_exit(void)
1649{
1650 kvm_exit();
1651
1652 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1653}
1654
1655module_init(kvm_mips_init);
1656module_exit(kvm_mips_exit);
1657
1658EXPORT_TRACEPOINT_SYMBOL(kvm_exit);