Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Architecture-specific setup.
  4 *
  5 * Copyright (C) 1998-2003 Hewlett-Packard Co
  6 *	David Mosberger-Tang <davidm@hpl.hp.com>
  7 * 04/11/17 Ashok Raj	<ashok.raj@intel.com> Added CPU Hotplug Support
  8 *
  9 * 2005-10-07 Keith Owens <kaos@sgi.com>
 10 *	      Add notify_die() hooks.
 11 */
 12#include <linux/cpu.h>
 13#include <linux/pm.h>
 14#include <linux/elf.h>
 15#include <linux/errno.h>
 16#include <linux/kernel.h>
 17#include <linux/mm.h>
 18#include <linux/slab.h>
 19#include <linux/module.h>
 20#include <linux/notifier.h>
 21#include <linux/personality.h>
 22#include <linux/reboot.h>
 23#include <linux/sched.h>
 24#include <linux/sched/debug.h>
 25#include <linux/sched/hotplug.h>
 26#include <linux/sched/task.h>
 27#include <linux/sched/task_stack.h>
 28#include <linux/stddef.h>
 29#include <linux/thread_info.h>
 30#include <linux/unistd.h>
 31#include <linux/efi.h>
 32#include <linux/interrupt.h>
 33#include <linux/delay.h>
 34#include <linux/kdebug.h>
 35#include <linux/utsname.h>
 36#include <linux/resume_user_mode.h>
 37#include <linux/rcupdate.h>
 38
 39#include <asm/cpu.h>
 40#include <asm/delay.h>
 41#include <asm/elf.h>
 42#include <asm/irq.h>
 43#include <asm/kexec.h>
 44#include <asm/processor.h>
 45#include <asm/sal.h>
 46#include <asm/switch_to.h>
 47#include <asm/tlbflush.h>
 48#include <linux/uaccess.h>
 49#include <asm/unwind.h>
 50#include <asm/user.h>
 51#include <asm/xtp.h>
 52
 53#include "entry.h"
 54
 55#include "sigframe.h"
 56
 57void (*ia64_mark_idle)(int);
 58
 59unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
 60EXPORT_SYMBOL(boot_option_idle_override);
 61void (*pm_power_off) (void);
 62EXPORT_SYMBOL(pm_power_off);
 63
 64static void
 65ia64_do_show_stack (struct unw_frame_info *info, void *arg)
 66{
 67	unsigned long ip, sp, bsp;
 68	const char *loglvl = arg;
 69
 70	printk("%s\nCall Trace:\n", loglvl);
 71	do {
 72		unw_get_ip(info, &ip);
 73		if (ip == 0)
 74			break;
 75
 76		unw_get_sp(info, &sp);
 77		unw_get_bsp(info, &bsp);
 78		printk("%s [<%016lx>] %pS\n"
 79			 "                                sp=%016lx bsp=%016lx\n",
 80			 loglvl, ip, (void *)ip, sp, bsp);
 81	} while (unw_unwind(info) >= 0);
 82}
 83
 84void
 85show_stack (struct task_struct *task, unsigned long *sp, const char *loglvl)
 86{
 87	if (!task)
 88		unw_init_running(ia64_do_show_stack, (void *)loglvl);
 89	else {
 90		struct unw_frame_info info;
 91
 92		unw_init_from_blocked_task(&info, task);
 93		ia64_do_show_stack(&info, (void *)loglvl);
 94	}
 95}
 96
 97void
 98show_regs (struct pt_regs *regs)
 99{
100	unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
101
102	print_modules();
103	printk("\n");
104	show_regs_print_info(KERN_DEFAULT);
105	printk("psr : %016lx ifs : %016lx ip  : [<%016lx>]    %s (%s)\n",
106	       regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
107	       init_utsname()->release);
108	printk("ip is at %pS\n", (void *)ip);
109	printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
110	       regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
111	printk("rnat: %016lx bsps: %016lx pr  : %016lx\n",
112	       regs->ar_rnat, regs->ar_bspstore, regs->pr);
113	printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
114	       regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
115	printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
116	printk("b0  : %016lx b6  : %016lx b7  : %016lx\n", regs->b0, regs->b6, regs->b7);
117	printk("f6  : %05lx%016lx f7  : %05lx%016lx\n",
118	       regs->f6.u.bits[1], regs->f6.u.bits[0],
119	       regs->f7.u.bits[1], regs->f7.u.bits[0]);
120	printk("f8  : %05lx%016lx f9  : %05lx%016lx\n",
121	       regs->f8.u.bits[1], regs->f8.u.bits[0],
122	       regs->f9.u.bits[1], regs->f9.u.bits[0]);
123	printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
124	       regs->f10.u.bits[1], regs->f10.u.bits[0],
125	       regs->f11.u.bits[1], regs->f11.u.bits[0]);
126
127	printk("r1  : %016lx r2  : %016lx r3  : %016lx\n", regs->r1, regs->r2, regs->r3);
128	printk("r8  : %016lx r9  : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
129	printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
130	printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
131	printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
132	printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
133	printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
134	printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
135	printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
136
137	if (user_mode(regs)) {
138		/* print the stacked registers */
139		unsigned long val, *bsp, ndirty;
140		int i, sof, is_nat = 0;
141
142		sof = regs->cr_ifs & 0x7f;	/* size of frame */
143		ndirty = (regs->loadrs >> 19);
144		bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
145		for (i = 0; i < sof; ++i) {
146			get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
147			printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
148			       ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
149		}
150	} else
151		show_stack(NULL, NULL, KERN_DEFAULT);
152}
153
154/* local support for deprecated console_print */
155void
156console_print(const char *s)
157{
158	printk(KERN_EMERG "%s", s);
159}
160
161void
162do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
163{
164	if (fsys_mode(current, &scr->pt)) {
165		/*
166		 * defer signal-handling etc. until we return to
167		 * privilege-level 0.
168		 */
169		if (!ia64_psr(&scr->pt)->lp)
170			ia64_psr(&scr->pt)->lp = 1;
171		return;
172	}
173
174	/* deal with pending signal delivery */
175	if (test_thread_flag(TIF_SIGPENDING) ||
176	    test_thread_flag(TIF_NOTIFY_SIGNAL)) {
177		local_irq_enable();	/* force interrupt enable */
178		ia64_do_signal(scr, in_syscall);
179	}
180
181	if (test_thread_flag(TIF_NOTIFY_RESUME)) {
182		local_irq_enable();	/* force interrupt enable */
183		resume_user_mode_work(&scr->pt);
184	}
185
186	/* copy user rbs to kernel rbs */
187	if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
188		local_irq_enable();	/* force interrupt enable */
189		ia64_sync_krbs();
190	}
191
192	local_irq_disable();	/* force interrupt disable */
193}
194
195static int __init nohalt_setup(char * str)
196{
197	cpu_idle_poll_ctrl(true);
198	return 1;
199}
200__setup("nohalt", nohalt_setup);
201
202#ifdef CONFIG_HOTPLUG_CPU
203/* We don't actually take CPU down, just spin without interrupts. */
204static inline void play_dead(void)
205{
206	unsigned int this_cpu = smp_processor_id();
207
208	/* Ack it */
209	__this_cpu_write(cpu_state, CPU_DEAD);
210
211	max_xtp();
212	local_irq_disable();
213	idle_task_exit();
214	ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
215	/*
216	 * The above is a point of no-return, the processor is
217	 * expected to be in SAL loop now.
218	 */
219	BUG();
220}
221#else
222static inline void play_dead(void)
223{
224	BUG();
225}
226#endif /* CONFIG_HOTPLUG_CPU */
227
228void arch_cpu_idle_dead(void)
229{
230	play_dead();
231}
232
233void arch_cpu_idle(void)
234{
235	void (*mark_idle)(int) = ia64_mark_idle;
236
237#ifdef CONFIG_SMP
238	min_xtp();
239#endif
240	rmb();
241	if (mark_idle)
242		(*mark_idle)(1);
243
244	raw_safe_halt();
245
246	if (mark_idle)
247		(*mark_idle)(0);
248#ifdef CONFIG_SMP
249	normal_xtp();
250#endif
251}
252
253void
254ia64_save_extra (struct task_struct *task)
255{
256	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
257		ia64_save_debug_regs(&task->thread.dbr[0]);
258}
259
260void
261ia64_load_extra (struct task_struct *task)
262{
263	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
264		ia64_load_debug_regs(&task->thread.dbr[0]);
265}
266
267/*
268 * Copy the state of an ia-64 thread.
269 *
270 * We get here through the following  call chain:
271 *
272 *	from user-level:	from kernel:
273 *
274 *	<clone syscall>	        <some kernel call frames>
275 *	sys_clone		   :
276 *	kernel_clone		kernel_clone
277 *	copy_thread		copy_thread
278 *
279 * This means that the stack layout is as follows:
280 *
281 *	+---------------------+ (highest addr)
282 *	|   struct pt_regs    |
283 *	+---------------------+
284 *	| struct switch_stack |
285 *	+---------------------+
286 *	|                     |
287 *	|    memory stack     |
288 *	|                     | <-- sp (lowest addr)
289 *	+---------------------+
290 *
291 * Observe that we copy the unat values that are in pt_regs and switch_stack.  Spilling an
292 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
293 * with N=(X & 0x1ff)/8.  Thus, copying the unat value preserves the NaT bits ONLY if the
294 * pt_regs structure in the parent is congruent to that of the child, modulo 512.  Since
295 * the stack is page aligned and the page size is at least 4KB, this is always the case,
296 * so there is nothing to worry about.
297 */
298int
299copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
 
300{
301	unsigned long clone_flags = args->flags;
302	unsigned long user_stack_base = args->stack;
303	unsigned long user_stack_size = args->stack_size;
304	unsigned long tls = args->tls;
305	extern char ia64_ret_from_clone;
306	struct switch_stack *child_stack, *stack;
307	unsigned long rbs, child_rbs, rbs_size;
308	struct pt_regs *child_ptregs;
309	struct pt_regs *regs = current_pt_regs();
310	int retval = 0;
311
312	child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
313	child_stack = (struct switch_stack *) child_ptregs - 1;
314
315	rbs = (unsigned long) current + IA64_RBS_OFFSET;
316	child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
317
318	/* copy parts of thread_struct: */
319	p->thread.ksp = (unsigned long) child_stack - 16;
320
321	/*
322	 * NOTE: The calling convention considers all floating point
323	 * registers in the high partition (fph) to be scratch.  Since
324	 * the only way to get to this point is through a system call,
325	 * we know that the values in fph are all dead.  Hence, there
326	 * is no need to inherit the fph state from the parent to the
327	 * child and all we have to do is to make sure that
328	 * IA64_THREAD_FPH_VALID is cleared in the child.
329	 *
330	 * XXX We could push this optimization a bit further by
331	 * clearing IA64_THREAD_FPH_VALID on ANY system call.
332	 * However, it's not clear this is worth doing.  Also, it
333	 * would be a slight deviation from the normal Linux system
334	 * call behavior where scratch registers are preserved across
335	 * system calls (unless used by the system call itself).
336	 */
337#	define THREAD_FLAGS_TO_CLEAR	(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
338					 | IA64_THREAD_PM_VALID)
339#	define THREAD_FLAGS_TO_SET	0
340	p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
341			   | THREAD_FLAGS_TO_SET);
342
343	ia64_drop_fpu(p);	/* don't pick up stale state from a CPU's fph */
344
345	if (unlikely(args->fn)) {
346		if (unlikely(args->idle)) {
347			/* fork_idle() called us */
348			return 0;
349		}
350		memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack));
351		child_stack->r4 = (unsigned long) args->fn;
352		child_stack->r5 = (unsigned long) args->fn_arg;
353		/*
354		 * Preserve PSR bits, except for bits 32-34 and 37-45,
355		 * which we can't read.
356		 */
357		child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
358		/* mark as valid, empty frame */
359		child_ptregs->cr_ifs = 1UL << 63;
360		child_stack->ar_fpsr = child_ptregs->ar_fpsr
361			= ia64_getreg(_IA64_REG_AR_FPSR);
362		child_stack->pr = (1 << PRED_KERNEL_STACK);
363		child_stack->ar_bspstore = child_rbs;
364		child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
365
366		/* stop some PSR bits from being inherited.
367		 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
368		 * therefore we must specify them explicitly here and not include them in
369		 * IA64_PSR_BITS_TO_CLEAR.
370		 */
371		child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
372				 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
373
374		return 0;
375	}
376	stack = ((struct switch_stack *) regs) - 1;
377	/* copy parent's switch_stack & pt_regs to child: */
378	memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
379
380	/* copy the parent's register backing store to the child: */
381	rbs_size = stack->ar_bspstore - rbs;
382	memcpy((void *) child_rbs, (void *) rbs, rbs_size);
383	if (clone_flags & CLONE_SETTLS)
384		child_ptregs->r13 = tls;
385	if (user_stack_base) {
386		child_ptregs->r12 = user_stack_base + user_stack_size - 16;
387		child_ptregs->ar_bspstore = user_stack_base;
388		child_ptregs->ar_rnat = 0;
389		child_ptregs->loadrs = 0;
390	}
391	child_stack->ar_bspstore = child_rbs + rbs_size;
392	child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
393
394	/* stop some PSR bits from being inherited.
395	 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
396	 * therefore we must specify them explicitly here and not include them in
397	 * IA64_PSR_BITS_TO_CLEAR.
398	 */
399	child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
400				 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
401	return retval;
402}
403
404asmlinkage long ia64_clone(unsigned long clone_flags, unsigned long stack_start,
405			   unsigned long stack_size, unsigned long parent_tidptr,
406			   unsigned long child_tidptr, unsigned long tls)
407{
408	struct kernel_clone_args args = {
409		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
410		.pidfd		= (int __user *)parent_tidptr,
411		.child_tid	= (int __user *)child_tidptr,
412		.parent_tid	= (int __user *)parent_tidptr,
413		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
414		.stack		= stack_start,
415		.stack_size	= stack_size,
416		.tls		= tls,
417	};
418
419	return kernel_clone(&args);
420}
421
422static void
423do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
424{
425	unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
426	unsigned long ip;
427	elf_greg_t *dst = arg;
428	struct pt_regs *pt;
429	char nat;
430	int i;
431
432	memset(dst, 0, sizeof(elf_gregset_t));	/* don't leak any kernel bits to user-level */
433
434	if (unw_unwind_to_user(info) < 0)
435		return;
436
437	unw_get_sp(info, &sp);
438	pt = (struct pt_regs *) (sp + 16);
439
440	urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
441
442	if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
443		return;
444
445	ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
446		  &ar_rnat);
447
448	/*
449	 * coredump format:
450	 *	r0-r31
451	 *	NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
452	 *	predicate registers (p0-p63)
453	 *	b0-b7
454	 *	ip cfm user-mask
455	 *	ar.rsc ar.bsp ar.bspstore ar.rnat
456	 *	ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
457	 */
458
459	/* r0 is zero */
460	for (i = 1, mask = (1UL << i); i < 32; ++i) {
461		unw_get_gr(info, i, &dst[i], &nat);
462		if (nat)
463			nat_bits |= mask;
464		mask <<= 1;
465	}
466	dst[32] = nat_bits;
467	unw_get_pr(info, &dst[33]);
468
469	for (i = 0; i < 8; ++i)
470		unw_get_br(info, i, &dst[34 + i]);
471
472	unw_get_rp(info, &ip);
473	dst[42] = ip + ia64_psr(pt)->ri;
474	dst[43] = cfm;
475	dst[44] = pt->cr_ipsr & IA64_PSR_UM;
476
477	unw_get_ar(info, UNW_AR_RSC, &dst[45]);
478	/*
479	 * For bsp and bspstore, unw_get_ar() would return the kernel
480	 * addresses, but we need the user-level addresses instead:
481	 */
482	dst[46] = urbs_end;	/* note: by convention PT_AR_BSP points to the end of the urbs! */
483	dst[47] = pt->ar_bspstore;
484	dst[48] = ar_rnat;
485	unw_get_ar(info, UNW_AR_CCV, &dst[49]);
486	unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
487	unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
488	dst[52] = pt->ar_pfs;	/* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
489	unw_get_ar(info, UNW_AR_LC, &dst[53]);
490	unw_get_ar(info, UNW_AR_EC, &dst[54]);
491	unw_get_ar(info, UNW_AR_CSD, &dst[55]);
492	unw_get_ar(info, UNW_AR_SSD, &dst[56]);
493}
494
495static void
496do_copy_regs (struct unw_frame_info *info, void *arg)
497{
498	do_copy_task_regs(current, info, arg);
499}
500
501void
502ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
503{
504	unw_init_running(do_copy_regs, dst);
505}
506
507/*
508 * Flush thread state.  This is called when a thread does an execve().
509 */
510void
511flush_thread (void)
512{
513	/* drop floating-point and debug-register state if it exists: */
514	current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
515	ia64_drop_fpu(current);
516}
517
518/*
519 * Clean up state associated with a thread.  This is called when
520 * the thread calls exit().
521 */
522void
523exit_thread (struct task_struct *tsk)
524{
525
526	ia64_drop_fpu(tsk);
527}
528
529unsigned long
530__get_wchan (struct task_struct *p)
531{
532	struct unw_frame_info info;
533	unsigned long ip;
534	int count = 0;
535
 
 
 
536	/*
537	 * Note: p may not be a blocked task (it could be current or
538	 * another process running on some other CPU.  Rather than
539	 * trying to determine if p is really blocked, we just assume
540	 * it's blocked and rely on the unwind routines to fail
541	 * gracefully if the process wasn't really blocked after all.
542	 * --davidm 99/12/15
543	 */
544	unw_init_from_blocked_task(&info, p);
545	do {
546		if (task_is_running(p))
547			return 0;
548		if (unw_unwind(&info) < 0)
549			return 0;
550		unw_get_ip(&info, &ip);
551		if (!in_sched_functions(ip))
552			return ip;
553	} while (count++ < 16);
554	return 0;
555}
556
557void
558cpu_halt (void)
559{
560	pal_power_mgmt_info_u_t power_info[8];
561	unsigned long min_power;
562	int i, min_power_state;
563
564	if (ia64_pal_halt_info(power_info) != 0)
565		return;
566
567	min_power_state = 0;
568	min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
569	for (i = 1; i < 8; ++i)
570		if (power_info[i].pal_power_mgmt_info_s.im
571		    && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
572			min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
573			min_power_state = i;
574		}
575
576	while (1)
577		ia64_pal_halt(min_power_state);
578}
579
580void machine_shutdown(void)
581{
582	smp_shutdown_nonboot_cpus(reboot_cpu);
583
584#ifdef CONFIG_KEXEC
585	kexec_disable_iosapic();
586#endif
587}
588
589void
590machine_restart (char *restart_cmd)
591{
592	(void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
593	efi_reboot(REBOOT_WARM, NULL);
594}
595
596void
597machine_halt (void)
598{
599	(void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
600	cpu_halt();
601}
602
603void
604machine_power_off (void)
605{
606	do_kernel_power_off();
 
607	machine_halt();
608}
609
610EXPORT_SYMBOL(ia64_delay_loop);
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Architecture-specific setup.
  4 *
  5 * Copyright (C) 1998-2003 Hewlett-Packard Co
  6 *	David Mosberger-Tang <davidm@hpl.hp.com>
  7 * 04/11/17 Ashok Raj	<ashok.raj@intel.com> Added CPU Hotplug Support
  8 *
  9 * 2005-10-07 Keith Owens <kaos@sgi.com>
 10 *	      Add notify_die() hooks.
 11 */
 12#include <linux/cpu.h>
 13#include <linux/pm.h>
 14#include <linux/elf.h>
 15#include <linux/errno.h>
 16#include <linux/kernel.h>
 17#include <linux/mm.h>
 18#include <linux/slab.h>
 19#include <linux/module.h>
 20#include <linux/notifier.h>
 21#include <linux/personality.h>
 
 22#include <linux/sched.h>
 23#include <linux/sched/debug.h>
 24#include <linux/sched/hotplug.h>
 25#include <linux/sched/task.h>
 26#include <linux/sched/task_stack.h>
 27#include <linux/stddef.h>
 28#include <linux/thread_info.h>
 29#include <linux/unistd.h>
 30#include <linux/efi.h>
 31#include <linux/interrupt.h>
 32#include <linux/delay.h>
 33#include <linux/kdebug.h>
 34#include <linux/utsname.h>
 35#include <linux/tracehook.h>
 36#include <linux/rcupdate.h>
 37
 38#include <asm/cpu.h>
 39#include <asm/delay.h>
 40#include <asm/elf.h>
 41#include <asm/irq.h>
 42#include <asm/kexec.h>
 43#include <asm/processor.h>
 44#include <asm/sal.h>
 45#include <asm/switch_to.h>
 46#include <asm/tlbflush.h>
 47#include <linux/uaccess.h>
 48#include <asm/unwind.h>
 49#include <asm/user.h>
 50#include <asm/xtp.h>
 51
 52#include "entry.h"
 53
 54#include "sigframe.h"
 55
 56void (*ia64_mark_idle)(int);
 57
 58unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
 59EXPORT_SYMBOL(boot_option_idle_override);
 60void (*pm_power_off) (void);
 61EXPORT_SYMBOL(pm_power_off);
 62
 63static void
 64ia64_do_show_stack (struct unw_frame_info *info, void *arg)
 65{
 66	unsigned long ip, sp, bsp;
 67	const char *loglvl = arg;
 68
 69	printk("%s\nCall Trace:\n", loglvl);
 70	do {
 71		unw_get_ip(info, &ip);
 72		if (ip == 0)
 73			break;
 74
 75		unw_get_sp(info, &sp);
 76		unw_get_bsp(info, &bsp);
 77		printk("%s [<%016lx>] %pS\n"
 78			 "                                sp=%016lx bsp=%016lx\n",
 79			 loglvl, ip, (void *)ip, sp, bsp);
 80	} while (unw_unwind(info) >= 0);
 81}
 82
 83void
 84show_stack (struct task_struct *task, unsigned long *sp, const char *loglvl)
 85{
 86	if (!task)
 87		unw_init_running(ia64_do_show_stack, (void *)loglvl);
 88	else {
 89		struct unw_frame_info info;
 90
 91		unw_init_from_blocked_task(&info, task);
 92		ia64_do_show_stack(&info, (void *)loglvl);
 93	}
 94}
 95
 96void
 97show_regs (struct pt_regs *regs)
 98{
 99	unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
100
101	print_modules();
102	printk("\n");
103	show_regs_print_info(KERN_DEFAULT);
104	printk("psr : %016lx ifs : %016lx ip  : [<%016lx>]    %s (%s)\n",
105	       regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
106	       init_utsname()->release);
107	printk("ip is at %pS\n", (void *)ip);
108	printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
109	       regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
110	printk("rnat: %016lx bsps: %016lx pr  : %016lx\n",
111	       regs->ar_rnat, regs->ar_bspstore, regs->pr);
112	printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
113	       regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
114	printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
115	printk("b0  : %016lx b6  : %016lx b7  : %016lx\n", regs->b0, regs->b6, regs->b7);
116	printk("f6  : %05lx%016lx f7  : %05lx%016lx\n",
117	       regs->f6.u.bits[1], regs->f6.u.bits[0],
118	       regs->f7.u.bits[1], regs->f7.u.bits[0]);
119	printk("f8  : %05lx%016lx f9  : %05lx%016lx\n",
120	       regs->f8.u.bits[1], regs->f8.u.bits[0],
121	       regs->f9.u.bits[1], regs->f9.u.bits[0]);
122	printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
123	       regs->f10.u.bits[1], regs->f10.u.bits[0],
124	       regs->f11.u.bits[1], regs->f11.u.bits[0]);
125
126	printk("r1  : %016lx r2  : %016lx r3  : %016lx\n", regs->r1, regs->r2, regs->r3);
127	printk("r8  : %016lx r9  : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
128	printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
129	printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
130	printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
131	printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
132	printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
133	printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
134	printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
135
136	if (user_mode(regs)) {
137		/* print the stacked registers */
138		unsigned long val, *bsp, ndirty;
139		int i, sof, is_nat = 0;
140
141		sof = regs->cr_ifs & 0x7f;	/* size of frame */
142		ndirty = (regs->loadrs >> 19);
143		bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
144		for (i = 0; i < sof; ++i) {
145			get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
146			printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
147			       ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
148		}
149	} else
150		show_stack(NULL, NULL, KERN_DEFAULT);
151}
152
153/* local support for deprecated console_print */
154void
155console_print(const char *s)
156{
157	printk(KERN_EMERG "%s", s);
158}
159
160void
161do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
162{
163	if (fsys_mode(current, &scr->pt)) {
164		/*
165		 * defer signal-handling etc. until we return to
166		 * privilege-level 0.
167		 */
168		if (!ia64_psr(&scr->pt)->lp)
169			ia64_psr(&scr->pt)->lp = 1;
170		return;
171	}
172
173	/* deal with pending signal delivery */
174	if (test_thread_flag(TIF_SIGPENDING) ||
175	    test_thread_flag(TIF_NOTIFY_SIGNAL)) {
176		local_irq_enable();	/* force interrupt enable */
177		ia64_do_signal(scr, in_syscall);
178	}
179
180	if (test_thread_flag(TIF_NOTIFY_RESUME)) {
181		local_irq_enable();	/* force interrupt enable */
182		tracehook_notify_resume(&scr->pt);
183	}
184
185	/* copy user rbs to kernel rbs */
186	if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
187		local_irq_enable();	/* force interrupt enable */
188		ia64_sync_krbs();
189	}
190
191	local_irq_disable();	/* force interrupt disable */
192}
193
194static int __init nohalt_setup(char * str)
195{
196	cpu_idle_poll_ctrl(true);
197	return 1;
198}
199__setup("nohalt", nohalt_setup);
200
201#ifdef CONFIG_HOTPLUG_CPU
202/* We don't actually take CPU down, just spin without interrupts. */
203static inline void play_dead(void)
204{
205	unsigned int this_cpu = smp_processor_id();
206
207	/* Ack it */
208	__this_cpu_write(cpu_state, CPU_DEAD);
209
210	max_xtp();
211	local_irq_disable();
212	idle_task_exit();
213	ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
214	/*
215	 * The above is a point of no-return, the processor is
216	 * expected to be in SAL loop now.
217	 */
218	BUG();
219}
220#else
221static inline void play_dead(void)
222{
223	BUG();
224}
225#endif /* CONFIG_HOTPLUG_CPU */
226
227void arch_cpu_idle_dead(void)
228{
229	play_dead();
230}
231
232void arch_cpu_idle(void)
233{
234	void (*mark_idle)(int) = ia64_mark_idle;
235
236#ifdef CONFIG_SMP
237	min_xtp();
238#endif
239	rmb();
240	if (mark_idle)
241		(*mark_idle)(1);
242
243	raw_safe_halt();
244
245	if (mark_idle)
246		(*mark_idle)(0);
247#ifdef CONFIG_SMP
248	normal_xtp();
249#endif
250}
251
252void
253ia64_save_extra (struct task_struct *task)
254{
255	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
256		ia64_save_debug_regs(&task->thread.dbr[0]);
257}
258
259void
260ia64_load_extra (struct task_struct *task)
261{
262	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
263		ia64_load_debug_regs(&task->thread.dbr[0]);
264}
265
266/*
267 * Copy the state of an ia-64 thread.
268 *
269 * We get here through the following  call chain:
270 *
271 *	from user-level:	from kernel:
272 *
273 *	<clone syscall>	        <some kernel call frames>
274 *	sys_clone		   :
275 *	kernel_clone		kernel_clone
276 *	copy_thread		copy_thread
277 *
278 * This means that the stack layout is as follows:
279 *
280 *	+---------------------+ (highest addr)
281 *	|   struct pt_regs    |
282 *	+---------------------+
283 *	| struct switch_stack |
284 *	+---------------------+
285 *	|                     |
286 *	|    memory stack     |
287 *	|                     | <-- sp (lowest addr)
288 *	+---------------------+
289 *
290 * Observe that we copy the unat values that are in pt_regs and switch_stack.  Spilling an
291 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
292 * with N=(X & 0x1ff)/8.  Thus, copying the unat value preserves the NaT bits ONLY if the
293 * pt_regs structure in the parent is congruent to that of the child, modulo 512.  Since
294 * the stack is page aligned and the page size is at least 4KB, this is always the case,
295 * so there is nothing to worry about.
296 */
297int
298copy_thread(unsigned long clone_flags, unsigned long user_stack_base,
299	    unsigned long user_stack_size, struct task_struct *p, unsigned long tls)
300{
 
 
 
 
301	extern char ia64_ret_from_clone;
302	struct switch_stack *child_stack, *stack;
303	unsigned long rbs, child_rbs, rbs_size;
304	struct pt_regs *child_ptregs;
305	struct pt_regs *regs = current_pt_regs();
306	int retval = 0;
307
308	child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
309	child_stack = (struct switch_stack *) child_ptregs - 1;
310
311	rbs = (unsigned long) current + IA64_RBS_OFFSET;
312	child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
313
314	/* copy parts of thread_struct: */
315	p->thread.ksp = (unsigned long) child_stack - 16;
316
317	/*
318	 * NOTE: The calling convention considers all floating point
319	 * registers in the high partition (fph) to be scratch.  Since
320	 * the only way to get to this point is through a system call,
321	 * we know that the values in fph are all dead.  Hence, there
322	 * is no need to inherit the fph state from the parent to the
323	 * child and all we have to do is to make sure that
324	 * IA64_THREAD_FPH_VALID is cleared in the child.
325	 *
326	 * XXX We could push this optimization a bit further by
327	 * clearing IA64_THREAD_FPH_VALID on ANY system call.
328	 * However, it's not clear this is worth doing.  Also, it
329	 * would be a slight deviation from the normal Linux system
330	 * call behavior where scratch registers are preserved across
331	 * system calls (unless used by the system call itself).
332	 */
333#	define THREAD_FLAGS_TO_CLEAR	(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
334					 | IA64_THREAD_PM_VALID)
335#	define THREAD_FLAGS_TO_SET	0
336	p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
337			   | THREAD_FLAGS_TO_SET);
338
339	ia64_drop_fpu(p);	/* don't pick up stale state from a CPU's fph */
340
341	if (unlikely(p->flags & (PF_KTHREAD | PF_IO_WORKER))) {
342		if (unlikely(!user_stack_base)) {
343			/* fork_idle() called us */
344			return 0;
345		}
346		memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack));
347		child_stack->r4 = user_stack_base;	/* payload */
348		child_stack->r5 = user_stack_size;	/* argument */
349		/*
350		 * Preserve PSR bits, except for bits 32-34 and 37-45,
351		 * which we can't read.
352		 */
353		child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
354		/* mark as valid, empty frame */
355		child_ptregs->cr_ifs = 1UL << 63;
356		child_stack->ar_fpsr = child_ptregs->ar_fpsr
357			= ia64_getreg(_IA64_REG_AR_FPSR);
358		child_stack->pr = (1 << PRED_KERNEL_STACK);
359		child_stack->ar_bspstore = child_rbs;
360		child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
361
362		/* stop some PSR bits from being inherited.
363		 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
364		 * therefore we must specify them explicitly here and not include them in
365		 * IA64_PSR_BITS_TO_CLEAR.
366		 */
367		child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
368				 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
369
370		return 0;
371	}
372	stack = ((struct switch_stack *) regs) - 1;
373	/* copy parent's switch_stack & pt_regs to child: */
374	memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
375
376	/* copy the parent's register backing store to the child: */
377	rbs_size = stack->ar_bspstore - rbs;
378	memcpy((void *) child_rbs, (void *) rbs, rbs_size);
379	if (clone_flags & CLONE_SETTLS)
380		child_ptregs->r13 = tls;
381	if (user_stack_base) {
382		child_ptregs->r12 = user_stack_base + user_stack_size - 16;
383		child_ptregs->ar_bspstore = user_stack_base;
384		child_ptregs->ar_rnat = 0;
385		child_ptregs->loadrs = 0;
386	}
387	child_stack->ar_bspstore = child_rbs + rbs_size;
388	child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
389
390	/* stop some PSR bits from being inherited.
391	 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
392	 * therefore we must specify them explicitly here and not include them in
393	 * IA64_PSR_BITS_TO_CLEAR.
394	 */
395	child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
396				 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
397	return retval;
398}
399
400asmlinkage long ia64_clone(unsigned long clone_flags, unsigned long stack_start,
401			   unsigned long stack_size, unsigned long parent_tidptr,
402			   unsigned long child_tidptr, unsigned long tls)
403{
404	struct kernel_clone_args args = {
405		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
406		.pidfd		= (int __user *)parent_tidptr,
407		.child_tid	= (int __user *)child_tidptr,
408		.parent_tid	= (int __user *)parent_tidptr,
409		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
410		.stack		= stack_start,
411		.stack_size	= stack_size,
412		.tls		= tls,
413	};
414
415	return kernel_clone(&args);
416}
417
418static void
419do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
420{
421	unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
422	unsigned long ip;
423	elf_greg_t *dst = arg;
424	struct pt_regs *pt;
425	char nat;
426	int i;
427
428	memset(dst, 0, sizeof(elf_gregset_t));	/* don't leak any kernel bits to user-level */
429
430	if (unw_unwind_to_user(info) < 0)
431		return;
432
433	unw_get_sp(info, &sp);
434	pt = (struct pt_regs *) (sp + 16);
435
436	urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
437
438	if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
439		return;
440
441	ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
442		  &ar_rnat);
443
444	/*
445	 * coredump format:
446	 *	r0-r31
447	 *	NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
448	 *	predicate registers (p0-p63)
449	 *	b0-b7
450	 *	ip cfm user-mask
451	 *	ar.rsc ar.bsp ar.bspstore ar.rnat
452	 *	ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
453	 */
454
455	/* r0 is zero */
456	for (i = 1, mask = (1UL << i); i < 32; ++i) {
457		unw_get_gr(info, i, &dst[i], &nat);
458		if (nat)
459			nat_bits |= mask;
460		mask <<= 1;
461	}
462	dst[32] = nat_bits;
463	unw_get_pr(info, &dst[33]);
464
465	for (i = 0; i < 8; ++i)
466		unw_get_br(info, i, &dst[34 + i]);
467
468	unw_get_rp(info, &ip);
469	dst[42] = ip + ia64_psr(pt)->ri;
470	dst[43] = cfm;
471	dst[44] = pt->cr_ipsr & IA64_PSR_UM;
472
473	unw_get_ar(info, UNW_AR_RSC, &dst[45]);
474	/*
475	 * For bsp and bspstore, unw_get_ar() would return the kernel
476	 * addresses, but we need the user-level addresses instead:
477	 */
478	dst[46] = urbs_end;	/* note: by convention PT_AR_BSP points to the end of the urbs! */
479	dst[47] = pt->ar_bspstore;
480	dst[48] = ar_rnat;
481	unw_get_ar(info, UNW_AR_CCV, &dst[49]);
482	unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
483	unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
484	dst[52] = pt->ar_pfs;	/* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
485	unw_get_ar(info, UNW_AR_LC, &dst[53]);
486	unw_get_ar(info, UNW_AR_EC, &dst[54]);
487	unw_get_ar(info, UNW_AR_CSD, &dst[55]);
488	unw_get_ar(info, UNW_AR_SSD, &dst[56]);
489}
490
491static void
492do_copy_regs (struct unw_frame_info *info, void *arg)
493{
494	do_copy_task_regs(current, info, arg);
495}
496
497void
498ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
499{
500	unw_init_running(do_copy_regs, dst);
501}
502
503/*
504 * Flush thread state.  This is called when a thread does an execve().
505 */
506void
507flush_thread (void)
508{
509	/* drop floating-point and debug-register state if it exists: */
510	current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
511	ia64_drop_fpu(current);
512}
513
514/*
515 * Clean up state associated with a thread.  This is called when
516 * the thread calls exit().
517 */
518void
519exit_thread (struct task_struct *tsk)
520{
521
522	ia64_drop_fpu(tsk);
523}
524
525unsigned long
526get_wchan (struct task_struct *p)
527{
528	struct unw_frame_info info;
529	unsigned long ip;
530	int count = 0;
531
532	if (!p || p == current || task_is_running(p))
533		return 0;
534
535	/*
536	 * Note: p may not be a blocked task (it could be current or
537	 * another process running on some other CPU.  Rather than
538	 * trying to determine if p is really blocked, we just assume
539	 * it's blocked and rely on the unwind routines to fail
540	 * gracefully if the process wasn't really blocked after all.
541	 * --davidm 99/12/15
542	 */
543	unw_init_from_blocked_task(&info, p);
544	do {
545		if (task_is_running(p))
546			return 0;
547		if (unw_unwind(&info) < 0)
548			return 0;
549		unw_get_ip(&info, &ip);
550		if (!in_sched_functions(ip))
551			return ip;
552	} while (count++ < 16);
553	return 0;
554}
555
556void
557cpu_halt (void)
558{
559	pal_power_mgmt_info_u_t power_info[8];
560	unsigned long min_power;
561	int i, min_power_state;
562
563	if (ia64_pal_halt_info(power_info) != 0)
564		return;
565
566	min_power_state = 0;
567	min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
568	for (i = 1; i < 8; ++i)
569		if (power_info[i].pal_power_mgmt_info_s.im
570		    && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
571			min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
572			min_power_state = i;
573		}
574
575	while (1)
576		ia64_pal_halt(min_power_state);
577}
578
579void machine_shutdown(void)
580{
581	smp_shutdown_nonboot_cpus(reboot_cpu);
582
583#ifdef CONFIG_KEXEC
584	kexec_disable_iosapic();
585#endif
586}
587
588void
589machine_restart (char *restart_cmd)
590{
591	(void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
592	efi_reboot(REBOOT_WARM, NULL);
593}
594
595void
596machine_halt (void)
597{
598	(void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
599	cpu_halt();
600}
601
602void
603machine_power_off (void)
604{
605	if (pm_power_off)
606		pm_power_off();
607	machine_halt();
608}
609
610EXPORT_SYMBOL(ia64_delay_loop);