Linux Audio

Check our new training course

Loading...
v6.2
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *		 2000 Transmeta Corp.
   6 *		 2000-2001 Christoph Rohland
   7 *		 2000-2001 SAP AG
   8 *		 2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
  31#include <linux/fileattr.h>
  32#include <linux/mm.h>
  33#include <linux/random.h>
  34#include <linux/sched/signal.h>
  35#include <linux/export.h>
  36#include <linux/swap.h>
  37#include <linux/uio.h>
  38#include <linux/hugetlb.h>
  39#include <linux/fs_parser.h>
  40#include <linux/swapfile.h>
  41#include <linux/iversion.h>
  42#include "swap.h"
  43
  44static struct vfsmount *shm_mnt;
  45
  46#ifdef CONFIG_SHMEM
  47/*
  48 * This virtual memory filesystem is heavily based on the ramfs. It
  49 * extends ramfs by the ability to use swap and honor resource limits
  50 * which makes it a completely usable filesystem.
  51 */
  52
  53#include <linux/xattr.h>
  54#include <linux/exportfs.h>
  55#include <linux/posix_acl.h>
  56#include <linux/posix_acl_xattr.h>
  57#include <linux/mman.h>
  58#include <linux/string.h>
  59#include <linux/slab.h>
  60#include <linux/backing-dev.h>
  61#include <linux/shmem_fs.h>
  62#include <linux/writeback.h>
 
  63#include <linux/pagevec.h>
  64#include <linux/percpu_counter.h>
  65#include <linux/falloc.h>
  66#include <linux/splice.h>
  67#include <linux/security.h>
  68#include <linux/swapops.h>
  69#include <linux/mempolicy.h>
  70#include <linux/namei.h>
  71#include <linux/ctype.h>
  72#include <linux/migrate.h>
  73#include <linux/highmem.h>
  74#include <linux/seq_file.h>
  75#include <linux/magic.h>
  76#include <linux/syscalls.h>
  77#include <linux/fcntl.h>
  78#include <uapi/linux/memfd.h>
  79#include <linux/userfaultfd_k.h>
  80#include <linux/rmap.h>
  81#include <linux/uuid.h>
  82
  83#include <linux/uaccess.h>
 
  84
  85#include "internal.h"
  86
  87#define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
  88#define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
  89
  90/* Pretend that each entry is of this size in directory's i_size */
  91#define BOGO_DIRENT_SIZE 20
  92
  93/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  94#define SHORT_SYMLINK_LEN 128
  95
  96/*
  97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
  98 * inode->i_private (with i_rwsem making sure that it has only one user at
  99 * a time): we would prefer not to enlarge the shmem inode just for that.
 100 */
 101struct shmem_falloc {
 102	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
 103	pgoff_t start;		/* start of range currently being fallocated */
 104	pgoff_t next;		/* the next page offset to be fallocated */
 105	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
 106	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
 107};
 108
 109struct shmem_options {
 110	unsigned long long blocks;
 111	unsigned long long inodes;
 112	struct mempolicy *mpol;
 113	kuid_t uid;
 114	kgid_t gid;
 115	umode_t mode;
 116	bool full_inums;
 117	int huge;
 118	int seen;
 119#define SHMEM_SEEN_BLOCKS 1
 120#define SHMEM_SEEN_INODES 2
 121#define SHMEM_SEEN_HUGE 4
 122#define SHMEM_SEEN_INUMS 8
 123};
 124
 125#ifdef CONFIG_TMPFS
 126static unsigned long shmem_default_max_blocks(void)
 127{
 128	return totalram_pages() / 2;
 129}
 130
 131static unsigned long shmem_default_max_inodes(void)
 132{
 133	unsigned long nr_pages = totalram_pages();
 134
 135	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
 136}
 137#endif
 138
 139static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
 140			     struct folio **foliop, enum sgp_type sgp,
 141			     gfp_t gfp, struct vm_area_struct *vma,
 142			     vm_fault_t *fault_type);
 
 
 
 
 
 
 
 
 143
 144static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 145{
 146	return sb->s_fs_info;
 147}
 148
 149/*
 150 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 151 * for shared memory and for shared anonymous (/dev/zero) mappings
 152 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 153 * consistent with the pre-accounting of private mappings ...
 154 */
 155static inline int shmem_acct_size(unsigned long flags, loff_t size)
 156{
 157	return (flags & VM_NORESERVE) ?
 158		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 159}
 160
 161static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 162{
 163	if (!(flags & VM_NORESERVE))
 164		vm_unacct_memory(VM_ACCT(size));
 165}
 166
 167static inline int shmem_reacct_size(unsigned long flags,
 168		loff_t oldsize, loff_t newsize)
 169{
 170	if (!(flags & VM_NORESERVE)) {
 171		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
 172			return security_vm_enough_memory_mm(current->mm,
 173					VM_ACCT(newsize) - VM_ACCT(oldsize));
 174		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
 175			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
 176	}
 177	return 0;
 178}
 179
 180/*
 181 * ... whereas tmpfs objects are accounted incrementally as
 182 * pages are allocated, in order to allow large sparse files.
 183 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 184 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 185 */
 186static inline int shmem_acct_block(unsigned long flags, long pages)
 187{
 188	if (!(flags & VM_NORESERVE))
 189		return 0;
 190
 191	return security_vm_enough_memory_mm(current->mm,
 192			pages * VM_ACCT(PAGE_SIZE));
 193}
 194
 195static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 196{
 197	if (flags & VM_NORESERVE)
 198		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
 199}
 200
 201static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
 202{
 203	struct shmem_inode_info *info = SHMEM_I(inode);
 204	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 205
 206	if (shmem_acct_block(info->flags, pages))
 207		return false;
 208
 209	if (sbinfo->max_blocks) {
 210		if (percpu_counter_compare(&sbinfo->used_blocks,
 211					   sbinfo->max_blocks - pages) > 0)
 212			goto unacct;
 213		percpu_counter_add(&sbinfo->used_blocks, pages);
 214	}
 215
 216	return true;
 217
 218unacct:
 219	shmem_unacct_blocks(info->flags, pages);
 220	return false;
 221}
 222
 223static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
 224{
 225	struct shmem_inode_info *info = SHMEM_I(inode);
 226	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 227
 228	if (sbinfo->max_blocks)
 229		percpu_counter_sub(&sbinfo->used_blocks, pages);
 230	shmem_unacct_blocks(info->flags, pages);
 231}
 232
 233static const struct super_operations shmem_ops;
 234const struct address_space_operations shmem_aops;
 235static const struct file_operations shmem_file_operations;
 236static const struct inode_operations shmem_inode_operations;
 237static const struct inode_operations shmem_dir_inode_operations;
 238static const struct inode_operations shmem_special_inode_operations;
 239static const struct vm_operations_struct shmem_vm_ops;
 240static const struct vm_operations_struct shmem_anon_vm_ops;
 241static struct file_system_type shmem_fs_type;
 242
 243bool vma_is_anon_shmem(struct vm_area_struct *vma)
 244{
 245	return vma->vm_ops == &shmem_anon_vm_ops;
 246}
 247
 248bool vma_is_shmem(struct vm_area_struct *vma)
 249{
 250	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
 251}
 252
 253static LIST_HEAD(shmem_swaplist);
 254static DEFINE_MUTEX(shmem_swaplist_mutex);
 255
 256/*
 257 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
 258 * produces a novel ino for the newly allocated inode.
 259 *
 260 * It may also be called when making a hard link to permit the space needed by
 261 * each dentry. However, in that case, no new inode number is needed since that
 262 * internally draws from another pool of inode numbers (currently global
 263 * get_next_ino()). This case is indicated by passing NULL as inop.
 264 */
 265#define SHMEM_INO_BATCH 1024
 266static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
 267{
 268	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 269	ino_t ino;
 270
 271	if (!(sb->s_flags & SB_KERNMOUNT)) {
 272		raw_spin_lock(&sbinfo->stat_lock);
 273		if (sbinfo->max_inodes) {
 274			if (!sbinfo->free_inodes) {
 275				raw_spin_unlock(&sbinfo->stat_lock);
 276				return -ENOSPC;
 277			}
 278			sbinfo->free_inodes--;
 279		}
 280		if (inop) {
 281			ino = sbinfo->next_ino++;
 282			if (unlikely(is_zero_ino(ino)))
 283				ino = sbinfo->next_ino++;
 284			if (unlikely(!sbinfo->full_inums &&
 285				     ino > UINT_MAX)) {
 286				/*
 287				 * Emulate get_next_ino uint wraparound for
 288				 * compatibility
 289				 */
 290				if (IS_ENABLED(CONFIG_64BIT))
 291					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
 292						__func__, MINOR(sb->s_dev));
 293				sbinfo->next_ino = 1;
 294				ino = sbinfo->next_ino++;
 295			}
 296			*inop = ino;
 297		}
 298		raw_spin_unlock(&sbinfo->stat_lock);
 299	} else if (inop) {
 300		/*
 301		 * __shmem_file_setup, one of our callers, is lock-free: it
 302		 * doesn't hold stat_lock in shmem_reserve_inode since
 303		 * max_inodes is always 0, and is called from potentially
 304		 * unknown contexts. As such, use a per-cpu batched allocator
 305		 * which doesn't require the per-sb stat_lock unless we are at
 306		 * the batch boundary.
 307		 *
 308		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
 309		 * shmem mounts are not exposed to userspace, so we don't need
 310		 * to worry about things like glibc compatibility.
 311		 */
 312		ino_t *next_ino;
 313
 314		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
 315		ino = *next_ino;
 316		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
 317			raw_spin_lock(&sbinfo->stat_lock);
 318			ino = sbinfo->next_ino;
 319			sbinfo->next_ino += SHMEM_INO_BATCH;
 320			raw_spin_unlock(&sbinfo->stat_lock);
 321			if (unlikely(is_zero_ino(ino)))
 322				ino++;
 323		}
 324		*inop = ino;
 325		*next_ino = ++ino;
 326		put_cpu();
 327	}
 328
 329	return 0;
 330}
 331
 332static void shmem_free_inode(struct super_block *sb)
 333{
 334	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 335	if (sbinfo->max_inodes) {
 336		raw_spin_lock(&sbinfo->stat_lock);
 337		sbinfo->free_inodes++;
 338		raw_spin_unlock(&sbinfo->stat_lock);
 339	}
 340}
 341
 342/**
 343 * shmem_recalc_inode - recalculate the block usage of an inode
 344 * @inode: inode to recalc
 345 *
 346 * We have to calculate the free blocks since the mm can drop
 347 * undirtied hole pages behind our back.
 348 *
 349 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 350 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 351 *
 352 * It has to be called with the spinlock held.
 353 */
 354static void shmem_recalc_inode(struct inode *inode)
 355{
 356	struct shmem_inode_info *info = SHMEM_I(inode);
 357	long freed;
 358
 359	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 360	if (freed > 0) {
 
 
 
 361		info->alloced -= freed;
 362		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 363		shmem_inode_unacct_blocks(inode, freed);
 364	}
 365}
 366
 367bool shmem_charge(struct inode *inode, long pages)
 368{
 369	struct shmem_inode_info *info = SHMEM_I(inode);
 370	unsigned long flags;
 371
 372	if (!shmem_inode_acct_block(inode, pages))
 373		return false;
 374
 375	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
 376	inode->i_mapping->nrpages += pages;
 377
 378	spin_lock_irqsave(&info->lock, flags);
 379	info->alloced += pages;
 380	inode->i_blocks += pages * BLOCKS_PER_PAGE;
 381	shmem_recalc_inode(inode);
 382	spin_unlock_irqrestore(&info->lock, flags);
 383
 384	return true;
 385}
 386
 387void shmem_uncharge(struct inode *inode, long pages)
 388{
 389	struct shmem_inode_info *info = SHMEM_I(inode);
 390	unsigned long flags;
 391
 392	/* nrpages adjustment done by __filemap_remove_folio() or caller */
 393
 394	spin_lock_irqsave(&info->lock, flags);
 395	info->alloced -= pages;
 396	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
 397	shmem_recalc_inode(inode);
 398	spin_unlock_irqrestore(&info->lock, flags);
 399
 400	shmem_inode_unacct_blocks(inode, pages);
 401}
 402
 403/*
 404 * Replace item expected in xarray by a new item, while holding xa_lock.
 405 */
 406static int shmem_replace_entry(struct address_space *mapping,
 407			pgoff_t index, void *expected, void *replacement)
 408{
 409	XA_STATE(xas, &mapping->i_pages, index);
 410	void *item;
 411
 412	VM_BUG_ON(!expected);
 413	VM_BUG_ON(!replacement);
 414	item = xas_load(&xas);
 
 
 
 415	if (item != expected)
 416		return -ENOENT;
 417	xas_store(&xas, replacement);
 418	return 0;
 419}
 420
 421/*
 422 * Sometimes, before we decide whether to proceed or to fail, we must check
 423 * that an entry was not already brought back from swap by a racing thread.
 424 *
 425 * Checking page is not enough: by the time a SwapCache page is locked, it
 426 * might be reused, and again be SwapCache, using the same swap as before.
 427 */
 428static bool shmem_confirm_swap(struct address_space *mapping,
 429			       pgoff_t index, swp_entry_t swap)
 430{
 431	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
 432}
 433
 434/*
 435 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
 436 *
 437 * SHMEM_HUGE_NEVER:
 438 *	disables huge pages for the mount;
 439 * SHMEM_HUGE_ALWAYS:
 440 *	enables huge pages for the mount;
 441 * SHMEM_HUGE_WITHIN_SIZE:
 442 *	only allocate huge pages if the page will be fully within i_size,
 443 *	also respect fadvise()/madvise() hints;
 444 * SHMEM_HUGE_ADVISE:
 445 *	only allocate huge pages if requested with fadvise()/madvise();
 446 */
 447
 448#define SHMEM_HUGE_NEVER	0
 449#define SHMEM_HUGE_ALWAYS	1
 450#define SHMEM_HUGE_WITHIN_SIZE	2
 451#define SHMEM_HUGE_ADVISE	3
 452
 453/*
 454 * Special values.
 455 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
 456 *
 457 * SHMEM_HUGE_DENY:
 458 *	disables huge on shm_mnt and all mounts, for emergency use;
 459 * SHMEM_HUGE_FORCE:
 460 *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
 461 *
 462 */
 463#define SHMEM_HUGE_DENY		(-1)
 464#define SHMEM_HUGE_FORCE	(-2)
 465
 466#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 467/* ifdef here to avoid bloating shmem.o when not necessary */
 468
 469static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
 470
 471bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode,
 472		   pgoff_t index, bool shmem_huge_force)
 473{
 474	loff_t i_size;
 475
 476	if (!S_ISREG(inode->i_mode))
 477		return false;
 478	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
 479	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
 480		return false;
 481	if (shmem_huge == SHMEM_HUGE_DENY)
 482		return false;
 483	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
 484		return true;
 485
 486	switch (SHMEM_SB(inode->i_sb)->huge) {
 487	case SHMEM_HUGE_ALWAYS:
 488		return true;
 489	case SHMEM_HUGE_WITHIN_SIZE:
 490		index = round_up(index + 1, HPAGE_PMD_NR);
 491		i_size = round_up(i_size_read(inode), PAGE_SIZE);
 492		if (i_size >> PAGE_SHIFT >= index)
 493			return true;
 494		fallthrough;
 495	case SHMEM_HUGE_ADVISE:
 496		if (vma && (vma->vm_flags & VM_HUGEPAGE))
 497			return true;
 498		fallthrough;
 499	default:
 500		return false;
 501	}
 502}
 503
 504#if defined(CONFIG_SYSFS)
 505static int shmem_parse_huge(const char *str)
 506{
 507	if (!strcmp(str, "never"))
 508		return SHMEM_HUGE_NEVER;
 509	if (!strcmp(str, "always"))
 510		return SHMEM_HUGE_ALWAYS;
 511	if (!strcmp(str, "within_size"))
 512		return SHMEM_HUGE_WITHIN_SIZE;
 513	if (!strcmp(str, "advise"))
 514		return SHMEM_HUGE_ADVISE;
 515	if (!strcmp(str, "deny"))
 516		return SHMEM_HUGE_DENY;
 517	if (!strcmp(str, "force"))
 518		return SHMEM_HUGE_FORCE;
 519	return -EINVAL;
 520}
 521#endif
 522
 523#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
 524static const char *shmem_format_huge(int huge)
 525{
 526	switch (huge) {
 527	case SHMEM_HUGE_NEVER:
 528		return "never";
 529	case SHMEM_HUGE_ALWAYS:
 530		return "always";
 531	case SHMEM_HUGE_WITHIN_SIZE:
 532		return "within_size";
 533	case SHMEM_HUGE_ADVISE:
 534		return "advise";
 535	case SHMEM_HUGE_DENY:
 536		return "deny";
 537	case SHMEM_HUGE_FORCE:
 538		return "force";
 539	default:
 540		VM_BUG_ON(1);
 541		return "bad_val";
 542	}
 543}
 544#endif
 545
 546static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 547		struct shrink_control *sc, unsigned long nr_to_split)
 548{
 549	LIST_HEAD(list), *pos, *next;
 550	LIST_HEAD(to_remove);
 551	struct inode *inode;
 552	struct shmem_inode_info *info;
 553	struct folio *folio;
 554	unsigned long batch = sc ? sc->nr_to_scan : 128;
 555	int split = 0;
 556
 557	if (list_empty(&sbinfo->shrinklist))
 558		return SHRINK_STOP;
 559
 560	spin_lock(&sbinfo->shrinklist_lock);
 561	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
 562		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 563
 564		/* pin the inode */
 565		inode = igrab(&info->vfs_inode);
 566
 567		/* inode is about to be evicted */
 568		if (!inode) {
 569			list_del_init(&info->shrinklist);
 570			goto next;
 571		}
 572
 573		/* Check if there's anything to gain */
 574		if (round_up(inode->i_size, PAGE_SIZE) ==
 575				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
 576			list_move(&info->shrinklist, &to_remove);
 577			goto next;
 578		}
 579
 580		list_move(&info->shrinklist, &list);
 581next:
 582		sbinfo->shrinklist_len--;
 583		if (!--batch)
 584			break;
 585	}
 586	spin_unlock(&sbinfo->shrinklist_lock);
 587
 588	list_for_each_safe(pos, next, &to_remove) {
 589		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 590		inode = &info->vfs_inode;
 591		list_del_init(&info->shrinklist);
 592		iput(inode);
 593	}
 594
 595	list_for_each_safe(pos, next, &list) {
 596		int ret;
 597		pgoff_t index;
 598
 599		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 600		inode = &info->vfs_inode;
 601
 602		if (nr_to_split && split >= nr_to_split)
 603			goto move_back;
 604
 605		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
 606		folio = filemap_get_folio(inode->i_mapping, index);
 607		if (!folio)
 608			goto drop;
 609
 610		/* No huge page at the end of the file: nothing to split */
 611		if (!folio_test_large(folio)) {
 612			folio_put(folio);
 613			goto drop;
 614		}
 615
 616		/*
 617		 * Move the inode on the list back to shrinklist if we failed
 618		 * to lock the page at this time.
 619		 *
 620		 * Waiting for the lock may lead to deadlock in the
 621		 * reclaim path.
 622		 */
 623		if (!folio_trylock(folio)) {
 624			folio_put(folio);
 625			goto move_back;
 626		}
 627
 628		ret = split_folio(folio);
 629		folio_unlock(folio);
 630		folio_put(folio);
 631
 632		/* If split failed move the inode on the list back to shrinklist */
 633		if (ret)
 634			goto move_back;
 635
 636		split++;
 637drop:
 638		list_del_init(&info->shrinklist);
 639		goto put;
 640move_back:
 641		/*
 642		 * Make sure the inode is either on the global list or deleted
 643		 * from any local list before iput() since it could be deleted
 644		 * in another thread once we put the inode (then the local list
 645		 * is corrupted).
 646		 */
 647		spin_lock(&sbinfo->shrinklist_lock);
 648		list_move(&info->shrinklist, &sbinfo->shrinklist);
 649		sbinfo->shrinklist_len++;
 650		spin_unlock(&sbinfo->shrinklist_lock);
 651put:
 652		iput(inode);
 653	}
 654
 655	return split;
 656}
 657
 658static long shmem_unused_huge_scan(struct super_block *sb,
 659		struct shrink_control *sc)
 660{
 661	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 662
 663	if (!READ_ONCE(sbinfo->shrinklist_len))
 664		return SHRINK_STOP;
 665
 666	return shmem_unused_huge_shrink(sbinfo, sc, 0);
 667}
 668
 669static long shmem_unused_huge_count(struct super_block *sb,
 670		struct shrink_control *sc)
 671{
 672	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 673	return READ_ONCE(sbinfo->shrinklist_len);
 674}
 675#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
 676
 677#define shmem_huge SHMEM_HUGE_DENY
 678
 679bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode,
 680		   pgoff_t index, bool shmem_huge_force)
 681{
 682	return false;
 683}
 684
 685static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 686		struct shrink_control *sc, unsigned long nr_to_split)
 687{
 688	return 0;
 689}
 690#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 691
 692/*
 693 * Like filemap_add_folio, but error if expected item has gone.
 694 */
 695static int shmem_add_to_page_cache(struct folio *folio,
 696				   struct address_space *mapping,
 697				   pgoff_t index, void *expected, gfp_t gfp,
 698				   struct mm_struct *charge_mm)
 699{
 700	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
 701	long nr = folio_nr_pages(folio);
 702	int error;
 703
 704	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
 705	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 706	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
 707	VM_BUG_ON(expected && folio_test_large(folio));
 708
 709	folio_ref_add(folio, nr);
 710	folio->mapping = mapping;
 711	folio->index = index;
 712
 713	if (!folio_test_swapcache(folio)) {
 714		error = mem_cgroup_charge(folio, charge_mm, gfp);
 715		if (error) {
 716			if (folio_test_pmd_mappable(folio)) {
 717				count_vm_event(THP_FILE_FALLBACK);
 718				count_vm_event(THP_FILE_FALLBACK_CHARGE);
 719			}
 720			goto error;
 721		}
 722	}
 723	folio_throttle_swaprate(folio, gfp);
 724
 725	do {
 726		xas_lock_irq(&xas);
 727		if (expected != xas_find_conflict(&xas)) {
 728			xas_set_err(&xas, -EEXIST);
 729			goto unlock;
 730		}
 731		if (expected && xas_find_conflict(&xas)) {
 732			xas_set_err(&xas, -EEXIST);
 733			goto unlock;
 734		}
 735		xas_store(&xas, folio);
 736		if (xas_error(&xas))
 737			goto unlock;
 738		if (folio_test_pmd_mappable(folio)) {
 739			count_vm_event(THP_FILE_ALLOC);
 740			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
 741		}
 742		mapping->nrpages += nr;
 743		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
 744		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
 745unlock:
 746		xas_unlock_irq(&xas);
 747	} while (xas_nomem(&xas, gfp));
 748
 749	if (xas_error(&xas)) {
 750		error = xas_error(&xas);
 751		goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 752	}
 753
 754	return 0;
 755error:
 756	folio->mapping = NULL;
 757	folio_ref_sub(folio, nr);
 758	return error;
 759}
 760
 761/*
 762 * Like delete_from_page_cache, but substitutes swap for @folio.
 763 */
 764static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
 765{
 766	struct address_space *mapping = folio->mapping;
 767	long nr = folio_nr_pages(folio);
 768	int error;
 769
 770	xa_lock_irq(&mapping->i_pages);
 771	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
 772	folio->mapping = NULL;
 773	mapping->nrpages -= nr;
 774	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
 775	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
 776	xa_unlock_irq(&mapping->i_pages);
 777	folio_put(folio);
 778	BUG_ON(error);
 779}
 780
 781/*
 782 * Remove swap entry from page cache, free the swap and its page cache.
 783 */
 784static int shmem_free_swap(struct address_space *mapping,
 785			   pgoff_t index, void *radswap)
 786{
 787	void *old;
 788
 789	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
 
 
 790	if (old != radswap)
 791		return -ENOENT;
 792	free_swap_and_cache(radix_to_swp_entry(radswap));
 793	return 0;
 794}
 795
 796/*
 797 * Determine (in bytes) how many of the shmem object's pages mapped by the
 798 * given offsets are swapped out.
 799 *
 800 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
 801 * as long as the inode doesn't go away and racy results are not a problem.
 802 */
 803unsigned long shmem_partial_swap_usage(struct address_space *mapping,
 804						pgoff_t start, pgoff_t end)
 805{
 806	XA_STATE(xas, &mapping->i_pages, start);
 
 807	struct page *page;
 808	unsigned long swapped = 0;
 809
 810	rcu_read_lock();
 811	xas_for_each(&xas, page, end - 1) {
 812		if (xas_retry(&xas, page))
 
 
 
 
 
 
 
 813			continue;
 814		if (xa_is_value(page))
 
 
 815			swapped++;
 816
 817		if (need_resched()) {
 818			xas_pause(&xas);
 819			cond_resched_rcu();
 
 820		}
 821	}
 822
 823	rcu_read_unlock();
 824
 825	return swapped << PAGE_SHIFT;
 826}
 827
 828/*
 829 * Determine (in bytes) how many of the shmem object's pages mapped by the
 830 * given vma is swapped out.
 831 *
 832 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
 833 * as long as the inode doesn't go away and racy results are not a problem.
 834 */
 835unsigned long shmem_swap_usage(struct vm_area_struct *vma)
 836{
 837	struct inode *inode = file_inode(vma->vm_file);
 838	struct shmem_inode_info *info = SHMEM_I(inode);
 839	struct address_space *mapping = inode->i_mapping;
 840	unsigned long swapped;
 841
 842	/* Be careful as we don't hold info->lock */
 843	swapped = READ_ONCE(info->swapped);
 844
 845	/*
 846	 * The easier cases are when the shmem object has nothing in swap, or
 847	 * the vma maps it whole. Then we can simply use the stats that we
 848	 * already track.
 849	 */
 850	if (!swapped)
 851		return 0;
 852
 853	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
 854		return swapped << PAGE_SHIFT;
 855
 856	/* Here comes the more involved part */
 857	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
 858					vma->vm_pgoff + vma_pages(vma));
 
 859}
 860
 861/*
 862 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 863 */
 864void shmem_unlock_mapping(struct address_space *mapping)
 865{
 866	struct folio_batch fbatch;
 
 867	pgoff_t index = 0;
 868
 869	folio_batch_init(&fbatch);
 870	/*
 871	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 872	 */
 873	while (!mapping_unevictable(mapping) &&
 874	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
 875		check_move_unevictable_folios(&fbatch);
 876		folio_batch_release(&fbatch);
 
 
 
 
 
 
 
 
 
 877		cond_resched();
 878	}
 879}
 880
 881static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
 882{
 883	struct folio *folio;
 884
 885	/*
 886	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
 887	 * beyond i_size, and reports fallocated pages as holes.
 888	 */
 889	folio = __filemap_get_folio(inode->i_mapping, index,
 890					FGP_ENTRY | FGP_LOCK, 0);
 891	if (!xa_is_value(folio))
 892		return folio;
 893	/*
 894	 * But read a page back from swap if any of it is within i_size
 895	 * (although in some cases this is just a waste of time).
 896	 */
 897	folio = NULL;
 898	shmem_get_folio(inode, index, &folio, SGP_READ);
 899	return folio;
 900}
 901
 902/*
 903 * Remove range of pages and swap entries from page cache, and free them.
 904 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 905 */
 906static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 907								 bool unfalloc)
 908{
 909	struct address_space *mapping = inode->i_mapping;
 910	struct shmem_inode_info *info = SHMEM_I(inode);
 911	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 912	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
 913	struct folio_batch fbatch;
 
 
 914	pgoff_t indices[PAGEVEC_SIZE];
 915	struct folio *folio;
 916	bool same_folio;
 917	long nr_swaps_freed = 0;
 918	pgoff_t index;
 919	int i;
 920
 921	if (lend == -1)
 922		end = -1;	/* unsigned, so actually very big */
 923
 924	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
 925		info->fallocend = start;
 926
 927	folio_batch_init(&fbatch);
 928	index = start;
 929	while (index < end && find_lock_entries(mapping, &index, end - 1,
 930			&fbatch, indices)) {
 931		for (i = 0; i < folio_batch_count(&fbatch); i++) {
 932			folio = fbatch.folios[i];
 
 
 
 
 
 
 
 
 933
 934			if (xa_is_value(folio)) {
 935				if (unfalloc)
 936					continue;
 937				nr_swaps_freed += !shmem_free_swap(mapping,
 938							indices[i], folio);
 939				continue;
 940			}
 941
 942			if (!unfalloc || !folio_test_uptodate(folio))
 943				truncate_inode_folio(mapping, folio);
 944			folio_unlock(folio);
 
 
 
 
 
 
 945		}
 946		folio_batch_remove_exceptionals(&fbatch);
 947		folio_batch_release(&fbatch);
 948		cond_resched();
 
 949	}
 950
 951	/*
 952	 * When undoing a failed fallocate, we want none of the partial folio
 953	 * zeroing and splitting below, but shall want to truncate the whole
 954	 * folio when !uptodate indicates that it was added by this fallocate,
 955	 * even when [lstart, lend] covers only a part of the folio.
 956	 */
 957	if (unfalloc)
 958		goto whole_folios;
 959
 960	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
 961	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
 962	if (folio) {
 963		same_folio = lend < folio_pos(folio) + folio_size(folio);
 964		folio_mark_dirty(folio);
 965		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
 966			start = folio->index + folio_nr_pages(folio);
 967			if (same_folio)
 968				end = folio->index;
 969		}
 970		folio_unlock(folio);
 971		folio_put(folio);
 972		folio = NULL;
 973	}
 974
 975	if (!same_folio)
 976		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
 977	if (folio) {
 978		folio_mark_dirty(folio);
 979		if (!truncate_inode_partial_folio(folio, lstart, lend))
 980			end = folio->index;
 981		folio_unlock(folio);
 982		folio_put(folio);
 983	}
 984
 985whole_folios:
 
 
 
 
 
 
 
 
 
 
 986
 987	index = start;
 988	while (index < end) {
 989		cond_resched();
 990
 991		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
 992				indices)) {
 
 
 993			/* If all gone or hole-punch or unfalloc, we're done */
 994			if (index == start || end != -1)
 995				break;
 996			/* But if truncating, restart to make sure all gone */
 997			index = start;
 998			continue;
 999		}
1000		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1001			folio = fbatch.folios[i];
 
 
 
 
1002
1003			if (xa_is_value(folio)) {
1004				if (unfalloc)
1005					continue;
1006				if (shmem_free_swap(mapping, indices[i], folio)) {
1007					/* Swap was replaced by page: retry */
1008					index = indices[i];
1009					break;
1010				}
1011				nr_swaps_freed++;
1012				continue;
1013			}
1014
1015			folio_lock(folio);
1016
1017			if (!unfalloc || !folio_test_uptodate(folio)) {
1018				if (folio_mapping(folio) != mapping) {
 
 
1019					/* Page was replaced by swap: retry */
1020					folio_unlock(folio);
1021					index = indices[i];
1022					break;
1023				}
1024				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1025						folio);
1026				truncate_inode_folio(mapping, folio);
1027			}
1028			folio_unlock(folio);
1029		}
1030		folio_batch_remove_exceptionals(&fbatch);
1031		folio_batch_release(&fbatch);
 
1032	}
1033
1034	spin_lock_irq(&info->lock);
1035	info->swapped -= nr_swaps_freed;
1036	shmem_recalc_inode(inode);
1037	spin_unlock_irq(&info->lock);
1038}
1039
1040void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1041{
1042	shmem_undo_range(inode, lstart, lend, false);
1043	inode->i_ctime = inode->i_mtime = current_time(inode);
1044	inode_inc_iversion(inode);
1045}
1046EXPORT_SYMBOL_GPL(shmem_truncate_range);
1047
1048static int shmem_getattr(struct user_namespace *mnt_userns,
1049			 const struct path *path, struct kstat *stat,
1050			 u32 request_mask, unsigned int query_flags)
1051{
1052	struct inode *inode = path->dentry->d_inode;
1053	struct shmem_inode_info *info = SHMEM_I(inode);
1054
1055	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1056		spin_lock_irq(&info->lock);
1057		shmem_recalc_inode(inode);
1058		spin_unlock_irq(&info->lock);
1059	}
1060	if (info->fsflags & FS_APPEND_FL)
1061		stat->attributes |= STATX_ATTR_APPEND;
1062	if (info->fsflags & FS_IMMUTABLE_FL)
1063		stat->attributes |= STATX_ATTR_IMMUTABLE;
1064	if (info->fsflags & FS_NODUMP_FL)
1065		stat->attributes |= STATX_ATTR_NODUMP;
1066	stat->attributes_mask |= (STATX_ATTR_APPEND |
1067			STATX_ATTR_IMMUTABLE |
1068			STATX_ATTR_NODUMP);
1069	generic_fillattr(&init_user_ns, inode, stat);
1070
1071	if (shmem_is_huge(NULL, inode, 0, false))
1072		stat->blksize = HPAGE_PMD_SIZE;
1073
1074	if (request_mask & STATX_BTIME) {
1075		stat->result_mask |= STATX_BTIME;
1076		stat->btime.tv_sec = info->i_crtime.tv_sec;
1077		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1078	}
1079
1080	return 0;
1081}
1082
1083static int shmem_setattr(struct user_namespace *mnt_userns,
1084			 struct dentry *dentry, struct iattr *attr)
1085{
1086	struct inode *inode = d_inode(dentry);
1087	struct shmem_inode_info *info = SHMEM_I(inode);
1088	int error;
1089	bool update_mtime = false;
1090	bool update_ctime = true;
1091
1092	error = setattr_prepare(&init_user_ns, dentry, attr);
1093	if (error)
1094		return error;
1095
1096	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1097		loff_t oldsize = inode->i_size;
1098		loff_t newsize = attr->ia_size;
1099
1100		/* protected by i_rwsem */
1101		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1102		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1103			return -EPERM;
1104
1105		if (newsize != oldsize) {
1106			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1107					oldsize, newsize);
1108			if (error)
1109				return error;
1110			i_size_write(inode, newsize);
1111			update_mtime = true;
1112		} else {
1113			update_ctime = false;
1114		}
1115		if (newsize <= oldsize) {
1116			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1117			if (oldsize > holebegin)
1118				unmap_mapping_range(inode->i_mapping,
1119							holebegin, 0, 1);
1120			if (info->alloced)
1121				shmem_truncate_range(inode,
1122							newsize, (loff_t)-1);
1123			/* unmap again to remove racily COWed private pages */
1124			if (oldsize > holebegin)
1125				unmap_mapping_range(inode->i_mapping,
1126							holebegin, 0, 1);
1127		}
1128	}
1129
1130	setattr_copy(&init_user_ns, inode, attr);
1131	if (attr->ia_valid & ATTR_MODE)
1132		error = posix_acl_chmod(&init_user_ns, dentry, inode->i_mode);
1133	if (!error && update_ctime) {
1134		inode->i_ctime = current_time(inode);
1135		if (update_mtime)
1136			inode->i_mtime = inode->i_ctime;
1137		inode_inc_iversion(inode);
1138	}
1139	return error;
1140}
1141
1142static void shmem_evict_inode(struct inode *inode)
1143{
1144	struct shmem_inode_info *info = SHMEM_I(inode);
1145	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1146
1147	if (shmem_mapping(inode->i_mapping)) {
1148		shmem_unacct_size(info->flags, inode->i_size);
1149		inode->i_size = 0;
1150		mapping_set_exiting(inode->i_mapping);
1151		shmem_truncate_range(inode, 0, (loff_t)-1);
1152		if (!list_empty(&info->shrinklist)) {
1153			spin_lock(&sbinfo->shrinklist_lock);
1154			if (!list_empty(&info->shrinklist)) {
1155				list_del_init(&info->shrinklist);
1156				sbinfo->shrinklist_len--;
1157			}
1158			spin_unlock(&sbinfo->shrinklist_lock);
1159		}
1160		while (!list_empty(&info->swaplist)) {
1161			/* Wait while shmem_unuse() is scanning this inode... */
1162			wait_var_event(&info->stop_eviction,
1163				       !atomic_read(&info->stop_eviction));
1164			mutex_lock(&shmem_swaplist_mutex);
1165			/* ...but beware of the race if we peeked too early */
1166			if (!atomic_read(&info->stop_eviction))
1167				list_del_init(&info->swaplist);
1168			mutex_unlock(&shmem_swaplist_mutex);
1169		}
1170	}
1171
1172	simple_xattrs_free(&info->xattrs);
1173	WARN_ON(inode->i_blocks);
1174	shmem_free_inode(inode->i_sb);
1175	clear_inode(inode);
1176}
1177
1178static int shmem_find_swap_entries(struct address_space *mapping,
1179				   pgoff_t start, struct folio_batch *fbatch,
1180				   pgoff_t *indices, unsigned int type)
1181{
1182	XA_STATE(xas, &mapping->i_pages, start);
1183	struct folio *folio;
1184	swp_entry_t entry;
1185
1186	rcu_read_lock();
1187	xas_for_each(&xas, folio, ULONG_MAX) {
1188		if (xas_retry(&xas, folio))
1189			continue;
1190
1191		if (!xa_is_value(folio))
1192			continue;
1193
1194		entry = radix_to_swp_entry(folio);
1195		/*
1196		 * swapin error entries can be found in the mapping. But they're
1197		 * deliberately ignored here as we've done everything we can do.
1198		 */
1199		if (swp_type(entry) != type)
1200			continue;
1201
1202		indices[folio_batch_count(fbatch)] = xas.xa_index;
1203		if (!folio_batch_add(fbatch, folio))
1204			break;
1205
1206		if (need_resched()) {
1207			xas_pause(&xas);
1208			cond_resched_rcu();
1209		}
1210	}
1211	rcu_read_unlock();
1212
1213	return xas.xa_index;
1214}
1215
1216/*
1217 * Move the swapped pages for an inode to page cache. Returns the count
1218 * of pages swapped in, or the error in case of failure.
1219 */
1220static int shmem_unuse_swap_entries(struct inode *inode,
1221		struct folio_batch *fbatch, pgoff_t *indices)
1222{
1223	int i = 0;
1224	int ret = 0;
 
 
1225	int error = 0;
1226	struct address_space *mapping = inode->i_mapping;
1227
1228	for (i = 0; i < folio_batch_count(fbatch); i++) {
1229		struct folio *folio = fbatch->folios[i];
 
 
 
 
 
 
 
 
 
 
 
1230
1231		if (!xa_is_value(folio))
1232			continue;
1233		error = shmem_swapin_folio(inode, indices[i],
1234					  &folio, SGP_CACHE,
1235					  mapping_gfp_mask(mapping),
1236					  NULL, NULL);
1237		if (error == 0) {
1238			folio_unlock(folio);
1239			folio_put(folio);
1240			ret++;
1241		}
1242		if (error == -ENOMEM)
1243			break;
1244		error = 0;
 
 
 
 
 
 
 
 
 
 
 
1245	}
1246	return error ? error : ret;
1247}
1248
1249/*
1250 * If swap found in inode, free it and move page from swapcache to filecache.
1251 */
1252static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1253{
1254	struct address_space *mapping = inode->i_mapping;
1255	pgoff_t start = 0;
1256	struct folio_batch fbatch;
1257	pgoff_t indices[PAGEVEC_SIZE];
1258	int ret = 0;
1259
1260	do {
1261		folio_batch_init(&fbatch);
1262		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1263		if (folio_batch_count(&fbatch) == 0) {
1264			ret = 0;
1265			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1266		}
1267
1268		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1269		if (ret < 0)
1270			break;
1271
1272		start = indices[folio_batch_count(&fbatch) - 1];
1273	} while (true);
1274
1275	return ret;
1276}
1277
1278/*
1279 * Read all the shared memory data that resides in the swap
1280 * device 'type' back into memory, so the swap device can be
1281 * unused.
1282 */
1283int shmem_unuse(unsigned int type)
1284{
1285	struct shmem_inode_info *info, *next;
 
 
1286	int error = 0;
1287
1288	if (list_empty(&shmem_swaplist))
1289		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1290
1291	mutex_lock(&shmem_swaplist_mutex);
1292	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1293		if (!info->swapped) {
 
 
 
1294			list_del_init(&info->swaplist);
1295			continue;
1296		}
1297		/*
1298		 * Drop the swaplist mutex while searching the inode for swap;
1299		 * but before doing so, make sure shmem_evict_inode() will not
1300		 * remove placeholder inode from swaplist, nor let it be freed
1301		 * (igrab() would protect from unlink, but not from unmount).
1302		 */
1303		atomic_inc(&info->stop_eviction);
1304		mutex_unlock(&shmem_swaplist_mutex);
1305
1306		error = shmem_unuse_inode(&info->vfs_inode, type);
1307		cond_resched();
1308
1309		mutex_lock(&shmem_swaplist_mutex);
1310		next = list_next_entry(info, swaplist);
1311		if (!info->swapped)
1312			list_del_init(&info->swaplist);
1313		if (atomic_dec_and_test(&info->stop_eviction))
1314			wake_up_var(&info->stop_eviction);
1315		if (error)
1316			break;
 
1317	}
1318	mutex_unlock(&shmem_swaplist_mutex);
1319
 
 
 
 
 
 
 
 
 
1320	return error;
1321}
1322
1323/*
1324 * Move the page from the page cache to the swap cache.
1325 */
1326static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1327{
1328	struct folio *folio = page_folio(page);
1329	struct shmem_inode_info *info;
1330	struct address_space *mapping;
1331	struct inode *inode;
1332	swp_entry_t swap;
1333	pgoff_t index;
1334
1335	/*
1336	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1337	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1338	 * and its shmem_writeback() needs them to be split when swapping.
1339	 */
1340	if (folio_test_large(folio)) {
1341		/* Ensure the subpages are still dirty */
1342		folio_test_set_dirty(folio);
1343		if (split_huge_page(page) < 0)
1344			goto redirty;
1345		folio = page_folio(page);
1346		folio_clear_dirty(folio);
1347	}
1348
1349	BUG_ON(!folio_test_locked(folio));
1350	mapping = folio->mapping;
1351	index = folio->index;
1352	inode = mapping->host;
1353	info = SHMEM_I(inode);
1354	if (info->flags & VM_LOCKED)
1355		goto redirty;
1356	if (!total_swap_pages)
1357		goto redirty;
1358
1359	/*
1360	 * Our capabilities prevent regular writeback or sync from ever calling
1361	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1362	 * its underlying filesystem, in which case tmpfs should write out to
1363	 * swap only in response to memory pressure, and not for the writeback
1364	 * threads or sync.
1365	 */
1366	if (!wbc->for_reclaim) {
1367		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1368		goto redirty;
1369	}
1370
1371	/*
1372	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1373	 * value into swapfile.c, the only way we can correctly account for a
1374	 * fallocated folio arriving here is now to initialize it and write it.
1375	 *
1376	 * That's okay for a folio already fallocated earlier, but if we have
1377	 * not yet completed the fallocation, then (a) we want to keep track
1378	 * of this folio in case we have to undo it, and (b) it may not be a
1379	 * good idea to continue anyway, once we're pushing into swap.  So
1380	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1381	 */
1382	if (!folio_test_uptodate(folio)) {
1383		if (inode->i_private) {
1384			struct shmem_falloc *shmem_falloc;
1385			spin_lock(&inode->i_lock);
1386			shmem_falloc = inode->i_private;
1387			if (shmem_falloc &&
1388			    !shmem_falloc->waitq &&
1389			    index >= shmem_falloc->start &&
1390			    index < shmem_falloc->next)
1391				shmem_falloc->nr_unswapped++;
1392			else
1393				shmem_falloc = NULL;
1394			spin_unlock(&inode->i_lock);
1395			if (shmem_falloc)
1396				goto redirty;
1397		}
1398		folio_zero_range(folio, 0, folio_size(folio));
1399		flush_dcache_folio(folio);
1400		folio_mark_uptodate(folio);
1401	}
1402
1403	swap = folio_alloc_swap(folio);
1404	if (!swap.val)
1405		goto redirty;
1406
 
 
 
1407	/*
1408	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1409	 * if it's not already there.  Do it now before the folio is
1410	 * moved to swap cache, when its pagelock no longer protects
1411	 * the inode from eviction.  But don't unlock the mutex until
1412	 * we've incremented swapped, because shmem_unuse_inode() will
1413	 * prune a !swapped inode from the swaplist under this mutex.
1414	 */
1415	mutex_lock(&shmem_swaplist_mutex);
1416	if (list_empty(&info->swaplist))
1417		list_add(&info->swaplist, &shmem_swaplist);
1418
1419	if (add_to_swap_cache(folio, swap,
1420			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1421			NULL) == 0) {
1422		spin_lock_irq(&info->lock);
1423		shmem_recalc_inode(inode);
1424		info->swapped++;
1425		spin_unlock_irq(&info->lock);
1426
1427		swap_shmem_alloc(swap);
1428		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1429
1430		mutex_unlock(&shmem_swaplist_mutex);
1431		BUG_ON(folio_mapped(folio));
1432		swap_writepage(&folio->page, wbc);
1433		return 0;
1434	}
1435
1436	mutex_unlock(&shmem_swaplist_mutex);
1437	put_swap_folio(folio, swap);
 
1438redirty:
1439	folio_mark_dirty(folio);
1440	if (wbc->for_reclaim)
1441		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1442	folio_unlock(folio);
1443	return 0;
1444}
1445
1446#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
 
1447static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1448{
1449	char buffer[64];
1450
1451	if (!mpol || mpol->mode == MPOL_DEFAULT)
1452		return;		/* show nothing */
1453
1454	mpol_to_str(buffer, sizeof(buffer), mpol);
1455
1456	seq_printf(seq, ",mpol=%s", buffer);
1457}
1458
1459static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1460{
1461	struct mempolicy *mpol = NULL;
1462	if (sbinfo->mpol) {
1463		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1464		mpol = sbinfo->mpol;
1465		mpol_get(mpol);
1466		raw_spin_unlock(&sbinfo->stat_lock);
1467	}
1468	return mpol;
1469}
1470#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1471static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1472{
1473}
1474static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1475{
1476	return NULL;
1477}
1478#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1479#ifndef CONFIG_NUMA
1480#define vm_policy vm_private_data
1481#endif
1482
1483static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1484		struct shmem_inode_info *info, pgoff_t index)
1485{
 
 
 
1486	/* Create a pseudo vma that just contains the policy */
1487	vma_init(vma, NULL);
1488	/* Bias interleave by inode number to distribute better across nodes */
1489	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1490	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1491}
 
 
1492
1493static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1494{
1495	/* Drop reference taken by mpol_shared_policy_lookup() */
1496	mpol_cond_put(vma->vm_policy);
 
 
1497}
1498
1499static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1500			struct shmem_inode_info *info, pgoff_t index)
1501{
1502	struct vm_area_struct pvma;
1503	struct page *page;
1504	struct vm_fault vmf = {
1505		.vma = &pvma,
1506	};
1507
1508	shmem_pseudo_vma_init(&pvma, info, index);
1509	page = swap_cluster_readahead(swap, gfp, &vmf);
1510	shmem_pseudo_vma_destroy(&pvma);
1511
1512	if (!page)
1513		return NULL;
1514	return page_folio(page);
1515}
1516
1517/*
1518 * Make sure huge_gfp is always more limited than limit_gfp.
1519 * Some of the flags set permissions, while others set limitations.
1520 */
1521static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1522{
1523	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1524	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1525	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1526	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1527
1528	/* Allow allocations only from the originally specified zones. */
1529	result |= zoneflags;
1530
1531	/*
1532	 * Minimize the result gfp by taking the union with the deny flags,
1533	 * and the intersection of the allow flags.
1534	 */
1535	result |= (limit_gfp & denyflags);
1536	result |= (huge_gfp & limit_gfp) & allowflags;
1537
1538	return result;
1539}
1540
1541static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1542		struct shmem_inode_info *info, pgoff_t index)
1543{
1544	struct vm_area_struct pvma;
1545	struct address_space *mapping = info->vfs_inode.i_mapping;
1546	pgoff_t hindex;
1547	struct folio *folio;
1548
1549	hindex = round_down(index, HPAGE_PMD_NR);
1550	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1551								XA_PRESENT))
1552		return NULL;
1553
1554	shmem_pseudo_vma_init(&pvma, info, hindex);
1555	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1556	shmem_pseudo_vma_destroy(&pvma);
1557	if (!folio)
1558		count_vm_event(THP_FILE_FALLBACK);
1559	return folio;
1560}
 
1561
1562static struct folio *shmem_alloc_folio(gfp_t gfp,
1563			struct shmem_inode_info *info, pgoff_t index)
1564{
1565	struct vm_area_struct pvma;
1566	struct folio *folio;
1567
1568	shmem_pseudo_vma_init(&pvma, info, index);
1569	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1570	shmem_pseudo_vma_destroy(&pvma);
1571
1572	return folio;
1573}
1574
1575static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1576		pgoff_t index, bool huge)
1577{
1578	struct shmem_inode_info *info = SHMEM_I(inode);
1579	struct folio *folio;
1580	int nr;
1581	int err = -ENOSPC;
1582
1583	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1584		huge = false;
1585	nr = huge ? HPAGE_PMD_NR : 1;
1586
1587	if (!shmem_inode_acct_block(inode, nr))
1588		goto failed;
1589
1590	if (huge)
1591		folio = shmem_alloc_hugefolio(gfp, info, index);
1592	else
1593		folio = shmem_alloc_folio(gfp, info, index);
1594	if (folio) {
1595		__folio_set_locked(folio);
1596		__folio_set_swapbacked(folio);
1597		return folio;
1598	}
1599
1600	err = -ENOMEM;
1601	shmem_inode_unacct_blocks(inode, nr);
1602failed:
1603	return ERR_PTR(err);
1604}
 
1605
1606/*
1607 * When a page is moved from swapcache to shmem filecache (either by the
1608 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1609 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1610 * ignorance of the mapping it belongs to.  If that mapping has special
1611 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1612 * we may need to copy to a suitable page before moving to filecache.
1613 *
1614 * In a future release, this may well be extended to respect cpuset and
1615 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1616 * but for now it is a simple matter of zone.
1617 */
1618static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1619{
1620	return folio_zonenum(folio) > gfp_zone(gfp);
1621}
1622
1623static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1624				struct shmem_inode_info *info, pgoff_t index)
1625{
1626	struct folio *old, *new;
1627	struct address_space *swap_mapping;
1628	swp_entry_t entry;
1629	pgoff_t swap_index;
1630	int error;
1631
1632	old = *foliop;
1633	entry = folio_swap_entry(old);
1634	swap_index = swp_offset(entry);
1635	swap_mapping = swap_address_space(entry);
1636
1637	/*
1638	 * We have arrived here because our zones are constrained, so don't
1639	 * limit chance of success by further cpuset and node constraints.
1640	 */
1641	gfp &= ~GFP_CONSTRAINT_MASK;
1642	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1643	new = shmem_alloc_folio(gfp, info, index);
1644	if (!new)
1645		return -ENOMEM;
1646
1647	folio_get(new);
1648	folio_copy(new, old);
1649	flush_dcache_folio(new);
1650
1651	__folio_set_locked(new);
1652	__folio_set_swapbacked(new);
1653	folio_mark_uptodate(new);
1654	folio_set_swap_entry(new, entry);
1655	folio_set_swapcache(new);
1656
1657	/*
1658	 * Our caller will very soon move newpage out of swapcache, but it's
1659	 * a nice clean interface for us to replace oldpage by newpage there.
1660	 */
1661	xa_lock_irq(&swap_mapping->i_pages);
1662	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
 
1663	if (!error) {
1664		mem_cgroup_migrate(old, new);
1665		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1666		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1667		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1668		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1669	}
1670	xa_unlock_irq(&swap_mapping->i_pages);
1671
1672	if (unlikely(error)) {
1673		/*
1674		 * Is this possible?  I think not, now that our callers check
1675		 * both PageSwapCache and page_private after getting page lock;
1676		 * but be defensive.  Reverse old to newpage for clear and free.
1677		 */
1678		old = new;
1679	} else {
1680		folio_add_lru(new);
1681		*foliop = new;
 
1682	}
1683
1684	folio_clear_swapcache(old);
1685	old->private = NULL;
1686
1687	folio_unlock(old);
1688	folio_put_refs(old, 2);
 
1689	return error;
1690}
1691
1692static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1693					 struct folio *folio, swp_entry_t swap)
1694{
1695	struct address_space *mapping = inode->i_mapping;
1696	struct shmem_inode_info *info = SHMEM_I(inode);
1697	swp_entry_t swapin_error;
1698	void *old;
1699
1700	swapin_error = make_swapin_error_entry();
1701	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1702			     swp_to_radix_entry(swap),
1703			     swp_to_radix_entry(swapin_error), 0);
1704	if (old != swp_to_radix_entry(swap))
1705		return;
1706
1707	folio_wait_writeback(folio);
1708	delete_from_swap_cache(folio);
1709	spin_lock_irq(&info->lock);
1710	/*
1711	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1712	 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1713	 * shmem_evict_inode.
1714	 */
1715	info->alloced--;
1716	info->swapped--;
1717	shmem_recalc_inode(inode);
1718	spin_unlock_irq(&info->lock);
1719	swap_free(swap);
1720}
1721
1722/*
1723 * Swap in the folio pointed to by *foliop.
1724 * Caller has to make sure that *foliop contains a valid swapped folio.
1725 * Returns 0 and the folio in foliop if success. On failure, returns the
1726 * error code and NULL in *foliop.
1727 */
1728static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1729			     struct folio **foliop, enum sgp_type sgp,
1730			     gfp_t gfp, struct vm_area_struct *vma,
1731			     vm_fault_t *fault_type)
1732{
1733	struct address_space *mapping = inode->i_mapping;
1734	struct shmem_inode_info *info = SHMEM_I(inode);
1735	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1736	struct folio *folio = NULL;
1737	swp_entry_t swap;
1738	int error;
1739
1740	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1741	swap = radix_to_swp_entry(*foliop);
1742	*foliop = NULL;
1743
1744	if (is_swapin_error_entry(swap))
1745		return -EIO;
1746
1747	/* Look it up and read it in.. */
1748	folio = swap_cache_get_folio(swap, NULL, 0);
1749	if (!folio) {
1750		/* Or update major stats only when swapin succeeds?? */
1751		if (fault_type) {
1752			*fault_type |= VM_FAULT_MAJOR;
1753			count_vm_event(PGMAJFAULT);
1754			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1755		}
1756		/* Here we actually start the io */
1757		folio = shmem_swapin(swap, gfp, info, index);
1758		if (!folio) {
1759			error = -ENOMEM;
1760			goto failed;
1761		}
1762	}
1763
1764	/* We have to do this with folio locked to prevent races */
1765	folio_lock(folio);
1766	if (!folio_test_swapcache(folio) ||
1767	    folio_swap_entry(folio).val != swap.val ||
1768	    !shmem_confirm_swap(mapping, index, swap)) {
1769		error = -EEXIST;
1770		goto unlock;
1771	}
1772	if (!folio_test_uptodate(folio)) {
1773		error = -EIO;
1774		goto failed;
1775	}
1776	folio_wait_writeback(folio);
1777
1778	/*
1779	 * Some architectures may have to restore extra metadata to the
1780	 * folio after reading from swap.
1781	 */
1782	arch_swap_restore(swap, folio);
1783
1784	if (shmem_should_replace_folio(folio, gfp)) {
1785		error = shmem_replace_folio(&folio, gfp, info, index);
1786		if (error)
1787			goto failed;
1788	}
1789
1790	error = shmem_add_to_page_cache(folio, mapping, index,
1791					swp_to_radix_entry(swap), gfp,
1792					charge_mm);
1793	if (error)
1794		goto failed;
1795
1796	spin_lock_irq(&info->lock);
1797	info->swapped--;
1798	shmem_recalc_inode(inode);
1799	spin_unlock_irq(&info->lock);
1800
1801	if (sgp == SGP_WRITE)
1802		folio_mark_accessed(folio);
1803
1804	delete_from_swap_cache(folio);
1805	folio_mark_dirty(folio);
1806	swap_free(swap);
1807
1808	*foliop = folio;
1809	return 0;
1810failed:
1811	if (!shmem_confirm_swap(mapping, index, swap))
1812		error = -EEXIST;
1813	if (error == -EIO)
1814		shmem_set_folio_swapin_error(inode, index, folio, swap);
1815unlock:
1816	if (folio) {
1817		folio_unlock(folio);
1818		folio_put(folio);
1819	}
1820
1821	return error;
1822}
1823
1824/*
1825 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1826 *
1827 * If we allocate a new one we do not mark it dirty. That's up to the
1828 * vm. If we swap it in we mark it dirty since we also free the swap
1829 * entry since a page cannot live in both the swap and page cache.
1830 *
1831 * vma, vmf, and fault_type are only supplied by shmem_fault:
1832 * otherwise they are NULL.
1833 */
1834static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1835		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1836		struct vm_area_struct *vma, struct vm_fault *vmf,
1837		vm_fault_t *fault_type)
1838{
1839	struct address_space *mapping = inode->i_mapping;
1840	struct shmem_inode_info *info = SHMEM_I(inode);
1841	struct shmem_sb_info *sbinfo;
1842	struct mm_struct *charge_mm;
1843	struct folio *folio;
1844	pgoff_t hindex;
1845	gfp_t huge_gfp;
1846	int error;
1847	int once = 0;
1848	int alloced = 0;
1849
1850	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1851		return -EFBIG;
1852repeat:
1853	if (sgp <= SGP_CACHE &&
1854	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1855		return -EINVAL;
 
 
1856	}
1857
1858	sbinfo = SHMEM_SB(inode->i_sb);
1859	charge_mm = vma ? vma->vm_mm : NULL;
1860
1861	folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1862	if (folio && vma && userfaultfd_minor(vma)) {
1863		if (!xa_is_value(folio)) {
1864			folio_unlock(folio);
1865			folio_put(folio);
1866		}
1867		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1868		return 0;
1869	}
1870
1871	if (xa_is_value(folio)) {
1872		error = shmem_swapin_folio(inode, index, &folio,
1873					  sgp, gfp, vma, fault_type);
1874		if (error == -EEXIST)
1875			goto repeat;
1876
1877		*foliop = folio;
1878		return error;
1879	}
1880
1881	if (folio) {
1882		if (sgp == SGP_WRITE)
1883			folio_mark_accessed(folio);
1884		if (folio_test_uptodate(folio))
1885			goto out;
1886		/* fallocated folio */
1887		if (sgp != SGP_READ)
1888			goto clear;
1889		folio_unlock(folio);
1890		folio_put(folio);
 
1891	}
1892
1893	/*
1894	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
1895	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
1896	 */
1897	*foliop = NULL;
1898	if (sgp == SGP_READ)
1899		return 0;
1900	if (sgp == SGP_NOALLOC)
1901		return -ENOENT;
1902
1903	/*
1904	 * Fast cache lookup and swap lookup did not find it: allocate.
 
1905	 */
 
 
1906
1907	if (vma && userfaultfd_missing(vma)) {
1908		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1909		return 0;
1910	}
1911
1912	if (!shmem_is_huge(vma, inode, index, false))
1913		goto alloc_nohuge;
 
 
 
 
 
 
1914
1915	huge_gfp = vma_thp_gfp_mask(vma);
1916	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1917	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1918	if (IS_ERR(folio)) {
1919alloc_nohuge:
1920		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1921	}
1922	if (IS_ERR(folio)) {
1923		int retry = 5;
1924
1925		error = PTR_ERR(folio);
1926		folio = NULL;
1927		if (error != -ENOSPC)
1928			goto unlock;
1929		/*
1930		 * Try to reclaim some space by splitting a large folio
1931		 * beyond i_size on the filesystem.
1932		 */
1933		while (retry--) {
1934			int ret;
1935
1936			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1937			if (ret == SHRINK_STOP)
1938				break;
1939			if (ret)
1940				goto alloc_nohuge;
1941		}
1942		goto unlock;
1943	}
1944
1945	hindex = round_down(index, folio_nr_pages(folio));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1946
1947	if (sgp == SGP_WRITE)
1948		__folio_set_referenced(folio);
1949
1950	error = shmem_add_to_page_cache(folio, mapping, hindex,
1951					NULL, gfp & GFP_RECLAIM_MASK,
1952					charge_mm);
1953	if (error)
1954		goto unacct;
1955	folio_add_lru(folio);
1956
1957	spin_lock_irq(&info->lock);
1958	info->alloced += folio_nr_pages(folio);
1959	inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1960	shmem_recalc_inode(inode);
1961	spin_unlock_irq(&info->lock);
1962	alloced = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1963
1964	if (folio_test_pmd_mappable(folio) &&
1965	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1966					folio_next_index(folio) - 1) {
1967		/*
1968		 * Part of the large folio is beyond i_size: subject
1969		 * to shrink under memory pressure.
1970		 */
1971		spin_lock(&sbinfo->shrinklist_lock);
 
 
1972		/*
1973		 * _careful to defend against unlocked access to
1974		 * ->shrink_list in shmem_unused_huge_shrink()
 
1975		 */
1976		if (list_empty_careful(&info->shrinklist)) {
1977			list_add_tail(&info->shrinklist,
1978				      &sbinfo->shrinklist);
1979			sbinfo->shrinklist_len++;
1980		}
1981		spin_unlock(&sbinfo->shrinklist_lock);
1982	}
1983
1984	/*
1985	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
1986	 */
1987	if (sgp == SGP_FALLOC)
1988		sgp = SGP_WRITE;
1989clear:
1990	/*
1991	 * Let SGP_WRITE caller clear ends if write does not fill folio;
1992	 * but SGP_FALLOC on a folio fallocated earlier must initialize
1993	 * it now, lest undo on failure cancel our earlier guarantee.
1994	 */
1995	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
1996		long i, n = folio_nr_pages(folio);
1997
1998		for (i = 0; i < n; i++)
1999			clear_highpage(folio_page(folio, i));
2000		flush_dcache_folio(folio);
2001		folio_mark_uptodate(folio);
2002	}
2003
2004	/* Perhaps the file has been truncated since we checked */
2005	if (sgp <= SGP_CACHE &&
2006	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2007		if (alloced) {
2008			folio_clear_dirty(folio);
2009			filemap_remove_folio(folio);
2010			spin_lock_irq(&info->lock);
2011			shmem_recalc_inode(inode);
2012			spin_unlock_irq(&info->lock);
2013		}
2014		error = -EINVAL;
2015		goto unlock;
2016	}
2017out:
2018	*foliop = folio;
2019	return 0;
2020
2021	/*
2022	 * Error recovery.
2023	 */
 
 
 
2024unacct:
2025	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2026
2027	if (folio_test_large(folio)) {
2028		folio_unlock(folio);
2029		folio_put(folio);
2030		goto alloc_nohuge;
2031	}
2032unlock:
2033	if (folio) {
2034		folio_unlock(folio);
2035		folio_put(folio);
2036	}
2037	if (error == -ENOSPC && !once++) {
2038		spin_lock_irq(&info->lock);
 
2039		shmem_recalc_inode(inode);
2040		spin_unlock_irq(&info->lock);
2041		goto repeat;
2042	}
2043	if (error == -EEXIST)
2044		goto repeat;
2045	return error;
2046}
2047
2048int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2049		enum sgp_type sgp)
2050{
2051	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2052			mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2053}
2054
2055/*
2056 * This is like autoremove_wake_function, but it removes the wait queue
2057 * entry unconditionally - even if something else had already woken the
2058 * target.
2059 */
2060static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2061{
2062	int ret = default_wake_function(wait, mode, sync, key);
2063	list_del_init(&wait->entry);
2064	return ret;
2065}
2066
2067static vm_fault_t shmem_fault(struct vm_fault *vmf)
2068{
2069	struct vm_area_struct *vma = vmf->vma;
2070	struct inode *inode = file_inode(vma->vm_file);
2071	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2072	struct folio *folio = NULL;
2073	int err;
2074	vm_fault_t ret = VM_FAULT_LOCKED;
2075
2076	/*
2077	 * Trinity finds that probing a hole which tmpfs is punching can
2078	 * prevent the hole-punch from ever completing: which in turn
2079	 * locks writers out with its hold on i_rwsem.  So refrain from
2080	 * faulting pages into the hole while it's being punched.  Although
2081	 * shmem_undo_range() does remove the additions, it may be unable to
2082	 * keep up, as each new page needs its own unmap_mapping_range() call,
2083	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2084	 *
2085	 * It does not matter if we sometimes reach this check just before the
2086	 * hole-punch begins, so that one fault then races with the punch:
2087	 * we just need to make racing faults a rare case.
2088	 *
2089	 * The implementation below would be much simpler if we just used a
2090	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2091	 * and bloating every shmem inode for this unlikely case would be sad.
2092	 */
2093	if (unlikely(inode->i_private)) {
2094		struct shmem_falloc *shmem_falloc;
2095
2096		spin_lock(&inode->i_lock);
2097		shmem_falloc = inode->i_private;
2098		if (shmem_falloc &&
2099		    shmem_falloc->waitq &&
2100		    vmf->pgoff >= shmem_falloc->start &&
2101		    vmf->pgoff < shmem_falloc->next) {
2102			struct file *fpin;
2103			wait_queue_head_t *shmem_falloc_waitq;
2104			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2105
2106			ret = VM_FAULT_NOPAGE;
2107			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2108			if (fpin)
 
 
2109				ret = VM_FAULT_RETRY;
 
2110
2111			shmem_falloc_waitq = shmem_falloc->waitq;
2112			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2113					TASK_UNINTERRUPTIBLE);
2114			spin_unlock(&inode->i_lock);
2115			schedule();
2116
2117			/*
2118			 * shmem_falloc_waitq points into the shmem_fallocate()
2119			 * stack of the hole-punching task: shmem_falloc_waitq
2120			 * is usually invalid by the time we reach here, but
2121			 * finish_wait() does not dereference it in that case;
2122			 * though i_lock needed lest racing with wake_up_all().
2123			 */
2124			spin_lock(&inode->i_lock);
2125			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2126			spin_unlock(&inode->i_lock);
2127
2128			if (fpin)
2129				fput(fpin);
2130			return ret;
2131		}
2132		spin_unlock(&inode->i_lock);
2133	}
2134
2135	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2136				  gfp, vma, vmf, &ret);
2137	if (err)
2138		return vmf_error(err);
2139	if (folio)
2140		vmf->page = folio_file_page(folio, vmf->pgoff);
2141	return ret;
2142}
2143
2144unsigned long shmem_get_unmapped_area(struct file *file,
2145				      unsigned long uaddr, unsigned long len,
2146				      unsigned long pgoff, unsigned long flags)
2147{
2148	unsigned long (*get_area)(struct file *,
2149		unsigned long, unsigned long, unsigned long, unsigned long);
2150	unsigned long addr;
2151	unsigned long offset;
2152	unsigned long inflated_len;
2153	unsigned long inflated_addr;
2154	unsigned long inflated_offset;
2155
2156	if (len > TASK_SIZE)
2157		return -ENOMEM;
2158
2159	get_area = current->mm->get_unmapped_area;
2160	addr = get_area(file, uaddr, len, pgoff, flags);
2161
2162	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2163		return addr;
2164	if (IS_ERR_VALUE(addr))
2165		return addr;
2166	if (addr & ~PAGE_MASK)
2167		return addr;
2168	if (addr > TASK_SIZE - len)
2169		return addr;
2170
2171	if (shmem_huge == SHMEM_HUGE_DENY)
2172		return addr;
2173	if (len < HPAGE_PMD_SIZE)
2174		return addr;
2175	if (flags & MAP_FIXED)
2176		return addr;
2177	/*
2178	 * Our priority is to support MAP_SHARED mapped hugely;
2179	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2180	 * But if caller specified an address hint and we allocated area there
2181	 * successfully, respect that as before.
2182	 */
2183	if (uaddr == addr)
2184		return addr;
2185
2186	if (shmem_huge != SHMEM_HUGE_FORCE) {
2187		struct super_block *sb;
2188
2189		if (file) {
2190			VM_BUG_ON(file->f_op != &shmem_file_operations);
2191			sb = file_inode(file)->i_sb;
2192		} else {
2193			/*
2194			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2195			 * for "/dev/zero", to create a shared anonymous object.
2196			 */
2197			if (IS_ERR(shm_mnt))
2198				return addr;
2199			sb = shm_mnt->mnt_sb;
2200		}
2201		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2202			return addr;
2203	}
2204
2205	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2206	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2207		return addr;
2208	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2209		return addr;
2210
2211	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2212	if (inflated_len > TASK_SIZE)
2213		return addr;
2214	if (inflated_len < len)
2215		return addr;
2216
2217	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2218	if (IS_ERR_VALUE(inflated_addr))
2219		return addr;
2220	if (inflated_addr & ~PAGE_MASK)
2221		return addr;
2222
2223	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2224	inflated_addr += offset - inflated_offset;
2225	if (inflated_offset > offset)
2226		inflated_addr += HPAGE_PMD_SIZE;
2227
2228	if (inflated_addr > TASK_SIZE - len)
2229		return addr;
2230	return inflated_addr;
2231}
2232
2233#ifdef CONFIG_NUMA
2234static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2235{
2236	struct inode *inode = file_inode(vma->vm_file);
2237	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2238}
2239
2240static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2241					  unsigned long addr)
2242{
2243	struct inode *inode = file_inode(vma->vm_file);
2244	pgoff_t index;
2245
2246	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2247	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2248}
2249#endif
2250
2251int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2252{
2253	struct inode *inode = file_inode(file);
2254	struct shmem_inode_info *info = SHMEM_I(inode);
2255	int retval = -ENOMEM;
2256
2257	/*
2258	 * What serializes the accesses to info->flags?
2259	 * ipc_lock_object() when called from shmctl_do_lock(),
2260	 * no serialization needed when called from shm_destroy().
2261	 */
2262	if (lock && !(info->flags & VM_LOCKED)) {
2263		if (!user_shm_lock(inode->i_size, ucounts))
2264			goto out_nomem;
2265		info->flags |= VM_LOCKED;
2266		mapping_set_unevictable(file->f_mapping);
2267	}
2268	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2269		user_shm_unlock(inode->i_size, ucounts);
2270		info->flags &= ~VM_LOCKED;
2271		mapping_clear_unevictable(file->f_mapping);
2272	}
2273	retval = 0;
2274
2275out_nomem:
 
2276	return retval;
2277}
2278
2279static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2280{
2281	struct inode *inode = file_inode(file);
2282	struct shmem_inode_info *info = SHMEM_I(inode);
2283	int ret;
2284
2285	ret = seal_check_future_write(info->seals, vma);
2286	if (ret)
2287		return ret;
2288
2289	/* arm64 - allow memory tagging on RAM-based files */
2290	vma->vm_flags |= VM_MTE_ALLOWED;
2291
2292	file_accessed(file);
2293	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2294	if (inode->i_nlink)
2295		vma->vm_ops = &shmem_vm_ops;
2296	else
2297		vma->vm_ops = &shmem_anon_vm_ops;
2298	return 0;
2299}
2300
2301#ifdef CONFIG_TMPFS_XATTR
2302static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2303
2304/*
2305 * chattr's fsflags are unrelated to extended attributes,
2306 * but tmpfs has chosen to enable them under the same config option.
2307 */
2308static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2309{
2310	unsigned int i_flags = 0;
2311
2312	if (fsflags & FS_NOATIME_FL)
2313		i_flags |= S_NOATIME;
2314	if (fsflags & FS_APPEND_FL)
2315		i_flags |= S_APPEND;
2316	if (fsflags & FS_IMMUTABLE_FL)
2317		i_flags |= S_IMMUTABLE;
2318	/*
2319	 * But FS_NODUMP_FL does not require any action in i_flags.
2320	 */
2321	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2322}
2323#else
2324static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2325{
2326}
2327#define shmem_initxattrs NULL
2328#endif
2329
2330static struct inode *shmem_get_inode(struct super_block *sb, struct inode *dir,
2331				     umode_t mode, dev_t dev, unsigned long flags)
2332{
2333	struct inode *inode;
2334	struct shmem_inode_info *info;
2335	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2336	ino_t ino;
2337
2338	if (shmem_reserve_inode(sb, &ino))
2339		return NULL;
2340
2341	inode = new_inode(sb);
2342	if (inode) {
2343		inode->i_ino = ino;
2344		inode_init_owner(&init_user_ns, inode, dir, mode);
2345		inode->i_blocks = 0;
2346		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2347		inode->i_generation = get_random_u32();
2348		info = SHMEM_I(inode);
2349		memset(info, 0, (char *)inode - (char *)info);
2350		spin_lock_init(&info->lock);
2351		atomic_set(&info->stop_eviction, 0);
2352		info->seals = F_SEAL_SEAL;
2353		info->flags = flags & VM_NORESERVE;
2354		info->i_crtime = inode->i_mtime;
2355		info->fsflags = (dir == NULL) ? 0 :
2356			SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2357		if (info->fsflags)
2358			shmem_set_inode_flags(inode, info->fsflags);
2359		INIT_LIST_HEAD(&info->shrinklist);
2360		INIT_LIST_HEAD(&info->swaplist);
2361		simple_xattrs_init(&info->xattrs);
2362		cache_no_acl(inode);
2363		mapping_set_large_folios(inode->i_mapping);
2364
2365		switch (mode & S_IFMT) {
2366		default:
2367			inode->i_op = &shmem_special_inode_operations;
2368			init_special_inode(inode, mode, dev);
2369			break;
2370		case S_IFREG:
2371			inode->i_mapping->a_ops = &shmem_aops;
2372			inode->i_op = &shmem_inode_operations;
2373			inode->i_fop = &shmem_file_operations;
2374			mpol_shared_policy_init(&info->policy,
2375						 shmem_get_sbmpol(sbinfo));
2376			break;
2377		case S_IFDIR:
2378			inc_nlink(inode);
2379			/* Some things misbehave if size == 0 on a directory */
2380			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2381			inode->i_op = &shmem_dir_inode_operations;
2382			inode->i_fop = &simple_dir_operations;
2383			break;
2384		case S_IFLNK:
2385			/*
2386			 * Must not load anything in the rbtree,
2387			 * mpol_free_shared_policy will not be called.
2388			 */
2389			mpol_shared_policy_init(&info->policy, NULL);
2390			break;
2391		}
2392
2393		lockdep_annotate_inode_mutex_key(inode);
2394	} else
2395		shmem_free_inode(sb);
2396	return inode;
2397}
2398
2399#ifdef CONFIG_USERFAULTFD
2400int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2401			   pmd_t *dst_pmd,
2402			   struct vm_area_struct *dst_vma,
2403			   unsigned long dst_addr,
2404			   unsigned long src_addr,
2405			   bool zeropage, bool wp_copy,
2406			   struct page **pagep)
2407{
2408	struct inode *inode = file_inode(dst_vma->vm_file);
2409	struct shmem_inode_info *info = SHMEM_I(inode);
2410	struct address_space *mapping = inode->i_mapping;
2411	gfp_t gfp = mapping_gfp_mask(mapping);
2412	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2413	void *page_kaddr;
2414	struct folio *folio;
2415	int ret;
2416	pgoff_t max_off;
2417
2418	if (!shmem_inode_acct_block(inode, 1)) {
2419		/*
2420		 * We may have got a page, returned -ENOENT triggering a retry,
2421		 * and now we find ourselves with -ENOMEM. Release the page, to
2422		 * avoid a BUG_ON in our caller.
2423		 */
2424		if (unlikely(*pagep)) {
2425			put_page(*pagep);
2426			*pagep = NULL;
2427		}
2428		return -ENOMEM;
2429	}
2430
2431	if (!*pagep) {
2432		ret = -ENOMEM;
2433		folio = shmem_alloc_folio(gfp, info, pgoff);
2434		if (!folio)
2435			goto out_unacct_blocks;
2436
2437		if (!zeropage) {	/* COPY */
2438			page_kaddr = kmap_local_folio(folio, 0);
2439			/*
2440			 * The read mmap_lock is held here.  Despite the
2441			 * mmap_lock being read recursive a deadlock is still
2442			 * possible if a writer has taken a lock.  For example:
2443			 *
2444			 * process A thread 1 takes read lock on own mmap_lock
2445			 * process A thread 2 calls mmap, blocks taking write lock
2446			 * process B thread 1 takes page fault, read lock on own mmap lock
2447			 * process B thread 2 calls mmap, blocks taking write lock
2448			 * process A thread 1 blocks taking read lock on process B
2449			 * process B thread 1 blocks taking read lock on process A
2450			 *
2451			 * Disable page faults to prevent potential deadlock
2452			 * and retry the copy outside the mmap_lock.
2453			 */
2454			pagefault_disable();
2455			ret = copy_from_user(page_kaddr,
2456					     (const void __user *)src_addr,
2457					     PAGE_SIZE);
2458			pagefault_enable();
2459			kunmap_local(page_kaddr);
2460
2461			/* fallback to copy_from_user outside mmap_lock */
2462			if (unlikely(ret)) {
2463				*pagep = &folio->page;
2464				ret = -ENOENT;
2465				/* don't free the page */
2466				goto out_unacct_blocks;
2467			}
2468
2469			flush_dcache_folio(folio);
2470		} else {		/* ZEROPAGE */
2471			clear_user_highpage(&folio->page, dst_addr);
2472		}
2473	} else {
2474		folio = page_folio(*pagep);
2475		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2476		*pagep = NULL;
2477	}
2478
2479	VM_BUG_ON(folio_test_locked(folio));
2480	VM_BUG_ON(folio_test_swapbacked(folio));
2481	__folio_set_locked(folio);
2482	__folio_set_swapbacked(folio);
2483	__folio_mark_uptodate(folio);
2484
2485	ret = -EFAULT;
2486	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2487	if (unlikely(pgoff >= max_off))
2488		goto out_release;
2489
2490	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2491				      gfp & GFP_RECLAIM_MASK, dst_mm);
2492	if (ret)
2493		goto out_release;
2494
2495	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2496				       &folio->page, true, wp_copy);
2497	if (ret)
2498		goto out_delete_from_cache;
2499
2500	spin_lock_irq(&info->lock);
2501	info->alloced++;
2502	inode->i_blocks += BLOCKS_PER_PAGE;
2503	shmem_recalc_inode(inode);
2504	spin_unlock_irq(&info->lock);
2505
2506	folio_unlock(folio);
2507	return 0;
2508out_delete_from_cache:
2509	filemap_remove_folio(folio);
2510out_release:
2511	folio_unlock(folio);
2512	folio_put(folio);
2513out_unacct_blocks:
2514	shmem_inode_unacct_blocks(inode, 1);
2515	return ret;
2516}
2517#endif /* CONFIG_USERFAULTFD */
2518
2519#ifdef CONFIG_TMPFS
2520static const struct inode_operations shmem_symlink_inode_operations;
2521static const struct inode_operations shmem_short_symlink_operations;
2522
 
 
 
 
 
 
2523static int
2524shmem_write_begin(struct file *file, struct address_space *mapping,
2525			loff_t pos, unsigned len,
2526			struct page **pagep, void **fsdata)
2527{
2528	struct inode *inode = mapping->host;
2529	struct shmem_inode_info *info = SHMEM_I(inode);
2530	pgoff_t index = pos >> PAGE_SHIFT;
2531	struct folio *folio;
2532	int ret = 0;
2533
2534	/* i_rwsem is held by caller */
2535	if (unlikely(info->seals & (F_SEAL_GROW |
2536				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2537		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2538			return -EPERM;
2539		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2540			return -EPERM;
2541	}
2542
2543	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2544
2545	if (ret)
2546		return ret;
2547
2548	*pagep = folio_file_page(folio, index);
2549	if (PageHWPoison(*pagep)) {
2550		folio_unlock(folio);
2551		folio_put(folio);
2552		*pagep = NULL;
2553		return -EIO;
2554	}
2555
2556	return 0;
2557}
2558
2559static int
2560shmem_write_end(struct file *file, struct address_space *mapping,
2561			loff_t pos, unsigned len, unsigned copied,
2562			struct page *page, void *fsdata)
2563{
2564	struct inode *inode = mapping->host;
2565
2566	if (pos + copied > inode->i_size)
2567		i_size_write(inode, pos + copied);
2568
2569	if (!PageUptodate(page)) {
2570		struct page *head = compound_head(page);
2571		if (PageTransCompound(page)) {
2572			int i;
2573
2574			for (i = 0; i < HPAGE_PMD_NR; i++) {
2575				if (head + i == page)
2576					continue;
2577				clear_highpage(head + i);
2578				flush_dcache_page(head + i);
2579			}
2580		}
2581		if (copied < PAGE_SIZE) {
2582			unsigned from = pos & (PAGE_SIZE - 1);
2583			zero_user_segments(page, 0, from,
2584					from + copied, PAGE_SIZE);
2585		}
2586		SetPageUptodate(head);
2587	}
2588	set_page_dirty(page);
2589	unlock_page(page);
2590	put_page(page);
2591
2592	return copied;
2593}
2594
2595static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2596{
2597	struct file *file = iocb->ki_filp;
2598	struct inode *inode = file_inode(file);
2599	struct address_space *mapping = inode->i_mapping;
2600	pgoff_t index;
2601	unsigned long offset;
 
2602	int error = 0;
2603	ssize_t retval = 0;
2604	loff_t *ppos = &iocb->ki_pos;
2605
 
 
 
 
 
 
 
 
2606	index = *ppos >> PAGE_SHIFT;
2607	offset = *ppos & ~PAGE_MASK;
2608
2609	for (;;) {
2610		struct folio *folio = NULL;
2611		struct page *page = NULL;
2612		pgoff_t end_index;
2613		unsigned long nr, ret;
2614		loff_t i_size = i_size_read(inode);
2615
2616		end_index = i_size >> PAGE_SHIFT;
2617		if (index > end_index)
2618			break;
2619		if (index == end_index) {
2620			nr = i_size & ~PAGE_MASK;
2621			if (nr <= offset)
2622				break;
2623		}
2624
2625		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2626		if (error) {
2627			if (error == -EINVAL)
2628				error = 0;
2629			break;
2630		}
2631		if (folio) {
2632			folio_unlock(folio);
2633
2634			page = folio_file_page(folio, index);
2635			if (PageHWPoison(page)) {
2636				folio_put(folio);
2637				error = -EIO;
2638				break;
2639			}
2640		}
2641
2642		/*
2643		 * We must evaluate after, since reads (unlike writes)
2644		 * are called without i_rwsem protection against truncate
2645		 */
2646		nr = PAGE_SIZE;
2647		i_size = i_size_read(inode);
2648		end_index = i_size >> PAGE_SHIFT;
2649		if (index == end_index) {
2650			nr = i_size & ~PAGE_MASK;
2651			if (nr <= offset) {
2652				if (folio)
2653					folio_put(folio);
2654				break;
2655			}
2656		}
2657		nr -= offset;
2658
2659		if (folio) {
2660			/*
2661			 * If users can be writing to this page using arbitrary
2662			 * virtual addresses, take care about potential aliasing
2663			 * before reading the page on the kernel side.
2664			 */
2665			if (mapping_writably_mapped(mapping))
2666				flush_dcache_page(page);
2667			/*
2668			 * Mark the page accessed if we read the beginning.
2669			 */
2670			if (!offset)
2671				folio_mark_accessed(folio);
2672			/*
2673			 * Ok, we have the page, and it's up-to-date, so
2674			 * now we can copy it to user space...
2675			 */
2676			ret = copy_page_to_iter(page, offset, nr, to);
2677			folio_put(folio);
2678
2679		} else if (user_backed_iter(to)) {
2680			/*
2681			 * Copy to user tends to be so well optimized, but
2682			 * clear_user() not so much, that it is noticeably
2683			 * faster to copy the zero page instead of clearing.
2684			 */
2685			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2686		} else {
2687			/*
2688			 * But submitting the same page twice in a row to
2689			 * splice() - or others? - can result in confusion:
2690			 * so don't attempt that optimization on pipes etc.
2691			 */
2692			ret = iov_iter_zero(nr, to);
2693		}
2694
 
 
 
 
 
2695		retval += ret;
2696		offset += ret;
2697		index += offset >> PAGE_SHIFT;
2698		offset &= ~PAGE_MASK;
2699
 
2700		if (!iov_iter_count(to))
2701			break;
2702		if (ret < nr) {
2703			error = -EFAULT;
2704			break;
2705		}
2706		cond_resched();
2707	}
2708
2709	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2710	file_accessed(file);
2711	return retval ? retval : error;
2712}
2713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2714static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2715{
2716	struct address_space *mapping = file->f_mapping;
2717	struct inode *inode = mapping->host;
 
 
2718
2719	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2720		return generic_file_llseek_size(file, offset, whence,
2721					MAX_LFS_FILESIZE, i_size_read(inode));
 
 
 
2722	if (offset < 0)
2723		return -ENXIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2724
2725	inode_lock(inode);
2726	/* We're holding i_rwsem so we can access i_size directly */
2727	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2728	if (offset >= 0)
2729		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2730	inode_unlock(inode);
2731	return offset;
2732}
2733
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2734static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2735							 loff_t len)
2736{
2737	struct inode *inode = file_inode(file);
2738	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2739	struct shmem_inode_info *info = SHMEM_I(inode);
2740	struct shmem_falloc shmem_falloc;
2741	pgoff_t start, index, end, undo_fallocend;
2742	int error;
2743
2744	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2745		return -EOPNOTSUPP;
2746
2747	inode_lock(inode);
2748
2749	if (mode & FALLOC_FL_PUNCH_HOLE) {
2750		struct address_space *mapping = file->f_mapping;
2751		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2752		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2753		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2754
2755		/* protected by i_rwsem */
2756		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2757			error = -EPERM;
2758			goto out;
2759		}
2760
2761		shmem_falloc.waitq = &shmem_falloc_waitq;
2762		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2763		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2764		spin_lock(&inode->i_lock);
2765		inode->i_private = &shmem_falloc;
2766		spin_unlock(&inode->i_lock);
2767
2768		if ((u64)unmap_end > (u64)unmap_start)
2769			unmap_mapping_range(mapping, unmap_start,
2770					    1 + unmap_end - unmap_start, 0);
2771		shmem_truncate_range(inode, offset, offset + len - 1);
2772		/* No need to unmap again: hole-punching leaves COWed pages */
2773
2774		spin_lock(&inode->i_lock);
2775		inode->i_private = NULL;
2776		wake_up_all(&shmem_falloc_waitq);
2777		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2778		spin_unlock(&inode->i_lock);
2779		error = 0;
2780		goto out;
2781	}
2782
2783	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2784	error = inode_newsize_ok(inode, offset + len);
2785	if (error)
2786		goto out;
2787
2788	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2789		error = -EPERM;
2790		goto out;
2791	}
2792
2793	start = offset >> PAGE_SHIFT;
2794	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2795	/* Try to avoid a swapstorm if len is impossible to satisfy */
2796	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2797		error = -ENOSPC;
2798		goto out;
2799	}
2800
2801	shmem_falloc.waitq = NULL;
2802	shmem_falloc.start = start;
2803	shmem_falloc.next  = start;
2804	shmem_falloc.nr_falloced = 0;
2805	shmem_falloc.nr_unswapped = 0;
2806	spin_lock(&inode->i_lock);
2807	inode->i_private = &shmem_falloc;
2808	spin_unlock(&inode->i_lock);
2809
2810	/*
2811	 * info->fallocend is only relevant when huge pages might be
2812	 * involved: to prevent split_huge_page() freeing fallocated
2813	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2814	 */
2815	undo_fallocend = info->fallocend;
2816	if (info->fallocend < end)
2817		info->fallocend = end;
2818
2819	for (index = start; index < end; ) {
2820		struct folio *folio;
2821
2822		/*
2823		 * Good, the fallocate(2) manpage permits EINTR: we may have
2824		 * been interrupted because we are using up too much memory.
2825		 */
2826		if (signal_pending(current))
2827			error = -EINTR;
2828		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2829			error = -ENOMEM;
2830		else
2831			error = shmem_get_folio(inode, index, &folio,
2832						SGP_FALLOC);
2833		if (error) {
2834			info->fallocend = undo_fallocend;
2835			/* Remove the !uptodate folios we added */
2836			if (index > start) {
2837				shmem_undo_range(inode,
2838				    (loff_t)start << PAGE_SHIFT,
2839				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2840			}
2841			goto undone;
2842		}
2843
2844		/*
2845		 * Here is a more important optimization than it appears:
2846		 * a second SGP_FALLOC on the same large folio will clear it,
2847		 * making it uptodate and un-undoable if we fail later.
2848		 */
2849		index = folio_next_index(folio);
2850		/* Beware 32-bit wraparound */
2851		if (!index)
2852			index--;
2853
2854		/*
2855		 * Inform shmem_writepage() how far we have reached.
2856		 * No need for lock or barrier: we have the page lock.
2857		 */
2858		if (!folio_test_uptodate(folio))
2859			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2860		shmem_falloc.next = index;
2861
2862		/*
2863		 * If !uptodate, leave it that way so that freeable folios
2864		 * can be recognized if we need to rollback on error later.
2865		 * But mark it dirty so that memory pressure will swap rather
2866		 * than free the folios we are allocating (and SGP_CACHE folios
2867		 * might still be clean: we now need to mark those dirty too).
2868		 */
2869		folio_mark_dirty(folio);
2870		folio_unlock(folio);
2871		folio_put(folio);
2872		cond_resched();
2873	}
2874
2875	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2876		i_size_write(inode, offset + len);
 
2877undone:
2878	spin_lock(&inode->i_lock);
2879	inode->i_private = NULL;
2880	spin_unlock(&inode->i_lock);
2881out:
2882	if (!error)
2883		file_modified(file);
2884	inode_unlock(inode);
2885	return error;
2886}
2887
2888static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2889{
2890	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2891
2892	buf->f_type = TMPFS_MAGIC;
2893	buf->f_bsize = PAGE_SIZE;
2894	buf->f_namelen = NAME_MAX;
2895	if (sbinfo->max_blocks) {
2896		buf->f_blocks = sbinfo->max_blocks;
2897		buf->f_bavail =
2898		buf->f_bfree  = sbinfo->max_blocks -
2899				percpu_counter_sum(&sbinfo->used_blocks);
2900	}
2901	if (sbinfo->max_inodes) {
2902		buf->f_files = sbinfo->max_inodes;
2903		buf->f_ffree = sbinfo->free_inodes;
2904	}
2905	/* else leave those fields 0 like simple_statfs */
2906
2907	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2908
2909	return 0;
2910}
2911
2912/*
2913 * File creation. Allocate an inode, and we're done..
2914 */
2915static int
2916shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2917	    struct dentry *dentry, umode_t mode, dev_t dev)
2918{
2919	struct inode *inode;
2920	int error = -ENOSPC;
2921
2922	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2923	if (inode) {
2924		error = simple_acl_create(dir, inode);
2925		if (error)
2926			goto out_iput;
2927		error = security_inode_init_security(inode, dir,
2928						     &dentry->d_name,
2929						     shmem_initxattrs, NULL);
2930		if (error && error != -EOPNOTSUPP)
2931			goto out_iput;
2932
2933		error = 0;
2934		dir->i_size += BOGO_DIRENT_SIZE;
2935		dir->i_ctime = dir->i_mtime = current_time(dir);
2936		inode_inc_iversion(dir);
2937		d_instantiate(dentry, inode);
2938		dget(dentry); /* Extra count - pin the dentry in core */
2939	}
2940	return error;
2941out_iput:
2942	iput(inode);
2943	return error;
2944}
2945
2946static int
2947shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2948	      struct file *file, umode_t mode)
2949{
2950	struct inode *inode;
2951	int error = -ENOSPC;
2952
2953	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2954	if (inode) {
2955		error = security_inode_init_security(inode, dir,
2956						     NULL,
2957						     shmem_initxattrs, NULL);
2958		if (error && error != -EOPNOTSUPP)
2959			goto out_iput;
2960		error = simple_acl_create(dir, inode);
2961		if (error)
2962			goto out_iput;
2963		d_tmpfile(file, inode);
2964	}
2965	return finish_open_simple(file, error);
2966out_iput:
2967	iput(inode);
2968	return error;
2969}
2970
2971static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2972		       struct dentry *dentry, umode_t mode)
2973{
2974	int error;
2975
2976	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2977				 mode | S_IFDIR, 0)))
2978		return error;
2979	inc_nlink(dir);
2980	return 0;
2981}
2982
2983static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2984			struct dentry *dentry, umode_t mode, bool excl)
2985{
2986	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2987}
2988
2989/*
2990 * Link a file..
2991 */
2992static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2993{
2994	struct inode *inode = d_inode(old_dentry);
2995	int ret = 0;
2996
2997	/*
2998	 * No ordinary (disk based) filesystem counts links as inodes;
2999	 * but each new link needs a new dentry, pinning lowmem, and
3000	 * tmpfs dentries cannot be pruned until they are unlinked.
3001	 * But if an O_TMPFILE file is linked into the tmpfs, the
3002	 * first link must skip that, to get the accounting right.
3003	 */
3004	if (inode->i_nlink) {
3005		ret = shmem_reserve_inode(inode->i_sb, NULL);
3006		if (ret)
3007			goto out;
3008	}
3009
3010	dir->i_size += BOGO_DIRENT_SIZE;
3011	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3012	inode_inc_iversion(dir);
3013	inc_nlink(inode);
3014	ihold(inode);	/* New dentry reference */
3015	dget(dentry);		/* Extra pinning count for the created dentry */
3016	d_instantiate(dentry, inode);
3017out:
3018	return ret;
3019}
3020
3021static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3022{
3023	struct inode *inode = d_inode(dentry);
3024
3025	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3026		shmem_free_inode(inode->i_sb);
3027
3028	dir->i_size -= BOGO_DIRENT_SIZE;
3029	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3030	inode_inc_iversion(dir);
3031	drop_nlink(inode);
3032	dput(dentry);	/* Undo the count from "create" - this does all the work */
3033	return 0;
3034}
3035
3036static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3037{
3038	if (!simple_empty(dentry))
3039		return -ENOTEMPTY;
3040
3041	drop_nlink(d_inode(dentry));
3042	drop_nlink(dir);
3043	return shmem_unlink(dir, dentry);
3044}
3045
3046static int shmem_whiteout(struct user_namespace *mnt_userns,
3047			  struct inode *old_dir, struct dentry *old_dentry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3048{
3049	struct dentry *whiteout;
3050	int error;
3051
3052	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3053	if (!whiteout)
3054		return -ENOMEM;
3055
3056	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3057			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3058	dput(whiteout);
3059	if (error)
3060		return error;
3061
3062	/*
3063	 * Cheat and hash the whiteout while the old dentry is still in
3064	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3065	 *
3066	 * d_lookup() will consistently find one of them at this point,
3067	 * not sure which one, but that isn't even important.
3068	 */
3069	d_rehash(whiteout);
3070	return 0;
3071}
3072
3073/*
3074 * The VFS layer already does all the dentry stuff for rename,
3075 * we just have to decrement the usage count for the target if
3076 * it exists so that the VFS layer correctly free's it when it
3077 * gets overwritten.
3078 */
3079static int shmem_rename2(struct user_namespace *mnt_userns,
3080			 struct inode *old_dir, struct dentry *old_dentry,
3081			 struct inode *new_dir, struct dentry *new_dentry,
3082			 unsigned int flags)
3083{
3084	struct inode *inode = d_inode(old_dentry);
3085	int they_are_dirs = S_ISDIR(inode->i_mode);
3086
3087	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3088		return -EINVAL;
3089
3090	if (flags & RENAME_EXCHANGE)
3091		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3092
3093	if (!simple_empty(new_dentry))
3094		return -ENOTEMPTY;
3095
3096	if (flags & RENAME_WHITEOUT) {
3097		int error;
3098
3099		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3100		if (error)
3101			return error;
3102	}
3103
3104	if (d_really_is_positive(new_dentry)) {
3105		(void) shmem_unlink(new_dir, new_dentry);
3106		if (they_are_dirs) {
3107			drop_nlink(d_inode(new_dentry));
3108			drop_nlink(old_dir);
3109		}
3110	} else if (they_are_dirs) {
3111		drop_nlink(old_dir);
3112		inc_nlink(new_dir);
3113	}
3114
3115	old_dir->i_size -= BOGO_DIRENT_SIZE;
3116	new_dir->i_size += BOGO_DIRENT_SIZE;
3117	old_dir->i_ctime = old_dir->i_mtime =
3118	new_dir->i_ctime = new_dir->i_mtime =
3119	inode->i_ctime = current_time(old_dir);
3120	inode_inc_iversion(old_dir);
3121	inode_inc_iversion(new_dir);
3122	return 0;
3123}
3124
3125static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3126			 struct dentry *dentry, const char *symname)
3127{
3128	int error;
3129	int len;
3130	struct inode *inode;
3131	struct folio *folio;
 
3132
3133	len = strlen(symname) + 1;
3134	if (len > PAGE_SIZE)
3135		return -ENAMETOOLONG;
3136
3137	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3138				VM_NORESERVE);
3139	if (!inode)
3140		return -ENOSPC;
3141
3142	error = security_inode_init_security(inode, dir, &dentry->d_name,
3143					     shmem_initxattrs, NULL);
3144	if (error && error != -EOPNOTSUPP) {
3145		iput(inode);
3146		return error;
 
 
 
3147	}
3148
 
3149	inode->i_size = len-1;
3150	if (len <= SHORT_SYMLINK_LEN) {
3151		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3152		if (!inode->i_link) {
3153			iput(inode);
3154			return -ENOMEM;
3155		}
3156		inode->i_op = &shmem_short_symlink_operations;
3157	} else {
3158		inode_nohighmem(inode);
3159		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3160		if (error) {
3161			iput(inode);
3162			return error;
3163		}
3164		inode->i_mapping->a_ops = &shmem_aops;
3165		inode->i_op = &shmem_symlink_inode_operations;
3166		memcpy(folio_address(folio), symname, len);
3167		folio_mark_uptodate(folio);
3168		folio_mark_dirty(folio);
3169		folio_unlock(folio);
3170		folio_put(folio);
3171	}
3172	dir->i_size += BOGO_DIRENT_SIZE;
3173	dir->i_ctime = dir->i_mtime = current_time(dir);
3174	inode_inc_iversion(dir);
3175	d_instantiate(dentry, inode);
3176	dget(dentry);
3177	return 0;
3178}
3179
3180static void shmem_put_link(void *arg)
3181{
3182	folio_mark_accessed(arg);
3183	folio_put(arg);
3184}
3185
3186static const char *shmem_get_link(struct dentry *dentry,
3187				  struct inode *inode,
3188				  struct delayed_call *done)
3189{
3190	struct folio *folio = NULL;
3191	int error;
3192
3193	if (!dentry) {
3194		folio = filemap_get_folio(inode->i_mapping, 0);
3195		if (!folio)
3196			return ERR_PTR(-ECHILD);
3197		if (PageHWPoison(folio_page(folio, 0)) ||
3198		    !folio_test_uptodate(folio)) {
3199			folio_put(folio);
3200			return ERR_PTR(-ECHILD);
3201		}
3202	} else {
3203		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3204		if (error)
3205			return ERR_PTR(error);
3206		if (!folio)
3207			return ERR_PTR(-ECHILD);
3208		if (PageHWPoison(folio_page(folio, 0))) {
3209			folio_unlock(folio);
3210			folio_put(folio);
3211			return ERR_PTR(-ECHILD);
3212		}
3213		folio_unlock(folio);
3214	}
3215	set_delayed_call(done, shmem_put_link, folio);
3216	return folio_address(folio);
3217}
3218
3219#ifdef CONFIG_TMPFS_XATTR
3220
3221static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3222{
3223	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3224
3225	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3226
3227	return 0;
3228}
3229
3230static int shmem_fileattr_set(struct user_namespace *mnt_userns,
3231			      struct dentry *dentry, struct fileattr *fa)
3232{
3233	struct inode *inode = d_inode(dentry);
3234	struct shmem_inode_info *info = SHMEM_I(inode);
3235
3236	if (fileattr_has_fsx(fa))
3237		return -EOPNOTSUPP;
3238	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3239		return -EOPNOTSUPP;
3240
3241	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3242		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3243
3244	shmem_set_inode_flags(inode, info->fsflags);
3245	inode->i_ctime = current_time(inode);
3246	inode_inc_iversion(inode);
3247	return 0;
3248}
3249
3250/*
3251 * Superblocks without xattr inode operations may get some security.* xattr
3252 * support from the LSM "for free". As soon as we have any other xattrs
3253 * like ACLs, we also need to implement the security.* handlers at
3254 * filesystem level, though.
3255 */
3256
3257/*
3258 * Callback for security_inode_init_security() for acquiring xattrs.
3259 */
3260static int shmem_initxattrs(struct inode *inode,
3261			    const struct xattr *xattr_array,
3262			    void *fs_info)
3263{
3264	struct shmem_inode_info *info = SHMEM_I(inode);
3265	const struct xattr *xattr;
3266	struct simple_xattr *new_xattr;
3267	size_t len;
3268
3269	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3270		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3271		if (!new_xattr)
3272			return -ENOMEM;
3273
3274		len = strlen(xattr->name) + 1;
3275		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3276					  GFP_KERNEL);
3277		if (!new_xattr->name) {
3278			kvfree(new_xattr);
3279			return -ENOMEM;
3280		}
3281
3282		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3283		       XATTR_SECURITY_PREFIX_LEN);
3284		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3285		       xattr->name, len);
3286
3287		simple_xattr_add(&info->xattrs, new_xattr);
3288	}
3289
3290	return 0;
3291}
3292
3293static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3294				   struct dentry *unused, struct inode *inode,
3295				   const char *name, void *buffer, size_t size)
3296{
3297	struct shmem_inode_info *info = SHMEM_I(inode);
3298
3299	name = xattr_full_name(handler, name);
3300	return simple_xattr_get(&info->xattrs, name, buffer, size);
3301}
3302
3303static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3304				   struct user_namespace *mnt_userns,
3305				   struct dentry *unused, struct inode *inode,
3306				   const char *name, const void *value,
3307				   size_t size, int flags)
3308{
3309	struct shmem_inode_info *info = SHMEM_I(inode);
3310	int err;
3311
3312	name = xattr_full_name(handler, name);
3313	err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3314	if (!err) {
3315		inode->i_ctime = current_time(inode);
3316		inode_inc_iversion(inode);
3317	}
3318	return err;
3319}
3320
3321static const struct xattr_handler shmem_security_xattr_handler = {
3322	.prefix = XATTR_SECURITY_PREFIX,
3323	.get = shmem_xattr_handler_get,
3324	.set = shmem_xattr_handler_set,
3325};
3326
3327static const struct xattr_handler shmem_trusted_xattr_handler = {
3328	.prefix = XATTR_TRUSTED_PREFIX,
3329	.get = shmem_xattr_handler_get,
3330	.set = shmem_xattr_handler_set,
3331};
3332
3333static const struct xattr_handler *shmem_xattr_handlers[] = {
3334#ifdef CONFIG_TMPFS_POSIX_ACL
3335	&posix_acl_access_xattr_handler,
3336	&posix_acl_default_xattr_handler,
3337#endif
3338	&shmem_security_xattr_handler,
3339	&shmem_trusted_xattr_handler,
3340	NULL
3341};
3342
3343static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3344{
3345	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3346	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3347}
3348#endif /* CONFIG_TMPFS_XATTR */
3349
3350static const struct inode_operations shmem_short_symlink_operations = {
3351	.getattr	= shmem_getattr,
3352	.get_link	= simple_get_link,
3353#ifdef CONFIG_TMPFS_XATTR
 
 
3354	.listxattr	= shmem_listxattr,
 
3355#endif
3356};
3357
3358static const struct inode_operations shmem_symlink_inode_operations = {
3359	.getattr	= shmem_getattr,
3360	.get_link	= shmem_get_link,
3361#ifdef CONFIG_TMPFS_XATTR
 
 
3362	.listxattr	= shmem_listxattr,
 
3363#endif
3364};
3365
3366static struct dentry *shmem_get_parent(struct dentry *child)
3367{
3368	return ERR_PTR(-ESTALE);
3369}
3370
3371static int shmem_match(struct inode *ino, void *vfh)
3372{
3373	__u32 *fh = vfh;
3374	__u64 inum = fh[2];
3375	inum = (inum << 32) | fh[1];
3376	return ino->i_ino == inum && fh[0] == ino->i_generation;
3377}
3378
3379/* Find any alias of inode, but prefer a hashed alias */
3380static struct dentry *shmem_find_alias(struct inode *inode)
3381{
3382	struct dentry *alias = d_find_alias(inode);
3383
3384	return alias ?: d_find_any_alias(inode);
3385}
3386
3387
3388static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3389		struct fid *fid, int fh_len, int fh_type)
3390{
3391	struct inode *inode;
3392	struct dentry *dentry = NULL;
3393	u64 inum;
3394
3395	if (fh_len < 3)
3396		return NULL;
3397
3398	inum = fid->raw[2];
3399	inum = (inum << 32) | fid->raw[1];
3400
3401	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3402			shmem_match, fid->raw);
3403	if (inode) {
3404		dentry = shmem_find_alias(inode);
3405		iput(inode);
3406	}
3407
3408	return dentry;
3409}
3410
3411static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3412				struct inode *parent)
3413{
3414	if (*len < 3) {
3415		*len = 3;
3416		return FILEID_INVALID;
3417	}
3418
3419	if (inode_unhashed(inode)) {
3420		/* Unfortunately insert_inode_hash is not idempotent,
3421		 * so as we hash inodes here rather than at creation
3422		 * time, we need a lock to ensure we only try
3423		 * to do it once
3424		 */
3425		static DEFINE_SPINLOCK(lock);
3426		spin_lock(&lock);
3427		if (inode_unhashed(inode))
3428			__insert_inode_hash(inode,
3429					    inode->i_ino + inode->i_generation);
3430		spin_unlock(&lock);
3431	}
3432
3433	fh[0] = inode->i_generation;
3434	fh[1] = inode->i_ino;
3435	fh[2] = ((__u64)inode->i_ino) >> 32;
3436
3437	*len = 3;
3438	return 1;
3439}
3440
3441static const struct export_operations shmem_export_ops = {
3442	.get_parent     = shmem_get_parent,
3443	.encode_fh      = shmem_encode_fh,
3444	.fh_to_dentry	= shmem_fh_to_dentry,
3445};
3446
3447enum shmem_param {
3448	Opt_gid,
3449	Opt_huge,
3450	Opt_mode,
3451	Opt_mpol,
3452	Opt_nr_blocks,
3453	Opt_nr_inodes,
3454	Opt_size,
3455	Opt_uid,
3456	Opt_inode32,
3457	Opt_inode64,
3458};
3459
3460static const struct constant_table shmem_param_enums_huge[] = {
3461	{"never",	SHMEM_HUGE_NEVER },
3462	{"always",	SHMEM_HUGE_ALWAYS },
3463	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3464	{"advise",	SHMEM_HUGE_ADVISE },
3465	{}
3466};
3467
3468const struct fs_parameter_spec shmem_fs_parameters[] = {
3469	fsparam_u32   ("gid",		Opt_gid),
3470	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3471	fsparam_u32oct("mode",		Opt_mode),
3472	fsparam_string("mpol",		Opt_mpol),
3473	fsparam_string("nr_blocks",	Opt_nr_blocks),
3474	fsparam_string("nr_inodes",	Opt_nr_inodes),
3475	fsparam_string("size",		Opt_size),
3476	fsparam_u32   ("uid",		Opt_uid),
3477	fsparam_flag  ("inode32",	Opt_inode32),
3478	fsparam_flag  ("inode64",	Opt_inode64),
3479	{}
3480};
3481
3482static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3483{
3484	struct shmem_options *ctx = fc->fs_private;
3485	struct fs_parse_result result;
3486	unsigned long long size;
3487	char *rest;
3488	int opt;
3489
3490	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3491	if (opt < 0)
3492		return opt;
3493
3494	switch (opt) {
3495	case Opt_size:
3496		size = memparse(param->string, &rest);
3497		if (*rest == '%') {
3498			size <<= PAGE_SHIFT;
3499			size *= totalram_pages();
3500			do_div(size, 100);
3501			rest++;
3502		}
3503		if (*rest)
3504			goto bad_value;
3505		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3506		ctx->seen |= SHMEM_SEEN_BLOCKS;
3507		break;
3508	case Opt_nr_blocks:
3509		ctx->blocks = memparse(param->string, &rest);
3510		if (*rest || ctx->blocks > S64_MAX)
3511			goto bad_value;
3512		ctx->seen |= SHMEM_SEEN_BLOCKS;
3513		break;
3514	case Opt_nr_inodes:
3515		ctx->inodes = memparse(param->string, &rest);
3516		if (*rest)
3517			goto bad_value;
3518		ctx->seen |= SHMEM_SEEN_INODES;
3519		break;
3520	case Opt_mode:
3521		ctx->mode = result.uint_32 & 07777;
3522		break;
3523	case Opt_uid:
3524		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3525		if (!uid_valid(ctx->uid))
3526			goto bad_value;
3527		break;
3528	case Opt_gid:
3529		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3530		if (!gid_valid(ctx->gid))
3531			goto bad_value;
3532		break;
3533	case Opt_huge:
3534		ctx->huge = result.uint_32;
3535		if (ctx->huge != SHMEM_HUGE_NEVER &&
3536		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3537		      has_transparent_hugepage()))
3538			goto unsupported_parameter;
3539		ctx->seen |= SHMEM_SEEN_HUGE;
3540		break;
3541	case Opt_mpol:
3542		if (IS_ENABLED(CONFIG_NUMA)) {
3543			mpol_put(ctx->mpol);
3544			ctx->mpol = NULL;
3545			if (mpol_parse_str(param->string, &ctx->mpol))
3546				goto bad_value;
3547			break;
3548		}
3549		goto unsupported_parameter;
3550	case Opt_inode32:
3551		ctx->full_inums = false;
3552		ctx->seen |= SHMEM_SEEN_INUMS;
3553		break;
3554	case Opt_inode64:
3555		if (sizeof(ino_t) < 8) {
3556			return invalfc(fc,
3557				       "Cannot use inode64 with <64bit inums in kernel\n");
3558		}
3559		ctx->full_inums = true;
3560		ctx->seen |= SHMEM_SEEN_INUMS;
3561		break;
3562	}
3563	return 0;
3564
3565unsupported_parameter:
3566	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3567bad_value:
3568	return invalfc(fc, "Bad value for '%s'", param->key);
3569}
3570
3571static int shmem_parse_options(struct fs_context *fc, void *data)
3572{
3573	char *options = data;
3574
3575	if (options) {
3576		int err = security_sb_eat_lsm_opts(options, &fc->security);
3577		if (err)
3578			return err;
3579	}
3580
3581	while (options != NULL) {
3582		char *this_char = options;
3583		for (;;) {
3584			/*
3585			 * NUL-terminate this option: unfortunately,
3586			 * mount options form a comma-separated list,
3587			 * but mpol's nodelist may also contain commas.
3588			 */
3589			options = strchr(options, ',');
3590			if (options == NULL)
3591				break;
3592			options++;
3593			if (!isdigit(*options)) {
3594				options[-1] = '\0';
3595				break;
3596			}
3597		}
3598		if (*this_char) {
3599			char *value = strchr(this_char, '=');
3600			size_t len = 0;
3601			int err;
3602
3603			if (value) {
3604				*value++ = '\0';
3605				len = strlen(value);
 
 
 
 
 
 
 
 
 
 
3606			}
3607			err = vfs_parse_fs_string(fc, this_char, value, len);
3608			if (err < 0)
3609				return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3610		}
3611	}
 
3612	return 0;
 
 
 
 
 
 
 
 
3613}
3614
3615/*
3616 * Reconfigure a shmem filesystem.
3617 *
3618 * Note that we disallow change from limited->unlimited blocks/inodes while any
3619 * are in use; but we must separately disallow unlimited->limited, because in
3620 * that case we have no record of how much is already in use.
3621 */
3622static int shmem_reconfigure(struct fs_context *fc)
3623{
3624	struct shmem_options *ctx = fc->fs_private;
3625	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3626	unsigned long inodes;
3627	struct mempolicy *mpol = NULL;
3628	const char *err;
3629
3630	raw_spin_lock(&sbinfo->stat_lock);
3631	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3632
3633	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3634		if (!sbinfo->max_blocks) {
3635			err = "Cannot retroactively limit size";
3636			goto out;
3637		}
3638		if (percpu_counter_compare(&sbinfo->used_blocks,
3639					   ctx->blocks) > 0) {
3640			err = "Too small a size for current use";
3641			goto out;
3642		}
3643	}
3644	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3645		if (!sbinfo->max_inodes) {
3646			err = "Cannot retroactively limit inodes";
3647			goto out;
3648		}
3649		if (ctx->inodes < inodes) {
3650			err = "Too few inodes for current use";
3651			goto out;
3652		}
3653	}
3654
3655	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3656	    sbinfo->next_ino > UINT_MAX) {
3657		err = "Current inum too high to switch to 32-bit inums";
 
 
 
 
 
 
 
 
 
 
 
3658		goto out;
3659	}
3660
3661	if (ctx->seen & SHMEM_SEEN_HUGE)
3662		sbinfo->huge = ctx->huge;
3663	if (ctx->seen & SHMEM_SEEN_INUMS)
3664		sbinfo->full_inums = ctx->full_inums;
3665	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3666		sbinfo->max_blocks  = ctx->blocks;
3667	if (ctx->seen & SHMEM_SEEN_INODES) {
3668		sbinfo->max_inodes  = ctx->inodes;
3669		sbinfo->free_inodes = ctx->inodes - inodes;
3670	}
3671
3672	/*
3673	 * Preserve previous mempolicy unless mpol remount option was specified.
3674	 */
3675	if (ctx->mpol) {
3676		mpol = sbinfo->mpol;
3677		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3678		ctx->mpol = NULL;
3679	}
3680	raw_spin_unlock(&sbinfo->stat_lock);
3681	mpol_put(mpol);
3682	return 0;
3683out:
3684	raw_spin_unlock(&sbinfo->stat_lock);
3685	return invalfc(fc, "%s", err);
3686}
3687
3688static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3689{
3690	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3691
3692	if (sbinfo->max_blocks != shmem_default_max_blocks())
3693		seq_printf(seq, ",size=%luk",
3694			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3695	if (sbinfo->max_inodes != shmem_default_max_inodes())
3696		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3697	if (sbinfo->mode != (0777 | S_ISVTX))
3698		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3699	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3700		seq_printf(seq, ",uid=%u",
3701				from_kuid_munged(&init_user_ns, sbinfo->uid));
3702	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3703		seq_printf(seq, ",gid=%u",
3704				from_kgid_munged(&init_user_ns, sbinfo->gid));
3705
3706	/*
3707	 * Showing inode{64,32} might be useful even if it's the system default,
3708	 * since then people don't have to resort to checking both here and
3709	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3710	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3711	 *
3712	 * We hide it when inode64 isn't the default and we are using 32-bit
3713	 * inodes, since that probably just means the feature isn't even under
3714	 * consideration.
3715	 *
3716	 * As such:
3717	 *
3718	 *                     +-----------------+-----------------+
3719	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3720	 *  +------------------+-----------------+-----------------+
3721	 *  | full_inums=true  | show            | show            |
3722	 *  | full_inums=false | show            | hide            |
3723	 *  +------------------+-----------------+-----------------+
3724	 *
3725	 */
3726	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3727		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3728#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3729	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3730	if (sbinfo->huge)
3731		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3732#endif
3733	shmem_show_mpol(seq, sbinfo->mpol);
3734	return 0;
3735}
3736
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3737#endif /* CONFIG_TMPFS */
3738
3739static void shmem_put_super(struct super_block *sb)
3740{
3741	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3742
3743	free_percpu(sbinfo->ino_batch);
3744	percpu_counter_destroy(&sbinfo->used_blocks);
3745	mpol_put(sbinfo->mpol);
3746	kfree(sbinfo);
3747	sb->s_fs_info = NULL;
3748}
3749
3750static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3751{
3752	struct shmem_options *ctx = fc->fs_private;
3753	struct inode *inode;
3754	struct shmem_sb_info *sbinfo;
 
3755
3756	/* Round up to L1_CACHE_BYTES to resist false sharing */
3757	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3758				L1_CACHE_BYTES), GFP_KERNEL);
3759	if (!sbinfo)
3760		return -ENOMEM;
3761
 
 
 
3762	sb->s_fs_info = sbinfo;
3763
3764#ifdef CONFIG_TMPFS
3765	/*
3766	 * Per default we only allow half of the physical ram per
3767	 * tmpfs instance, limiting inodes to one per page of lowmem;
3768	 * but the internal instance is left unlimited.
3769	 */
3770	if (!(sb->s_flags & SB_KERNMOUNT)) {
3771		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3772			ctx->blocks = shmem_default_max_blocks();
3773		if (!(ctx->seen & SHMEM_SEEN_INODES))
3774			ctx->inodes = shmem_default_max_inodes();
3775		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3776			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3777	} else {
3778		sb->s_flags |= SB_NOUSER;
3779	}
3780	sb->s_export_op = &shmem_export_ops;
3781	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
3782#else
3783	sb->s_flags |= SB_NOUSER;
3784#endif
3785	sbinfo->max_blocks = ctx->blocks;
3786	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3787	if (sb->s_flags & SB_KERNMOUNT) {
3788		sbinfo->ino_batch = alloc_percpu(ino_t);
3789		if (!sbinfo->ino_batch)
3790			goto failed;
3791	}
3792	sbinfo->uid = ctx->uid;
3793	sbinfo->gid = ctx->gid;
3794	sbinfo->full_inums = ctx->full_inums;
3795	sbinfo->mode = ctx->mode;
3796	sbinfo->huge = ctx->huge;
3797	sbinfo->mpol = ctx->mpol;
3798	ctx->mpol = NULL;
3799
3800	raw_spin_lock_init(&sbinfo->stat_lock);
3801	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3802		goto failed;
3803	spin_lock_init(&sbinfo->shrinklist_lock);
3804	INIT_LIST_HEAD(&sbinfo->shrinklist);
3805
3806	sb->s_maxbytes = MAX_LFS_FILESIZE;
3807	sb->s_blocksize = PAGE_SIZE;
3808	sb->s_blocksize_bits = PAGE_SHIFT;
3809	sb->s_magic = TMPFS_MAGIC;
3810	sb->s_op = &shmem_ops;
3811	sb->s_time_gran = 1;
3812#ifdef CONFIG_TMPFS_XATTR
3813	sb->s_xattr = shmem_xattr_handlers;
3814#endif
3815#ifdef CONFIG_TMPFS_POSIX_ACL
3816	sb->s_flags |= SB_POSIXACL;
3817#endif
3818	uuid_gen(&sb->s_uuid);
3819
3820	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3821	if (!inode)
3822		goto failed;
3823	inode->i_uid = sbinfo->uid;
3824	inode->i_gid = sbinfo->gid;
3825	sb->s_root = d_make_root(inode);
3826	if (!sb->s_root)
3827		goto failed;
3828	return 0;
3829
3830failed:
3831	shmem_put_super(sb);
3832	return -ENOMEM;
3833}
3834
3835static int shmem_get_tree(struct fs_context *fc)
3836{
3837	return get_tree_nodev(fc, shmem_fill_super);
3838}
3839
3840static void shmem_free_fc(struct fs_context *fc)
3841{
3842	struct shmem_options *ctx = fc->fs_private;
3843
3844	if (ctx) {
3845		mpol_put(ctx->mpol);
3846		kfree(ctx);
3847	}
3848}
3849
3850static const struct fs_context_operations shmem_fs_context_ops = {
3851	.free			= shmem_free_fc,
3852	.get_tree		= shmem_get_tree,
3853#ifdef CONFIG_TMPFS
3854	.parse_monolithic	= shmem_parse_options,
3855	.parse_param		= shmem_parse_one,
3856	.reconfigure		= shmem_reconfigure,
3857#endif
3858};
3859
3860static struct kmem_cache *shmem_inode_cachep;
3861
3862static struct inode *shmem_alloc_inode(struct super_block *sb)
3863{
3864	struct shmem_inode_info *info;
3865	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3866	if (!info)
3867		return NULL;
3868	return &info->vfs_inode;
3869}
3870
3871static void shmem_free_in_core_inode(struct inode *inode)
3872{
3873	if (S_ISLNK(inode->i_mode))
3874		kfree(inode->i_link);
3875	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3876}
3877
3878static void shmem_destroy_inode(struct inode *inode)
3879{
3880	if (S_ISREG(inode->i_mode))
3881		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
 
3882}
3883
3884static void shmem_init_inode(void *foo)
3885{
3886	struct shmem_inode_info *info = foo;
3887	inode_init_once(&info->vfs_inode);
3888}
3889
3890static void shmem_init_inodecache(void)
3891{
3892	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3893				sizeof(struct shmem_inode_info),
3894				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
 
3895}
3896
3897static void shmem_destroy_inodecache(void)
3898{
3899	kmem_cache_destroy(shmem_inode_cachep);
3900}
3901
3902/* Keep the page in page cache instead of truncating it */
3903static int shmem_error_remove_page(struct address_space *mapping,
3904				   struct page *page)
3905{
3906	return 0;
3907}
3908
3909const struct address_space_operations shmem_aops = {
3910	.writepage	= shmem_writepage,
3911	.dirty_folio	= noop_dirty_folio,
3912#ifdef CONFIG_TMPFS
3913	.write_begin	= shmem_write_begin,
3914	.write_end	= shmem_write_end,
3915#endif
3916#ifdef CONFIG_MIGRATION
3917	.migrate_folio	= migrate_folio,
3918#endif
3919	.error_remove_page = shmem_error_remove_page,
3920};
3921EXPORT_SYMBOL(shmem_aops);
3922
3923static const struct file_operations shmem_file_operations = {
3924	.mmap		= shmem_mmap,
3925	.open		= generic_file_open,
3926	.get_unmapped_area = shmem_get_unmapped_area,
3927#ifdef CONFIG_TMPFS
3928	.llseek		= shmem_file_llseek,
3929	.read_iter	= shmem_file_read_iter,
3930	.write_iter	= generic_file_write_iter,
3931	.fsync		= noop_fsync,
3932	.splice_read	= generic_file_splice_read,
3933	.splice_write	= iter_file_splice_write,
3934	.fallocate	= shmem_fallocate,
3935#endif
3936};
3937
3938static const struct inode_operations shmem_inode_operations = {
3939	.getattr	= shmem_getattr,
3940	.setattr	= shmem_setattr,
3941#ifdef CONFIG_TMPFS_XATTR
 
 
3942	.listxattr	= shmem_listxattr,
 
3943	.set_acl	= simple_set_acl,
3944	.fileattr_get	= shmem_fileattr_get,
3945	.fileattr_set	= shmem_fileattr_set,
3946#endif
3947};
3948
3949static const struct inode_operations shmem_dir_inode_operations = {
3950#ifdef CONFIG_TMPFS
3951	.getattr	= shmem_getattr,
3952	.create		= shmem_create,
3953	.lookup		= simple_lookup,
3954	.link		= shmem_link,
3955	.unlink		= shmem_unlink,
3956	.symlink	= shmem_symlink,
3957	.mkdir		= shmem_mkdir,
3958	.rmdir		= shmem_rmdir,
3959	.mknod		= shmem_mknod,
3960	.rename		= shmem_rename2,
3961	.tmpfile	= shmem_tmpfile,
3962#endif
3963#ifdef CONFIG_TMPFS_XATTR
 
 
3964	.listxattr	= shmem_listxattr,
3965	.fileattr_get	= shmem_fileattr_get,
3966	.fileattr_set	= shmem_fileattr_set,
3967#endif
3968#ifdef CONFIG_TMPFS_POSIX_ACL
3969	.setattr	= shmem_setattr,
3970	.set_acl	= simple_set_acl,
3971#endif
3972};
3973
3974static const struct inode_operations shmem_special_inode_operations = {
3975	.getattr	= shmem_getattr,
3976#ifdef CONFIG_TMPFS_XATTR
 
 
3977	.listxattr	= shmem_listxattr,
 
3978#endif
3979#ifdef CONFIG_TMPFS_POSIX_ACL
3980	.setattr	= shmem_setattr,
3981	.set_acl	= simple_set_acl,
3982#endif
3983};
3984
3985static const struct super_operations shmem_ops = {
3986	.alloc_inode	= shmem_alloc_inode,
3987	.free_inode	= shmem_free_in_core_inode,
3988	.destroy_inode	= shmem_destroy_inode,
3989#ifdef CONFIG_TMPFS
3990	.statfs		= shmem_statfs,
 
3991	.show_options	= shmem_show_options,
3992#endif
3993	.evict_inode	= shmem_evict_inode,
3994	.drop_inode	= generic_delete_inode,
3995	.put_super	= shmem_put_super,
3996#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3997	.nr_cached_objects	= shmem_unused_huge_count,
3998	.free_cached_objects	= shmem_unused_huge_scan,
3999#endif
4000};
4001
4002static const struct vm_operations_struct shmem_vm_ops = {
4003	.fault		= shmem_fault,
4004	.map_pages	= filemap_map_pages,
4005#ifdef CONFIG_NUMA
4006	.set_policy     = shmem_set_policy,
4007	.get_policy     = shmem_get_policy,
4008#endif
4009};
4010
4011static const struct vm_operations_struct shmem_anon_vm_ops = {
4012	.fault		= shmem_fault,
4013	.map_pages	= filemap_map_pages,
4014#ifdef CONFIG_NUMA
4015	.set_policy     = shmem_set_policy,
4016	.get_policy     = shmem_get_policy,
4017#endif
4018};
4019
4020int shmem_init_fs_context(struct fs_context *fc)
4021{
4022	struct shmem_options *ctx;
4023
4024	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4025	if (!ctx)
4026		return -ENOMEM;
4027
4028	ctx->mode = 0777 | S_ISVTX;
4029	ctx->uid = current_fsuid();
4030	ctx->gid = current_fsgid();
4031
4032	fc->fs_private = ctx;
4033	fc->ops = &shmem_fs_context_ops;
4034	return 0;
4035}
4036
4037static struct file_system_type shmem_fs_type = {
4038	.owner		= THIS_MODULE,
4039	.name		= "tmpfs",
4040	.init_fs_context = shmem_init_fs_context,
4041#ifdef CONFIG_TMPFS
4042	.parameters	= shmem_fs_parameters,
4043#endif
4044	.kill_sb	= kill_litter_super,
4045	.fs_flags	= FS_USERNS_MOUNT,
4046};
4047
4048void __init shmem_init(void)
4049{
4050	int error;
4051
4052	shmem_init_inodecache();
 
 
 
 
 
 
4053
4054	error = register_filesystem(&shmem_fs_type);
4055	if (error) {
4056		pr_err("Could not register tmpfs\n");
4057		goto out2;
4058	}
4059
4060	shm_mnt = kern_mount(&shmem_fs_type);
4061	if (IS_ERR(shm_mnt)) {
4062		error = PTR_ERR(shm_mnt);
4063		pr_err("Could not kern_mount tmpfs\n");
4064		goto out1;
4065	}
4066
4067#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4068	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4069		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4070	else
4071		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4072#endif
4073	return;
4074
4075out1:
4076	unregister_filesystem(&shmem_fs_type);
4077out2:
4078	shmem_destroy_inodecache();
 
4079	shm_mnt = ERR_PTR(error);
 
4080}
4081
4082#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4083static ssize_t shmem_enabled_show(struct kobject *kobj,
4084				  struct kobj_attribute *attr, char *buf)
4085{
4086	static const int values[] = {
4087		SHMEM_HUGE_ALWAYS,
4088		SHMEM_HUGE_WITHIN_SIZE,
4089		SHMEM_HUGE_ADVISE,
4090		SHMEM_HUGE_NEVER,
4091		SHMEM_HUGE_DENY,
4092		SHMEM_HUGE_FORCE,
4093	};
4094	int len = 0;
4095	int i;
4096
4097	for (i = 0; i < ARRAY_SIZE(values); i++) {
4098		len += sysfs_emit_at(buf, len,
4099				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4100				     i ? " " : "",
4101				     shmem_format_huge(values[i]));
4102	}
4103
4104	len += sysfs_emit_at(buf, len, "\n");
4105
4106	return len;
4107}
4108
4109static ssize_t shmem_enabled_store(struct kobject *kobj,
4110		struct kobj_attribute *attr, const char *buf, size_t count)
4111{
4112	char tmp[16];
4113	int huge;
4114
4115	if (count + 1 > sizeof(tmp))
4116		return -EINVAL;
4117	memcpy(tmp, buf, count);
4118	tmp[count] = '\0';
4119	if (count && tmp[count - 1] == '\n')
4120		tmp[count - 1] = '\0';
4121
4122	huge = shmem_parse_huge(tmp);
4123	if (huge == -EINVAL)
4124		return -EINVAL;
4125	if (!has_transparent_hugepage() &&
4126			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4127		return -EINVAL;
4128
4129	shmem_huge = huge;
4130	if (shmem_huge > SHMEM_HUGE_DENY)
4131		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4132	return count;
4133}
4134
4135struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4136#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4137
4138#else /* !CONFIG_SHMEM */
4139
4140/*
4141 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4142 *
4143 * This is intended for small system where the benefits of the full
4144 * shmem code (swap-backed and resource-limited) are outweighed by
4145 * their complexity. On systems without swap this code should be
4146 * effectively equivalent, but much lighter weight.
4147 */
4148
4149static struct file_system_type shmem_fs_type = {
4150	.name		= "tmpfs",
4151	.init_fs_context = ramfs_init_fs_context,
4152	.parameters	= ramfs_fs_parameters,
4153	.kill_sb	= kill_litter_super,
4154	.fs_flags	= FS_USERNS_MOUNT,
4155};
4156
4157void __init shmem_init(void)
4158{
4159	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4160
4161	shm_mnt = kern_mount(&shmem_fs_type);
4162	BUG_ON(IS_ERR(shm_mnt));
4163}
4164
4165int shmem_unuse(unsigned int type)
4166{
4167	return 0;
4168}
4169
4170int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4171{
4172	return 0;
4173}
4174
4175void shmem_unlock_mapping(struct address_space *mapping)
4176{
 
4177}
4178
4179#ifdef CONFIG_MMU
4180unsigned long shmem_get_unmapped_area(struct file *file,
4181				      unsigned long addr, unsigned long len,
4182				      unsigned long pgoff, unsigned long flags)
4183{
4184	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4185}
4186#endif
4187
4188void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4189{
4190	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4191}
4192EXPORT_SYMBOL_GPL(shmem_truncate_range);
4193
4194#define shmem_vm_ops				generic_file_vm_ops
4195#define shmem_anon_vm_ops			generic_file_vm_ops
4196#define shmem_file_operations			ramfs_file_operations
4197#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4198#define shmem_acct_size(flags, size)		0
4199#define shmem_unacct_size(flags, size)		do {} while (0)
4200
4201#endif /* CONFIG_SHMEM */
4202
4203/* common code */
4204
4205static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
 
 
 
 
4206				       unsigned long flags, unsigned int i_flags)
4207{
4208	struct inode *inode;
4209	struct file *res;
 
 
 
 
4210
4211	if (IS_ERR(mnt))
4212		return ERR_CAST(mnt);
4213
4214	if (size < 0 || size > MAX_LFS_FILESIZE)
4215		return ERR_PTR(-EINVAL);
4216
4217	if (shmem_acct_size(flags, size))
4218		return ERR_PTR(-ENOMEM);
4219
4220	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4221				flags);
4222	if (unlikely(!inode)) {
4223		shmem_unacct_size(flags, size);
4224		return ERR_PTR(-ENOSPC);
4225	}
 
 
 
 
 
 
 
 
 
 
4226	inode->i_flags |= i_flags;
 
4227	inode->i_size = size;
4228	clear_nlink(inode);	/* It is unlinked */
4229	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4230	if (!IS_ERR(res))
4231		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4232				&shmem_file_operations);
4233	if (IS_ERR(res))
4234		iput(inode);
 
 
 
 
 
 
 
 
 
 
 
 
4235	return res;
4236}
4237
4238/**
4239 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4240 * 	kernel internal.  There will be NO LSM permission checks against the
4241 * 	underlying inode.  So users of this interface must do LSM checks at a
4242 *	higher layer.  The users are the big_key and shm implementations.  LSM
4243 *	checks are provided at the key or shm level rather than the inode.
4244 * @name: name for dentry (to be seen in /proc/<pid>/maps
4245 * @size: size to be set for the file
4246 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4247 */
4248struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4249{
4250	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4251}
4252
4253/**
4254 * shmem_file_setup - get an unlinked file living in tmpfs
4255 * @name: name for dentry (to be seen in /proc/<pid>/maps
4256 * @size: size to be set for the file
4257 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4258 */
4259struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4260{
4261	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4262}
4263EXPORT_SYMBOL_GPL(shmem_file_setup);
4264
4265/**
4266 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4267 * @mnt: the tmpfs mount where the file will be created
4268 * @name: name for dentry (to be seen in /proc/<pid>/maps
4269 * @size: size to be set for the file
4270 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4271 */
4272struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4273				       loff_t size, unsigned long flags)
4274{
4275	return __shmem_file_setup(mnt, name, size, flags, 0);
4276}
4277EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4278
4279/**
4280 * shmem_zero_setup - setup a shared anonymous mapping
4281 * @vma: the vma to be mmapped is prepared by do_mmap
4282 */
4283int shmem_zero_setup(struct vm_area_struct *vma)
4284{
4285	struct file *file;
4286	loff_t size = vma->vm_end - vma->vm_start;
4287
4288	/*
4289	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4290	 * between XFS directory reading and selinux: since this file is only
4291	 * accessible to the user through its mapping, use S_PRIVATE flag to
4292	 * bypass file security, in the same way as shmem_kernel_file_setup().
4293	 */
4294	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4295	if (IS_ERR(file))
4296		return PTR_ERR(file);
4297
4298	if (vma->vm_file)
4299		fput(vma->vm_file);
4300	vma->vm_file = file;
4301	vma->vm_ops = &shmem_anon_vm_ops;
4302
4303	return 0;
4304}
4305
4306/**
4307 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4308 * @mapping:	the page's address_space
4309 * @index:	the page index
4310 * @gfp:	the page allocator flags to use if allocating
4311 *
4312 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4313 * with any new page allocations done using the specified allocation flags.
4314 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4315 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4316 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4317 *
4318 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4319 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4320 */
4321struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4322					 pgoff_t index, gfp_t gfp)
4323{
4324#ifdef CONFIG_SHMEM
4325	struct inode *inode = mapping->host;
4326	struct folio *folio;
4327	struct page *page;
4328	int error;
4329
4330	BUG_ON(!shmem_mapping(mapping));
4331	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4332				  gfp, NULL, NULL, NULL);
4333	if (error)
4334		return ERR_PTR(error);
4335
4336	folio_unlock(folio);
4337	page = folio_file_page(folio, index);
4338	if (PageHWPoison(page)) {
4339		folio_put(folio);
4340		return ERR_PTR(-EIO);
4341	}
4342
4343	return page;
4344#else
4345	/*
4346	 * The tiny !SHMEM case uses ramfs without swap
4347	 */
4348	return read_cache_page_gfp(mapping, index, gfp);
4349#endif
4350}
4351EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
v4.6
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *		 2000 Transmeta Corp.
   6 *		 2000-2001 Christoph Rohland
   7 *		 2000-2001 SAP AG
   8 *		 2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
 
  31#include <linux/mm.h>
 
 
  32#include <linux/export.h>
  33#include <linux/swap.h>
  34#include <linux/uio.h>
 
 
 
 
 
  35
  36static struct vfsmount *shm_mnt;
  37
  38#ifdef CONFIG_SHMEM
  39/*
  40 * This virtual memory filesystem is heavily based on the ramfs. It
  41 * extends ramfs by the ability to use swap and honor resource limits
  42 * which makes it a completely usable filesystem.
  43 */
  44
  45#include <linux/xattr.h>
  46#include <linux/exportfs.h>
  47#include <linux/posix_acl.h>
  48#include <linux/posix_acl_xattr.h>
  49#include <linux/mman.h>
  50#include <linux/string.h>
  51#include <linux/slab.h>
  52#include <linux/backing-dev.h>
  53#include <linux/shmem_fs.h>
  54#include <linux/writeback.h>
  55#include <linux/blkdev.h>
  56#include <linux/pagevec.h>
  57#include <linux/percpu_counter.h>
  58#include <linux/falloc.h>
  59#include <linux/splice.h>
  60#include <linux/security.h>
  61#include <linux/swapops.h>
  62#include <linux/mempolicy.h>
  63#include <linux/namei.h>
  64#include <linux/ctype.h>
  65#include <linux/migrate.h>
  66#include <linux/highmem.h>
  67#include <linux/seq_file.h>
  68#include <linux/magic.h>
  69#include <linux/syscalls.h>
  70#include <linux/fcntl.h>
  71#include <uapi/linux/memfd.h>
 
 
 
  72
  73#include <asm/uaccess.h>
  74#include <asm/pgtable.h>
  75
  76#include "internal.h"
  77
  78#define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
  79#define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
  80
  81/* Pretend that each entry is of this size in directory's i_size */
  82#define BOGO_DIRENT_SIZE 20
  83
  84/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  85#define SHORT_SYMLINK_LEN 128
  86
  87/*
  88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
  89 * inode->i_private (with i_mutex making sure that it has only one user at
  90 * a time): we would prefer not to enlarge the shmem inode just for that.
  91 */
  92struct shmem_falloc {
  93	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
  94	pgoff_t start;		/* start of range currently being fallocated */
  95	pgoff_t next;		/* the next page offset to be fallocated */
  96	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
  97	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
  98};
  99
 100/* Flag allocation requirements to shmem_getpage */
 101enum sgp_type {
 102	SGP_READ,	/* don't exceed i_size, don't allocate page */
 103	SGP_CACHE,	/* don't exceed i_size, may allocate page */
 104	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
 105	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
 106	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
 
 
 
 
 
 
 
 107};
 108
 109#ifdef CONFIG_TMPFS
 110static unsigned long shmem_default_max_blocks(void)
 111{
 112	return totalram_pages / 2;
 113}
 114
 115static unsigned long shmem_default_max_inodes(void)
 116{
 117	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
 
 
 118}
 119#endif
 120
 121static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
 122static int shmem_replace_page(struct page **pagep, gfp_t gfp,
 123				struct shmem_inode_info *info, pgoff_t index);
 124static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 125	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
 126
 127static inline int shmem_getpage(struct inode *inode, pgoff_t index,
 128	struct page **pagep, enum sgp_type sgp, int *fault_type)
 129{
 130	return shmem_getpage_gfp(inode, index, pagep, sgp,
 131			mapping_gfp_mask(inode->i_mapping), fault_type);
 132}
 133
 134static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 135{
 136	return sb->s_fs_info;
 137}
 138
 139/*
 140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 141 * for shared memory and for shared anonymous (/dev/zero) mappings
 142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 143 * consistent with the pre-accounting of private mappings ...
 144 */
 145static inline int shmem_acct_size(unsigned long flags, loff_t size)
 146{
 147	return (flags & VM_NORESERVE) ?
 148		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 149}
 150
 151static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 152{
 153	if (!(flags & VM_NORESERVE))
 154		vm_unacct_memory(VM_ACCT(size));
 155}
 156
 157static inline int shmem_reacct_size(unsigned long flags,
 158		loff_t oldsize, loff_t newsize)
 159{
 160	if (!(flags & VM_NORESERVE)) {
 161		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
 162			return security_vm_enough_memory_mm(current->mm,
 163					VM_ACCT(newsize) - VM_ACCT(oldsize));
 164		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
 165			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
 166	}
 167	return 0;
 168}
 169
 170/*
 171 * ... whereas tmpfs objects are accounted incrementally as
 172 * pages are allocated, in order to allow huge sparse files.
 173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 175 */
 176static inline int shmem_acct_block(unsigned long flags)
 177{
 178	return (flags & VM_NORESERVE) ?
 179		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_SIZE)) : 0;
 
 
 
 180}
 181
 182static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 183{
 184	if (flags & VM_NORESERVE)
 185		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
 186}
 187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188static const struct super_operations shmem_ops;
 189static const struct address_space_operations shmem_aops;
 190static const struct file_operations shmem_file_operations;
 191static const struct inode_operations shmem_inode_operations;
 192static const struct inode_operations shmem_dir_inode_operations;
 193static const struct inode_operations shmem_special_inode_operations;
 194static const struct vm_operations_struct shmem_vm_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 195
 196static LIST_HEAD(shmem_swaplist);
 197static DEFINE_MUTEX(shmem_swaplist_mutex);
 198
 199static int shmem_reserve_inode(struct super_block *sb)
 
 
 
 
 
 
 
 
 
 
 200{
 201	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 202	if (sbinfo->max_inodes) {
 203		spin_lock(&sbinfo->stat_lock);
 204		if (!sbinfo->free_inodes) {
 205			spin_unlock(&sbinfo->stat_lock);
 206			return -ENOSPC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207		}
 208		sbinfo->free_inodes--;
 209		spin_unlock(&sbinfo->stat_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 210	}
 
 211	return 0;
 212}
 213
 214static void shmem_free_inode(struct super_block *sb)
 215{
 216	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 217	if (sbinfo->max_inodes) {
 218		spin_lock(&sbinfo->stat_lock);
 219		sbinfo->free_inodes++;
 220		spin_unlock(&sbinfo->stat_lock);
 221	}
 222}
 223
 224/**
 225 * shmem_recalc_inode - recalculate the block usage of an inode
 226 * @inode: inode to recalc
 227 *
 228 * We have to calculate the free blocks since the mm can drop
 229 * undirtied hole pages behind our back.
 230 *
 231 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 233 *
 234 * It has to be called with the spinlock held.
 235 */
 236static void shmem_recalc_inode(struct inode *inode)
 237{
 238	struct shmem_inode_info *info = SHMEM_I(inode);
 239	long freed;
 240
 241	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 242	if (freed > 0) {
 243		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 244		if (sbinfo->max_blocks)
 245			percpu_counter_add(&sbinfo->used_blocks, -freed);
 246		info->alloced -= freed;
 247		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 248		shmem_unacct_blocks(info->flags, freed);
 249	}
 250}
 251
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 252/*
 253 * Replace item expected in radix tree by a new item, while holding tree lock.
 254 */
 255static int shmem_radix_tree_replace(struct address_space *mapping,
 256			pgoff_t index, void *expected, void *replacement)
 257{
 258	void **pslot;
 259	void *item;
 260
 261	VM_BUG_ON(!expected);
 262	VM_BUG_ON(!replacement);
 263	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
 264	if (!pslot)
 265		return -ENOENT;
 266	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
 267	if (item != expected)
 268		return -ENOENT;
 269	radix_tree_replace_slot(pslot, replacement);
 270	return 0;
 271}
 272
 273/*
 274 * Sometimes, before we decide whether to proceed or to fail, we must check
 275 * that an entry was not already brought back from swap by a racing thread.
 276 *
 277 * Checking page is not enough: by the time a SwapCache page is locked, it
 278 * might be reused, and again be SwapCache, using the same swap as before.
 279 */
 280static bool shmem_confirm_swap(struct address_space *mapping,
 281			       pgoff_t index, swp_entry_t swap)
 282{
 283	void *item;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284
 285	rcu_read_lock();
 286	item = radix_tree_lookup(&mapping->page_tree, index);
 287	rcu_read_unlock();
 288	return item == swp_to_radix_entry(swap);
 289}
 
 290
 291/*
 292 * Like add_to_page_cache_locked, but error if expected item has gone.
 293 */
 294static int shmem_add_to_page_cache(struct page *page,
 295				   struct address_space *mapping,
 296				   pgoff_t index, void *expected)
 
 297{
 
 
 298	int error;
 299
 300	VM_BUG_ON_PAGE(!PageLocked(page), page);
 301	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 302
 303	get_page(page);
 304	page->mapping = mapping;
 305	page->index = index;
 306
 307	spin_lock_irq(&mapping->tree_lock);
 308	if (!expected)
 309		error = radix_tree_insert(&mapping->page_tree, index, page);
 310	else
 311		error = shmem_radix_tree_replace(mapping, index, expected,
 312								 page);
 313	if (!error) {
 314		mapping->nrpages++;
 315		__inc_zone_page_state(page, NR_FILE_PAGES);
 316		__inc_zone_page_state(page, NR_SHMEM);
 317		spin_unlock_irq(&mapping->tree_lock);
 318	} else {
 319		page->mapping = NULL;
 320		spin_unlock_irq(&mapping->tree_lock);
 321		put_page(page);
 322	}
 
 
 
 
 
 323	return error;
 324}
 325
 326/*
 327 * Like delete_from_page_cache, but substitutes swap for page.
 328 */
 329static void shmem_delete_from_page_cache(struct page *page, void *radswap)
 330{
 331	struct address_space *mapping = page->mapping;
 
 332	int error;
 333
 334	spin_lock_irq(&mapping->tree_lock);
 335	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
 336	page->mapping = NULL;
 337	mapping->nrpages--;
 338	__dec_zone_page_state(page, NR_FILE_PAGES);
 339	__dec_zone_page_state(page, NR_SHMEM);
 340	spin_unlock_irq(&mapping->tree_lock);
 341	put_page(page);
 342	BUG_ON(error);
 343}
 344
 345/*
 346 * Remove swap entry from radix tree, free the swap and its page cache.
 347 */
 348static int shmem_free_swap(struct address_space *mapping,
 349			   pgoff_t index, void *radswap)
 350{
 351	void *old;
 352
 353	spin_lock_irq(&mapping->tree_lock);
 354	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
 355	spin_unlock_irq(&mapping->tree_lock);
 356	if (old != radswap)
 357		return -ENOENT;
 358	free_swap_and_cache(radix_to_swp_entry(radswap));
 359	return 0;
 360}
 361
 362/*
 363 * Determine (in bytes) how many of the shmem object's pages mapped by the
 364 * given offsets are swapped out.
 365 *
 366 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
 367 * as long as the inode doesn't go away and racy results are not a problem.
 368 */
 369unsigned long shmem_partial_swap_usage(struct address_space *mapping,
 370						pgoff_t start, pgoff_t end)
 371{
 372	struct radix_tree_iter iter;
 373	void **slot;
 374	struct page *page;
 375	unsigned long swapped = 0;
 376
 377	rcu_read_lock();
 378
 379	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
 380		if (iter.index >= end)
 381			break;
 382
 383		page = radix_tree_deref_slot(slot);
 384
 385		if (radix_tree_deref_retry(page)) {
 386			slot = radix_tree_iter_retry(&iter);
 387			continue;
 388		}
 389
 390		if (radix_tree_exceptional_entry(page))
 391			swapped++;
 392
 393		if (need_resched()) {
 
 394			cond_resched_rcu();
 395			slot = radix_tree_iter_next(&iter);
 396		}
 397	}
 398
 399	rcu_read_unlock();
 400
 401	return swapped << PAGE_SHIFT;
 402}
 403
 404/*
 405 * Determine (in bytes) how many of the shmem object's pages mapped by the
 406 * given vma is swapped out.
 407 *
 408 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
 409 * as long as the inode doesn't go away and racy results are not a problem.
 410 */
 411unsigned long shmem_swap_usage(struct vm_area_struct *vma)
 412{
 413	struct inode *inode = file_inode(vma->vm_file);
 414	struct shmem_inode_info *info = SHMEM_I(inode);
 415	struct address_space *mapping = inode->i_mapping;
 416	unsigned long swapped;
 417
 418	/* Be careful as we don't hold info->lock */
 419	swapped = READ_ONCE(info->swapped);
 420
 421	/*
 422	 * The easier cases are when the shmem object has nothing in swap, or
 423	 * the vma maps it whole. Then we can simply use the stats that we
 424	 * already track.
 425	 */
 426	if (!swapped)
 427		return 0;
 428
 429	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
 430		return swapped << PAGE_SHIFT;
 431
 432	/* Here comes the more involved part */
 433	return shmem_partial_swap_usage(mapping,
 434			linear_page_index(vma, vma->vm_start),
 435			linear_page_index(vma, vma->vm_end));
 436}
 437
 438/*
 439 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 440 */
 441void shmem_unlock_mapping(struct address_space *mapping)
 442{
 443	struct pagevec pvec;
 444	pgoff_t indices[PAGEVEC_SIZE];
 445	pgoff_t index = 0;
 446
 447	pagevec_init(&pvec, 0);
 448	/*
 449	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 450	 */
 451	while (!mapping_unevictable(mapping)) {
 452		/*
 453		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
 454		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
 455		 */
 456		pvec.nr = find_get_entries(mapping, index,
 457					   PAGEVEC_SIZE, pvec.pages, indices);
 458		if (!pvec.nr)
 459			break;
 460		index = indices[pvec.nr - 1] + 1;
 461		pagevec_remove_exceptionals(&pvec);
 462		check_move_unevictable_pages(pvec.pages, pvec.nr);
 463		pagevec_release(&pvec);
 464		cond_resched();
 465	}
 466}
 467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 468/*
 469 * Remove range of pages and swap entries from radix tree, and free them.
 470 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 471 */
 472static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 473								 bool unfalloc)
 474{
 475	struct address_space *mapping = inode->i_mapping;
 476	struct shmem_inode_info *info = SHMEM_I(inode);
 477	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 478	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
 479	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
 480	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
 481	struct pagevec pvec;
 482	pgoff_t indices[PAGEVEC_SIZE];
 
 
 483	long nr_swaps_freed = 0;
 484	pgoff_t index;
 485	int i;
 486
 487	if (lend == -1)
 488		end = -1;	/* unsigned, so actually very big */
 489
 490	pagevec_init(&pvec, 0);
 
 
 
 491	index = start;
 492	while (index < end) {
 493		pvec.nr = find_get_entries(mapping, index,
 494			min(end - index, (pgoff_t)PAGEVEC_SIZE),
 495			pvec.pages, indices);
 496		if (!pvec.nr)
 497			break;
 498		for (i = 0; i < pagevec_count(&pvec); i++) {
 499			struct page *page = pvec.pages[i];
 500
 501			index = indices[i];
 502			if (index >= end)
 503				break;
 504
 505			if (radix_tree_exceptional_entry(page)) {
 506				if (unfalloc)
 507					continue;
 508				nr_swaps_freed += !shmem_free_swap(mapping,
 509								index, page);
 510				continue;
 511			}
 512
 513			if (!trylock_page(page))
 514				continue;
 515			if (!unfalloc || !PageUptodate(page)) {
 516				if (page->mapping == mapping) {
 517					VM_BUG_ON_PAGE(PageWriteback(page), page);
 518					truncate_inode_page(mapping, page);
 519				}
 520			}
 521			unlock_page(page);
 522		}
 523		pagevec_remove_exceptionals(&pvec);
 524		pagevec_release(&pvec);
 525		cond_resched();
 526		index++;
 527	}
 528
 529	if (partial_start) {
 530		struct page *page = NULL;
 531		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
 532		if (page) {
 533			unsigned int top = PAGE_SIZE;
 534			if (start > end) {
 535				top = partial_end;
 536				partial_end = 0;
 537			}
 538			zero_user_segment(page, partial_start, top);
 539			set_page_dirty(page);
 540			unlock_page(page);
 541			put_page(page);
 542		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 543	}
 544	if (partial_end) {
 545		struct page *page = NULL;
 546		shmem_getpage(inode, end, &page, SGP_READ, NULL);
 547		if (page) {
 548			zero_user_segment(page, 0, partial_end);
 549			set_page_dirty(page);
 550			unlock_page(page);
 551			put_page(page);
 552		}
 553	}
 554	if (start >= end)
 555		return;
 556
 557	index = start;
 558	while (index < end) {
 559		cond_resched();
 560
 561		pvec.nr = find_get_entries(mapping, index,
 562				min(end - index, (pgoff_t)PAGEVEC_SIZE),
 563				pvec.pages, indices);
 564		if (!pvec.nr) {
 565			/* If all gone or hole-punch or unfalloc, we're done */
 566			if (index == start || end != -1)
 567				break;
 568			/* But if truncating, restart to make sure all gone */
 569			index = start;
 570			continue;
 571		}
 572		for (i = 0; i < pagevec_count(&pvec); i++) {
 573			struct page *page = pvec.pages[i];
 574
 575			index = indices[i];
 576			if (index >= end)
 577				break;
 578
 579			if (radix_tree_exceptional_entry(page)) {
 580				if (unfalloc)
 581					continue;
 582				if (shmem_free_swap(mapping, index, page)) {
 583					/* Swap was replaced by page: retry */
 584					index--;
 585					break;
 586				}
 587				nr_swaps_freed++;
 588				continue;
 589			}
 590
 591			lock_page(page);
 592			if (!unfalloc || !PageUptodate(page)) {
 593				if (page->mapping == mapping) {
 594					VM_BUG_ON_PAGE(PageWriteback(page), page);
 595					truncate_inode_page(mapping, page);
 596				} else {
 597					/* Page was replaced by swap: retry */
 598					unlock_page(page);
 599					index--;
 600					break;
 601				}
 
 
 
 602			}
 603			unlock_page(page);
 604		}
 605		pagevec_remove_exceptionals(&pvec);
 606		pagevec_release(&pvec);
 607		index++;
 608	}
 609
 610	spin_lock(&info->lock);
 611	info->swapped -= nr_swaps_freed;
 612	shmem_recalc_inode(inode);
 613	spin_unlock(&info->lock);
 614}
 615
 616void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
 617{
 618	shmem_undo_range(inode, lstart, lend, false);
 619	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 
 620}
 621EXPORT_SYMBOL_GPL(shmem_truncate_range);
 622
 623static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
 624			 struct kstat *stat)
 
 625{
 626	struct inode *inode = dentry->d_inode;
 627	struct shmem_inode_info *info = SHMEM_I(inode);
 628
 629	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
 630		spin_lock(&info->lock);
 631		shmem_recalc_inode(inode);
 632		spin_unlock(&info->lock);
 633	}
 634	generic_fillattr(inode, stat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 635	return 0;
 636}
 637
 638static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
 
 639{
 640	struct inode *inode = d_inode(dentry);
 641	struct shmem_inode_info *info = SHMEM_I(inode);
 642	int error;
 
 
 643
 644	error = inode_change_ok(inode, attr);
 645	if (error)
 646		return error;
 647
 648	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
 649		loff_t oldsize = inode->i_size;
 650		loff_t newsize = attr->ia_size;
 651
 652		/* protected by i_mutex */
 653		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
 654		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
 655			return -EPERM;
 656
 657		if (newsize != oldsize) {
 658			error = shmem_reacct_size(SHMEM_I(inode)->flags,
 659					oldsize, newsize);
 660			if (error)
 661				return error;
 662			i_size_write(inode, newsize);
 663			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 
 
 664		}
 665		if (newsize <= oldsize) {
 666			loff_t holebegin = round_up(newsize, PAGE_SIZE);
 667			if (oldsize > holebegin)
 668				unmap_mapping_range(inode->i_mapping,
 669							holebegin, 0, 1);
 670			if (info->alloced)
 671				shmem_truncate_range(inode,
 672							newsize, (loff_t)-1);
 673			/* unmap again to remove racily COWed private pages */
 674			if (oldsize > holebegin)
 675				unmap_mapping_range(inode->i_mapping,
 676							holebegin, 0, 1);
 677		}
 678	}
 679
 680	setattr_copy(inode, attr);
 681	if (attr->ia_valid & ATTR_MODE)
 682		error = posix_acl_chmod(inode, inode->i_mode);
 
 
 
 
 
 
 683	return error;
 684}
 685
 686static void shmem_evict_inode(struct inode *inode)
 687{
 688	struct shmem_inode_info *info = SHMEM_I(inode);
 
 689
 690	if (inode->i_mapping->a_ops == &shmem_aops) {
 691		shmem_unacct_size(info->flags, inode->i_size);
 692		inode->i_size = 0;
 
 693		shmem_truncate_range(inode, 0, (loff_t)-1);
 694		if (!list_empty(&info->swaplist)) {
 
 
 
 
 
 
 
 
 
 
 
 695			mutex_lock(&shmem_swaplist_mutex);
 696			list_del_init(&info->swaplist);
 
 
 697			mutex_unlock(&shmem_swaplist_mutex);
 698		}
 699	}
 700
 701	simple_xattrs_free(&info->xattrs);
 702	WARN_ON(inode->i_blocks);
 703	shmem_free_inode(inode->i_sb);
 704	clear_inode(inode);
 705}
 706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707/*
 708 * If swap found in inode, free it and move page from swapcache to filecache.
 
 709 */
 710static int shmem_unuse_inode(struct shmem_inode_info *info,
 711			     swp_entry_t swap, struct page **pagep)
 712{
 713	struct address_space *mapping = info->vfs_inode.i_mapping;
 714	void *radswap;
 715	pgoff_t index;
 716	gfp_t gfp;
 717	int error = 0;
 
 718
 719	radswap = swp_to_radix_entry(swap);
 720	index = radix_tree_locate_item(&mapping->page_tree, radswap);
 721	if (index == -1)
 722		return -EAGAIN;	/* tell shmem_unuse we found nothing */
 723
 724	/*
 725	 * Move _head_ to start search for next from here.
 726	 * But be careful: shmem_evict_inode checks list_empty without taking
 727	 * mutex, and there's an instant in list_move_tail when info->swaplist
 728	 * would appear empty, if it were the only one on shmem_swaplist.
 729	 */
 730	if (shmem_swaplist.next != &info->swaplist)
 731		list_move_tail(&shmem_swaplist, &info->swaplist);
 732
 733	gfp = mapping_gfp_mask(mapping);
 734	if (shmem_should_replace_page(*pagep, gfp)) {
 735		mutex_unlock(&shmem_swaplist_mutex);
 736		error = shmem_replace_page(pagep, gfp, info, index);
 737		mutex_lock(&shmem_swaplist_mutex);
 738		/*
 739		 * We needed to drop mutex to make that restrictive page
 740		 * allocation, but the inode might have been freed while we
 741		 * dropped it: although a racing shmem_evict_inode() cannot
 742		 * complete without emptying the radix_tree, our page lock
 743		 * on this swapcache page is not enough to prevent that -
 744		 * free_swap_and_cache() of our swap entry will only
 745		 * trylock_page(), removing swap from radix_tree whatever.
 746		 *
 747		 * We must not proceed to shmem_add_to_page_cache() if the
 748		 * inode has been freed, but of course we cannot rely on
 749		 * inode or mapping or info to check that.  However, we can
 750		 * safely check if our swap entry is still in use (and here
 751		 * it can't have got reused for another page): if it's still
 752		 * in use, then the inode cannot have been freed yet, and we
 753		 * can safely proceed (if it's no longer in use, that tells
 754		 * nothing about the inode, but we don't need to unuse swap).
 755		 */
 756		if (!page_swapcount(*pagep))
 757			error = -ENOENT;
 758	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 759
 760	/*
 761	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
 762	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
 763	 * beneath us (pagelock doesn't help until the page is in pagecache).
 764	 */
 765	if (!error)
 766		error = shmem_add_to_page_cache(*pagep, mapping, index,
 767						radswap);
 768	if (error != -ENOMEM) {
 769		/*
 770		 * Truncation and eviction use free_swap_and_cache(), which
 771		 * only does trylock page: if we raced, best clean up here.
 772		 */
 773		delete_from_swap_cache(*pagep);
 774		set_page_dirty(*pagep);
 775		if (!error) {
 776			spin_lock(&info->lock);
 777			info->swapped--;
 778			spin_unlock(&info->lock);
 779			swap_free(swap);
 780		}
 781	}
 782	return error;
 
 
 
 
 
 
 
 783}
 784
 785/*
 786 * Search through swapped inodes to find and replace swap by page.
 
 
 787 */
 788int shmem_unuse(swp_entry_t swap, struct page *page)
 789{
 790	struct list_head *this, *next;
 791	struct shmem_inode_info *info;
 792	struct mem_cgroup *memcg;
 793	int error = 0;
 794
 795	/*
 796	 * There's a faint possibility that swap page was replaced before
 797	 * caller locked it: caller will come back later with the right page.
 798	 */
 799	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
 800		goto out;
 801
 802	/*
 803	 * Charge page using GFP_KERNEL while we can wait, before taking
 804	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
 805	 * Charged back to the user (not to caller) when swap account is used.
 806	 */
 807	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
 808			false);
 809	if (error)
 810		goto out;
 811	/* No radix_tree_preload: swap entry keeps a place for page in tree */
 812	error = -EAGAIN;
 813
 814	mutex_lock(&shmem_swaplist_mutex);
 815	list_for_each_safe(this, next, &shmem_swaplist) {
 816		info = list_entry(this, struct shmem_inode_info, swaplist);
 817		if (info->swapped)
 818			error = shmem_unuse_inode(info, swap, &page);
 819		else
 820			list_del_init(&info->swaplist);
 
 
 
 
 
 
 
 
 
 
 
 
 821		cond_resched();
 822		if (error != -EAGAIN)
 
 
 
 
 
 
 
 823			break;
 824		/* found nothing in this: move on to search the next */
 825	}
 826	mutex_unlock(&shmem_swaplist_mutex);
 827
 828	if (error) {
 829		if (error != -ENOMEM)
 830			error = 0;
 831		mem_cgroup_cancel_charge(page, memcg, false);
 832	} else
 833		mem_cgroup_commit_charge(page, memcg, true, false);
 834out:
 835	unlock_page(page);
 836	put_page(page);
 837	return error;
 838}
 839
 840/*
 841 * Move the page from the page cache to the swap cache.
 842 */
 843static int shmem_writepage(struct page *page, struct writeback_control *wbc)
 844{
 
 845	struct shmem_inode_info *info;
 846	struct address_space *mapping;
 847	struct inode *inode;
 848	swp_entry_t swap;
 849	pgoff_t index;
 850
 851	BUG_ON(!PageLocked(page));
 852	mapping = page->mapping;
 853	index = page->index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 854	inode = mapping->host;
 855	info = SHMEM_I(inode);
 856	if (info->flags & VM_LOCKED)
 857		goto redirty;
 858	if (!total_swap_pages)
 859		goto redirty;
 860
 861	/*
 862	 * Our capabilities prevent regular writeback or sync from ever calling
 863	 * shmem_writepage; but a stacking filesystem might use ->writepage of
 864	 * its underlying filesystem, in which case tmpfs should write out to
 865	 * swap only in response to memory pressure, and not for the writeback
 866	 * threads or sync.
 867	 */
 868	if (!wbc->for_reclaim) {
 869		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
 870		goto redirty;
 871	}
 872
 873	/*
 874	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
 875	 * value into swapfile.c, the only way we can correctly account for a
 876	 * fallocated page arriving here is now to initialize it and write it.
 877	 *
 878	 * That's okay for a page already fallocated earlier, but if we have
 879	 * not yet completed the fallocation, then (a) we want to keep track
 880	 * of this page in case we have to undo it, and (b) it may not be a
 881	 * good idea to continue anyway, once we're pushing into swap.  So
 882	 * reactivate the page, and let shmem_fallocate() quit when too many.
 883	 */
 884	if (!PageUptodate(page)) {
 885		if (inode->i_private) {
 886			struct shmem_falloc *shmem_falloc;
 887			spin_lock(&inode->i_lock);
 888			shmem_falloc = inode->i_private;
 889			if (shmem_falloc &&
 890			    !shmem_falloc->waitq &&
 891			    index >= shmem_falloc->start &&
 892			    index < shmem_falloc->next)
 893				shmem_falloc->nr_unswapped++;
 894			else
 895				shmem_falloc = NULL;
 896			spin_unlock(&inode->i_lock);
 897			if (shmem_falloc)
 898				goto redirty;
 899		}
 900		clear_highpage(page);
 901		flush_dcache_page(page);
 902		SetPageUptodate(page);
 903	}
 904
 905	swap = get_swap_page();
 906	if (!swap.val)
 907		goto redirty;
 908
 909	if (mem_cgroup_try_charge_swap(page, swap))
 910		goto free_swap;
 911
 912	/*
 913	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
 914	 * if it's not already there.  Do it now before the page is
 915	 * moved to swap cache, when its pagelock no longer protects
 916	 * the inode from eviction.  But don't unlock the mutex until
 917	 * we've incremented swapped, because shmem_unuse_inode() will
 918	 * prune a !swapped inode from the swaplist under this mutex.
 919	 */
 920	mutex_lock(&shmem_swaplist_mutex);
 921	if (list_empty(&info->swaplist))
 922		list_add_tail(&info->swaplist, &shmem_swaplist);
 923
 924	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
 925		spin_lock(&info->lock);
 
 
 926		shmem_recalc_inode(inode);
 927		info->swapped++;
 928		spin_unlock(&info->lock);
 929
 930		swap_shmem_alloc(swap);
 931		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
 932
 933		mutex_unlock(&shmem_swaplist_mutex);
 934		BUG_ON(page_mapped(page));
 935		swap_writepage(page, wbc);
 936		return 0;
 937	}
 938
 939	mutex_unlock(&shmem_swaplist_mutex);
 940free_swap:
 941	swapcache_free(swap);
 942redirty:
 943	set_page_dirty(page);
 944	if (wbc->for_reclaim)
 945		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
 946	unlock_page(page);
 947	return 0;
 948}
 949
 950#ifdef CONFIG_NUMA
 951#ifdef CONFIG_TMPFS
 952static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
 953{
 954	char buffer[64];
 955
 956	if (!mpol || mpol->mode == MPOL_DEFAULT)
 957		return;		/* show nothing */
 958
 959	mpol_to_str(buffer, sizeof(buffer), mpol);
 960
 961	seq_printf(seq, ",mpol=%s", buffer);
 962}
 963
 964static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
 965{
 966	struct mempolicy *mpol = NULL;
 967	if (sbinfo->mpol) {
 968		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
 969		mpol = sbinfo->mpol;
 970		mpol_get(mpol);
 971		spin_unlock(&sbinfo->stat_lock);
 972	}
 973	return mpol;
 974}
 975#endif /* CONFIG_TMPFS */
 
 
 
 
 
 
 
 
 
 
 
 976
 977static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
 978			struct shmem_inode_info *info, pgoff_t index)
 979{
 980	struct vm_area_struct pvma;
 981	struct page *page;
 982
 983	/* Create a pseudo vma that just contains the policy */
 984	pvma.vm_start = 0;
 985	/* Bias interleave by inode number to distribute better across nodes */
 986	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
 987	pvma.vm_ops = NULL;
 988	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
 989
 990	page = swapin_readahead(swap, gfp, &pvma, 0);
 991
 
 
 992	/* Drop reference taken by mpol_shared_policy_lookup() */
 993	mpol_cond_put(pvma.vm_policy);
 994
 995	return page;
 996}
 997
 998static struct page *shmem_alloc_page(gfp_t gfp,
 999			struct shmem_inode_info *info, pgoff_t index)
1000{
1001	struct vm_area_struct pvma;
1002	struct page *page;
 
 
 
 
 
 
 
1003
1004	/* Create a pseudo vma that just contains the policy */
1005	pvma.vm_start = 0;
1006	/* Bias interleave by inode number to distribute better across nodes */
1007	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1008	pvma.vm_ops = NULL;
1009	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
 
 
 
 
 
 
 
 
 
1010
1011	page = alloc_page_vma(gfp, &pvma, 0);
 
1012
1013	/* Drop reference taken by mpol_shared_policy_lookup() */
1014	mpol_cond_put(pvma.vm_policy);
 
 
 
 
1015
1016	return page;
1017}
1018#else /* !CONFIG_NUMA */
1019#ifdef CONFIG_TMPFS
1020static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1021{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1022}
1023#endif /* CONFIG_TMPFS */
1024
1025static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1026			struct shmem_inode_info *info, pgoff_t index)
1027{
1028	return swapin_readahead(swap, gfp, NULL, 0);
 
 
 
 
 
 
 
1029}
1030
1031static inline struct page *shmem_alloc_page(gfp_t gfp,
1032			struct shmem_inode_info *info, pgoff_t index)
1033{
1034	return alloc_page(gfp);
1035}
1036#endif /* CONFIG_NUMA */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1037
1038#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1039static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1040{
1041	return NULL;
1042}
1043#endif
1044
1045/*
1046 * When a page is moved from swapcache to shmem filecache (either by the
1047 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1048 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1049 * ignorance of the mapping it belongs to.  If that mapping has special
1050 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1051 * we may need to copy to a suitable page before moving to filecache.
1052 *
1053 * In a future release, this may well be extended to respect cpuset and
1054 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1055 * but for now it is a simple matter of zone.
1056 */
1057static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1058{
1059	return page_zonenum(page) > gfp_zone(gfp);
1060}
1061
1062static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1063				struct shmem_inode_info *info, pgoff_t index)
1064{
1065	struct page *oldpage, *newpage;
1066	struct address_space *swap_mapping;
 
1067	pgoff_t swap_index;
1068	int error;
1069
1070	oldpage = *pagep;
1071	swap_index = page_private(oldpage);
1072	swap_mapping = page_mapping(oldpage);
 
1073
1074	/*
1075	 * We have arrived here because our zones are constrained, so don't
1076	 * limit chance of success by further cpuset and node constraints.
1077	 */
1078	gfp &= ~GFP_CONSTRAINT_MASK;
1079	newpage = shmem_alloc_page(gfp, info, index);
1080	if (!newpage)
 
1081		return -ENOMEM;
1082
1083	get_page(newpage);
1084	copy_highpage(newpage, oldpage);
1085	flush_dcache_page(newpage);
1086
1087	__SetPageLocked(newpage);
1088	SetPageUptodate(newpage);
1089	SetPageSwapBacked(newpage);
1090	set_page_private(newpage, swap_index);
1091	SetPageSwapCache(newpage);
1092
1093	/*
1094	 * Our caller will very soon move newpage out of swapcache, but it's
1095	 * a nice clean interface for us to replace oldpage by newpage there.
1096	 */
1097	spin_lock_irq(&swap_mapping->tree_lock);
1098	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1099								   newpage);
1100	if (!error) {
1101		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1102		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
 
 
 
1103	}
1104	spin_unlock_irq(&swap_mapping->tree_lock);
1105
1106	if (unlikely(error)) {
1107		/*
1108		 * Is this possible?  I think not, now that our callers check
1109		 * both PageSwapCache and page_private after getting page lock;
1110		 * but be defensive.  Reverse old to newpage for clear and free.
1111		 */
1112		oldpage = newpage;
1113	} else {
1114		mem_cgroup_migrate(oldpage, newpage);
1115		lru_cache_add_anon(newpage);
1116		*pagep = newpage;
1117	}
1118
1119	ClearPageSwapCache(oldpage);
1120	set_page_private(oldpage, 0);
1121
1122	unlock_page(oldpage);
1123	put_page(oldpage);
1124	put_page(oldpage);
1125	return error;
1126}
1127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128/*
1129 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1130 *
1131 * If we allocate a new one we do not mark it dirty. That's up to the
1132 * vm. If we swap it in we mark it dirty since we also free the swap
1133 * entry since a page cannot live in both the swap and page cache
 
 
 
1134 */
1135static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1136	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
 
 
1137{
1138	struct address_space *mapping = inode->i_mapping;
1139	struct shmem_inode_info *info;
1140	struct shmem_sb_info *sbinfo;
1141	struct mem_cgroup *memcg;
1142	struct page *page;
1143	swp_entry_t swap;
 
1144	int error;
1145	int once = 0;
1146	int alloced = 0;
1147
1148	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1149		return -EFBIG;
1150repeat:
1151	swap.val = 0;
1152	page = find_lock_entry(mapping, index);
1153	if (radix_tree_exceptional_entry(page)) {
1154		swap = radix_to_swp_entry(page);
1155		page = NULL;
1156	}
1157
1158	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1159	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1160		error = -EINVAL;
1161		goto unlock;
 
 
 
 
 
 
 
1162	}
1163
1164	if (page && sgp == SGP_WRITE)
1165		mark_page_accessed(page);
 
 
 
 
 
 
 
1166
1167	/* fallocated page? */
1168	if (page && !PageUptodate(page)) {
 
 
 
 
1169		if (sgp != SGP_READ)
1170			goto clear;
1171		unlock_page(page);
1172		put_page(page);
1173		page = NULL;
1174	}
1175	if (page || (sgp == SGP_READ && !swap.val)) {
1176		*pagep = page;
 
 
 
 
 
1177		return 0;
1178	}
 
1179
1180	/*
1181	 * Fast cache lookup did not find it:
1182	 * bring it back from swap or allocate.
1183	 */
1184	info = SHMEM_I(inode);
1185	sbinfo = SHMEM_SB(inode->i_sb);
1186
1187	if (swap.val) {
1188		/* Look it up and read it in.. */
1189		page = lookup_swap_cache(swap);
1190		if (!page) {
1191			/* here we actually do the io */
1192			if (fault_type)
1193				*fault_type |= VM_FAULT_MAJOR;
1194			page = shmem_swapin(swap, gfp, info, index);
1195			if (!page) {
1196				error = -ENOMEM;
1197				goto failed;
1198			}
1199		}
1200
1201		/* We have to do this with page locked to prevent races */
1202		lock_page(page);
1203		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1204		    !shmem_confirm_swap(mapping, index, swap)) {
1205			error = -EEXIST;	/* try again */
 
 
 
 
 
 
 
 
1206			goto unlock;
1207		}
1208		if (!PageUptodate(page)) {
1209			error = -EIO;
1210			goto failed;
1211		}
1212		wait_on_page_writeback(page);
1213
1214		if (shmem_should_replace_page(page, gfp)) {
1215			error = shmem_replace_page(&page, gfp, info, index);
1216			if (error)
1217				goto failed;
 
1218		}
 
 
1219
1220		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1221				false);
1222		if (!error) {
1223			error = shmem_add_to_page_cache(page, mapping, index,
1224						swp_to_radix_entry(swap));
1225			/*
1226			 * We already confirmed swap under page lock, and make
1227			 * no memory allocation here, so usually no possibility
1228			 * of error; but free_swap_and_cache() only trylocks a
1229			 * page, so it is just possible that the entry has been
1230			 * truncated or holepunched since swap was confirmed.
1231			 * shmem_undo_range() will have done some of the
1232			 * unaccounting, now delete_from_swap_cache() will do
1233			 * the rest.
1234			 * Reset swap.val? No, leave it so "failed" goes back to
1235			 * "repeat": reading a hole and writing should succeed.
1236			 */
1237			if (error) {
1238				mem_cgroup_cancel_charge(page, memcg, false);
1239				delete_from_swap_cache(page);
1240			}
1241		}
1242		if (error)
1243			goto failed;
1244
1245		mem_cgroup_commit_charge(page, memcg, true, false);
 
1246
1247		spin_lock(&info->lock);
1248		info->swapped--;
1249		shmem_recalc_inode(inode);
1250		spin_unlock(&info->lock);
 
 
1251
1252		if (sgp == SGP_WRITE)
1253			mark_page_accessed(page);
1254
1255		delete_from_swap_cache(page);
1256		set_page_dirty(page);
1257		swap_free(swap);
1258
1259	} else {
1260		if (shmem_acct_block(info->flags)) {
1261			error = -ENOSPC;
1262			goto failed;
1263		}
1264		if (sbinfo->max_blocks) {
1265			if (percpu_counter_compare(&sbinfo->used_blocks,
1266						sbinfo->max_blocks) >= 0) {
1267				error = -ENOSPC;
1268				goto unacct;
1269			}
1270			percpu_counter_inc(&sbinfo->used_blocks);
1271		}
1272
1273		page = shmem_alloc_page(gfp, info, index);
1274		if (!page) {
1275			error = -ENOMEM;
1276			goto decused;
1277		}
1278
1279		__SetPageSwapBacked(page);
1280		__SetPageLocked(page);
1281		if (sgp == SGP_WRITE)
1282			__SetPageReferenced(page);
1283
1284		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1285				false);
1286		if (error)
1287			goto decused;
1288		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1289		if (!error) {
1290			error = shmem_add_to_page_cache(page, mapping, index,
1291							NULL);
1292			radix_tree_preload_end();
1293		}
1294		if (error) {
1295			mem_cgroup_cancel_charge(page, memcg, false);
1296			goto decused;
1297		}
1298		mem_cgroup_commit_charge(page, memcg, false, false);
1299		lru_cache_add_anon(page);
1300
1301		spin_lock(&info->lock);
1302		info->alloced++;
1303		inode->i_blocks += BLOCKS_PER_PAGE;
1304		shmem_recalc_inode(inode);
1305		spin_unlock(&info->lock);
1306		alloced = true;
1307
 
 
 
1308		/*
1309		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
 
1310		 */
1311		if (sgp == SGP_FALLOC)
1312			sgp = SGP_WRITE;
1313clear:
1314		/*
1315		 * Let SGP_WRITE caller clear ends if write does not fill page;
1316		 * but SGP_FALLOC on a page fallocated earlier must initialize
1317		 * it now, lest undo on failure cancel our earlier guarantee.
1318		 */
1319		if (sgp != SGP_WRITE) {
1320			clear_highpage(page);
1321			flush_dcache_page(page);
1322			SetPageUptodate(page);
1323		}
1324		if (sgp == SGP_DIRTY)
1325			set_page_dirty(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1326	}
1327
1328	/* Perhaps the file has been truncated since we checked */
1329	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1330	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1331		if (alloced) {
1332			ClearPageDirty(page);
1333			delete_from_page_cache(page);
1334			spin_lock(&info->lock);
1335			shmem_recalc_inode(inode);
1336			spin_unlock(&info->lock);
1337		}
1338		error = -EINVAL;
1339		goto unlock;
1340	}
1341	*pagep = page;
 
1342	return 0;
1343
1344	/*
1345	 * Error recovery.
1346	 */
1347decused:
1348	if (sbinfo->max_blocks)
1349		percpu_counter_add(&sbinfo->used_blocks, -1);
1350unacct:
1351	shmem_unacct_blocks(info->flags, 1);
1352failed:
1353	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1354		error = -EEXIST;
 
 
 
1355unlock:
1356	if (page) {
1357		unlock_page(page);
1358		put_page(page);
1359	}
1360	if (error == -ENOSPC && !once++) {
1361		info = SHMEM_I(inode);
1362		spin_lock(&info->lock);
1363		shmem_recalc_inode(inode);
1364		spin_unlock(&info->lock);
1365		goto repeat;
1366	}
1367	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1368		goto repeat;
1369	return error;
1370}
1371
1372static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1373{
 
1374	struct inode *inode = file_inode(vma->vm_file);
1375	int error;
1376	int ret = VM_FAULT_LOCKED;
 
 
1377
1378	/*
1379	 * Trinity finds that probing a hole which tmpfs is punching can
1380	 * prevent the hole-punch from ever completing: which in turn
1381	 * locks writers out with its hold on i_mutex.  So refrain from
1382	 * faulting pages into the hole while it's being punched.  Although
1383	 * shmem_undo_range() does remove the additions, it may be unable to
1384	 * keep up, as each new page needs its own unmap_mapping_range() call,
1385	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1386	 *
1387	 * It does not matter if we sometimes reach this check just before the
1388	 * hole-punch begins, so that one fault then races with the punch:
1389	 * we just need to make racing faults a rare case.
1390	 *
1391	 * The implementation below would be much simpler if we just used a
1392	 * standard mutex or completion: but we cannot take i_mutex in fault,
1393	 * and bloating every shmem inode for this unlikely case would be sad.
1394	 */
1395	if (unlikely(inode->i_private)) {
1396		struct shmem_falloc *shmem_falloc;
1397
1398		spin_lock(&inode->i_lock);
1399		shmem_falloc = inode->i_private;
1400		if (shmem_falloc &&
1401		    shmem_falloc->waitq &&
1402		    vmf->pgoff >= shmem_falloc->start &&
1403		    vmf->pgoff < shmem_falloc->next) {
 
1404			wait_queue_head_t *shmem_falloc_waitq;
1405			DEFINE_WAIT(shmem_fault_wait);
1406
1407			ret = VM_FAULT_NOPAGE;
1408			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1409			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1410				/* It's polite to up mmap_sem if we can */
1411				up_read(&vma->vm_mm->mmap_sem);
1412				ret = VM_FAULT_RETRY;
1413			}
1414
1415			shmem_falloc_waitq = shmem_falloc->waitq;
1416			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1417					TASK_UNINTERRUPTIBLE);
1418			spin_unlock(&inode->i_lock);
1419			schedule();
1420
1421			/*
1422			 * shmem_falloc_waitq points into the shmem_fallocate()
1423			 * stack of the hole-punching task: shmem_falloc_waitq
1424			 * is usually invalid by the time we reach here, but
1425			 * finish_wait() does not dereference it in that case;
1426			 * though i_lock needed lest racing with wake_up_all().
1427			 */
1428			spin_lock(&inode->i_lock);
1429			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1430			spin_unlock(&inode->i_lock);
 
 
 
1431			return ret;
1432		}
1433		spin_unlock(&inode->i_lock);
1434	}
1435
1436	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1437	if (error)
1438		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1439
1440	if (ret & VM_FAULT_MAJOR) {
1441		count_vm_event(PGMAJFAULT);
1442		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1443	}
1444	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1445}
1446
1447#ifdef CONFIG_NUMA
1448static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1449{
1450	struct inode *inode = file_inode(vma->vm_file);
1451	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1452}
1453
1454static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1455					  unsigned long addr)
1456{
1457	struct inode *inode = file_inode(vma->vm_file);
1458	pgoff_t index;
1459
1460	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1461	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1462}
1463#endif
1464
1465int shmem_lock(struct file *file, int lock, struct user_struct *user)
1466{
1467	struct inode *inode = file_inode(file);
1468	struct shmem_inode_info *info = SHMEM_I(inode);
1469	int retval = -ENOMEM;
1470
1471	spin_lock(&info->lock);
 
 
 
 
1472	if (lock && !(info->flags & VM_LOCKED)) {
1473		if (!user_shm_lock(inode->i_size, user))
1474			goto out_nomem;
1475		info->flags |= VM_LOCKED;
1476		mapping_set_unevictable(file->f_mapping);
1477	}
1478	if (!lock && (info->flags & VM_LOCKED) && user) {
1479		user_shm_unlock(inode->i_size, user);
1480		info->flags &= ~VM_LOCKED;
1481		mapping_clear_unevictable(file->f_mapping);
1482	}
1483	retval = 0;
1484
1485out_nomem:
1486	spin_unlock(&info->lock);
1487	return retval;
1488}
1489
1490static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1491{
 
 
 
 
 
 
 
 
 
 
 
1492	file_accessed(file);
1493	vma->vm_ops = &shmem_vm_ops;
 
 
 
 
1494	return 0;
1495}
1496
1497static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1498				     umode_t mode, dev_t dev, unsigned long flags)
1499{
1500	struct inode *inode;
1501	struct shmem_inode_info *info;
1502	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 
1503
1504	if (shmem_reserve_inode(sb))
1505		return NULL;
1506
1507	inode = new_inode(sb);
1508	if (inode) {
1509		inode->i_ino = get_next_ino();
1510		inode_init_owner(inode, dir, mode);
1511		inode->i_blocks = 0;
1512		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1513		inode->i_generation = get_seconds();
1514		info = SHMEM_I(inode);
1515		memset(info, 0, (char *)inode - (char *)info);
1516		spin_lock_init(&info->lock);
 
1517		info->seals = F_SEAL_SEAL;
1518		info->flags = flags & VM_NORESERVE;
 
 
 
 
 
 
1519		INIT_LIST_HEAD(&info->swaplist);
1520		simple_xattrs_init(&info->xattrs);
1521		cache_no_acl(inode);
 
1522
1523		switch (mode & S_IFMT) {
1524		default:
1525			inode->i_op = &shmem_special_inode_operations;
1526			init_special_inode(inode, mode, dev);
1527			break;
1528		case S_IFREG:
1529			inode->i_mapping->a_ops = &shmem_aops;
1530			inode->i_op = &shmem_inode_operations;
1531			inode->i_fop = &shmem_file_operations;
1532			mpol_shared_policy_init(&info->policy,
1533						 shmem_get_sbmpol(sbinfo));
1534			break;
1535		case S_IFDIR:
1536			inc_nlink(inode);
1537			/* Some things misbehave if size == 0 on a directory */
1538			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1539			inode->i_op = &shmem_dir_inode_operations;
1540			inode->i_fop = &simple_dir_operations;
1541			break;
1542		case S_IFLNK:
1543			/*
1544			 * Must not load anything in the rbtree,
1545			 * mpol_free_shared_policy will not be called.
1546			 */
1547			mpol_shared_policy_init(&info->policy, NULL);
1548			break;
1549		}
 
 
1550	} else
1551		shmem_free_inode(sb);
1552	return inode;
1553}
1554
1555bool shmem_mapping(struct address_space *mapping)
 
 
 
 
 
 
 
1556{
1557	if (!mapping->host)
1558		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1559
1560	return mapping->host->i_sb->s_op == &shmem_ops;
 
 
 
 
 
 
 
 
 
1561}
 
1562
1563#ifdef CONFIG_TMPFS
1564static const struct inode_operations shmem_symlink_inode_operations;
1565static const struct inode_operations shmem_short_symlink_operations;
1566
1567#ifdef CONFIG_TMPFS_XATTR
1568static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1569#else
1570#define shmem_initxattrs NULL
1571#endif
1572
1573static int
1574shmem_write_begin(struct file *file, struct address_space *mapping,
1575			loff_t pos, unsigned len, unsigned flags,
1576			struct page **pagep, void **fsdata)
1577{
1578	struct inode *inode = mapping->host;
1579	struct shmem_inode_info *info = SHMEM_I(inode);
1580	pgoff_t index = pos >> PAGE_SHIFT;
 
 
1581
1582	/* i_mutex is held by caller */
1583	if (unlikely(info->seals)) {
1584		if (info->seals & F_SEAL_WRITE)
 
1585			return -EPERM;
1586		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1587			return -EPERM;
1588	}
1589
1590	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
1591}
1592
1593static int
1594shmem_write_end(struct file *file, struct address_space *mapping,
1595			loff_t pos, unsigned len, unsigned copied,
1596			struct page *page, void *fsdata)
1597{
1598	struct inode *inode = mapping->host;
1599
1600	if (pos + copied > inode->i_size)
1601		i_size_write(inode, pos + copied);
1602
1603	if (!PageUptodate(page)) {
 
 
 
 
 
 
 
 
 
 
 
1604		if (copied < PAGE_SIZE) {
1605			unsigned from = pos & (PAGE_SIZE - 1);
1606			zero_user_segments(page, 0, from,
1607					from + copied, PAGE_SIZE);
1608		}
1609		SetPageUptodate(page);
1610	}
1611	set_page_dirty(page);
1612	unlock_page(page);
1613	put_page(page);
1614
1615	return copied;
1616}
1617
1618static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1619{
1620	struct file *file = iocb->ki_filp;
1621	struct inode *inode = file_inode(file);
1622	struct address_space *mapping = inode->i_mapping;
1623	pgoff_t index;
1624	unsigned long offset;
1625	enum sgp_type sgp = SGP_READ;
1626	int error = 0;
1627	ssize_t retval = 0;
1628	loff_t *ppos = &iocb->ki_pos;
1629
1630	/*
1631	 * Might this read be for a stacking filesystem?  Then when reading
1632	 * holes of a sparse file, we actually need to allocate those pages,
1633	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1634	 */
1635	if (!iter_is_iovec(to))
1636		sgp = SGP_DIRTY;
1637
1638	index = *ppos >> PAGE_SHIFT;
1639	offset = *ppos & ~PAGE_MASK;
1640
1641	for (;;) {
 
1642		struct page *page = NULL;
1643		pgoff_t end_index;
1644		unsigned long nr, ret;
1645		loff_t i_size = i_size_read(inode);
1646
1647		end_index = i_size >> PAGE_SHIFT;
1648		if (index > end_index)
1649			break;
1650		if (index == end_index) {
1651			nr = i_size & ~PAGE_MASK;
1652			if (nr <= offset)
1653				break;
1654		}
1655
1656		error = shmem_getpage(inode, index, &page, sgp, NULL);
1657		if (error) {
1658			if (error == -EINVAL)
1659				error = 0;
1660			break;
1661		}
1662		if (page)
1663			unlock_page(page);
 
 
 
 
 
 
 
 
1664
1665		/*
1666		 * We must evaluate after, since reads (unlike writes)
1667		 * are called without i_mutex protection against truncate
1668		 */
1669		nr = PAGE_SIZE;
1670		i_size = i_size_read(inode);
1671		end_index = i_size >> PAGE_SHIFT;
1672		if (index == end_index) {
1673			nr = i_size & ~PAGE_MASK;
1674			if (nr <= offset) {
1675				if (page)
1676					put_page(page);
1677				break;
1678			}
1679		}
1680		nr -= offset;
1681
1682		if (page) {
1683			/*
1684			 * If users can be writing to this page using arbitrary
1685			 * virtual addresses, take care about potential aliasing
1686			 * before reading the page on the kernel side.
1687			 */
1688			if (mapping_writably_mapped(mapping))
1689				flush_dcache_page(page);
1690			/*
1691			 * Mark the page accessed if we read the beginning.
1692			 */
1693			if (!offset)
1694				mark_page_accessed(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1695		} else {
1696			page = ZERO_PAGE(0);
1697			get_page(page);
 
 
 
 
1698		}
1699
1700		/*
1701		 * Ok, we have the page, and it's up-to-date, so
1702		 * now we can copy it to user space...
1703		 */
1704		ret = copy_page_to_iter(page, offset, nr, to);
1705		retval += ret;
1706		offset += ret;
1707		index += offset >> PAGE_SHIFT;
1708		offset &= ~PAGE_MASK;
1709
1710		put_page(page);
1711		if (!iov_iter_count(to))
1712			break;
1713		if (ret < nr) {
1714			error = -EFAULT;
1715			break;
1716		}
1717		cond_resched();
1718	}
1719
1720	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
1721	file_accessed(file);
1722	return retval ? retval : error;
1723}
1724
1725static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1726				struct pipe_inode_info *pipe, size_t len,
1727				unsigned int flags)
1728{
1729	struct address_space *mapping = in->f_mapping;
1730	struct inode *inode = mapping->host;
1731	unsigned int loff, nr_pages, req_pages;
1732	struct page *pages[PIPE_DEF_BUFFERS];
1733	struct partial_page partial[PIPE_DEF_BUFFERS];
1734	struct page *page;
1735	pgoff_t index, end_index;
1736	loff_t isize, left;
1737	int error, page_nr;
1738	struct splice_pipe_desc spd = {
1739		.pages = pages,
1740		.partial = partial,
1741		.nr_pages_max = PIPE_DEF_BUFFERS,
1742		.flags = flags,
1743		.ops = &page_cache_pipe_buf_ops,
1744		.spd_release = spd_release_page,
1745	};
1746
1747	isize = i_size_read(inode);
1748	if (unlikely(*ppos >= isize))
1749		return 0;
1750
1751	left = isize - *ppos;
1752	if (unlikely(left < len))
1753		len = left;
1754
1755	if (splice_grow_spd(pipe, &spd))
1756		return -ENOMEM;
1757
1758	index = *ppos >> PAGE_SHIFT;
1759	loff = *ppos & ~PAGE_MASK;
1760	req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
1761	nr_pages = min(req_pages, spd.nr_pages_max);
1762
1763	spd.nr_pages = find_get_pages_contig(mapping, index,
1764						nr_pages, spd.pages);
1765	index += spd.nr_pages;
1766	error = 0;
1767
1768	while (spd.nr_pages < nr_pages) {
1769		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1770		if (error)
1771			break;
1772		unlock_page(page);
1773		spd.pages[spd.nr_pages++] = page;
1774		index++;
1775	}
1776
1777	index = *ppos >> PAGE_SHIFT;
1778	nr_pages = spd.nr_pages;
1779	spd.nr_pages = 0;
1780
1781	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1782		unsigned int this_len;
1783
1784		if (!len)
1785			break;
1786
1787		this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
1788		page = spd.pages[page_nr];
1789
1790		if (!PageUptodate(page) || page->mapping != mapping) {
1791			error = shmem_getpage(inode, index, &page,
1792							SGP_CACHE, NULL);
1793			if (error)
1794				break;
1795			unlock_page(page);
1796			put_page(spd.pages[page_nr]);
1797			spd.pages[page_nr] = page;
1798		}
1799
1800		isize = i_size_read(inode);
1801		end_index = (isize - 1) >> PAGE_SHIFT;
1802		if (unlikely(!isize || index > end_index))
1803			break;
1804
1805		if (end_index == index) {
1806			unsigned int plen;
1807
1808			plen = ((isize - 1) & ~PAGE_MASK) + 1;
1809			if (plen <= loff)
1810				break;
1811
1812			this_len = min(this_len, plen - loff);
1813			len = this_len;
1814		}
1815
1816		spd.partial[page_nr].offset = loff;
1817		spd.partial[page_nr].len = this_len;
1818		len -= this_len;
1819		loff = 0;
1820		spd.nr_pages++;
1821		index++;
1822	}
1823
1824	while (page_nr < nr_pages)
1825		put_page(spd.pages[page_nr++]);
1826
1827	if (spd.nr_pages)
1828		error = splice_to_pipe(pipe, &spd);
1829
1830	splice_shrink_spd(&spd);
1831
1832	if (error > 0) {
1833		*ppos += error;
1834		file_accessed(in);
1835	}
1836	return error;
1837}
1838
1839/*
1840 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1841 */
1842static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1843				    pgoff_t index, pgoff_t end, int whence)
1844{
1845	struct page *page;
1846	struct pagevec pvec;
1847	pgoff_t indices[PAGEVEC_SIZE];
1848	bool done = false;
1849	int i;
1850
1851	pagevec_init(&pvec, 0);
1852	pvec.nr = 1;		/* start small: we may be there already */
1853	while (!done) {
1854		pvec.nr = find_get_entries(mapping, index,
1855					pvec.nr, pvec.pages, indices);
1856		if (!pvec.nr) {
1857			if (whence == SEEK_DATA)
1858				index = end;
1859			break;
1860		}
1861		for (i = 0; i < pvec.nr; i++, index++) {
1862			if (index < indices[i]) {
1863				if (whence == SEEK_HOLE) {
1864					done = true;
1865					break;
1866				}
1867				index = indices[i];
1868			}
1869			page = pvec.pages[i];
1870			if (page && !radix_tree_exceptional_entry(page)) {
1871				if (!PageUptodate(page))
1872					page = NULL;
1873			}
1874			if (index >= end ||
1875			    (page && whence == SEEK_DATA) ||
1876			    (!page && whence == SEEK_HOLE)) {
1877				done = true;
1878				break;
1879			}
1880		}
1881		pagevec_remove_exceptionals(&pvec);
1882		pagevec_release(&pvec);
1883		pvec.nr = PAGEVEC_SIZE;
1884		cond_resched();
1885	}
1886	return index;
1887}
1888
1889static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1890{
1891	struct address_space *mapping = file->f_mapping;
1892	struct inode *inode = mapping->host;
1893	pgoff_t start, end;
1894	loff_t new_offset;
1895
1896	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1897		return generic_file_llseek_size(file, offset, whence,
1898					MAX_LFS_FILESIZE, i_size_read(inode));
1899	inode_lock(inode);
1900	/* We're holding i_mutex so we can access i_size directly */
1901
1902	if (offset < 0)
1903		offset = -EINVAL;
1904	else if (offset >= inode->i_size)
1905		offset = -ENXIO;
1906	else {
1907		start = offset >> PAGE_SHIFT;
1908		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1909		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1910		new_offset <<= PAGE_SHIFT;
1911		if (new_offset > offset) {
1912			if (new_offset < inode->i_size)
1913				offset = new_offset;
1914			else if (whence == SEEK_DATA)
1915				offset = -ENXIO;
1916			else
1917				offset = inode->i_size;
1918		}
1919	}
1920
 
 
 
1921	if (offset >= 0)
1922		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1923	inode_unlock(inode);
1924	return offset;
1925}
1926
1927/*
1928 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1929 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1930 */
1931#define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
1932#define LAST_SCAN               4       /* about 150ms max */
1933
1934static void shmem_tag_pins(struct address_space *mapping)
1935{
1936	struct radix_tree_iter iter;
1937	void **slot;
1938	pgoff_t start;
1939	struct page *page;
1940
1941	lru_add_drain();
1942	start = 0;
1943	rcu_read_lock();
1944
1945	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1946		page = radix_tree_deref_slot(slot);
1947		if (!page || radix_tree_exception(page)) {
1948			if (radix_tree_deref_retry(page)) {
1949				slot = radix_tree_iter_retry(&iter);
1950				continue;
1951			}
1952		} else if (page_count(page) - page_mapcount(page) > 1) {
1953			spin_lock_irq(&mapping->tree_lock);
1954			radix_tree_tag_set(&mapping->page_tree, iter.index,
1955					   SHMEM_TAG_PINNED);
1956			spin_unlock_irq(&mapping->tree_lock);
1957		}
1958
1959		if (need_resched()) {
1960			cond_resched_rcu();
1961			slot = radix_tree_iter_next(&iter);
1962		}
1963	}
1964	rcu_read_unlock();
1965}
1966
1967/*
1968 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1969 * via get_user_pages(), drivers might have some pending I/O without any active
1970 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1971 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1972 * them to be dropped.
1973 * The caller must guarantee that no new user will acquire writable references
1974 * to those pages to avoid races.
1975 */
1976static int shmem_wait_for_pins(struct address_space *mapping)
1977{
1978	struct radix_tree_iter iter;
1979	void **slot;
1980	pgoff_t start;
1981	struct page *page;
1982	int error, scan;
1983
1984	shmem_tag_pins(mapping);
1985
1986	error = 0;
1987	for (scan = 0; scan <= LAST_SCAN; scan++) {
1988		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1989			break;
1990
1991		if (!scan)
1992			lru_add_drain_all();
1993		else if (schedule_timeout_killable((HZ << scan) / 200))
1994			scan = LAST_SCAN;
1995
1996		start = 0;
1997		rcu_read_lock();
1998		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1999					   start, SHMEM_TAG_PINNED) {
2000
2001			page = radix_tree_deref_slot(slot);
2002			if (radix_tree_exception(page)) {
2003				if (radix_tree_deref_retry(page)) {
2004					slot = radix_tree_iter_retry(&iter);
2005					continue;
2006				}
2007
2008				page = NULL;
2009			}
2010
2011			if (page &&
2012			    page_count(page) - page_mapcount(page) != 1) {
2013				if (scan < LAST_SCAN)
2014					goto continue_resched;
2015
2016				/*
2017				 * On the last scan, we clean up all those tags
2018				 * we inserted; but make a note that we still
2019				 * found pages pinned.
2020				 */
2021				error = -EBUSY;
2022			}
2023
2024			spin_lock_irq(&mapping->tree_lock);
2025			radix_tree_tag_clear(&mapping->page_tree,
2026					     iter.index, SHMEM_TAG_PINNED);
2027			spin_unlock_irq(&mapping->tree_lock);
2028continue_resched:
2029			if (need_resched()) {
2030				cond_resched_rcu();
2031				slot = radix_tree_iter_next(&iter);
2032			}
2033		}
2034		rcu_read_unlock();
2035	}
2036
2037	return error;
2038}
2039
2040#define F_ALL_SEALS (F_SEAL_SEAL | \
2041		     F_SEAL_SHRINK | \
2042		     F_SEAL_GROW | \
2043		     F_SEAL_WRITE)
2044
2045int shmem_add_seals(struct file *file, unsigned int seals)
2046{
2047	struct inode *inode = file_inode(file);
2048	struct shmem_inode_info *info = SHMEM_I(inode);
2049	int error;
2050
2051	/*
2052	 * SEALING
2053	 * Sealing allows multiple parties to share a shmem-file but restrict
2054	 * access to a specific subset of file operations. Seals can only be
2055	 * added, but never removed. This way, mutually untrusted parties can
2056	 * share common memory regions with a well-defined policy. A malicious
2057	 * peer can thus never perform unwanted operations on a shared object.
2058	 *
2059	 * Seals are only supported on special shmem-files and always affect
2060	 * the whole underlying inode. Once a seal is set, it may prevent some
2061	 * kinds of access to the file. Currently, the following seals are
2062	 * defined:
2063	 *   SEAL_SEAL: Prevent further seals from being set on this file
2064	 *   SEAL_SHRINK: Prevent the file from shrinking
2065	 *   SEAL_GROW: Prevent the file from growing
2066	 *   SEAL_WRITE: Prevent write access to the file
2067	 *
2068	 * As we don't require any trust relationship between two parties, we
2069	 * must prevent seals from being removed. Therefore, sealing a file
2070	 * only adds a given set of seals to the file, it never touches
2071	 * existing seals. Furthermore, the "setting seals"-operation can be
2072	 * sealed itself, which basically prevents any further seal from being
2073	 * added.
2074	 *
2075	 * Semantics of sealing are only defined on volatile files. Only
2076	 * anonymous shmem files support sealing. More importantly, seals are
2077	 * never written to disk. Therefore, there's no plan to support it on
2078	 * other file types.
2079	 */
2080
2081	if (file->f_op != &shmem_file_operations)
2082		return -EINVAL;
2083	if (!(file->f_mode & FMODE_WRITE))
2084		return -EPERM;
2085	if (seals & ~(unsigned int)F_ALL_SEALS)
2086		return -EINVAL;
2087
2088	inode_lock(inode);
2089
2090	if (info->seals & F_SEAL_SEAL) {
2091		error = -EPERM;
2092		goto unlock;
2093	}
2094
2095	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2096		error = mapping_deny_writable(file->f_mapping);
2097		if (error)
2098			goto unlock;
2099
2100		error = shmem_wait_for_pins(file->f_mapping);
2101		if (error) {
2102			mapping_allow_writable(file->f_mapping);
2103			goto unlock;
2104		}
2105	}
2106
2107	info->seals |= seals;
2108	error = 0;
2109
2110unlock:
2111	inode_unlock(inode);
2112	return error;
2113}
2114EXPORT_SYMBOL_GPL(shmem_add_seals);
2115
2116int shmem_get_seals(struct file *file)
2117{
2118	if (file->f_op != &shmem_file_operations)
2119		return -EINVAL;
2120
2121	return SHMEM_I(file_inode(file))->seals;
2122}
2123EXPORT_SYMBOL_GPL(shmem_get_seals);
2124
2125long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2126{
2127	long error;
2128
2129	switch (cmd) {
2130	case F_ADD_SEALS:
2131		/* disallow upper 32bit */
2132		if (arg > UINT_MAX)
2133			return -EINVAL;
2134
2135		error = shmem_add_seals(file, arg);
2136		break;
2137	case F_GET_SEALS:
2138		error = shmem_get_seals(file);
2139		break;
2140	default:
2141		error = -EINVAL;
2142		break;
2143	}
2144
2145	return error;
2146}
2147
2148static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2149							 loff_t len)
2150{
2151	struct inode *inode = file_inode(file);
2152	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2153	struct shmem_inode_info *info = SHMEM_I(inode);
2154	struct shmem_falloc shmem_falloc;
2155	pgoff_t start, index, end;
2156	int error;
2157
2158	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2159		return -EOPNOTSUPP;
2160
2161	inode_lock(inode);
2162
2163	if (mode & FALLOC_FL_PUNCH_HOLE) {
2164		struct address_space *mapping = file->f_mapping;
2165		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2166		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2167		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2168
2169		/* protected by i_mutex */
2170		if (info->seals & F_SEAL_WRITE) {
2171			error = -EPERM;
2172			goto out;
2173		}
2174
2175		shmem_falloc.waitq = &shmem_falloc_waitq;
2176		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2177		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2178		spin_lock(&inode->i_lock);
2179		inode->i_private = &shmem_falloc;
2180		spin_unlock(&inode->i_lock);
2181
2182		if ((u64)unmap_end > (u64)unmap_start)
2183			unmap_mapping_range(mapping, unmap_start,
2184					    1 + unmap_end - unmap_start, 0);
2185		shmem_truncate_range(inode, offset, offset + len - 1);
2186		/* No need to unmap again: hole-punching leaves COWed pages */
2187
2188		spin_lock(&inode->i_lock);
2189		inode->i_private = NULL;
2190		wake_up_all(&shmem_falloc_waitq);
 
2191		spin_unlock(&inode->i_lock);
2192		error = 0;
2193		goto out;
2194	}
2195
2196	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2197	error = inode_newsize_ok(inode, offset + len);
2198	if (error)
2199		goto out;
2200
2201	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2202		error = -EPERM;
2203		goto out;
2204	}
2205
2206	start = offset >> PAGE_SHIFT;
2207	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2208	/* Try to avoid a swapstorm if len is impossible to satisfy */
2209	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2210		error = -ENOSPC;
2211		goto out;
2212	}
2213
2214	shmem_falloc.waitq = NULL;
2215	shmem_falloc.start = start;
2216	shmem_falloc.next  = start;
2217	shmem_falloc.nr_falloced = 0;
2218	shmem_falloc.nr_unswapped = 0;
2219	spin_lock(&inode->i_lock);
2220	inode->i_private = &shmem_falloc;
2221	spin_unlock(&inode->i_lock);
2222
2223	for (index = start; index < end; index++) {
2224		struct page *page;
 
 
 
 
 
 
 
 
 
2225
2226		/*
2227		 * Good, the fallocate(2) manpage permits EINTR: we may have
2228		 * been interrupted because we are using up too much memory.
2229		 */
2230		if (signal_pending(current))
2231			error = -EINTR;
2232		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2233			error = -ENOMEM;
2234		else
2235			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2236									NULL);
2237		if (error) {
2238			/* Remove the !PageUptodate pages we added */
2239			shmem_undo_range(inode,
2240				(loff_t)start << PAGE_SHIFT,
2241				(loff_t)index << PAGE_SHIFT, true);
 
 
 
2242			goto undone;
2243		}
2244
2245		/*
 
 
 
 
 
 
 
 
 
 
2246		 * Inform shmem_writepage() how far we have reached.
2247		 * No need for lock or barrier: we have the page lock.
2248		 */
2249		shmem_falloc.next++;
2250		if (!PageUptodate(page))
2251			shmem_falloc.nr_falloced++;
2252
2253		/*
2254		 * If !PageUptodate, leave it that way so that freeable pages
2255		 * can be recognized if we need to rollback on error later.
2256		 * But set_page_dirty so that memory pressure will swap rather
2257		 * than free the pages we are allocating (and SGP_CACHE pages
2258		 * might still be clean: we now need to mark those dirty too).
2259		 */
2260		set_page_dirty(page);
2261		unlock_page(page);
2262		put_page(page);
2263		cond_resched();
2264	}
2265
2266	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2267		i_size_write(inode, offset + len);
2268	inode->i_ctime = CURRENT_TIME;
2269undone:
2270	spin_lock(&inode->i_lock);
2271	inode->i_private = NULL;
2272	spin_unlock(&inode->i_lock);
2273out:
 
 
2274	inode_unlock(inode);
2275	return error;
2276}
2277
2278static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2279{
2280	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2281
2282	buf->f_type = TMPFS_MAGIC;
2283	buf->f_bsize = PAGE_SIZE;
2284	buf->f_namelen = NAME_MAX;
2285	if (sbinfo->max_blocks) {
2286		buf->f_blocks = sbinfo->max_blocks;
2287		buf->f_bavail =
2288		buf->f_bfree  = sbinfo->max_blocks -
2289				percpu_counter_sum(&sbinfo->used_blocks);
2290	}
2291	if (sbinfo->max_inodes) {
2292		buf->f_files = sbinfo->max_inodes;
2293		buf->f_ffree = sbinfo->free_inodes;
2294	}
2295	/* else leave those fields 0 like simple_statfs */
 
 
 
2296	return 0;
2297}
2298
2299/*
2300 * File creation. Allocate an inode, and we're done..
2301 */
2302static int
2303shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
 
2304{
2305	struct inode *inode;
2306	int error = -ENOSPC;
2307
2308	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2309	if (inode) {
2310		error = simple_acl_create(dir, inode);
2311		if (error)
2312			goto out_iput;
2313		error = security_inode_init_security(inode, dir,
2314						     &dentry->d_name,
2315						     shmem_initxattrs, NULL);
2316		if (error && error != -EOPNOTSUPP)
2317			goto out_iput;
2318
2319		error = 0;
2320		dir->i_size += BOGO_DIRENT_SIZE;
2321		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 
2322		d_instantiate(dentry, inode);
2323		dget(dentry); /* Extra count - pin the dentry in core */
2324	}
2325	return error;
2326out_iput:
2327	iput(inode);
2328	return error;
2329}
2330
2331static int
2332shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
 
2333{
2334	struct inode *inode;
2335	int error = -ENOSPC;
2336
2337	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2338	if (inode) {
2339		error = security_inode_init_security(inode, dir,
2340						     NULL,
2341						     shmem_initxattrs, NULL);
2342		if (error && error != -EOPNOTSUPP)
2343			goto out_iput;
2344		error = simple_acl_create(dir, inode);
2345		if (error)
2346			goto out_iput;
2347		d_tmpfile(dentry, inode);
2348	}
2349	return error;
2350out_iput:
2351	iput(inode);
2352	return error;
2353}
2354
2355static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 
2356{
2357	int error;
2358
2359	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
 
2360		return error;
2361	inc_nlink(dir);
2362	return 0;
2363}
2364
2365static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2366		bool excl)
2367{
2368	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2369}
2370
2371/*
2372 * Link a file..
2373 */
2374static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2375{
2376	struct inode *inode = d_inode(old_dentry);
2377	int ret;
2378
2379	/*
2380	 * No ordinary (disk based) filesystem counts links as inodes;
2381	 * but each new link needs a new dentry, pinning lowmem, and
2382	 * tmpfs dentries cannot be pruned until they are unlinked.
 
 
2383	 */
2384	ret = shmem_reserve_inode(inode->i_sb);
2385	if (ret)
2386		goto out;
 
 
2387
2388	dir->i_size += BOGO_DIRENT_SIZE;
2389	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 
2390	inc_nlink(inode);
2391	ihold(inode);	/* New dentry reference */
2392	dget(dentry);		/* Extra pinning count for the created dentry */
2393	d_instantiate(dentry, inode);
2394out:
2395	return ret;
2396}
2397
2398static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2399{
2400	struct inode *inode = d_inode(dentry);
2401
2402	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2403		shmem_free_inode(inode->i_sb);
2404
2405	dir->i_size -= BOGO_DIRENT_SIZE;
2406	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 
2407	drop_nlink(inode);
2408	dput(dentry);	/* Undo the count from "create" - this does all the work */
2409	return 0;
2410}
2411
2412static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2413{
2414	if (!simple_empty(dentry))
2415		return -ENOTEMPTY;
2416
2417	drop_nlink(d_inode(dentry));
2418	drop_nlink(dir);
2419	return shmem_unlink(dir, dentry);
2420}
2421
2422static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2423{
2424	bool old_is_dir = d_is_dir(old_dentry);
2425	bool new_is_dir = d_is_dir(new_dentry);
2426
2427	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2428		if (old_is_dir) {
2429			drop_nlink(old_dir);
2430			inc_nlink(new_dir);
2431		} else {
2432			drop_nlink(new_dir);
2433			inc_nlink(old_dir);
2434		}
2435	}
2436	old_dir->i_ctime = old_dir->i_mtime =
2437	new_dir->i_ctime = new_dir->i_mtime =
2438	d_inode(old_dentry)->i_ctime =
2439	d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2440
2441	return 0;
2442}
2443
2444static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2445{
2446	struct dentry *whiteout;
2447	int error;
2448
2449	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2450	if (!whiteout)
2451		return -ENOMEM;
2452
2453	error = shmem_mknod(old_dir, whiteout,
2454			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2455	dput(whiteout);
2456	if (error)
2457		return error;
2458
2459	/*
2460	 * Cheat and hash the whiteout while the old dentry is still in
2461	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2462	 *
2463	 * d_lookup() will consistently find one of them at this point,
2464	 * not sure which one, but that isn't even important.
2465	 */
2466	d_rehash(whiteout);
2467	return 0;
2468}
2469
2470/*
2471 * The VFS layer already does all the dentry stuff for rename,
2472 * we just have to decrement the usage count for the target if
2473 * it exists so that the VFS layer correctly free's it when it
2474 * gets overwritten.
2475 */
2476static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
 
 
 
2477{
2478	struct inode *inode = d_inode(old_dentry);
2479	int they_are_dirs = S_ISDIR(inode->i_mode);
2480
2481	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2482		return -EINVAL;
2483
2484	if (flags & RENAME_EXCHANGE)
2485		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2486
2487	if (!simple_empty(new_dentry))
2488		return -ENOTEMPTY;
2489
2490	if (flags & RENAME_WHITEOUT) {
2491		int error;
2492
2493		error = shmem_whiteout(old_dir, old_dentry);
2494		if (error)
2495			return error;
2496	}
2497
2498	if (d_really_is_positive(new_dentry)) {
2499		(void) shmem_unlink(new_dir, new_dentry);
2500		if (they_are_dirs) {
2501			drop_nlink(d_inode(new_dentry));
2502			drop_nlink(old_dir);
2503		}
2504	} else if (they_are_dirs) {
2505		drop_nlink(old_dir);
2506		inc_nlink(new_dir);
2507	}
2508
2509	old_dir->i_size -= BOGO_DIRENT_SIZE;
2510	new_dir->i_size += BOGO_DIRENT_SIZE;
2511	old_dir->i_ctime = old_dir->i_mtime =
2512	new_dir->i_ctime = new_dir->i_mtime =
2513	inode->i_ctime = CURRENT_TIME;
 
 
2514	return 0;
2515}
2516
2517static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
 
2518{
2519	int error;
2520	int len;
2521	struct inode *inode;
2522	struct page *page;
2523	struct shmem_inode_info *info;
2524
2525	len = strlen(symname) + 1;
2526	if (len > PAGE_SIZE)
2527		return -ENAMETOOLONG;
2528
2529	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
 
2530	if (!inode)
2531		return -ENOSPC;
2532
2533	error = security_inode_init_security(inode, dir, &dentry->d_name,
2534					     shmem_initxattrs, NULL);
2535	if (error) {
2536		if (error != -EOPNOTSUPP) {
2537			iput(inode);
2538			return error;
2539		}
2540		error = 0;
2541	}
2542
2543	info = SHMEM_I(inode);
2544	inode->i_size = len-1;
2545	if (len <= SHORT_SYMLINK_LEN) {
2546		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
2547		if (!inode->i_link) {
2548			iput(inode);
2549			return -ENOMEM;
2550		}
2551		inode->i_op = &shmem_short_symlink_operations;
2552	} else {
2553		inode_nohighmem(inode);
2554		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2555		if (error) {
2556			iput(inode);
2557			return error;
2558		}
2559		inode->i_mapping->a_ops = &shmem_aops;
2560		inode->i_op = &shmem_symlink_inode_operations;
2561		memcpy(page_address(page), symname, len);
2562		SetPageUptodate(page);
2563		set_page_dirty(page);
2564		unlock_page(page);
2565		put_page(page);
2566	}
2567	dir->i_size += BOGO_DIRENT_SIZE;
2568	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 
2569	d_instantiate(dentry, inode);
2570	dget(dentry);
2571	return 0;
2572}
2573
2574static void shmem_put_link(void *arg)
2575{
2576	mark_page_accessed(arg);
2577	put_page(arg);
2578}
2579
2580static const char *shmem_get_link(struct dentry *dentry,
2581				  struct inode *inode,
2582				  struct delayed_call *done)
2583{
2584	struct page *page = NULL;
2585	int error;
 
2586	if (!dentry) {
2587		page = find_get_page(inode->i_mapping, 0);
2588		if (!page)
2589			return ERR_PTR(-ECHILD);
2590		if (!PageUptodate(page)) {
2591			put_page(page);
 
2592			return ERR_PTR(-ECHILD);
2593		}
2594	} else {
2595		error = shmem_getpage(inode, 0, &page, SGP_READ, NULL);
2596		if (error)
2597			return ERR_PTR(error);
2598		unlock_page(page);
 
 
 
 
 
 
 
2599	}
2600	set_delayed_call(done, shmem_put_link, page);
2601	return page_address(page);
2602}
2603
2604#ifdef CONFIG_TMPFS_XATTR
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2605/*
2606 * Superblocks without xattr inode operations may get some security.* xattr
2607 * support from the LSM "for free". As soon as we have any other xattrs
2608 * like ACLs, we also need to implement the security.* handlers at
2609 * filesystem level, though.
2610 */
2611
2612/*
2613 * Callback for security_inode_init_security() for acquiring xattrs.
2614 */
2615static int shmem_initxattrs(struct inode *inode,
2616			    const struct xattr *xattr_array,
2617			    void *fs_info)
2618{
2619	struct shmem_inode_info *info = SHMEM_I(inode);
2620	const struct xattr *xattr;
2621	struct simple_xattr *new_xattr;
2622	size_t len;
2623
2624	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2625		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2626		if (!new_xattr)
2627			return -ENOMEM;
2628
2629		len = strlen(xattr->name) + 1;
2630		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2631					  GFP_KERNEL);
2632		if (!new_xattr->name) {
2633			kfree(new_xattr);
2634			return -ENOMEM;
2635		}
2636
2637		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2638		       XATTR_SECURITY_PREFIX_LEN);
2639		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2640		       xattr->name, len);
2641
2642		simple_xattr_list_add(&info->xattrs, new_xattr);
2643	}
2644
2645	return 0;
2646}
2647
2648static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2649				   struct dentry *dentry, const char *name,
2650				   void *buffer, size_t size)
2651{
2652	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2653
2654	name = xattr_full_name(handler, name);
2655	return simple_xattr_get(&info->xattrs, name, buffer, size);
2656}
2657
2658static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2659				   struct dentry *dentry, const char *name,
2660				   const void *value, size_t size, int flags)
 
 
2661{
2662	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
 
2663
2664	name = xattr_full_name(handler, name);
2665	return simple_xattr_set(&info->xattrs, name, value, size, flags);
 
 
 
 
 
2666}
2667
2668static const struct xattr_handler shmem_security_xattr_handler = {
2669	.prefix = XATTR_SECURITY_PREFIX,
2670	.get = shmem_xattr_handler_get,
2671	.set = shmem_xattr_handler_set,
2672};
2673
2674static const struct xattr_handler shmem_trusted_xattr_handler = {
2675	.prefix = XATTR_TRUSTED_PREFIX,
2676	.get = shmem_xattr_handler_get,
2677	.set = shmem_xattr_handler_set,
2678};
2679
2680static const struct xattr_handler *shmem_xattr_handlers[] = {
2681#ifdef CONFIG_TMPFS_POSIX_ACL
2682	&posix_acl_access_xattr_handler,
2683	&posix_acl_default_xattr_handler,
2684#endif
2685	&shmem_security_xattr_handler,
2686	&shmem_trusted_xattr_handler,
2687	NULL
2688};
2689
2690static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2691{
2692	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2693	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
2694}
2695#endif /* CONFIG_TMPFS_XATTR */
2696
2697static const struct inode_operations shmem_short_symlink_operations = {
2698	.readlink	= generic_readlink,
2699	.get_link	= simple_get_link,
2700#ifdef CONFIG_TMPFS_XATTR
2701	.setxattr	= generic_setxattr,
2702	.getxattr	= generic_getxattr,
2703	.listxattr	= shmem_listxattr,
2704	.removexattr	= generic_removexattr,
2705#endif
2706};
2707
2708static const struct inode_operations shmem_symlink_inode_operations = {
2709	.readlink	= generic_readlink,
2710	.get_link	= shmem_get_link,
2711#ifdef CONFIG_TMPFS_XATTR
2712	.setxattr	= generic_setxattr,
2713	.getxattr	= generic_getxattr,
2714	.listxattr	= shmem_listxattr,
2715	.removexattr	= generic_removexattr,
2716#endif
2717};
2718
2719static struct dentry *shmem_get_parent(struct dentry *child)
2720{
2721	return ERR_PTR(-ESTALE);
2722}
2723
2724static int shmem_match(struct inode *ino, void *vfh)
2725{
2726	__u32 *fh = vfh;
2727	__u64 inum = fh[2];
2728	inum = (inum << 32) | fh[1];
2729	return ino->i_ino == inum && fh[0] == ino->i_generation;
2730}
2731
 
 
 
 
 
 
 
 
 
2732static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2733		struct fid *fid, int fh_len, int fh_type)
2734{
2735	struct inode *inode;
2736	struct dentry *dentry = NULL;
2737	u64 inum;
2738
2739	if (fh_len < 3)
2740		return NULL;
2741
2742	inum = fid->raw[2];
2743	inum = (inum << 32) | fid->raw[1];
2744
2745	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2746			shmem_match, fid->raw);
2747	if (inode) {
2748		dentry = d_find_alias(inode);
2749		iput(inode);
2750	}
2751
2752	return dentry;
2753}
2754
2755static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2756				struct inode *parent)
2757{
2758	if (*len < 3) {
2759		*len = 3;
2760		return FILEID_INVALID;
2761	}
2762
2763	if (inode_unhashed(inode)) {
2764		/* Unfortunately insert_inode_hash is not idempotent,
2765		 * so as we hash inodes here rather than at creation
2766		 * time, we need a lock to ensure we only try
2767		 * to do it once
2768		 */
2769		static DEFINE_SPINLOCK(lock);
2770		spin_lock(&lock);
2771		if (inode_unhashed(inode))
2772			__insert_inode_hash(inode,
2773					    inode->i_ino + inode->i_generation);
2774		spin_unlock(&lock);
2775	}
2776
2777	fh[0] = inode->i_generation;
2778	fh[1] = inode->i_ino;
2779	fh[2] = ((__u64)inode->i_ino) >> 32;
2780
2781	*len = 3;
2782	return 1;
2783}
2784
2785static const struct export_operations shmem_export_ops = {
2786	.get_parent     = shmem_get_parent,
2787	.encode_fh      = shmem_encode_fh,
2788	.fh_to_dentry	= shmem_fh_to_dentry,
2789};
2790
2791static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2792			       bool remount)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2793{
2794	char *this_char, *value, *rest;
2795	struct mempolicy *mpol = NULL;
2796	uid_t uid;
2797	gid_t gid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2798
2799	while (options != NULL) {
2800		this_char = options;
2801		for (;;) {
2802			/*
2803			 * NUL-terminate this option: unfortunately,
2804			 * mount options form a comma-separated list,
2805			 * but mpol's nodelist may also contain commas.
2806			 */
2807			options = strchr(options, ',');
2808			if (options == NULL)
2809				break;
2810			options++;
2811			if (!isdigit(*options)) {
2812				options[-1] = '\0';
2813				break;
2814			}
2815		}
2816		if (!*this_char)
2817			continue;
2818		if ((value = strchr(this_char,'=')) != NULL) {
2819			*value++ = 0;
2820		} else {
2821			pr_err("tmpfs: No value for mount option '%s'\n",
2822			       this_char);
2823			goto error;
2824		}
2825
2826		if (!strcmp(this_char,"size")) {
2827			unsigned long long size;
2828			size = memparse(value,&rest);
2829			if (*rest == '%') {
2830				size <<= PAGE_SHIFT;
2831				size *= totalram_pages;
2832				do_div(size, 100);
2833				rest++;
2834			}
2835			if (*rest)
2836				goto bad_val;
2837			sbinfo->max_blocks =
2838				DIV_ROUND_UP(size, PAGE_SIZE);
2839		} else if (!strcmp(this_char,"nr_blocks")) {
2840			sbinfo->max_blocks = memparse(value, &rest);
2841			if (*rest)
2842				goto bad_val;
2843		} else if (!strcmp(this_char,"nr_inodes")) {
2844			sbinfo->max_inodes = memparse(value, &rest);
2845			if (*rest)
2846				goto bad_val;
2847		} else if (!strcmp(this_char,"mode")) {
2848			if (remount)
2849				continue;
2850			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2851			if (*rest)
2852				goto bad_val;
2853		} else if (!strcmp(this_char,"uid")) {
2854			if (remount)
2855				continue;
2856			uid = simple_strtoul(value, &rest, 0);
2857			if (*rest)
2858				goto bad_val;
2859			sbinfo->uid = make_kuid(current_user_ns(), uid);
2860			if (!uid_valid(sbinfo->uid))
2861				goto bad_val;
2862		} else if (!strcmp(this_char,"gid")) {
2863			if (remount)
2864				continue;
2865			gid = simple_strtoul(value, &rest, 0);
2866			if (*rest)
2867				goto bad_val;
2868			sbinfo->gid = make_kgid(current_user_ns(), gid);
2869			if (!gid_valid(sbinfo->gid))
2870				goto bad_val;
2871		} else if (!strcmp(this_char,"mpol")) {
2872			mpol_put(mpol);
2873			mpol = NULL;
2874			if (mpol_parse_str(value, &mpol))
2875				goto bad_val;
2876		} else {
2877			pr_err("tmpfs: Bad mount option %s\n", this_char);
2878			goto error;
2879		}
2880	}
2881	sbinfo->mpol = mpol;
2882	return 0;
2883
2884bad_val:
2885	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
2886	       value, this_char);
2887error:
2888	mpol_put(mpol);
2889	return 1;
2890
2891}
2892
2893static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
 
 
 
 
 
 
 
2894{
2895	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2896	struct shmem_sb_info config = *sbinfo;
2897	unsigned long inodes;
2898	int error = -EINVAL;
 
 
 
 
2899
2900	config.mpol = NULL;
2901	if (shmem_parse_options(data, &config, true))
2902		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2903
2904	spin_lock(&sbinfo->stat_lock);
2905	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2906	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2907		goto out;
2908	if (config.max_inodes < inodes)
2909		goto out;
2910	/*
2911	 * Those tests disallow limited->unlimited while any are in use;
2912	 * but we must separately disallow unlimited->limited, because
2913	 * in that case we have no record of how much is already in use.
2914	 */
2915	if (config.max_blocks && !sbinfo->max_blocks)
2916		goto out;
2917	if (config.max_inodes && !sbinfo->max_inodes)
2918		goto out;
 
2919
2920	error = 0;
2921	sbinfo->max_blocks  = config.max_blocks;
2922	sbinfo->max_inodes  = config.max_inodes;
2923	sbinfo->free_inodes = config.max_inodes - inodes;
 
 
 
 
 
 
2924
2925	/*
2926	 * Preserve previous mempolicy unless mpol remount option was specified.
2927	 */
2928	if (config.mpol) {
2929		mpol_put(sbinfo->mpol);
2930		sbinfo->mpol = config.mpol;	/* transfers initial ref */
 
2931	}
 
 
 
2932out:
2933	spin_unlock(&sbinfo->stat_lock);
2934	return error;
2935}
2936
2937static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2938{
2939	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2940
2941	if (sbinfo->max_blocks != shmem_default_max_blocks())
2942		seq_printf(seq, ",size=%luk",
2943			sbinfo->max_blocks << (PAGE_SHIFT - 10));
2944	if (sbinfo->max_inodes != shmem_default_max_inodes())
2945		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2946	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2947		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2948	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2949		seq_printf(seq, ",uid=%u",
2950				from_kuid_munged(&init_user_ns, sbinfo->uid));
2951	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2952		seq_printf(seq, ",gid=%u",
2953				from_kgid_munged(&init_user_ns, sbinfo->gid));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2954	shmem_show_mpol(seq, sbinfo->mpol);
2955	return 0;
2956}
2957
2958#define MFD_NAME_PREFIX "memfd:"
2959#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2960#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2961
2962#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2963
2964SYSCALL_DEFINE2(memfd_create,
2965		const char __user *, uname,
2966		unsigned int, flags)
2967{
2968	struct shmem_inode_info *info;
2969	struct file *file;
2970	int fd, error;
2971	char *name;
2972	long len;
2973
2974	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2975		return -EINVAL;
2976
2977	/* length includes terminating zero */
2978	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2979	if (len <= 0)
2980		return -EFAULT;
2981	if (len > MFD_NAME_MAX_LEN + 1)
2982		return -EINVAL;
2983
2984	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2985	if (!name)
2986		return -ENOMEM;
2987
2988	strcpy(name, MFD_NAME_PREFIX);
2989	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2990		error = -EFAULT;
2991		goto err_name;
2992	}
2993
2994	/* terminating-zero may have changed after strnlen_user() returned */
2995	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2996		error = -EFAULT;
2997		goto err_name;
2998	}
2999
3000	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3001	if (fd < 0) {
3002		error = fd;
3003		goto err_name;
3004	}
3005
3006	file = shmem_file_setup(name, 0, VM_NORESERVE);
3007	if (IS_ERR(file)) {
3008		error = PTR_ERR(file);
3009		goto err_fd;
3010	}
3011	info = SHMEM_I(file_inode(file));
3012	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3013	file->f_flags |= O_RDWR | O_LARGEFILE;
3014	if (flags & MFD_ALLOW_SEALING)
3015		info->seals &= ~F_SEAL_SEAL;
3016
3017	fd_install(fd, file);
3018	kfree(name);
3019	return fd;
3020
3021err_fd:
3022	put_unused_fd(fd);
3023err_name:
3024	kfree(name);
3025	return error;
3026}
3027
3028#endif /* CONFIG_TMPFS */
3029
3030static void shmem_put_super(struct super_block *sb)
3031{
3032	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3033
 
3034	percpu_counter_destroy(&sbinfo->used_blocks);
3035	mpol_put(sbinfo->mpol);
3036	kfree(sbinfo);
3037	sb->s_fs_info = NULL;
3038}
3039
3040int shmem_fill_super(struct super_block *sb, void *data, int silent)
3041{
 
3042	struct inode *inode;
3043	struct shmem_sb_info *sbinfo;
3044	int err = -ENOMEM;
3045
3046	/* Round up to L1_CACHE_BYTES to resist false sharing */
3047	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3048				L1_CACHE_BYTES), GFP_KERNEL);
3049	if (!sbinfo)
3050		return -ENOMEM;
3051
3052	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3053	sbinfo->uid = current_fsuid();
3054	sbinfo->gid = current_fsgid();
3055	sb->s_fs_info = sbinfo;
3056
3057#ifdef CONFIG_TMPFS
3058	/*
3059	 * Per default we only allow half of the physical ram per
3060	 * tmpfs instance, limiting inodes to one per page of lowmem;
3061	 * but the internal instance is left unlimited.
3062	 */
3063	if (!(sb->s_flags & MS_KERNMOUNT)) {
3064		sbinfo->max_blocks = shmem_default_max_blocks();
3065		sbinfo->max_inodes = shmem_default_max_inodes();
3066		if (shmem_parse_options(data, sbinfo, false)) {
3067			err = -EINVAL;
3068			goto failed;
3069		}
3070	} else {
3071		sb->s_flags |= MS_NOUSER;
3072	}
3073	sb->s_export_op = &shmem_export_ops;
3074	sb->s_flags |= MS_NOSEC;
3075#else
3076	sb->s_flags |= MS_NOUSER;
3077#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3078
3079	spin_lock_init(&sbinfo->stat_lock);
3080	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3081		goto failed;
3082	sbinfo->free_inodes = sbinfo->max_inodes;
 
3083
3084	sb->s_maxbytes = MAX_LFS_FILESIZE;
3085	sb->s_blocksize = PAGE_SIZE;
3086	sb->s_blocksize_bits = PAGE_SHIFT;
3087	sb->s_magic = TMPFS_MAGIC;
3088	sb->s_op = &shmem_ops;
3089	sb->s_time_gran = 1;
3090#ifdef CONFIG_TMPFS_XATTR
3091	sb->s_xattr = shmem_xattr_handlers;
3092#endif
3093#ifdef CONFIG_TMPFS_POSIX_ACL
3094	sb->s_flags |= MS_POSIXACL;
3095#endif
 
3096
3097	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3098	if (!inode)
3099		goto failed;
3100	inode->i_uid = sbinfo->uid;
3101	inode->i_gid = sbinfo->gid;
3102	sb->s_root = d_make_root(inode);
3103	if (!sb->s_root)
3104		goto failed;
3105	return 0;
3106
3107failed:
3108	shmem_put_super(sb);
3109	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3110}
3111
 
 
 
 
 
 
 
 
 
 
3112static struct kmem_cache *shmem_inode_cachep;
3113
3114static struct inode *shmem_alloc_inode(struct super_block *sb)
3115{
3116	struct shmem_inode_info *info;
3117	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3118	if (!info)
3119		return NULL;
3120	return &info->vfs_inode;
3121}
3122
3123static void shmem_destroy_callback(struct rcu_head *head)
3124{
3125	struct inode *inode = container_of(head, struct inode, i_rcu);
3126	kfree(inode->i_link);
3127	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3128}
3129
3130static void shmem_destroy_inode(struct inode *inode)
3131{
3132	if (S_ISREG(inode->i_mode))
3133		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3134	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3135}
3136
3137static void shmem_init_inode(void *foo)
3138{
3139	struct shmem_inode_info *info = foo;
3140	inode_init_once(&info->vfs_inode);
3141}
3142
3143static int shmem_init_inodecache(void)
3144{
3145	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3146				sizeof(struct shmem_inode_info),
3147				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3148	return 0;
3149}
3150
3151static void shmem_destroy_inodecache(void)
3152{
3153	kmem_cache_destroy(shmem_inode_cachep);
3154}
3155
3156static const struct address_space_operations shmem_aops = {
 
 
 
 
 
 
 
3157	.writepage	= shmem_writepage,
3158	.set_page_dirty	= __set_page_dirty_no_writeback,
3159#ifdef CONFIG_TMPFS
3160	.write_begin	= shmem_write_begin,
3161	.write_end	= shmem_write_end,
3162#endif
3163#ifdef CONFIG_MIGRATION
3164	.migratepage	= migrate_page,
3165#endif
3166	.error_remove_page = generic_error_remove_page,
3167};
 
3168
3169static const struct file_operations shmem_file_operations = {
3170	.mmap		= shmem_mmap,
 
 
3171#ifdef CONFIG_TMPFS
3172	.llseek		= shmem_file_llseek,
3173	.read_iter	= shmem_file_read_iter,
3174	.write_iter	= generic_file_write_iter,
3175	.fsync		= noop_fsync,
3176	.splice_read	= shmem_file_splice_read,
3177	.splice_write	= iter_file_splice_write,
3178	.fallocate	= shmem_fallocate,
3179#endif
3180};
3181
3182static const struct inode_operations shmem_inode_operations = {
3183	.getattr	= shmem_getattr,
3184	.setattr	= shmem_setattr,
3185#ifdef CONFIG_TMPFS_XATTR
3186	.setxattr	= generic_setxattr,
3187	.getxattr	= generic_getxattr,
3188	.listxattr	= shmem_listxattr,
3189	.removexattr	= generic_removexattr,
3190	.set_acl	= simple_set_acl,
 
 
3191#endif
3192};
3193
3194static const struct inode_operations shmem_dir_inode_operations = {
3195#ifdef CONFIG_TMPFS
 
3196	.create		= shmem_create,
3197	.lookup		= simple_lookup,
3198	.link		= shmem_link,
3199	.unlink		= shmem_unlink,
3200	.symlink	= shmem_symlink,
3201	.mkdir		= shmem_mkdir,
3202	.rmdir		= shmem_rmdir,
3203	.mknod		= shmem_mknod,
3204	.rename2	= shmem_rename2,
3205	.tmpfile	= shmem_tmpfile,
3206#endif
3207#ifdef CONFIG_TMPFS_XATTR
3208	.setxattr	= generic_setxattr,
3209	.getxattr	= generic_getxattr,
3210	.listxattr	= shmem_listxattr,
3211	.removexattr	= generic_removexattr,
 
3212#endif
3213#ifdef CONFIG_TMPFS_POSIX_ACL
3214	.setattr	= shmem_setattr,
3215	.set_acl	= simple_set_acl,
3216#endif
3217};
3218
3219static const struct inode_operations shmem_special_inode_operations = {
 
3220#ifdef CONFIG_TMPFS_XATTR
3221	.setxattr	= generic_setxattr,
3222	.getxattr	= generic_getxattr,
3223	.listxattr	= shmem_listxattr,
3224	.removexattr	= generic_removexattr,
3225#endif
3226#ifdef CONFIG_TMPFS_POSIX_ACL
3227	.setattr	= shmem_setattr,
3228	.set_acl	= simple_set_acl,
3229#endif
3230};
3231
3232static const struct super_operations shmem_ops = {
3233	.alloc_inode	= shmem_alloc_inode,
 
3234	.destroy_inode	= shmem_destroy_inode,
3235#ifdef CONFIG_TMPFS
3236	.statfs		= shmem_statfs,
3237	.remount_fs	= shmem_remount_fs,
3238	.show_options	= shmem_show_options,
3239#endif
3240	.evict_inode	= shmem_evict_inode,
3241	.drop_inode	= generic_delete_inode,
3242	.put_super	= shmem_put_super,
 
 
 
 
3243};
3244
3245static const struct vm_operations_struct shmem_vm_ops = {
3246	.fault		= shmem_fault,
3247	.map_pages	= filemap_map_pages,
3248#ifdef CONFIG_NUMA
3249	.set_policy     = shmem_set_policy,
3250	.get_policy     = shmem_get_policy,
3251#endif
3252};
3253
3254static struct dentry *shmem_mount(struct file_system_type *fs_type,
3255	int flags, const char *dev_name, void *data)
 
 
 
 
 
 
 
 
3256{
3257	return mount_nodev(fs_type, flags, data, shmem_fill_super);
 
 
 
 
 
 
 
 
 
 
 
 
3258}
3259
3260static struct file_system_type shmem_fs_type = {
3261	.owner		= THIS_MODULE,
3262	.name		= "tmpfs",
3263	.mount		= shmem_mount,
 
 
 
3264	.kill_sb	= kill_litter_super,
3265	.fs_flags	= FS_USERNS_MOUNT,
3266};
3267
3268int __init shmem_init(void)
3269{
3270	int error;
3271
3272	/* If rootfs called this, don't re-init */
3273	if (shmem_inode_cachep)
3274		return 0;
3275
3276	error = shmem_init_inodecache();
3277	if (error)
3278		goto out3;
3279
3280	error = register_filesystem(&shmem_fs_type);
3281	if (error) {
3282		pr_err("Could not register tmpfs\n");
3283		goto out2;
3284	}
3285
3286	shm_mnt = kern_mount(&shmem_fs_type);
3287	if (IS_ERR(shm_mnt)) {
3288		error = PTR_ERR(shm_mnt);
3289		pr_err("Could not kern_mount tmpfs\n");
3290		goto out1;
3291	}
3292	return 0;
 
 
 
 
 
 
 
3293
3294out1:
3295	unregister_filesystem(&shmem_fs_type);
3296out2:
3297	shmem_destroy_inodecache();
3298out3:
3299	shm_mnt = ERR_PTR(error);
3300	return error;
3301}
3302
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3303#else /* !CONFIG_SHMEM */
3304
3305/*
3306 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3307 *
3308 * This is intended for small system where the benefits of the full
3309 * shmem code (swap-backed and resource-limited) are outweighed by
3310 * their complexity. On systems without swap this code should be
3311 * effectively equivalent, but much lighter weight.
3312 */
3313
3314static struct file_system_type shmem_fs_type = {
3315	.name		= "tmpfs",
3316	.mount		= ramfs_mount,
 
3317	.kill_sb	= kill_litter_super,
3318	.fs_flags	= FS_USERNS_MOUNT,
3319};
3320
3321int __init shmem_init(void)
3322{
3323	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3324
3325	shm_mnt = kern_mount(&shmem_fs_type);
3326	BUG_ON(IS_ERR(shm_mnt));
 
3327
 
 
3328	return 0;
3329}
3330
3331int shmem_unuse(swp_entry_t swap, struct page *page)
3332{
3333	return 0;
3334}
3335
3336int shmem_lock(struct file *file, int lock, struct user_struct *user)
3337{
3338	return 0;
3339}
3340
3341void shmem_unlock_mapping(struct address_space *mapping)
 
 
 
3342{
 
3343}
 
3344
3345void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3346{
3347	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3348}
3349EXPORT_SYMBOL_GPL(shmem_truncate_range);
3350
3351#define shmem_vm_ops				generic_file_vm_ops
 
3352#define shmem_file_operations			ramfs_file_operations
3353#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3354#define shmem_acct_size(flags, size)		0
3355#define shmem_unacct_size(flags, size)		do {} while (0)
3356
3357#endif /* CONFIG_SHMEM */
3358
3359/* common code */
3360
3361static struct dentry_operations anon_ops = {
3362	.d_dname = simple_dname
3363};
3364
3365static struct file *__shmem_file_setup(const char *name, loff_t size,
3366				       unsigned long flags, unsigned int i_flags)
3367{
 
3368	struct file *res;
3369	struct inode *inode;
3370	struct path path;
3371	struct super_block *sb;
3372	struct qstr this;
3373
3374	if (IS_ERR(shm_mnt))
3375		return ERR_CAST(shm_mnt);
3376
3377	if (size < 0 || size > MAX_LFS_FILESIZE)
3378		return ERR_PTR(-EINVAL);
3379
3380	if (shmem_acct_size(flags, size))
3381		return ERR_PTR(-ENOMEM);
3382
3383	res = ERR_PTR(-ENOMEM);
3384	this.name = name;
3385	this.len = strlen(name);
3386	this.hash = 0; /* will go */
3387	sb = shm_mnt->mnt_sb;
3388	path.mnt = mntget(shm_mnt);
3389	path.dentry = d_alloc_pseudo(sb, &this);
3390	if (!path.dentry)
3391		goto put_memory;
3392	d_set_d_op(path.dentry, &anon_ops);
3393
3394	res = ERR_PTR(-ENOSPC);
3395	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3396	if (!inode)
3397		goto put_memory;
3398
3399	inode->i_flags |= i_flags;
3400	d_instantiate(path.dentry, inode);
3401	inode->i_size = size;
3402	clear_nlink(inode);	/* It is unlinked */
3403	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
 
 
 
3404	if (IS_ERR(res))
3405		goto put_path;
3406
3407	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3408		  &shmem_file_operations);
3409	if (IS_ERR(res))
3410		goto put_path;
3411
3412	return res;
3413
3414put_memory:
3415	shmem_unacct_size(flags, size);
3416put_path:
3417	path_put(&path);
3418	return res;
3419}
3420
3421/**
3422 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3423 * 	kernel internal.  There will be NO LSM permission checks against the
3424 * 	underlying inode.  So users of this interface must do LSM checks at a
3425 *	higher layer.  The users are the big_key and shm implementations.  LSM
3426 *	checks are provided at the key or shm level rather than the inode.
3427 * @name: name for dentry (to be seen in /proc/<pid>/maps
3428 * @size: size to be set for the file
3429 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3430 */
3431struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3432{
3433	return __shmem_file_setup(name, size, flags, S_PRIVATE);
3434}
3435
3436/**
3437 * shmem_file_setup - get an unlinked file living in tmpfs
3438 * @name: name for dentry (to be seen in /proc/<pid>/maps
3439 * @size: size to be set for the file
3440 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3441 */
3442struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3443{
3444	return __shmem_file_setup(name, size, flags, 0);
3445}
3446EXPORT_SYMBOL_GPL(shmem_file_setup);
3447
3448/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3449 * shmem_zero_setup - setup a shared anonymous mapping
3450 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3451 */
3452int shmem_zero_setup(struct vm_area_struct *vma)
3453{
3454	struct file *file;
3455	loff_t size = vma->vm_end - vma->vm_start;
3456
3457	/*
3458	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3459	 * between XFS directory reading and selinux: since this file is only
3460	 * accessible to the user through its mapping, use S_PRIVATE flag to
3461	 * bypass file security, in the same way as shmem_kernel_file_setup().
3462	 */
3463	file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3464	if (IS_ERR(file))
3465		return PTR_ERR(file);
3466
3467	if (vma->vm_file)
3468		fput(vma->vm_file);
3469	vma->vm_file = file;
3470	vma->vm_ops = &shmem_vm_ops;
 
3471	return 0;
3472}
3473
3474/**
3475 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3476 * @mapping:	the page's address_space
3477 * @index:	the page index
3478 * @gfp:	the page allocator flags to use if allocating
3479 *
3480 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3481 * with any new page allocations done using the specified allocation flags.
3482 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3483 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3484 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3485 *
3486 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3487 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3488 */
3489struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3490					 pgoff_t index, gfp_t gfp)
3491{
3492#ifdef CONFIG_SHMEM
3493	struct inode *inode = mapping->host;
 
3494	struct page *page;
3495	int error;
3496
3497	BUG_ON(mapping->a_ops != &shmem_aops);
3498	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
 
3499	if (error)
3500		page = ERR_PTR(error);
3501	else
3502		unlock_page(page);
 
 
 
 
 
 
3503	return page;
3504#else
3505	/*
3506	 * The tiny !SHMEM case uses ramfs without swap
3507	 */
3508	return read_cache_page_gfp(mapping, index, gfp);
3509#endif
3510}
3511EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);