Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/slab.c
   4 * Written by Mark Hemment, 1996/97.
   5 * (markhe@nextd.demon.co.uk)
   6 *
   7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   8 *
   9 * Major cleanup, different bufctl logic, per-cpu arrays
  10 *	(c) 2000 Manfred Spraul
  11 *
  12 * Cleanup, make the head arrays unconditional, preparation for NUMA
  13 * 	(c) 2002 Manfred Spraul
  14 *
  15 * An implementation of the Slab Allocator as described in outline in;
  16 *	UNIX Internals: The New Frontiers by Uresh Vahalia
  17 *	Pub: Prentice Hall	ISBN 0-13-101908-2
  18 * or with a little more detail in;
  19 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
  20 *	Jeff Bonwick (Sun Microsystems).
  21 *	Presented at: USENIX Summer 1994 Technical Conference
  22 *
  23 * The memory is organized in caches, one cache for each object type.
  24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  25 * Each cache consists out of many slabs (they are small (usually one
  26 * page long) and always contiguous), and each slab contains multiple
  27 * initialized objects.
  28 *
  29 * This means, that your constructor is used only for newly allocated
  30 * slabs and you must pass objects with the same initializations to
  31 * kmem_cache_free.
  32 *
  33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  34 * normal). If you need a special memory type, then must create a new
  35 * cache for that memory type.
  36 *
  37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  38 *   full slabs with 0 free objects
  39 *   partial slabs
  40 *   empty slabs with no allocated objects
  41 *
  42 * If partial slabs exist, then new allocations come from these slabs,
  43 * otherwise from empty slabs or new slabs are allocated.
  44 *
  45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  47 *
  48 * Each cache has a short per-cpu head array, most allocs
  49 * and frees go into that array, and if that array overflows, then 1/2
  50 * of the entries in the array are given back into the global cache.
  51 * The head array is strictly LIFO and should improve the cache hit rates.
  52 * On SMP, it additionally reduces the spinlock operations.
  53 *
  54 * The c_cpuarray may not be read with enabled local interrupts -
  55 * it's changed with a smp_call_function().
  56 *
  57 * SMP synchronization:
  58 *  constructors and destructors are called without any locking.
  59 *  Several members in struct kmem_cache and struct slab never change, they
  60 *	are accessed without any locking.
  61 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  62 *  	and local interrupts are disabled so slab code is preempt-safe.
  63 *  The non-constant members are protected with a per-cache irq spinlock.
  64 *
  65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  66 * in 2000 - many ideas in the current implementation are derived from
  67 * his patch.
  68 *
  69 * Further notes from the original documentation:
  70 *
  71 * 11 April '97.  Started multi-threading - markhe
  72 *	The global cache-chain is protected by the mutex 'slab_mutex'.
  73 *	The sem is only needed when accessing/extending the cache-chain, which
  74 *	can never happen inside an interrupt (kmem_cache_create(),
  75 *	kmem_cache_shrink() and kmem_cache_reap()).
  76 *
  77 *	At present, each engine can be growing a cache.  This should be blocked.
  78 *
  79 * 15 March 2005. NUMA slab allocator.
  80 *	Shai Fultheim <shai@scalex86.org>.
  81 *	Shobhit Dayal <shobhit@calsoftinc.com>
  82 *	Alok N Kataria <alokk@calsoftinc.com>
  83 *	Christoph Lameter <christoph@lameter.com>
  84 *
  85 *	Modified the slab allocator to be node aware on NUMA systems.
  86 *	Each node has its own list of partial, free and full slabs.
  87 *	All object allocations for a node occur from node specific slab lists.
  88 */
  89
  90#include	<linux/__KEEPIDENTS__B.h>
  91#include	<linux/__KEEPIDENTS__C.h>
  92#include	<linux/__KEEPIDENTS__D.h>
  93#include	<linux/__KEEPIDENTS__E.h>
  94#include	<linux/__KEEPIDENTS__F.h>
  95#include	<linux/__KEEPIDENTS__G.h>
  96#include	<linux/__KEEPIDENTS__H.h>
  97#include	<linux/__KEEPIDENTS__I.h>
  98#include	<linux/__KEEPIDENTS__J.h>
  99#include	<linux/proc_fs.h>
 100#include	<linux/__KEEPIDENTS__BA.h>
 101#include	<linux/__KEEPIDENTS__BB.h>
 102#include	<linux/__KEEPIDENTS__BC.h>
 103#include	<linux/kfence.h>
 104#include	<linux/cpu.h>
 105#include	<linux/__KEEPIDENTS__BD.h>
 106#include	<linux/__KEEPIDENTS__BE.h>
 107#include	<linux/rcupdate.h>
 108#include	<linux/__KEEPIDENTS__BF.h>
 109#include	<linux/__KEEPIDENTS__BG.h>
 110#include	<linux/__KEEPIDENTS__BH.h>
 111#include	<linux/kmemleak.h>
 112#include	<linux/__KEEPIDENTS__BI.h>
 113#include	<linux/__KEEPIDENTS__BJ.h>
 114#include	<linux/__KEEPIDENTS__CA-__KEEPIDENTS__CB.h>
 115#include	<linux/__KEEPIDENTS__CC.h>
 116#include	<linux/reciprocal_div.h>
 117#include	<linux/debugobjects.h>
 
 118#include	<linux/__KEEPIDENTS__CD.h>
 119#include	<linux/__KEEPIDENTS__CE.h>
 120#include	<linux/__KEEPIDENTS__CF/task_stack.h>
 121
 122#include	<net/__KEEPIDENTS__CG.h>
 123
 124#include	<asm/cacheflush.h>
 125#include	<asm/tlbflush.h>
 126#include	<asm/page.h>
 127
 128#include <trace/events/kmem.h>
 129
 130#include	"internal.h"
 131
 132#include	"slab.h"
 133
 134/*
 135 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 136 *		  0 for faster, smaller code (especially in the critical paths).
 137 *
 138 * STATS	- 1 to collect stats for /proc/slabinfo.
 139 *		  0 for faster, smaller code (especially in the critical paths).
 140 *
 141 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 142 */
 143
 144#ifdef CONFIG_DEBUG_SLAB
 145#define	DEBUG		1
 146#define	STATS		1
 147#define	FORCED_DEBUG	1
 148#else
 149#define	DEBUG		0
 150#define	STATS		0
 151#define	FORCED_DEBUG	0
 152#endif
 153
 154/* Shouldn't this be in a header file somewhere? */
 155#define	BYTES_PER_WORD		sizeof(void *)
 156#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
 157
 158#ifndef ARCH_KMALLOC_FLAGS
 159#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 160#endif
 161
 162#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
 163				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
 164
 165#if FREELIST_BYTE_INDEX
 166typedef unsigned char freelist_idx_t;
 167#else
 168typedef unsigned short freelist_idx_t;
 169#endif
 170
 171#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
 172
 173/*
 174 * struct array_cache
 175 *
 176 * Purpose:
 177 * - LIFO ordering, to hand out cache-warm objects from _alloc
 178 * - reduce the number of linked list operations
 179 * - reduce spinlock operations
 180 *
 181 * The limit is stored in the per-cpu structure to reduce the data cache
 182 * footprint.
 183 *
 184 */
 185struct array_cache {
 186	unsigned int avail;
 187	unsigned int limit;
 188	unsigned int batchcount;
 189	unsigned int touched;
 190	void *entry[];	/*
 191			 * Must have this definition in here for the proper
 192			 * alignment of array_cache. Also simplifies accessing
 193			 * the entries.
 194			 */
 195};
 196
 197struct alien_cache {
 198	spinlock_t lock;
 199	struct array_cache ac;
 200};
 201
 202/*
 203 * Need this for bootstrapping a per node allocator.
 204 */
 205#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
 206static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
 207#define	CACHE_CACHE 0
 208#define	SIZE_NODE (MAX_NUMNODES)
 209
 210static int drain_freelist(struct kmem_cache *cache,
 211			struct kmem_cache_node *n, int tofree);
 212static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 213			int node, struct list_head *list);
 214static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
 215static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 216static void cache_reap(struct work_struct *unused);
 217
 218static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
 219						void **list);
 220static inline void fixup_slab_list(struct kmem_cache *cachep,
 221				struct kmem_cache_node *n, struct slab *slab,
 222				void **list);
 223static int slab_early_init = 1;
 224
 225#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
 226
 227static void kmem_cache_node_init(struct kmem_cache_node *parent)
 228{
 229	INIT_LIST_HEAD(&parent->slabs_full);
 230	INIT_LIST_HEAD(&parent->slabs_partial);
 231	INIT_LIST_HEAD(&parent->slabs_free);
 232	parent->total_slabs = 0;
 233	parent->free_slabs = 0;
 234	parent->shared = NULL;
 235	parent->alien = NULL;
 236	parent->colour_next = 0;
 237	raw_spin_lock_init(&parent->list_lock);
 238	parent->free_objects = 0;
 239	parent->free_touched = 0;
 240}
 241
 242#define MAKE_LIST(cachep, listp, slab, nodeid)				\
 243	do {								\
 244		INIT_LIST_HEAD(listp);					\
 245		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
 246	} while (0)
 247
 248#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
 249	do {								\
 250	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
 251	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 252	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
 253	} while (0)
 254
 255#define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
 256#define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
 257#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
 258#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
 259
 260#define BATCHREFILL_LIMIT	16
 261/*
 262 * Optimization question: fewer reaps means less probability for unnecessary
 263 * cpucache drain/refill cycles.
 264 *
 265 * OTOH the cpuarrays can contain lots of objects,
 266 * which could lock up otherwise freeable slabs.
 267 */
 268#define REAPTIMEOUT_AC		(2*HZ)
 269#define REAPTIMEOUT_NODE	(4*HZ)
 270
 271#if STATS
 272#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
 273#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
 274#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
 275#define	STATS_INC_GROWN(x)	((x)->grown++)
 276#define	STATS_ADD_REAPED(x, y)	((x)->reaped += (y))
 277#define	STATS_SET_HIGH(x)						\
 278	do {								\
 279		if ((x)->num_active > (x)->high_mark)			\
 280			(x)->high_mark = (x)->num_active;		\
 281	} while (0)
 282#define	STATS_INC_ERR(x)	((x)->errors++)
 283#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
 284#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
 285#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 286#define	STATS_SET_FREEABLE(x, i)					\
 287	do {								\
 288		if ((x)->max_freeable < i)				\
 289			(x)->max_freeable = i;				\
 290	} while (0)
 291#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
 292#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
 293#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
 294#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
 295#else
 296#define	STATS_INC_ACTIVE(x)	do { } while (0)
 297#define	STATS_DEC_ACTIVE(x)	do { } while (0)
 298#define	STATS_INC_ALLOCED(x)	do { } while (0)
 299#define	STATS_INC_GROWN(x)	do { } while (0)
 300#define	STATS_ADD_REAPED(x, y)	do { (void)(y); } while (0)
 301#define	STATS_SET_HIGH(x)	do { } while (0)
 302#define	STATS_INC_ERR(x)	do { } while (0)
 303#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
 304#define	STATS_INC_NODEFREES(x)	do { } while (0)
 305#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 306#define	STATS_SET_FREEABLE(x, i) do { } while (0)
 307#define STATS_INC_ALLOCHIT(x)	do { } while (0)
 308#define STATS_INC_ALLOCMISS(x)	do { } while (0)
 309#define STATS_INC_FREEHIT(x)	do { } while (0)
 310#define STATS_INC_FREEMISS(x)	do { } while (0)
 311#endif
 312
 313#if DEBUG
 314
 315/*
 316 * memory layout of objects:
 317 * 0		: objp
 318 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 319 * 		the end of an object is aligned with the end of the real
 320 * 		allocation. Catches writes behind the end of the allocation.
 321 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 322 * 		redzone word.
 323 * cachep->obj_offset: The real object.
 324 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 325 * cachep->size - 1* BYTES_PER_WORD: last caller address
 326 *					[BYTES_PER_WORD long]
 327 */
 328static int obj_offset(struct kmem_cache *cachep)
 329{
 330	return cachep->obj_offset;
 331}
 332
 333static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 334{
 335	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 336	return (unsigned long long *) (objp + obj_offset(cachep) -
 337				      sizeof(unsigned long long));
 338}
 339
 340static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 341{
 342	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 343	if (cachep->flags & SLAB_STORE_USER)
 344		return (unsigned long long *)(objp + cachep->size -
 345					      sizeof(unsigned long long) -
 346					      REDZONE_ALIGN);
 347	return (unsigned long long *) (objp + cachep->size -
 348				       sizeof(unsigned long long));
 349}
 350
 351static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 352{
 353	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 354	return (void **)(objp + cachep->size - BYTES_PER_WORD);
 355}
 356
 357#else
 358
 359#define obj_offset(x)			0
 360#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 361#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 362#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
 363
 364#endif
 365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366/*
 367 * Do not go above this order unless 0 objects fit into the slab or
 368 * overridden on the command line.
 369 */
 370#define	SLAB_MAX_ORDER_HI	1
 371#define	SLAB_MAX_ORDER_LO	0
 372static int slab_max_order = SLAB_MAX_ORDER_LO;
 373static bool slab_max_order_set __initdata;
 374
 375static inline void *index_to_obj(struct kmem_cache *cache,
 376				 const struct slab *slab, unsigned int idx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377{
 378	return slab->s_mem + cache->size * idx;
 
 379}
 380
 381#define BOOT_CPUCACHE_ENTRIES	1
 382/* internal cache of cache description objs */
 383static struct kmem_cache kmem_cache_boot = {
 384	.batchcount = 1,
 385	.limit = BOOT_CPUCACHE_ENTRIES,
 386	.shared = 1,
 387	.size = sizeof(struct kmem_cache),
 388	.name = "kmem_cache",
 389};
 390
 
 
 391static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 392
 393static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 394{
 395	return this_cpu_ptr(cachep->cpu_cache);
 396}
 397
 398/*
 399 * Calculate the number of objects and left-over bytes for a given buffer size.
 400 */
 401static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
 402		slab_flags_t flags, size_t *left_over)
 403{
 404	unsigned int num;
 405	size_t slab_size = PAGE_SIZE << gfporder;
 406
 407	/*
 408	 * The slab management structure can be either off the slab or
 409	 * on it. For the latter case, the memory allocated for a
 410	 * slab is used for:
 411	 *
 412	 * - @buffer_size bytes for each object
 413	 * - One freelist_idx_t for each object
 414	 *
 415	 * We don't need to consider alignment of freelist because
 416	 * freelist will be at the end of slab page. The objects will be
 417	 * at the correct alignment.
 418	 *
 419	 * If the slab management structure is off the slab, then the
 420	 * alignment will already be calculated into the size. Because
 421	 * the slabs are all pages aligned, the objects will be at the
 422	 * correct alignment when allocated.
 423	 */
 424	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
 425		num = slab_size / buffer_size;
 426		*left_over = slab_size % buffer_size;
 427	} else {
 428		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
 429		*left_over = slab_size %
 430			(buffer_size + sizeof(freelist_idx_t));
 431	}
 432
 433	return num;
 434}
 435
 436#if DEBUG
 437#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 438
 439static void __slab_error(const char *function, struct kmem_cache *cachep,
 440			char *msg)
 441{
 442	pr_err("slab error in %s(): cache `%s': %s\n",
 443	       function, cachep->name, msg);
 444	dump_stack();
 445	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 446}
 447#endif
 448
 449/*
 450 * By default on NUMA we use alien caches to stage the freeing of
 451 * objects allocated from other nodes. This causes massive memory
 452 * inefficiencies when using fake NUMA setup to split memory into a
 453 * large number of small nodes, so it can be disabled on the command
 454 * line
 455  */
 456
 457static int use_alien_caches __read_mostly = 1;
 458static int __init noaliencache_setup(char *s)
 459{
 460	use_alien_caches = 0;
 461	return 1;
 462}
 463__setup("noaliencache", noaliencache_setup);
 464
 465static int __init slab_max_order_setup(char *str)
 466{
 467	get_option(&str, &slab_max_order);
 468	slab_max_order = slab_max_order < 0 ? 0 :
 469				min(slab_max_order, MAX_ORDER - 1);
 470	slab_max_order_set = true;
 471
 472	return 1;
 473}
 474__setup("slab_max_order=", slab_max_order_setup);
 475
 476#ifdef CONFIG_NUMA
 477/*
 478 * Special reaping functions for NUMA systems called from cache_reap().
 479 * These take care of doing round robin flushing of alien caches (containing
 480 * objects freed on different nodes from which they were allocated) and the
 481 * flushing of remote pcps by calling drain_node_pages.
 482 */
 483static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 484
 485static void init_reap_node(int cpu)
 486{
 487	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
 488						    node_online_map);
 
 
 
 
 
 489}
 490
 491static void next_reap_node(void)
 492{
 493	int node = __this_cpu_read(slab_reap_node);
 494
 495	node = next_node_in(node, node_online_map);
 
 
 496	__this_cpu_write(slab_reap_node, node);
 497}
 498
 499#else
 500#define init_reap_node(cpu) do { } while (0)
 501#define next_reap_node(void) do { } while (0)
 502#endif
 503
 504/*
 505 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 506 * via the workqueue/eventd.
 507 * Add the CPU number into the expiration time to minimize the possibility of
 508 * the CPUs getting into lockstep and contending for the global cache chain
 509 * lock.
 510 */
 511static void start_cpu_timer(int cpu)
 512{
 513	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 514
 515	if (reap_work->work.func == NULL) {
 
 
 
 
 
 516		init_reap_node(cpu);
 517		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
 518		schedule_delayed_work_on(cpu, reap_work,
 519					__round_jiffies_relative(HZ, cpu));
 520	}
 521}
 522
 523static void init_arraycache(struct array_cache *ac, int limit, int batch)
 524{
 
 
 
 
 
 
 
 
 525	if (ac) {
 526		ac->avail = 0;
 527		ac->limit = limit;
 528		ac->batchcount = batch;
 529		ac->touched = 0;
 530	}
 531}
 532
 533static struct array_cache *alloc_arraycache(int node, int entries,
 534					    int batchcount, gfp_t gfp)
 535{
 536	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 537	struct array_cache *ac = NULL;
 538
 539	ac = kmalloc_node(memsize, gfp, node);
 540	/*
 541	 * The array_cache structures contain pointers to free object.
 542	 * However, when such objects are allocated or transferred to another
 543	 * cache the pointers are not cleared and they could be counted as
 544	 * valid references during a kmemleak scan. Therefore, kmemleak must
 545	 * not scan such objects.
 546	 */
 547	kmemleak_no_scan(ac);
 548	init_arraycache(ac, entries, batchcount);
 549	return ac;
 550}
 551
 552static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
 553					struct slab *slab, void *objp)
 554{
 555	struct kmem_cache_node *n;
 556	int slab_node;
 557	LIST_HEAD(list);
 558
 559	slab_node = slab_nid(slab);
 560	n = get_node(cachep, slab_node);
 561
 562	raw_spin_lock(&n->list_lock);
 563	free_block(cachep, &objp, 1, slab_node, &list);
 564	raw_spin_unlock(&n->list_lock);
 565
 566	slabs_destroy(cachep, &list);
 567}
 568
 569/*
 570 * Transfer objects in one arraycache to another.
 571 * Locking must be handled by the caller.
 572 *
 573 * Return the number of entries transferred.
 574 */
 575static int transfer_objects(struct array_cache *to,
 576		struct array_cache *from, unsigned int max)
 577{
 578	/* Figure out how many entries to transfer */
 579	int nr = min3(from->avail, max, to->limit - to->avail);
 580
 581	if (!nr)
 582		return 0;
 583
 584	memcpy(to->entry + to->avail, from->entry + from->avail - nr,
 585			sizeof(void *) *nr);
 586
 587	from->avail -= nr;
 588	to->avail += nr;
 589	return nr;
 590}
 591
 592/* &alien->lock must be held by alien callers. */
 593static __always_inline void __free_one(struct array_cache *ac, void *objp)
 594{
 595	/* Avoid trivial double-free. */
 596	if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
 597	    WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp))
 598		return;
 599	ac->entry[ac->avail++] = objp;
 600}
 601
 602#ifndef CONFIG_NUMA
 603
 604#define drain_alien_cache(cachep, alien) do { } while (0)
 605#define reap_alien(cachep, n) do { } while (0)
 606
 607static inline struct alien_cache **alloc_alien_cache(int node,
 608						int limit, gfp_t gfp)
 609{
 610	return NULL;
 611}
 612
 613static inline void free_alien_cache(struct alien_cache **ac_ptr)
 614{
 615}
 616
 617static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 618{
 619	return 0;
 620}
 621
 
 
 
 
 
 
 
 
 
 
 
 
 622static inline gfp_t gfp_exact_node(gfp_t flags)
 623{
 624	return flags & ~__GFP_NOFAIL;
 625}
 626
 627#else	/* CONFIG_NUMA */
 628
 
 
 
 629static struct alien_cache *__alloc_alien_cache(int node, int entries,
 630						int batch, gfp_t gfp)
 631{
 632	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
 633	struct alien_cache *alc = NULL;
 634
 635	alc = kmalloc_node(memsize, gfp, node);
 636	if (alc) {
 637		kmemleak_no_scan(alc);
 638		init_arraycache(&alc->ac, entries, batch);
 639		spin_lock_init(&alc->lock);
 640	}
 641	return alc;
 642}
 643
 644static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 645{
 646	struct alien_cache **alc_ptr;
 
 647	int i;
 648
 649	if (limit > 1)
 650		limit = 12;
 651	alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
 652	if (!alc_ptr)
 653		return NULL;
 654
 655	for_each_node(i) {
 656		if (i == node || !node_online(i))
 657			continue;
 658		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
 659		if (!alc_ptr[i]) {
 660			for (i--; i >= 0; i--)
 661				kfree(alc_ptr[i]);
 662			kfree(alc_ptr);
 663			return NULL;
 664		}
 665	}
 666	return alc_ptr;
 667}
 668
 669static void free_alien_cache(struct alien_cache **alc_ptr)
 670{
 671	int i;
 672
 673	if (!alc_ptr)
 674		return;
 675	for_each_node(i)
 676	    kfree(alc_ptr[i]);
 677	kfree(alc_ptr);
 678}
 679
 680static void __drain_alien_cache(struct kmem_cache *cachep,
 681				struct array_cache *ac, int node,
 682				struct list_head *list)
 683{
 684	struct kmem_cache_node *n = get_node(cachep, node);
 685
 686	if (ac->avail) {
 687		raw_spin_lock(&n->list_lock);
 688		/*
 689		 * Stuff objects into the remote nodes shared array first.
 690		 * That way we could avoid the overhead of putting the objects
 691		 * into the free lists and getting them back later.
 692		 */
 693		if (n->shared)
 694			transfer_objects(n->shared, ac, ac->limit);
 695
 696		free_block(cachep, ac->entry, ac->avail, node, list);
 697		ac->avail = 0;
 698		raw_spin_unlock(&n->list_lock);
 699	}
 700}
 701
 702/*
 703 * Called from cache_reap() to regularly drain alien caches round robin.
 704 */
 705static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
 706{
 707	int node = __this_cpu_read(slab_reap_node);
 708
 709	if (n->alien) {
 710		struct alien_cache *alc = n->alien[node];
 711		struct array_cache *ac;
 712
 713		if (alc) {
 714			ac = &alc->ac;
 715			if (ac->avail && spin_trylock_irq(&alc->lock)) {
 716				LIST_HEAD(list);
 717
 718				__drain_alien_cache(cachep, ac, node, &list);
 719				spin_unlock_irq(&alc->lock);
 720				slabs_destroy(cachep, &list);
 721			}
 722		}
 723	}
 724}
 725
 726static void drain_alien_cache(struct kmem_cache *cachep,
 727				struct alien_cache **alien)
 728{
 729	int i = 0;
 730	struct alien_cache *alc;
 731	struct array_cache *ac;
 732	unsigned long flags;
 733
 734	for_each_online_node(i) {
 735		alc = alien[i];
 736		if (alc) {
 737			LIST_HEAD(list);
 738
 739			ac = &alc->ac;
 740			spin_lock_irqsave(&alc->lock, flags);
 741			__drain_alien_cache(cachep, ac, i, &list);
 742			spin_unlock_irqrestore(&alc->lock, flags);
 743			slabs_destroy(cachep, &list);
 744		}
 745	}
 746}
 747
 748static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
 749				int node, int slab_node)
 750{
 751	struct kmem_cache_node *n;
 752	struct alien_cache *alien = NULL;
 753	struct array_cache *ac;
 754	LIST_HEAD(list);
 755
 756	n = get_node(cachep, node);
 757	STATS_INC_NODEFREES(cachep);
 758	if (n->alien && n->alien[slab_node]) {
 759		alien = n->alien[slab_node];
 760		ac = &alien->ac;
 761		spin_lock(&alien->lock);
 762		if (unlikely(ac->avail == ac->limit)) {
 763			STATS_INC_ACOVERFLOW(cachep);
 764			__drain_alien_cache(cachep, ac, slab_node, &list);
 765		}
 766		__free_one(ac, objp);
 767		spin_unlock(&alien->lock);
 768		slabs_destroy(cachep, &list);
 769	} else {
 770		n = get_node(cachep, slab_node);
 771		raw_spin_lock(&n->list_lock);
 772		free_block(cachep, &objp, 1, slab_node, &list);
 773		raw_spin_unlock(&n->list_lock);
 774		slabs_destroy(cachep, &list);
 775	}
 776	return 1;
 777}
 778
 779static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 780{
 781	int slab_node = slab_nid(virt_to_slab(objp));
 782	int node = numa_mem_id();
 783	/*
 784	 * Make sure we are not freeing an object from another node to the array
 785	 * cache on this cpu.
 786	 */
 787	if (likely(node == slab_node))
 788		return 0;
 789
 790	return __cache_free_alien(cachep, objp, node, slab_node);
 791}
 792
 793/*
 794 * Construct gfp mask to allocate from a specific node but do not reclaim or
 795 * warn about failures.
 796 */
 797static inline gfp_t gfp_exact_node(gfp_t flags)
 798{
 799	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
 800}
 801#endif
 802
 803static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
 804{
 805	struct kmem_cache_node *n;
 806
 807	/*
 808	 * Set up the kmem_cache_node for cpu before we can
 809	 * begin anything. Make sure some other cpu on this
 810	 * node has not already allocated this
 811	 */
 812	n = get_node(cachep, node);
 813	if (n) {
 814		raw_spin_lock_irq(&n->list_lock);
 815		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
 816				cachep->num;
 817		raw_spin_unlock_irq(&n->list_lock);
 818
 819		return 0;
 820	}
 821
 822	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
 823	if (!n)
 824		return -ENOMEM;
 825
 826	kmem_cache_node_init(n);
 827	n->next_reap = jiffies + REAPTIMEOUT_NODE +
 828		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
 829
 830	n->free_limit =
 831		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
 832
 833	/*
 834	 * The kmem_cache_nodes don't come and go as CPUs
 835	 * come and go.  slab_mutex provides sufficient
 836	 * protection here.
 837	 */
 838	cachep->node[node] = n;
 839
 840	return 0;
 841}
 842
 843#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
 844/*
 845 * Allocates and initializes node for a node on each slab cache, used for
 846 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
 847 * will be allocated off-node since memory is not yet online for the new node.
 848 * When hotplugging memory or a cpu, existing nodes are not replaced if
 849 * already in use.
 850 *
 851 * Must hold slab_mutex.
 852 */
 853static int init_cache_node_node(int node)
 854{
 855	int ret;
 856	struct kmem_cache *cachep;
 
 
 857
 858	list_for_each_entry(cachep, &slab_caches, list) {
 859		ret = init_cache_node(cachep, node, GFP_KERNEL);
 860		if (ret)
 861			return ret;
 862	}
 
 
 
 
 
 
 
 
 
 863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 864	return 0;
 865}
 866#endif
 867
 868static int setup_kmem_cache_node(struct kmem_cache *cachep,
 869				int node, gfp_t gfp, bool force_change)
 870{
 871	int ret = -ENOMEM;
 872	struct kmem_cache_node *n;
 873	struct array_cache *old_shared = NULL;
 874	struct array_cache *new_shared = NULL;
 875	struct alien_cache **new_alien = NULL;
 876	LIST_HEAD(list);
 877
 878	if (use_alien_caches) {
 879		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
 880		if (!new_alien)
 881			goto fail;
 882	}
 883
 884	if (cachep->shared) {
 885		new_shared = alloc_arraycache(node,
 886			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
 887		if (!new_shared)
 888			goto fail;
 889	}
 890
 891	ret = init_cache_node(cachep, node, gfp);
 892	if (ret)
 893		goto fail;
 894
 895	n = get_node(cachep, node);
 896	raw_spin_lock_irq(&n->list_lock);
 897	if (n->shared && force_change) {
 898		free_block(cachep, n->shared->entry,
 899				n->shared->avail, node, &list);
 900		n->shared->avail = 0;
 901	}
 902
 903	if (!n->shared || force_change) {
 904		old_shared = n->shared;
 905		n->shared = new_shared;
 906		new_shared = NULL;
 907	}
 908
 909	if (!n->alien) {
 910		n->alien = new_alien;
 911		new_alien = NULL;
 912	}
 913
 914	raw_spin_unlock_irq(&n->list_lock);
 915	slabs_destroy(cachep, &list);
 916
 917	/*
 918	 * To protect lockless access to n->shared during irq disabled context.
 919	 * If n->shared isn't NULL in irq disabled context, accessing to it is
 920	 * guaranteed to be valid until irq is re-enabled, because it will be
 921	 * freed after synchronize_rcu().
 922	 */
 923	if (old_shared && force_change)
 924		synchronize_rcu();
 925
 926fail:
 927	kfree(old_shared);
 928	kfree(new_shared);
 929	free_alien_cache(new_alien);
 930
 931	return ret;
 932}
 933
 934#ifdef CONFIG_SMP
 935
 936static void cpuup_canceled(long cpu)
 937{
 938	struct kmem_cache *cachep;
 939	struct kmem_cache_node *n = NULL;
 940	int node = cpu_to_mem(cpu);
 941	const struct cpumask *mask = cpumask_of_node(node);
 942
 943	list_for_each_entry(cachep, &slab_caches, list) {
 944		struct array_cache *nc;
 945		struct array_cache *shared;
 946		struct alien_cache **alien;
 947		LIST_HEAD(list);
 948
 949		n = get_node(cachep, node);
 950		if (!n)
 951			continue;
 952
 953		raw_spin_lock_irq(&n->list_lock);
 954
 955		/* Free limit for this kmem_cache_node */
 956		n->free_limit -= cachep->batchcount;
 957
 958		/* cpu is dead; no one can alloc from it. */
 959		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
 960		free_block(cachep, nc->entry, nc->avail, node, &list);
 961		nc->avail = 0;
 
 
 962
 963		if (!cpumask_empty(mask)) {
 964			raw_spin_unlock_irq(&n->list_lock);
 965			goto free_slab;
 966		}
 967
 968		shared = n->shared;
 969		if (shared) {
 970			free_block(cachep, shared->entry,
 971				   shared->avail, node, &list);
 972			n->shared = NULL;
 973		}
 974
 975		alien = n->alien;
 976		n->alien = NULL;
 977
 978		raw_spin_unlock_irq(&n->list_lock);
 979
 980		kfree(shared);
 981		if (alien) {
 982			drain_alien_cache(cachep, alien);
 983			free_alien_cache(alien);
 984		}
 985
 986free_slab:
 987		slabs_destroy(cachep, &list);
 988	}
 989	/*
 990	 * In the previous loop, all the objects were freed to
 991	 * the respective cache's slabs,  now we can go ahead and
 992	 * shrink each nodelist to its limit.
 993	 */
 994	list_for_each_entry(cachep, &slab_caches, list) {
 995		n = get_node(cachep, node);
 996		if (!n)
 997			continue;
 998		drain_freelist(cachep, n, INT_MAX);
 999	}
1000}
1001
1002static int cpuup_prepare(long cpu)
1003{
1004	struct kmem_cache *cachep;
 
1005	int node = cpu_to_mem(cpu);
1006	int err;
1007
1008	/*
1009	 * We need to do this right in the beginning since
1010	 * alloc_arraycache's are going to use this list.
1011	 * kmalloc_node allows us to add the slab to the right
1012	 * kmem_cache_node and not this cpu's kmem_cache_node
1013	 */
1014	err = init_cache_node_node(node);
1015	if (err < 0)
1016		goto bad;
1017
1018	/*
1019	 * Now we can go ahead with allocating the shared arrays and
1020	 * array caches
1021	 */
1022	list_for_each_entry(cachep, &slab_caches, list) {
1023		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1024		if (err)
1025			goto bad;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1026	}
1027
1028	return 0;
1029bad:
1030	cpuup_canceled(cpu);
1031	return -ENOMEM;
1032}
1033
1034int slab_prepare_cpu(unsigned int cpu)
 
1035{
1036	int err;
1037
1038	mutex_lock(&slab_mutex);
1039	err = cpuup_prepare(cpu);
1040	mutex_unlock(&slab_mutex);
1041	return err;
1042}
1043
1044/*
1045 * This is called for a failed online attempt and for a successful
1046 * offline.
1047 *
1048 * Even if all the cpus of a node are down, we don't free the
1049 * kmem_cache_node of any cache. This is to avoid a race between cpu_down, and
1050 * a kmalloc allocation from another cpu for memory from the node of
1051 * the cpu going down.  The kmem_cache_node structure is usually allocated from
1052 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1053 */
1054int slab_dead_cpu(unsigned int cpu)
1055{
1056	mutex_lock(&slab_mutex);
1057	cpuup_canceled(cpu);
1058	mutex_unlock(&slab_mutex);
1059	return 0;
1060}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1061#endif
1062
1063static int slab_online_cpu(unsigned int cpu)
1064{
1065	start_cpu_timer(cpu);
1066	return 0;
 
 
 
1067}
1068
1069static int slab_offline_cpu(unsigned int cpu)
1070{
1071	/*
1072	 * Shutdown cache reaper. Note that the slab_mutex is held so
1073	 * that if cache_reap() is invoked it cannot do anything
1074	 * expensive but will only modify reap_work and reschedule the
1075	 * timer.
1076	 */
1077	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1078	/* Now the cache_reaper is guaranteed to be not running. */
1079	per_cpu(slab_reap_work, cpu).work.func = NULL;
1080	return 0;
1081}
1082
1083#if defined(CONFIG_NUMA)
1084/*
1085 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1086 * Returns -EBUSY if all objects cannot be drained so that the node is not
1087 * removed.
1088 *
1089 * Must hold slab_mutex.
1090 */
1091static int __meminit drain_cache_node_node(int node)
1092{
1093	struct kmem_cache *cachep;
1094	int ret = 0;
1095
1096	list_for_each_entry(cachep, &slab_caches, list) {
1097		struct kmem_cache_node *n;
1098
1099		n = get_node(cachep, node);
1100		if (!n)
1101			continue;
1102
1103		drain_freelist(cachep, n, INT_MAX);
1104
1105		if (!list_empty(&n->slabs_full) ||
1106		    !list_empty(&n->slabs_partial)) {
1107			ret = -EBUSY;
1108			break;
1109		}
1110	}
1111	return ret;
1112}
1113
1114static int __meminit slab_memory_callback(struct notifier_block *self,
1115					unsigned long action, void *arg)
1116{
1117	struct memory_notify *mnb = arg;
1118	int ret = 0;
1119	int nid;
1120
1121	nid = mnb->status_change_nid;
1122	if (nid < 0)
1123		goto out;
1124
1125	switch (action) {
1126	case MEM_GOING_ONLINE:
1127		mutex_lock(&slab_mutex);
1128		ret = init_cache_node_node(nid);
1129		mutex_unlock(&slab_mutex);
1130		break;
1131	case MEM_GOING_OFFLINE:
1132		mutex_lock(&slab_mutex);
1133		ret = drain_cache_node_node(nid);
1134		mutex_unlock(&slab_mutex);
1135		break;
1136	case MEM_ONLINE:
1137	case MEM_OFFLINE:
1138	case MEM_CANCEL_ONLINE:
1139	case MEM_CANCEL_OFFLINE:
1140		break;
1141	}
1142out:
1143	return notifier_from_errno(ret);
1144}
1145#endif /* CONFIG_NUMA */
1146
1147/*
1148 * swap the static kmem_cache_node with kmalloced memory
1149 */
1150static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1151				int nodeid)
1152{
1153	struct kmem_cache_node *ptr;
1154
1155	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1156	BUG_ON(!ptr);
1157
1158	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1159	/*
1160	 * Do not assume that spinlocks can be initialized via memcpy:
1161	 */
1162	raw_spin_lock_init(&ptr->list_lock);
1163
1164	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1165	cachep->node[nodeid] = ptr;
1166}
1167
1168/*
1169 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1170 * size of kmem_cache_node.
1171 */
1172static void __init set_up_node(struct kmem_cache *cachep, int index)
1173{
1174	int node;
1175
1176	for_each_online_node(node) {
1177		cachep->node[node] = &init_kmem_cache_node[index + node];
1178		cachep->node[node]->next_reap = jiffies +
1179		    REAPTIMEOUT_NODE +
1180		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1181	}
1182}
1183
1184/*
1185 * Initialisation.  Called after the page allocator have been initialised and
1186 * before smp_init().
1187 */
1188void __init kmem_cache_init(void)
1189{
1190	int i;
1191
 
 
1192	kmem_cache = &kmem_cache_boot;
1193
1194	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1195		use_alien_caches = 0;
1196
1197	for (i = 0; i < NUM_INIT_LISTS; i++)
1198		kmem_cache_node_init(&init_kmem_cache_node[i]);
1199
1200	/*
1201	 * Fragmentation resistance on low memory - only use bigger
1202	 * page orders on machines with more than 32MB of memory if
1203	 * not overridden on the command line.
1204	 */
1205	if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1206		slab_max_order = SLAB_MAX_ORDER_HI;
1207
1208	/* Bootstrap is tricky, because several objects are allocated
1209	 * from caches that do not exist yet:
1210	 * 1) initialize the kmem_cache cache: it contains the struct
1211	 *    kmem_cache structures of all caches, except kmem_cache itself:
1212	 *    kmem_cache is statically allocated.
1213	 *    Initially an __init data area is used for the head array and the
1214	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1215	 *    array at the end of the bootstrap.
1216	 * 2) Create the first kmalloc cache.
1217	 *    The struct kmem_cache for the new cache is allocated normally.
1218	 *    An __init data area is used for the head array.
1219	 * 3) Create the remaining kmalloc caches, with minimally sized
1220	 *    head arrays.
1221	 * 4) Replace the __init data head arrays for kmem_cache and the first
1222	 *    kmalloc cache with kmalloc allocated arrays.
1223	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1224	 *    the other cache's with kmalloc allocated memory.
1225	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1226	 */
1227
1228	/* 1) create the kmem_cache */
1229
1230	/*
1231	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1232	 */
1233	create_boot_cache(kmem_cache, "kmem_cache",
1234		offsetof(struct kmem_cache, node) +
1235				  nr_node_ids * sizeof(struct kmem_cache_node *),
1236				  SLAB_HWCACHE_ALIGN, 0, 0);
1237	list_add(&kmem_cache->list, &slab_caches);
1238	slab_state = PARTIAL;
1239
1240	/*
1241	 * Initialize the caches that provide memory for the  kmem_cache_node
1242	 * structures first.  Without this, further allocations will bug.
1243	 */
1244	kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1245				kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL],
1246				kmalloc_info[INDEX_NODE].size,
1247				ARCH_KMALLOC_FLAGS, 0,
1248				kmalloc_info[INDEX_NODE].size);
1249	slab_state = PARTIAL_NODE;
1250	setup_kmalloc_cache_index_table();
1251
1252	slab_early_init = 0;
1253
1254	/* 5) Replace the bootstrap kmem_cache_node */
1255	{
1256		int nid;
1257
1258		for_each_online_node(nid) {
1259			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1260
1261			init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1262					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1263		}
1264	}
1265
1266	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1267}
1268
1269void __init kmem_cache_init_late(void)
1270{
1271	struct kmem_cache *cachep;
1272
 
 
1273	/* 6) resize the head arrays to their final sizes */
1274	mutex_lock(&slab_mutex);
1275	list_for_each_entry(cachep, &slab_caches, list)
1276		if (enable_cpucache(cachep, GFP_NOWAIT))
1277			BUG();
1278	mutex_unlock(&slab_mutex);
1279
1280	/* Done! */
1281	slab_state = FULL;
1282
 
 
 
 
 
 
1283#ifdef CONFIG_NUMA
1284	/*
1285	 * Register a memory hotplug callback that initializes and frees
1286	 * node.
1287	 */
1288	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1289#endif
1290
1291	/*
1292	 * The reap timers are started later, with a module init call: That part
1293	 * of the kernel is not yet operational.
1294	 */
1295}
1296
1297static int __init cpucache_init(void)
1298{
1299	int ret;
1300
1301	/*
1302	 * Register the timers that return unneeded pages to the page allocator
1303	 */
1304	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1305				slab_online_cpu, slab_offline_cpu);
1306	WARN_ON(ret < 0);
1307
 
 
1308	return 0;
1309}
1310__initcall(cpucache_init);
1311
1312static noinline void
1313slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1314{
1315#if DEBUG
1316	struct kmem_cache_node *n;
 
1317	unsigned long flags;
1318	int node;
1319	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1320				      DEFAULT_RATELIMIT_BURST);
1321
1322	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1323		return;
1324
1325	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1326		nodeid, gfpflags, &gfpflags);
1327	pr_warn("  cache: %s, object size: %d, order: %d\n",
1328		cachep->name, cachep->size, cachep->gfporder);
1329
1330	for_each_kmem_cache_node(cachep, node, n) {
1331		unsigned long total_slabs, free_slabs, free_objs;
 
1332
1333		raw_spin_lock_irqsave(&n->list_lock, flags);
1334		total_slabs = n->total_slabs;
1335		free_slabs = n->free_slabs;
1336		free_objs = n->free_objects;
1337		raw_spin_unlock_irqrestore(&n->list_lock, flags);
1338
1339		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1340			node, total_slabs - free_slabs, total_slabs,
1341			(total_slabs * cachep->num) - free_objs,
1342			total_slabs * cachep->num);
 
 
 
 
 
 
 
 
 
 
1343	}
1344#endif
1345}
1346
1347/*
1348 * Interface to system's page allocator. No need to hold the
1349 * kmem_cache_node ->list_lock.
1350 *
1351 * If we requested dmaable memory, we will get it. Even if we
1352 * did not request dmaable memory, we might get it, but that
1353 * would be relatively rare and ignorable.
1354 */
1355static struct slab *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1356								int nodeid)
1357{
1358	struct folio *folio;
1359	struct slab *slab;
1360
1361	flags |= cachep->allocflags;
 
 
1362
1363	folio = (struct folio *) __alloc_pages_node(nodeid, flags, cachep->gfporder);
1364	if (!folio) {
1365		slab_out_of_memory(cachep, flags, nodeid);
1366		return NULL;
1367	}
1368
1369	slab = folio_slab(folio);
 
 
 
 
 
 
 
 
 
 
 
1370
1371	account_slab(slab, cachep->gfporder, cachep, flags);
1372	__folio_set_slab(folio);
1373	/* Make the flag visible before any changes to folio->mapping */
1374	smp_wmb();
1375	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1376	if (sk_memalloc_socks() && page_is_pfmemalloc(folio_page(folio, 0)))
1377		slab_set_pfmemalloc(slab);
 
 
 
1378
1379	return slab;
 
 
 
 
 
 
1380}
1381
1382/*
1383 * Interface to system's page release.
1384 */
1385static void kmem_freepages(struct kmem_cache *cachep, struct slab *slab)
1386{
1387	int order = cachep->gfporder;
1388	struct folio *folio = slab_folio(slab);
 
 
1389
1390	BUG_ON(!folio_test_slab(folio));
1391	__slab_clear_pfmemalloc(slab);
1392	page_mapcount_reset(folio_page(folio, 0));
1393	folio->mapping = NULL;
1394	/* Make the mapping reset visible before clearing the flag */
1395	smp_wmb();
1396	__folio_clear_slab(folio);
 
 
 
 
 
1397
1398	if (current->reclaim_state)
1399		current->reclaim_state->reclaimed_slab += 1 << order;
1400	unaccount_slab(slab, order, cachep);
1401	__free_pages(folio_page(folio, 0), order);
1402}
1403
1404static void kmem_rcu_free(struct rcu_head *head)
1405{
1406	struct kmem_cache *cachep;
1407	struct slab *slab;
1408
1409	slab = container_of(head, struct slab, rcu_head);
1410	cachep = slab->slab_cache;
1411
1412	kmem_freepages(cachep, slab);
1413}
1414
1415#if DEBUG
1416static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1417{
1418	if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) &&
1419		(cachep->size % PAGE_SIZE) == 0)
1420		return true;
1421
1422	return false;
1423}
1424
1425#ifdef CONFIG_DEBUG_PAGEALLOC
1426static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1427{
1428	if (!is_debug_pagealloc_cache(cachep))
1429		return;
1430
1431	__kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
 
 
 
1432}
1433
1434#else
1435static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1436				int map) {}
1437
1438#endif
1439
1440static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1441{
1442	int size = cachep->object_size;
1443	addr = &((char *)addr)[obj_offset(cachep)];
1444
1445	memset(addr, val, size);
1446	*(unsigned char *)(addr + size - 1) = POISON_END;
1447}
1448
1449static void dump_line(char *data, int offset, int limit)
1450{
1451	int i;
1452	unsigned char error = 0;
1453	int bad_count = 0;
1454
1455	pr_err("%03x: ", offset);
1456	for (i = 0; i < limit; i++) {
1457		if (data[offset + i] != POISON_FREE) {
1458			error = data[offset + i];
1459			bad_count++;
1460		}
1461	}
1462	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1463			&data[offset], limit, 1);
1464
1465	if (bad_count == 1) {
1466		error ^= POISON_FREE;
1467		if (!(error & (error - 1))) {
1468			pr_err("Single bit error detected. Probably bad RAM.\n");
1469#ifdef CONFIG_X86
1470			pr_err("Run memtest86+ or a similar memory test tool.\n");
1471#else
1472			pr_err("Run a memory test tool.\n");
1473#endif
1474		}
1475	}
1476}
1477#endif
1478
1479#if DEBUG
1480
1481static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1482{
1483	int i, size;
1484	char *realobj;
1485
1486	if (cachep->flags & SLAB_RED_ZONE) {
1487		pr_err("Redzone: 0x%llx/0x%llx\n",
1488		       *dbg_redzone1(cachep, objp),
1489		       *dbg_redzone2(cachep, objp));
1490	}
1491
1492	if (cachep->flags & SLAB_STORE_USER)
1493		pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
 
 
 
1494	realobj = (char *)objp + obj_offset(cachep);
1495	size = cachep->object_size;
1496	for (i = 0; i < size && lines; i += 16, lines--) {
1497		int limit;
1498		limit = 16;
1499		if (i + limit > size)
1500			limit = size - i;
1501		dump_line(realobj, i, limit);
1502	}
1503}
1504
1505static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1506{
1507	char *realobj;
1508	int size, i;
1509	int lines = 0;
1510
1511	if (is_debug_pagealloc_cache(cachep))
1512		return;
1513
1514	realobj = (char *)objp + obj_offset(cachep);
1515	size = cachep->object_size;
1516
1517	for (i = 0; i < size; i++) {
1518		char exp = POISON_FREE;
1519		if (i == size - 1)
1520			exp = POISON_END;
1521		if (realobj[i] != exp) {
1522			int limit;
1523			/* Mismatch ! */
1524			/* Print header */
1525			if (lines == 0) {
1526				pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1527				       print_tainted(), cachep->name,
1528				       realobj, size);
1529				print_objinfo(cachep, objp, 0);
1530			}
1531			/* Hexdump the affected line */
1532			i = (i / 16) * 16;
1533			limit = 16;
1534			if (i + limit > size)
1535				limit = size - i;
1536			dump_line(realobj, i, limit);
1537			i += 16;
1538			lines++;
1539			/* Limit to 5 lines */
1540			if (lines > 5)
1541				break;
1542		}
1543	}
1544	if (lines != 0) {
1545		/* Print some data about the neighboring objects, if they
1546		 * exist:
1547		 */
1548		struct slab *slab = virt_to_slab(objp);
1549		unsigned int objnr;
1550
1551		objnr = obj_to_index(cachep, slab, objp);
1552		if (objnr) {
1553			objp = index_to_obj(cachep, slab, objnr - 1);
1554			realobj = (char *)objp + obj_offset(cachep);
1555			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1556			print_objinfo(cachep, objp, 2);
1557		}
1558		if (objnr + 1 < cachep->num) {
1559			objp = index_to_obj(cachep, slab, objnr + 1);
1560			realobj = (char *)objp + obj_offset(cachep);
1561			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1562			print_objinfo(cachep, objp, 2);
1563		}
1564	}
1565}
1566#endif
1567
1568#if DEBUG
1569static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1570						struct slab *slab)
1571{
1572	int i;
1573
1574	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1575		poison_obj(cachep, slab->freelist - obj_offset(cachep),
1576			POISON_FREE);
1577	}
1578
1579	for (i = 0; i < cachep->num; i++) {
1580		void *objp = index_to_obj(cachep, slab, i);
1581
1582		if (cachep->flags & SLAB_POISON) {
1583			check_poison_obj(cachep, objp);
1584			slab_kernel_map(cachep, objp, 1);
1585		}
1586		if (cachep->flags & SLAB_RED_ZONE) {
1587			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1588				slab_error(cachep, "start of a freed object was overwritten");
1589			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1590				slab_error(cachep, "end of a freed object was overwritten");
1591		}
1592	}
1593}
1594#else
1595static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1596						struct slab *slab)
1597{
1598}
1599#endif
1600
1601/**
1602 * slab_destroy - destroy and release all objects in a slab
1603 * @cachep: cache pointer being destroyed
1604 * @slab: slab being destroyed
1605 *
1606 * Destroy all the objs in a slab, and release the mem back to the system.
1607 * Before calling the slab must have been unlinked from the cache. The
1608 * kmem_cache_node ->list_lock is not held/needed.
1609 */
1610static void slab_destroy(struct kmem_cache *cachep, struct slab *slab)
1611{
1612	void *freelist;
1613
1614	freelist = slab->freelist;
1615	slab_destroy_debugcheck(cachep, slab);
1616	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1617		call_rcu(&slab->rcu_head, kmem_rcu_free);
1618	else
1619		kmem_freepages(cachep, slab);
1620
1621	/*
1622	 * From now on, we don't use freelist
1623	 * although actual page can be freed in rcu context
1624	 */
1625	if (OFF_SLAB(cachep))
1626		kfree(freelist);
1627}
1628
1629/*
1630 * Update the size of the caches before calling slabs_destroy as it may
1631 * recursively call kfree.
1632 */
1633static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1634{
1635	struct slab *slab, *n;
1636
1637	list_for_each_entry_safe(slab, n, list, slab_list) {
1638		list_del(&slab->slab_list);
1639		slab_destroy(cachep, slab);
1640	}
1641}
1642
1643/**
1644 * calculate_slab_order - calculate size (page order) of slabs
1645 * @cachep: pointer to the cache that is being created
1646 * @size: size of objects to be created in this cache.
1647 * @flags: slab allocation flags
1648 *
1649 * Also calculates the number of objects per slab.
1650 *
1651 * This could be made much more intelligent.  For now, try to avoid using
1652 * high order pages for slabs.  When the gfp() functions are more friendly
1653 * towards high-order requests, this should be changed.
1654 *
1655 * Return: number of left-over bytes in a slab
1656 */
1657static size_t calculate_slab_order(struct kmem_cache *cachep,
1658				size_t size, slab_flags_t flags)
1659{
1660	size_t left_over = 0;
1661	int gfporder;
1662
1663	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1664		unsigned int num;
1665		size_t remainder;
1666
1667		num = cache_estimate(gfporder, size, flags, &remainder);
1668		if (!num)
1669			continue;
1670
1671		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1672		if (num > SLAB_OBJ_MAX_NUM)
1673			break;
1674
1675		if (flags & CFLGS_OFF_SLAB) {
1676			struct kmem_cache *freelist_cache;
1677			size_t freelist_size;
1678			size_t freelist_cache_size;
1679
1680			freelist_size = num * sizeof(freelist_idx_t);
1681			if (freelist_size > KMALLOC_MAX_CACHE_SIZE) {
1682				freelist_cache_size = PAGE_SIZE << get_order(freelist_size);
1683			} else {
1684				freelist_cache = kmalloc_slab(freelist_size, 0u);
1685				if (!freelist_cache)
1686					continue;
1687				freelist_cache_size = freelist_cache->size;
1688
1689				/*
1690				 * Needed to avoid possible looping condition
1691				 * in cache_grow_begin()
1692				 */
1693				if (OFF_SLAB(freelist_cache))
1694					continue;
1695			}
1696
1697			/* check if off slab has enough benefit */
1698			if (freelist_cache_size > cachep->size / 2)
1699				continue;
1700		}
1701
1702		/* Found something acceptable - save it away */
1703		cachep->num = num;
1704		cachep->gfporder = gfporder;
1705		left_over = remainder;
1706
1707		/*
1708		 * A VFS-reclaimable slab tends to have most allocations
1709		 * as GFP_NOFS and we really don't want to have to be allocating
1710		 * higher-order pages when we are unable to shrink dcache.
1711		 */
1712		if (flags & SLAB_RECLAIM_ACCOUNT)
1713			break;
1714
1715		/*
1716		 * Large number of objects is good, but very large slabs are
1717		 * currently bad for the gfp()s.
1718		 */
1719		if (gfporder >= slab_max_order)
1720			break;
1721
1722		/*
1723		 * Acceptable internal fragmentation?
1724		 */
1725		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1726			break;
1727	}
1728	return left_over;
1729}
1730
1731static struct array_cache __percpu *alloc_kmem_cache_cpus(
1732		struct kmem_cache *cachep, int entries, int batchcount)
1733{
1734	int cpu;
1735	size_t size;
1736	struct array_cache __percpu *cpu_cache;
1737
1738	size = sizeof(void *) * entries + sizeof(struct array_cache);
1739	cpu_cache = __alloc_percpu(size, sizeof(void *));
1740
1741	if (!cpu_cache)
1742		return NULL;
1743
1744	for_each_possible_cpu(cpu) {
1745		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1746				entries, batchcount);
1747	}
1748
1749	return cpu_cache;
1750}
1751
1752static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1753{
1754	if (slab_state >= FULL)
1755		return enable_cpucache(cachep, gfp);
1756
1757	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1758	if (!cachep->cpu_cache)
1759		return 1;
1760
1761	if (slab_state == DOWN) {
1762		/* Creation of first cache (kmem_cache). */
1763		set_up_node(kmem_cache, CACHE_CACHE);
1764	} else if (slab_state == PARTIAL) {
1765		/* For kmem_cache_node */
1766		set_up_node(cachep, SIZE_NODE);
1767	} else {
1768		int node;
1769
1770		for_each_online_node(node) {
1771			cachep->node[node] = kmalloc_node(
1772				sizeof(struct kmem_cache_node), gfp, node);
1773			BUG_ON(!cachep->node[node]);
1774			kmem_cache_node_init(cachep->node[node]);
1775		}
1776	}
1777
1778	cachep->node[numa_mem_id()]->next_reap =
1779			jiffies + REAPTIMEOUT_NODE +
1780			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1781
1782	cpu_cache_get(cachep)->avail = 0;
1783	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1784	cpu_cache_get(cachep)->batchcount = 1;
1785	cpu_cache_get(cachep)->touched = 0;
1786	cachep->batchcount = 1;
1787	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1788	return 0;
1789}
1790
1791slab_flags_t kmem_cache_flags(unsigned int object_size,
1792	slab_flags_t flags, const char *name)
 
1793{
1794	return flags;
1795}
1796
1797struct kmem_cache *
1798__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1799		   slab_flags_t flags, void (*ctor)(void *))
1800{
1801	struct kmem_cache *cachep;
1802
1803	cachep = find_mergeable(size, align, flags, name, ctor);
1804	if (cachep) {
1805		cachep->refcount++;
1806
1807		/*
1808		 * Adjust the object sizes so that we clear
1809		 * the complete object on kzalloc.
1810		 */
1811		cachep->object_size = max_t(int, cachep->object_size, size);
1812	}
1813	return cachep;
1814}
1815
1816static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1817			size_t size, slab_flags_t flags)
1818{
1819	size_t left;
1820
1821	cachep->num = 0;
1822
1823	/*
1824	 * If slab auto-initialization on free is enabled, store the freelist
1825	 * off-slab, so that its contents don't end up in one of the allocated
1826	 * objects.
1827	 */
1828	if (unlikely(slab_want_init_on_free(cachep)))
1829		return false;
1830
1831	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1832		return false;
1833
1834	left = calculate_slab_order(cachep, size,
1835			flags | CFLGS_OBJFREELIST_SLAB);
1836	if (!cachep->num)
1837		return false;
1838
1839	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1840		return false;
1841
1842	cachep->colour = left / cachep->colour_off;
1843
1844	return true;
1845}
1846
1847static bool set_off_slab_cache(struct kmem_cache *cachep,
1848			size_t size, slab_flags_t flags)
1849{
1850	size_t left;
1851
1852	cachep->num = 0;
1853
1854	/*
1855	 * Always use on-slab management when SLAB_NOLEAKTRACE
1856	 * to avoid recursive calls into kmemleak.
1857	 */
1858	if (flags & SLAB_NOLEAKTRACE)
1859		return false;
1860
1861	/*
1862	 * Size is large, assume best to place the slab management obj
1863	 * off-slab (should allow better packing of objs).
1864	 */
1865	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1866	if (!cachep->num)
1867		return false;
1868
1869	/*
1870	 * If the slab has been placed off-slab, and we have enough space then
1871	 * move it on-slab. This is at the expense of any extra colouring.
1872	 */
1873	if (left >= cachep->num * sizeof(freelist_idx_t))
1874		return false;
1875
1876	cachep->colour = left / cachep->colour_off;
1877
1878	return true;
1879}
1880
1881static bool set_on_slab_cache(struct kmem_cache *cachep,
1882			size_t size, slab_flags_t flags)
1883{
1884	size_t left;
1885
1886	cachep->num = 0;
1887
1888	left = calculate_slab_order(cachep, size, flags);
1889	if (!cachep->num)
1890		return false;
1891
1892	cachep->colour = left / cachep->colour_off;
1893
1894	return true;
1895}
1896
1897/**
1898 * __kmem_cache_create - Create a cache.
1899 * @cachep: cache management descriptor
1900 * @flags: SLAB flags
1901 *
1902 * Returns a ptr to the cache on success, NULL on failure.
1903 * Cannot be called within an int, but can be interrupted.
1904 * The @ctor is run when new pages are allocated by the cache.
1905 *
1906 * The flags are
1907 *
1908 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1909 * to catch references to uninitialised memory.
1910 *
1911 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1912 * for buffer overruns.
1913 *
1914 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1915 * cacheline.  This can be beneficial if you're counting cycles as closely
1916 * as davem.
1917 *
1918 * Return: a pointer to the created cache or %NULL in case of error
1919 */
1920int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
 
1921{
1922	size_t ralign = BYTES_PER_WORD;
1923	gfp_t gfp;
1924	int err;
1925	unsigned int size = cachep->size;
1926
1927#if DEBUG
1928#if FORCED_DEBUG
1929	/*
1930	 * Enable redzoning and last user accounting, except for caches with
1931	 * large objects, if the increased size would increase the object size
1932	 * above the next power of two: caches with object sizes just above a
1933	 * power of two have a significant amount of internal fragmentation.
1934	 */
1935	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1936						2 * sizeof(unsigned long long)))
1937		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1938	if (!(flags & SLAB_TYPESAFE_BY_RCU))
1939		flags |= SLAB_POISON;
1940#endif
1941#endif
1942
1943	/*
1944	 * Check that size is in terms of words.  This is needed to avoid
1945	 * unaligned accesses for some archs when redzoning is used, and makes
1946	 * sure any on-slab bufctl's are also correctly aligned.
1947	 */
1948	size = ALIGN(size, BYTES_PER_WORD);
 
 
 
1949
1950	if (flags & SLAB_RED_ZONE) {
1951		ralign = REDZONE_ALIGN;
1952		/* If redzoning, ensure that the second redzone is suitably
1953		 * aligned, by adjusting the object size accordingly. */
1954		size = ALIGN(size, REDZONE_ALIGN);
 
1955	}
1956
1957	/* 3) caller mandated alignment */
1958	if (ralign < cachep->align) {
1959		ralign = cachep->align;
1960	}
1961	/* disable debug if necessary */
1962	if (ralign > __alignof__(unsigned long long))
1963		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1964	/*
1965	 * 4) Store it.
1966	 */
1967	cachep->align = ralign;
1968	cachep->colour_off = cache_line_size();
1969	/* Offset must be a multiple of the alignment. */
1970	if (cachep->colour_off < cachep->align)
1971		cachep->colour_off = cachep->align;
1972
1973	if (slab_is_available())
1974		gfp = GFP_KERNEL;
1975	else
1976		gfp = GFP_NOWAIT;
1977
1978#if DEBUG
1979
1980	/*
1981	 * Both debugging options require word-alignment which is calculated
1982	 * into align above.
1983	 */
1984	if (flags & SLAB_RED_ZONE) {
1985		/* add space for red zone words */
1986		cachep->obj_offset += sizeof(unsigned long long);
1987		size += 2 * sizeof(unsigned long long);
1988	}
1989	if (flags & SLAB_STORE_USER) {
1990		/* user store requires one word storage behind the end of
1991		 * the real object. But if the second red zone needs to be
1992		 * aligned to 64 bits, we must allow that much space.
1993		 */
1994		if (flags & SLAB_RED_ZONE)
1995			size += REDZONE_ALIGN;
1996		else
1997			size += BYTES_PER_WORD;
1998	}
1999#endif
2000
2001	kasan_cache_create(cachep, &size, &flags);
2002
2003	size = ALIGN(size, cachep->align);
2004	/*
2005	 * We should restrict the number of objects in a slab to implement
2006	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2007	 */
2008	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2009		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2010
2011#if DEBUG
2012	/*
2013	 * To activate debug pagealloc, off-slab management is necessary
2014	 * requirement. In early phase of initialization, small sized slab
2015	 * doesn't get initialized so it would not be possible. So, we need
2016	 * to check size >= 256. It guarantees that all necessary small
2017	 * sized slab is initialized in current slab initialization sequence.
2018	 */
2019	if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) &&
2020		size >= 256 && cachep->object_size > cache_line_size()) {
2021		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2022			size_t tmp_size = ALIGN(size, PAGE_SIZE);
2023
2024			if (set_off_slab_cache(cachep, tmp_size, flags)) {
2025				flags |= CFLGS_OFF_SLAB;
2026				cachep->obj_offset += tmp_size - size;
2027				size = tmp_size;
2028				goto done;
2029			}
2030		}
2031	}
2032#endif
2033
2034	if (set_objfreelist_slab_cache(cachep, size, flags)) {
2035		flags |= CFLGS_OBJFREELIST_SLAB;
2036		goto done;
2037	}
2038
2039	if (set_off_slab_cache(cachep, size, flags)) {
2040		flags |= CFLGS_OFF_SLAB;
2041		goto done;
2042	}
2043
2044	if (set_on_slab_cache(cachep, size, flags))
2045		goto done;
2046
2047	return -E2BIG;
2048
2049done:
2050	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2051	cachep->flags = flags;
2052	cachep->allocflags = __GFP_COMP;
2053	if (flags & SLAB_CACHE_DMA)
2054		cachep->allocflags |= GFP_DMA;
2055	if (flags & SLAB_CACHE_DMA32)
2056		cachep->allocflags |= GFP_DMA32;
2057	if (flags & SLAB_RECLAIM_ACCOUNT)
2058		cachep->allocflags |= __GFP_RECLAIMABLE;
2059	cachep->size = size;
2060	cachep->reciprocal_buffer_size = reciprocal_value(size);
2061
2062#if DEBUG
2063	/*
2064	 * If we're going to use the generic kernel_map_pages()
2065	 * poisoning, then it's going to smash the contents of
2066	 * the redzone and userword anyhow, so switch them off.
2067	 */
2068	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2069		(cachep->flags & SLAB_POISON) &&
2070		is_debug_pagealloc_cache(cachep))
2071		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2072#endif
2073
 
 
 
 
 
2074	err = setup_cpu_cache(cachep, gfp);
2075	if (err) {
2076		__kmem_cache_release(cachep);
2077		return err;
2078	}
2079
2080	return 0;
2081}
2082
2083#if DEBUG
2084static void check_irq_off(void)
2085{
2086	BUG_ON(!irqs_disabled());
2087}
2088
2089static void check_irq_on(void)
2090{
2091	BUG_ON(irqs_disabled());
2092}
2093
2094static void check_mutex_acquired(void)
2095{
2096	BUG_ON(!mutex_is_locked(&slab_mutex));
2097}
2098
2099static void check_spinlock_acquired(struct kmem_cache *cachep)
2100{
2101#ifdef CONFIG_SMP
2102	check_irq_off();
2103	assert_raw_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2104#endif
2105}
2106
2107static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2108{
2109#ifdef CONFIG_SMP
2110	check_irq_off();
2111	assert_raw_spin_locked(&get_node(cachep, node)->list_lock);
2112#endif
2113}
2114
2115#else
2116#define check_irq_off()	do { } while(0)
2117#define check_irq_on()	do { } while(0)
2118#define check_mutex_acquired()	do { } while(0)
2119#define check_spinlock_acquired(x) do { } while(0)
2120#define check_spinlock_acquired_node(x, y) do { } while(0)
2121#endif
2122
2123static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2124				int node, bool free_all, struct list_head *list)
2125{
2126	int tofree;
2127
2128	if (!ac || !ac->avail)
2129		return;
2130
2131	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2132	if (tofree > ac->avail)
2133		tofree = (ac->avail + 1) / 2;
2134
2135	free_block(cachep, ac->entry, tofree, node, list);
2136	ac->avail -= tofree;
2137	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2138}
2139
2140static void do_drain(void *arg)
2141{
2142	struct kmem_cache *cachep = arg;
2143	struct array_cache *ac;
2144	int node = numa_mem_id();
2145	struct kmem_cache_node *n;
2146	LIST_HEAD(list);
2147
2148	check_irq_off();
2149	ac = cpu_cache_get(cachep);
2150	n = get_node(cachep, node);
2151	raw_spin_lock(&n->list_lock);
2152	free_block(cachep, ac->entry, ac->avail, node, &list);
2153	raw_spin_unlock(&n->list_lock);
2154	ac->avail = 0;
2155	slabs_destroy(cachep, &list);
 
2156}
2157
2158static void drain_cpu_caches(struct kmem_cache *cachep)
2159{
2160	struct kmem_cache_node *n;
2161	int node;
2162	LIST_HEAD(list);
2163
2164	on_each_cpu(do_drain, cachep, 1);
2165	check_irq_on();
2166	for_each_kmem_cache_node(cachep, node, n)
2167		if (n->alien)
2168			drain_alien_cache(cachep, n->alien);
2169
2170	for_each_kmem_cache_node(cachep, node, n) {
2171		raw_spin_lock_irq(&n->list_lock);
2172		drain_array_locked(cachep, n->shared, node, true, &list);
2173		raw_spin_unlock_irq(&n->list_lock);
2174
2175		slabs_destroy(cachep, &list);
2176	}
2177}
2178
2179/*
2180 * Remove slabs from the list of free slabs.
2181 * Specify the number of slabs to drain in tofree.
2182 *
2183 * Returns the actual number of slabs released.
2184 */
2185static int drain_freelist(struct kmem_cache *cache,
2186			struct kmem_cache_node *n, int tofree)
2187{
2188	struct list_head *p;
2189	int nr_freed;
2190	struct slab *slab;
2191
2192	nr_freed = 0;
2193	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2194
2195		raw_spin_lock_irq(&n->list_lock);
2196		p = n->slabs_free.prev;
2197		if (p == &n->slabs_free) {
2198			raw_spin_unlock_irq(&n->list_lock);
2199			goto out;
2200		}
2201
2202		slab = list_entry(p, struct slab, slab_list);
2203		list_del(&slab->slab_list);
2204		n->free_slabs--;
2205		n->total_slabs--;
2206		/*
2207		 * Safe to drop the lock. The slab is no longer linked
2208		 * to the cache.
2209		 */
2210		n->free_objects -= cache->num;
2211		raw_spin_unlock_irq(&n->list_lock);
2212		slab_destroy(cache, slab);
2213		nr_freed++;
2214
2215		cond_resched();
2216	}
2217out:
2218	return nr_freed;
2219}
2220
2221bool __kmem_cache_empty(struct kmem_cache *s)
2222{
2223	int node;
2224	struct kmem_cache_node *n;
2225
2226	for_each_kmem_cache_node(s, node, n)
2227		if (!list_empty(&n->slabs_full) ||
2228		    !list_empty(&n->slabs_partial))
2229			return false;
2230	return true;
2231}
2232
2233int __kmem_cache_shrink(struct kmem_cache *cachep)
2234{
2235	int ret = 0;
2236	int node;
2237	struct kmem_cache_node *n;
2238
2239	drain_cpu_caches(cachep);
2240
2241	check_irq_on();
2242	for_each_kmem_cache_node(cachep, node, n) {
2243		drain_freelist(cachep, n, INT_MAX);
2244
2245		ret += !list_empty(&n->slabs_full) ||
2246			!list_empty(&n->slabs_partial);
2247	}
2248	return (ret ? 1 : 0);
2249}
2250
2251int __kmem_cache_shutdown(struct kmem_cache *cachep)
2252{
2253	return __kmem_cache_shrink(cachep);
2254}
2255
2256void __kmem_cache_release(struct kmem_cache *cachep)
2257{
2258	int i;
2259	struct kmem_cache_node *n;
2260
2261	cache_random_seq_destroy(cachep);
2262
2263	free_percpu(cachep->cpu_cache);
2264
2265	/* NUMA: free the node structures */
2266	for_each_kmem_cache_node(cachep, i, n) {
2267		kfree(n->shared);
2268		free_alien_cache(n->alien);
2269		kfree(n);
2270		cachep->node[i] = NULL;
2271	}
2272}
2273
2274/*
2275 * Get the memory for a slab management obj.
2276 *
2277 * For a slab cache when the slab descriptor is off-slab, the
2278 * slab descriptor can't come from the same cache which is being created,
2279 * Because if it is the case, that means we defer the creation of
2280 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2281 * And we eventually call down to __kmem_cache_create(), which
2282 * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one.
2283 * This is a "chicken-and-egg" problem.
2284 *
2285 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2286 * which are all initialized during kmem_cache_init().
2287 */
2288static void *alloc_slabmgmt(struct kmem_cache *cachep,
2289				   struct slab *slab, int colour_off,
2290				   gfp_t local_flags, int nodeid)
2291{
2292	void *freelist;
2293	void *addr = slab_address(slab);
2294
2295	slab->s_mem = addr + colour_off;
2296	slab->active = 0;
2297
2298	if (OBJFREELIST_SLAB(cachep))
2299		freelist = NULL;
2300	else if (OFF_SLAB(cachep)) {
2301		/* Slab management obj is off-slab. */
2302		freelist = kmalloc_node(cachep->freelist_size,
2303					      local_flags, nodeid);
 
 
2304	} else {
2305		/* We will use last bytes at the slab for freelist */
2306		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2307				cachep->freelist_size;
2308	}
2309
2310	return freelist;
2311}
2312
2313static inline freelist_idx_t get_free_obj(struct slab *slab, unsigned int idx)
2314{
2315	return ((freelist_idx_t *) slab->freelist)[idx];
2316}
2317
2318static inline void set_free_obj(struct slab *slab,
2319					unsigned int idx, freelist_idx_t val)
2320{
2321	((freelist_idx_t *)(slab->freelist))[idx] = val;
2322}
2323
2324static void cache_init_objs_debug(struct kmem_cache *cachep, struct slab *slab)
2325{
2326#if DEBUG
2327	int i;
2328
2329	for (i = 0; i < cachep->num; i++) {
2330		void *objp = index_to_obj(cachep, slab, i);
2331
2332		if (cachep->flags & SLAB_STORE_USER)
2333			*dbg_userword(cachep, objp) = NULL;
2334
2335		if (cachep->flags & SLAB_RED_ZONE) {
2336			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2337			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2338		}
2339		/*
2340		 * Constructors are not allowed to allocate memory from the same
2341		 * cache which they are a constructor for.  Otherwise, deadlock.
2342		 * They must also be threaded.
2343		 */
2344		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2345			kasan_unpoison_object_data(cachep,
2346						   objp + obj_offset(cachep));
2347			cachep->ctor(objp + obj_offset(cachep));
2348			kasan_poison_object_data(
2349				cachep, objp + obj_offset(cachep));
2350		}
2351
2352		if (cachep->flags & SLAB_RED_ZONE) {
2353			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2354				slab_error(cachep, "constructor overwrote the end of an object");
2355			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2356				slab_error(cachep, "constructor overwrote the start of an object");
2357		}
2358		/* need to poison the objs? */
2359		if (cachep->flags & SLAB_POISON) {
2360			poison_obj(cachep, objp, POISON_FREE);
2361			slab_kernel_map(cachep, objp, 0);
2362		}
2363	}
2364#endif
2365}
2366
2367#ifdef CONFIG_SLAB_FREELIST_RANDOM
2368/* Hold information during a freelist initialization */
2369union freelist_init_state {
2370	struct {
2371		unsigned int pos;
2372		unsigned int *list;
2373		unsigned int count;
2374	};
2375	struct rnd_state rnd_state;
2376};
2377
2378/*
2379 * Initialize the state based on the randomization method available.
2380 * return true if the pre-computed list is available, false otherwise.
2381 */
2382static bool freelist_state_initialize(union freelist_init_state *state,
2383				struct kmem_cache *cachep,
2384				unsigned int count)
2385{
2386	bool ret;
2387	unsigned int rand;
2388
2389	/* Use best entropy available to define a random shift */
2390	rand = get_random_u32();
2391
2392	/* Use a random state if the pre-computed list is not available */
2393	if (!cachep->random_seq) {
2394		prandom_seed_state(&state->rnd_state, rand);
2395		ret = false;
2396	} else {
2397		state->list = cachep->random_seq;
2398		state->count = count;
2399		state->pos = rand % count;
2400		ret = true;
2401	}
2402	return ret;
2403}
2404
2405/* Get the next entry on the list and randomize it using a random shift */
2406static freelist_idx_t next_random_slot(union freelist_init_state *state)
2407{
2408	if (state->pos >= state->count)
2409		state->pos = 0;
2410	return state->list[state->pos++];
2411}
2412
2413/* Swap two freelist entries */
2414static void swap_free_obj(struct slab *slab, unsigned int a, unsigned int b)
2415{
2416	swap(((freelist_idx_t *) slab->freelist)[a],
2417		((freelist_idx_t *) slab->freelist)[b]);
2418}
2419
2420/*
2421 * Shuffle the freelist initialization state based on pre-computed lists.
2422 * return true if the list was successfully shuffled, false otherwise.
2423 */
2424static bool shuffle_freelist(struct kmem_cache *cachep, struct slab *slab)
2425{
2426	unsigned int objfreelist = 0, i, rand, count = cachep->num;
2427	union freelist_init_state state;
2428	bool precomputed;
2429
2430	if (count < 2)
2431		return false;
2432
2433	precomputed = freelist_state_initialize(&state, cachep, count);
2434
2435	/* Take a random entry as the objfreelist */
2436	if (OBJFREELIST_SLAB(cachep)) {
2437		if (!precomputed)
2438			objfreelist = count - 1;
2439		else
2440			objfreelist = next_random_slot(&state);
2441		slab->freelist = index_to_obj(cachep, slab, objfreelist) +
2442						obj_offset(cachep);
2443		count--;
2444	}
2445
2446	/*
2447	 * On early boot, generate the list dynamically.
2448	 * Later use a pre-computed list for speed.
2449	 */
2450	if (!precomputed) {
2451		for (i = 0; i < count; i++)
2452			set_free_obj(slab, i, i);
2453
2454		/* Fisher-Yates shuffle */
2455		for (i = count - 1; i > 0; i--) {
2456			rand = prandom_u32_state(&state.rnd_state);
2457			rand %= (i + 1);
2458			swap_free_obj(slab, i, rand);
2459		}
2460	} else {
2461		for (i = 0; i < count; i++)
2462			set_free_obj(slab, i, next_random_slot(&state));
2463	}
2464
2465	if (OBJFREELIST_SLAB(cachep))
2466		set_free_obj(slab, cachep->num - 1, objfreelist);
2467
2468	return true;
2469}
2470#else
2471static inline bool shuffle_freelist(struct kmem_cache *cachep,
2472				struct slab *slab)
2473{
2474	return false;
2475}
2476#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2477
2478static void cache_init_objs(struct kmem_cache *cachep,
2479			    struct slab *slab)
2480{
2481	int i;
2482	void *objp;
2483	bool shuffled;
2484
2485	cache_init_objs_debug(cachep, slab);
2486
2487	/* Try to randomize the freelist if enabled */
2488	shuffled = shuffle_freelist(cachep, slab);
2489
2490	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2491		slab->freelist = index_to_obj(cachep, slab, cachep->num - 1) +
2492						obj_offset(cachep);
2493	}
2494
2495	for (i = 0; i < cachep->num; i++) {
2496		objp = index_to_obj(cachep, slab, i);
2497		objp = kasan_init_slab_obj(cachep, objp);
2498
2499		/* constructor could break poison info */
2500		if (DEBUG == 0 && cachep->ctor) {
 
2501			kasan_unpoison_object_data(cachep, objp);
2502			cachep->ctor(objp);
2503			kasan_poison_object_data(cachep, objp);
2504		}
2505
2506		if (!shuffled)
2507			set_free_obj(slab, i, i);
 
 
 
 
 
 
 
 
 
2508	}
2509}
2510
2511static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slab)
2512{
2513	void *objp;
2514
2515	objp = index_to_obj(cachep, slab, get_free_obj(slab, slab->active));
2516	slab->active++;
 
 
 
 
 
2517
2518	return objp;
2519}
2520
2521static void slab_put_obj(struct kmem_cache *cachep,
2522			struct slab *slab, void *objp)
2523{
2524	unsigned int objnr = obj_to_index(cachep, slab, objp);
2525#if DEBUG
2526	unsigned int i;
2527
2528	/* Verify double free bug */
2529	for (i = slab->active; i < cachep->num; i++) {
2530		if (get_free_obj(slab, i) == objnr) {
2531			pr_err("slab: double free detected in cache '%s', objp %px\n",
2532			       cachep->name, objp);
2533			BUG();
2534		}
2535	}
2536#endif
2537	slab->active--;
2538	if (!slab->freelist)
2539		slab->freelist = objp + obj_offset(cachep);
 
 
 
2540
2541	set_free_obj(slab, slab->active, objnr);
 
 
 
 
 
 
 
 
 
2542}
2543
2544/*
2545 * Grow (by 1) the number of slabs within a cache.  This is called by
2546 * kmem_cache_alloc() when there are no active objs left in a cache.
2547 */
2548static struct slab *cache_grow_begin(struct kmem_cache *cachep,
2549				gfp_t flags, int nodeid)
2550{
2551	void *freelist;
2552	size_t offset;
2553	gfp_t local_flags;
2554	int slab_node;
2555	struct kmem_cache_node *n;
2556	struct slab *slab;
2557
2558	/*
2559	 * Be lazy and only check for valid flags here,  keeping it out of the
2560	 * critical path in kmem_cache_alloc().
2561	 */
2562	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2563		flags = kmalloc_fix_flags(flags);
2564
2565	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2566	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2567
 
2568	check_irq_off();
2569	if (gfpflags_allow_blocking(local_flags))
2570		local_irq_enable();
2571
2572	/*
2573	 * Get mem for the objs.  Attempt to allocate a physical page from
2574	 * 'nodeid'.
2575	 */
2576	slab = kmem_getpages(cachep, local_flags, nodeid);
2577	if (!slab)
2578		goto failed;
2579
2580	slab_node = slab_nid(slab);
2581	n = get_node(cachep, slab_node);
2582
2583	/* Get colour for the slab, and cal the next value. */
 
2584	n->colour_next++;
2585	if (n->colour_next >= cachep->colour)
2586		n->colour_next = 0;
2587
2588	offset = n->colour_next;
2589	if (offset >= cachep->colour)
2590		offset = 0;
2591
2592	offset *= cachep->colour_off;
2593
 
 
 
2594	/*
2595	 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2596	 * page_address() in the latter returns a non-tagged pointer,
2597	 * as it should be for slab pages.
 
2598	 */
2599	kasan_poison_slab(slab);
 
 
 
 
 
 
 
 
 
2600
2601	/* Get slab management. */
2602	freelist = alloc_slabmgmt(cachep, slab, offset,
2603			local_flags & ~GFP_CONSTRAINT_MASK, slab_node);
2604	if (OFF_SLAB(cachep) && !freelist)
2605		goto opps1;
2606
2607	slab->slab_cache = cachep;
2608	slab->freelist = freelist;
2609
2610	cache_init_objs(cachep, slab);
 
2611
2612	if (gfpflags_allow_blocking(local_flags))
2613		local_irq_disable();
 
 
2614
2615	return slab;
2616
 
 
 
 
2617opps1:
2618	kmem_freepages(cachep, slab);
2619failed:
2620	if (gfpflags_allow_blocking(local_flags))
2621		local_irq_disable();
2622	return NULL;
2623}
2624
2625static void cache_grow_end(struct kmem_cache *cachep, struct slab *slab)
2626{
2627	struct kmem_cache_node *n;
2628	void *list = NULL;
2629
2630	check_irq_off();
2631
2632	if (!slab)
2633		return;
2634
2635	INIT_LIST_HEAD(&slab->slab_list);
2636	n = get_node(cachep, slab_nid(slab));
2637
2638	raw_spin_lock(&n->list_lock);
2639	n->total_slabs++;
2640	if (!slab->active) {
2641		list_add_tail(&slab->slab_list, &n->slabs_free);
2642		n->free_slabs++;
2643	} else
2644		fixup_slab_list(cachep, n, slab, &list);
2645
2646	STATS_INC_GROWN(cachep);
2647	n->free_objects += cachep->num - slab->active;
2648	raw_spin_unlock(&n->list_lock);
2649
2650	fixup_objfreelist_debug(cachep, &list);
2651}
2652
2653#if DEBUG
2654
2655/*
2656 * Perform extra freeing checks:
2657 * - detect bad pointers.
2658 * - POISON/RED_ZONE checking
2659 */
2660static void kfree_debugcheck(const void *objp)
2661{
2662	if (!virt_addr_valid(objp)) {
2663		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2664		       (unsigned long)objp);
2665		BUG();
2666	}
2667}
2668
2669static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2670{
2671	unsigned long long redzone1, redzone2;
2672
2673	redzone1 = *dbg_redzone1(cache, obj);
2674	redzone2 = *dbg_redzone2(cache, obj);
2675
2676	/*
2677	 * Redzone is ok.
2678	 */
2679	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2680		return;
2681
2682	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2683		slab_error(cache, "double free detected");
2684	else
2685		slab_error(cache, "memory outside object was overwritten");
2686
2687	pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2688	       obj, redzone1, redzone2);
2689}
2690
2691static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2692				   unsigned long caller)
2693{
2694	unsigned int objnr;
2695	struct slab *slab;
2696
2697	BUG_ON(virt_to_cache(objp) != cachep);
2698
2699	objp -= obj_offset(cachep);
2700	kfree_debugcheck(objp);
2701	slab = virt_to_slab(objp);
2702
2703	if (cachep->flags & SLAB_RED_ZONE) {
2704		verify_redzone_free(cachep, objp);
2705		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2706		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2707	}
2708	if (cachep->flags & SLAB_STORE_USER)
 
2709		*dbg_userword(cachep, objp) = (void *)caller;
 
2710
2711	objnr = obj_to_index(cachep, slab, objp);
2712
2713	BUG_ON(objnr >= cachep->num);
2714	BUG_ON(objp != index_to_obj(cachep, slab, objnr));
2715
2716	if (cachep->flags & SLAB_POISON) {
2717		poison_obj(cachep, objp, POISON_FREE);
2718		slab_kernel_map(cachep, objp, 0);
2719	}
2720	return objp;
2721}
2722
2723#else
2724#define kfree_debugcheck(x) do { } while(0)
2725#define cache_free_debugcheck(x, objp, z) (objp)
2726#endif
2727
2728static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2729						void **list)
2730{
2731#if DEBUG
2732	void *next = *list;
2733	void *objp;
2734
2735	while (next) {
2736		objp = next - obj_offset(cachep);
2737		next = *(void **)next;
2738		poison_obj(cachep, objp, POISON_FREE);
2739	}
2740#endif
2741}
2742
2743static inline void fixup_slab_list(struct kmem_cache *cachep,
2744				struct kmem_cache_node *n, struct slab *slab,
2745				void **list)
2746{
2747	/* move slabp to correct slabp list: */
2748	list_del(&slab->slab_list);
2749	if (slab->active == cachep->num) {
2750		list_add(&slab->slab_list, &n->slabs_full);
2751		if (OBJFREELIST_SLAB(cachep)) {
2752#if DEBUG
2753			/* Poisoning will be done without holding the lock */
2754			if (cachep->flags & SLAB_POISON) {
2755				void **objp = slab->freelist;
2756
2757				*objp = *list;
2758				*list = objp;
2759			}
2760#endif
2761			slab->freelist = NULL;
2762		}
2763	} else
2764		list_add(&slab->slab_list, &n->slabs_partial);
2765}
2766
2767/* Try to find non-pfmemalloc slab if needed */
2768static noinline struct slab *get_valid_first_slab(struct kmem_cache_node *n,
2769					struct slab *slab, bool pfmemalloc)
2770{
2771	if (!slab)
2772		return NULL;
2773
2774	if (pfmemalloc)
2775		return slab;
2776
2777	if (!slab_test_pfmemalloc(slab))
2778		return slab;
2779
2780	/* No need to keep pfmemalloc slab if we have enough free objects */
2781	if (n->free_objects > n->free_limit) {
2782		slab_clear_pfmemalloc(slab);
2783		return slab;
2784	}
2785
2786	/* Move pfmemalloc slab to the end of list to speed up next search */
2787	list_del(&slab->slab_list);
2788	if (!slab->active) {
2789		list_add_tail(&slab->slab_list, &n->slabs_free);
2790		n->free_slabs++;
2791	} else
2792		list_add_tail(&slab->slab_list, &n->slabs_partial);
2793
2794	list_for_each_entry(slab, &n->slabs_partial, slab_list) {
2795		if (!slab_test_pfmemalloc(slab))
2796			return slab;
2797	}
2798
2799	n->free_touched = 1;
2800	list_for_each_entry(slab, &n->slabs_free, slab_list) {
2801		if (!slab_test_pfmemalloc(slab)) {
2802			n->free_slabs--;
2803			return slab;
2804		}
2805	}
2806
2807	return NULL;
2808}
2809
2810static struct slab *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2811{
2812	struct slab *slab;
2813
2814	assert_raw_spin_locked(&n->list_lock);
2815	slab = list_first_entry_or_null(&n->slabs_partial, struct slab,
2816					slab_list);
2817	if (!slab) {
2818		n->free_touched = 1;
2819		slab = list_first_entry_or_null(&n->slabs_free, struct slab,
2820						slab_list);
2821		if (slab)
2822			n->free_slabs--;
2823	}
2824
2825	if (sk_memalloc_socks())
2826		slab = get_valid_first_slab(n, slab, pfmemalloc);
2827
2828	return slab;
2829}
2830
2831static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2832				struct kmem_cache_node *n, gfp_t flags)
2833{
2834	struct slab *slab;
2835	void *obj;
2836	void *list = NULL;
2837
2838	if (!gfp_pfmemalloc_allowed(flags))
2839		return NULL;
2840
2841	raw_spin_lock(&n->list_lock);
2842	slab = get_first_slab(n, true);
2843	if (!slab) {
2844		raw_spin_unlock(&n->list_lock);
2845		return NULL;
2846	}
2847
2848	obj = slab_get_obj(cachep, slab);
2849	n->free_objects--;
2850
2851	fixup_slab_list(cachep, n, slab, &list);
2852
2853	raw_spin_unlock(&n->list_lock);
2854	fixup_objfreelist_debug(cachep, &list);
2855
2856	return obj;
2857}
2858
2859/*
2860 * Slab list should be fixed up by fixup_slab_list() for existing slab
2861 * or cache_grow_end() for new slab
2862 */
2863static __always_inline int alloc_block(struct kmem_cache *cachep,
2864		struct array_cache *ac, struct slab *slab, int batchcount)
2865{
2866	/*
2867	 * There must be at least one object available for
2868	 * allocation.
2869	 */
2870	BUG_ON(slab->active >= cachep->num);
2871
2872	while (slab->active < cachep->num && batchcount--) {
2873		STATS_INC_ALLOCED(cachep);
2874		STATS_INC_ACTIVE(cachep);
2875		STATS_SET_HIGH(cachep);
2876
2877		ac->entry[ac->avail++] = slab_get_obj(cachep, slab);
2878	}
2879
2880	return batchcount;
2881}
2882
2883static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2884{
2885	int batchcount;
2886	struct kmem_cache_node *n;
2887	struct array_cache *ac, *shared;
2888	int node;
2889	void *list = NULL;
2890	struct slab *slab;
2891
2892	check_irq_off();
2893	node = numa_mem_id();
2894
 
2895	ac = cpu_cache_get(cachep);
2896	batchcount = ac->batchcount;
2897	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2898		/*
2899		 * If there was little recent activity on this cache, then
2900		 * perform only a partial refill.  Otherwise we could generate
2901		 * refill bouncing.
2902		 */
2903		batchcount = BATCHREFILL_LIMIT;
2904	}
2905	n = get_node(cachep, node);
2906
2907	BUG_ON(ac->avail > 0 || !n);
2908	shared = READ_ONCE(n->shared);
2909	if (!n->free_objects && (!shared || !shared->avail))
2910		goto direct_grow;
2911
2912	raw_spin_lock(&n->list_lock);
2913	shared = READ_ONCE(n->shared);
2914
2915	/* See if we can refill from the shared array */
2916	if (shared && transfer_objects(ac, shared, batchcount)) {
2917		shared->touched = 1;
2918		goto alloc_done;
2919	}
2920
2921	while (batchcount > 0) {
 
2922		/* Get slab alloc is to come from. */
2923		slab = get_first_slab(n, false);
2924		if (!slab)
2925			goto must_grow;
2926
2927		check_spinlock_acquired(cachep);
2928
2929		batchcount = alloc_block(cachep, ac, slab, batchcount);
2930		fixup_slab_list(cachep, n, slab, &list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2931	}
2932
2933must_grow:
2934	n->free_objects -= ac->avail;
2935alloc_done:
2936	raw_spin_unlock(&n->list_lock);
2937	fixup_objfreelist_debug(cachep, &list);
2938
2939direct_grow:
2940	if (unlikely(!ac->avail)) {
 
 
2941		/* Check if we can use obj in pfmemalloc slab */
2942		if (sk_memalloc_socks()) {
2943			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2944
2945			if (obj)
2946				return obj;
2947		}
2948
2949		slab = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2950
2951		/*
2952		 * cache_grow_begin() can reenable interrupts,
2953		 * then ac could change.
2954		 */
2955		ac = cpu_cache_get(cachep);
2956		if (!ac->avail && slab)
2957			alloc_block(cachep, ac, slab, batchcount);
2958		cache_grow_end(cachep, slab);
2959
2960		if (!ac->avail)
 
2961			return NULL;
 
 
 
2962	}
2963	ac->touched = 1;
2964
2965	return ac->entry[--ac->avail];
2966}
2967
 
 
 
 
 
 
 
 
 
2968#if DEBUG
2969static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2970				gfp_t flags, void *objp, unsigned long caller)
2971{
2972	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2973	if (!objp || is_kfence_address(objp))
2974		return objp;
2975	if (cachep->flags & SLAB_POISON) {
2976		check_poison_obj(cachep, objp);
2977		slab_kernel_map(cachep, objp, 1);
2978		poison_obj(cachep, objp, POISON_INUSE);
2979	}
2980	if (cachep->flags & SLAB_STORE_USER)
2981		*dbg_userword(cachep, objp) = (void *)caller;
2982
2983	if (cachep->flags & SLAB_RED_ZONE) {
2984		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2985				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2986			slab_error(cachep, "double free, or memory outside object was overwritten");
2987			pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2988			       objp, *dbg_redzone1(cachep, objp),
2989			       *dbg_redzone2(cachep, objp));
2990		}
2991		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
2992		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
2993	}
2994
2995	objp += obj_offset(cachep);
2996	if (cachep->ctor && cachep->flags & SLAB_POISON)
2997		cachep->ctor(objp);
2998	if ((unsigned long)objp & (arch_slab_minalign() - 1)) {
2999		pr_err("0x%px: not aligned to arch_slab_minalign()=%u\n", objp,
3000		       arch_slab_minalign());
 
3001	}
3002	return objp;
3003}
3004#else
3005#define cache_alloc_debugcheck_after(a, b, objp, d) (objp)
3006#endif
3007
3008static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3009{
3010	void *objp;
3011	struct array_cache *ac;
3012
3013	check_irq_off();
3014
3015	ac = cpu_cache_get(cachep);
3016	if (likely(ac->avail)) {
3017		ac->touched = 1;
3018		objp = ac->entry[--ac->avail];
3019
3020		STATS_INC_ALLOCHIT(cachep);
3021		goto out;
3022	}
3023
3024	STATS_INC_ALLOCMISS(cachep);
3025	objp = cache_alloc_refill(cachep, flags);
3026	/*
3027	 * the 'ac' may be updated by cache_alloc_refill(),
3028	 * and kmemleak_erase() requires its correct value.
3029	 */
3030	ac = cpu_cache_get(cachep);
3031
3032out:
3033	/*
3034	 * To avoid a false negative, if an object that is in one of the
3035	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3036	 * treat the array pointers as a reference to the object.
3037	 */
3038	if (objp)
3039		kmemleak_erase(&ac->entry[ac->avail]);
3040	return objp;
3041}
3042
3043#ifdef CONFIG_NUMA
3044static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
3045
3046/*
3047 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3048 *
3049 * If we are in_interrupt, then process context, including cpusets and
3050 * mempolicy, may not apply and should not be used for allocation policy.
3051 */
3052static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3053{
3054	int nid_alloc, nid_here;
3055
3056	if (in_interrupt() || (flags & __GFP_THISNODE))
3057		return NULL;
3058	nid_alloc = nid_here = numa_mem_id();
3059	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3060		nid_alloc = cpuset_slab_spread_node();
3061	else if (current->mempolicy)
3062		nid_alloc = mempolicy_slab_node();
3063	if (nid_alloc != nid_here)
3064		return ____cache_alloc_node(cachep, flags, nid_alloc);
3065	return NULL;
3066}
3067
3068/*
3069 * Fallback function if there was no memory available and no objects on a
3070 * certain node and fall back is permitted. First we scan all the
3071 * available node for available objects. If that fails then we
3072 * perform an allocation without specifying a node. This allows the page
3073 * allocator to do its reclaim / fallback magic. We then insert the
3074 * slab into the proper nodelist and then allocate from it.
3075 */
3076static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3077{
3078	struct zonelist *zonelist;
 
3079	struct zoneref *z;
3080	struct zone *zone;
3081	enum zone_type highest_zoneidx = gfp_zone(flags);
3082	void *obj = NULL;
3083	struct slab *slab;
3084	int nid;
3085	unsigned int cpuset_mems_cookie;
3086
3087	if (flags & __GFP_THISNODE)
3088		return NULL;
3089
 
 
3090retry_cpuset:
3091	cpuset_mems_cookie = read_mems_allowed_begin();
3092	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3093
3094retry:
3095	/*
3096	 * Look through allowed nodes for objects available
3097	 * from existing per node queues.
3098	 */
3099	for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
3100		nid = zone_to_nid(zone);
3101
3102		if (cpuset_zone_allowed(zone, flags) &&
3103			get_node(cache, nid) &&
3104			get_node(cache, nid)->free_objects) {
3105				obj = ____cache_alloc_node(cache,
3106					gfp_exact_node(flags), nid);
3107				if (obj)
3108					break;
3109		}
3110	}
3111
3112	if (!obj) {
3113		/*
3114		 * This allocation will be performed within the constraints
3115		 * of the current cpuset / memory policy requirements.
3116		 * We may trigger various forms of reclaim on the allowed
3117		 * set and go into memory reserves if necessary.
3118		 */
3119		slab = cache_grow_begin(cache, flags, numa_mem_id());
3120		cache_grow_end(cache, slab);
3121		if (slab) {
3122			nid = slab_nid(slab);
3123			obj = ____cache_alloc_node(cache,
3124				gfp_exact_node(flags), nid);
3125
 
 
 
 
 
 
 
3126			/*
3127			 * Another processor may allocate the objects in
3128			 * the slab since we are not holding any locks.
3129			 */
3130			if (!obj)
3131				goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
3132		}
3133	}
3134
3135	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3136		goto retry_cpuset;
3137	return obj;
3138}
3139
3140/*
3141 * An interface to enable slab creation on nodeid
3142 */
3143static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3144				int nodeid)
3145{
3146	struct slab *slab;
3147	struct kmem_cache_node *n;
3148	void *obj = NULL;
3149	void *list = NULL;
 
3150
3151	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3152	n = get_node(cachep, nodeid);
3153	BUG_ON(!n);
3154
 
3155	check_irq_off();
3156	raw_spin_lock(&n->list_lock);
3157	slab = get_first_slab(n, false);
3158	if (!slab)
3159		goto must_grow;
3160
3161	check_spinlock_acquired_node(cachep, nodeid);
3162
3163	STATS_INC_NODEALLOCS(cachep);
3164	STATS_INC_ACTIVE(cachep);
3165	STATS_SET_HIGH(cachep);
3166
3167	BUG_ON(slab->active == cachep->num);
3168
3169	obj = slab_get_obj(cachep, slab);
3170	n->free_objects--;
3171
3172	fixup_slab_list(cachep, n, slab, &list);
3173
3174	raw_spin_unlock(&n->list_lock);
3175	fixup_objfreelist_debug(cachep, &list);
3176	return obj;
3177
3178must_grow:
3179	raw_spin_unlock(&n->list_lock);
3180	slab = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3181	if (slab) {
3182		/* This slab isn't counted yet so don't update free_objects */
3183		obj = slab_get_obj(cachep, slab);
3184	}
3185	cache_grow_end(cachep, slab);
3186
3187	return obj ? obj : fallback_alloc(cachep, flags);
 
 
 
3188}
3189
3190static __always_inline void *
3191__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid)
 
3192{
3193	void *objp = NULL;
 
3194	int slab_node = numa_mem_id();
3195
3196	if (nodeid == NUMA_NO_NODE) {
3197		if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3198			objp = alternate_node_alloc(cachep, flags);
3199			if (objp)
3200				goto out;
3201		}
 
 
 
 
 
 
 
 
 
 
 
 
3202		/*
3203		 * Use the locally cached objects if possible.
3204		 * However ____cache_alloc does not allow fallback
3205		 * to other nodes. It may fail while we still have
3206		 * objects on other nodes available.
3207		 */
3208		objp = ____cache_alloc(cachep, flags);
3209		nodeid = slab_node;
3210	} else if (nodeid == slab_node) {
3211		objp = ____cache_alloc(cachep, flags);
3212	} else if (!get_node(cachep, nodeid)) {
3213		/* Node not bootstrapped yet */
3214		objp = fallback_alloc(cachep, flags);
3215		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3216	}
 
3217
3218	/*
3219	 * We may just have run out of memory on the local node.
3220	 * ____cache_alloc_node() knows how to locate memory on other nodes
3221	 */
3222	if (!objp)
3223		objp = ____cache_alloc_node(cachep, flags, nodeid);
3224out:
 
3225	return objp;
3226}
3227#else
3228
3229static __always_inline void *
3230__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid __maybe_unused)
3231{
3232	return ____cache_alloc(cachep, flags);
3233}
3234
3235#endif /* CONFIG_NUMA */
3236
3237static __always_inline void *
3238slab_alloc_node(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags,
3239		int nodeid, size_t orig_size, unsigned long caller)
3240{
3241	unsigned long save_flags;
3242	void *objp;
3243	struct obj_cgroup *objcg = NULL;
3244	bool init = false;
3245
3246	flags &= gfp_allowed_mask;
3247	cachep = slab_pre_alloc_hook(cachep, lru, &objcg, 1, flags);
3248	if (unlikely(!cachep))
3249		return NULL;
3250
3251	objp = kfence_alloc(cachep, orig_size, flags);
3252	if (unlikely(objp))
3253		goto out;
3254
3255	local_irq_save(save_flags);
3256	objp = __do_cache_alloc(cachep, flags, nodeid);
3257	local_irq_restore(save_flags);
3258	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3259	prefetchw(objp);
3260	init = slab_want_init_on_alloc(flags, cachep);
3261
3262out:
3263	slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init,
3264				cachep->object_size);
3265	return objp;
3266}
3267
3268static __always_inline void *
3269slab_alloc(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags,
3270	   size_t orig_size, unsigned long caller)
3271{
3272	return slab_alloc_node(cachep, lru, flags, NUMA_NO_NODE, orig_size,
3273			       caller);
3274}
3275
3276/*
3277 * Caller needs to acquire correct kmem_cache_node's list_lock
3278 * @list: List of detached free slabs should be freed by caller
3279 */
3280static void free_block(struct kmem_cache *cachep, void **objpp,
3281			int nr_objects, int node, struct list_head *list)
3282{
3283	int i;
3284	struct kmem_cache_node *n = get_node(cachep, node);
3285	struct slab *slab;
3286
3287	n->free_objects += nr_objects;
3288
3289	for (i = 0; i < nr_objects; i++) {
3290		void *objp;
3291		struct slab *slab;
3292
3293		objp = objpp[i];
3294
3295		slab = virt_to_slab(objp);
3296		list_del(&slab->slab_list);
3297		check_spinlock_acquired_node(cachep, node);
3298		slab_put_obj(cachep, slab, objp);
3299		STATS_DEC_ACTIVE(cachep);
 
3300
3301		/* fixup slab chains */
3302		if (slab->active == 0) {
3303			list_add(&slab->slab_list, &n->slabs_free);
3304			n->free_slabs++;
 
 
 
 
3305		} else {
3306			/* Unconditionally move a slab to the end of the
3307			 * partial list on free - maximum time for the
3308			 * other objects to be freed, too.
3309			 */
3310			list_add_tail(&slab->slab_list, &n->slabs_partial);
3311		}
3312	}
3313
3314	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3315		n->free_objects -= cachep->num;
3316
3317		slab = list_last_entry(&n->slabs_free, struct slab, slab_list);
3318		list_move(&slab->slab_list, list);
3319		n->free_slabs--;
3320		n->total_slabs--;
3321	}
3322}
3323
3324static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3325{
3326	int batchcount;
3327	struct kmem_cache_node *n;
3328	int node = numa_mem_id();
3329	LIST_HEAD(list);
3330
3331	batchcount = ac->batchcount;
3332
3333	check_irq_off();
3334	n = get_node(cachep, node);
3335	raw_spin_lock(&n->list_lock);
3336	if (n->shared) {
3337		struct array_cache *shared_array = n->shared;
3338		int max = shared_array->limit - shared_array->avail;
3339		if (max) {
3340			if (batchcount > max)
3341				batchcount = max;
3342			memcpy(&(shared_array->entry[shared_array->avail]),
3343			       ac->entry, sizeof(void *) * batchcount);
3344			shared_array->avail += batchcount;
3345			goto free_done;
3346		}
3347	}
3348
3349	free_block(cachep, ac->entry, batchcount, node, &list);
3350free_done:
3351#if STATS
3352	{
3353		int i = 0;
3354		struct slab *slab;
3355
3356		list_for_each_entry(slab, &n->slabs_free, slab_list) {
3357			BUG_ON(slab->active);
3358
3359			i++;
3360		}
3361		STATS_SET_FREEABLE(cachep, i);
3362	}
3363#endif
3364	raw_spin_unlock(&n->list_lock);
 
3365	ac->avail -= batchcount;
3366	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3367	slabs_destroy(cachep, &list);
3368}
3369
3370/*
3371 * Release an obj back to its cache. If the obj has a constructed state, it must
3372 * be in this state _before_ it is released.  Called with disabled ints.
3373 */
3374static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3375					 unsigned long caller)
3376{
3377	bool init;
3378
3379	memcg_slab_free_hook(cachep, virt_to_slab(objp), &objp, 1);
3380
3381	if (is_kfence_address(objp)) {
3382		kmemleak_free_recursive(objp, cachep->flags);
3383		__kfence_free(objp);
3384		return;
3385	}
3386
3387	/*
3388	 * As memory initialization might be integrated into KASAN,
3389	 * kasan_slab_free and initialization memset must be
3390	 * kept together to avoid discrepancies in behavior.
3391	 */
3392	init = slab_want_init_on_free(cachep);
3393	if (init && !kasan_has_integrated_init())
3394		memset(objp, 0, cachep->object_size);
3395	/* KASAN might put objp into memory quarantine, delaying its reuse. */
3396	if (kasan_slab_free(cachep, objp, init))
3397		return;
3398
3399	/* Use KCSAN to help debug racy use-after-free. */
3400	if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU))
3401		__kcsan_check_access(objp, cachep->object_size,
3402				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
3403
3404	___cache_free(cachep, objp, caller);
3405}
3406
3407void ___cache_free(struct kmem_cache *cachep, void *objp,
3408		unsigned long caller)
3409{
3410	struct array_cache *ac = cpu_cache_get(cachep);
3411
 
 
3412	check_irq_off();
3413	kmemleak_free_recursive(objp, cachep->flags);
3414	objp = cache_free_debugcheck(cachep, objp, caller);
3415
 
 
3416	/*
3417	 * Skip calling cache_free_alien() when the platform is not numa.
3418	 * This will avoid cache misses that happen while accessing slabp (which
3419	 * is per page memory  reference) to get nodeid. Instead use a global
3420	 * variable to skip the call, which is mostly likely to be present in
3421	 * the cache.
3422	 */
3423	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3424		return;
3425
3426	if (ac->avail < ac->limit) {
3427		STATS_INC_FREEHIT(cachep);
3428	} else {
3429		STATS_INC_FREEMISS(cachep);
3430		cache_flusharray(cachep, ac);
3431	}
3432
3433	if (sk_memalloc_socks()) {
3434		struct slab *slab = virt_to_slab(objp);
3435
3436		if (unlikely(slab_test_pfmemalloc(slab))) {
3437			cache_free_pfmemalloc(cachep, slab, objp);
3438			return;
3439		}
3440	}
3441
3442	__free_one(ac, objp);
3443}
3444
3445static __always_inline
3446void *__kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru,
3447			     gfp_t flags)
 
 
 
 
 
 
3448{
3449	void *ret = slab_alloc(cachep, lru, flags, cachep->object_size, _RET_IP_);
3450
3451	trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, NUMA_NO_NODE);
 
 
3452
3453	return ret;
3454}
3455
3456void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3457{
3458	return __kmem_cache_alloc_lru(cachep, NULL, flags);
3459}
3460EXPORT_SYMBOL(kmem_cache_alloc);
3461
3462void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru,
3463			   gfp_t flags)
3464{
3465	return __kmem_cache_alloc_lru(cachep, lru, flags);
3466}
3467EXPORT_SYMBOL(kmem_cache_alloc_lru);
3468
3469static __always_inline void
3470cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3471				  size_t size, void **p, unsigned long caller)
3472{
3473	size_t i;
3474
3475	for (i = 0; i < size; i++)
3476		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3477}
3478
3479int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3480			  void **p)
3481{
3482	size_t i;
3483	struct obj_cgroup *objcg = NULL;
3484
3485	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
3486	if (!s)
3487		return 0;
3488
 
 
3489	local_irq_disable();
3490	for (i = 0; i < size; i++) {
3491		void *objp = kfence_alloc(s, s->object_size, flags) ?:
3492			     __do_cache_alloc(s, flags, NUMA_NO_NODE);
3493
3494		if (unlikely(!objp))
3495			goto error;
3496		p[i] = objp;
3497	}
3498	local_irq_enable();
3499
3500	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3501
3502	/*
3503	 * memcg and kmem_cache debug support and memory initialization.
3504	 * Done outside of the IRQ disabled section.
3505	 */
3506	slab_post_alloc_hook(s, objcg, flags, size, p,
3507			slab_want_init_on_alloc(flags, s), s->object_size);
3508	/* FIXME: Trace call missing. Christoph would like a bulk variant */
3509	return size;
3510error:
3511	local_irq_enable();
3512	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3513	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
3514	kmem_cache_free_bulk(s, i, p);
3515	return 0;
3516}
3517EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3519/**
3520 * kmem_cache_alloc_node - Allocate an object on the specified node
3521 * @cachep: The cache to allocate from.
3522 * @flags: See kmalloc().
3523 * @nodeid: node number of the target node.
3524 *
3525 * Identical to kmem_cache_alloc but it will allocate memory on the given
3526 * node, which can improve the performance for cpu bound structures.
3527 *
3528 * Fallback to other node is possible if __GFP_THISNODE is not set.
3529 *
3530 * Return: pointer to the new object or %NULL in case of error
3531 */
3532void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3533{
3534	void *ret = slab_alloc_node(cachep, NULL, flags, nodeid, cachep->object_size, _RET_IP_);
3535
3536	trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, nodeid);
 
 
 
3537
3538	return ret;
3539}
3540EXPORT_SYMBOL(kmem_cache_alloc_node);
3541
3542void *__kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3543			     int nodeid, size_t orig_size,
3544			     unsigned long caller)
3545{
3546	return slab_alloc_node(cachep, NULL, flags, nodeid,
3547			       orig_size, caller);
 
 
 
 
 
 
 
 
 
3548}
 
 
3549
3550#ifdef CONFIG_PRINTK
3551void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
3552{
3553	struct kmem_cache *cachep;
3554	unsigned int objnr;
3555	void *objp;
 
 
 
 
 
3556
3557	kpp->kp_ptr = object;
3558	kpp->kp_slab = slab;
3559	cachep = slab->slab_cache;
3560	kpp->kp_slab_cache = cachep;
3561	objp = object - obj_offset(cachep);
3562	kpp->kp_data_offset = obj_offset(cachep);
3563	slab = virt_to_slab(objp);
3564	objnr = obj_to_index(cachep, slab, objp);
3565	objp = index_to_obj(cachep, slab, objnr);
3566	kpp->kp_objp = objp;
3567	if (DEBUG && cachep->flags & SLAB_STORE_USER)
3568		kpp->kp_ret = *dbg_userword(cachep, objp);
3569}
3570#endif
3571
3572static __always_inline
3573void __do_kmem_cache_free(struct kmem_cache *cachep, void *objp,
3574			  unsigned long caller)
3575{
3576	unsigned long flags;
 
 
3577
3578	local_irq_save(flags);
3579	debug_check_no_locks_freed(objp, cachep->object_size);
3580	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3581		debug_check_no_obj_freed(objp, cachep->object_size);
3582	__cache_free(cachep, objp, caller);
3583	local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3584}
 
3585
3586void __kmem_cache_free(struct kmem_cache *cachep, void *objp,
3587		       unsigned long caller)
3588{
3589	__do_kmem_cache_free(cachep, objp, caller);
3590}
 
3591
3592/**
3593 * kmem_cache_free - Deallocate an object
3594 * @cachep: The cache the allocation was from.
3595 * @objp: The previously allocated object.
3596 *
3597 * Free an object which was previously allocated from this
3598 * cache.
3599 */
3600void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3601{
 
3602	cachep = cache_from_obj(cachep, objp);
3603	if (!cachep)
3604		return;
3605
3606	trace_kmem_cache_free(_RET_IP_, objp, cachep);
3607	__do_kmem_cache_free(cachep, objp, _RET_IP_);
 
 
 
 
 
 
3608}
3609EXPORT_SYMBOL(kmem_cache_free);
3610
3611void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3612{
 
 
3613
3614	local_irq_disable();
3615	for (int i = 0; i < size; i++) {
3616		void *objp = p[i];
3617		struct kmem_cache *s;
3618
3619		if (!orig_s) {
3620			struct folio *folio = virt_to_folio(objp);
3621
3622			/* called via kfree_bulk */
3623			if (!folio_test_slab(folio)) {
3624				local_irq_enable();
3625				free_large_kmalloc(folio, objp);
3626				local_irq_disable();
3627				continue;
3628			}
3629			s = folio_slab(folio)->slab_cache;
3630		} else {
3631			s = cache_from_obj(orig_s, objp);
3632		}
3633
3634		if (!s)
3635			continue;
3636
3637		debug_check_no_locks_freed(objp, s->object_size);
3638		if (!(s->flags & SLAB_DEBUG_OBJECTS))
3639			debug_check_no_obj_freed(objp, s->object_size);
3640
3641		__cache_free(s, objp, _RET_IP_);
3642	}
3643	local_irq_enable();
3644
3645	/* FIXME: add tracing */
3646}
3647EXPORT_SYMBOL(kmem_cache_free_bulk);
3648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3649/*
3650 * This initializes kmem_cache_node or resizes various caches for all nodes.
3651 */
3652static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3653{
3654	int ret;
3655	int node;
3656	struct kmem_cache_node *n;
 
 
3657
3658	for_each_online_node(node) {
3659		ret = setup_kmem_cache_node(cachep, node, gfp, true);
3660		if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3661			goto fail;
 
3662
 
 
 
 
 
 
 
 
3663	}
3664
3665	return 0;
3666
3667fail:
3668	if (!cachep->list.next) {
3669		/* Cache is not active yet. Roll back what we did */
3670		node--;
3671		while (node >= 0) {
3672			n = get_node(cachep, node);
3673			if (n) {
3674				kfree(n->shared);
3675				free_alien_cache(n->alien);
3676				kfree(n);
3677				cachep->node[node] = NULL;
3678			}
3679			node--;
3680		}
3681	}
3682	return -ENOMEM;
3683}
3684
3685/* Always called with the slab_mutex held */
3686static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3687			    int batchcount, int shared, gfp_t gfp)
3688{
3689	struct array_cache __percpu *cpu_cache, *prev;
3690	int cpu;
3691
3692	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3693	if (!cpu_cache)
3694		return -ENOMEM;
3695
3696	prev = cachep->cpu_cache;
3697	cachep->cpu_cache = cpu_cache;
3698	/*
3699	 * Without a previous cpu_cache there's no need to synchronize remote
3700	 * cpus, so skip the IPIs.
3701	 */
3702	if (prev)
3703		kick_all_cpus_sync();
3704
3705	check_irq_on();
3706	cachep->batchcount = batchcount;
3707	cachep->limit = limit;
3708	cachep->shared = shared;
3709
3710	if (!prev)
3711		goto setup_node;
3712
3713	for_each_online_cpu(cpu) {
3714		LIST_HEAD(list);
3715		int node;
3716		struct kmem_cache_node *n;
3717		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3718
3719		node = cpu_to_mem(cpu);
3720		n = get_node(cachep, node);
3721		raw_spin_lock_irq(&n->list_lock);
3722		free_block(cachep, ac->entry, ac->avail, node, &list);
3723		raw_spin_unlock_irq(&n->list_lock);
3724		slabs_destroy(cachep, &list);
3725	}
3726	free_percpu(prev);
3727
3728setup_node:
3729	return setup_kmem_cache_nodes(cachep, gfp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3730}
3731
3732/* Called with slab_mutex held always */
3733static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3734{
3735	int err;
3736	int limit = 0;
3737	int shared = 0;
3738	int batchcount = 0;
3739
3740	err = cache_random_seq_create(cachep, cachep->num, gfp);
3741	if (err)
3742		goto end;
 
 
 
3743
 
 
3744	/*
3745	 * The head array serves three purposes:
3746	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3747	 * - reduce the number of spinlock operations.
3748	 * - reduce the number of linked list operations on the slab and
3749	 *   bufctl chains: array operations are cheaper.
3750	 * The numbers are guessed, we should auto-tune as described by
3751	 * Bonwick.
3752	 */
3753	if (cachep->size > 131072)
3754		limit = 1;
3755	else if (cachep->size > PAGE_SIZE)
3756		limit = 8;
3757	else if (cachep->size > 1024)
3758		limit = 24;
3759	else if (cachep->size > 256)
3760		limit = 54;
3761	else
3762		limit = 120;
3763
3764	/*
3765	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3766	 * allocation behaviour: Most allocs on one cpu, most free operations
3767	 * on another cpu. For these cases, an efficient object passing between
3768	 * cpus is necessary. This is provided by a shared array. The array
3769	 * replaces Bonwick's magazine layer.
3770	 * On uniprocessor, it's functionally equivalent (but less efficient)
3771	 * to a larger limit. Thus disabled by default.
3772	 */
3773	shared = 0;
3774	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3775		shared = 8;
3776
3777#if DEBUG
3778	/*
3779	 * With debugging enabled, large batchcount lead to excessively long
3780	 * periods with disabled local interrupts. Limit the batchcount
3781	 */
3782	if (limit > 32)
3783		limit = 32;
3784#endif
3785	batchcount = (limit + 1) / 2;
 
3786	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3787end:
3788	if (err)
3789		pr_err("enable_cpucache failed for %s, error %d\n",
3790		       cachep->name, -err);
3791	return err;
3792}
3793
3794/*
3795 * Drain an array if it contains any elements taking the node lock only if
3796 * necessary. Note that the node listlock also protects the array_cache
3797 * if drain_array() is used on the shared array.
3798 */
3799static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3800			 struct array_cache *ac, int node)
3801{
3802	LIST_HEAD(list);
3803
3804	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
3805	check_mutex_acquired();
3806
3807	if (!ac || !ac->avail)
3808		return;
3809
3810	if (ac->touched) {
3811		ac->touched = 0;
3812		return;
 
 
 
 
 
 
 
 
 
 
 
 
3813	}
3814
3815	raw_spin_lock_irq(&n->list_lock);
3816	drain_array_locked(cachep, ac, node, false, &list);
3817	raw_spin_unlock_irq(&n->list_lock);
3818
3819	slabs_destroy(cachep, &list);
3820}
3821
3822/**
3823 * cache_reap - Reclaim memory from caches.
3824 * @w: work descriptor
3825 *
3826 * Called from workqueue/eventd every few seconds.
3827 * Purpose:
3828 * - clear the per-cpu caches for this CPU.
3829 * - return freeable pages to the main free memory pool.
3830 *
3831 * If we cannot acquire the cache chain mutex then just give up - we'll try
3832 * again on the next iteration.
3833 */
3834static void cache_reap(struct work_struct *w)
3835{
3836	struct kmem_cache *searchp;
3837	struct kmem_cache_node *n;
3838	int node = numa_mem_id();
3839	struct delayed_work *work = to_delayed_work(w);
3840
3841	if (!mutex_trylock(&slab_mutex))
3842		/* Give up. Setup the next iteration. */
3843		goto out;
3844
3845	list_for_each_entry(searchp, &slab_caches, list) {
3846		check_irq_on();
3847
3848		/*
3849		 * We only take the node lock if absolutely necessary and we
3850		 * have established with reasonable certainty that
3851		 * we can do some work if the lock was obtained.
3852		 */
3853		n = get_node(searchp, node);
3854
3855		reap_alien(searchp, n);
3856
3857		drain_array(searchp, n, cpu_cache_get(searchp), node);
3858
3859		/*
3860		 * These are racy checks but it does not matter
3861		 * if we skip one check or scan twice.
3862		 */
3863		if (time_after(n->next_reap, jiffies))
3864			goto next;
3865
3866		n->next_reap = jiffies + REAPTIMEOUT_NODE;
3867
3868		drain_array(searchp, n, n->shared, node);
3869
3870		if (n->free_touched)
3871			n->free_touched = 0;
3872		else {
3873			int freed;
3874
3875			freed = drain_freelist(searchp, n, (n->free_limit +
3876				5 * searchp->num - 1) / (5 * searchp->num));
3877			STATS_ADD_REAPED(searchp, freed);
3878		}
3879next:
3880		cond_resched();
3881	}
3882	check_irq_on();
3883	mutex_unlock(&slab_mutex);
3884	next_reap_node();
3885out:
3886	/* Set up the next iteration */
3887	schedule_delayed_work_on(smp_processor_id(), work,
3888				round_jiffies_relative(REAPTIMEOUT_AC));
3889}
3890
 
3891void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3892{
3893	unsigned long active_objs, num_objs, active_slabs;
3894	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
3895	unsigned long free_slabs = 0;
 
 
 
 
3896	int node;
3897	struct kmem_cache_node *n;
3898
 
 
3899	for_each_kmem_cache_node(cachep, node, n) {
3900		check_irq_on();
3901		raw_spin_lock_irq(&n->list_lock);
3902
3903		total_slabs += n->total_slabs;
3904		free_slabs += n->free_slabs;
3905		free_objs += n->free_objects;
3906
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3907		if (n->shared)
3908			shared_avail += n->shared->avail;
3909
3910		raw_spin_unlock_irq(&n->list_lock);
3911	}
3912	num_objs = total_slabs * cachep->num;
3913	active_slabs = total_slabs - free_slabs;
3914	active_objs = num_objs - free_objs;
 
 
 
 
 
3915
3916	sinfo->active_objs = active_objs;
3917	sinfo->num_objs = num_objs;
3918	sinfo->active_slabs = active_slabs;
3919	sinfo->num_slabs = total_slabs;
3920	sinfo->shared_avail = shared_avail;
3921	sinfo->limit = cachep->limit;
3922	sinfo->batchcount = cachep->batchcount;
3923	sinfo->shared = cachep->shared;
3924	sinfo->objects_per_slab = cachep->num;
3925	sinfo->cache_order = cachep->gfporder;
3926}
3927
3928void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3929{
3930#if STATS
3931	{			/* node stats */
3932		unsigned long high = cachep->high_mark;
3933		unsigned long allocs = cachep->num_allocations;
3934		unsigned long grown = cachep->grown;
3935		unsigned long reaped = cachep->reaped;
3936		unsigned long errors = cachep->errors;
3937		unsigned long max_freeable = cachep->max_freeable;
3938		unsigned long node_allocs = cachep->node_allocs;
3939		unsigned long node_frees = cachep->node_frees;
3940		unsigned long overflows = cachep->node_overflow;
3941
3942		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
3943			   allocs, high, grown,
3944			   reaped, errors, max_freeable, node_allocs,
3945			   node_frees, overflows);
3946	}
3947	/* cpu stats */
3948	{
3949		unsigned long allochit = atomic_read(&cachep->allochit);
3950		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3951		unsigned long freehit = atomic_read(&cachep->freehit);
3952		unsigned long freemiss = atomic_read(&cachep->freemiss);
3953
3954		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3955			   allochit, allocmiss, freehit, freemiss);
3956	}
3957#endif
3958}
3959
3960#define MAX_SLABINFO_WRITE 128
3961/**
3962 * slabinfo_write - Tuning for the slab allocator
3963 * @file: unused
3964 * @buffer: user buffer
3965 * @count: data length
3966 * @ppos: unused
3967 *
3968 * Return: %0 on success, negative error code otherwise.
3969 */
3970ssize_t slabinfo_write(struct file *file, const char __user *buffer,
3971		       size_t count, loff_t *ppos)
3972{
3973	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3974	int limit, batchcount, shared, res;
3975	struct kmem_cache *cachep;
3976
3977	if (count > MAX_SLABINFO_WRITE)
3978		return -EINVAL;
3979	if (copy_from_user(&kbuf, buffer, count))
3980		return -EFAULT;
3981	kbuf[MAX_SLABINFO_WRITE] = '\0';
3982
3983	tmp = strchr(kbuf, ' ');
3984	if (!tmp)
3985		return -EINVAL;
3986	*tmp = '\0';
3987	tmp++;
3988	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3989		return -EINVAL;
3990
3991	/* Find the cache in the chain of caches. */
3992	mutex_lock(&slab_mutex);
3993	res = -EINVAL;
3994	list_for_each_entry(cachep, &slab_caches, list) {
3995		if (!strcmp(cachep->name, kbuf)) {
3996			if (limit < 1 || batchcount < 1 ||
3997					batchcount > limit || shared < 0) {
3998				res = 0;
3999			} else {
4000				res = do_tune_cpucache(cachep, limit,
4001						       batchcount, shared,
4002						       GFP_KERNEL);
4003			}
4004			break;
4005		}
4006	}
4007	mutex_unlock(&slab_mutex);
4008	if (res >= 0)
4009		res = count;
4010	return res;
4011}
4012
4013#ifdef CONFIG_HARDENED_USERCOPY
4014/*
4015 * Rejects incorrectly sized objects and objects that are to be copied
4016 * to/from userspace but do not fall entirely within the containing slab
4017 * cache's usercopy region.
4018 *
4019 * Returns NULL if check passes, otherwise const char * to name of cache
4020 * to indicate an error.
4021 */
4022void __check_heap_object(const void *ptr, unsigned long n,
4023			 const struct slab *slab, bool to_user)
4024{
4025	struct kmem_cache *cachep;
4026	unsigned int objnr;
4027	unsigned long offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4028
4029	ptr = kasan_reset_tag(ptr);
 
 
 
 
 
4030
4031	/* Find and validate object. */
4032	cachep = slab->slab_cache;
4033	objnr = obj_to_index(cachep, slab, (void *)ptr);
4034	BUG_ON(objnr >= cachep->num);
4035
4036	/* Find offset within object. */
4037	if (is_kfence_address(ptr))
4038		offset = ptr - kfence_object_start(ptr);
4039	else
4040		offset = ptr - index_to_obj(cachep, slab, objnr) - obj_offset(cachep);
 
 
 
 
4041
4042	/* Allow address range falling entirely within usercopy region. */
4043	if (offset >= cachep->useroffset &&
4044	    offset - cachep->useroffset <= cachep->usersize &&
4045	    n <= cachep->useroffset - offset + cachep->usersize)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4046		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4047
4048	usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4049}
4050#endif /* CONFIG_HARDENED_USERCOPY */
v4.6
 
   1/*
   2 * linux/mm/slab.c
   3 * Written by Mark Hemment, 1996/97.
   4 * (markhe@nextd.demon.co.uk)
   5 *
   6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   7 *
   8 * Major cleanup, different bufctl logic, per-cpu arrays
   9 *	(c) 2000 Manfred Spraul
  10 *
  11 * Cleanup, make the head arrays unconditional, preparation for NUMA
  12 * 	(c) 2002 Manfred Spraul
  13 *
  14 * An implementation of the Slab Allocator as described in outline in;
  15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
  16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
  17 * or with a little more detail in;
  18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19 *	Jeff Bonwick (Sun Microsystems).
  20 *	Presented at: USENIX Summer 1994 Technical Conference
  21 *
  22 * The memory is organized in caches, one cache for each object type.
  23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24 * Each cache consists out of many slabs (they are small (usually one
  25 * page long) and always contiguous), and each slab contains multiple
  26 * initialized objects.
  27 *
  28 * This means, that your constructor is used only for newly allocated
  29 * slabs and you must pass objects with the same initializations to
  30 * kmem_cache_free.
  31 *
  32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33 * normal). If you need a special memory type, then must create a new
  34 * cache for that memory type.
  35 *
  36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37 *   full slabs with 0 free objects
  38 *   partial slabs
  39 *   empty slabs with no allocated objects
  40 *
  41 * If partial slabs exist, then new allocations come from these slabs,
  42 * otherwise from empty slabs or new slabs are allocated.
  43 *
  44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46 *
  47 * Each cache has a short per-cpu head array, most allocs
  48 * and frees go into that array, and if that array overflows, then 1/2
  49 * of the entries in the array are given back into the global cache.
  50 * The head array is strictly LIFO and should improve the cache hit rates.
  51 * On SMP, it additionally reduces the spinlock operations.
  52 *
  53 * The c_cpuarray may not be read with enabled local interrupts -
  54 * it's changed with a smp_call_function().
  55 *
  56 * SMP synchronization:
  57 *  constructors and destructors are called without any locking.
  58 *  Several members in struct kmem_cache and struct slab never change, they
  59 *	are accessed without any locking.
  60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61 *  	and local interrupts are disabled so slab code is preempt-safe.
  62 *  The non-constant members are protected with a per-cache irq spinlock.
  63 *
  64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65 * in 2000 - many ideas in the current implementation are derived from
  66 * his patch.
  67 *
  68 * Further notes from the original documentation:
  69 *
  70 * 11 April '97.  Started multi-threading - markhe
  71 *	The global cache-chain is protected by the mutex 'slab_mutex'.
  72 *	The sem is only needed when accessing/extending the cache-chain, which
  73 *	can never happen inside an interrupt (kmem_cache_create(),
  74 *	kmem_cache_shrink() and kmem_cache_reap()).
  75 *
  76 *	At present, each engine can be growing a cache.  This should be blocked.
  77 *
  78 * 15 March 2005. NUMA slab allocator.
  79 *	Shai Fultheim <shai@scalex86.org>.
  80 *	Shobhit Dayal <shobhit@calsoftinc.com>
  81 *	Alok N Kataria <alokk@calsoftinc.com>
  82 *	Christoph Lameter <christoph@lameter.com>
  83 *
  84 *	Modified the slab allocator to be node aware on NUMA systems.
  85 *	Each node has its own list of partial, free and full slabs.
  86 *	All object allocations for a node occur from node specific slab lists.
  87 */
  88
  89#include	<linux/__KEEPIDENTS__B.h>
  90#include	<linux/__KEEPIDENTS__C.h>
  91#include	<linux/__KEEPIDENTS__D.h>
  92#include	<linux/__KEEPIDENTS__E.h>
  93#include	<linux/__KEEPIDENTS__F.h>
  94#include	<linux/__KEEPIDENTS__G.h>
  95#include	<linux/__KEEPIDENTS__H.h>
  96#include	<linux/__KEEPIDENTS__I.h>
  97#include	<linux/__KEEPIDENTS__J.h>
  98#include	<linux/proc_fs.h>
  99#include	<linux/__KEEPIDENTS__BA.h>
 100#include	<linux/__KEEPIDENTS__BB.h>
 101#include	<linux/__KEEPIDENTS__BC.h>
 
 102#include	<linux/cpu.h>
 103#include	<linux/__KEEPIDENTS__BD.h>
 104#include	<linux/__KEEPIDENTS__BE.h>
 105#include	<linux/rcupdate.h>
 106#include	<linux/__KEEPIDENTS__BF.h>
 107#include	<linux/__KEEPIDENTS__BG.h>
 108#include	<linux/__KEEPIDENTS__BH.h>
 109#include	<linux/kmemleak.h>
 110#include	<linux/__KEEPIDENTS__BI.h>
 111#include	<linux/__KEEPIDENTS__BJ.h>
 112#include	<linux/__KEEPIDENTS__CA-__KEEPIDENTS__CB.h>
 113#include	<linux/__KEEPIDENTS__CC.h>
 114#include	<linux/reciprocal_div.h>
 115#include	<linux/debugobjects.h>
 116#include	<linux/kmemcheck.h>
 117#include	<linux/__KEEPIDENTS__CD.h>
 118#include	<linux/__KEEPIDENTS__CE.h>
 
 119
 120#include	<net/__KEEPIDENTS__CF.h>
 121
 122#include	<asm/cacheflush.h>
 123#include	<asm/tlbflush.h>
 124#include	<asm/page.h>
 125
 126#include <trace/events/kmem.h>
 127
 128#include	"internal.h"
 129
 130#include	"slab.h"
 131
 132/*
 133 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 134 *		  0 for faster, smaller code (especially in the critical paths).
 135 *
 136 * STATS	- 1 to collect stats for /proc/slabinfo.
 137 *		  0 for faster, smaller code (especially in the critical paths).
 138 *
 139 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 140 */
 141
 142#ifdef CONFIG_DEBUG_SLAB
 143#define	DEBUG		1
 144#define	STATS		1
 145#define	FORCED_DEBUG	1
 146#else
 147#define	DEBUG		0
 148#define	STATS		0
 149#define	FORCED_DEBUG	0
 150#endif
 151
 152/* Shouldn't this be in a header file somewhere? */
 153#define	BYTES_PER_WORD		sizeof(void *)
 154#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
 155
 156#ifndef ARCH_KMALLOC_FLAGS
 157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 158#endif
 159
 160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
 161				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
 162
 163#if FREELIST_BYTE_INDEX
 164typedef unsigned char freelist_idx_t;
 165#else
 166typedef unsigned short freelist_idx_t;
 167#endif
 168
 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
 170
 171/*
 172 * struct array_cache
 173 *
 174 * Purpose:
 175 * - LIFO ordering, to hand out cache-warm objects from _alloc
 176 * - reduce the number of linked list operations
 177 * - reduce spinlock operations
 178 *
 179 * The limit is stored in the per-cpu structure to reduce the data cache
 180 * footprint.
 181 *
 182 */
 183struct array_cache {
 184	unsigned int avail;
 185	unsigned int limit;
 186	unsigned int batchcount;
 187	unsigned int touched;
 188	void *entry[];	/*
 189			 * Must have this definition in here for the proper
 190			 * alignment of array_cache. Also simplifies accessing
 191			 * the entries.
 192			 */
 193};
 194
 195struct alien_cache {
 196	spinlock_t lock;
 197	struct array_cache ac;
 198};
 199
 200/*
 201 * Need this for bootstrapping a per node allocator.
 202 */
 203#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
 204static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
 205#define	CACHE_CACHE 0
 206#define	SIZE_NODE (MAX_NUMNODES)
 207
 208static int drain_freelist(struct kmem_cache *cache,
 209			struct kmem_cache_node *n, int tofree);
 210static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 211			int node, struct list_head *list);
 212static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
 213static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 214static void cache_reap(struct work_struct *unused);
 215
 
 
 
 
 
 216static int slab_early_init = 1;
 217
 218#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
 219
 220static void kmem_cache_node_init(struct kmem_cache_node *parent)
 221{
 222	INIT_LIST_HEAD(&parent->slabs_full);
 223	INIT_LIST_HEAD(&parent->slabs_partial);
 224	INIT_LIST_HEAD(&parent->slabs_free);
 
 
 225	parent->shared = NULL;
 226	parent->alien = NULL;
 227	parent->colour_next = 0;
 228	spin_lock_init(&parent->list_lock);
 229	parent->free_objects = 0;
 230	parent->free_touched = 0;
 231}
 232
 233#define MAKE_LIST(cachep, listp, slab, nodeid)				\
 234	do {								\
 235		INIT_LIST_HEAD(listp);					\
 236		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
 237	} while (0)
 238
 239#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
 240	do {								\
 241	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
 242	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 243	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
 244	} while (0)
 245
 246#define CFLGS_OBJFREELIST_SLAB	(0x40000000UL)
 247#define CFLGS_OFF_SLAB		(0x80000000UL)
 248#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
 249#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
 250
 251#define BATCHREFILL_LIMIT	16
 252/*
 253 * Optimization question: fewer reaps means less probability for unnessary
 254 * cpucache drain/refill cycles.
 255 *
 256 * OTOH the cpuarrays can contain lots of objects,
 257 * which could lock up otherwise freeable slabs.
 258 */
 259#define REAPTIMEOUT_AC		(2*HZ)
 260#define REAPTIMEOUT_NODE	(4*HZ)
 261
 262#if STATS
 263#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
 264#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
 265#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
 266#define	STATS_INC_GROWN(x)	((x)->grown++)
 267#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
 268#define	STATS_SET_HIGH(x)						\
 269	do {								\
 270		if ((x)->num_active > (x)->high_mark)			\
 271			(x)->high_mark = (x)->num_active;		\
 272	} while (0)
 273#define	STATS_INC_ERR(x)	((x)->errors++)
 274#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
 275#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
 276#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 277#define	STATS_SET_FREEABLE(x, i)					\
 278	do {								\
 279		if ((x)->max_freeable < i)				\
 280			(x)->max_freeable = i;				\
 281	} while (0)
 282#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
 283#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
 284#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
 285#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
 286#else
 287#define	STATS_INC_ACTIVE(x)	do { } while (0)
 288#define	STATS_DEC_ACTIVE(x)	do { } while (0)
 289#define	STATS_INC_ALLOCED(x)	do { } while (0)
 290#define	STATS_INC_GROWN(x)	do { } while (0)
 291#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
 292#define	STATS_SET_HIGH(x)	do { } while (0)
 293#define	STATS_INC_ERR(x)	do { } while (0)
 294#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
 295#define	STATS_INC_NODEFREES(x)	do { } while (0)
 296#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 297#define	STATS_SET_FREEABLE(x, i) do { } while (0)
 298#define STATS_INC_ALLOCHIT(x)	do { } while (0)
 299#define STATS_INC_ALLOCMISS(x)	do { } while (0)
 300#define STATS_INC_FREEHIT(x)	do { } while (0)
 301#define STATS_INC_FREEMISS(x)	do { } while (0)
 302#endif
 303
 304#if DEBUG
 305
 306/*
 307 * memory layout of objects:
 308 * 0		: objp
 309 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 310 * 		the end of an object is aligned with the end of the real
 311 * 		allocation. Catches writes behind the end of the allocation.
 312 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 313 * 		redzone word.
 314 * cachep->obj_offset: The real object.
 315 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 316 * cachep->size - 1* BYTES_PER_WORD: last caller address
 317 *					[BYTES_PER_WORD long]
 318 */
 319static int obj_offset(struct kmem_cache *cachep)
 320{
 321	return cachep->obj_offset;
 322}
 323
 324static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 325{
 326	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 327	return (unsigned long long*) (objp + obj_offset(cachep) -
 328				      sizeof(unsigned long long));
 329}
 330
 331static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 332{
 333	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 334	if (cachep->flags & SLAB_STORE_USER)
 335		return (unsigned long long *)(objp + cachep->size -
 336					      sizeof(unsigned long long) -
 337					      REDZONE_ALIGN);
 338	return (unsigned long long *) (objp + cachep->size -
 339				       sizeof(unsigned long long));
 340}
 341
 342static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 343{
 344	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 345	return (void **)(objp + cachep->size - BYTES_PER_WORD);
 346}
 347
 348#else
 349
 350#define obj_offset(x)			0
 351#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 352#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 353#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
 354
 355#endif
 356
 357#ifdef CONFIG_DEBUG_SLAB_LEAK
 358
 359static inline bool is_store_user_clean(struct kmem_cache *cachep)
 360{
 361	return atomic_read(&cachep->store_user_clean) == 1;
 362}
 363
 364static inline void set_store_user_clean(struct kmem_cache *cachep)
 365{
 366	atomic_set(&cachep->store_user_clean, 1);
 367}
 368
 369static inline void set_store_user_dirty(struct kmem_cache *cachep)
 370{
 371	if (is_store_user_clean(cachep))
 372		atomic_set(&cachep->store_user_clean, 0);
 373}
 374
 375#else
 376static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
 377
 378#endif
 379
 380/*
 381 * Do not go above this order unless 0 objects fit into the slab or
 382 * overridden on the command line.
 383 */
 384#define	SLAB_MAX_ORDER_HI	1
 385#define	SLAB_MAX_ORDER_LO	0
 386static int slab_max_order = SLAB_MAX_ORDER_LO;
 387static bool slab_max_order_set __initdata;
 388
 389static inline struct kmem_cache *virt_to_cache(const void *obj)
 390{
 391	struct page *page = virt_to_head_page(obj);
 392	return page->slab_cache;
 393}
 394
 395static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
 396				 unsigned int idx)
 397{
 398	return page->s_mem + cache->size * idx;
 399}
 400
 401/*
 402 * We want to avoid an expensive divide : (offset / cache->size)
 403 *   Using the fact that size is a constant for a particular cache,
 404 *   we can replace (offset / cache->size) by
 405 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 406 */
 407static inline unsigned int obj_to_index(const struct kmem_cache *cache,
 408					const struct page *page, void *obj)
 409{
 410	u32 offset = (obj - page->s_mem);
 411	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
 412}
 413
 414#define BOOT_CPUCACHE_ENTRIES	1
 415/* internal cache of cache description objs */
 416static struct kmem_cache kmem_cache_boot = {
 417	.batchcount = 1,
 418	.limit = BOOT_CPUCACHE_ENTRIES,
 419	.shared = 1,
 420	.size = sizeof(struct kmem_cache),
 421	.name = "kmem_cache",
 422};
 423
 424#define BAD_ALIEN_MAGIC 0x01020304ul
 425
 426static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 427
 428static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 429{
 430	return this_cpu_ptr(cachep->cpu_cache);
 431}
 432
 433/*
 434 * Calculate the number of objects and left-over bytes for a given buffer size.
 435 */
 436static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
 437		unsigned long flags, size_t *left_over)
 438{
 439	unsigned int num;
 440	size_t slab_size = PAGE_SIZE << gfporder;
 441
 442	/*
 443	 * The slab management structure can be either off the slab or
 444	 * on it. For the latter case, the memory allocated for a
 445	 * slab is used for:
 446	 *
 447	 * - @buffer_size bytes for each object
 448	 * - One freelist_idx_t for each object
 449	 *
 450	 * We don't need to consider alignment of freelist because
 451	 * freelist will be at the end of slab page. The objects will be
 452	 * at the correct alignment.
 453	 *
 454	 * If the slab management structure is off the slab, then the
 455	 * alignment will already be calculated into the size. Because
 456	 * the slabs are all pages aligned, the objects will be at the
 457	 * correct alignment when allocated.
 458	 */
 459	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
 460		num = slab_size / buffer_size;
 461		*left_over = slab_size % buffer_size;
 462	} else {
 463		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
 464		*left_over = slab_size %
 465			(buffer_size + sizeof(freelist_idx_t));
 466	}
 467
 468	return num;
 469}
 470
 471#if DEBUG
 472#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 473
 474static void __slab_error(const char *function, struct kmem_cache *cachep,
 475			char *msg)
 476{
 477	pr_err("slab error in %s(): cache `%s': %s\n",
 478	       function, cachep->name, msg);
 479	dump_stack();
 480	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 481}
 482#endif
 483
 484/*
 485 * By default on NUMA we use alien caches to stage the freeing of
 486 * objects allocated from other nodes. This causes massive memory
 487 * inefficiencies when using fake NUMA setup to split memory into a
 488 * large number of small nodes, so it can be disabled on the command
 489 * line
 490  */
 491
 492static int use_alien_caches __read_mostly = 1;
 493static int __init noaliencache_setup(char *s)
 494{
 495	use_alien_caches = 0;
 496	return 1;
 497}
 498__setup("noaliencache", noaliencache_setup);
 499
 500static int __init slab_max_order_setup(char *str)
 501{
 502	get_option(&str, &slab_max_order);
 503	slab_max_order = slab_max_order < 0 ? 0 :
 504				min(slab_max_order, MAX_ORDER - 1);
 505	slab_max_order_set = true;
 506
 507	return 1;
 508}
 509__setup("slab_max_order=", slab_max_order_setup);
 510
 511#ifdef CONFIG_NUMA
 512/*
 513 * Special reaping functions for NUMA systems called from cache_reap().
 514 * These take care of doing round robin flushing of alien caches (containing
 515 * objects freed on different nodes from which they were allocated) and the
 516 * flushing of remote pcps by calling drain_node_pages.
 517 */
 518static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 519
 520static void init_reap_node(int cpu)
 521{
 522	int node;
 523
 524	node = next_node(cpu_to_mem(cpu), node_online_map);
 525	if (node == MAX_NUMNODES)
 526		node = first_node(node_online_map);
 527
 528	per_cpu(slab_reap_node, cpu) = node;
 529}
 530
 531static void next_reap_node(void)
 532{
 533	int node = __this_cpu_read(slab_reap_node);
 534
 535	node = next_node(node, node_online_map);
 536	if (unlikely(node >= MAX_NUMNODES))
 537		node = first_node(node_online_map);
 538	__this_cpu_write(slab_reap_node, node);
 539}
 540
 541#else
 542#define init_reap_node(cpu) do { } while (0)
 543#define next_reap_node(void) do { } while (0)
 544#endif
 545
 546/*
 547 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 548 * via the workqueue/eventd.
 549 * Add the CPU number into the expiration time to minimize the possibility of
 550 * the CPUs getting into lockstep and contending for the global cache chain
 551 * lock.
 552 */
 553static void start_cpu_timer(int cpu)
 554{
 555	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 556
 557	/*
 558	 * When this gets called from do_initcalls via cpucache_init(),
 559	 * init_workqueues() has already run, so keventd will be setup
 560	 * at that time.
 561	 */
 562	if (keventd_up() && reap_work->work.func == NULL) {
 563		init_reap_node(cpu);
 564		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
 565		schedule_delayed_work_on(cpu, reap_work,
 566					__round_jiffies_relative(HZ, cpu));
 567	}
 568}
 569
 570static void init_arraycache(struct array_cache *ac, int limit, int batch)
 571{
 572	/*
 573	 * The array_cache structures contain pointers to free object.
 574	 * However, when such objects are allocated or transferred to another
 575	 * cache the pointers are not cleared and they could be counted as
 576	 * valid references during a kmemleak scan. Therefore, kmemleak must
 577	 * not scan such objects.
 578	 */
 579	kmemleak_no_scan(ac);
 580	if (ac) {
 581		ac->avail = 0;
 582		ac->limit = limit;
 583		ac->batchcount = batch;
 584		ac->touched = 0;
 585	}
 586}
 587
 588static struct array_cache *alloc_arraycache(int node, int entries,
 589					    int batchcount, gfp_t gfp)
 590{
 591	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 592	struct array_cache *ac = NULL;
 593
 594	ac = kmalloc_node(memsize, gfp, node);
 
 
 
 
 
 
 
 
 595	init_arraycache(ac, entries, batchcount);
 596	return ac;
 597}
 598
 599static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
 600					struct page *page, void *objp)
 601{
 602	struct kmem_cache_node *n;
 603	int page_node;
 604	LIST_HEAD(list);
 605
 606	page_node = page_to_nid(page);
 607	n = get_node(cachep, page_node);
 608
 609	spin_lock(&n->list_lock);
 610	free_block(cachep, &objp, 1, page_node, &list);
 611	spin_unlock(&n->list_lock);
 612
 613	slabs_destroy(cachep, &list);
 614}
 615
 616/*
 617 * Transfer objects in one arraycache to another.
 618 * Locking must be handled by the caller.
 619 *
 620 * Return the number of entries transferred.
 621 */
 622static int transfer_objects(struct array_cache *to,
 623		struct array_cache *from, unsigned int max)
 624{
 625	/* Figure out how many entries to transfer */
 626	int nr = min3(from->avail, max, to->limit - to->avail);
 627
 628	if (!nr)
 629		return 0;
 630
 631	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
 632			sizeof(void *) *nr);
 633
 634	from->avail -= nr;
 635	to->avail += nr;
 636	return nr;
 637}
 638
 
 
 
 
 
 
 
 
 
 
 639#ifndef CONFIG_NUMA
 640
 641#define drain_alien_cache(cachep, alien) do { } while (0)
 642#define reap_alien(cachep, n) do { } while (0)
 643
 644static inline struct alien_cache **alloc_alien_cache(int node,
 645						int limit, gfp_t gfp)
 646{
 647	return (struct alien_cache **)BAD_ALIEN_MAGIC;
 648}
 649
 650static inline void free_alien_cache(struct alien_cache **ac_ptr)
 651{
 652}
 653
 654static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 655{
 656	return 0;
 657}
 658
 659static inline void *alternate_node_alloc(struct kmem_cache *cachep,
 660		gfp_t flags)
 661{
 662	return NULL;
 663}
 664
 665static inline void *____cache_alloc_node(struct kmem_cache *cachep,
 666		 gfp_t flags, int nodeid)
 667{
 668	return NULL;
 669}
 670
 671static inline gfp_t gfp_exact_node(gfp_t flags)
 672{
 673	return flags & ~__GFP_NOFAIL;
 674}
 675
 676#else	/* CONFIG_NUMA */
 677
 678static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
 679static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 680
 681static struct alien_cache *__alloc_alien_cache(int node, int entries,
 682						int batch, gfp_t gfp)
 683{
 684	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
 685	struct alien_cache *alc = NULL;
 686
 687	alc = kmalloc_node(memsize, gfp, node);
 688	init_arraycache(&alc->ac, entries, batch);
 689	spin_lock_init(&alc->lock);
 
 
 
 690	return alc;
 691}
 692
 693static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 694{
 695	struct alien_cache **alc_ptr;
 696	size_t memsize = sizeof(void *) * nr_node_ids;
 697	int i;
 698
 699	if (limit > 1)
 700		limit = 12;
 701	alc_ptr = kzalloc_node(memsize, gfp, node);
 702	if (!alc_ptr)
 703		return NULL;
 704
 705	for_each_node(i) {
 706		if (i == node || !node_online(i))
 707			continue;
 708		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
 709		if (!alc_ptr[i]) {
 710			for (i--; i >= 0; i--)
 711				kfree(alc_ptr[i]);
 712			kfree(alc_ptr);
 713			return NULL;
 714		}
 715	}
 716	return alc_ptr;
 717}
 718
 719static void free_alien_cache(struct alien_cache **alc_ptr)
 720{
 721	int i;
 722
 723	if (!alc_ptr)
 724		return;
 725	for_each_node(i)
 726	    kfree(alc_ptr[i]);
 727	kfree(alc_ptr);
 728}
 729
 730static void __drain_alien_cache(struct kmem_cache *cachep,
 731				struct array_cache *ac, int node,
 732				struct list_head *list)
 733{
 734	struct kmem_cache_node *n = get_node(cachep, node);
 735
 736	if (ac->avail) {
 737		spin_lock(&n->list_lock);
 738		/*
 739		 * Stuff objects into the remote nodes shared array first.
 740		 * That way we could avoid the overhead of putting the objects
 741		 * into the free lists and getting them back later.
 742		 */
 743		if (n->shared)
 744			transfer_objects(n->shared, ac, ac->limit);
 745
 746		free_block(cachep, ac->entry, ac->avail, node, list);
 747		ac->avail = 0;
 748		spin_unlock(&n->list_lock);
 749	}
 750}
 751
 752/*
 753 * Called from cache_reap() to regularly drain alien caches round robin.
 754 */
 755static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
 756{
 757	int node = __this_cpu_read(slab_reap_node);
 758
 759	if (n->alien) {
 760		struct alien_cache *alc = n->alien[node];
 761		struct array_cache *ac;
 762
 763		if (alc) {
 764			ac = &alc->ac;
 765			if (ac->avail && spin_trylock_irq(&alc->lock)) {
 766				LIST_HEAD(list);
 767
 768				__drain_alien_cache(cachep, ac, node, &list);
 769				spin_unlock_irq(&alc->lock);
 770				slabs_destroy(cachep, &list);
 771			}
 772		}
 773	}
 774}
 775
 776static void drain_alien_cache(struct kmem_cache *cachep,
 777				struct alien_cache **alien)
 778{
 779	int i = 0;
 780	struct alien_cache *alc;
 781	struct array_cache *ac;
 782	unsigned long flags;
 783
 784	for_each_online_node(i) {
 785		alc = alien[i];
 786		if (alc) {
 787			LIST_HEAD(list);
 788
 789			ac = &alc->ac;
 790			spin_lock_irqsave(&alc->lock, flags);
 791			__drain_alien_cache(cachep, ac, i, &list);
 792			spin_unlock_irqrestore(&alc->lock, flags);
 793			slabs_destroy(cachep, &list);
 794		}
 795	}
 796}
 797
 798static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
 799				int node, int page_node)
 800{
 801	struct kmem_cache_node *n;
 802	struct alien_cache *alien = NULL;
 803	struct array_cache *ac;
 804	LIST_HEAD(list);
 805
 806	n = get_node(cachep, node);
 807	STATS_INC_NODEFREES(cachep);
 808	if (n->alien && n->alien[page_node]) {
 809		alien = n->alien[page_node];
 810		ac = &alien->ac;
 811		spin_lock(&alien->lock);
 812		if (unlikely(ac->avail == ac->limit)) {
 813			STATS_INC_ACOVERFLOW(cachep);
 814			__drain_alien_cache(cachep, ac, page_node, &list);
 815		}
 816		ac->entry[ac->avail++] = objp;
 817		spin_unlock(&alien->lock);
 818		slabs_destroy(cachep, &list);
 819	} else {
 820		n = get_node(cachep, page_node);
 821		spin_lock(&n->list_lock);
 822		free_block(cachep, &objp, 1, page_node, &list);
 823		spin_unlock(&n->list_lock);
 824		slabs_destroy(cachep, &list);
 825	}
 826	return 1;
 827}
 828
 829static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 830{
 831	int page_node = page_to_nid(virt_to_page(objp));
 832	int node = numa_mem_id();
 833	/*
 834	 * Make sure we are not freeing a object from another node to the array
 835	 * cache on this cpu.
 836	 */
 837	if (likely(node == page_node))
 838		return 0;
 839
 840	return __cache_free_alien(cachep, objp, node, page_node);
 841}
 842
 843/*
 844 * Construct gfp mask to allocate from a specific node but do not reclaim or
 845 * warn about failures.
 846 */
 847static inline gfp_t gfp_exact_node(gfp_t flags)
 848{
 849	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
 850}
 851#endif
 852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 853/*
 854 * Allocates and initializes node for a node on each slab cache, used for
 855 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
 856 * will be allocated off-node since memory is not yet online for the new node.
 857 * When hotplugging memory or a cpu, existing node are not replaced if
 858 * already in use.
 859 *
 860 * Must hold slab_mutex.
 861 */
 862static int init_cache_node_node(int node)
 863{
 
 864	struct kmem_cache *cachep;
 865	struct kmem_cache_node *n;
 866	const size_t memsize = sizeof(struct kmem_cache_node);
 867
 868	list_for_each_entry(cachep, &slab_caches, list) {
 869		/*
 870		 * Set up the kmem_cache_node for cpu before we can
 871		 * begin anything. Make sure some other cpu on this
 872		 * node has not already allocated this
 873		 */
 874		n = get_node(cachep, node);
 875		if (!n) {
 876			n = kmalloc_node(memsize, GFP_KERNEL, node);
 877			if (!n)
 878				return -ENOMEM;
 879			kmem_cache_node_init(n);
 880			n->next_reap = jiffies + REAPTIMEOUT_NODE +
 881			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
 882
 883			/*
 884			 * The kmem_cache_nodes don't come and go as CPUs
 885			 * come and go.  slab_mutex is sufficient
 886			 * protection here.
 887			 */
 888			cachep->node[node] = n;
 889		}
 890
 891		spin_lock_irq(&n->list_lock);
 892		n->free_limit =
 893			(1 + nr_cpus_node(node)) *
 894			cachep->batchcount + cachep->num;
 895		spin_unlock_irq(&n->list_lock);
 896	}
 897	return 0;
 898}
 
 899
 900static inline int slabs_tofree(struct kmem_cache *cachep,
 901						struct kmem_cache_node *n)
 902{
 903	return (n->free_objects + cachep->num - 1) / cachep->num;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 904}
 905
 
 
 906static void cpuup_canceled(long cpu)
 907{
 908	struct kmem_cache *cachep;
 909	struct kmem_cache_node *n = NULL;
 910	int node = cpu_to_mem(cpu);
 911	const struct cpumask *mask = cpumask_of_node(node);
 912
 913	list_for_each_entry(cachep, &slab_caches, list) {
 914		struct array_cache *nc;
 915		struct array_cache *shared;
 916		struct alien_cache **alien;
 917		LIST_HEAD(list);
 918
 919		n = get_node(cachep, node);
 920		if (!n)
 921			continue;
 922
 923		spin_lock_irq(&n->list_lock);
 924
 925		/* Free limit for this kmem_cache_node */
 926		n->free_limit -= cachep->batchcount;
 927
 928		/* cpu is dead; no one can alloc from it. */
 929		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
 930		if (nc) {
 931			free_block(cachep, nc->entry, nc->avail, node, &list);
 932			nc->avail = 0;
 933		}
 934
 935		if (!cpumask_empty(mask)) {
 936			spin_unlock_irq(&n->list_lock);
 937			goto free_slab;
 938		}
 939
 940		shared = n->shared;
 941		if (shared) {
 942			free_block(cachep, shared->entry,
 943				   shared->avail, node, &list);
 944			n->shared = NULL;
 945		}
 946
 947		alien = n->alien;
 948		n->alien = NULL;
 949
 950		spin_unlock_irq(&n->list_lock);
 951
 952		kfree(shared);
 953		if (alien) {
 954			drain_alien_cache(cachep, alien);
 955			free_alien_cache(alien);
 956		}
 957
 958free_slab:
 959		slabs_destroy(cachep, &list);
 960	}
 961	/*
 962	 * In the previous loop, all the objects were freed to
 963	 * the respective cache's slabs,  now we can go ahead and
 964	 * shrink each nodelist to its limit.
 965	 */
 966	list_for_each_entry(cachep, &slab_caches, list) {
 967		n = get_node(cachep, node);
 968		if (!n)
 969			continue;
 970		drain_freelist(cachep, n, slabs_tofree(cachep, n));
 971	}
 972}
 973
 974static int cpuup_prepare(long cpu)
 975{
 976	struct kmem_cache *cachep;
 977	struct kmem_cache_node *n = NULL;
 978	int node = cpu_to_mem(cpu);
 979	int err;
 980
 981	/*
 982	 * We need to do this right in the beginning since
 983	 * alloc_arraycache's are going to use this list.
 984	 * kmalloc_node allows us to add the slab to the right
 985	 * kmem_cache_node and not this cpu's kmem_cache_node
 986	 */
 987	err = init_cache_node_node(node);
 988	if (err < 0)
 989		goto bad;
 990
 991	/*
 992	 * Now we can go ahead with allocating the shared arrays and
 993	 * array caches
 994	 */
 995	list_for_each_entry(cachep, &slab_caches, list) {
 996		struct array_cache *shared = NULL;
 997		struct alien_cache **alien = NULL;
 998
 999		if (cachep->shared) {
1000			shared = alloc_arraycache(node,
1001				cachep->shared * cachep->batchcount,
1002				0xbaadf00d, GFP_KERNEL);
1003			if (!shared)
1004				goto bad;
1005		}
1006		if (use_alien_caches) {
1007			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1008			if (!alien) {
1009				kfree(shared);
1010				goto bad;
1011			}
1012		}
1013		n = get_node(cachep, node);
1014		BUG_ON(!n);
1015
1016		spin_lock_irq(&n->list_lock);
1017		if (!n->shared) {
1018			/*
1019			 * We are serialised from CPU_DEAD or
1020			 * CPU_UP_CANCELLED by the cpucontrol lock
1021			 */
1022			n->shared = shared;
1023			shared = NULL;
1024		}
1025#ifdef CONFIG_NUMA
1026		if (!n->alien) {
1027			n->alien = alien;
1028			alien = NULL;
1029		}
1030#endif
1031		spin_unlock_irq(&n->list_lock);
1032		kfree(shared);
1033		free_alien_cache(alien);
1034	}
1035
1036	return 0;
1037bad:
1038	cpuup_canceled(cpu);
1039	return -ENOMEM;
1040}
1041
1042static int cpuup_callback(struct notifier_block *nfb,
1043				    unsigned long action, void *hcpu)
1044{
1045	long cpu = (long)hcpu;
1046	int err = 0;
 
 
 
 
 
1047
1048	switch (action) {
1049	case CPU_UP_PREPARE:
1050	case CPU_UP_PREPARE_FROZEN:
1051		mutex_lock(&slab_mutex);
1052		err = cpuup_prepare(cpu);
1053		mutex_unlock(&slab_mutex);
1054		break;
1055	case CPU_ONLINE:
1056	case CPU_ONLINE_FROZEN:
1057		start_cpu_timer(cpu);
1058		break;
1059#ifdef CONFIG_HOTPLUG_CPU
1060  	case CPU_DOWN_PREPARE:
1061  	case CPU_DOWN_PREPARE_FROZEN:
1062		/*
1063		 * Shutdown cache reaper. Note that the slab_mutex is
1064		 * held so that if cache_reap() is invoked it cannot do
1065		 * anything expensive but will only modify reap_work
1066		 * and reschedule the timer.
1067		*/
1068		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1069		/* Now the cache_reaper is guaranteed to be not running. */
1070		per_cpu(slab_reap_work, cpu).work.func = NULL;
1071  		break;
1072  	case CPU_DOWN_FAILED:
1073  	case CPU_DOWN_FAILED_FROZEN:
1074		start_cpu_timer(cpu);
1075  		break;
1076	case CPU_DEAD:
1077	case CPU_DEAD_FROZEN:
1078		/*
1079		 * Even if all the cpus of a node are down, we don't free the
1080		 * kmem_cache_node of any cache. This to avoid a race between
1081		 * cpu_down, and a kmalloc allocation from another cpu for
1082		 * memory from the node of the cpu going down.  The node
1083		 * structure is usually allocated from kmem_cache_create() and
1084		 * gets destroyed at kmem_cache_destroy().
1085		 */
1086		/* fall through */
1087#endif
1088	case CPU_UP_CANCELED:
1089	case CPU_UP_CANCELED_FROZEN:
1090		mutex_lock(&slab_mutex);
1091		cpuup_canceled(cpu);
1092		mutex_unlock(&slab_mutex);
1093		break;
1094	}
1095	return notifier_from_errno(err);
1096}
1097
1098static struct notifier_block cpucache_notifier = {
1099	&cpuup_callback, NULL, 0
1100};
 
 
 
 
 
 
 
 
 
 
1101
1102#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1103/*
1104 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1105 * Returns -EBUSY if all objects cannot be drained so that the node is not
1106 * removed.
1107 *
1108 * Must hold slab_mutex.
1109 */
1110static int __meminit drain_cache_node_node(int node)
1111{
1112	struct kmem_cache *cachep;
1113	int ret = 0;
1114
1115	list_for_each_entry(cachep, &slab_caches, list) {
1116		struct kmem_cache_node *n;
1117
1118		n = get_node(cachep, node);
1119		if (!n)
1120			continue;
1121
1122		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1123
1124		if (!list_empty(&n->slabs_full) ||
1125		    !list_empty(&n->slabs_partial)) {
1126			ret = -EBUSY;
1127			break;
1128		}
1129	}
1130	return ret;
1131}
1132
1133static int __meminit slab_memory_callback(struct notifier_block *self,
1134					unsigned long action, void *arg)
1135{
1136	struct memory_notify *mnb = arg;
1137	int ret = 0;
1138	int nid;
1139
1140	nid = mnb->status_change_nid;
1141	if (nid < 0)
1142		goto out;
1143
1144	switch (action) {
1145	case MEM_GOING_ONLINE:
1146		mutex_lock(&slab_mutex);
1147		ret = init_cache_node_node(nid);
1148		mutex_unlock(&slab_mutex);
1149		break;
1150	case MEM_GOING_OFFLINE:
1151		mutex_lock(&slab_mutex);
1152		ret = drain_cache_node_node(nid);
1153		mutex_unlock(&slab_mutex);
1154		break;
1155	case MEM_ONLINE:
1156	case MEM_OFFLINE:
1157	case MEM_CANCEL_ONLINE:
1158	case MEM_CANCEL_OFFLINE:
1159		break;
1160	}
1161out:
1162	return notifier_from_errno(ret);
1163}
1164#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1165
1166/*
1167 * swap the static kmem_cache_node with kmalloced memory
1168 */
1169static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1170				int nodeid)
1171{
1172	struct kmem_cache_node *ptr;
1173
1174	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1175	BUG_ON(!ptr);
1176
1177	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1178	/*
1179	 * Do not assume that spinlocks can be initialized via memcpy:
1180	 */
1181	spin_lock_init(&ptr->list_lock);
1182
1183	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1184	cachep->node[nodeid] = ptr;
1185}
1186
1187/*
1188 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1189 * size of kmem_cache_node.
1190 */
1191static void __init set_up_node(struct kmem_cache *cachep, int index)
1192{
1193	int node;
1194
1195	for_each_online_node(node) {
1196		cachep->node[node] = &init_kmem_cache_node[index + node];
1197		cachep->node[node]->next_reap = jiffies +
1198		    REAPTIMEOUT_NODE +
1199		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1200	}
1201}
1202
1203/*
1204 * Initialisation.  Called after the page allocator have been initialised and
1205 * before smp_init().
1206 */
1207void __init kmem_cache_init(void)
1208{
1209	int i;
1210
1211	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1212					sizeof(struct rcu_head));
1213	kmem_cache = &kmem_cache_boot;
1214
1215	if (num_possible_nodes() == 1)
1216		use_alien_caches = 0;
1217
1218	for (i = 0; i < NUM_INIT_LISTS; i++)
1219		kmem_cache_node_init(&init_kmem_cache_node[i]);
1220
1221	/*
1222	 * Fragmentation resistance on low memory - only use bigger
1223	 * page orders on machines with more than 32MB of memory if
1224	 * not overridden on the command line.
1225	 */
1226	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1227		slab_max_order = SLAB_MAX_ORDER_HI;
1228
1229	/* Bootstrap is tricky, because several objects are allocated
1230	 * from caches that do not exist yet:
1231	 * 1) initialize the kmem_cache cache: it contains the struct
1232	 *    kmem_cache structures of all caches, except kmem_cache itself:
1233	 *    kmem_cache is statically allocated.
1234	 *    Initially an __init data area is used for the head array and the
1235	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1236	 *    array at the end of the bootstrap.
1237	 * 2) Create the first kmalloc cache.
1238	 *    The struct kmem_cache for the new cache is allocated normally.
1239	 *    An __init data area is used for the head array.
1240	 * 3) Create the remaining kmalloc caches, with minimally sized
1241	 *    head arrays.
1242	 * 4) Replace the __init data head arrays for kmem_cache and the first
1243	 *    kmalloc cache with kmalloc allocated arrays.
1244	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1245	 *    the other cache's with kmalloc allocated memory.
1246	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1247	 */
1248
1249	/* 1) create the kmem_cache */
1250
1251	/*
1252	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1253	 */
1254	create_boot_cache(kmem_cache, "kmem_cache",
1255		offsetof(struct kmem_cache, node) +
1256				  nr_node_ids * sizeof(struct kmem_cache_node *),
1257				  SLAB_HWCACHE_ALIGN);
1258	list_add(&kmem_cache->list, &slab_caches);
1259	slab_state = PARTIAL;
1260
1261	/*
1262	 * Initialize the caches that provide memory for the  kmem_cache_node
1263	 * structures first.  Without this, further allocations will bug.
1264	 */
1265	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1266				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
 
 
 
1267	slab_state = PARTIAL_NODE;
1268	setup_kmalloc_cache_index_table();
1269
1270	slab_early_init = 0;
1271
1272	/* 5) Replace the bootstrap kmem_cache_node */
1273	{
1274		int nid;
1275
1276		for_each_online_node(nid) {
1277			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1278
1279			init_list(kmalloc_caches[INDEX_NODE],
1280					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1281		}
1282	}
1283
1284	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1285}
1286
1287void __init kmem_cache_init_late(void)
1288{
1289	struct kmem_cache *cachep;
1290
1291	slab_state = UP;
1292
1293	/* 6) resize the head arrays to their final sizes */
1294	mutex_lock(&slab_mutex);
1295	list_for_each_entry(cachep, &slab_caches, list)
1296		if (enable_cpucache(cachep, GFP_NOWAIT))
1297			BUG();
1298	mutex_unlock(&slab_mutex);
1299
1300	/* Done! */
1301	slab_state = FULL;
1302
1303	/*
1304	 * Register a cpu startup notifier callback that initializes
1305	 * cpu_cache_get for all new cpus
1306	 */
1307	register_cpu_notifier(&cpucache_notifier);
1308
1309#ifdef CONFIG_NUMA
1310	/*
1311	 * Register a memory hotplug callback that initializes and frees
1312	 * node.
1313	 */
1314	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1315#endif
1316
1317	/*
1318	 * The reap timers are started later, with a module init call: That part
1319	 * of the kernel is not yet operational.
1320	 */
1321}
1322
1323static int __init cpucache_init(void)
1324{
1325	int cpu;
1326
1327	/*
1328	 * Register the timers that return unneeded pages to the page allocator
1329	 */
1330	for_each_online_cpu(cpu)
1331		start_cpu_timer(cpu);
 
1332
1333	/* Done! */
1334	slab_state = FULL;
1335	return 0;
1336}
1337__initcall(cpucache_init);
1338
1339static noinline void
1340slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1341{
1342#if DEBUG
1343	struct kmem_cache_node *n;
1344	struct page *page;
1345	unsigned long flags;
1346	int node;
1347	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1348				      DEFAULT_RATELIMIT_BURST);
1349
1350	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1351		return;
1352
1353	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1354		nodeid, gfpflags, &gfpflags);
1355	pr_warn("  cache: %s, object size: %d, order: %d\n",
1356		cachep->name, cachep->size, cachep->gfporder);
1357
1358	for_each_kmem_cache_node(cachep, node, n) {
1359		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1360		unsigned long active_slabs = 0, num_slabs = 0;
1361
1362		spin_lock_irqsave(&n->list_lock, flags);
1363		list_for_each_entry(page, &n->slabs_full, lru) {
1364			active_objs += cachep->num;
1365			active_slabs++;
1366		}
1367		list_for_each_entry(page, &n->slabs_partial, lru) {
1368			active_objs += page->active;
1369			active_slabs++;
1370		}
1371		list_for_each_entry(page, &n->slabs_free, lru)
1372			num_slabs++;
1373
1374		free_objects += n->free_objects;
1375		spin_unlock_irqrestore(&n->list_lock, flags);
1376
1377		num_slabs += active_slabs;
1378		num_objs = num_slabs * cachep->num;
1379		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1380			node, active_slabs, num_slabs, active_objs, num_objs,
1381			free_objects);
1382	}
1383#endif
1384}
1385
1386/*
1387 * Interface to system's page allocator. No need to hold the
1388 * kmem_cache_node ->list_lock.
1389 *
1390 * If we requested dmaable memory, we will get it. Even if we
1391 * did not request dmaable memory, we might get it, but that
1392 * would be relatively rare and ignorable.
1393 */
1394static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1395								int nodeid)
1396{
1397	struct page *page;
1398	int nr_pages;
1399
1400	flags |= cachep->allocflags;
1401	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1402		flags |= __GFP_RECLAIMABLE;
1403
1404	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1405	if (!page) {
1406		slab_out_of_memory(cachep, flags, nodeid);
1407		return NULL;
1408	}
1409
1410	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1411		__free_pages(page, cachep->gfporder);
1412		return NULL;
1413	}
1414
1415	nr_pages = (1 << cachep->gfporder);
1416	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1417		add_zone_page_state(page_zone(page),
1418			NR_SLAB_RECLAIMABLE, nr_pages);
1419	else
1420		add_zone_page_state(page_zone(page),
1421			NR_SLAB_UNRECLAIMABLE, nr_pages);
1422
1423	__SetPageSlab(page);
 
 
 
1424	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1425	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1426		SetPageSlabPfmemalloc(page);
1427
1428	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1429		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1430
1431		if (cachep->ctor)
1432			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1433		else
1434			kmemcheck_mark_unallocated_pages(page, nr_pages);
1435	}
1436
1437	return page;
1438}
1439
1440/*
1441 * Interface to system's page release.
1442 */
1443static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1444{
1445	int order = cachep->gfporder;
1446	unsigned long nr_freed = (1 << order);
1447
1448	kmemcheck_free_shadow(page, order);
1449
1450	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1451		sub_zone_page_state(page_zone(page),
1452				NR_SLAB_RECLAIMABLE, nr_freed);
1453	else
1454		sub_zone_page_state(page_zone(page),
1455				NR_SLAB_UNRECLAIMABLE, nr_freed);
1456
1457	BUG_ON(!PageSlab(page));
1458	__ClearPageSlabPfmemalloc(page);
1459	__ClearPageSlab(page);
1460	page_mapcount_reset(page);
1461	page->mapping = NULL;
1462
1463	if (current->reclaim_state)
1464		current->reclaim_state->reclaimed_slab += nr_freed;
1465	memcg_uncharge_slab(page, order, cachep);
1466	__free_pages(page, order);
1467}
1468
1469static void kmem_rcu_free(struct rcu_head *head)
1470{
1471	struct kmem_cache *cachep;
1472	struct page *page;
1473
1474	page = container_of(head, struct page, rcu_head);
1475	cachep = page->slab_cache;
1476
1477	kmem_freepages(cachep, page);
1478}
1479
1480#if DEBUG
1481static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1482{
1483	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1484		(cachep->size % PAGE_SIZE) == 0)
1485		return true;
1486
1487	return false;
1488}
1489
1490#ifdef CONFIG_DEBUG_PAGEALLOC
1491static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1492			    unsigned long caller)
1493{
1494	int size = cachep->object_size;
1495
1496	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1497
1498	if (size < 5 * sizeof(unsigned long))
1499		return;
1500
1501	*addr++ = 0x12345678;
1502	*addr++ = caller;
1503	*addr++ = smp_processor_id();
1504	size -= 3 * sizeof(unsigned long);
1505	{
1506		unsigned long *sptr = &caller;
1507		unsigned long svalue;
1508
1509		while (!kstack_end(sptr)) {
1510			svalue = *sptr++;
1511			if (kernel_text_address(svalue)) {
1512				*addr++ = svalue;
1513				size -= sizeof(unsigned long);
1514				if (size <= sizeof(unsigned long))
1515					break;
1516			}
1517		}
1518
1519	}
1520	*addr++ = 0x87654321;
1521}
1522
1523static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1524				int map, unsigned long caller)
1525{
1526	if (!is_debug_pagealloc_cache(cachep))
1527		return;
1528
1529	if (caller)
1530		store_stackinfo(cachep, objp, caller);
1531
1532	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1533}
1534
1535#else
1536static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1537				int map, unsigned long caller) {}
1538
1539#endif
1540
1541static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1542{
1543	int size = cachep->object_size;
1544	addr = &((char *)addr)[obj_offset(cachep)];
1545
1546	memset(addr, val, size);
1547	*(unsigned char *)(addr + size - 1) = POISON_END;
1548}
1549
1550static void dump_line(char *data, int offset, int limit)
1551{
1552	int i;
1553	unsigned char error = 0;
1554	int bad_count = 0;
1555
1556	pr_err("%03x: ", offset);
1557	for (i = 0; i < limit; i++) {
1558		if (data[offset + i] != POISON_FREE) {
1559			error = data[offset + i];
1560			bad_count++;
1561		}
1562	}
1563	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1564			&data[offset], limit, 1);
1565
1566	if (bad_count == 1) {
1567		error ^= POISON_FREE;
1568		if (!(error & (error - 1))) {
1569			pr_err("Single bit error detected. Probably bad RAM.\n");
1570#ifdef CONFIG_X86
1571			pr_err("Run memtest86+ or a similar memory test tool.\n");
1572#else
1573			pr_err("Run a memory test tool.\n");
1574#endif
1575		}
1576	}
1577}
1578#endif
1579
1580#if DEBUG
1581
1582static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1583{
1584	int i, size;
1585	char *realobj;
1586
1587	if (cachep->flags & SLAB_RED_ZONE) {
1588		pr_err("Redzone: 0x%llx/0x%llx\n",
1589		       *dbg_redzone1(cachep, objp),
1590		       *dbg_redzone2(cachep, objp));
1591	}
1592
1593	if (cachep->flags & SLAB_STORE_USER) {
1594		pr_err("Last user: [<%p>](%pSR)\n",
1595		       *dbg_userword(cachep, objp),
1596		       *dbg_userword(cachep, objp));
1597	}
1598	realobj = (char *)objp + obj_offset(cachep);
1599	size = cachep->object_size;
1600	for (i = 0; i < size && lines; i += 16, lines--) {
1601		int limit;
1602		limit = 16;
1603		if (i + limit > size)
1604			limit = size - i;
1605		dump_line(realobj, i, limit);
1606	}
1607}
1608
1609static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1610{
1611	char *realobj;
1612	int size, i;
1613	int lines = 0;
1614
1615	if (is_debug_pagealloc_cache(cachep))
1616		return;
1617
1618	realobj = (char *)objp + obj_offset(cachep);
1619	size = cachep->object_size;
1620
1621	for (i = 0; i < size; i++) {
1622		char exp = POISON_FREE;
1623		if (i == size - 1)
1624			exp = POISON_END;
1625		if (realobj[i] != exp) {
1626			int limit;
1627			/* Mismatch ! */
1628			/* Print header */
1629			if (lines == 0) {
1630				pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1631				       print_tainted(), cachep->name,
1632				       realobj, size);
1633				print_objinfo(cachep, objp, 0);
1634			}
1635			/* Hexdump the affected line */
1636			i = (i / 16) * 16;
1637			limit = 16;
1638			if (i + limit > size)
1639				limit = size - i;
1640			dump_line(realobj, i, limit);
1641			i += 16;
1642			lines++;
1643			/* Limit to 5 lines */
1644			if (lines > 5)
1645				break;
1646		}
1647	}
1648	if (lines != 0) {
1649		/* Print some data about the neighboring objects, if they
1650		 * exist:
1651		 */
1652		struct page *page = virt_to_head_page(objp);
1653		unsigned int objnr;
1654
1655		objnr = obj_to_index(cachep, page, objp);
1656		if (objnr) {
1657			objp = index_to_obj(cachep, page, objnr - 1);
1658			realobj = (char *)objp + obj_offset(cachep);
1659			pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1660			print_objinfo(cachep, objp, 2);
1661		}
1662		if (objnr + 1 < cachep->num) {
1663			objp = index_to_obj(cachep, page, objnr + 1);
1664			realobj = (char *)objp + obj_offset(cachep);
1665			pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1666			print_objinfo(cachep, objp, 2);
1667		}
1668	}
1669}
1670#endif
1671
1672#if DEBUG
1673static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1674						struct page *page)
1675{
1676	int i;
1677
1678	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1679		poison_obj(cachep, page->freelist - obj_offset(cachep),
1680			POISON_FREE);
1681	}
1682
1683	for (i = 0; i < cachep->num; i++) {
1684		void *objp = index_to_obj(cachep, page, i);
1685
1686		if (cachep->flags & SLAB_POISON) {
1687			check_poison_obj(cachep, objp);
1688			slab_kernel_map(cachep, objp, 1, 0);
1689		}
1690		if (cachep->flags & SLAB_RED_ZONE) {
1691			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1692				slab_error(cachep, "start of a freed object was overwritten");
1693			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1694				slab_error(cachep, "end of a freed object was overwritten");
1695		}
1696	}
1697}
1698#else
1699static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1700						struct page *page)
1701{
1702}
1703#endif
1704
1705/**
1706 * slab_destroy - destroy and release all objects in a slab
1707 * @cachep: cache pointer being destroyed
1708 * @page: page pointer being destroyed
1709 *
1710 * Destroy all the objs in a slab page, and release the mem back to the system.
1711 * Before calling the slab page must have been unlinked from the cache. The
1712 * kmem_cache_node ->list_lock is not held/needed.
1713 */
1714static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1715{
1716	void *freelist;
1717
1718	freelist = page->freelist;
1719	slab_destroy_debugcheck(cachep, page);
1720	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1721		call_rcu(&page->rcu_head, kmem_rcu_free);
1722	else
1723		kmem_freepages(cachep, page);
1724
1725	/*
1726	 * From now on, we don't use freelist
1727	 * although actual page can be freed in rcu context
1728	 */
1729	if (OFF_SLAB(cachep))
1730		kmem_cache_free(cachep->freelist_cache, freelist);
1731}
1732
 
 
 
 
1733static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1734{
1735	struct page *page, *n;
1736
1737	list_for_each_entry_safe(page, n, list, lru) {
1738		list_del(&page->lru);
1739		slab_destroy(cachep, page);
1740	}
1741}
1742
1743/**
1744 * calculate_slab_order - calculate size (page order) of slabs
1745 * @cachep: pointer to the cache that is being created
1746 * @size: size of objects to be created in this cache.
1747 * @flags: slab allocation flags
1748 *
1749 * Also calculates the number of objects per slab.
1750 *
1751 * This could be made much more intelligent.  For now, try to avoid using
1752 * high order pages for slabs.  When the gfp() functions are more friendly
1753 * towards high-order requests, this should be changed.
 
 
1754 */
1755static size_t calculate_slab_order(struct kmem_cache *cachep,
1756				size_t size, unsigned long flags)
1757{
1758	size_t left_over = 0;
1759	int gfporder;
1760
1761	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1762		unsigned int num;
1763		size_t remainder;
1764
1765		num = cache_estimate(gfporder, size, flags, &remainder);
1766		if (!num)
1767			continue;
1768
1769		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1770		if (num > SLAB_OBJ_MAX_NUM)
1771			break;
1772
1773		if (flags & CFLGS_OFF_SLAB) {
1774			struct kmem_cache *freelist_cache;
1775			size_t freelist_size;
 
1776
1777			freelist_size = num * sizeof(freelist_idx_t);
1778			freelist_cache = kmalloc_slab(freelist_size, 0u);
1779			if (!freelist_cache)
1780				continue;
1781
1782			/*
1783			 * Needed to avoid possible looping condition
1784			 * in cache_grow()
1785			 */
1786			if (OFF_SLAB(freelist_cache))
1787				continue;
 
 
 
 
 
1788
1789			/* check if off slab has enough benefit */
1790			if (freelist_cache->size > cachep->size / 2)
1791				continue;
1792		}
1793
1794		/* Found something acceptable - save it away */
1795		cachep->num = num;
1796		cachep->gfporder = gfporder;
1797		left_over = remainder;
1798
1799		/*
1800		 * A VFS-reclaimable slab tends to have most allocations
1801		 * as GFP_NOFS and we really don't want to have to be allocating
1802		 * higher-order pages when we are unable to shrink dcache.
1803		 */
1804		if (flags & SLAB_RECLAIM_ACCOUNT)
1805			break;
1806
1807		/*
1808		 * Large number of objects is good, but very large slabs are
1809		 * currently bad for the gfp()s.
1810		 */
1811		if (gfporder >= slab_max_order)
1812			break;
1813
1814		/*
1815		 * Acceptable internal fragmentation?
1816		 */
1817		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1818			break;
1819	}
1820	return left_over;
1821}
1822
1823static struct array_cache __percpu *alloc_kmem_cache_cpus(
1824		struct kmem_cache *cachep, int entries, int batchcount)
1825{
1826	int cpu;
1827	size_t size;
1828	struct array_cache __percpu *cpu_cache;
1829
1830	size = sizeof(void *) * entries + sizeof(struct array_cache);
1831	cpu_cache = __alloc_percpu(size, sizeof(void *));
1832
1833	if (!cpu_cache)
1834		return NULL;
1835
1836	for_each_possible_cpu(cpu) {
1837		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1838				entries, batchcount);
1839	}
1840
1841	return cpu_cache;
1842}
1843
1844static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1845{
1846	if (slab_state >= FULL)
1847		return enable_cpucache(cachep, gfp);
1848
1849	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1850	if (!cachep->cpu_cache)
1851		return 1;
1852
1853	if (slab_state == DOWN) {
1854		/* Creation of first cache (kmem_cache). */
1855		set_up_node(kmem_cache, CACHE_CACHE);
1856	} else if (slab_state == PARTIAL) {
1857		/* For kmem_cache_node */
1858		set_up_node(cachep, SIZE_NODE);
1859	} else {
1860		int node;
1861
1862		for_each_online_node(node) {
1863			cachep->node[node] = kmalloc_node(
1864				sizeof(struct kmem_cache_node), gfp, node);
1865			BUG_ON(!cachep->node[node]);
1866			kmem_cache_node_init(cachep->node[node]);
1867		}
1868	}
1869
1870	cachep->node[numa_mem_id()]->next_reap =
1871			jiffies + REAPTIMEOUT_NODE +
1872			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1873
1874	cpu_cache_get(cachep)->avail = 0;
1875	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1876	cpu_cache_get(cachep)->batchcount = 1;
1877	cpu_cache_get(cachep)->touched = 0;
1878	cachep->batchcount = 1;
1879	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1880	return 0;
1881}
1882
1883unsigned long kmem_cache_flags(unsigned long object_size,
1884	unsigned long flags, const char *name,
1885	void (*ctor)(void *))
1886{
1887	return flags;
1888}
1889
1890struct kmem_cache *
1891__kmem_cache_alias(const char *name, size_t size, size_t align,
1892		   unsigned long flags, void (*ctor)(void *))
1893{
1894	struct kmem_cache *cachep;
1895
1896	cachep = find_mergeable(size, align, flags, name, ctor);
1897	if (cachep) {
1898		cachep->refcount++;
1899
1900		/*
1901		 * Adjust the object sizes so that we clear
1902		 * the complete object on kzalloc.
1903		 */
1904		cachep->object_size = max_t(int, cachep->object_size, size);
1905	}
1906	return cachep;
1907}
1908
1909static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1910			size_t size, unsigned long flags)
1911{
1912	size_t left;
1913
1914	cachep->num = 0;
1915
1916	if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
 
 
 
 
 
 
 
 
1917		return false;
1918
1919	left = calculate_slab_order(cachep, size,
1920			flags | CFLGS_OBJFREELIST_SLAB);
1921	if (!cachep->num)
1922		return false;
1923
1924	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1925		return false;
1926
1927	cachep->colour = left / cachep->colour_off;
1928
1929	return true;
1930}
1931
1932static bool set_off_slab_cache(struct kmem_cache *cachep,
1933			size_t size, unsigned long flags)
1934{
1935	size_t left;
1936
1937	cachep->num = 0;
1938
1939	/*
1940	 * Always use on-slab management when SLAB_NOLEAKTRACE
1941	 * to avoid recursive calls into kmemleak.
1942	 */
1943	if (flags & SLAB_NOLEAKTRACE)
1944		return false;
1945
1946	/*
1947	 * Size is large, assume best to place the slab management obj
1948	 * off-slab (should allow better packing of objs).
1949	 */
1950	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1951	if (!cachep->num)
1952		return false;
1953
1954	/*
1955	 * If the slab has been placed off-slab, and we have enough space then
1956	 * move it on-slab. This is at the expense of any extra colouring.
1957	 */
1958	if (left >= cachep->num * sizeof(freelist_idx_t))
1959		return false;
1960
1961	cachep->colour = left / cachep->colour_off;
1962
1963	return true;
1964}
1965
1966static bool set_on_slab_cache(struct kmem_cache *cachep,
1967			size_t size, unsigned long flags)
1968{
1969	size_t left;
1970
1971	cachep->num = 0;
1972
1973	left = calculate_slab_order(cachep, size, flags);
1974	if (!cachep->num)
1975		return false;
1976
1977	cachep->colour = left / cachep->colour_off;
1978
1979	return true;
1980}
1981
1982/**
1983 * __kmem_cache_create - Create a cache.
1984 * @cachep: cache management descriptor
1985 * @flags: SLAB flags
1986 *
1987 * Returns a ptr to the cache on success, NULL on failure.
1988 * Cannot be called within a int, but can be interrupted.
1989 * The @ctor is run when new pages are allocated by the cache.
1990 *
1991 * The flags are
1992 *
1993 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1994 * to catch references to uninitialised memory.
1995 *
1996 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1997 * for buffer overruns.
1998 *
1999 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2000 * cacheline.  This can be beneficial if you're counting cycles as closely
2001 * as davem.
 
 
2002 */
2003int
2004__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2005{
2006	size_t ralign = BYTES_PER_WORD;
2007	gfp_t gfp;
2008	int err;
2009	size_t size = cachep->size;
2010
2011#if DEBUG
2012#if FORCED_DEBUG
2013	/*
2014	 * Enable redzoning and last user accounting, except for caches with
2015	 * large objects, if the increased size would increase the object size
2016	 * above the next power of two: caches with object sizes just above a
2017	 * power of two have a significant amount of internal fragmentation.
2018	 */
2019	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2020						2 * sizeof(unsigned long long)))
2021		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2022	if (!(flags & SLAB_DESTROY_BY_RCU))
2023		flags |= SLAB_POISON;
2024#endif
2025#endif
2026
2027	/*
2028	 * Check that size is in terms of words.  This is needed to avoid
2029	 * unaligned accesses for some archs when redzoning is used, and makes
2030	 * sure any on-slab bufctl's are also correctly aligned.
2031	 */
2032	if (size & (BYTES_PER_WORD - 1)) {
2033		size += (BYTES_PER_WORD - 1);
2034		size &= ~(BYTES_PER_WORD - 1);
2035	}
2036
2037	if (flags & SLAB_RED_ZONE) {
2038		ralign = REDZONE_ALIGN;
2039		/* If redzoning, ensure that the second redzone is suitably
2040		 * aligned, by adjusting the object size accordingly. */
2041		size += REDZONE_ALIGN - 1;
2042		size &= ~(REDZONE_ALIGN - 1);
2043	}
2044
2045	/* 3) caller mandated alignment */
2046	if (ralign < cachep->align) {
2047		ralign = cachep->align;
2048	}
2049	/* disable debug if necessary */
2050	if (ralign > __alignof__(unsigned long long))
2051		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2052	/*
2053	 * 4) Store it.
2054	 */
2055	cachep->align = ralign;
2056	cachep->colour_off = cache_line_size();
2057	/* Offset must be a multiple of the alignment. */
2058	if (cachep->colour_off < cachep->align)
2059		cachep->colour_off = cachep->align;
2060
2061	if (slab_is_available())
2062		gfp = GFP_KERNEL;
2063	else
2064		gfp = GFP_NOWAIT;
2065
2066#if DEBUG
2067
2068	/*
2069	 * Both debugging options require word-alignment which is calculated
2070	 * into align above.
2071	 */
2072	if (flags & SLAB_RED_ZONE) {
2073		/* add space for red zone words */
2074		cachep->obj_offset += sizeof(unsigned long long);
2075		size += 2 * sizeof(unsigned long long);
2076	}
2077	if (flags & SLAB_STORE_USER) {
2078		/* user store requires one word storage behind the end of
2079		 * the real object. But if the second red zone needs to be
2080		 * aligned to 64 bits, we must allow that much space.
2081		 */
2082		if (flags & SLAB_RED_ZONE)
2083			size += REDZONE_ALIGN;
2084		else
2085			size += BYTES_PER_WORD;
2086	}
2087#endif
2088
2089	kasan_cache_create(cachep, &size, &flags);
2090
2091	size = ALIGN(size, cachep->align);
2092	/*
2093	 * We should restrict the number of objects in a slab to implement
2094	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2095	 */
2096	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2097		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2098
2099#if DEBUG
2100	/*
2101	 * To activate debug pagealloc, off-slab management is necessary
2102	 * requirement. In early phase of initialization, small sized slab
2103	 * doesn't get initialized so it would not be possible. So, we need
2104	 * to check size >= 256. It guarantees that all necessary small
2105	 * sized slab is initialized in current slab initialization sequence.
2106	 */
2107	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2108		size >= 256 && cachep->object_size > cache_line_size()) {
2109		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2110			size_t tmp_size = ALIGN(size, PAGE_SIZE);
2111
2112			if (set_off_slab_cache(cachep, tmp_size, flags)) {
2113				flags |= CFLGS_OFF_SLAB;
2114				cachep->obj_offset += tmp_size - size;
2115				size = tmp_size;
2116				goto done;
2117			}
2118		}
2119	}
2120#endif
2121
2122	if (set_objfreelist_slab_cache(cachep, size, flags)) {
2123		flags |= CFLGS_OBJFREELIST_SLAB;
2124		goto done;
2125	}
2126
2127	if (set_off_slab_cache(cachep, size, flags)) {
2128		flags |= CFLGS_OFF_SLAB;
2129		goto done;
2130	}
2131
2132	if (set_on_slab_cache(cachep, size, flags))
2133		goto done;
2134
2135	return -E2BIG;
2136
2137done:
2138	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2139	cachep->flags = flags;
2140	cachep->allocflags = __GFP_COMP;
2141	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2142		cachep->allocflags |= GFP_DMA;
 
 
 
 
2143	cachep->size = size;
2144	cachep->reciprocal_buffer_size = reciprocal_value(size);
2145
2146#if DEBUG
2147	/*
2148	 * If we're going to use the generic kernel_map_pages()
2149	 * poisoning, then it's going to smash the contents of
2150	 * the redzone and userword anyhow, so switch them off.
2151	 */
2152	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2153		(cachep->flags & SLAB_POISON) &&
2154		is_debug_pagealloc_cache(cachep))
2155		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2156#endif
2157
2158	if (OFF_SLAB(cachep)) {
2159		cachep->freelist_cache =
2160			kmalloc_slab(cachep->freelist_size, 0u);
2161	}
2162
2163	err = setup_cpu_cache(cachep, gfp);
2164	if (err) {
2165		__kmem_cache_release(cachep);
2166		return err;
2167	}
2168
2169	return 0;
2170}
2171
2172#if DEBUG
2173static void check_irq_off(void)
2174{
2175	BUG_ON(!irqs_disabled());
2176}
2177
2178static void check_irq_on(void)
2179{
2180	BUG_ON(irqs_disabled());
2181}
2182
 
 
 
 
 
2183static void check_spinlock_acquired(struct kmem_cache *cachep)
2184{
2185#ifdef CONFIG_SMP
2186	check_irq_off();
2187	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2188#endif
2189}
2190
2191static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2192{
2193#ifdef CONFIG_SMP
2194	check_irq_off();
2195	assert_spin_locked(&get_node(cachep, node)->list_lock);
2196#endif
2197}
2198
2199#else
2200#define check_irq_off()	do { } while(0)
2201#define check_irq_on()	do { } while(0)
 
2202#define check_spinlock_acquired(x) do { } while(0)
2203#define check_spinlock_acquired_node(x, y) do { } while(0)
2204#endif
2205
2206static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2207			struct array_cache *ac,
2208			int force, int node);
 
 
 
 
 
 
 
 
 
 
 
 
 
2209
2210static void do_drain(void *arg)
2211{
2212	struct kmem_cache *cachep = arg;
2213	struct array_cache *ac;
2214	int node = numa_mem_id();
2215	struct kmem_cache_node *n;
2216	LIST_HEAD(list);
2217
2218	check_irq_off();
2219	ac = cpu_cache_get(cachep);
2220	n = get_node(cachep, node);
2221	spin_lock(&n->list_lock);
2222	free_block(cachep, ac->entry, ac->avail, node, &list);
2223	spin_unlock(&n->list_lock);
 
2224	slabs_destroy(cachep, &list);
2225	ac->avail = 0;
2226}
2227
2228static void drain_cpu_caches(struct kmem_cache *cachep)
2229{
2230	struct kmem_cache_node *n;
2231	int node;
 
2232
2233	on_each_cpu(do_drain, cachep, 1);
2234	check_irq_on();
2235	for_each_kmem_cache_node(cachep, node, n)
2236		if (n->alien)
2237			drain_alien_cache(cachep, n->alien);
2238
2239	for_each_kmem_cache_node(cachep, node, n)
2240		drain_array(cachep, n, n->shared, 1, node);
 
 
 
 
 
2241}
2242
2243/*
2244 * Remove slabs from the list of free slabs.
2245 * Specify the number of slabs to drain in tofree.
2246 *
2247 * Returns the actual number of slabs released.
2248 */
2249static int drain_freelist(struct kmem_cache *cache,
2250			struct kmem_cache_node *n, int tofree)
2251{
2252	struct list_head *p;
2253	int nr_freed;
2254	struct page *page;
2255
2256	nr_freed = 0;
2257	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2258
2259		spin_lock_irq(&n->list_lock);
2260		p = n->slabs_free.prev;
2261		if (p == &n->slabs_free) {
2262			spin_unlock_irq(&n->list_lock);
2263			goto out;
2264		}
2265
2266		page = list_entry(p, struct page, lru);
2267		list_del(&page->lru);
 
 
2268		/*
2269		 * Safe to drop the lock. The slab is no longer linked
2270		 * to the cache.
2271		 */
2272		n->free_objects -= cache->num;
2273		spin_unlock_irq(&n->list_lock);
2274		slab_destroy(cache, page);
2275		nr_freed++;
 
 
2276	}
2277out:
2278	return nr_freed;
2279}
2280
2281int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
 
 
 
 
 
 
 
 
 
 
 
 
2282{
2283	int ret = 0;
2284	int node;
2285	struct kmem_cache_node *n;
2286
2287	drain_cpu_caches(cachep);
2288
2289	check_irq_on();
2290	for_each_kmem_cache_node(cachep, node, n) {
2291		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2292
2293		ret += !list_empty(&n->slabs_full) ||
2294			!list_empty(&n->slabs_partial);
2295	}
2296	return (ret ? 1 : 0);
2297}
2298
2299int __kmem_cache_shutdown(struct kmem_cache *cachep)
2300{
2301	return __kmem_cache_shrink(cachep, false);
2302}
2303
2304void __kmem_cache_release(struct kmem_cache *cachep)
2305{
2306	int i;
2307	struct kmem_cache_node *n;
2308
 
 
2309	free_percpu(cachep->cpu_cache);
2310
2311	/* NUMA: free the node structures */
2312	for_each_kmem_cache_node(cachep, i, n) {
2313		kfree(n->shared);
2314		free_alien_cache(n->alien);
2315		kfree(n);
2316		cachep->node[i] = NULL;
2317	}
2318}
2319
2320/*
2321 * Get the memory for a slab management obj.
2322 *
2323 * For a slab cache when the slab descriptor is off-slab, the
2324 * slab descriptor can't come from the same cache which is being created,
2325 * Because if it is the case, that means we defer the creation of
2326 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2327 * And we eventually call down to __kmem_cache_create(), which
2328 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2329 * This is a "chicken-and-egg" problem.
2330 *
2331 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2332 * which are all initialized during kmem_cache_init().
2333 */
2334static void *alloc_slabmgmt(struct kmem_cache *cachep,
2335				   struct page *page, int colour_off,
2336				   gfp_t local_flags, int nodeid)
2337{
2338	void *freelist;
2339	void *addr = page_address(page);
2340
2341	page->s_mem = addr + colour_off;
2342	page->active = 0;
2343
2344	if (OBJFREELIST_SLAB(cachep))
2345		freelist = NULL;
2346	else if (OFF_SLAB(cachep)) {
2347		/* Slab management obj is off-slab. */
2348		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2349					      local_flags, nodeid);
2350		if (!freelist)
2351			return NULL;
2352	} else {
2353		/* We will use last bytes at the slab for freelist */
2354		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2355				cachep->freelist_size;
2356	}
2357
2358	return freelist;
2359}
2360
2361static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2362{
2363	return ((freelist_idx_t *)page->freelist)[idx];
2364}
2365
2366static inline void set_free_obj(struct page *page,
2367					unsigned int idx, freelist_idx_t val)
2368{
2369	((freelist_idx_t *)(page->freelist))[idx] = val;
2370}
2371
2372static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2373{
2374#if DEBUG
2375	int i;
2376
2377	for (i = 0; i < cachep->num; i++) {
2378		void *objp = index_to_obj(cachep, page, i);
2379
2380		if (cachep->flags & SLAB_STORE_USER)
2381			*dbg_userword(cachep, objp) = NULL;
2382
2383		if (cachep->flags & SLAB_RED_ZONE) {
2384			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2385			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2386		}
2387		/*
2388		 * Constructors are not allowed to allocate memory from the same
2389		 * cache which they are a constructor for.  Otherwise, deadlock.
2390		 * They must also be threaded.
2391		 */
2392		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2393			kasan_unpoison_object_data(cachep,
2394						   objp + obj_offset(cachep));
2395			cachep->ctor(objp + obj_offset(cachep));
2396			kasan_poison_object_data(
2397				cachep, objp + obj_offset(cachep));
2398		}
2399
2400		if (cachep->flags & SLAB_RED_ZONE) {
2401			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2402				slab_error(cachep, "constructor overwrote the end of an object");
2403			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2404				slab_error(cachep, "constructor overwrote the start of an object");
2405		}
2406		/* need to poison the objs? */
2407		if (cachep->flags & SLAB_POISON) {
2408			poison_obj(cachep, objp, POISON_FREE);
2409			slab_kernel_map(cachep, objp, 0, 0);
2410		}
2411	}
2412#endif
2413}
2414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2415static void cache_init_objs(struct kmem_cache *cachep,
2416			    struct page *page)
2417{
2418	int i;
2419	void *objp;
 
2420
2421	cache_init_objs_debug(cachep, page);
2422
2423	if (OBJFREELIST_SLAB(cachep)) {
2424		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
 
 
 
2425						obj_offset(cachep);
2426	}
2427
2428	for (i = 0; i < cachep->num; i++) {
 
 
 
2429		/* constructor could break poison info */
2430		if (DEBUG == 0 && cachep->ctor) {
2431			objp = index_to_obj(cachep, page, i);
2432			kasan_unpoison_object_data(cachep, objp);
2433			cachep->ctor(objp);
2434			kasan_poison_object_data(cachep, objp);
2435		}
2436
2437		set_free_obj(page, i, i);
2438	}
2439}
2440
2441static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2442{
2443	if (CONFIG_ZONE_DMA_FLAG) {
2444		if (flags & GFP_DMA)
2445			BUG_ON(!(cachep->allocflags & GFP_DMA));
2446		else
2447			BUG_ON(cachep->allocflags & GFP_DMA);
2448	}
2449}
2450
2451static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2452{
2453	void *objp;
2454
2455	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2456	page->active++;
2457
2458#if DEBUG
2459	if (cachep->flags & SLAB_STORE_USER)
2460		set_store_user_dirty(cachep);
2461#endif
2462
2463	return objp;
2464}
2465
2466static void slab_put_obj(struct kmem_cache *cachep,
2467			struct page *page, void *objp)
2468{
2469	unsigned int objnr = obj_to_index(cachep, page, objp);
2470#if DEBUG
2471	unsigned int i;
2472
2473	/* Verify double free bug */
2474	for (i = page->active; i < cachep->num; i++) {
2475		if (get_free_obj(page, i) == objnr) {
2476			pr_err("slab: double free detected in cache '%s', objp %p\n",
2477			       cachep->name, objp);
2478			BUG();
2479		}
2480	}
2481#endif
2482	page->active--;
2483	if (!page->freelist)
2484		page->freelist = objp + obj_offset(cachep);
2485
2486	set_free_obj(page, page->active, objnr);
2487}
2488
2489/*
2490 * Map pages beginning at addr to the given cache and slab. This is required
2491 * for the slab allocator to be able to lookup the cache and slab of a
2492 * virtual address for kfree, ksize, and slab debugging.
2493 */
2494static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2495			   void *freelist)
2496{
2497	page->slab_cache = cache;
2498	page->freelist = freelist;
2499}
2500
2501/*
2502 * Grow (by 1) the number of slabs within a cache.  This is called by
2503 * kmem_cache_alloc() when there are no active objs left in a cache.
2504 */
2505static int cache_grow(struct kmem_cache *cachep,
2506		gfp_t flags, int nodeid, struct page *page)
2507{
2508	void *freelist;
2509	size_t offset;
2510	gfp_t local_flags;
 
2511	struct kmem_cache_node *n;
 
2512
2513	/*
2514	 * Be lazy and only check for valid flags here,  keeping it out of the
2515	 * critical path in kmem_cache_alloc().
2516	 */
2517	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2518		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2519		BUG();
2520	}
2521	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2522
2523	/* Take the node list lock to change the colour_next on this node */
2524	check_irq_off();
2525	n = get_node(cachep, nodeid);
2526	spin_lock(&n->list_lock);
 
 
 
 
 
 
 
 
 
 
 
2527
2528	/* Get colour for the slab, and cal the next value. */
2529	offset = n->colour_next;
2530	n->colour_next++;
2531	if (n->colour_next >= cachep->colour)
2532		n->colour_next = 0;
2533	spin_unlock(&n->list_lock);
 
 
 
2534
2535	offset *= cachep->colour_off;
2536
2537	if (gfpflags_allow_blocking(local_flags))
2538		local_irq_enable();
2539
2540	/*
2541	 * The test for missing atomic flag is performed here, rather than
2542	 * the more obvious place, simply to reduce the critical path length
2543	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2544	 * will eventually be caught here (where it matters).
2545	 */
2546	kmem_flagcheck(cachep, flags);
2547
2548	/*
2549	 * Get mem for the objs.  Attempt to allocate a physical page from
2550	 * 'nodeid'.
2551	 */
2552	if (!page)
2553		page = kmem_getpages(cachep, local_flags, nodeid);
2554	if (!page)
2555		goto failed;
2556
2557	/* Get slab management. */
2558	freelist = alloc_slabmgmt(cachep, page, offset,
2559			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2560	if (OFF_SLAB(cachep) && !freelist)
2561		goto opps1;
2562
2563	slab_map_pages(cachep, page, freelist);
 
2564
2565	kasan_poison_slab(page);
2566	cache_init_objs(cachep, page);
2567
2568	if (gfpflags_allow_blocking(local_flags))
2569		local_irq_disable();
2570	check_irq_off();
2571	spin_lock(&n->list_lock);
2572
2573	/* Make slab active. */
2574	list_add_tail(&page->lru, &(n->slabs_free));
2575	STATS_INC_GROWN(cachep);
2576	n->free_objects += cachep->num;
2577	spin_unlock(&n->list_lock);
2578	return 1;
2579opps1:
2580	kmem_freepages(cachep, page);
2581failed:
2582	if (gfpflags_allow_blocking(local_flags))
2583		local_irq_disable();
2584	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2585}
2586
2587#if DEBUG
2588
2589/*
2590 * Perform extra freeing checks:
2591 * - detect bad pointers.
2592 * - POISON/RED_ZONE checking
2593 */
2594static void kfree_debugcheck(const void *objp)
2595{
2596	if (!virt_addr_valid(objp)) {
2597		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2598		       (unsigned long)objp);
2599		BUG();
2600	}
2601}
2602
2603static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2604{
2605	unsigned long long redzone1, redzone2;
2606
2607	redzone1 = *dbg_redzone1(cache, obj);
2608	redzone2 = *dbg_redzone2(cache, obj);
2609
2610	/*
2611	 * Redzone is ok.
2612	 */
2613	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2614		return;
2615
2616	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2617		slab_error(cache, "double free detected");
2618	else
2619		slab_error(cache, "memory outside object was overwritten");
2620
2621	pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2622	       obj, redzone1, redzone2);
2623}
2624
2625static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2626				   unsigned long caller)
2627{
2628	unsigned int objnr;
2629	struct page *page;
2630
2631	BUG_ON(virt_to_cache(objp) != cachep);
2632
2633	objp -= obj_offset(cachep);
2634	kfree_debugcheck(objp);
2635	page = virt_to_head_page(objp);
2636
2637	if (cachep->flags & SLAB_RED_ZONE) {
2638		verify_redzone_free(cachep, objp);
2639		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2640		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2641	}
2642	if (cachep->flags & SLAB_STORE_USER) {
2643		set_store_user_dirty(cachep);
2644		*dbg_userword(cachep, objp) = (void *)caller;
2645	}
2646
2647	objnr = obj_to_index(cachep, page, objp);
2648
2649	BUG_ON(objnr >= cachep->num);
2650	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2651
2652	if (cachep->flags & SLAB_POISON) {
2653		poison_obj(cachep, objp, POISON_FREE);
2654		slab_kernel_map(cachep, objp, 0, caller);
2655	}
2656	return objp;
2657}
2658
2659#else
2660#define kfree_debugcheck(x) do { } while(0)
2661#define cache_free_debugcheck(x,objp,z) (objp)
2662#endif
2663
2664static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2665						void **list)
2666{
2667#if DEBUG
2668	void *next = *list;
2669	void *objp;
2670
2671	while (next) {
2672		objp = next - obj_offset(cachep);
2673		next = *(void **)next;
2674		poison_obj(cachep, objp, POISON_FREE);
2675	}
2676#endif
2677}
2678
2679static inline void fixup_slab_list(struct kmem_cache *cachep,
2680				struct kmem_cache_node *n, struct page *page,
2681				void **list)
2682{
2683	/* move slabp to correct slabp list: */
2684	list_del(&page->lru);
2685	if (page->active == cachep->num) {
2686		list_add(&page->lru, &n->slabs_full);
2687		if (OBJFREELIST_SLAB(cachep)) {
2688#if DEBUG
2689			/* Poisoning will be done without holding the lock */
2690			if (cachep->flags & SLAB_POISON) {
2691				void **objp = page->freelist;
2692
2693				*objp = *list;
2694				*list = objp;
2695			}
2696#endif
2697			page->freelist = NULL;
2698		}
2699	} else
2700		list_add(&page->lru, &n->slabs_partial);
2701}
2702
2703/* Try to find non-pfmemalloc slab if needed */
2704static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2705					struct page *page, bool pfmemalloc)
2706{
2707	if (!page)
2708		return NULL;
2709
2710	if (pfmemalloc)
2711		return page;
2712
2713	if (!PageSlabPfmemalloc(page))
2714		return page;
2715
2716	/* No need to keep pfmemalloc slab if we have enough free objects */
2717	if (n->free_objects > n->free_limit) {
2718		ClearPageSlabPfmemalloc(page);
2719		return page;
2720	}
2721
2722	/* Move pfmemalloc slab to the end of list to speed up next search */
2723	list_del(&page->lru);
2724	if (!page->active)
2725		list_add_tail(&page->lru, &n->slabs_free);
2726	else
2727		list_add_tail(&page->lru, &n->slabs_partial);
 
2728
2729	list_for_each_entry(page, &n->slabs_partial, lru) {
2730		if (!PageSlabPfmemalloc(page))
2731			return page;
2732	}
2733
2734	list_for_each_entry(page, &n->slabs_free, lru) {
2735		if (!PageSlabPfmemalloc(page))
2736			return page;
 
 
 
2737	}
2738
2739	return NULL;
2740}
2741
2742static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2743{
2744	struct page *page;
2745
2746	page = list_first_entry_or_null(&n->slabs_partial,
2747			struct page, lru);
2748	if (!page) {
 
2749		n->free_touched = 1;
2750		page = list_first_entry_or_null(&n->slabs_free,
2751				struct page, lru);
 
 
2752	}
2753
2754	if (sk_memalloc_socks())
2755		return get_valid_first_slab(n, page, pfmemalloc);
2756
2757	return page;
2758}
2759
2760static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2761				struct kmem_cache_node *n, gfp_t flags)
2762{
2763	struct page *page;
2764	void *obj;
2765	void *list = NULL;
2766
2767	if (!gfp_pfmemalloc_allowed(flags))
2768		return NULL;
2769
2770	spin_lock(&n->list_lock);
2771	page = get_first_slab(n, true);
2772	if (!page) {
2773		spin_unlock(&n->list_lock);
2774		return NULL;
2775	}
2776
2777	obj = slab_get_obj(cachep, page);
2778	n->free_objects--;
2779
2780	fixup_slab_list(cachep, n, page, &list);
2781
2782	spin_unlock(&n->list_lock);
2783	fixup_objfreelist_debug(cachep, &list);
2784
2785	return obj;
2786}
2787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2788static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2789{
2790	int batchcount;
2791	struct kmem_cache_node *n;
2792	struct array_cache *ac;
2793	int node;
2794	void *list = NULL;
 
2795
2796	check_irq_off();
2797	node = numa_mem_id();
2798
2799retry:
2800	ac = cpu_cache_get(cachep);
2801	batchcount = ac->batchcount;
2802	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2803		/*
2804		 * If there was little recent activity on this cache, then
2805		 * perform only a partial refill.  Otherwise we could generate
2806		 * refill bouncing.
2807		 */
2808		batchcount = BATCHREFILL_LIMIT;
2809	}
2810	n = get_node(cachep, node);
2811
2812	BUG_ON(ac->avail > 0 || !n);
2813	spin_lock(&n->list_lock);
 
 
 
 
 
2814
2815	/* See if we can refill from the shared array */
2816	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2817		n->shared->touched = 1;
2818		goto alloc_done;
2819	}
2820
2821	while (batchcount > 0) {
2822		struct page *page;
2823		/* Get slab alloc is to come from. */
2824		page = get_first_slab(n, false);
2825		if (!page)
2826			goto must_grow;
2827
2828		check_spinlock_acquired(cachep);
2829
2830		/*
2831		 * The slab was either on partial or free list so
2832		 * there must be at least one object available for
2833		 * allocation.
2834		 */
2835		BUG_ON(page->active >= cachep->num);
2836
2837		while (page->active < cachep->num && batchcount--) {
2838			STATS_INC_ALLOCED(cachep);
2839			STATS_INC_ACTIVE(cachep);
2840			STATS_SET_HIGH(cachep);
2841
2842			ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2843		}
2844
2845		fixup_slab_list(cachep, n, page, &list);
2846	}
2847
2848must_grow:
2849	n->free_objects -= ac->avail;
2850alloc_done:
2851	spin_unlock(&n->list_lock);
2852	fixup_objfreelist_debug(cachep, &list);
2853
 
2854	if (unlikely(!ac->avail)) {
2855		int x;
2856
2857		/* Check if we can use obj in pfmemalloc slab */
2858		if (sk_memalloc_socks()) {
2859			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2860
2861			if (obj)
2862				return obj;
2863		}
2864
2865		x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2866
2867		/* cache_grow can reenable interrupts, then ac could change. */
 
 
 
2868		ac = cpu_cache_get(cachep);
2869		node = numa_mem_id();
 
 
2870
2871		/* no objects in sight? abort */
2872		if (!x && ac->avail == 0)
2873			return NULL;
2874
2875		if (!ac->avail)		/* objects refilled by interrupt? */
2876			goto retry;
2877	}
2878	ac->touched = 1;
2879
2880	return ac->entry[--ac->avail];
2881}
2882
2883static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2884						gfp_t flags)
2885{
2886	might_sleep_if(gfpflags_allow_blocking(flags));
2887#if DEBUG
2888	kmem_flagcheck(cachep, flags);
2889#endif
2890}
2891
2892#if DEBUG
2893static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2894				gfp_t flags, void *objp, unsigned long caller)
2895{
2896	if (!objp)
 
2897		return objp;
2898	if (cachep->flags & SLAB_POISON) {
2899		check_poison_obj(cachep, objp);
2900		slab_kernel_map(cachep, objp, 1, 0);
2901		poison_obj(cachep, objp, POISON_INUSE);
2902	}
2903	if (cachep->flags & SLAB_STORE_USER)
2904		*dbg_userword(cachep, objp) = (void *)caller;
2905
2906	if (cachep->flags & SLAB_RED_ZONE) {
2907		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2908				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2909			slab_error(cachep, "double free, or memory outside object was overwritten");
2910			pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2911			       objp, *dbg_redzone1(cachep, objp),
2912			       *dbg_redzone2(cachep, objp));
2913		}
2914		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
2915		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
2916	}
2917
2918	objp += obj_offset(cachep);
2919	if (cachep->ctor && cachep->flags & SLAB_POISON)
2920		cachep->ctor(objp);
2921	if (ARCH_SLAB_MINALIGN &&
2922	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2923		pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2924		       objp, (int)ARCH_SLAB_MINALIGN);
2925	}
2926	return objp;
2927}
2928#else
2929#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2930#endif
2931
2932static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2933{
2934	void *objp;
2935	struct array_cache *ac;
2936
2937	check_irq_off();
2938
2939	ac = cpu_cache_get(cachep);
2940	if (likely(ac->avail)) {
2941		ac->touched = 1;
2942		objp = ac->entry[--ac->avail];
2943
2944		STATS_INC_ALLOCHIT(cachep);
2945		goto out;
2946	}
2947
2948	STATS_INC_ALLOCMISS(cachep);
2949	objp = cache_alloc_refill(cachep, flags);
2950	/*
2951	 * the 'ac' may be updated by cache_alloc_refill(),
2952	 * and kmemleak_erase() requires its correct value.
2953	 */
2954	ac = cpu_cache_get(cachep);
2955
2956out:
2957	/*
2958	 * To avoid a false negative, if an object that is in one of the
2959	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2960	 * treat the array pointers as a reference to the object.
2961	 */
2962	if (objp)
2963		kmemleak_erase(&ac->entry[ac->avail]);
2964	return objp;
2965}
2966
2967#ifdef CONFIG_NUMA
 
 
2968/*
2969 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2970 *
2971 * If we are in_interrupt, then process context, including cpusets and
2972 * mempolicy, may not apply and should not be used for allocation policy.
2973 */
2974static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2975{
2976	int nid_alloc, nid_here;
2977
2978	if (in_interrupt() || (flags & __GFP_THISNODE))
2979		return NULL;
2980	nid_alloc = nid_here = numa_mem_id();
2981	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2982		nid_alloc = cpuset_slab_spread_node();
2983	else if (current->mempolicy)
2984		nid_alloc = mempolicy_slab_node();
2985	if (nid_alloc != nid_here)
2986		return ____cache_alloc_node(cachep, flags, nid_alloc);
2987	return NULL;
2988}
2989
2990/*
2991 * Fallback function if there was no memory available and no objects on a
2992 * certain node and fall back is permitted. First we scan all the
2993 * available node for available objects. If that fails then we
2994 * perform an allocation without specifying a node. This allows the page
2995 * allocator to do its reclaim / fallback magic. We then insert the
2996 * slab into the proper nodelist and then allocate from it.
2997 */
2998static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
2999{
3000	struct zonelist *zonelist;
3001	gfp_t local_flags;
3002	struct zoneref *z;
3003	struct zone *zone;
3004	enum zone_type high_zoneidx = gfp_zone(flags);
3005	void *obj = NULL;
 
3006	int nid;
3007	unsigned int cpuset_mems_cookie;
3008
3009	if (flags & __GFP_THISNODE)
3010		return NULL;
3011
3012	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3013
3014retry_cpuset:
3015	cpuset_mems_cookie = read_mems_allowed_begin();
3016	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3017
3018retry:
3019	/*
3020	 * Look through allowed nodes for objects available
3021	 * from existing per node queues.
3022	 */
3023	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3024		nid = zone_to_nid(zone);
3025
3026		if (cpuset_zone_allowed(zone, flags) &&
3027			get_node(cache, nid) &&
3028			get_node(cache, nid)->free_objects) {
3029				obj = ____cache_alloc_node(cache,
3030					gfp_exact_node(flags), nid);
3031				if (obj)
3032					break;
3033		}
3034	}
3035
3036	if (!obj) {
3037		/*
3038		 * This allocation will be performed within the constraints
3039		 * of the current cpuset / memory policy requirements.
3040		 * We may trigger various forms of reclaim on the allowed
3041		 * set and go into memory reserves if necessary.
3042		 */
3043		struct page *page;
 
 
 
 
 
3044
3045		if (gfpflags_allow_blocking(local_flags))
3046			local_irq_enable();
3047		kmem_flagcheck(cache, flags);
3048		page = kmem_getpages(cache, local_flags, numa_mem_id());
3049		if (gfpflags_allow_blocking(local_flags))
3050			local_irq_disable();
3051		if (page) {
3052			/*
3053			 * Insert into the appropriate per node queues
 
3054			 */
3055			nid = page_to_nid(page);
3056			if (cache_grow(cache, flags, nid, page)) {
3057				obj = ____cache_alloc_node(cache,
3058					gfp_exact_node(flags), nid);
3059				if (!obj)
3060					/*
3061					 * Another processor may allocate the
3062					 * objects in the slab since we are
3063					 * not holding any locks.
3064					 */
3065					goto retry;
3066			} else {
3067				/* cache_grow already freed obj */
3068				obj = NULL;
3069			}
3070		}
3071	}
3072
3073	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3074		goto retry_cpuset;
3075	return obj;
3076}
3077
3078/*
3079 * A interface to enable slab creation on nodeid
3080 */
3081static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3082				int nodeid)
3083{
3084	struct page *page;
3085	struct kmem_cache_node *n;
3086	void *obj;
3087	void *list = NULL;
3088	int x;
3089
3090	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3091	n = get_node(cachep, nodeid);
3092	BUG_ON(!n);
3093
3094retry:
3095	check_irq_off();
3096	spin_lock(&n->list_lock);
3097	page = get_first_slab(n, false);
3098	if (!page)
3099		goto must_grow;
3100
3101	check_spinlock_acquired_node(cachep, nodeid);
3102
3103	STATS_INC_NODEALLOCS(cachep);
3104	STATS_INC_ACTIVE(cachep);
3105	STATS_SET_HIGH(cachep);
3106
3107	BUG_ON(page->active == cachep->num);
3108
3109	obj = slab_get_obj(cachep, page);
3110	n->free_objects--;
3111
3112	fixup_slab_list(cachep, n, page, &list);
3113
3114	spin_unlock(&n->list_lock);
3115	fixup_objfreelist_debug(cachep, &list);
3116	goto done;
3117
3118must_grow:
3119	spin_unlock(&n->list_lock);
3120	x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3121	if (x)
3122		goto retry;
 
 
 
3123
3124	return fallback_alloc(cachep, flags);
3125
3126done:
3127	return obj;
3128}
3129
3130static __always_inline void *
3131slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3132		   unsigned long caller)
3133{
3134	unsigned long save_flags;
3135	void *ptr;
3136	int slab_node = numa_mem_id();
3137
3138	flags &= gfp_allowed_mask;
3139	cachep = slab_pre_alloc_hook(cachep, flags);
3140	if (unlikely(!cachep))
3141		return NULL;
3142
3143	cache_alloc_debugcheck_before(cachep, flags);
3144	local_irq_save(save_flags);
3145
3146	if (nodeid == NUMA_NO_NODE)
3147		nodeid = slab_node;
3148
3149	if (unlikely(!get_node(cachep, nodeid))) {
3150		/* Node not bootstrapped yet */
3151		ptr = fallback_alloc(cachep, flags);
3152		goto out;
3153	}
3154
3155	if (nodeid == slab_node) {
3156		/*
3157		 * Use the locally cached objects if possible.
3158		 * However ____cache_alloc does not allow fallback
3159		 * to other nodes. It may fail while we still have
3160		 * objects on other nodes available.
3161		 */
3162		ptr = ____cache_alloc(cachep, flags);
3163		if (ptr)
3164			goto out;
3165	}
3166	/* ___cache_alloc_node can fall back to other nodes */
3167	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3168  out:
3169	local_irq_restore(save_flags);
3170	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3171
3172	if (unlikely(flags & __GFP_ZERO) && ptr)
3173		memset(ptr, 0, cachep->object_size);
3174
3175	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3176	return ptr;
3177}
3178
3179static __always_inline void *
3180__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3181{
3182	void *objp;
3183
3184	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3185		objp = alternate_node_alloc(cache, flags);
3186		if (objp)
3187			goto out;
3188	}
3189	objp = ____cache_alloc(cache, flags);
3190
3191	/*
3192	 * We may just have run out of memory on the local node.
3193	 * ____cache_alloc_node() knows how to locate memory on other nodes
3194	 */
3195	if (!objp)
3196		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3197
3198  out:
3199	return objp;
3200}
3201#else
3202
3203static __always_inline void *
3204__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3205{
3206	return ____cache_alloc(cachep, flags);
3207}
3208
3209#endif /* CONFIG_NUMA */
3210
3211static __always_inline void *
3212slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
 
3213{
3214	unsigned long save_flags;
3215	void *objp;
 
 
3216
3217	flags &= gfp_allowed_mask;
3218	cachep = slab_pre_alloc_hook(cachep, flags);
3219	if (unlikely(!cachep))
3220		return NULL;
3221
3222	cache_alloc_debugcheck_before(cachep, flags);
 
 
 
3223	local_irq_save(save_flags);
3224	objp = __do_cache_alloc(cachep, flags);
3225	local_irq_restore(save_flags);
3226	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3227	prefetchw(objp);
 
3228
3229	if (unlikely(flags & __GFP_ZERO) && objp)
3230		memset(objp, 0, cachep->object_size);
 
 
 
3231
3232	slab_post_alloc_hook(cachep, flags, 1, &objp);
3233	return objp;
 
 
 
 
3234}
3235
3236/*
3237 * Caller needs to acquire correct kmem_cache_node's list_lock
3238 * @list: List of detached free slabs should be freed by caller
3239 */
3240static void free_block(struct kmem_cache *cachep, void **objpp,
3241			int nr_objects, int node, struct list_head *list)
3242{
3243	int i;
3244	struct kmem_cache_node *n = get_node(cachep, node);
 
 
 
3245
3246	for (i = 0; i < nr_objects; i++) {
3247		void *objp;
3248		struct page *page;
3249
3250		objp = objpp[i];
3251
3252		page = virt_to_head_page(objp);
3253		list_del(&page->lru);
3254		check_spinlock_acquired_node(cachep, node);
3255		slab_put_obj(cachep, page, objp);
3256		STATS_DEC_ACTIVE(cachep);
3257		n->free_objects++;
3258
3259		/* fixup slab chains */
3260		if (page->active == 0) {
3261			if (n->free_objects > n->free_limit) {
3262				n->free_objects -= cachep->num;
3263				list_add_tail(&page->lru, list);
3264			} else {
3265				list_add(&page->lru, &n->slabs_free);
3266			}
3267		} else {
3268			/* Unconditionally move a slab to the end of the
3269			 * partial list on free - maximum time for the
3270			 * other objects to be freed, too.
3271			 */
3272			list_add_tail(&page->lru, &n->slabs_partial);
3273		}
3274	}
 
 
 
 
 
 
 
 
 
3275}
3276
3277static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3278{
3279	int batchcount;
3280	struct kmem_cache_node *n;
3281	int node = numa_mem_id();
3282	LIST_HEAD(list);
3283
3284	batchcount = ac->batchcount;
3285
3286	check_irq_off();
3287	n = get_node(cachep, node);
3288	spin_lock(&n->list_lock);
3289	if (n->shared) {
3290		struct array_cache *shared_array = n->shared;
3291		int max = shared_array->limit - shared_array->avail;
3292		if (max) {
3293			if (batchcount > max)
3294				batchcount = max;
3295			memcpy(&(shared_array->entry[shared_array->avail]),
3296			       ac->entry, sizeof(void *) * batchcount);
3297			shared_array->avail += batchcount;
3298			goto free_done;
3299		}
3300	}
3301
3302	free_block(cachep, ac->entry, batchcount, node, &list);
3303free_done:
3304#if STATS
3305	{
3306		int i = 0;
3307		struct page *page;
3308
3309		list_for_each_entry(page, &n->slabs_free, lru) {
3310			BUG_ON(page->active);
3311
3312			i++;
3313		}
3314		STATS_SET_FREEABLE(cachep, i);
3315	}
3316#endif
3317	spin_unlock(&n->list_lock);
3318	slabs_destroy(cachep, &list);
3319	ac->avail -= batchcount;
3320	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
 
3321}
3322
3323/*
3324 * Release an obj back to its cache. If the obj has a constructed state, it must
3325 * be in this state _before_ it is released.  Called with disabled ints.
3326 */
3327static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3328				unsigned long caller)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3329{
3330	struct array_cache *ac = cpu_cache_get(cachep);
3331
3332	kasan_slab_free(cachep, objp);
3333
3334	check_irq_off();
3335	kmemleak_free_recursive(objp, cachep->flags);
3336	objp = cache_free_debugcheck(cachep, objp, caller);
3337
3338	kmemcheck_slab_free(cachep, objp, cachep->object_size);
3339
3340	/*
3341	 * Skip calling cache_free_alien() when the platform is not numa.
3342	 * This will avoid cache misses that happen while accessing slabp (which
3343	 * is per page memory  reference) to get nodeid. Instead use a global
3344	 * variable to skip the call, which is mostly likely to be present in
3345	 * the cache.
3346	 */
3347	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3348		return;
3349
3350	if (ac->avail < ac->limit) {
3351		STATS_INC_FREEHIT(cachep);
3352	} else {
3353		STATS_INC_FREEMISS(cachep);
3354		cache_flusharray(cachep, ac);
3355	}
3356
3357	if (sk_memalloc_socks()) {
3358		struct page *page = virt_to_head_page(objp);
3359
3360		if (unlikely(PageSlabPfmemalloc(page))) {
3361			cache_free_pfmemalloc(cachep, page, objp);
3362			return;
3363		}
3364	}
3365
3366	ac->entry[ac->avail++] = objp;
3367}
3368
3369/**
3370 * kmem_cache_alloc - Allocate an object
3371 * @cachep: The cache to allocate from.
3372 * @flags: See kmalloc().
3373 *
3374 * Allocate an object from this cache.  The flags are only relevant
3375 * if the cache has no available objects.
3376 */
3377void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3378{
3379	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3380
3381	kasan_slab_alloc(cachep, ret, flags);
3382	trace_kmem_cache_alloc(_RET_IP_, ret,
3383			       cachep->object_size, cachep->size, flags);
3384
3385	return ret;
3386}
 
 
 
 
 
3387EXPORT_SYMBOL(kmem_cache_alloc);
3388
 
 
 
 
 
 
 
3389static __always_inline void
3390cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3391				  size_t size, void **p, unsigned long caller)
3392{
3393	size_t i;
3394
3395	for (i = 0; i < size; i++)
3396		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3397}
3398
3399int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3400			  void **p)
3401{
3402	size_t i;
 
3403
3404	s = slab_pre_alloc_hook(s, flags);
3405	if (!s)
3406		return 0;
3407
3408	cache_alloc_debugcheck_before(s, flags);
3409
3410	local_irq_disable();
3411	for (i = 0; i < size; i++) {
3412		void *objp = __do_cache_alloc(s, flags);
 
3413
3414		if (unlikely(!objp))
3415			goto error;
3416		p[i] = objp;
3417	}
3418	local_irq_enable();
3419
3420	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3421
3422	/* Clear memory outside IRQ disabled section */
3423	if (unlikely(flags & __GFP_ZERO))
3424		for (i = 0; i < size; i++)
3425			memset(p[i], 0, s->object_size);
3426
3427	slab_post_alloc_hook(s, flags, size, p);
3428	/* FIXME: Trace call missing. Christoph would like a bulk variant */
3429	return size;
3430error:
3431	local_irq_enable();
3432	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3433	slab_post_alloc_hook(s, flags, i, p);
3434	__kmem_cache_free_bulk(s, i, p);
3435	return 0;
3436}
3437EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3438
3439#ifdef CONFIG_TRACING
3440void *
3441kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3442{
3443	void *ret;
3444
3445	ret = slab_alloc(cachep, flags, _RET_IP_);
3446
3447	kasan_kmalloc(cachep, ret, size, flags);
3448	trace_kmalloc(_RET_IP_, ret,
3449		      size, cachep->size, flags);
3450	return ret;
3451}
3452EXPORT_SYMBOL(kmem_cache_alloc_trace);
3453#endif
3454
3455#ifdef CONFIG_NUMA
3456/**
3457 * kmem_cache_alloc_node - Allocate an object on the specified node
3458 * @cachep: The cache to allocate from.
3459 * @flags: See kmalloc().
3460 * @nodeid: node number of the target node.
3461 *
3462 * Identical to kmem_cache_alloc but it will allocate memory on the given
3463 * node, which can improve the performance for cpu bound structures.
3464 *
3465 * Fallback to other node is possible if __GFP_THISNODE is not set.
 
 
3466 */
3467void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3468{
3469	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3470
3471	kasan_slab_alloc(cachep, ret, flags);
3472	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3473				    cachep->object_size, cachep->size,
3474				    flags, nodeid);
3475
3476	return ret;
3477}
3478EXPORT_SYMBOL(kmem_cache_alloc_node);
3479
3480#ifdef CONFIG_TRACING
3481void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3482				  gfp_t flags,
3483				  int nodeid,
3484				  size_t size)
3485{
3486	void *ret;
3487
3488	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3489
3490	kasan_kmalloc(cachep, ret, size, flags);
3491	trace_kmalloc_node(_RET_IP_, ret,
3492			   size, cachep->size,
3493			   flags, nodeid);
3494	return ret;
3495}
3496EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3497#endif
3498
3499static __always_inline void *
3500__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3501{
3502	struct kmem_cache *cachep;
3503	void *ret;
3504
3505	cachep = kmalloc_slab(size, flags);
3506	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3507		return cachep;
3508	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3509	kasan_kmalloc(cachep, ret, size, flags);
3510
3511	return ret;
 
 
 
 
 
 
 
 
 
 
 
3512}
 
3513
3514void *__kmalloc_node(size_t size, gfp_t flags, int node)
 
 
3515{
3516	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3517}
3518EXPORT_SYMBOL(__kmalloc_node);
3519
3520void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3521		int node, unsigned long caller)
3522{
3523	return __do_kmalloc_node(size, flags, node, caller);
3524}
3525EXPORT_SYMBOL(__kmalloc_node_track_caller);
3526#endif /* CONFIG_NUMA */
3527
3528/**
3529 * __do_kmalloc - allocate memory
3530 * @size: how many bytes of memory are required.
3531 * @flags: the type of memory to allocate (see kmalloc).
3532 * @caller: function caller for debug tracking of the caller
3533 */
3534static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3535					  unsigned long caller)
3536{
3537	struct kmem_cache *cachep;
3538	void *ret;
3539
3540	cachep = kmalloc_slab(size, flags);
3541	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3542		return cachep;
3543	ret = slab_alloc(cachep, flags, caller);
3544
3545	kasan_kmalloc(cachep, ret, size, flags);
3546	trace_kmalloc(caller, ret,
3547		      size, cachep->size, flags);
3548
3549	return ret;
3550}
3551
3552void *__kmalloc(size_t size, gfp_t flags)
3553{
3554	return __do_kmalloc(size, flags, _RET_IP_);
3555}
3556EXPORT_SYMBOL(__kmalloc);
3557
3558void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
 
3559{
3560	return __do_kmalloc(size, flags, caller);
3561}
3562EXPORT_SYMBOL(__kmalloc_track_caller);
3563
3564/**
3565 * kmem_cache_free - Deallocate an object
3566 * @cachep: The cache the allocation was from.
3567 * @objp: The previously allocated object.
3568 *
3569 * Free an object which was previously allocated from this
3570 * cache.
3571 */
3572void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3573{
3574	unsigned long flags;
3575	cachep = cache_from_obj(cachep, objp);
3576	if (!cachep)
3577		return;
3578
3579	local_irq_save(flags);
3580	debug_check_no_locks_freed(objp, cachep->object_size);
3581	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3582		debug_check_no_obj_freed(objp, cachep->object_size);
3583	__cache_free(cachep, objp, _RET_IP_);
3584	local_irq_restore(flags);
3585
3586	trace_kmem_cache_free(_RET_IP_, objp);
3587}
3588EXPORT_SYMBOL(kmem_cache_free);
3589
3590void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3591{
3592	struct kmem_cache *s;
3593	size_t i;
3594
3595	local_irq_disable();
3596	for (i = 0; i < size; i++) {
3597		void *objp = p[i];
 
 
 
 
3598
3599		if (!orig_s) /* called via kfree_bulk */
3600			s = virt_to_cache(objp);
3601		else
 
 
 
 
 
 
3602			s = cache_from_obj(orig_s, objp);
 
 
 
 
3603
3604		debug_check_no_locks_freed(objp, s->object_size);
3605		if (!(s->flags & SLAB_DEBUG_OBJECTS))
3606			debug_check_no_obj_freed(objp, s->object_size);
3607
3608		__cache_free(s, objp, _RET_IP_);
3609	}
3610	local_irq_enable();
3611
3612	/* FIXME: add tracing */
3613}
3614EXPORT_SYMBOL(kmem_cache_free_bulk);
3615
3616/**
3617 * kfree - free previously allocated memory
3618 * @objp: pointer returned by kmalloc.
3619 *
3620 * If @objp is NULL, no operation is performed.
3621 *
3622 * Don't free memory not originally allocated by kmalloc()
3623 * or you will run into trouble.
3624 */
3625void kfree(const void *objp)
3626{
3627	struct kmem_cache *c;
3628	unsigned long flags;
3629
3630	trace_kfree(_RET_IP_, objp);
3631
3632	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3633		return;
3634	local_irq_save(flags);
3635	kfree_debugcheck(objp);
3636	c = virt_to_cache(objp);
3637	debug_check_no_locks_freed(objp, c->object_size);
3638
3639	debug_check_no_obj_freed(objp, c->object_size);
3640	__cache_free(c, (void *)objp, _RET_IP_);
3641	local_irq_restore(flags);
3642}
3643EXPORT_SYMBOL(kfree);
3644
3645/*
3646 * This initializes kmem_cache_node or resizes various caches for all nodes.
3647 */
3648static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3649{
 
3650	int node;
3651	struct kmem_cache_node *n;
3652	struct array_cache *new_shared;
3653	struct alien_cache **new_alien = NULL;
3654
3655	for_each_online_node(node) {
3656
3657		if (use_alien_caches) {
3658			new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3659			if (!new_alien)
3660				goto fail;
3661		}
3662
3663		new_shared = NULL;
3664		if (cachep->shared) {
3665			new_shared = alloc_arraycache(node,
3666				cachep->shared*cachep->batchcount,
3667					0xbaadf00d, gfp);
3668			if (!new_shared) {
3669				free_alien_cache(new_alien);
3670				goto fail;
3671			}
3672		}
3673
3674		n = get_node(cachep, node);
3675		if (n) {
3676			struct array_cache *shared = n->shared;
3677			LIST_HEAD(list);
3678
3679			spin_lock_irq(&n->list_lock);
3680
3681			if (shared)
3682				free_block(cachep, shared->entry,
3683						shared->avail, node, &list);
3684
3685			n->shared = new_shared;
3686			if (!n->alien) {
3687				n->alien = new_alien;
3688				new_alien = NULL;
3689			}
3690			n->free_limit = (1 + nr_cpus_node(node)) *
3691					cachep->batchcount + cachep->num;
3692			spin_unlock_irq(&n->list_lock);
3693			slabs_destroy(cachep, &list);
3694			kfree(shared);
3695			free_alien_cache(new_alien);
3696			continue;
3697		}
3698		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3699		if (!n) {
3700			free_alien_cache(new_alien);
3701			kfree(new_shared);
3702			goto fail;
3703		}
3704
3705		kmem_cache_node_init(n);
3706		n->next_reap = jiffies + REAPTIMEOUT_NODE +
3707				((unsigned long)cachep) % REAPTIMEOUT_NODE;
3708		n->shared = new_shared;
3709		n->alien = new_alien;
3710		n->free_limit = (1 + nr_cpus_node(node)) *
3711					cachep->batchcount + cachep->num;
3712		cachep->node[node] = n;
3713	}
 
3714	return 0;
3715
3716fail:
3717	if (!cachep->list.next) {
3718		/* Cache is not active yet. Roll back what we did */
3719		node--;
3720		while (node >= 0) {
3721			n = get_node(cachep, node);
3722			if (n) {
3723				kfree(n->shared);
3724				free_alien_cache(n->alien);
3725				kfree(n);
3726				cachep->node[node] = NULL;
3727			}
3728			node--;
3729		}
3730	}
3731	return -ENOMEM;
3732}
3733
3734/* Always called with the slab_mutex held */
3735static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3736				int batchcount, int shared, gfp_t gfp)
3737{
3738	struct array_cache __percpu *cpu_cache, *prev;
3739	int cpu;
3740
3741	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3742	if (!cpu_cache)
3743		return -ENOMEM;
3744
3745	prev = cachep->cpu_cache;
3746	cachep->cpu_cache = cpu_cache;
3747	kick_all_cpus_sync();
 
 
 
 
 
3748
3749	check_irq_on();
3750	cachep->batchcount = batchcount;
3751	cachep->limit = limit;
3752	cachep->shared = shared;
3753
3754	if (!prev)
3755		goto alloc_node;
3756
3757	for_each_online_cpu(cpu) {
3758		LIST_HEAD(list);
3759		int node;
3760		struct kmem_cache_node *n;
3761		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3762
3763		node = cpu_to_mem(cpu);
3764		n = get_node(cachep, node);
3765		spin_lock_irq(&n->list_lock);
3766		free_block(cachep, ac->entry, ac->avail, node, &list);
3767		spin_unlock_irq(&n->list_lock);
3768		slabs_destroy(cachep, &list);
3769	}
3770	free_percpu(prev);
3771
3772alloc_node:
3773	return alloc_kmem_cache_node(cachep, gfp);
3774}
3775
3776static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3777				int batchcount, int shared, gfp_t gfp)
3778{
3779	int ret;
3780	struct kmem_cache *c;
3781
3782	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3783
3784	if (slab_state < FULL)
3785		return ret;
3786
3787	if ((ret < 0) || !is_root_cache(cachep))
3788		return ret;
3789
3790	lockdep_assert_held(&slab_mutex);
3791	for_each_memcg_cache(c, cachep) {
3792		/* return value determined by the root cache only */
3793		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3794	}
3795
3796	return ret;
3797}
3798
3799/* Called with slab_mutex held always */
3800static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3801{
3802	int err;
3803	int limit = 0;
3804	int shared = 0;
3805	int batchcount = 0;
3806
3807	if (!is_root_cache(cachep)) {
3808		struct kmem_cache *root = memcg_root_cache(cachep);
3809		limit = root->limit;
3810		shared = root->shared;
3811		batchcount = root->batchcount;
3812	}
3813
3814	if (limit && shared && batchcount)
3815		goto skip_setup;
3816	/*
3817	 * The head array serves three purposes:
3818	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3819	 * - reduce the number of spinlock operations.
3820	 * - reduce the number of linked list operations on the slab and
3821	 *   bufctl chains: array operations are cheaper.
3822	 * The numbers are guessed, we should auto-tune as described by
3823	 * Bonwick.
3824	 */
3825	if (cachep->size > 131072)
3826		limit = 1;
3827	else if (cachep->size > PAGE_SIZE)
3828		limit = 8;
3829	else if (cachep->size > 1024)
3830		limit = 24;
3831	else if (cachep->size > 256)
3832		limit = 54;
3833	else
3834		limit = 120;
3835
3836	/*
3837	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3838	 * allocation behaviour: Most allocs on one cpu, most free operations
3839	 * on another cpu. For these cases, an efficient object passing between
3840	 * cpus is necessary. This is provided by a shared array. The array
3841	 * replaces Bonwick's magazine layer.
3842	 * On uniprocessor, it's functionally equivalent (but less efficient)
3843	 * to a larger limit. Thus disabled by default.
3844	 */
3845	shared = 0;
3846	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3847		shared = 8;
3848
3849#if DEBUG
3850	/*
3851	 * With debugging enabled, large batchcount lead to excessively long
3852	 * periods with disabled local interrupts. Limit the batchcount
3853	 */
3854	if (limit > 32)
3855		limit = 32;
3856#endif
3857	batchcount = (limit + 1) / 2;
3858skip_setup:
3859	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
 
3860	if (err)
3861		pr_err("enable_cpucache failed for %s, error %d\n",
3862		       cachep->name, -err);
3863	return err;
3864}
3865
3866/*
3867 * Drain an array if it contains any elements taking the node lock only if
3868 * necessary. Note that the node listlock also protects the array_cache
3869 * if drain_array() is used on the shared array.
3870 */
3871static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3872			 struct array_cache *ac, int force, int node)
3873{
3874	LIST_HEAD(list);
3875	int tofree;
 
 
3876
3877	if (!ac || !ac->avail)
3878		return;
3879	if (ac->touched && !force) {
 
3880		ac->touched = 0;
3881	} else {
3882		spin_lock_irq(&n->list_lock);
3883		if (ac->avail) {
3884			tofree = force ? ac->avail : (ac->limit + 4) / 5;
3885			if (tofree > ac->avail)
3886				tofree = (ac->avail + 1) / 2;
3887			free_block(cachep, ac->entry, tofree, node, &list);
3888			ac->avail -= tofree;
3889			memmove(ac->entry, &(ac->entry[tofree]),
3890				sizeof(void *) * ac->avail);
3891		}
3892		spin_unlock_irq(&n->list_lock);
3893		slabs_destroy(cachep, &list);
3894	}
 
 
 
 
 
 
3895}
3896
3897/**
3898 * cache_reap - Reclaim memory from caches.
3899 * @w: work descriptor
3900 *
3901 * Called from workqueue/eventd every few seconds.
3902 * Purpose:
3903 * - clear the per-cpu caches for this CPU.
3904 * - return freeable pages to the main free memory pool.
3905 *
3906 * If we cannot acquire the cache chain mutex then just give up - we'll try
3907 * again on the next iteration.
3908 */
3909static void cache_reap(struct work_struct *w)
3910{
3911	struct kmem_cache *searchp;
3912	struct kmem_cache_node *n;
3913	int node = numa_mem_id();
3914	struct delayed_work *work = to_delayed_work(w);
3915
3916	if (!mutex_trylock(&slab_mutex))
3917		/* Give up. Setup the next iteration. */
3918		goto out;
3919
3920	list_for_each_entry(searchp, &slab_caches, list) {
3921		check_irq_on();
3922
3923		/*
3924		 * We only take the node lock if absolutely necessary and we
3925		 * have established with reasonable certainty that
3926		 * we can do some work if the lock was obtained.
3927		 */
3928		n = get_node(searchp, node);
3929
3930		reap_alien(searchp, n);
3931
3932		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3933
3934		/*
3935		 * These are racy checks but it does not matter
3936		 * if we skip one check or scan twice.
3937		 */
3938		if (time_after(n->next_reap, jiffies))
3939			goto next;
3940
3941		n->next_reap = jiffies + REAPTIMEOUT_NODE;
3942
3943		drain_array(searchp, n, n->shared, 0, node);
3944
3945		if (n->free_touched)
3946			n->free_touched = 0;
3947		else {
3948			int freed;
3949
3950			freed = drain_freelist(searchp, n, (n->free_limit +
3951				5 * searchp->num - 1) / (5 * searchp->num));
3952			STATS_ADD_REAPED(searchp, freed);
3953		}
3954next:
3955		cond_resched();
3956	}
3957	check_irq_on();
3958	mutex_unlock(&slab_mutex);
3959	next_reap_node();
3960out:
3961	/* Set up the next iteration */
3962	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
 
3963}
3964
3965#ifdef CONFIG_SLABINFO
3966void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3967{
3968	struct page *page;
3969	unsigned long active_objs;
3970	unsigned long num_objs;
3971	unsigned long active_slabs = 0;
3972	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3973	const char *name;
3974	char *error = NULL;
3975	int node;
3976	struct kmem_cache_node *n;
3977
3978	active_objs = 0;
3979	num_slabs = 0;
3980	for_each_kmem_cache_node(cachep, node, n) {
 
 
3981
3982		check_irq_on();
3983		spin_lock_irq(&n->list_lock);
 
3984
3985		list_for_each_entry(page, &n->slabs_full, lru) {
3986			if (page->active != cachep->num && !error)
3987				error = "slabs_full accounting error";
3988			active_objs += cachep->num;
3989			active_slabs++;
3990		}
3991		list_for_each_entry(page, &n->slabs_partial, lru) {
3992			if (page->active == cachep->num && !error)
3993				error = "slabs_partial accounting error";
3994			if (!page->active && !error)
3995				error = "slabs_partial accounting error";
3996			active_objs += page->active;
3997			active_slabs++;
3998		}
3999		list_for_each_entry(page, &n->slabs_free, lru) {
4000			if (page->active && !error)
4001				error = "slabs_free accounting error";
4002			num_slabs++;
4003		}
4004		free_objects += n->free_objects;
4005		if (n->shared)
4006			shared_avail += n->shared->avail;
4007
4008		spin_unlock_irq(&n->list_lock);
4009	}
4010	num_slabs += active_slabs;
4011	num_objs = num_slabs * cachep->num;
4012	if (num_objs - active_objs != free_objects && !error)
4013		error = "free_objects accounting error";
4014
4015	name = cachep->name;
4016	if (error)
4017		pr_err("slab: cache %s error: %s\n", name, error);
4018
4019	sinfo->active_objs = active_objs;
4020	sinfo->num_objs = num_objs;
4021	sinfo->active_slabs = active_slabs;
4022	sinfo->num_slabs = num_slabs;
4023	sinfo->shared_avail = shared_avail;
4024	sinfo->limit = cachep->limit;
4025	sinfo->batchcount = cachep->batchcount;
4026	sinfo->shared = cachep->shared;
4027	sinfo->objects_per_slab = cachep->num;
4028	sinfo->cache_order = cachep->gfporder;
4029}
4030
4031void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4032{
4033#if STATS
4034	{			/* node stats */
4035		unsigned long high = cachep->high_mark;
4036		unsigned long allocs = cachep->num_allocations;
4037		unsigned long grown = cachep->grown;
4038		unsigned long reaped = cachep->reaped;
4039		unsigned long errors = cachep->errors;
4040		unsigned long max_freeable = cachep->max_freeable;
4041		unsigned long node_allocs = cachep->node_allocs;
4042		unsigned long node_frees = cachep->node_frees;
4043		unsigned long overflows = cachep->node_overflow;
4044
4045		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4046			   allocs, high, grown,
4047			   reaped, errors, max_freeable, node_allocs,
4048			   node_frees, overflows);
4049	}
4050	/* cpu stats */
4051	{
4052		unsigned long allochit = atomic_read(&cachep->allochit);
4053		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4054		unsigned long freehit = atomic_read(&cachep->freehit);
4055		unsigned long freemiss = atomic_read(&cachep->freemiss);
4056
4057		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4058			   allochit, allocmiss, freehit, freemiss);
4059	}
4060#endif
4061}
4062
4063#define MAX_SLABINFO_WRITE 128
4064/**
4065 * slabinfo_write - Tuning for the slab allocator
4066 * @file: unused
4067 * @buffer: user buffer
4068 * @count: data length
4069 * @ppos: unused
 
 
4070 */
4071ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4072		       size_t count, loff_t *ppos)
4073{
4074	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4075	int limit, batchcount, shared, res;
4076	struct kmem_cache *cachep;
4077
4078	if (count > MAX_SLABINFO_WRITE)
4079		return -EINVAL;
4080	if (copy_from_user(&kbuf, buffer, count))
4081		return -EFAULT;
4082	kbuf[MAX_SLABINFO_WRITE] = '\0';
4083
4084	tmp = strchr(kbuf, ' ');
4085	if (!tmp)
4086		return -EINVAL;
4087	*tmp = '\0';
4088	tmp++;
4089	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4090		return -EINVAL;
4091
4092	/* Find the cache in the chain of caches. */
4093	mutex_lock(&slab_mutex);
4094	res = -EINVAL;
4095	list_for_each_entry(cachep, &slab_caches, list) {
4096		if (!strcmp(cachep->name, kbuf)) {
4097			if (limit < 1 || batchcount < 1 ||
4098					batchcount > limit || shared < 0) {
4099				res = 0;
4100			} else {
4101				res = do_tune_cpucache(cachep, limit,
4102						       batchcount, shared,
4103						       GFP_KERNEL);
4104			}
4105			break;
4106		}
4107	}
4108	mutex_unlock(&slab_mutex);
4109	if (res >= 0)
4110		res = count;
4111	return res;
4112}
4113
4114#ifdef CONFIG_DEBUG_SLAB_LEAK
4115
4116static inline int add_caller(unsigned long *n, unsigned long v)
 
 
 
 
 
 
 
 
4117{
4118	unsigned long *p;
4119	int l;
4120	if (!v)
4121		return 1;
4122	l = n[1];
4123	p = n + 2;
4124	while (l) {
4125		int i = l/2;
4126		unsigned long *q = p + 2 * i;
4127		if (*q == v) {
4128			q[1]++;
4129			return 1;
4130		}
4131		if (*q > v) {
4132			l = i;
4133		} else {
4134			p = q + 2;
4135			l -= i + 1;
4136		}
4137	}
4138	if (++n[1] == n[0])
4139		return 0;
4140	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4141	p[0] = v;
4142	p[1] = 1;
4143	return 1;
4144}
4145
4146static void handle_slab(unsigned long *n, struct kmem_cache *c,
4147						struct page *page)
4148{
4149	void *p;
4150	int i, j;
4151	unsigned long v;
4152
4153	if (n[0] == n[1])
4154		return;
4155	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4156		bool active = true;
4157
4158		for (j = page->active; j < c->num; j++) {
4159			if (get_free_obj(page, j) == i) {
4160				active = false;
4161				break;
4162			}
4163		}
4164
4165		if (!active)
4166			continue;
4167
4168		/*
4169		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4170		 * mapping is established when actual object allocation and
4171		 * we could mistakenly access the unmapped object in the cpu
4172		 * cache.
4173		 */
4174		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4175			continue;
4176
4177		if (!add_caller(n, v))
4178			return;
4179	}
4180}
4181
4182static void show_symbol(struct seq_file *m, unsigned long address)
4183{
4184#ifdef CONFIG_KALLSYMS
4185	unsigned long offset, size;
4186	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4187
4188	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4189		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4190		if (modname[0])
4191			seq_printf(m, " [%s]", modname);
4192		return;
4193	}
4194#endif
4195	seq_printf(m, "%p", (void *)address);
4196}
4197
4198static int leaks_show(struct seq_file *m, void *p)
4199{
4200	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4201	struct page *page;
4202	struct kmem_cache_node *n;
4203	const char *name;
4204	unsigned long *x = m->private;
4205	int node;
4206	int i;
4207
4208	if (!(cachep->flags & SLAB_STORE_USER))
4209		return 0;
4210	if (!(cachep->flags & SLAB_RED_ZONE))
4211		return 0;
4212
4213	/*
4214	 * Set store_user_clean and start to grab stored user information
4215	 * for all objects on this cache. If some alloc/free requests comes
4216	 * during the processing, information would be wrong so restart
4217	 * whole processing.
4218	 */
4219	do {
4220		set_store_user_clean(cachep);
4221		drain_cpu_caches(cachep);
4222
4223		x[1] = 0;
4224
4225		for_each_kmem_cache_node(cachep, node, n) {
4226
4227			check_irq_on();
4228			spin_lock_irq(&n->list_lock);
4229
4230			list_for_each_entry(page, &n->slabs_full, lru)
4231				handle_slab(x, cachep, page);
4232			list_for_each_entry(page, &n->slabs_partial, lru)
4233				handle_slab(x, cachep, page);
4234			spin_unlock_irq(&n->list_lock);
4235		}
4236	} while (!is_store_user_clean(cachep));
4237
4238	name = cachep->name;
4239	if (x[0] == x[1]) {
4240		/* Increase the buffer size */
4241		mutex_unlock(&slab_mutex);
4242		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4243		if (!m->private) {
4244			/* Too bad, we are really out */
4245			m->private = x;
4246			mutex_lock(&slab_mutex);
4247			return -ENOMEM;
4248		}
4249		*(unsigned long *)m->private = x[0] * 2;
4250		kfree(x);
4251		mutex_lock(&slab_mutex);
4252		/* Now make sure this entry will be retried */
4253		m->count = m->size;
4254		return 0;
4255	}
4256	for (i = 0; i < x[1]; i++) {
4257		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4258		show_symbol(m, x[2*i+2]);
4259		seq_putc(m, '\n');
4260	}
4261
4262	return 0;
4263}
4264
4265static const struct seq_operations slabstats_op = {
4266	.start = slab_start,
4267	.next = slab_next,
4268	.stop = slab_stop,
4269	.show = leaks_show,
4270};
4271
4272static int slabstats_open(struct inode *inode, struct file *file)
4273{
4274	unsigned long *n;
4275
4276	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4277	if (!n)
4278		return -ENOMEM;
4279
4280	*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4281
4282	return 0;
4283}
4284
4285static const struct file_operations proc_slabstats_operations = {
4286	.open		= slabstats_open,
4287	.read		= seq_read,
4288	.llseek		= seq_lseek,
4289	.release	= seq_release_private,
4290};
4291#endif
4292
4293static int __init slab_proc_init(void)
4294{
4295#ifdef CONFIG_DEBUG_SLAB_LEAK
4296	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4297#endif
4298	return 0;
4299}
4300module_init(slab_proc_init);
4301#endif
4302
4303/**
4304 * ksize - get the actual amount of memory allocated for a given object
4305 * @objp: Pointer to the object
4306 *
4307 * kmalloc may internally round up allocations and return more memory
4308 * than requested. ksize() can be used to determine the actual amount of
4309 * memory allocated. The caller may use this additional memory, even though
4310 * a smaller amount of memory was initially specified with the kmalloc call.
4311 * The caller must guarantee that objp points to a valid object previously
4312 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4313 * must not be freed during the duration of the call.
4314 */
4315size_t ksize(const void *objp)
4316{
4317	size_t size;
4318
4319	BUG_ON(!objp);
4320	if (unlikely(objp == ZERO_SIZE_PTR))
4321		return 0;
4322
4323	size = virt_to_cache(objp)->object_size;
4324	/* We assume that ksize callers could use the whole allocated area,
4325	 * so we need to unpoison this area.
4326	 */
4327	kasan_krealloc(objp, size, GFP_NOWAIT);
4328
4329	return size;
4330}
4331EXPORT_SYMBOL(ksize);