Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Linux VM pressure
  4 *
  5 * Copyright 2012 Linaro Ltd.
  6 *		  Anton Vorontsov <anton.vorontsov@linaro.org>
  7 *
  8 * Based on ideas from Andrew Morton, David Rientjes, KOSAKI Motohiro,
  9 * Leonid Moiseichuk, Mel Gorman, Minchan Kim and Pekka Enberg.
 
 
 
 
 10 */
 11
 12#include <linux/cgroup.h>
 13#include <linux/fs.h>
 14#include <linux/log2.h>
 15#include <linux/sched.h>
 16#include <linux/mm.h>
 17#include <linux/vmstat.h>
 18#include <linux/eventfd.h>
 19#include <linux/slab.h>
 20#include <linux/swap.h>
 21#include <linux/printk.h>
 22#include <linux/vmpressure.h>
 23
 24/*
 25 * The window size (vmpressure_win) is the number of scanned pages before
 26 * we try to analyze scanned/reclaimed ratio. So the window is used as a
 27 * rate-limit tunable for the "low" level notification, and also for
 28 * averaging the ratio for medium/critical levels. Using small window
 29 * sizes can cause lot of false positives, but too big window size will
 30 * delay the notifications.
 31 *
 32 * As the vmscan reclaimer logic works with chunks which are multiple of
 33 * SWAP_CLUSTER_MAX, it makes sense to use it for the window size as well.
 34 *
 35 * TODO: Make the window size depend on machine size, as we do for vmstat
 36 * thresholds. Currently we set it to 512 pages (2MB for 4KB pages).
 37 */
 38static const unsigned long vmpressure_win = SWAP_CLUSTER_MAX * 16;
 39
 40/*
 41 * These thresholds are used when we account memory pressure through
 42 * scanned/reclaimed ratio. The current values were chosen empirically. In
 43 * essence, they are percents: the higher the value, the more number
 44 * unsuccessful reclaims there were.
 45 */
 46static const unsigned int vmpressure_level_med = 60;
 47static const unsigned int vmpressure_level_critical = 95;
 48
 49/*
 50 * When there are too little pages left to scan, vmpressure() may miss the
 51 * critical pressure as number of pages will be less than "window size".
 52 * However, in that case the vmscan priority will raise fast as the
 53 * reclaimer will try to scan LRUs more deeply.
 54 *
 55 * The vmscan logic considers these special priorities:
 56 *
 57 * prio == DEF_PRIORITY (12): reclaimer starts with that value
 58 * prio <= DEF_PRIORITY - 2 : kswapd becomes somewhat overwhelmed
 59 * prio == 0                : close to OOM, kernel scans every page in an lru
 60 *
 61 * Any value in this range is acceptable for this tunable (i.e. from 12 to
 62 * 0). Current value for the vmpressure_level_critical_prio is chosen
 63 * empirically, but the number, in essence, means that we consider
 64 * critical level when scanning depth is ~10% of the lru size (vmscan
 65 * scans 'lru_size >> prio' pages, so it is actually 12.5%, or one
 66 * eights).
 67 */
 68static const unsigned int vmpressure_level_critical_prio = ilog2(100 / 10);
 69
 70static struct vmpressure *work_to_vmpressure(struct work_struct *work)
 71{
 72	return container_of(work, struct vmpressure, work);
 73}
 74
 75static struct vmpressure *vmpressure_parent(struct vmpressure *vmpr)
 76{
 77	struct mem_cgroup *memcg = vmpressure_to_memcg(vmpr);
 
 78
 79	memcg = parent_mem_cgroup(memcg);
 80	if (!memcg)
 81		return NULL;
 82	return memcg_to_vmpressure(memcg);
 83}
 84
 85enum vmpressure_levels {
 86	VMPRESSURE_LOW = 0,
 87	VMPRESSURE_MEDIUM,
 88	VMPRESSURE_CRITICAL,
 89	VMPRESSURE_NUM_LEVELS,
 90};
 91
 92enum vmpressure_modes {
 93	VMPRESSURE_NO_PASSTHROUGH = 0,
 94	VMPRESSURE_HIERARCHY,
 95	VMPRESSURE_LOCAL,
 96	VMPRESSURE_NUM_MODES,
 97};
 98
 99static const char * const vmpressure_str_levels[] = {
100	[VMPRESSURE_LOW] = "low",
101	[VMPRESSURE_MEDIUM] = "medium",
102	[VMPRESSURE_CRITICAL] = "critical",
103};
104
105static const char * const vmpressure_str_modes[] = {
106	[VMPRESSURE_NO_PASSTHROUGH] = "default",
107	[VMPRESSURE_HIERARCHY] = "hierarchy",
108	[VMPRESSURE_LOCAL] = "local",
109};
110
111static enum vmpressure_levels vmpressure_level(unsigned long pressure)
112{
113	if (pressure >= vmpressure_level_critical)
114		return VMPRESSURE_CRITICAL;
115	else if (pressure >= vmpressure_level_med)
116		return VMPRESSURE_MEDIUM;
117	return VMPRESSURE_LOW;
118}
119
120static enum vmpressure_levels vmpressure_calc_level(unsigned long scanned,
121						    unsigned long reclaimed)
122{
123	unsigned long scale = scanned + reclaimed;
124	unsigned long pressure = 0;
125
126	/*
127	 * reclaimed can be greater than scanned for things such as reclaimed
128	 * slab pages. shrink_node() just adds reclaimed pages without a
129	 * related increment to scanned pages.
130	 */
131	if (reclaimed >= scanned)
132		goto out;
133	/*
134	 * We calculate the ratio (in percents) of how many pages were
135	 * scanned vs. reclaimed in a given time frame (window). Note that
136	 * time is in VM reclaimer's "ticks", i.e. number of pages
137	 * scanned. This makes it possible to set desired reaction time
138	 * and serves as a ratelimit.
139	 */
140	pressure = scale - (reclaimed * scale / scanned);
141	pressure = pressure * 100 / scale;
142
143out:
144	pr_debug("%s: %3lu  (s: %lu  r: %lu)\n", __func__, pressure,
145		 scanned, reclaimed);
146
147	return vmpressure_level(pressure);
148}
149
150struct vmpressure_event {
151	struct eventfd_ctx *efd;
152	enum vmpressure_levels level;
153	enum vmpressure_modes mode;
154	struct list_head node;
155};
156
157static bool vmpressure_event(struct vmpressure *vmpr,
158			     const enum vmpressure_levels level,
159			     bool ancestor, bool signalled)
160{
161	struct vmpressure_event *ev;
162	bool ret = false;
163
164	mutex_lock(&vmpr->events_lock);
 
165	list_for_each_entry(ev, &vmpr->events, node) {
166		if (ancestor && ev->mode == VMPRESSURE_LOCAL)
167			continue;
168		if (signalled && ev->mode == VMPRESSURE_NO_PASSTHROUGH)
169			continue;
170		if (level < ev->level)
171			continue;
172		eventfd_signal(ev->efd, 1);
173		ret = true;
174	}
 
175	mutex_unlock(&vmpr->events_lock);
176
177	return ret;
178}
179
180static void vmpressure_work_fn(struct work_struct *work)
181{
182	struct vmpressure *vmpr = work_to_vmpressure(work);
183	unsigned long scanned;
184	unsigned long reclaimed;
185	enum vmpressure_levels level;
186	bool ancestor = false;
187	bool signalled = false;
188
189	spin_lock(&vmpr->sr_lock);
190	/*
191	 * Several contexts might be calling vmpressure(), so it is
192	 * possible that the work was rescheduled again before the old
193	 * work context cleared the counters. In that case we will run
194	 * just after the old work returns, but then scanned might be zero
195	 * here. No need for any locks here since we don't care if
196	 * vmpr->reclaimed is in sync.
197	 */
198	scanned = vmpr->tree_scanned;
199	if (!scanned) {
200		spin_unlock(&vmpr->sr_lock);
201		return;
202	}
203
204	reclaimed = vmpr->tree_reclaimed;
205	vmpr->tree_scanned = 0;
206	vmpr->tree_reclaimed = 0;
207	spin_unlock(&vmpr->sr_lock);
208
209	level = vmpressure_calc_level(scanned, reclaimed);
210
211	do {
212		if (vmpressure_event(vmpr, level, ancestor, signalled))
213			signalled = true;
214		ancestor = true;
 
 
 
215	} while ((vmpr = vmpressure_parent(vmpr)));
216}
217
218/**
219 * vmpressure() - Account memory pressure through scanned/reclaimed ratio
220 * @gfp:	reclaimer's gfp mask
221 * @memcg:	cgroup memory controller handle
222 * @tree:	legacy subtree mode
223 * @scanned:	number of pages scanned
224 * @reclaimed:	number of pages reclaimed
225 *
226 * This function should be called from the vmscan reclaim path to account
227 * "instantaneous" memory pressure (scanned/reclaimed ratio). The raw
228 * pressure index is then further refined and averaged over time.
229 *
230 * If @tree is set, vmpressure is in traditional userspace reporting
231 * mode: @memcg is considered the pressure root and userspace is
232 * notified of the entire subtree's reclaim efficiency.
233 *
234 * If @tree is not set, reclaim efficiency is recorded for @memcg, and
235 * only in-kernel users are notified.
236 *
237 * This function does not return any value.
238 */
239void vmpressure(gfp_t gfp, struct mem_cgroup *memcg, bool tree,
240		unsigned long scanned, unsigned long reclaimed)
241{
242	struct vmpressure *vmpr;
243
244	if (mem_cgroup_disabled())
245		return;
246
247	vmpr = memcg_to_vmpressure(memcg);
248
249	/*
250	 * Here we only want to account pressure that userland is able to
251	 * help us with. For example, suppose that DMA zone is under
252	 * pressure; if we notify userland about that kind of pressure,
253	 * then it will be mostly a waste as it will trigger unnecessary
254	 * freeing of memory by userland (since userland is more likely to
255	 * have HIGHMEM/MOVABLE pages instead of the DMA fallback). That
256	 * is why we include only movable, highmem and FS/IO pages.
257	 * Indirect reclaim (kswapd) sets sc->gfp_mask to GFP_KERNEL, so
258	 * we account it too.
259	 */
260	if (!(gfp & (__GFP_HIGHMEM | __GFP_MOVABLE | __GFP_IO | __GFP_FS)))
261		return;
262
263	/*
264	 * If we got here with no pages scanned, then that is an indicator
265	 * that reclaimer was unable to find any shrinkable LRUs at the
266	 * current scanning depth. But it does not mean that we should
267	 * report the critical pressure, yet. If the scanning priority
268	 * (scanning depth) goes too high (deep), we will be notified
269	 * through vmpressure_prio(). But so far, keep calm.
270	 */
271	if (!scanned)
272		return;
273
274	if (tree) {
275		spin_lock(&vmpr->sr_lock);
276		scanned = vmpr->tree_scanned += scanned;
277		vmpr->tree_reclaimed += reclaimed;
278		spin_unlock(&vmpr->sr_lock);
279
280		if (scanned < vmpressure_win)
281			return;
282		schedule_work(&vmpr->work);
283	} else {
284		enum vmpressure_levels level;
285
286		/* For now, no users for root-level efficiency */
287		if (!memcg || mem_cgroup_is_root(memcg))
288			return;
289
290		spin_lock(&vmpr->sr_lock);
291		scanned = vmpr->scanned += scanned;
292		reclaimed = vmpr->reclaimed += reclaimed;
293		if (scanned < vmpressure_win) {
294			spin_unlock(&vmpr->sr_lock);
295			return;
296		}
297		vmpr->scanned = vmpr->reclaimed = 0;
298		spin_unlock(&vmpr->sr_lock);
299
300		level = vmpressure_calc_level(scanned, reclaimed);
301
302		if (level > VMPRESSURE_LOW) {
303			/*
304			 * Let the socket buffer allocator know that
305			 * we are having trouble reclaiming LRU pages.
306			 *
307			 * For hysteresis keep the pressure state
308			 * asserted for a second in which subsequent
309			 * pressure events can occur.
310			 */
311			WRITE_ONCE(memcg->socket_pressure, jiffies + HZ);
312		}
313	}
314}
315
316/**
317 * vmpressure_prio() - Account memory pressure through reclaimer priority level
318 * @gfp:	reclaimer's gfp mask
319 * @memcg:	cgroup memory controller handle
320 * @prio:	reclaimer's priority
321 *
322 * This function should be called from the reclaim path every time when
323 * the vmscan's reclaiming priority (scanning depth) changes.
324 *
325 * This function does not return any value.
326 */
327void vmpressure_prio(gfp_t gfp, struct mem_cgroup *memcg, int prio)
328{
329	/*
330	 * We only use prio for accounting critical level. For more info
331	 * see comment for vmpressure_level_critical_prio variable above.
332	 */
333	if (prio > vmpressure_level_critical_prio)
334		return;
335
336	/*
337	 * OK, the prio is below the threshold, updating vmpressure
338	 * information before shrinker dives into long shrinking of long
339	 * range vmscan. Passing scanned = vmpressure_win, reclaimed = 0
340	 * to the vmpressure() basically means that we signal 'critical'
341	 * level.
342	 */
343	vmpressure(gfp, memcg, true, vmpressure_win, 0);
344}
345
346#define MAX_VMPRESSURE_ARGS_LEN	(strlen("critical") + strlen("hierarchy") + 2)
347
348/**
349 * vmpressure_register_event() - Bind vmpressure notifications to an eventfd
350 * @memcg:	memcg that is interested in vmpressure notifications
351 * @eventfd:	eventfd context to link notifications with
352 * @args:	event arguments (pressure level threshold, optional mode)
353 *
354 * This function associates eventfd context with the vmpressure
355 * infrastructure, so that the notifications will be delivered to the
356 * @eventfd. The @args parameter is a comma-delimited string that denotes a
357 * pressure level threshold (one of vmpressure_str_levels, i.e. "low", "medium",
358 * or "critical") and an optional mode (one of vmpressure_str_modes, i.e.
359 * "hierarchy" or "local").
360 *
361 * To be used as memcg event method.
362 *
363 * Return: 0 on success, -ENOMEM on memory failure or -EINVAL if @args could
364 * not be parsed.
365 */
366int vmpressure_register_event(struct mem_cgroup *memcg,
367			      struct eventfd_ctx *eventfd, const char *args)
368{
369	struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
370	struct vmpressure_event *ev;
371	enum vmpressure_modes mode = VMPRESSURE_NO_PASSTHROUGH;
372	enum vmpressure_levels level;
373	char *spec, *spec_orig;
374	char *token;
375	int ret = 0;
376
377	spec_orig = spec = kstrndup(args, MAX_VMPRESSURE_ARGS_LEN, GFP_KERNEL);
378	if (!spec)
379		return -ENOMEM;
380
381	/* Find required level */
382	token = strsep(&spec, ",");
383	ret = match_string(vmpressure_str_levels, VMPRESSURE_NUM_LEVELS, token);
384	if (ret < 0)
385		goto out;
386	level = ret;
387
388	/* Find optional mode */
389	token = strsep(&spec, ",");
390	if (token) {
391		ret = match_string(vmpressure_str_modes, VMPRESSURE_NUM_MODES, token);
392		if (ret < 0)
393			goto out;
394		mode = ret;
395	}
396
 
 
 
397	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
398	if (!ev) {
399		ret = -ENOMEM;
400		goto out;
401	}
402
403	ev->efd = eventfd;
404	ev->level = level;
405	ev->mode = mode;
406
407	mutex_lock(&vmpr->events_lock);
408	list_add(&ev->node, &vmpr->events);
409	mutex_unlock(&vmpr->events_lock);
410	ret = 0;
411out:
412	kfree(spec_orig);
413	return ret;
414}
415
416/**
417 * vmpressure_unregister_event() - Unbind eventfd from vmpressure
418 * @memcg:	memcg handle
419 * @eventfd:	eventfd context that was used to link vmpressure with the @cg
420 *
421 * This function does internal manipulations to detach the @eventfd from
422 * the vmpressure notifications, and then frees internal resources
423 * associated with the @eventfd (but the @eventfd itself is not freed).
424 *
425 * To be used as memcg event method.
426 */
427void vmpressure_unregister_event(struct mem_cgroup *memcg,
428				 struct eventfd_ctx *eventfd)
429{
430	struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
431	struct vmpressure_event *ev;
432
433	mutex_lock(&vmpr->events_lock);
434	list_for_each_entry(ev, &vmpr->events, node) {
435		if (ev->efd != eventfd)
436			continue;
437		list_del(&ev->node);
438		kfree(ev);
439		break;
440	}
441	mutex_unlock(&vmpr->events_lock);
442}
443
444/**
445 * vmpressure_init() - Initialize vmpressure control structure
446 * @vmpr:	Structure to be initialized
447 *
448 * This function should be called on every allocated vmpressure structure
449 * before any usage.
450 */
451void vmpressure_init(struct vmpressure *vmpr)
452{
453	spin_lock_init(&vmpr->sr_lock);
454	mutex_init(&vmpr->events_lock);
455	INIT_LIST_HEAD(&vmpr->events);
456	INIT_WORK(&vmpr->work, vmpressure_work_fn);
457}
458
459/**
460 * vmpressure_cleanup() - shuts down vmpressure control structure
461 * @vmpr:	Structure to be cleaned up
462 *
463 * This function should be called before the structure in which it is
464 * embedded is cleaned up.
465 */
466void vmpressure_cleanup(struct vmpressure *vmpr)
467{
468	/*
469	 * Make sure there is no pending work before eventfd infrastructure
470	 * goes away.
471	 */
472	flush_work(&vmpr->work);
473}
v4.6
 
  1/*
  2 * Linux VM pressure
  3 *
  4 * Copyright 2012 Linaro Ltd.
  5 *		  Anton Vorontsov <anton.vorontsov@linaro.org>
  6 *
  7 * Based on ideas from Andrew Morton, David Rientjes, KOSAKI Motohiro,
  8 * Leonid Moiseichuk, Mel Gorman, Minchan Kim and Pekka Enberg.
  9 *
 10 * This program is free software; you can redistribute it and/or modify it
 11 * under the terms of the GNU General Public License version 2 as published
 12 * by the Free Software Foundation.
 13 */
 14
 15#include <linux/cgroup.h>
 16#include <linux/fs.h>
 17#include <linux/log2.h>
 18#include <linux/sched.h>
 19#include <linux/mm.h>
 20#include <linux/vmstat.h>
 21#include <linux/eventfd.h>
 22#include <linux/slab.h>
 23#include <linux/swap.h>
 24#include <linux/printk.h>
 25#include <linux/vmpressure.h>
 26
 27/*
 28 * The window size (vmpressure_win) is the number of scanned pages before
 29 * we try to analyze scanned/reclaimed ratio. So the window is used as a
 30 * rate-limit tunable for the "low" level notification, and also for
 31 * averaging the ratio for medium/critical levels. Using small window
 32 * sizes can cause lot of false positives, but too big window size will
 33 * delay the notifications.
 34 *
 35 * As the vmscan reclaimer logic works with chunks which are multiple of
 36 * SWAP_CLUSTER_MAX, it makes sense to use it for the window size as well.
 37 *
 38 * TODO: Make the window size depend on machine size, as we do for vmstat
 39 * thresholds. Currently we set it to 512 pages (2MB for 4KB pages).
 40 */
 41static const unsigned long vmpressure_win = SWAP_CLUSTER_MAX * 16;
 42
 43/*
 44 * These thresholds are used when we account memory pressure through
 45 * scanned/reclaimed ratio. The current values were chosen empirically. In
 46 * essence, they are percents: the higher the value, the more number
 47 * unsuccessful reclaims there were.
 48 */
 49static const unsigned int vmpressure_level_med = 60;
 50static const unsigned int vmpressure_level_critical = 95;
 51
 52/*
 53 * When there are too little pages left to scan, vmpressure() may miss the
 54 * critical pressure as number of pages will be less than "window size".
 55 * However, in that case the vmscan priority will raise fast as the
 56 * reclaimer will try to scan LRUs more deeply.
 57 *
 58 * The vmscan logic considers these special priorities:
 59 *
 60 * prio == DEF_PRIORITY (12): reclaimer starts with that value
 61 * prio <= DEF_PRIORITY - 2 : kswapd becomes somewhat overwhelmed
 62 * prio == 0                : close to OOM, kernel scans every page in an lru
 63 *
 64 * Any value in this range is acceptable for this tunable (i.e. from 12 to
 65 * 0). Current value for the vmpressure_level_critical_prio is chosen
 66 * empirically, but the number, in essence, means that we consider
 67 * critical level when scanning depth is ~10% of the lru size (vmscan
 68 * scans 'lru_size >> prio' pages, so it is actually 12.5%, or one
 69 * eights).
 70 */
 71static const unsigned int vmpressure_level_critical_prio = ilog2(100 / 10);
 72
 73static struct vmpressure *work_to_vmpressure(struct work_struct *work)
 74{
 75	return container_of(work, struct vmpressure, work);
 76}
 77
 78static struct vmpressure *vmpressure_parent(struct vmpressure *vmpr)
 79{
 80	struct cgroup_subsys_state *css = vmpressure_to_css(vmpr);
 81	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 82
 83	memcg = parent_mem_cgroup(memcg);
 84	if (!memcg)
 85		return NULL;
 86	return memcg_to_vmpressure(memcg);
 87}
 88
 89enum vmpressure_levels {
 90	VMPRESSURE_LOW = 0,
 91	VMPRESSURE_MEDIUM,
 92	VMPRESSURE_CRITICAL,
 93	VMPRESSURE_NUM_LEVELS,
 94};
 95
 
 
 
 
 
 
 
 96static const char * const vmpressure_str_levels[] = {
 97	[VMPRESSURE_LOW] = "low",
 98	[VMPRESSURE_MEDIUM] = "medium",
 99	[VMPRESSURE_CRITICAL] = "critical",
100};
101
 
 
 
 
 
 
102static enum vmpressure_levels vmpressure_level(unsigned long pressure)
103{
104	if (pressure >= vmpressure_level_critical)
105		return VMPRESSURE_CRITICAL;
106	else if (pressure >= vmpressure_level_med)
107		return VMPRESSURE_MEDIUM;
108	return VMPRESSURE_LOW;
109}
110
111static enum vmpressure_levels vmpressure_calc_level(unsigned long scanned,
112						    unsigned long reclaimed)
113{
114	unsigned long scale = scanned + reclaimed;
115	unsigned long pressure;
116
117	/*
 
 
 
 
 
 
 
118	 * We calculate the ratio (in percents) of how many pages were
119	 * scanned vs. reclaimed in a given time frame (window). Note that
120	 * time is in VM reclaimer's "ticks", i.e. number of pages
121	 * scanned. This makes it possible to set desired reaction time
122	 * and serves as a ratelimit.
123	 */
124	pressure = scale - (reclaimed * scale / scanned);
125	pressure = pressure * 100 / scale;
126
 
127	pr_debug("%s: %3lu  (s: %lu  r: %lu)\n", __func__, pressure,
128		 scanned, reclaimed);
129
130	return vmpressure_level(pressure);
131}
132
133struct vmpressure_event {
134	struct eventfd_ctx *efd;
135	enum vmpressure_levels level;
 
136	struct list_head node;
137};
138
139static bool vmpressure_event(struct vmpressure *vmpr,
140			     enum vmpressure_levels level)
 
141{
142	struct vmpressure_event *ev;
143	bool signalled = false;
144
145	mutex_lock(&vmpr->events_lock);
146
147	list_for_each_entry(ev, &vmpr->events, node) {
148		if (level >= ev->level) {
149			eventfd_signal(ev->efd, 1);
150			signalled = true;
151		}
 
 
 
 
152	}
153
154	mutex_unlock(&vmpr->events_lock);
155
156	return signalled;
157}
158
159static void vmpressure_work_fn(struct work_struct *work)
160{
161	struct vmpressure *vmpr = work_to_vmpressure(work);
162	unsigned long scanned;
163	unsigned long reclaimed;
164	enum vmpressure_levels level;
 
 
165
166	spin_lock(&vmpr->sr_lock);
167	/*
168	 * Several contexts might be calling vmpressure(), so it is
169	 * possible that the work was rescheduled again before the old
170	 * work context cleared the counters. In that case we will run
171	 * just after the old work returns, but then scanned might be zero
172	 * here. No need for any locks here since we don't care if
173	 * vmpr->reclaimed is in sync.
174	 */
175	scanned = vmpr->tree_scanned;
176	if (!scanned) {
177		spin_unlock(&vmpr->sr_lock);
178		return;
179	}
180
181	reclaimed = vmpr->tree_reclaimed;
182	vmpr->tree_scanned = 0;
183	vmpr->tree_reclaimed = 0;
184	spin_unlock(&vmpr->sr_lock);
185
186	level = vmpressure_calc_level(scanned, reclaimed);
187
188	do {
189		if (vmpressure_event(vmpr, level))
190			break;
191		/*
192		 * If not handled, propagate the event upward into the
193		 * hierarchy.
194		 */
195	} while ((vmpr = vmpressure_parent(vmpr)));
196}
197
198/**
199 * vmpressure() - Account memory pressure through scanned/reclaimed ratio
200 * @gfp:	reclaimer's gfp mask
201 * @memcg:	cgroup memory controller handle
202 * @tree:	legacy subtree mode
203 * @scanned:	number of pages scanned
204 * @reclaimed:	number of pages reclaimed
205 *
206 * This function should be called from the vmscan reclaim path to account
207 * "instantaneous" memory pressure (scanned/reclaimed ratio). The raw
208 * pressure index is then further refined and averaged over time.
209 *
210 * If @tree is set, vmpressure is in traditional userspace reporting
211 * mode: @memcg is considered the pressure root and userspace is
212 * notified of the entire subtree's reclaim efficiency.
213 *
214 * If @tree is not set, reclaim efficiency is recorded for @memcg, and
215 * only in-kernel users are notified.
216 *
217 * This function does not return any value.
218 */
219void vmpressure(gfp_t gfp, struct mem_cgroup *memcg, bool tree,
220		unsigned long scanned, unsigned long reclaimed)
221{
222	struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
 
 
 
 
 
223
224	/*
225	 * Here we only want to account pressure that userland is able to
226	 * help us with. For example, suppose that DMA zone is under
227	 * pressure; if we notify userland about that kind of pressure,
228	 * then it will be mostly a waste as it will trigger unnecessary
229	 * freeing of memory by userland (since userland is more likely to
230	 * have HIGHMEM/MOVABLE pages instead of the DMA fallback). That
231	 * is why we include only movable, highmem and FS/IO pages.
232	 * Indirect reclaim (kswapd) sets sc->gfp_mask to GFP_KERNEL, so
233	 * we account it too.
234	 */
235	if (!(gfp & (__GFP_HIGHMEM | __GFP_MOVABLE | __GFP_IO | __GFP_FS)))
236		return;
237
238	/*
239	 * If we got here with no pages scanned, then that is an indicator
240	 * that reclaimer was unable to find any shrinkable LRUs at the
241	 * current scanning depth. But it does not mean that we should
242	 * report the critical pressure, yet. If the scanning priority
243	 * (scanning depth) goes too high (deep), we will be notified
244	 * through vmpressure_prio(). But so far, keep calm.
245	 */
246	if (!scanned)
247		return;
248
249	if (tree) {
250		spin_lock(&vmpr->sr_lock);
251		scanned = vmpr->tree_scanned += scanned;
252		vmpr->tree_reclaimed += reclaimed;
253		spin_unlock(&vmpr->sr_lock);
254
255		if (scanned < vmpressure_win)
256			return;
257		schedule_work(&vmpr->work);
258	} else {
259		enum vmpressure_levels level;
260
261		/* For now, no users for root-level efficiency */
262		if (!memcg || memcg == root_mem_cgroup)
263			return;
264
265		spin_lock(&vmpr->sr_lock);
266		scanned = vmpr->scanned += scanned;
267		reclaimed = vmpr->reclaimed += reclaimed;
268		if (scanned < vmpressure_win) {
269			spin_unlock(&vmpr->sr_lock);
270			return;
271		}
272		vmpr->scanned = vmpr->reclaimed = 0;
273		spin_unlock(&vmpr->sr_lock);
274
275		level = vmpressure_calc_level(scanned, reclaimed);
276
277		if (level > VMPRESSURE_LOW) {
278			/*
279			 * Let the socket buffer allocator know that
280			 * we are having trouble reclaiming LRU pages.
281			 *
282			 * For hysteresis keep the pressure state
283			 * asserted for a second in which subsequent
284			 * pressure events can occur.
285			 */
286			memcg->socket_pressure = jiffies + HZ;
287		}
288	}
289}
290
291/**
292 * vmpressure_prio() - Account memory pressure through reclaimer priority level
293 * @gfp:	reclaimer's gfp mask
294 * @memcg:	cgroup memory controller handle
295 * @prio:	reclaimer's priority
296 *
297 * This function should be called from the reclaim path every time when
298 * the vmscan's reclaiming priority (scanning depth) changes.
299 *
300 * This function does not return any value.
301 */
302void vmpressure_prio(gfp_t gfp, struct mem_cgroup *memcg, int prio)
303{
304	/*
305	 * We only use prio for accounting critical level. For more info
306	 * see comment for vmpressure_level_critical_prio variable above.
307	 */
308	if (prio > vmpressure_level_critical_prio)
309		return;
310
311	/*
312	 * OK, the prio is below the threshold, updating vmpressure
313	 * information before shrinker dives into long shrinking of long
314	 * range vmscan. Passing scanned = vmpressure_win, reclaimed = 0
315	 * to the vmpressure() basically means that we signal 'critical'
316	 * level.
317	 */
318	vmpressure(gfp, memcg, true, vmpressure_win, 0);
319}
320
 
 
321/**
322 * vmpressure_register_event() - Bind vmpressure notifications to an eventfd
323 * @memcg:	memcg that is interested in vmpressure notifications
324 * @eventfd:	eventfd context to link notifications with
325 * @args:	event arguments (used to set up a pressure level threshold)
326 *
327 * This function associates eventfd context with the vmpressure
328 * infrastructure, so that the notifications will be delivered to the
329 * @eventfd. The @args parameter is a string that denotes pressure level
330 * threshold (one of vmpressure_str_levels, i.e. "low", "medium", or
331 * "critical").
 
332 *
333 * To be used as memcg event method.
 
 
 
334 */
335int vmpressure_register_event(struct mem_cgroup *memcg,
336			      struct eventfd_ctx *eventfd, const char *args)
337{
338	struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
339	struct vmpressure_event *ev;
340	int level;
 
 
 
 
341
342	for (level = 0; level < VMPRESSURE_NUM_LEVELS; level++) {
343		if (!strcmp(vmpressure_str_levels[level], args))
344			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
345	}
346
347	if (level >= VMPRESSURE_NUM_LEVELS)
348		return -EINVAL;
349
350	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
351	if (!ev)
352		return -ENOMEM;
 
 
353
354	ev->efd = eventfd;
355	ev->level = level;
 
356
357	mutex_lock(&vmpr->events_lock);
358	list_add(&ev->node, &vmpr->events);
359	mutex_unlock(&vmpr->events_lock);
360
361	return 0;
 
 
362}
363
364/**
365 * vmpressure_unregister_event() - Unbind eventfd from vmpressure
366 * @memcg:	memcg handle
367 * @eventfd:	eventfd context that was used to link vmpressure with the @cg
368 *
369 * This function does internal manipulations to detach the @eventfd from
370 * the vmpressure notifications, and then frees internal resources
371 * associated with the @eventfd (but the @eventfd itself is not freed).
372 *
373 * To be used as memcg event method.
374 */
375void vmpressure_unregister_event(struct mem_cgroup *memcg,
376				 struct eventfd_ctx *eventfd)
377{
378	struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
379	struct vmpressure_event *ev;
380
381	mutex_lock(&vmpr->events_lock);
382	list_for_each_entry(ev, &vmpr->events, node) {
383		if (ev->efd != eventfd)
384			continue;
385		list_del(&ev->node);
386		kfree(ev);
387		break;
388	}
389	mutex_unlock(&vmpr->events_lock);
390}
391
392/**
393 * vmpressure_init() - Initialize vmpressure control structure
394 * @vmpr:	Structure to be initialized
395 *
396 * This function should be called on every allocated vmpressure structure
397 * before any usage.
398 */
399void vmpressure_init(struct vmpressure *vmpr)
400{
401	spin_lock_init(&vmpr->sr_lock);
402	mutex_init(&vmpr->events_lock);
403	INIT_LIST_HEAD(&vmpr->events);
404	INIT_WORK(&vmpr->work, vmpressure_work_fn);
405}
406
407/**
408 * vmpressure_cleanup() - shuts down vmpressure control structure
409 * @vmpr:	Structure to be cleaned up
410 *
411 * This function should be called before the structure in which it is
412 * embedded is cleaned up.
413 */
414void vmpressure_cleanup(struct vmpressure *vmpr)
415{
416	/*
417	 * Make sure there is no pending work before eventfd infrastructure
418	 * goes away.
419	 */
420	flush_work(&vmpr->work);
421}