Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Generic ring buffer
4 *
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 */
7#include <linux/trace_recursion.h>
8#include <linux/trace_events.h>
9#include <linux/ring_buffer.h>
10#include <linux/trace_clock.h>
11#include <linux/sched/clock.h>
12#include <linux/trace_seq.h>
13#include <linux/spinlock.h>
14#include <linux/irq_work.h>
15#include <linux/security.h>
16#include <linux/uaccess.h>
17#include <linux/hardirq.h>
18#include <linux/kthread.h> /* for self test */
19#include <linux/module.h>
20#include <linux/percpu.h>
21#include <linux/mutex.h>
22#include <linux/delay.h>
23#include <linux/slab.h>
24#include <linux/init.h>
25#include <linux/hash.h>
26#include <linux/list.h>
27#include <linux/cpu.h>
28#include <linux/oom.h>
29
30#include <asm/local.h>
31
32/*
33 * The "absolute" timestamp in the buffer is only 59 bits.
34 * If a clock has the 5 MSBs set, it needs to be saved and
35 * reinserted.
36 */
37#define TS_MSB (0xf8ULL << 56)
38#define ABS_TS_MASK (~TS_MSB)
39
40static void update_pages_handler(struct work_struct *work);
41
42/*
43 * The ring buffer header is special. We must manually up keep it.
44 */
45int ring_buffer_print_entry_header(struct trace_seq *s)
46{
47 trace_seq_puts(s, "# compressed entry header\n");
48 trace_seq_puts(s, "\ttype_len : 5 bits\n");
49 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
50 trace_seq_puts(s, "\tarray : 32 bits\n");
51 trace_seq_putc(s, '\n');
52 trace_seq_printf(s, "\tpadding : type == %d\n",
53 RINGBUF_TYPE_PADDING);
54 trace_seq_printf(s, "\ttime_extend : type == %d\n",
55 RINGBUF_TYPE_TIME_EXTEND);
56 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
57 RINGBUF_TYPE_TIME_STAMP);
58 trace_seq_printf(s, "\tdata max type_len == %d\n",
59 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
60
61 return !trace_seq_has_overflowed(s);
62}
63
64/*
65 * The ring buffer is made up of a list of pages. A separate list of pages is
66 * allocated for each CPU. A writer may only write to a buffer that is
67 * associated with the CPU it is currently executing on. A reader may read
68 * from any per cpu buffer.
69 *
70 * The reader is special. For each per cpu buffer, the reader has its own
71 * reader page. When a reader has read the entire reader page, this reader
72 * page is swapped with another page in the ring buffer.
73 *
74 * Now, as long as the writer is off the reader page, the reader can do what
75 * ever it wants with that page. The writer will never write to that page
76 * again (as long as it is out of the ring buffer).
77 *
78 * Here's some silly ASCII art.
79 *
80 * +------+
81 * |reader| RING BUFFER
82 * |page |
83 * +------+ +---+ +---+ +---+
84 * | |-->| |-->| |
85 * +---+ +---+ +---+
86 * ^ |
87 * | |
88 * +---------------+
89 *
90 *
91 * +------+
92 * |reader| RING BUFFER
93 * |page |------------------v
94 * +------+ +---+ +---+ +---+
95 * | |-->| |-->| |
96 * +---+ +---+ +---+
97 * ^ |
98 * | |
99 * +---------------+
100 *
101 *
102 * +------+
103 * |reader| RING BUFFER
104 * |page |------------------v
105 * +------+ +---+ +---+ +---+
106 * ^ | |-->| |-->| |
107 * | +---+ +---+ +---+
108 * | |
109 * | |
110 * +------------------------------+
111 *
112 *
113 * +------+
114 * |buffer| RING BUFFER
115 * |page |------------------v
116 * +------+ +---+ +---+ +---+
117 * ^ | | | |-->| |
118 * | New +---+ +---+ +---+
119 * | Reader------^ |
120 * | page |
121 * +------------------------------+
122 *
123 *
124 * After we make this swap, the reader can hand this page off to the splice
125 * code and be done with it. It can even allocate a new page if it needs to
126 * and swap that into the ring buffer.
127 *
128 * We will be using cmpxchg soon to make all this lockless.
129 *
130 */
131
132/* Used for individual buffers (after the counter) */
133#define RB_BUFFER_OFF (1 << 20)
134
135#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
136
137#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
138#define RB_ALIGNMENT 4U
139#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
140#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
141
142#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
143# define RB_FORCE_8BYTE_ALIGNMENT 0
144# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
145#else
146# define RB_FORCE_8BYTE_ALIGNMENT 1
147# define RB_ARCH_ALIGNMENT 8U
148#endif
149
150#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
151
152/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
153#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
154
155enum {
156 RB_LEN_TIME_EXTEND = 8,
157 RB_LEN_TIME_STAMP = 8,
158};
159
160#define skip_time_extend(event) \
161 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
162
163#define extended_time(event) \
164 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
165
166static inline int rb_null_event(struct ring_buffer_event *event)
167{
168 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
169}
170
171static void rb_event_set_padding(struct ring_buffer_event *event)
172{
173 /* padding has a NULL time_delta */
174 event->type_len = RINGBUF_TYPE_PADDING;
175 event->time_delta = 0;
176}
177
178static unsigned
179rb_event_data_length(struct ring_buffer_event *event)
180{
181 unsigned length;
182
183 if (event->type_len)
184 length = event->type_len * RB_ALIGNMENT;
185 else
186 length = event->array[0];
187 return length + RB_EVNT_HDR_SIZE;
188}
189
190/*
191 * Return the length of the given event. Will return
192 * the length of the time extend if the event is a
193 * time extend.
194 */
195static inline unsigned
196rb_event_length(struct ring_buffer_event *event)
197{
198 switch (event->type_len) {
199 case RINGBUF_TYPE_PADDING:
200 if (rb_null_event(event))
201 /* undefined */
202 return -1;
203 return event->array[0] + RB_EVNT_HDR_SIZE;
204
205 case RINGBUF_TYPE_TIME_EXTEND:
206 return RB_LEN_TIME_EXTEND;
207
208 case RINGBUF_TYPE_TIME_STAMP:
209 return RB_LEN_TIME_STAMP;
210
211 case RINGBUF_TYPE_DATA:
212 return rb_event_data_length(event);
213 default:
214 WARN_ON_ONCE(1);
215 }
216 /* not hit */
217 return 0;
218}
219
220/*
221 * Return total length of time extend and data,
222 * or just the event length for all other events.
223 */
224static inline unsigned
225rb_event_ts_length(struct ring_buffer_event *event)
226{
227 unsigned len = 0;
228
229 if (extended_time(event)) {
230 /* time extends include the data event after it */
231 len = RB_LEN_TIME_EXTEND;
232 event = skip_time_extend(event);
233 }
234 return len + rb_event_length(event);
235}
236
237/**
238 * ring_buffer_event_length - return the length of the event
239 * @event: the event to get the length of
240 *
241 * Returns the size of the data load of a data event.
242 * If the event is something other than a data event, it
243 * returns the size of the event itself. With the exception
244 * of a TIME EXTEND, where it still returns the size of the
245 * data load of the data event after it.
246 */
247unsigned ring_buffer_event_length(struct ring_buffer_event *event)
248{
249 unsigned length;
250
251 if (extended_time(event))
252 event = skip_time_extend(event);
253
254 length = rb_event_length(event);
255 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
256 return length;
257 length -= RB_EVNT_HDR_SIZE;
258 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
259 length -= sizeof(event->array[0]);
260 return length;
261}
262EXPORT_SYMBOL_GPL(ring_buffer_event_length);
263
264/* inline for ring buffer fast paths */
265static __always_inline void *
266rb_event_data(struct ring_buffer_event *event)
267{
268 if (extended_time(event))
269 event = skip_time_extend(event);
270 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
271 /* If length is in len field, then array[0] has the data */
272 if (event->type_len)
273 return (void *)&event->array[0];
274 /* Otherwise length is in array[0] and array[1] has the data */
275 return (void *)&event->array[1];
276}
277
278/**
279 * ring_buffer_event_data - return the data of the event
280 * @event: the event to get the data from
281 */
282void *ring_buffer_event_data(struct ring_buffer_event *event)
283{
284 return rb_event_data(event);
285}
286EXPORT_SYMBOL_GPL(ring_buffer_event_data);
287
288#define for_each_buffer_cpu(buffer, cpu) \
289 for_each_cpu(cpu, buffer->cpumask)
290
291#define for_each_online_buffer_cpu(buffer, cpu) \
292 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
293
294#define TS_SHIFT 27
295#define TS_MASK ((1ULL << TS_SHIFT) - 1)
296#define TS_DELTA_TEST (~TS_MASK)
297
298static u64 rb_event_time_stamp(struct ring_buffer_event *event)
299{
300 u64 ts;
301
302 ts = event->array[0];
303 ts <<= TS_SHIFT;
304 ts += event->time_delta;
305
306 return ts;
307}
308
309/* Flag when events were overwritten */
310#define RB_MISSED_EVENTS (1 << 31)
311/* Missed count stored at end */
312#define RB_MISSED_STORED (1 << 30)
313
314struct buffer_data_page {
315 u64 time_stamp; /* page time stamp */
316 local_t commit; /* write committed index */
317 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
318};
319
320/*
321 * Note, the buffer_page list must be first. The buffer pages
322 * are allocated in cache lines, which means that each buffer
323 * page will be at the beginning of a cache line, and thus
324 * the least significant bits will be zero. We use this to
325 * add flags in the list struct pointers, to make the ring buffer
326 * lockless.
327 */
328struct buffer_page {
329 struct list_head list; /* list of buffer pages */
330 local_t write; /* index for next write */
331 unsigned read; /* index for next read */
332 local_t entries; /* entries on this page */
333 unsigned long real_end; /* real end of data */
334 struct buffer_data_page *page; /* Actual data page */
335};
336
337/*
338 * The buffer page counters, write and entries, must be reset
339 * atomically when crossing page boundaries. To synchronize this
340 * update, two counters are inserted into the number. One is
341 * the actual counter for the write position or count on the page.
342 *
343 * The other is a counter of updaters. Before an update happens
344 * the update partition of the counter is incremented. This will
345 * allow the updater to update the counter atomically.
346 *
347 * The counter is 20 bits, and the state data is 12.
348 */
349#define RB_WRITE_MASK 0xfffff
350#define RB_WRITE_INTCNT (1 << 20)
351
352static void rb_init_page(struct buffer_data_page *bpage)
353{
354 local_set(&bpage->commit, 0);
355}
356
357/*
358 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
359 * this issue out.
360 */
361static void free_buffer_page(struct buffer_page *bpage)
362{
363 free_page((unsigned long)bpage->page);
364 kfree(bpage);
365}
366
367/*
368 * We need to fit the time_stamp delta into 27 bits.
369 */
370static inline int test_time_stamp(u64 delta)
371{
372 if (delta & TS_DELTA_TEST)
373 return 1;
374 return 0;
375}
376
377#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
378
379/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
380#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
381
382int ring_buffer_print_page_header(struct trace_seq *s)
383{
384 struct buffer_data_page field;
385
386 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
387 "offset:0;\tsize:%u;\tsigned:%u;\n",
388 (unsigned int)sizeof(field.time_stamp),
389 (unsigned int)is_signed_type(u64));
390
391 trace_seq_printf(s, "\tfield: local_t commit;\t"
392 "offset:%u;\tsize:%u;\tsigned:%u;\n",
393 (unsigned int)offsetof(typeof(field), commit),
394 (unsigned int)sizeof(field.commit),
395 (unsigned int)is_signed_type(long));
396
397 trace_seq_printf(s, "\tfield: int overwrite;\t"
398 "offset:%u;\tsize:%u;\tsigned:%u;\n",
399 (unsigned int)offsetof(typeof(field), commit),
400 1,
401 (unsigned int)is_signed_type(long));
402
403 trace_seq_printf(s, "\tfield: char data;\t"
404 "offset:%u;\tsize:%u;\tsigned:%u;\n",
405 (unsigned int)offsetof(typeof(field), data),
406 (unsigned int)BUF_PAGE_SIZE,
407 (unsigned int)is_signed_type(char));
408
409 return !trace_seq_has_overflowed(s);
410}
411
412struct rb_irq_work {
413 struct irq_work work;
414 wait_queue_head_t waiters;
415 wait_queue_head_t full_waiters;
416 long wait_index;
417 bool waiters_pending;
418 bool full_waiters_pending;
419 bool wakeup_full;
420};
421
422/*
423 * Structure to hold event state and handle nested events.
424 */
425struct rb_event_info {
426 u64 ts;
427 u64 delta;
428 u64 before;
429 u64 after;
430 unsigned long length;
431 struct buffer_page *tail_page;
432 int add_timestamp;
433};
434
435/*
436 * Used for the add_timestamp
437 * NONE
438 * EXTEND - wants a time extend
439 * ABSOLUTE - the buffer requests all events to have absolute time stamps
440 * FORCE - force a full time stamp.
441 */
442enum {
443 RB_ADD_STAMP_NONE = 0,
444 RB_ADD_STAMP_EXTEND = BIT(1),
445 RB_ADD_STAMP_ABSOLUTE = BIT(2),
446 RB_ADD_STAMP_FORCE = BIT(3)
447};
448/*
449 * Used for which event context the event is in.
450 * TRANSITION = 0
451 * NMI = 1
452 * IRQ = 2
453 * SOFTIRQ = 3
454 * NORMAL = 4
455 *
456 * See trace_recursive_lock() comment below for more details.
457 */
458enum {
459 RB_CTX_TRANSITION,
460 RB_CTX_NMI,
461 RB_CTX_IRQ,
462 RB_CTX_SOFTIRQ,
463 RB_CTX_NORMAL,
464 RB_CTX_MAX
465};
466
467#if BITS_PER_LONG == 32
468#define RB_TIME_32
469#endif
470
471/* To test on 64 bit machines */
472//#define RB_TIME_32
473
474#ifdef RB_TIME_32
475
476struct rb_time_struct {
477 local_t cnt;
478 local_t top;
479 local_t bottom;
480 local_t msb;
481};
482#else
483#include <asm/local64.h>
484struct rb_time_struct {
485 local64_t time;
486};
487#endif
488typedef struct rb_time_struct rb_time_t;
489
490#define MAX_NEST 5
491
492/*
493 * head_page == tail_page && head == tail then buffer is empty.
494 */
495struct ring_buffer_per_cpu {
496 int cpu;
497 atomic_t record_disabled;
498 atomic_t resize_disabled;
499 struct trace_buffer *buffer;
500 raw_spinlock_t reader_lock; /* serialize readers */
501 arch_spinlock_t lock;
502 struct lock_class_key lock_key;
503 struct buffer_data_page *free_page;
504 unsigned long nr_pages;
505 unsigned int current_context;
506 struct list_head *pages;
507 struct buffer_page *head_page; /* read from head */
508 struct buffer_page *tail_page; /* write to tail */
509 struct buffer_page *commit_page; /* committed pages */
510 struct buffer_page *reader_page;
511 unsigned long lost_events;
512 unsigned long last_overrun;
513 unsigned long nest;
514 local_t entries_bytes;
515 local_t entries;
516 local_t overrun;
517 local_t commit_overrun;
518 local_t dropped_events;
519 local_t committing;
520 local_t commits;
521 local_t pages_touched;
522 local_t pages_lost;
523 local_t pages_read;
524 long last_pages_touch;
525 size_t shortest_full;
526 unsigned long read;
527 unsigned long read_bytes;
528 rb_time_t write_stamp;
529 rb_time_t before_stamp;
530 u64 event_stamp[MAX_NEST];
531 u64 read_stamp;
532 /* ring buffer pages to update, > 0 to add, < 0 to remove */
533 long nr_pages_to_update;
534 struct list_head new_pages; /* new pages to add */
535 struct work_struct update_pages_work;
536 struct completion update_done;
537
538 struct rb_irq_work irq_work;
539};
540
541struct trace_buffer {
542 unsigned flags;
543 int cpus;
544 atomic_t record_disabled;
545 cpumask_var_t cpumask;
546
547 struct lock_class_key *reader_lock_key;
548
549 struct mutex mutex;
550
551 struct ring_buffer_per_cpu **buffers;
552
553 struct hlist_node node;
554 u64 (*clock)(void);
555
556 struct rb_irq_work irq_work;
557 bool time_stamp_abs;
558};
559
560struct ring_buffer_iter {
561 struct ring_buffer_per_cpu *cpu_buffer;
562 unsigned long head;
563 unsigned long next_event;
564 struct buffer_page *head_page;
565 struct buffer_page *cache_reader_page;
566 unsigned long cache_read;
567 u64 read_stamp;
568 u64 page_stamp;
569 struct ring_buffer_event *event;
570 int missed_events;
571};
572
573#ifdef RB_TIME_32
574
575/*
576 * On 32 bit machines, local64_t is very expensive. As the ring
577 * buffer doesn't need all the features of a true 64 bit atomic,
578 * on 32 bit, it uses these functions (64 still uses local64_t).
579 *
580 * For the ring buffer, 64 bit required operations for the time is
581 * the following:
582 *
583 * - Reads may fail if it interrupted a modification of the time stamp.
584 * It will succeed if it did not interrupt another write even if
585 * the read itself is interrupted by a write.
586 * It returns whether it was successful or not.
587 *
588 * - Writes always succeed and will overwrite other writes and writes
589 * that were done by events interrupting the current write.
590 *
591 * - A write followed by a read of the same time stamp will always succeed,
592 * but may not contain the same value.
593 *
594 * - A cmpxchg will fail if it interrupted another write or cmpxchg.
595 * Other than that, it acts like a normal cmpxchg.
596 *
597 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
598 * (bottom being the least significant 30 bits of the 60 bit time stamp).
599 *
600 * The two most significant bits of each half holds a 2 bit counter (0-3).
601 * Each update will increment this counter by one.
602 * When reading the top and bottom, if the two counter bits match then the
603 * top and bottom together make a valid 60 bit number.
604 */
605#define RB_TIME_SHIFT 30
606#define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
607#define RB_TIME_MSB_SHIFT 60
608
609static inline int rb_time_cnt(unsigned long val)
610{
611 return (val >> RB_TIME_SHIFT) & 3;
612}
613
614static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
615{
616 u64 val;
617
618 val = top & RB_TIME_VAL_MASK;
619 val <<= RB_TIME_SHIFT;
620 val |= bottom & RB_TIME_VAL_MASK;
621
622 return val;
623}
624
625static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
626{
627 unsigned long top, bottom, msb;
628 unsigned long c;
629
630 /*
631 * If the read is interrupted by a write, then the cnt will
632 * be different. Loop until both top and bottom have been read
633 * without interruption.
634 */
635 do {
636 c = local_read(&t->cnt);
637 top = local_read(&t->top);
638 bottom = local_read(&t->bottom);
639 msb = local_read(&t->msb);
640 } while (c != local_read(&t->cnt));
641
642 *cnt = rb_time_cnt(top);
643
644 /* If top and bottom counts don't match, this interrupted a write */
645 if (*cnt != rb_time_cnt(bottom))
646 return false;
647
648 /* The shift to msb will lose its cnt bits */
649 *ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
650 return true;
651}
652
653static bool rb_time_read(rb_time_t *t, u64 *ret)
654{
655 unsigned long cnt;
656
657 return __rb_time_read(t, ret, &cnt);
658}
659
660static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
661{
662 return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
663}
664
665static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
666 unsigned long *msb)
667{
668 *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
669 *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
670 *msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
671}
672
673static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
674{
675 val = rb_time_val_cnt(val, cnt);
676 local_set(t, val);
677}
678
679static void rb_time_set(rb_time_t *t, u64 val)
680{
681 unsigned long cnt, top, bottom, msb;
682
683 rb_time_split(val, &top, &bottom, &msb);
684
685 /* Writes always succeed with a valid number even if it gets interrupted. */
686 do {
687 cnt = local_inc_return(&t->cnt);
688 rb_time_val_set(&t->top, top, cnt);
689 rb_time_val_set(&t->bottom, bottom, cnt);
690 rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
691 } while (cnt != local_read(&t->cnt));
692}
693
694static inline bool
695rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
696{
697 unsigned long ret;
698
699 ret = local_cmpxchg(l, expect, set);
700 return ret == expect;
701}
702
703static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
704{
705 unsigned long cnt, top, bottom, msb;
706 unsigned long cnt2, top2, bottom2, msb2;
707 u64 val;
708
709 /* The cmpxchg always fails if it interrupted an update */
710 if (!__rb_time_read(t, &val, &cnt2))
711 return false;
712
713 if (val != expect)
714 return false;
715
716 cnt = local_read(&t->cnt);
717 if ((cnt & 3) != cnt2)
718 return false;
719
720 cnt2 = cnt + 1;
721
722 rb_time_split(val, &top, &bottom, &msb);
723 top = rb_time_val_cnt(top, cnt);
724 bottom = rb_time_val_cnt(bottom, cnt);
725
726 rb_time_split(set, &top2, &bottom2, &msb2);
727 top2 = rb_time_val_cnt(top2, cnt2);
728 bottom2 = rb_time_val_cnt(bottom2, cnt2);
729
730 if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
731 return false;
732 if (!rb_time_read_cmpxchg(&t->msb, msb, msb2))
733 return false;
734 if (!rb_time_read_cmpxchg(&t->top, top, top2))
735 return false;
736 if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
737 return false;
738 return true;
739}
740
741#else /* 64 bits */
742
743/* local64_t always succeeds */
744
745static inline bool rb_time_read(rb_time_t *t, u64 *ret)
746{
747 *ret = local64_read(&t->time);
748 return true;
749}
750static void rb_time_set(rb_time_t *t, u64 val)
751{
752 local64_set(&t->time, val);
753}
754
755static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
756{
757 u64 val;
758 val = local64_cmpxchg(&t->time, expect, set);
759 return val == expect;
760}
761#endif
762
763/*
764 * Enable this to make sure that the event passed to
765 * ring_buffer_event_time_stamp() is not committed and also
766 * is on the buffer that it passed in.
767 */
768//#define RB_VERIFY_EVENT
769#ifdef RB_VERIFY_EVENT
770static struct list_head *rb_list_head(struct list_head *list);
771static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
772 void *event)
773{
774 struct buffer_page *page = cpu_buffer->commit_page;
775 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
776 struct list_head *next;
777 long commit, write;
778 unsigned long addr = (unsigned long)event;
779 bool done = false;
780 int stop = 0;
781
782 /* Make sure the event exists and is not committed yet */
783 do {
784 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
785 done = true;
786 commit = local_read(&page->page->commit);
787 write = local_read(&page->write);
788 if (addr >= (unsigned long)&page->page->data[commit] &&
789 addr < (unsigned long)&page->page->data[write])
790 return;
791
792 next = rb_list_head(page->list.next);
793 page = list_entry(next, struct buffer_page, list);
794 } while (!done);
795 WARN_ON_ONCE(1);
796}
797#else
798static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
799 void *event)
800{
801}
802#endif
803
804/*
805 * The absolute time stamp drops the 5 MSBs and some clocks may
806 * require them. The rb_fix_abs_ts() will take a previous full
807 * time stamp, and add the 5 MSB of that time stamp on to the
808 * saved absolute time stamp. Then they are compared in case of
809 * the unlikely event that the latest time stamp incremented
810 * the 5 MSB.
811 */
812static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
813{
814 if (save_ts & TS_MSB) {
815 abs |= save_ts & TS_MSB;
816 /* Check for overflow */
817 if (unlikely(abs < save_ts))
818 abs += 1ULL << 59;
819 }
820 return abs;
821}
822
823static inline u64 rb_time_stamp(struct trace_buffer *buffer);
824
825/**
826 * ring_buffer_event_time_stamp - return the event's current time stamp
827 * @buffer: The buffer that the event is on
828 * @event: the event to get the time stamp of
829 *
830 * Note, this must be called after @event is reserved, and before it is
831 * committed to the ring buffer. And must be called from the same
832 * context where the event was reserved (normal, softirq, irq, etc).
833 *
834 * Returns the time stamp associated with the current event.
835 * If the event has an extended time stamp, then that is used as
836 * the time stamp to return.
837 * In the highly unlikely case that the event was nested more than
838 * the max nesting, then the write_stamp of the buffer is returned,
839 * otherwise current time is returned, but that really neither of
840 * the last two cases should ever happen.
841 */
842u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
843 struct ring_buffer_event *event)
844{
845 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
846 unsigned int nest;
847 u64 ts;
848
849 /* If the event includes an absolute time, then just use that */
850 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
851 ts = rb_event_time_stamp(event);
852 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
853 }
854
855 nest = local_read(&cpu_buffer->committing);
856 verify_event(cpu_buffer, event);
857 if (WARN_ON_ONCE(!nest))
858 goto fail;
859
860 /* Read the current saved nesting level time stamp */
861 if (likely(--nest < MAX_NEST))
862 return cpu_buffer->event_stamp[nest];
863
864 /* Shouldn't happen, warn if it does */
865 WARN_ONCE(1, "nest (%d) greater than max", nest);
866
867 fail:
868 /* Can only fail on 32 bit */
869 if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
870 /* Screw it, just read the current time */
871 ts = rb_time_stamp(cpu_buffer->buffer);
872
873 return ts;
874}
875
876/**
877 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
878 * @buffer: The ring_buffer to get the number of pages from
879 * @cpu: The cpu of the ring_buffer to get the number of pages from
880 *
881 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
882 */
883size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
884{
885 return buffer->buffers[cpu]->nr_pages;
886}
887
888/**
889 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
890 * @buffer: The ring_buffer to get the number of pages from
891 * @cpu: The cpu of the ring_buffer to get the number of pages from
892 *
893 * Returns the number of pages that have content in the ring buffer.
894 */
895size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
896{
897 size_t read;
898 size_t lost;
899 size_t cnt;
900
901 read = local_read(&buffer->buffers[cpu]->pages_read);
902 lost = local_read(&buffer->buffers[cpu]->pages_lost);
903 cnt = local_read(&buffer->buffers[cpu]->pages_touched);
904
905 if (WARN_ON_ONCE(cnt < lost))
906 return 0;
907
908 cnt -= lost;
909
910 /* The reader can read an empty page, but not more than that */
911 if (cnt < read) {
912 WARN_ON_ONCE(read > cnt + 1);
913 return 0;
914 }
915
916 return cnt - read;
917}
918
919static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
920{
921 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
922 size_t nr_pages;
923 size_t dirty;
924
925 nr_pages = cpu_buffer->nr_pages;
926 if (!nr_pages || !full)
927 return true;
928
929 dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
930
931 return (dirty * 100) > (full * nr_pages);
932}
933
934/*
935 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
936 *
937 * Schedules a delayed work to wake up any task that is blocked on the
938 * ring buffer waiters queue.
939 */
940static void rb_wake_up_waiters(struct irq_work *work)
941{
942 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
943
944 wake_up_all(&rbwork->waiters);
945 if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
946 rbwork->wakeup_full = false;
947 rbwork->full_waiters_pending = false;
948 wake_up_all(&rbwork->full_waiters);
949 }
950}
951
952/**
953 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
954 * @buffer: The ring buffer to wake waiters on
955 *
956 * In the case of a file that represents a ring buffer is closing,
957 * it is prudent to wake up any waiters that are on this.
958 */
959void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
960{
961 struct ring_buffer_per_cpu *cpu_buffer;
962 struct rb_irq_work *rbwork;
963
964 if (!buffer)
965 return;
966
967 if (cpu == RING_BUFFER_ALL_CPUS) {
968
969 /* Wake up individual ones too. One level recursion */
970 for_each_buffer_cpu(buffer, cpu)
971 ring_buffer_wake_waiters(buffer, cpu);
972
973 rbwork = &buffer->irq_work;
974 } else {
975 if (WARN_ON_ONCE(!buffer->buffers))
976 return;
977 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
978 return;
979
980 cpu_buffer = buffer->buffers[cpu];
981 /* The CPU buffer may not have been initialized yet */
982 if (!cpu_buffer)
983 return;
984 rbwork = &cpu_buffer->irq_work;
985 }
986
987 rbwork->wait_index++;
988 /* make sure the waiters see the new index */
989 smp_wmb();
990
991 rb_wake_up_waiters(&rbwork->work);
992}
993
994/**
995 * ring_buffer_wait - wait for input to the ring buffer
996 * @buffer: buffer to wait on
997 * @cpu: the cpu buffer to wait on
998 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
999 *
1000 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1001 * as data is added to any of the @buffer's cpu buffers. Otherwise
1002 * it will wait for data to be added to a specific cpu buffer.
1003 */
1004int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
1005{
1006 struct ring_buffer_per_cpu *cpu_buffer;
1007 DEFINE_WAIT(wait);
1008 struct rb_irq_work *work;
1009 long wait_index;
1010 int ret = 0;
1011
1012 /*
1013 * Depending on what the caller is waiting for, either any
1014 * data in any cpu buffer, or a specific buffer, put the
1015 * caller on the appropriate wait queue.
1016 */
1017 if (cpu == RING_BUFFER_ALL_CPUS) {
1018 work = &buffer->irq_work;
1019 /* Full only makes sense on per cpu reads */
1020 full = 0;
1021 } else {
1022 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1023 return -ENODEV;
1024 cpu_buffer = buffer->buffers[cpu];
1025 work = &cpu_buffer->irq_work;
1026 }
1027
1028 wait_index = READ_ONCE(work->wait_index);
1029
1030 while (true) {
1031 if (full)
1032 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
1033 else
1034 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
1035
1036 /*
1037 * The events can happen in critical sections where
1038 * checking a work queue can cause deadlocks.
1039 * After adding a task to the queue, this flag is set
1040 * only to notify events to try to wake up the queue
1041 * using irq_work.
1042 *
1043 * We don't clear it even if the buffer is no longer
1044 * empty. The flag only causes the next event to run
1045 * irq_work to do the work queue wake up. The worse
1046 * that can happen if we race with !trace_empty() is that
1047 * an event will cause an irq_work to try to wake up
1048 * an empty queue.
1049 *
1050 * There's no reason to protect this flag either, as
1051 * the work queue and irq_work logic will do the necessary
1052 * synchronization for the wake ups. The only thing
1053 * that is necessary is that the wake up happens after
1054 * a task has been queued. It's OK for spurious wake ups.
1055 */
1056 if (full)
1057 work->full_waiters_pending = true;
1058 else
1059 work->waiters_pending = true;
1060
1061 if (signal_pending(current)) {
1062 ret = -EINTR;
1063 break;
1064 }
1065
1066 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
1067 break;
1068
1069 if (cpu != RING_BUFFER_ALL_CPUS &&
1070 !ring_buffer_empty_cpu(buffer, cpu)) {
1071 unsigned long flags;
1072 bool pagebusy;
1073 bool done;
1074
1075 if (!full)
1076 break;
1077
1078 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1079 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
1080 done = !pagebusy && full_hit(buffer, cpu, full);
1081
1082 if (!cpu_buffer->shortest_full ||
1083 cpu_buffer->shortest_full > full)
1084 cpu_buffer->shortest_full = full;
1085 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1086 if (done)
1087 break;
1088 }
1089
1090 schedule();
1091
1092 /* Make sure to see the new wait index */
1093 smp_rmb();
1094 if (wait_index != work->wait_index)
1095 break;
1096 }
1097
1098 if (full)
1099 finish_wait(&work->full_waiters, &wait);
1100 else
1101 finish_wait(&work->waiters, &wait);
1102
1103 return ret;
1104}
1105
1106/**
1107 * ring_buffer_poll_wait - poll on buffer input
1108 * @buffer: buffer to wait on
1109 * @cpu: the cpu buffer to wait on
1110 * @filp: the file descriptor
1111 * @poll_table: The poll descriptor
1112 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1113 *
1114 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1115 * as data is added to any of the @buffer's cpu buffers. Otherwise
1116 * it will wait for data to be added to a specific cpu buffer.
1117 *
1118 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1119 * zero otherwise.
1120 */
1121__poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1122 struct file *filp, poll_table *poll_table, int full)
1123{
1124 struct ring_buffer_per_cpu *cpu_buffer;
1125 struct rb_irq_work *work;
1126
1127 if (cpu == RING_BUFFER_ALL_CPUS) {
1128 work = &buffer->irq_work;
1129 full = 0;
1130 } else {
1131 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1132 return -EINVAL;
1133
1134 cpu_buffer = buffer->buffers[cpu];
1135 work = &cpu_buffer->irq_work;
1136 }
1137
1138 if (full) {
1139 poll_wait(filp, &work->full_waiters, poll_table);
1140 work->full_waiters_pending = true;
1141 } else {
1142 poll_wait(filp, &work->waiters, poll_table);
1143 work->waiters_pending = true;
1144 }
1145
1146 /*
1147 * There's a tight race between setting the waiters_pending and
1148 * checking if the ring buffer is empty. Once the waiters_pending bit
1149 * is set, the next event will wake the task up, but we can get stuck
1150 * if there's only a single event in.
1151 *
1152 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1153 * but adding a memory barrier to all events will cause too much of a
1154 * performance hit in the fast path. We only need a memory barrier when
1155 * the buffer goes from empty to having content. But as this race is
1156 * extremely small, and it's not a problem if another event comes in, we
1157 * will fix it later.
1158 */
1159 smp_mb();
1160
1161 if (full)
1162 return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
1163
1164 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1165 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1166 return EPOLLIN | EPOLLRDNORM;
1167 return 0;
1168}
1169
1170/* buffer may be either ring_buffer or ring_buffer_per_cpu */
1171#define RB_WARN_ON(b, cond) \
1172 ({ \
1173 int _____ret = unlikely(cond); \
1174 if (_____ret) { \
1175 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1176 struct ring_buffer_per_cpu *__b = \
1177 (void *)b; \
1178 atomic_inc(&__b->buffer->record_disabled); \
1179 } else \
1180 atomic_inc(&b->record_disabled); \
1181 WARN_ON(1); \
1182 } \
1183 _____ret; \
1184 })
1185
1186/* Up this if you want to test the TIME_EXTENTS and normalization */
1187#define DEBUG_SHIFT 0
1188
1189static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1190{
1191 u64 ts;
1192
1193 /* Skip retpolines :-( */
1194 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1195 ts = trace_clock_local();
1196 else
1197 ts = buffer->clock();
1198
1199 /* shift to debug/test normalization and TIME_EXTENTS */
1200 return ts << DEBUG_SHIFT;
1201}
1202
1203u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1204{
1205 u64 time;
1206
1207 preempt_disable_notrace();
1208 time = rb_time_stamp(buffer);
1209 preempt_enable_notrace();
1210
1211 return time;
1212}
1213EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1214
1215void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1216 int cpu, u64 *ts)
1217{
1218 /* Just stupid testing the normalize function and deltas */
1219 *ts >>= DEBUG_SHIFT;
1220}
1221EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1222
1223/*
1224 * Making the ring buffer lockless makes things tricky.
1225 * Although writes only happen on the CPU that they are on,
1226 * and they only need to worry about interrupts. Reads can
1227 * happen on any CPU.
1228 *
1229 * The reader page is always off the ring buffer, but when the
1230 * reader finishes with a page, it needs to swap its page with
1231 * a new one from the buffer. The reader needs to take from
1232 * the head (writes go to the tail). But if a writer is in overwrite
1233 * mode and wraps, it must push the head page forward.
1234 *
1235 * Here lies the problem.
1236 *
1237 * The reader must be careful to replace only the head page, and
1238 * not another one. As described at the top of the file in the
1239 * ASCII art, the reader sets its old page to point to the next
1240 * page after head. It then sets the page after head to point to
1241 * the old reader page. But if the writer moves the head page
1242 * during this operation, the reader could end up with the tail.
1243 *
1244 * We use cmpxchg to help prevent this race. We also do something
1245 * special with the page before head. We set the LSB to 1.
1246 *
1247 * When the writer must push the page forward, it will clear the
1248 * bit that points to the head page, move the head, and then set
1249 * the bit that points to the new head page.
1250 *
1251 * We also don't want an interrupt coming in and moving the head
1252 * page on another writer. Thus we use the second LSB to catch
1253 * that too. Thus:
1254 *
1255 * head->list->prev->next bit 1 bit 0
1256 * ------- -------
1257 * Normal page 0 0
1258 * Points to head page 0 1
1259 * New head page 1 0
1260 *
1261 * Note we can not trust the prev pointer of the head page, because:
1262 *
1263 * +----+ +-----+ +-----+
1264 * | |------>| T |---X--->| N |
1265 * | |<------| | | |
1266 * +----+ +-----+ +-----+
1267 * ^ ^ |
1268 * | +-----+ | |
1269 * +----------| R |----------+ |
1270 * | |<-----------+
1271 * +-----+
1272 *
1273 * Key: ---X--> HEAD flag set in pointer
1274 * T Tail page
1275 * R Reader page
1276 * N Next page
1277 *
1278 * (see __rb_reserve_next() to see where this happens)
1279 *
1280 * What the above shows is that the reader just swapped out
1281 * the reader page with a page in the buffer, but before it
1282 * could make the new header point back to the new page added
1283 * it was preempted by a writer. The writer moved forward onto
1284 * the new page added by the reader and is about to move forward
1285 * again.
1286 *
1287 * You can see, it is legitimate for the previous pointer of
1288 * the head (or any page) not to point back to itself. But only
1289 * temporarily.
1290 */
1291
1292#define RB_PAGE_NORMAL 0UL
1293#define RB_PAGE_HEAD 1UL
1294#define RB_PAGE_UPDATE 2UL
1295
1296
1297#define RB_FLAG_MASK 3UL
1298
1299/* PAGE_MOVED is not part of the mask */
1300#define RB_PAGE_MOVED 4UL
1301
1302/*
1303 * rb_list_head - remove any bit
1304 */
1305static struct list_head *rb_list_head(struct list_head *list)
1306{
1307 unsigned long val = (unsigned long)list;
1308
1309 return (struct list_head *)(val & ~RB_FLAG_MASK);
1310}
1311
1312/*
1313 * rb_is_head_page - test if the given page is the head page
1314 *
1315 * Because the reader may move the head_page pointer, we can
1316 * not trust what the head page is (it may be pointing to
1317 * the reader page). But if the next page is a header page,
1318 * its flags will be non zero.
1319 */
1320static inline int
1321rb_is_head_page(struct buffer_page *page, struct list_head *list)
1322{
1323 unsigned long val;
1324
1325 val = (unsigned long)list->next;
1326
1327 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1328 return RB_PAGE_MOVED;
1329
1330 return val & RB_FLAG_MASK;
1331}
1332
1333/*
1334 * rb_is_reader_page
1335 *
1336 * The unique thing about the reader page, is that, if the
1337 * writer is ever on it, the previous pointer never points
1338 * back to the reader page.
1339 */
1340static bool rb_is_reader_page(struct buffer_page *page)
1341{
1342 struct list_head *list = page->list.prev;
1343
1344 return rb_list_head(list->next) != &page->list;
1345}
1346
1347/*
1348 * rb_set_list_to_head - set a list_head to be pointing to head.
1349 */
1350static void rb_set_list_to_head(struct list_head *list)
1351{
1352 unsigned long *ptr;
1353
1354 ptr = (unsigned long *)&list->next;
1355 *ptr |= RB_PAGE_HEAD;
1356 *ptr &= ~RB_PAGE_UPDATE;
1357}
1358
1359/*
1360 * rb_head_page_activate - sets up head page
1361 */
1362static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1363{
1364 struct buffer_page *head;
1365
1366 head = cpu_buffer->head_page;
1367 if (!head)
1368 return;
1369
1370 /*
1371 * Set the previous list pointer to have the HEAD flag.
1372 */
1373 rb_set_list_to_head(head->list.prev);
1374}
1375
1376static void rb_list_head_clear(struct list_head *list)
1377{
1378 unsigned long *ptr = (unsigned long *)&list->next;
1379
1380 *ptr &= ~RB_FLAG_MASK;
1381}
1382
1383/*
1384 * rb_head_page_deactivate - clears head page ptr (for free list)
1385 */
1386static void
1387rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1388{
1389 struct list_head *hd;
1390
1391 /* Go through the whole list and clear any pointers found. */
1392 rb_list_head_clear(cpu_buffer->pages);
1393
1394 list_for_each(hd, cpu_buffer->pages)
1395 rb_list_head_clear(hd);
1396}
1397
1398static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1399 struct buffer_page *head,
1400 struct buffer_page *prev,
1401 int old_flag, int new_flag)
1402{
1403 struct list_head *list;
1404 unsigned long val = (unsigned long)&head->list;
1405 unsigned long ret;
1406
1407 list = &prev->list;
1408
1409 val &= ~RB_FLAG_MASK;
1410
1411 ret = cmpxchg((unsigned long *)&list->next,
1412 val | old_flag, val | new_flag);
1413
1414 /* check if the reader took the page */
1415 if ((ret & ~RB_FLAG_MASK) != val)
1416 return RB_PAGE_MOVED;
1417
1418 return ret & RB_FLAG_MASK;
1419}
1420
1421static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1422 struct buffer_page *head,
1423 struct buffer_page *prev,
1424 int old_flag)
1425{
1426 return rb_head_page_set(cpu_buffer, head, prev,
1427 old_flag, RB_PAGE_UPDATE);
1428}
1429
1430static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1431 struct buffer_page *head,
1432 struct buffer_page *prev,
1433 int old_flag)
1434{
1435 return rb_head_page_set(cpu_buffer, head, prev,
1436 old_flag, RB_PAGE_HEAD);
1437}
1438
1439static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1440 struct buffer_page *head,
1441 struct buffer_page *prev,
1442 int old_flag)
1443{
1444 return rb_head_page_set(cpu_buffer, head, prev,
1445 old_flag, RB_PAGE_NORMAL);
1446}
1447
1448static inline void rb_inc_page(struct buffer_page **bpage)
1449{
1450 struct list_head *p = rb_list_head((*bpage)->list.next);
1451
1452 *bpage = list_entry(p, struct buffer_page, list);
1453}
1454
1455static struct buffer_page *
1456rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1457{
1458 struct buffer_page *head;
1459 struct buffer_page *page;
1460 struct list_head *list;
1461 int i;
1462
1463 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1464 return NULL;
1465
1466 /* sanity check */
1467 list = cpu_buffer->pages;
1468 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1469 return NULL;
1470
1471 page = head = cpu_buffer->head_page;
1472 /*
1473 * It is possible that the writer moves the header behind
1474 * where we started, and we miss in one loop.
1475 * A second loop should grab the header, but we'll do
1476 * three loops just because I'm paranoid.
1477 */
1478 for (i = 0; i < 3; i++) {
1479 do {
1480 if (rb_is_head_page(page, page->list.prev)) {
1481 cpu_buffer->head_page = page;
1482 return page;
1483 }
1484 rb_inc_page(&page);
1485 } while (page != head);
1486 }
1487
1488 RB_WARN_ON(cpu_buffer, 1);
1489
1490 return NULL;
1491}
1492
1493static int rb_head_page_replace(struct buffer_page *old,
1494 struct buffer_page *new)
1495{
1496 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1497 unsigned long val;
1498 unsigned long ret;
1499
1500 val = *ptr & ~RB_FLAG_MASK;
1501 val |= RB_PAGE_HEAD;
1502
1503 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1504
1505 return ret == val;
1506}
1507
1508/*
1509 * rb_tail_page_update - move the tail page forward
1510 */
1511static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1512 struct buffer_page *tail_page,
1513 struct buffer_page *next_page)
1514{
1515 unsigned long old_entries;
1516 unsigned long old_write;
1517
1518 /*
1519 * The tail page now needs to be moved forward.
1520 *
1521 * We need to reset the tail page, but without messing
1522 * with possible erasing of data brought in by interrupts
1523 * that have moved the tail page and are currently on it.
1524 *
1525 * We add a counter to the write field to denote this.
1526 */
1527 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1528 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1529
1530 local_inc(&cpu_buffer->pages_touched);
1531 /*
1532 * Just make sure we have seen our old_write and synchronize
1533 * with any interrupts that come in.
1534 */
1535 barrier();
1536
1537 /*
1538 * If the tail page is still the same as what we think
1539 * it is, then it is up to us to update the tail
1540 * pointer.
1541 */
1542 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1543 /* Zero the write counter */
1544 unsigned long val = old_write & ~RB_WRITE_MASK;
1545 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1546
1547 /*
1548 * This will only succeed if an interrupt did
1549 * not come in and change it. In which case, we
1550 * do not want to modify it.
1551 *
1552 * We add (void) to let the compiler know that we do not care
1553 * about the return value of these functions. We use the
1554 * cmpxchg to only update if an interrupt did not already
1555 * do it for us. If the cmpxchg fails, we don't care.
1556 */
1557 (void)local_cmpxchg(&next_page->write, old_write, val);
1558 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1559
1560 /*
1561 * No need to worry about races with clearing out the commit.
1562 * it only can increment when a commit takes place. But that
1563 * only happens in the outer most nested commit.
1564 */
1565 local_set(&next_page->page->commit, 0);
1566
1567 /* Again, either we update tail_page or an interrupt does */
1568 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1569 }
1570}
1571
1572static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1573 struct buffer_page *bpage)
1574{
1575 unsigned long val = (unsigned long)bpage;
1576
1577 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1578 return 1;
1579
1580 return 0;
1581}
1582
1583/**
1584 * rb_check_list - make sure a pointer to a list has the last bits zero
1585 */
1586static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1587 struct list_head *list)
1588{
1589 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1590 return 1;
1591 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1592 return 1;
1593 return 0;
1594}
1595
1596/**
1597 * rb_check_pages - integrity check of buffer pages
1598 * @cpu_buffer: CPU buffer with pages to test
1599 *
1600 * As a safety measure we check to make sure the data pages have not
1601 * been corrupted.
1602 */
1603static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1604{
1605 struct list_head *head = cpu_buffer->pages;
1606 struct buffer_page *bpage, *tmp;
1607
1608 /* Reset the head page if it exists */
1609 if (cpu_buffer->head_page)
1610 rb_set_head_page(cpu_buffer);
1611
1612 rb_head_page_deactivate(cpu_buffer);
1613
1614 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1615 return -1;
1616 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1617 return -1;
1618
1619 if (rb_check_list(cpu_buffer, head))
1620 return -1;
1621
1622 list_for_each_entry_safe(bpage, tmp, head, list) {
1623 if (RB_WARN_ON(cpu_buffer,
1624 bpage->list.next->prev != &bpage->list))
1625 return -1;
1626 if (RB_WARN_ON(cpu_buffer,
1627 bpage->list.prev->next != &bpage->list))
1628 return -1;
1629 if (rb_check_list(cpu_buffer, &bpage->list))
1630 return -1;
1631 }
1632
1633 rb_head_page_activate(cpu_buffer);
1634
1635 return 0;
1636}
1637
1638static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1639 long nr_pages, struct list_head *pages)
1640{
1641 struct buffer_page *bpage, *tmp;
1642 bool user_thread = current->mm != NULL;
1643 gfp_t mflags;
1644 long i;
1645
1646 /*
1647 * Check if the available memory is there first.
1648 * Note, si_mem_available() only gives us a rough estimate of available
1649 * memory. It may not be accurate. But we don't care, we just want
1650 * to prevent doing any allocation when it is obvious that it is
1651 * not going to succeed.
1652 */
1653 i = si_mem_available();
1654 if (i < nr_pages)
1655 return -ENOMEM;
1656
1657 /*
1658 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1659 * gracefully without invoking oom-killer and the system is not
1660 * destabilized.
1661 */
1662 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1663
1664 /*
1665 * If a user thread allocates too much, and si_mem_available()
1666 * reports there's enough memory, even though there is not.
1667 * Make sure the OOM killer kills this thread. This can happen
1668 * even with RETRY_MAYFAIL because another task may be doing
1669 * an allocation after this task has taken all memory.
1670 * This is the task the OOM killer needs to take out during this
1671 * loop, even if it was triggered by an allocation somewhere else.
1672 */
1673 if (user_thread)
1674 set_current_oom_origin();
1675 for (i = 0; i < nr_pages; i++) {
1676 struct page *page;
1677
1678 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1679 mflags, cpu_to_node(cpu_buffer->cpu));
1680 if (!bpage)
1681 goto free_pages;
1682
1683 rb_check_bpage(cpu_buffer, bpage);
1684
1685 list_add(&bpage->list, pages);
1686
1687 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1688 if (!page)
1689 goto free_pages;
1690 bpage->page = page_address(page);
1691 rb_init_page(bpage->page);
1692
1693 if (user_thread && fatal_signal_pending(current))
1694 goto free_pages;
1695 }
1696 if (user_thread)
1697 clear_current_oom_origin();
1698
1699 return 0;
1700
1701free_pages:
1702 list_for_each_entry_safe(bpage, tmp, pages, list) {
1703 list_del_init(&bpage->list);
1704 free_buffer_page(bpage);
1705 }
1706 if (user_thread)
1707 clear_current_oom_origin();
1708
1709 return -ENOMEM;
1710}
1711
1712static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1713 unsigned long nr_pages)
1714{
1715 LIST_HEAD(pages);
1716
1717 WARN_ON(!nr_pages);
1718
1719 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1720 return -ENOMEM;
1721
1722 /*
1723 * The ring buffer page list is a circular list that does not
1724 * start and end with a list head. All page list items point to
1725 * other pages.
1726 */
1727 cpu_buffer->pages = pages.next;
1728 list_del(&pages);
1729
1730 cpu_buffer->nr_pages = nr_pages;
1731
1732 rb_check_pages(cpu_buffer);
1733
1734 return 0;
1735}
1736
1737static struct ring_buffer_per_cpu *
1738rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1739{
1740 struct ring_buffer_per_cpu *cpu_buffer;
1741 struct buffer_page *bpage;
1742 struct page *page;
1743 int ret;
1744
1745 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1746 GFP_KERNEL, cpu_to_node(cpu));
1747 if (!cpu_buffer)
1748 return NULL;
1749
1750 cpu_buffer->cpu = cpu;
1751 cpu_buffer->buffer = buffer;
1752 raw_spin_lock_init(&cpu_buffer->reader_lock);
1753 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1754 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1755 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1756 init_completion(&cpu_buffer->update_done);
1757 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1758 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1759 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1760
1761 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1762 GFP_KERNEL, cpu_to_node(cpu));
1763 if (!bpage)
1764 goto fail_free_buffer;
1765
1766 rb_check_bpage(cpu_buffer, bpage);
1767
1768 cpu_buffer->reader_page = bpage;
1769 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1770 if (!page)
1771 goto fail_free_reader;
1772 bpage->page = page_address(page);
1773 rb_init_page(bpage->page);
1774
1775 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1776 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1777
1778 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1779 if (ret < 0)
1780 goto fail_free_reader;
1781
1782 cpu_buffer->head_page
1783 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1784 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1785
1786 rb_head_page_activate(cpu_buffer);
1787
1788 return cpu_buffer;
1789
1790 fail_free_reader:
1791 free_buffer_page(cpu_buffer->reader_page);
1792
1793 fail_free_buffer:
1794 kfree(cpu_buffer);
1795 return NULL;
1796}
1797
1798static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1799{
1800 struct list_head *head = cpu_buffer->pages;
1801 struct buffer_page *bpage, *tmp;
1802
1803 free_buffer_page(cpu_buffer->reader_page);
1804
1805 if (head) {
1806 rb_head_page_deactivate(cpu_buffer);
1807
1808 list_for_each_entry_safe(bpage, tmp, head, list) {
1809 list_del_init(&bpage->list);
1810 free_buffer_page(bpage);
1811 }
1812 bpage = list_entry(head, struct buffer_page, list);
1813 free_buffer_page(bpage);
1814 }
1815
1816 kfree(cpu_buffer);
1817}
1818
1819/**
1820 * __ring_buffer_alloc - allocate a new ring_buffer
1821 * @size: the size in bytes per cpu that is needed.
1822 * @flags: attributes to set for the ring buffer.
1823 * @key: ring buffer reader_lock_key.
1824 *
1825 * Currently the only flag that is available is the RB_FL_OVERWRITE
1826 * flag. This flag means that the buffer will overwrite old data
1827 * when the buffer wraps. If this flag is not set, the buffer will
1828 * drop data when the tail hits the head.
1829 */
1830struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1831 struct lock_class_key *key)
1832{
1833 struct trace_buffer *buffer;
1834 long nr_pages;
1835 int bsize;
1836 int cpu;
1837 int ret;
1838
1839 /* keep it in its own cache line */
1840 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1841 GFP_KERNEL);
1842 if (!buffer)
1843 return NULL;
1844
1845 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1846 goto fail_free_buffer;
1847
1848 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1849 buffer->flags = flags;
1850 buffer->clock = trace_clock_local;
1851 buffer->reader_lock_key = key;
1852
1853 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1854 init_waitqueue_head(&buffer->irq_work.waiters);
1855
1856 /* need at least two pages */
1857 if (nr_pages < 2)
1858 nr_pages = 2;
1859
1860 buffer->cpus = nr_cpu_ids;
1861
1862 bsize = sizeof(void *) * nr_cpu_ids;
1863 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1864 GFP_KERNEL);
1865 if (!buffer->buffers)
1866 goto fail_free_cpumask;
1867
1868 cpu = raw_smp_processor_id();
1869 cpumask_set_cpu(cpu, buffer->cpumask);
1870 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1871 if (!buffer->buffers[cpu])
1872 goto fail_free_buffers;
1873
1874 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1875 if (ret < 0)
1876 goto fail_free_buffers;
1877
1878 mutex_init(&buffer->mutex);
1879
1880 return buffer;
1881
1882 fail_free_buffers:
1883 for_each_buffer_cpu(buffer, cpu) {
1884 if (buffer->buffers[cpu])
1885 rb_free_cpu_buffer(buffer->buffers[cpu]);
1886 }
1887 kfree(buffer->buffers);
1888
1889 fail_free_cpumask:
1890 free_cpumask_var(buffer->cpumask);
1891
1892 fail_free_buffer:
1893 kfree(buffer);
1894 return NULL;
1895}
1896EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1897
1898/**
1899 * ring_buffer_free - free a ring buffer.
1900 * @buffer: the buffer to free.
1901 */
1902void
1903ring_buffer_free(struct trace_buffer *buffer)
1904{
1905 int cpu;
1906
1907 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1908
1909 for_each_buffer_cpu(buffer, cpu)
1910 rb_free_cpu_buffer(buffer->buffers[cpu]);
1911
1912 kfree(buffer->buffers);
1913 free_cpumask_var(buffer->cpumask);
1914
1915 kfree(buffer);
1916}
1917EXPORT_SYMBOL_GPL(ring_buffer_free);
1918
1919void ring_buffer_set_clock(struct trace_buffer *buffer,
1920 u64 (*clock)(void))
1921{
1922 buffer->clock = clock;
1923}
1924
1925void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1926{
1927 buffer->time_stamp_abs = abs;
1928}
1929
1930bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1931{
1932 return buffer->time_stamp_abs;
1933}
1934
1935static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1936
1937static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1938{
1939 return local_read(&bpage->entries) & RB_WRITE_MASK;
1940}
1941
1942static inline unsigned long rb_page_write(struct buffer_page *bpage)
1943{
1944 return local_read(&bpage->write) & RB_WRITE_MASK;
1945}
1946
1947static int
1948rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1949{
1950 struct list_head *tail_page, *to_remove, *next_page;
1951 struct buffer_page *to_remove_page, *tmp_iter_page;
1952 struct buffer_page *last_page, *first_page;
1953 unsigned long nr_removed;
1954 unsigned long head_bit;
1955 int page_entries;
1956
1957 head_bit = 0;
1958
1959 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1960 atomic_inc(&cpu_buffer->record_disabled);
1961 /*
1962 * We don't race with the readers since we have acquired the reader
1963 * lock. We also don't race with writers after disabling recording.
1964 * This makes it easy to figure out the first and the last page to be
1965 * removed from the list. We unlink all the pages in between including
1966 * the first and last pages. This is done in a busy loop so that we
1967 * lose the least number of traces.
1968 * The pages are freed after we restart recording and unlock readers.
1969 */
1970 tail_page = &cpu_buffer->tail_page->list;
1971
1972 /*
1973 * tail page might be on reader page, we remove the next page
1974 * from the ring buffer
1975 */
1976 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1977 tail_page = rb_list_head(tail_page->next);
1978 to_remove = tail_page;
1979
1980 /* start of pages to remove */
1981 first_page = list_entry(rb_list_head(to_remove->next),
1982 struct buffer_page, list);
1983
1984 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1985 to_remove = rb_list_head(to_remove)->next;
1986 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1987 }
1988
1989 next_page = rb_list_head(to_remove)->next;
1990
1991 /*
1992 * Now we remove all pages between tail_page and next_page.
1993 * Make sure that we have head_bit value preserved for the
1994 * next page
1995 */
1996 tail_page->next = (struct list_head *)((unsigned long)next_page |
1997 head_bit);
1998 next_page = rb_list_head(next_page);
1999 next_page->prev = tail_page;
2000
2001 /* make sure pages points to a valid page in the ring buffer */
2002 cpu_buffer->pages = next_page;
2003
2004 /* update head page */
2005 if (head_bit)
2006 cpu_buffer->head_page = list_entry(next_page,
2007 struct buffer_page, list);
2008
2009 /*
2010 * change read pointer to make sure any read iterators reset
2011 * themselves
2012 */
2013 cpu_buffer->read = 0;
2014
2015 /* pages are removed, resume tracing and then free the pages */
2016 atomic_dec(&cpu_buffer->record_disabled);
2017 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2018
2019 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2020
2021 /* last buffer page to remove */
2022 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2023 list);
2024 tmp_iter_page = first_page;
2025
2026 do {
2027 cond_resched();
2028
2029 to_remove_page = tmp_iter_page;
2030 rb_inc_page(&tmp_iter_page);
2031
2032 /* update the counters */
2033 page_entries = rb_page_entries(to_remove_page);
2034 if (page_entries) {
2035 /*
2036 * If something was added to this page, it was full
2037 * since it is not the tail page. So we deduct the
2038 * bytes consumed in ring buffer from here.
2039 * Increment overrun to account for the lost events.
2040 */
2041 local_add(page_entries, &cpu_buffer->overrun);
2042 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2043 local_inc(&cpu_buffer->pages_lost);
2044 }
2045
2046 /*
2047 * We have already removed references to this list item, just
2048 * free up the buffer_page and its page
2049 */
2050 free_buffer_page(to_remove_page);
2051 nr_removed--;
2052
2053 } while (to_remove_page != last_page);
2054
2055 RB_WARN_ON(cpu_buffer, nr_removed);
2056
2057 return nr_removed == 0;
2058}
2059
2060static int
2061rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2062{
2063 struct list_head *pages = &cpu_buffer->new_pages;
2064 int retries, success;
2065 unsigned long flags;
2066
2067 /* Can be called at early boot up, where interrupts must not been enabled */
2068 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2069 /*
2070 * We are holding the reader lock, so the reader page won't be swapped
2071 * in the ring buffer. Now we are racing with the writer trying to
2072 * move head page and the tail page.
2073 * We are going to adapt the reader page update process where:
2074 * 1. We first splice the start and end of list of new pages between
2075 * the head page and its previous page.
2076 * 2. We cmpxchg the prev_page->next to point from head page to the
2077 * start of new pages list.
2078 * 3. Finally, we update the head->prev to the end of new list.
2079 *
2080 * We will try this process 10 times, to make sure that we don't keep
2081 * spinning.
2082 */
2083 retries = 10;
2084 success = 0;
2085 while (retries--) {
2086 struct list_head *head_page, *prev_page, *r;
2087 struct list_head *last_page, *first_page;
2088 struct list_head *head_page_with_bit;
2089
2090 head_page = &rb_set_head_page(cpu_buffer)->list;
2091 if (!head_page)
2092 break;
2093 prev_page = head_page->prev;
2094
2095 first_page = pages->next;
2096 last_page = pages->prev;
2097
2098 head_page_with_bit = (struct list_head *)
2099 ((unsigned long)head_page | RB_PAGE_HEAD);
2100
2101 last_page->next = head_page_with_bit;
2102 first_page->prev = prev_page;
2103
2104 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
2105
2106 if (r == head_page_with_bit) {
2107 /*
2108 * yay, we replaced the page pointer to our new list,
2109 * now, we just have to update to head page's prev
2110 * pointer to point to end of list
2111 */
2112 head_page->prev = last_page;
2113 success = 1;
2114 break;
2115 }
2116 }
2117
2118 if (success)
2119 INIT_LIST_HEAD(pages);
2120 /*
2121 * If we weren't successful in adding in new pages, warn and stop
2122 * tracing
2123 */
2124 RB_WARN_ON(cpu_buffer, !success);
2125 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2126
2127 /* free pages if they weren't inserted */
2128 if (!success) {
2129 struct buffer_page *bpage, *tmp;
2130 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2131 list) {
2132 list_del_init(&bpage->list);
2133 free_buffer_page(bpage);
2134 }
2135 }
2136 return success;
2137}
2138
2139static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2140{
2141 int success;
2142
2143 if (cpu_buffer->nr_pages_to_update > 0)
2144 success = rb_insert_pages(cpu_buffer);
2145 else
2146 success = rb_remove_pages(cpu_buffer,
2147 -cpu_buffer->nr_pages_to_update);
2148
2149 if (success)
2150 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2151}
2152
2153static void update_pages_handler(struct work_struct *work)
2154{
2155 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2156 struct ring_buffer_per_cpu, update_pages_work);
2157 rb_update_pages(cpu_buffer);
2158 complete(&cpu_buffer->update_done);
2159}
2160
2161/**
2162 * ring_buffer_resize - resize the ring buffer
2163 * @buffer: the buffer to resize.
2164 * @size: the new size.
2165 * @cpu_id: the cpu buffer to resize
2166 *
2167 * Minimum size is 2 * BUF_PAGE_SIZE.
2168 *
2169 * Returns 0 on success and < 0 on failure.
2170 */
2171int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2172 int cpu_id)
2173{
2174 struct ring_buffer_per_cpu *cpu_buffer;
2175 unsigned long nr_pages;
2176 int cpu, err;
2177
2178 /*
2179 * Always succeed at resizing a non-existent buffer:
2180 */
2181 if (!buffer)
2182 return 0;
2183
2184 /* Make sure the requested buffer exists */
2185 if (cpu_id != RING_BUFFER_ALL_CPUS &&
2186 !cpumask_test_cpu(cpu_id, buffer->cpumask))
2187 return 0;
2188
2189 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2190
2191 /* we need a minimum of two pages */
2192 if (nr_pages < 2)
2193 nr_pages = 2;
2194
2195 /* prevent another thread from changing buffer sizes */
2196 mutex_lock(&buffer->mutex);
2197
2198
2199 if (cpu_id == RING_BUFFER_ALL_CPUS) {
2200 /*
2201 * Don't succeed if resizing is disabled, as a reader might be
2202 * manipulating the ring buffer and is expecting a sane state while
2203 * this is true.
2204 */
2205 for_each_buffer_cpu(buffer, cpu) {
2206 cpu_buffer = buffer->buffers[cpu];
2207 if (atomic_read(&cpu_buffer->resize_disabled)) {
2208 err = -EBUSY;
2209 goto out_err_unlock;
2210 }
2211 }
2212
2213 /* calculate the pages to update */
2214 for_each_buffer_cpu(buffer, cpu) {
2215 cpu_buffer = buffer->buffers[cpu];
2216
2217 cpu_buffer->nr_pages_to_update = nr_pages -
2218 cpu_buffer->nr_pages;
2219 /*
2220 * nothing more to do for removing pages or no update
2221 */
2222 if (cpu_buffer->nr_pages_to_update <= 0)
2223 continue;
2224 /*
2225 * to add pages, make sure all new pages can be
2226 * allocated without receiving ENOMEM
2227 */
2228 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2229 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2230 &cpu_buffer->new_pages)) {
2231 /* not enough memory for new pages */
2232 err = -ENOMEM;
2233 goto out_err;
2234 }
2235 }
2236
2237 cpus_read_lock();
2238 /*
2239 * Fire off all the required work handlers
2240 * We can't schedule on offline CPUs, but it's not necessary
2241 * since we can change their buffer sizes without any race.
2242 */
2243 for_each_buffer_cpu(buffer, cpu) {
2244 cpu_buffer = buffer->buffers[cpu];
2245 if (!cpu_buffer->nr_pages_to_update)
2246 continue;
2247
2248 /* Can't run something on an offline CPU. */
2249 if (!cpu_online(cpu)) {
2250 rb_update_pages(cpu_buffer);
2251 cpu_buffer->nr_pages_to_update = 0;
2252 } else {
2253 /* Run directly if possible. */
2254 migrate_disable();
2255 if (cpu != smp_processor_id()) {
2256 migrate_enable();
2257 schedule_work_on(cpu,
2258 &cpu_buffer->update_pages_work);
2259 } else {
2260 update_pages_handler(&cpu_buffer->update_pages_work);
2261 migrate_enable();
2262 }
2263 }
2264 }
2265
2266 /* wait for all the updates to complete */
2267 for_each_buffer_cpu(buffer, cpu) {
2268 cpu_buffer = buffer->buffers[cpu];
2269 if (!cpu_buffer->nr_pages_to_update)
2270 continue;
2271
2272 if (cpu_online(cpu))
2273 wait_for_completion(&cpu_buffer->update_done);
2274 cpu_buffer->nr_pages_to_update = 0;
2275 }
2276
2277 cpus_read_unlock();
2278 } else {
2279 cpu_buffer = buffer->buffers[cpu_id];
2280
2281 if (nr_pages == cpu_buffer->nr_pages)
2282 goto out;
2283
2284 /*
2285 * Don't succeed if resizing is disabled, as a reader might be
2286 * manipulating the ring buffer and is expecting a sane state while
2287 * this is true.
2288 */
2289 if (atomic_read(&cpu_buffer->resize_disabled)) {
2290 err = -EBUSY;
2291 goto out_err_unlock;
2292 }
2293
2294 cpu_buffer->nr_pages_to_update = nr_pages -
2295 cpu_buffer->nr_pages;
2296
2297 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2298 if (cpu_buffer->nr_pages_to_update > 0 &&
2299 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2300 &cpu_buffer->new_pages)) {
2301 err = -ENOMEM;
2302 goto out_err;
2303 }
2304
2305 cpus_read_lock();
2306
2307 /* Can't run something on an offline CPU. */
2308 if (!cpu_online(cpu_id))
2309 rb_update_pages(cpu_buffer);
2310 else {
2311 /* Run directly if possible. */
2312 migrate_disable();
2313 if (cpu_id == smp_processor_id()) {
2314 rb_update_pages(cpu_buffer);
2315 migrate_enable();
2316 } else {
2317 migrate_enable();
2318 schedule_work_on(cpu_id,
2319 &cpu_buffer->update_pages_work);
2320 wait_for_completion(&cpu_buffer->update_done);
2321 }
2322 }
2323
2324 cpu_buffer->nr_pages_to_update = 0;
2325 cpus_read_unlock();
2326 }
2327
2328 out:
2329 /*
2330 * The ring buffer resize can happen with the ring buffer
2331 * enabled, so that the update disturbs the tracing as little
2332 * as possible. But if the buffer is disabled, we do not need
2333 * to worry about that, and we can take the time to verify
2334 * that the buffer is not corrupt.
2335 */
2336 if (atomic_read(&buffer->record_disabled)) {
2337 atomic_inc(&buffer->record_disabled);
2338 /*
2339 * Even though the buffer was disabled, we must make sure
2340 * that it is truly disabled before calling rb_check_pages.
2341 * There could have been a race between checking
2342 * record_disable and incrementing it.
2343 */
2344 synchronize_rcu();
2345 for_each_buffer_cpu(buffer, cpu) {
2346 cpu_buffer = buffer->buffers[cpu];
2347 rb_check_pages(cpu_buffer);
2348 }
2349 atomic_dec(&buffer->record_disabled);
2350 }
2351
2352 mutex_unlock(&buffer->mutex);
2353 return 0;
2354
2355 out_err:
2356 for_each_buffer_cpu(buffer, cpu) {
2357 struct buffer_page *bpage, *tmp;
2358
2359 cpu_buffer = buffer->buffers[cpu];
2360 cpu_buffer->nr_pages_to_update = 0;
2361
2362 if (list_empty(&cpu_buffer->new_pages))
2363 continue;
2364
2365 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2366 list) {
2367 list_del_init(&bpage->list);
2368 free_buffer_page(bpage);
2369 }
2370 }
2371 out_err_unlock:
2372 mutex_unlock(&buffer->mutex);
2373 return err;
2374}
2375EXPORT_SYMBOL_GPL(ring_buffer_resize);
2376
2377void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2378{
2379 mutex_lock(&buffer->mutex);
2380 if (val)
2381 buffer->flags |= RB_FL_OVERWRITE;
2382 else
2383 buffer->flags &= ~RB_FL_OVERWRITE;
2384 mutex_unlock(&buffer->mutex);
2385}
2386EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2387
2388static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2389{
2390 return bpage->page->data + index;
2391}
2392
2393static __always_inline struct ring_buffer_event *
2394rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2395{
2396 return __rb_page_index(cpu_buffer->reader_page,
2397 cpu_buffer->reader_page->read);
2398}
2399
2400static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2401{
2402 return local_read(&bpage->page->commit);
2403}
2404
2405static struct ring_buffer_event *
2406rb_iter_head_event(struct ring_buffer_iter *iter)
2407{
2408 struct ring_buffer_event *event;
2409 struct buffer_page *iter_head_page = iter->head_page;
2410 unsigned long commit;
2411 unsigned length;
2412
2413 if (iter->head != iter->next_event)
2414 return iter->event;
2415
2416 /*
2417 * When the writer goes across pages, it issues a cmpxchg which
2418 * is a mb(), which will synchronize with the rmb here.
2419 * (see rb_tail_page_update() and __rb_reserve_next())
2420 */
2421 commit = rb_page_commit(iter_head_page);
2422 smp_rmb();
2423 event = __rb_page_index(iter_head_page, iter->head);
2424 length = rb_event_length(event);
2425
2426 /*
2427 * READ_ONCE() doesn't work on functions and we don't want the
2428 * compiler doing any crazy optimizations with length.
2429 */
2430 barrier();
2431
2432 if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2433 /* Writer corrupted the read? */
2434 goto reset;
2435
2436 memcpy(iter->event, event, length);
2437 /*
2438 * If the page stamp is still the same after this rmb() then the
2439 * event was safely copied without the writer entering the page.
2440 */
2441 smp_rmb();
2442
2443 /* Make sure the page didn't change since we read this */
2444 if (iter->page_stamp != iter_head_page->page->time_stamp ||
2445 commit > rb_page_commit(iter_head_page))
2446 goto reset;
2447
2448 iter->next_event = iter->head + length;
2449 return iter->event;
2450 reset:
2451 /* Reset to the beginning */
2452 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2453 iter->head = 0;
2454 iter->next_event = 0;
2455 iter->missed_events = 1;
2456 return NULL;
2457}
2458
2459/* Size is determined by what has been committed */
2460static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2461{
2462 return rb_page_commit(bpage);
2463}
2464
2465static __always_inline unsigned
2466rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2467{
2468 return rb_page_commit(cpu_buffer->commit_page);
2469}
2470
2471static __always_inline unsigned
2472rb_event_index(struct ring_buffer_event *event)
2473{
2474 unsigned long addr = (unsigned long)event;
2475
2476 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2477}
2478
2479static void rb_inc_iter(struct ring_buffer_iter *iter)
2480{
2481 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2482
2483 /*
2484 * The iterator could be on the reader page (it starts there).
2485 * But the head could have moved, since the reader was
2486 * found. Check for this case and assign the iterator
2487 * to the head page instead of next.
2488 */
2489 if (iter->head_page == cpu_buffer->reader_page)
2490 iter->head_page = rb_set_head_page(cpu_buffer);
2491 else
2492 rb_inc_page(&iter->head_page);
2493
2494 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2495 iter->head = 0;
2496 iter->next_event = 0;
2497}
2498
2499/*
2500 * rb_handle_head_page - writer hit the head page
2501 *
2502 * Returns: +1 to retry page
2503 * 0 to continue
2504 * -1 on error
2505 */
2506static int
2507rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2508 struct buffer_page *tail_page,
2509 struct buffer_page *next_page)
2510{
2511 struct buffer_page *new_head;
2512 int entries;
2513 int type;
2514 int ret;
2515
2516 entries = rb_page_entries(next_page);
2517
2518 /*
2519 * The hard part is here. We need to move the head
2520 * forward, and protect against both readers on
2521 * other CPUs and writers coming in via interrupts.
2522 */
2523 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2524 RB_PAGE_HEAD);
2525
2526 /*
2527 * type can be one of four:
2528 * NORMAL - an interrupt already moved it for us
2529 * HEAD - we are the first to get here.
2530 * UPDATE - we are the interrupt interrupting
2531 * a current move.
2532 * MOVED - a reader on another CPU moved the next
2533 * pointer to its reader page. Give up
2534 * and try again.
2535 */
2536
2537 switch (type) {
2538 case RB_PAGE_HEAD:
2539 /*
2540 * We changed the head to UPDATE, thus
2541 * it is our responsibility to update
2542 * the counters.
2543 */
2544 local_add(entries, &cpu_buffer->overrun);
2545 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2546 local_inc(&cpu_buffer->pages_lost);
2547
2548 /*
2549 * The entries will be zeroed out when we move the
2550 * tail page.
2551 */
2552
2553 /* still more to do */
2554 break;
2555
2556 case RB_PAGE_UPDATE:
2557 /*
2558 * This is an interrupt that interrupt the
2559 * previous update. Still more to do.
2560 */
2561 break;
2562 case RB_PAGE_NORMAL:
2563 /*
2564 * An interrupt came in before the update
2565 * and processed this for us.
2566 * Nothing left to do.
2567 */
2568 return 1;
2569 case RB_PAGE_MOVED:
2570 /*
2571 * The reader is on another CPU and just did
2572 * a swap with our next_page.
2573 * Try again.
2574 */
2575 return 1;
2576 default:
2577 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2578 return -1;
2579 }
2580
2581 /*
2582 * Now that we are here, the old head pointer is
2583 * set to UPDATE. This will keep the reader from
2584 * swapping the head page with the reader page.
2585 * The reader (on another CPU) will spin till
2586 * we are finished.
2587 *
2588 * We just need to protect against interrupts
2589 * doing the job. We will set the next pointer
2590 * to HEAD. After that, we set the old pointer
2591 * to NORMAL, but only if it was HEAD before.
2592 * otherwise we are an interrupt, and only
2593 * want the outer most commit to reset it.
2594 */
2595 new_head = next_page;
2596 rb_inc_page(&new_head);
2597
2598 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2599 RB_PAGE_NORMAL);
2600
2601 /*
2602 * Valid returns are:
2603 * HEAD - an interrupt came in and already set it.
2604 * NORMAL - One of two things:
2605 * 1) We really set it.
2606 * 2) A bunch of interrupts came in and moved
2607 * the page forward again.
2608 */
2609 switch (ret) {
2610 case RB_PAGE_HEAD:
2611 case RB_PAGE_NORMAL:
2612 /* OK */
2613 break;
2614 default:
2615 RB_WARN_ON(cpu_buffer, 1);
2616 return -1;
2617 }
2618
2619 /*
2620 * It is possible that an interrupt came in,
2621 * set the head up, then more interrupts came in
2622 * and moved it again. When we get back here,
2623 * the page would have been set to NORMAL but we
2624 * just set it back to HEAD.
2625 *
2626 * How do you detect this? Well, if that happened
2627 * the tail page would have moved.
2628 */
2629 if (ret == RB_PAGE_NORMAL) {
2630 struct buffer_page *buffer_tail_page;
2631
2632 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2633 /*
2634 * If the tail had moved passed next, then we need
2635 * to reset the pointer.
2636 */
2637 if (buffer_tail_page != tail_page &&
2638 buffer_tail_page != next_page)
2639 rb_head_page_set_normal(cpu_buffer, new_head,
2640 next_page,
2641 RB_PAGE_HEAD);
2642 }
2643
2644 /*
2645 * If this was the outer most commit (the one that
2646 * changed the original pointer from HEAD to UPDATE),
2647 * then it is up to us to reset it to NORMAL.
2648 */
2649 if (type == RB_PAGE_HEAD) {
2650 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2651 tail_page,
2652 RB_PAGE_UPDATE);
2653 if (RB_WARN_ON(cpu_buffer,
2654 ret != RB_PAGE_UPDATE))
2655 return -1;
2656 }
2657
2658 return 0;
2659}
2660
2661static inline void
2662rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2663 unsigned long tail, struct rb_event_info *info)
2664{
2665 struct buffer_page *tail_page = info->tail_page;
2666 struct ring_buffer_event *event;
2667 unsigned long length = info->length;
2668
2669 /*
2670 * Only the event that crossed the page boundary
2671 * must fill the old tail_page with padding.
2672 */
2673 if (tail >= BUF_PAGE_SIZE) {
2674 /*
2675 * If the page was filled, then we still need
2676 * to update the real_end. Reset it to zero
2677 * and the reader will ignore it.
2678 */
2679 if (tail == BUF_PAGE_SIZE)
2680 tail_page->real_end = 0;
2681
2682 local_sub(length, &tail_page->write);
2683 return;
2684 }
2685
2686 event = __rb_page_index(tail_page, tail);
2687
2688 /* account for padding bytes */
2689 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2690
2691 /*
2692 * Save the original length to the meta data.
2693 * This will be used by the reader to add lost event
2694 * counter.
2695 */
2696 tail_page->real_end = tail;
2697
2698 /*
2699 * If this event is bigger than the minimum size, then
2700 * we need to be careful that we don't subtract the
2701 * write counter enough to allow another writer to slip
2702 * in on this page.
2703 * We put in a discarded commit instead, to make sure
2704 * that this space is not used again.
2705 *
2706 * If we are less than the minimum size, we don't need to
2707 * worry about it.
2708 */
2709 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2710 /* No room for any events */
2711
2712 /* Mark the rest of the page with padding */
2713 rb_event_set_padding(event);
2714
2715 /* Make sure the padding is visible before the write update */
2716 smp_wmb();
2717
2718 /* Set the write back to the previous setting */
2719 local_sub(length, &tail_page->write);
2720 return;
2721 }
2722
2723 /* Put in a discarded event */
2724 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2725 event->type_len = RINGBUF_TYPE_PADDING;
2726 /* time delta must be non zero */
2727 event->time_delta = 1;
2728
2729 /* Make sure the padding is visible before the tail_page->write update */
2730 smp_wmb();
2731
2732 /* Set write to end of buffer */
2733 length = (tail + length) - BUF_PAGE_SIZE;
2734 local_sub(length, &tail_page->write);
2735}
2736
2737static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2738
2739/*
2740 * This is the slow path, force gcc not to inline it.
2741 */
2742static noinline struct ring_buffer_event *
2743rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2744 unsigned long tail, struct rb_event_info *info)
2745{
2746 struct buffer_page *tail_page = info->tail_page;
2747 struct buffer_page *commit_page = cpu_buffer->commit_page;
2748 struct trace_buffer *buffer = cpu_buffer->buffer;
2749 struct buffer_page *next_page;
2750 int ret;
2751
2752 next_page = tail_page;
2753
2754 rb_inc_page(&next_page);
2755
2756 /*
2757 * If for some reason, we had an interrupt storm that made
2758 * it all the way around the buffer, bail, and warn
2759 * about it.
2760 */
2761 if (unlikely(next_page == commit_page)) {
2762 local_inc(&cpu_buffer->commit_overrun);
2763 goto out_reset;
2764 }
2765
2766 /*
2767 * This is where the fun begins!
2768 *
2769 * We are fighting against races between a reader that
2770 * could be on another CPU trying to swap its reader
2771 * page with the buffer head.
2772 *
2773 * We are also fighting against interrupts coming in and
2774 * moving the head or tail on us as well.
2775 *
2776 * If the next page is the head page then we have filled
2777 * the buffer, unless the commit page is still on the
2778 * reader page.
2779 */
2780 if (rb_is_head_page(next_page, &tail_page->list)) {
2781
2782 /*
2783 * If the commit is not on the reader page, then
2784 * move the header page.
2785 */
2786 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2787 /*
2788 * If we are not in overwrite mode,
2789 * this is easy, just stop here.
2790 */
2791 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2792 local_inc(&cpu_buffer->dropped_events);
2793 goto out_reset;
2794 }
2795
2796 ret = rb_handle_head_page(cpu_buffer,
2797 tail_page,
2798 next_page);
2799 if (ret < 0)
2800 goto out_reset;
2801 if (ret)
2802 goto out_again;
2803 } else {
2804 /*
2805 * We need to be careful here too. The
2806 * commit page could still be on the reader
2807 * page. We could have a small buffer, and
2808 * have filled up the buffer with events
2809 * from interrupts and such, and wrapped.
2810 *
2811 * Note, if the tail page is also on the
2812 * reader_page, we let it move out.
2813 */
2814 if (unlikely((cpu_buffer->commit_page !=
2815 cpu_buffer->tail_page) &&
2816 (cpu_buffer->commit_page ==
2817 cpu_buffer->reader_page))) {
2818 local_inc(&cpu_buffer->commit_overrun);
2819 goto out_reset;
2820 }
2821 }
2822 }
2823
2824 rb_tail_page_update(cpu_buffer, tail_page, next_page);
2825
2826 out_again:
2827
2828 rb_reset_tail(cpu_buffer, tail, info);
2829
2830 /* Commit what we have for now. */
2831 rb_end_commit(cpu_buffer);
2832 /* rb_end_commit() decs committing */
2833 local_inc(&cpu_buffer->committing);
2834
2835 /* fail and let the caller try again */
2836 return ERR_PTR(-EAGAIN);
2837
2838 out_reset:
2839 /* reset write */
2840 rb_reset_tail(cpu_buffer, tail, info);
2841
2842 return NULL;
2843}
2844
2845/* Slow path */
2846static struct ring_buffer_event *
2847rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2848{
2849 if (abs)
2850 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2851 else
2852 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2853
2854 /* Not the first event on the page, or not delta? */
2855 if (abs || rb_event_index(event)) {
2856 event->time_delta = delta & TS_MASK;
2857 event->array[0] = delta >> TS_SHIFT;
2858 } else {
2859 /* nope, just zero it */
2860 event->time_delta = 0;
2861 event->array[0] = 0;
2862 }
2863
2864 return skip_time_extend(event);
2865}
2866
2867#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2868static inline bool sched_clock_stable(void)
2869{
2870 return true;
2871}
2872#endif
2873
2874static void
2875rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2876 struct rb_event_info *info)
2877{
2878 u64 write_stamp;
2879
2880 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2881 (unsigned long long)info->delta,
2882 (unsigned long long)info->ts,
2883 (unsigned long long)info->before,
2884 (unsigned long long)info->after,
2885 (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2886 sched_clock_stable() ? "" :
2887 "If you just came from a suspend/resume,\n"
2888 "please switch to the trace global clock:\n"
2889 " echo global > /sys/kernel/debug/tracing/trace_clock\n"
2890 "or add trace_clock=global to the kernel command line\n");
2891}
2892
2893static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2894 struct ring_buffer_event **event,
2895 struct rb_event_info *info,
2896 u64 *delta,
2897 unsigned int *length)
2898{
2899 bool abs = info->add_timestamp &
2900 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2901
2902 if (unlikely(info->delta > (1ULL << 59))) {
2903 /*
2904 * Some timers can use more than 59 bits, and when a timestamp
2905 * is added to the buffer, it will lose those bits.
2906 */
2907 if (abs && (info->ts & TS_MSB)) {
2908 info->delta &= ABS_TS_MASK;
2909
2910 /* did the clock go backwards */
2911 } else if (info->before == info->after && info->before > info->ts) {
2912 /* not interrupted */
2913 static int once;
2914
2915 /*
2916 * This is possible with a recalibrating of the TSC.
2917 * Do not produce a call stack, but just report it.
2918 */
2919 if (!once) {
2920 once++;
2921 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2922 info->before, info->ts);
2923 }
2924 } else
2925 rb_check_timestamp(cpu_buffer, info);
2926 if (!abs)
2927 info->delta = 0;
2928 }
2929 *event = rb_add_time_stamp(*event, info->delta, abs);
2930 *length -= RB_LEN_TIME_EXTEND;
2931 *delta = 0;
2932}
2933
2934/**
2935 * rb_update_event - update event type and data
2936 * @cpu_buffer: The per cpu buffer of the @event
2937 * @event: the event to update
2938 * @info: The info to update the @event with (contains length and delta)
2939 *
2940 * Update the type and data fields of the @event. The length
2941 * is the actual size that is written to the ring buffer,
2942 * and with this, we can determine what to place into the
2943 * data field.
2944 */
2945static void
2946rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2947 struct ring_buffer_event *event,
2948 struct rb_event_info *info)
2949{
2950 unsigned length = info->length;
2951 u64 delta = info->delta;
2952 unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2953
2954 if (!WARN_ON_ONCE(nest >= MAX_NEST))
2955 cpu_buffer->event_stamp[nest] = info->ts;
2956
2957 /*
2958 * If we need to add a timestamp, then we
2959 * add it to the start of the reserved space.
2960 */
2961 if (unlikely(info->add_timestamp))
2962 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2963
2964 event->time_delta = delta;
2965 length -= RB_EVNT_HDR_SIZE;
2966 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2967 event->type_len = 0;
2968 event->array[0] = length;
2969 } else
2970 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2971}
2972
2973static unsigned rb_calculate_event_length(unsigned length)
2974{
2975 struct ring_buffer_event event; /* Used only for sizeof array */
2976
2977 /* zero length can cause confusions */
2978 if (!length)
2979 length++;
2980
2981 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2982 length += sizeof(event.array[0]);
2983
2984 length += RB_EVNT_HDR_SIZE;
2985 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2986
2987 /*
2988 * In case the time delta is larger than the 27 bits for it
2989 * in the header, we need to add a timestamp. If another
2990 * event comes in when trying to discard this one to increase
2991 * the length, then the timestamp will be added in the allocated
2992 * space of this event. If length is bigger than the size needed
2993 * for the TIME_EXTEND, then padding has to be used. The events
2994 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2995 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2996 * As length is a multiple of 4, we only need to worry if it
2997 * is 12 (RB_LEN_TIME_EXTEND + 4).
2998 */
2999 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3000 length += RB_ALIGNMENT;
3001
3002 return length;
3003}
3004
3005static u64 rb_time_delta(struct ring_buffer_event *event)
3006{
3007 switch (event->type_len) {
3008 case RINGBUF_TYPE_PADDING:
3009 return 0;
3010
3011 case RINGBUF_TYPE_TIME_EXTEND:
3012 return rb_event_time_stamp(event);
3013
3014 case RINGBUF_TYPE_TIME_STAMP:
3015 return 0;
3016
3017 case RINGBUF_TYPE_DATA:
3018 return event->time_delta;
3019 default:
3020 return 0;
3021 }
3022}
3023
3024static inline int
3025rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3026 struct ring_buffer_event *event)
3027{
3028 unsigned long new_index, old_index;
3029 struct buffer_page *bpage;
3030 unsigned long index;
3031 unsigned long addr;
3032 u64 write_stamp;
3033 u64 delta;
3034
3035 new_index = rb_event_index(event);
3036 old_index = new_index + rb_event_ts_length(event);
3037 addr = (unsigned long)event;
3038 addr &= PAGE_MASK;
3039
3040 bpage = READ_ONCE(cpu_buffer->tail_page);
3041
3042 delta = rb_time_delta(event);
3043
3044 if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
3045 return 0;
3046
3047 /* Make sure the write stamp is read before testing the location */
3048 barrier();
3049
3050 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3051 unsigned long write_mask =
3052 local_read(&bpage->write) & ~RB_WRITE_MASK;
3053 unsigned long event_length = rb_event_length(event);
3054
3055 /* Something came in, can't discard */
3056 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
3057 write_stamp, write_stamp - delta))
3058 return 0;
3059
3060 /*
3061 * It's possible that the event time delta is zero
3062 * (has the same time stamp as the previous event)
3063 * in which case write_stamp and before_stamp could
3064 * be the same. In such a case, force before_stamp
3065 * to be different than write_stamp. It doesn't
3066 * matter what it is, as long as its different.
3067 */
3068 if (!delta)
3069 rb_time_set(&cpu_buffer->before_stamp, 0);
3070
3071 /*
3072 * If an event were to come in now, it would see that the
3073 * write_stamp and the before_stamp are different, and assume
3074 * that this event just added itself before updating
3075 * the write stamp. The interrupting event will fix the
3076 * write stamp for us, and use the before stamp as its delta.
3077 */
3078
3079 /*
3080 * This is on the tail page. It is possible that
3081 * a write could come in and move the tail page
3082 * and write to the next page. That is fine
3083 * because we just shorten what is on this page.
3084 */
3085 old_index += write_mask;
3086 new_index += write_mask;
3087 index = local_cmpxchg(&bpage->write, old_index, new_index);
3088 if (index == old_index) {
3089 /* update counters */
3090 local_sub(event_length, &cpu_buffer->entries_bytes);
3091 return 1;
3092 }
3093 }
3094
3095 /* could not discard */
3096 return 0;
3097}
3098
3099static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3100{
3101 local_inc(&cpu_buffer->committing);
3102 local_inc(&cpu_buffer->commits);
3103}
3104
3105static __always_inline void
3106rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3107{
3108 unsigned long max_count;
3109
3110 /*
3111 * We only race with interrupts and NMIs on this CPU.
3112 * If we own the commit event, then we can commit
3113 * all others that interrupted us, since the interruptions
3114 * are in stack format (they finish before they come
3115 * back to us). This allows us to do a simple loop to
3116 * assign the commit to the tail.
3117 */
3118 again:
3119 max_count = cpu_buffer->nr_pages * 100;
3120
3121 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3122 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3123 return;
3124 if (RB_WARN_ON(cpu_buffer,
3125 rb_is_reader_page(cpu_buffer->tail_page)))
3126 return;
3127 local_set(&cpu_buffer->commit_page->page->commit,
3128 rb_page_write(cpu_buffer->commit_page));
3129 rb_inc_page(&cpu_buffer->commit_page);
3130 /* add barrier to keep gcc from optimizing too much */
3131 barrier();
3132 }
3133 while (rb_commit_index(cpu_buffer) !=
3134 rb_page_write(cpu_buffer->commit_page)) {
3135
3136 local_set(&cpu_buffer->commit_page->page->commit,
3137 rb_page_write(cpu_buffer->commit_page));
3138 RB_WARN_ON(cpu_buffer,
3139 local_read(&cpu_buffer->commit_page->page->commit) &
3140 ~RB_WRITE_MASK);
3141 barrier();
3142 }
3143
3144 /* again, keep gcc from optimizing */
3145 barrier();
3146
3147 /*
3148 * If an interrupt came in just after the first while loop
3149 * and pushed the tail page forward, we will be left with
3150 * a dangling commit that will never go forward.
3151 */
3152 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3153 goto again;
3154}
3155
3156static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3157{
3158 unsigned long commits;
3159
3160 if (RB_WARN_ON(cpu_buffer,
3161 !local_read(&cpu_buffer->committing)))
3162 return;
3163
3164 again:
3165 commits = local_read(&cpu_buffer->commits);
3166 /* synchronize with interrupts */
3167 barrier();
3168 if (local_read(&cpu_buffer->committing) == 1)
3169 rb_set_commit_to_write(cpu_buffer);
3170
3171 local_dec(&cpu_buffer->committing);
3172
3173 /* synchronize with interrupts */
3174 barrier();
3175
3176 /*
3177 * Need to account for interrupts coming in between the
3178 * updating of the commit page and the clearing of the
3179 * committing counter.
3180 */
3181 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3182 !local_read(&cpu_buffer->committing)) {
3183 local_inc(&cpu_buffer->committing);
3184 goto again;
3185 }
3186}
3187
3188static inline void rb_event_discard(struct ring_buffer_event *event)
3189{
3190 if (extended_time(event))
3191 event = skip_time_extend(event);
3192
3193 /* array[0] holds the actual length for the discarded event */
3194 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3195 event->type_len = RINGBUF_TYPE_PADDING;
3196 /* time delta must be non zero */
3197 if (!event->time_delta)
3198 event->time_delta = 1;
3199}
3200
3201static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3202{
3203 local_inc(&cpu_buffer->entries);
3204 rb_end_commit(cpu_buffer);
3205}
3206
3207static __always_inline void
3208rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3209{
3210 if (buffer->irq_work.waiters_pending) {
3211 buffer->irq_work.waiters_pending = false;
3212 /* irq_work_queue() supplies it's own memory barriers */
3213 irq_work_queue(&buffer->irq_work.work);
3214 }
3215
3216 if (cpu_buffer->irq_work.waiters_pending) {
3217 cpu_buffer->irq_work.waiters_pending = false;
3218 /* irq_work_queue() supplies it's own memory barriers */
3219 irq_work_queue(&cpu_buffer->irq_work.work);
3220 }
3221
3222 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3223 return;
3224
3225 if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3226 return;
3227
3228 if (!cpu_buffer->irq_work.full_waiters_pending)
3229 return;
3230
3231 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3232
3233 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3234 return;
3235
3236 cpu_buffer->irq_work.wakeup_full = true;
3237 cpu_buffer->irq_work.full_waiters_pending = false;
3238 /* irq_work_queue() supplies it's own memory barriers */
3239 irq_work_queue(&cpu_buffer->irq_work.work);
3240}
3241
3242#ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3243# define do_ring_buffer_record_recursion() \
3244 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3245#else
3246# define do_ring_buffer_record_recursion() do { } while (0)
3247#endif
3248
3249/*
3250 * The lock and unlock are done within a preempt disable section.
3251 * The current_context per_cpu variable can only be modified
3252 * by the current task between lock and unlock. But it can
3253 * be modified more than once via an interrupt. To pass this
3254 * information from the lock to the unlock without having to
3255 * access the 'in_interrupt()' functions again (which do show
3256 * a bit of overhead in something as critical as function tracing,
3257 * we use a bitmask trick.
3258 *
3259 * bit 1 = NMI context
3260 * bit 2 = IRQ context
3261 * bit 3 = SoftIRQ context
3262 * bit 4 = normal context.
3263 *
3264 * This works because this is the order of contexts that can
3265 * preempt other contexts. A SoftIRQ never preempts an IRQ
3266 * context.
3267 *
3268 * When the context is determined, the corresponding bit is
3269 * checked and set (if it was set, then a recursion of that context
3270 * happened).
3271 *
3272 * On unlock, we need to clear this bit. To do so, just subtract
3273 * 1 from the current_context and AND it to itself.
3274 *
3275 * (binary)
3276 * 101 - 1 = 100
3277 * 101 & 100 = 100 (clearing bit zero)
3278 *
3279 * 1010 - 1 = 1001
3280 * 1010 & 1001 = 1000 (clearing bit 1)
3281 *
3282 * The least significant bit can be cleared this way, and it
3283 * just so happens that it is the same bit corresponding to
3284 * the current context.
3285 *
3286 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3287 * is set when a recursion is detected at the current context, and if
3288 * the TRANSITION bit is already set, it will fail the recursion.
3289 * This is needed because there's a lag between the changing of
3290 * interrupt context and updating the preempt count. In this case,
3291 * a false positive will be found. To handle this, one extra recursion
3292 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3293 * bit is already set, then it is considered a recursion and the function
3294 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3295 *
3296 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3297 * to be cleared. Even if it wasn't the context that set it. That is,
3298 * if an interrupt comes in while NORMAL bit is set and the ring buffer
3299 * is called before preempt_count() is updated, since the check will
3300 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3301 * NMI then comes in, it will set the NMI bit, but when the NMI code
3302 * does the trace_recursive_unlock() it will clear the TRANSITION bit
3303 * and leave the NMI bit set. But this is fine, because the interrupt
3304 * code that set the TRANSITION bit will then clear the NMI bit when it
3305 * calls trace_recursive_unlock(). If another NMI comes in, it will
3306 * set the TRANSITION bit and continue.
3307 *
3308 * Note: The TRANSITION bit only handles a single transition between context.
3309 */
3310
3311static __always_inline int
3312trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3313{
3314 unsigned int val = cpu_buffer->current_context;
3315 int bit = interrupt_context_level();
3316
3317 bit = RB_CTX_NORMAL - bit;
3318
3319 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3320 /*
3321 * It is possible that this was called by transitioning
3322 * between interrupt context, and preempt_count() has not
3323 * been updated yet. In this case, use the TRANSITION bit.
3324 */
3325 bit = RB_CTX_TRANSITION;
3326 if (val & (1 << (bit + cpu_buffer->nest))) {
3327 do_ring_buffer_record_recursion();
3328 return 1;
3329 }
3330 }
3331
3332 val |= (1 << (bit + cpu_buffer->nest));
3333 cpu_buffer->current_context = val;
3334
3335 return 0;
3336}
3337
3338static __always_inline void
3339trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3340{
3341 cpu_buffer->current_context &=
3342 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3343}
3344
3345/* The recursive locking above uses 5 bits */
3346#define NESTED_BITS 5
3347
3348/**
3349 * ring_buffer_nest_start - Allow to trace while nested
3350 * @buffer: The ring buffer to modify
3351 *
3352 * The ring buffer has a safety mechanism to prevent recursion.
3353 * But there may be a case where a trace needs to be done while
3354 * tracing something else. In this case, calling this function
3355 * will allow this function to nest within a currently active
3356 * ring_buffer_lock_reserve().
3357 *
3358 * Call this function before calling another ring_buffer_lock_reserve() and
3359 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3360 */
3361void ring_buffer_nest_start(struct trace_buffer *buffer)
3362{
3363 struct ring_buffer_per_cpu *cpu_buffer;
3364 int cpu;
3365
3366 /* Enabled by ring_buffer_nest_end() */
3367 preempt_disable_notrace();
3368 cpu = raw_smp_processor_id();
3369 cpu_buffer = buffer->buffers[cpu];
3370 /* This is the shift value for the above recursive locking */
3371 cpu_buffer->nest += NESTED_BITS;
3372}
3373
3374/**
3375 * ring_buffer_nest_end - Allow to trace while nested
3376 * @buffer: The ring buffer to modify
3377 *
3378 * Must be called after ring_buffer_nest_start() and after the
3379 * ring_buffer_unlock_commit().
3380 */
3381void ring_buffer_nest_end(struct trace_buffer *buffer)
3382{
3383 struct ring_buffer_per_cpu *cpu_buffer;
3384 int cpu;
3385
3386 /* disabled by ring_buffer_nest_start() */
3387 cpu = raw_smp_processor_id();
3388 cpu_buffer = buffer->buffers[cpu];
3389 /* This is the shift value for the above recursive locking */
3390 cpu_buffer->nest -= NESTED_BITS;
3391 preempt_enable_notrace();
3392}
3393
3394/**
3395 * ring_buffer_unlock_commit - commit a reserved
3396 * @buffer: The buffer to commit to
3397 * @event: The event pointer to commit.
3398 *
3399 * This commits the data to the ring buffer, and releases any locks held.
3400 *
3401 * Must be paired with ring_buffer_lock_reserve.
3402 */
3403int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3404{
3405 struct ring_buffer_per_cpu *cpu_buffer;
3406 int cpu = raw_smp_processor_id();
3407
3408 cpu_buffer = buffer->buffers[cpu];
3409
3410 rb_commit(cpu_buffer);
3411
3412 rb_wakeups(buffer, cpu_buffer);
3413
3414 trace_recursive_unlock(cpu_buffer);
3415
3416 preempt_enable_notrace();
3417
3418 return 0;
3419}
3420EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3421
3422/* Special value to validate all deltas on a page. */
3423#define CHECK_FULL_PAGE 1L
3424
3425#ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3426static void dump_buffer_page(struct buffer_data_page *bpage,
3427 struct rb_event_info *info,
3428 unsigned long tail)
3429{
3430 struct ring_buffer_event *event;
3431 u64 ts, delta;
3432 int e;
3433
3434 ts = bpage->time_stamp;
3435 pr_warn(" [%lld] PAGE TIME STAMP\n", ts);
3436
3437 for (e = 0; e < tail; e += rb_event_length(event)) {
3438
3439 event = (struct ring_buffer_event *)(bpage->data + e);
3440
3441 switch (event->type_len) {
3442
3443 case RINGBUF_TYPE_TIME_EXTEND:
3444 delta = rb_event_time_stamp(event);
3445 ts += delta;
3446 pr_warn(" [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3447 break;
3448
3449 case RINGBUF_TYPE_TIME_STAMP:
3450 delta = rb_event_time_stamp(event);
3451 ts = rb_fix_abs_ts(delta, ts);
3452 pr_warn(" [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3453 break;
3454
3455 case RINGBUF_TYPE_PADDING:
3456 ts += event->time_delta;
3457 pr_warn(" [%lld] delta:%d PADDING\n", ts, event->time_delta);
3458 break;
3459
3460 case RINGBUF_TYPE_DATA:
3461 ts += event->time_delta;
3462 pr_warn(" [%lld] delta:%d\n", ts, event->time_delta);
3463 break;
3464
3465 default:
3466 break;
3467 }
3468 }
3469}
3470
3471static DEFINE_PER_CPU(atomic_t, checking);
3472static atomic_t ts_dump;
3473
3474/*
3475 * Check if the current event time stamp matches the deltas on
3476 * the buffer page.
3477 */
3478static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3479 struct rb_event_info *info,
3480 unsigned long tail)
3481{
3482 struct ring_buffer_event *event;
3483 struct buffer_data_page *bpage;
3484 u64 ts, delta;
3485 bool full = false;
3486 int e;
3487
3488 bpage = info->tail_page->page;
3489
3490 if (tail == CHECK_FULL_PAGE) {
3491 full = true;
3492 tail = local_read(&bpage->commit);
3493 } else if (info->add_timestamp &
3494 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3495 /* Ignore events with absolute time stamps */
3496 return;
3497 }
3498
3499 /*
3500 * Do not check the first event (skip possible extends too).
3501 * Also do not check if previous events have not been committed.
3502 */
3503 if (tail <= 8 || tail > local_read(&bpage->commit))
3504 return;
3505
3506 /*
3507 * If this interrupted another event,
3508 */
3509 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3510 goto out;
3511
3512 ts = bpage->time_stamp;
3513
3514 for (e = 0; e < tail; e += rb_event_length(event)) {
3515
3516 event = (struct ring_buffer_event *)(bpage->data + e);
3517
3518 switch (event->type_len) {
3519
3520 case RINGBUF_TYPE_TIME_EXTEND:
3521 delta = rb_event_time_stamp(event);
3522 ts += delta;
3523 break;
3524
3525 case RINGBUF_TYPE_TIME_STAMP:
3526 delta = rb_event_time_stamp(event);
3527 ts = rb_fix_abs_ts(delta, ts);
3528 break;
3529
3530 case RINGBUF_TYPE_PADDING:
3531 if (event->time_delta == 1)
3532 break;
3533 fallthrough;
3534 case RINGBUF_TYPE_DATA:
3535 ts += event->time_delta;
3536 break;
3537
3538 default:
3539 RB_WARN_ON(cpu_buffer, 1);
3540 }
3541 }
3542 if ((full && ts > info->ts) ||
3543 (!full && ts + info->delta != info->ts)) {
3544 /* If another report is happening, ignore this one */
3545 if (atomic_inc_return(&ts_dump) != 1) {
3546 atomic_dec(&ts_dump);
3547 goto out;
3548 }
3549 atomic_inc(&cpu_buffer->record_disabled);
3550 /* There's some cases in boot up that this can happen */
3551 WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3552 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3553 cpu_buffer->cpu,
3554 ts + info->delta, info->ts, info->delta,
3555 info->before, info->after,
3556 full ? " (full)" : "");
3557 dump_buffer_page(bpage, info, tail);
3558 atomic_dec(&ts_dump);
3559 /* Do not re-enable checking */
3560 return;
3561 }
3562out:
3563 atomic_dec(this_cpu_ptr(&checking));
3564}
3565#else
3566static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3567 struct rb_event_info *info,
3568 unsigned long tail)
3569{
3570}
3571#endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3572
3573static struct ring_buffer_event *
3574__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3575 struct rb_event_info *info)
3576{
3577 struct ring_buffer_event *event;
3578 struct buffer_page *tail_page;
3579 unsigned long tail, write, w;
3580 bool a_ok;
3581 bool b_ok;
3582
3583 /* Don't let the compiler play games with cpu_buffer->tail_page */
3584 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3585
3586 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK;
3587 barrier();
3588 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3589 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3590 barrier();
3591 info->ts = rb_time_stamp(cpu_buffer->buffer);
3592
3593 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3594 info->delta = info->ts;
3595 } else {
3596 /*
3597 * If interrupting an event time update, we may need an
3598 * absolute timestamp.
3599 * Don't bother if this is the start of a new page (w == 0).
3600 */
3601 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3602 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3603 info->length += RB_LEN_TIME_EXTEND;
3604 } else {
3605 info->delta = info->ts - info->after;
3606 if (unlikely(test_time_stamp(info->delta))) {
3607 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3608 info->length += RB_LEN_TIME_EXTEND;
3609 }
3610 }
3611 }
3612
3613 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts);
3614
3615 /*C*/ write = local_add_return(info->length, &tail_page->write);
3616
3617 /* set write to only the index of the write */
3618 write &= RB_WRITE_MASK;
3619
3620 tail = write - info->length;
3621
3622 /* See if we shot pass the end of this buffer page */
3623 if (unlikely(write > BUF_PAGE_SIZE)) {
3624 /* before and after may now different, fix it up*/
3625 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3626 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3627 if (a_ok && b_ok && info->before != info->after)
3628 (void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3629 info->before, info->after);
3630 if (a_ok && b_ok)
3631 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3632 return rb_move_tail(cpu_buffer, tail, info);
3633 }
3634
3635 if (likely(tail == w)) {
3636 u64 save_before;
3637 bool s_ok;
3638
3639 /* Nothing interrupted us between A and C */
3640 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts);
3641 barrier();
3642 /*E*/ s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3643 RB_WARN_ON(cpu_buffer, !s_ok);
3644 if (likely(!(info->add_timestamp &
3645 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3646 /* This did not interrupt any time update */
3647 info->delta = info->ts - info->after;
3648 else
3649 /* Just use full timestamp for interrupting event */
3650 info->delta = info->ts;
3651 barrier();
3652 check_buffer(cpu_buffer, info, tail);
3653 if (unlikely(info->ts != save_before)) {
3654 /* SLOW PATH - Interrupted between C and E */
3655
3656 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3657 RB_WARN_ON(cpu_buffer, !a_ok);
3658
3659 /* Write stamp must only go forward */
3660 if (save_before > info->after) {
3661 /*
3662 * We do not care about the result, only that
3663 * it gets updated atomically.
3664 */
3665 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3666 info->after, save_before);
3667 }
3668 }
3669 } else {
3670 u64 ts;
3671 /* SLOW PATH - Interrupted between A and C */
3672 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3673 /* Was interrupted before here, write_stamp must be valid */
3674 RB_WARN_ON(cpu_buffer, !a_ok);
3675 ts = rb_time_stamp(cpu_buffer->buffer);
3676 barrier();
3677 /*E*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3678 info->after < ts &&
3679 rb_time_cmpxchg(&cpu_buffer->write_stamp,
3680 info->after, ts)) {
3681 /* Nothing came after this event between C and E */
3682 info->delta = ts - info->after;
3683 } else {
3684 /*
3685 * Interrupted between C and E:
3686 * Lost the previous events time stamp. Just set the
3687 * delta to zero, and this will be the same time as
3688 * the event this event interrupted. And the events that
3689 * came after this will still be correct (as they would
3690 * have built their delta on the previous event.
3691 */
3692 info->delta = 0;
3693 }
3694 info->ts = ts;
3695 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3696 }
3697
3698 /*
3699 * If this is the first commit on the page, then it has the same
3700 * timestamp as the page itself.
3701 */
3702 if (unlikely(!tail && !(info->add_timestamp &
3703 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3704 info->delta = 0;
3705
3706 /* We reserved something on the buffer */
3707
3708 event = __rb_page_index(tail_page, tail);
3709 rb_update_event(cpu_buffer, event, info);
3710
3711 local_inc(&tail_page->entries);
3712
3713 /*
3714 * If this is the first commit on the page, then update
3715 * its timestamp.
3716 */
3717 if (unlikely(!tail))
3718 tail_page->page->time_stamp = info->ts;
3719
3720 /* account for these added bytes */
3721 local_add(info->length, &cpu_buffer->entries_bytes);
3722
3723 return event;
3724}
3725
3726static __always_inline struct ring_buffer_event *
3727rb_reserve_next_event(struct trace_buffer *buffer,
3728 struct ring_buffer_per_cpu *cpu_buffer,
3729 unsigned long length)
3730{
3731 struct ring_buffer_event *event;
3732 struct rb_event_info info;
3733 int nr_loops = 0;
3734 int add_ts_default;
3735
3736 rb_start_commit(cpu_buffer);
3737 /* The commit page can not change after this */
3738
3739#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3740 /*
3741 * Due to the ability to swap a cpu buffer from a buffer
3742 * it is possible it was swapped before we committed.
3743 * (committing stops a swap). We check for it here and
3744 * if it happened, we have to fail the write.
3745 */
3746 barrier();
3747 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3748 local_dec(&cpu_buffer->committing);
3749 local_dec(&cpu_buffer->commits);
3750 return NULL;
3751 }
3752#endif
3753
3754 info.length = rb_calculate_event_length(length);
3755
3756 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3757 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3758 info.length += RB_LEN_TIME_EXTEND;
3759 } else {
3760 add_ts_default = RB_ADD_STAMP_NONE;
3761 }
3762
3763 again:
3764 info.add_timestamp = add_ts_default;
3765 info.delta = 0;
3766
3767 /*
3768 * We allow for interrupts to reenter here and do a trace.
3769 * If one does, it will cause this original code to loop
3770 * back here. Even with heavy interrupts happening, this
3771 * should only happen a few times in a row. If this happens
3772 * 1000 times in a row, there must be either an interrupt
3773 * storm or we have something buggy.
3774 * Bail!
3775 */
3776 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3777 goto out_fail;
3778
3779 event = __rb_reserve_next(cpu_buffer, &info);
3780
3781 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3782 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3783 info.length -= RB_LEN_TIME_EXTEND;
3784 goto again;
3785 }
3786
3787 if (likely(event))
3788 return event;
3789 out_fail:
3790 rb_end_commit(cpu_buffer);
3791 return NULL;
3792}
3793
3794/**
3795 * ring_buffer_lock_reserve - reserve a part of the buffer
3796 * @buffer: the ring buffer to reserve from
3797 * @length: the length of the data to reserve (excluding event header)
3798 *
3799 * Returns a reserved event on the ring buffer to copy directly to.
3800 * The user of this interface will need to get the body to write into
3801 * and can use the ring_buffer_event_data() interface.
3802 *
3803 * The length is the length of the data needed, not the event length
3804 * which also includes the event header.
3805 *
3806 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3807 * If NULL is returned, then nothing has been allocated or locked.
3808 */
3809struct ring_buffer_event *
3810ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3811{
3812 struct ring_buffer_per_cpu *cpu_buffer;
3813 struct ring_buffer_event *event;
3814 int cpu;
3815
3816 /* If we are tracing schedule, we don't want to recurse */
3817 preempt_disable_notrace();
3818
3819 if (unlikely(atomic_read(&buffer->record_disabled)))
3820 goto out;
3821
3822 cpu = raw_smp_processor_id();
3823
3824 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3825 goto out;
3826
3827 cpu_buffer = buffer->buffers[cpu];
3828
3829 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3830 goto out;
3831
3832 if (unlikely(length > BUF_MAX_DATA_SIZE))
3833 goto out;
3834
3835 if (unlikely(trace_recursive_lock(cpu_buffer)))
3836 goto out;
3837
3838 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3839 if (!event)
3840 goto out_unlock;
3841
3842 return event;
3843
3844 out_unlock:
3845 trace_recursive_unlock(cpu_buffer);
3846 out:
3847 preempt_enable_notrace();
3848 return NULL;
3849}
3850EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3851
3852/*
3853 * Decrement the entries to the page that an event is on.
3854 * The event does not even need to exist, only the pointer
3855 * to the page it is on. This may only be called before the commit
3856 * takes place.
3857 */
3858static inline void
3859rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3860 struct ring_buffer_event *event)
3861{
3862 unsigned long addr = (unsigned long)event;
3863 struct buffer_page *bpage = cpu_buffer->commit_page;
3864 struct buffer_page *start;
3865
3866 addr &= PAGE_MASK;
3867
3868 /* Do the likely case first */
3869 if (likely(bpage->page == (void *)addr)) {
3870 local_dec(&bpage->entries);
3871 return;
3872 }
3873
3874 /*
3875 * Because the commit page may be on the reader page we
3876 * start with the next page and check the end loop there.
3877 */
3878 rb_inc_page(&bpage);
3879 start = bpage;
3880 do {
3881 if (bpage->page == (void *)addr) {
3882 local_dec(&bpage->entries);
3883 return;
3884 }
3885 rb_inc_page(&bpage);
3886 } while (bpage != start);
3887
3888 /* commit not part of this buffer?? */
3889 RB_WARN_ON(cpu_buffer, 1);
3890}
3891
3892/**
3893 * ring_buffer_discard_commit - discard an event that has not been committed
3894 * @buffer: the ring buffer
3895 * @event: non committed event to discard
3896 *
3897 * Sometimes an event that is in the ring buffer needs to be ignored.
3898 * This function lets the user discard an event in the ring buffer
3899 * and then that event will not be read later.
3900 *
3901 * This function only works if it is called before the item has been
3902 * committed. It will try to free the event from the ring buffer
3903 * if another event has not been added behind it.
3904 *
3905 * If another event has been added behind it, it will set the event
3906 * up as discarded, and perform the commit.
3907 *
3908 * If this function is called, do not call ring_buffer_unlock_commit on
3909 * the event.
3910 */
3911void ring_buffer_discard_commit(struct trace_buffer *buffer,
3912 struct ring_buffer_event *event)
3913{
3914 struct ring_buffer_per_cpu *cpu_buffer;
3915 int cpu;
3916
3917 /* The event is discarded regardless */
3918 rb_event_discard(event);
3919
3920 cpu = smp_processor_id();
3921 cpu_buffer = buffer->buffers[cpu];
3922
3923 /*
3924 * This must only be called if the event has not been
3925 * committed yet. Thus we can assume that preemption
3926 * is still disabled.
3927 */
3928 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3929
3930 rb_decrement_entry(cpu_buffer, event);
3931 if (rb_try_to_discard(cpu_buffer, event))
3932 goto out;
3933
3934 out:
3935 rb_end_commit(cpu_buffer);
3936
3937 trace_recursive_unlock(cpu_buffer);
3938
3939 preempt_enable_notrace();
3940
3941}
3942EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3943
3944/**
3945 * ring_buffer_write - write data to the buffer without reserving
3946 * @buffer: The ring buffer to write to.
3947 * @length: The length of the data being written (excluding the event header)
3948 * @data: The data to write to the buffer.
3949 *
3950 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3951 * one function. If you already have the data to write to the buffer, it
3952 * may be easier to simply call this function.
3953 *
3954 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3955 * and not the length of the event which would hold the header.
3956 */
3957int ring_buffer_write(struct trace_buffer *buffer,
3958 unsigned long length,
3959 void *data)
3960{
3961 struct ring_buffer_per_cpu *cpu_buffer;
3962 struct ring_buffer_event *event;
3963 void *body;
3964 int ret = -EBUSY;
3965 int cpu;
3966
3967 preempt_disable_notrace();
3968
3969 if (atomic_read(&buffer->record_disabled))
3970 goto out;
3971
3972 cpu = raw_smp_processor_id();
3973
3974 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3975 goto out;
3976
3977 cpu_buffer = buffer->buffers[cpu];
3978
3979 if (atomic_read(&cpu_buffer->record_disabled))
3980 goto out;
3981
3982 if (length > BUF_MAX_DATA_SIZE)
3983 goto out;
3984
3985 if (unlikely(trace_recursive_lock(cpu_buffer)))
3986 goto out;
3987
3988 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3989 if (!event)
3990 goto out_unlock;
3991
3992 body = rb_event_data(event);
3993
3994 memcpy(body, data, length);
3995
3996 rb_commit(cpu_buffer);
3997
3998 rb_wakeups(buffer, cpu_buffer);
3999
4000 ret = 0;
4001
4002 out_unlock:
4003 trace_recursive_unlock(cpu_buffer);
4004
4005 out:
4006 preempt_enable_notrace();
4007
4008 return ret;
4009}
4010EXPORT_SYMBOL_GPL(ring_buffer_write);
4011
4012static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4013{
4014 struct buffer_page *reader = cpu_buffer->reader_page;
4015 struct buffer_page *head = rb_set_head_page(cpu_buffer);
4016 struct buffer_page *commit = cpu_buffer->commit_page;
4017
4018 /* In case of error, head will be NULL */
4019 if (unlikely(!head))
4020 return true;
4021
4022 /* Reader should exhaust content in reader page */
4023 if (reader->read != rb_page_commit(reader))
4024 return false;
4025
4026 /*
4027 * If writers are committing on the reader page, knowing all
4028 * committed content has been read, the ring buffer is empty.
4029 */
4030 if (commit == reader)
4031 return true;
4032
4033 /*
4034 * If writers are committing on a page other than reader page
4035 * and head page, there should always be content to read.
4036 */
4037 if (commit != head)
4038 return false;
4039
4040 /*
4041 * Writers are committing on the head page, we just need
4042 * to care about there're committed data, and the reader will
4043 * swap reader page with head page when it is to read data.
4044 */
4045 return rb_page_commit(commit) == 0;
4046}
4047
4048/**
4049 * ring_buffer_record_disable - stop all writes into the buffer
4050 * @buffer: The ring buffer to stop writes to.
4051 *
4052 * This prevents all writes to the buffer. Any attempt to write
4053 * to the buffer after this will fail and return NULL.
4054 *
4055 * The caller should call synchronize_rcu() after this.
4056 */
4057void ring_buffer_record_disable(struct trace_buffer *buffer)
4058{
4059 atomic_inc(&buffer->record_disabled);
4060}
4061EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4062
4063/**
4064 * ring_buffer_record_enable - enable writes to the buffer
4065 * @buffer: The ring buffer to enable writes
4066 *
4067 * Note, multiple disables will need the same number of enables
4068 * to truly enable the writing (much like preempt_disable).
4069 */
4070void ring_buffer_record_enable(struct trace_buffer *buffer)
4071{
4072 atomic_dec(&buffer->record_disabled);
4073}
4074EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4075
4076/**
4077 * ring_buffer_record_off - stop all writes into the buffer
4078 * @buffer: The ring buffer to stop writes to.
4079 *
4080 * This prevents all writes to the buffer. Any attempt to write
4081 * to the buffer after this will fail and return NULL.
4082 *
4083 * This is different than ring_buffer_record_disable() as
4084 * it works like an on/off switch, where as the disable() version
4085 * must be paired with a enable().
4086 */
4087void ring_buffer_record_off(struct trace_buffer *buffer)
4088{
4089 unsigned int rd;
4090 unsigned int new_rd;
4091
4092 do {
4093 rd = atomic_read(&buffer->record_disabled);
4094 new_rd = rd | RB_BUFFER_OFF;
4095 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
4096}
4097EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4098
4099/**
4100 * ring_buffer_record_on - restart writes into the buffer
4101 * @buffer: The ring buffer to start writes to.
4102 *
4103 * This enables all writes to the buffer that was disabled by
4104 * ring_buffer_record_off().
4105 *
4106 * This is different than ring_buffer_record_enable() as
4107 * it works like an on/off switch, where as the enable() version
4108 * must be paired with a disable().
4109 */
4110void ring_buffer_record_on(struct trace_buffer *buffer)
4111{
4112 unsigned int rd;
4113 unsigned int new_rd;
4114
4115 do {
4116 rd = atomic_read(&buffer->record_disabled);
4117 new_rd = rd & ~RB_BUFFER_OFF;
4118 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
4119}
4120EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4121
4122/**
4123 * ring_buffer_record_is_on - return true if the ring buffer can write
4124 * @buffer: The ring buffer to see if write is enabled
4125 *
4126 * Returns true if the ring buffer is in a state that it accepts writes.
4127 */
4128bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4129{
4130 return !atomic_read(&buffer->record_disabled);
4131}
4132
4133/**
4134 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4135 * @buffer: The ring buffer to see if write is set enabled
4136 *
4137 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4138 * Note that this does NOT mean it is in a writable state.
4139 *
4140 * It may return true when the ring buffer has been disabled by
4141 * ring_buffer_record_disable(), as that is a temporary disabling of
4142 * the ring buffer.
4143 */
4144bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4145{
4146 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4147}
4148
4149/**
4150 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4151 * @buffer: The ring buffer to stop writes to.
4152 * @cpu: The CPU buffer to stop
4153 *
4154 * This prevents all writes to the buffer. Any attempt to write
4155 * to the buffer after this will fail and return NULL.
4156 *
4157 * The caller should call synchronize_rcu() after this.
4158 */
4159void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4160{
4161 struct ring_buffer_per_cpu *cpu_buffer;
4162
4163 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4164 return;
4165
4166 cpu_buffer = buffer->buffers[cpu];
4167 atomic_inc(&cpu_buffer->record_disabled);
4168}
4169EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4170
4171/**
4172 * ring_buffer_record_enable_cpu - enable writes to the buffer
4173 * @buffer: The ring buffer to enable writes
4174 * @cpu: The CPU to enable.
4175 *
4176 * Note, multiple disables will need the same number of enables
4177 * to truly enable the writing (much like preempt_disable).
4178 */
4179void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4180{
4181 struct ring_buffer_per_cpu *cpu_buffer;
4182
4183 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4184 return;
4185
4186 cpu_buffer = buffer->buffers[cpu];
4187 atomic_dec(&cpu_buffer->record_disabled);
4188}
4189EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4190
4191/*
4192 * The total entries in the ring buffer is the running counter
4193 * of entries entered into the ring buffer, minus the sum of
4194 * the entries read from the ring buffer and the number of
4195 * entries that were overwritten.
4196 */
4197static inline unsigned long
4198rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4199{
4200 return local_read(&cpu_buffer->entries) -
4201 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4202}
4203
4204/**
4205 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4206 * @buffer: The ring buffer
4207 * @cpu: The per CPU buffer to read from.
4208 */
4209u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4210{
4211 unsigned long flags;
4212 struct ring_buffer_per_cpu *cpu_buffer;
4213 struct buffer_page *bpage;
4214 u64 ret = 0;
4215
4216 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4217 return 0;
4218
4219 cpu_buffer = buffer->buffers[cpu];
4220 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4221 /*
4222 * if the tail is on reader_page, oldest time stamp is on the reader
4223 * page
4224 */
4225 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4226 bpage = cpu_buffer->reader_page;
4227 else
4228 bpage = rb_set_head_page(cpu_buffer);
4229 if (bpage)
4230 ret = bpage->page->time_stamp;
4231 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4232
4233 return ret;
4234}
4235EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4236
4237/**
4238 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
4239 * @buffer: The ring buffer
4240 * @cpu: The per CPU buffer to read from.
4241 */
4242unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4243{
4244 struct ring_buffer_per_cpu *cpu_buffer;
4245 unsigned long ret;
4246
4247 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4248 return 0;
4249
4250 cpu_buffer = buffer->buffers[cpu];
4251 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4252
4253 return ret;
4254}
4255EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4256
4257/**
4258 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4259 * @buffer: The ring buffer
4260 * @cpu: The per CPU buffer to get the entries from.
4261 */
4262unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4263{
4264 struct ring_buffer_per_cpu *cpu_buffer;
4265
4266 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4267 return 0;
4268
4269 cpu_buffer = buffer->buffers[cpu];
4270
4271 return rb_num_of_entries(cpu_buffer);
4272}
4273EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4274
4275/**
4276 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4277 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4278 * @buffer: The ring buffer
4279 * @cpu: The per CPU buffer to get the number of overruns from
4280 */
4281unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4282{
4283 struct ring_buffer_per_cpu *cpu_buffer;
4284 unsigned long ret;
4285
4286 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4287 return 0;
4288
4289 cpu_buffer = buffer->buffers[cpu];
4290 ret = local_read(&cpu_buffer->overrun);
4291
4292 return ret;
4293}
4294EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4295
4296/**
4297 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4298 * commits failing due to the buffer wrapping around while there are uncommitted
4299 * events, such as during an interrupt storm.
4300 * @buffer: The ring buffer
4301 * @cpu: The per CPU buffer to get the number of overruns from
4302 */
4303unsigned long
4304ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4305{
4306 struct ring_buffer_per_cpu *cpu_buffer;
4307 unsigned long ret;
4308
4309 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4310 return 0;
4311
4312 cpu_buffer = buffer->buffers[cpu];
4313 ret = local_read(&cpu_buffer->commit_overrun);
4314
4315 return ret;
4316}
4317EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4318
4319/**
4320 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4321 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4322 * @buffer: The ring buffer
4323 * @cpu: The per CPU buffer to get the number of overruns from
4324 */
4325unsigned long
4326ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4327{
4328 struct ring_buffer_per_cpu *cpu_buffer;
4329 unsigned long ret;
4330
4331 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4332 return 0;
4333
4334 cpu_buffer = buffer->buffers[cpu];
4335 ret = local_read(&cpu_buffer->dropped_events);
4336
4337 return ret;
4338}
4339EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4340
4341/**
4342 * ring_buffer_read_events_cpu - get the number of events successfully read
4343 * @buffer: The ring buffer
4344 * @cpu: The per CPU buffer to get the number of events read
4345 */
4346unsigned long
4347ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4348{
4349 struct ring_buffer_per_cpu *cpu_buffer;
4350
4351 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4352 return 0;
4353
4354 cpu_buffer = buffer->buffers[cpu];
4355 return cpu_buffer->read;
4356}
4357EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4358
4359/**
4360 * ring_buffer_entries - get the number of entries in a buffer
4361 * @buffer: The ring buffer
4362 *
4363 * Returns the total number of entries in the ring buffer
4364 * (all CPU entries)
4365 */
4366unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4367{
4368 struct ring_buffer_per_cpu *cpu_buffer;
4369 unsigned long entries = 0;
4370 int cpu;
4371
4372 /* if you care about this being correct, lock the buffer */
4373 for_each_buffer_cpu(buffer, cpu) {
4374 cpu_buffer = buffer->buffers[cpu];
4375 entries += rb_num_of_entries(cpu_buffer);
4376 }
4377
4378 return entries;
4379}
4380EXPORT_SYMBOL_GPL(ring_buffer_entries);
4381
4382/**
4383 * ring_buffer_overruns - get the number of overruns in buffer
4384 * @buffer: The ring buffer
4385 *
4386 * Returns the total number of overruns in the ring buffer
4387 * (all CPU entries)
4388 */
4389unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4390{
4391 struct ring_buffer_per_cpu *cpu_buffer;
4392 unsigned long overruns = 0;
4393 int cpu;
4394
4395 /* if you care about this being correct, lock the buffer */
4396 for_each_buffer_cpu(buffer, cpu) {
4397 cpu_buffer = buffer->buffers[cpu];
4398 overruns += local_read(&cpu_buffer->overrun);
4399 }
4400
4401 return overruns;
4402}
4403EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4404
4405static void rb_iter_reset(struct ring_buffer_iter *iter)
4406{
4407 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4408
4409 /* Iterator usage is expected to have record disabled */
4410 iter->head_page = cpu_buffer->reader_page;
4411 iter->head = cpu_buffer->reader_page->read;
4412 iter->next_event = iter->head;
4413
4414 iter->cache_reader_page = iter->head_page;
4415 iter->cache_read = cpu_buffer->read;
4416
4417 if (iter->head) {
4418 iter->read_stamp = cpu_buffer->read_stamp;
4419 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4420 } else {
4421 iter->read_stamp = iter->head_page->page->time_stamp;
4422 iter->page_stamp = iter->read_stamp;
4423 }
4424}
4425
4426/**
4427 * ring_buffer_iter_reset - reset an iterator
4428 * @iter: The iterator to reset
4429 *
4430 * Resets the iterator, so that it will start from the beginning
4431 * again.
4432 */
4433void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4434{
4435 struct ring_buffer_per_cpu *cpu_buffer;
4436 unsigned long flags;
4437
4438 if (!iter)
4439 return;
4440
4441 cpu_buffer = iter->cpu_buffer;
4442
4443 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4444 rb_iter_reset(iter);
4445 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4446}
4447EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4448
4449/**
4450 * ring_buffer_iter_empty - check if an iterator has no more to read
4451 * @iter: The iterator to check
4452 */
4453int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4454{
4455 struct ring_buffer_per_cpu *cpu_buffer;
4456 struct buffer_page *reader;
4457 struct buffer_page *head_page;
4458 struct buffer_page *commit_page;
4459 struct buffer_page *curr_commit_page;
4460 unsigned commit;
4461 u64 curr_commit_ts;
4462 u64 commit_ts;
4463
4464 cpu_buffer = iter->cpu_buffer;
4465 reader = cpu_buffer->reader_page;
4466 head_page = cpu_buffer->head_page;
4467 commit_page = cpu_buffer->commit_page;
4468 commit_ts = commit_page->page->time_stamp;
4469
4470 /*
4471 * When the writer goes across pages, it issues a cmpxchg which
4472 * is a mb(), which will synchronize with the rmb here.
4473 * (see rb_tail_page_update())
4474 */
4475 smp_rmb();
4476 commit = rb_page_commit(commit_page);
4477 /* We want to make sure that the commit page doesn't change */
4478 smp_rmb();
4479
4480 /* Make sure commit page didn't change */
4481 curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4482 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4483
4484 /* If the commit page changed, then there's more data */
4485 if (curr_commit_page != commit_page ||
4486 curr_commit_ts != commit_ts)
4487 return 0;
4488
4489 /* Still racy, as it may return a false positive, but that's OK */
4490 return ((iter->head_page == commit_page && iter->head >= commit) ||
4491 (iter->head_page == reader && commit_page == head_page &&
4492 head_page->read == commit &&
4493 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4494}
4495EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4496
4497static void
4498rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4499 struct ring_buffer_event *event)
4500{
4501 u64 delta;
4502
4503 switch (event->type_len) {
4504 case RINGBUF_TYPE_PADDING:
4505 return;
4506
4507 case RINGBUF_TYPE_TIME_EXTEND:
4508 delta = rb_event_time_stamp(event);
4509 cpu_buffer->read_stamp += delta;
4510 return;
4511
4512 case RINGBUF_TYPE_TIME_STAMP:
4513 delta = rb_event_time_stamp(event);
4514 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4515 cpu_buffer->read_stamp = delta;
4516 return;
4517
4518 case RINGBUF_TYPE_DATA:
4519 cpu_buffer->read_stamp += event->time_delta;
4520 return;
4521
4522 default:
4523 RB_WARN_ON(cpu_buffer, 1);
4524 }
4525 return;
4526}
4527
4528static void
4529rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4530 struct ring_buffer_event *event)
4531{
4532 u64 delta;
4533
4534 switch (event->type_len) {
4535 case RINGBUF_TYPE_PADDING:
4536 return;
4537
4538 case RINGBUF_TYPE_TIME_EXTEND:
4539 delta = rb_event_time_stamp(event);
4540 iter->read_stamp += delta;
4541 return;
4542
4543 case RINGBUF_TYPE_TIME_STAMP:
4544 delta = rb_event_time_stamp(event);
4545 delta = rb_fix_abs_ts(delta, iter->read_stamp);
4546 iter->read_stamp = delta;
4547 return;
4548
4549 case RINGBUF_TYPE_DATA:
4550 iter->read_stamp += event->time_delta;
4551 return;
4552
4553 default:
4554 RB_WARN_ON(iter->cpu_buffer, 1);
4555 }
4556 return;
4557}
4558
4559static struct buffer_page *
4560rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4561{
4562 struct buffer_page *reader = NULL;
4563 unsigned long overwrite;
4564 unsigned long flags;
4565 int nr_loops = 0;
4566 int ret;
4567
4568 local_irq_save(flags);
4569 arch_spin_lock(&cpu_buffer->lock);
4570
4571 again:
4572 /*
4573 * This should normally only loop twice. But because the
4574 * start of the reader inserts an empty page, it causes
4575 * a case where we will loop three times. There should be no
4576 * reason to loop four times (that I know of).
4577 */
4578 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4579 reader = NULL;
4580 goto out;
4581 }
4582
4583 reader = cpu_buffer->reader_page;
4584
4585 /* If there's more to read, return this page */
4586 if (cpu_buffer->reader_page->read < rb_page_size(reader))
4587 goto out;
4588
4589 /* Never should we have an index greater than the size */
4590 if (RB_WARN_ON(cpu_buffer,
4591 cpu_buffer->reader_page->read > rb_page_size(reader)))
4592 goto out;
4593
4594 /* check if we caught up to the tail */
4595 reader = NULL;
4596 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4597 goto out;
4598
4599 /* Don't bother swapping if the ring buffer is empty */
4600 if (rb_num_of_entries(cpu_buffer) == 0)
4601 goto out;
4602
4603 /*
4604 * Reset the reader page to size zero.
4605 */
4606 local_set(&cpu_buffer->reader_page->write, 0);
4607 local_set(&cpu_buffer->reader_page->entries, 0);
4608 local_set(&cpu_buffer->reader_page->page->commit, 0);
4609 cpu_buffer->reader_page->real_end = 0;
4610
4611 spin:
4612 /*
4613 * Splice the empty reader page into the list around the head.
4614 */
4615 reader = rb_set_head_page(cpu_buffer);
4616 if (!reader)
4617 goto out;
4618 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4619 cpu_buffer->reader_page->list.prev = reader->list.prev;
4620
4621 /*
4622 * cpu_buffer->pages just needs to point to the buffer, it
4623 * has no specific buffer page to point to. Lets move it out
4624 * of our way so we don't accidentally swap it.
4625 */
4626 cpu_buffer->pages = reader->list.prev;
4627
4628 /* The reader page will be pointing to the new head */
4629 rb_set_list_to_head(&cpu_buffer->reader_page->list);
4630
4631 /*
4632 * We want to make sure we read the overruns after we set up our
4633 * pointers to the next object. The writer side does a
4634 * cmpxchg to cross pages which acts as the mb on the writer
4635 * side. Note, the reader will constantly fail the swap
4636 * while the writer is updating the pointers, so this
4637 * guarantees that the overwrite recorded here is the one we
4638 * want to compare with the last_overrun.
4639 */
4640 smp_mb();
4641 overwrite = local_read(&(cpu_buffer->overrun));
4642
4643 /*
4644 * Here's the tricky part.
4645 *
4646 * We need to move the pointer past the header page.
4647 * But we can only do that if a writer is not currently
4648 * moving it. The page before the header page has the
4649 * flag bit '1' set if it is pointing to the page we want.
4650 * but if the writer is in the process of moving it
4651 * than it will be '2' or already moved '0'.
4652 */
4653
4654 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4655
4656 /*
4657 * If we did not convert it, then we must try again.
4658 */
4659 if (!ret)
4660 goto spin;
4661
4662 /*
4663 * Yay! We succeeded in replacing the page.
4664 *
4665 * Now make the new head point back to the reader page.
4666 */
4667 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4668 rb_inc_page(&cpu_buffer->head_page);
4669
4670 local_inc(&cpu_buffer->pages_read);
4671
4672 /* Finally update the reader page to the new head */
4673 cpu_buffer->reader_page = reader;
4674 cpu_buffer->reader_page->read = 0;
4675
4676 if (overwrite != cpu_buffer->last_overrun) {
4677 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4678 cpu_buffer->last_overrun = overwrite;
4679 }
4680
4681 goto again;
4682
4683 out:
4684 /* Update the read_stamp on the first event */
4685 if (reader && reader->read == 0)
4686 cpu_buffer->read_stamp = reader->page->time_stamp;
4687
4688 arch_spin_unlock(&cpu_buffer->lock);
4689 local_irq_restore(flags);
4690
4691 /*
4692 * The writer has preempt disable, wait for it. But not forever
4693 * Although, 1 second is pretty much "forever"
4694 */
4695#define USECS_WAIT 1000000
4696 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4697 /* If the write is past the end of page, a writer is still updating it */
4698 if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4699 break;
4700
4701 udelay(1);
4702
4703 /* Get the latest version of the reader write value */
4704 smp_rmb();
4705 }
4706
4707 /* The writer is not moving forward? Something is wrong */
4708 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4709 reader = NULL;
4710
4711 /*
4712 * Make sure we see any padding after the write update
4713 * (see rb_reset_tail())
4714 */
4715 smp_rmb();
4716
4717
4718 return reader;
4719}
4720
4721static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4722{
4723 struct ring_buffer_event *event;
4724 struct buffer_page *reader;
4725 unsigned length;
4726
4727 reader = rb_get_reader_page(cpu_buffer);
4728
4729 /* This function should not be called when buffer is empty */
4730 if (RB_WARN_ON(cpu_buffer, !reader))
4731 return;
4732
4733 event = rb_reader_event(cpu_buffer);
4734
4735 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4736 cpu_buffer->read++;
4737
4738 rb_update_read_stamp(cpu_buffer, event);
4739
4740 length = rb_event_length(event);
4741 cpu_buffer->reader_page->read += length;
4742}
4743
4744static void rb_advance_iter(struct ring_buffer_iter *iter)
4745{
4746 struct ring_buffer_per_cpu *cpu_buffer;
4747
4748 cpu_buffer = iter->cpu_buffer;
4749
4750 /* If head == next_event then we need to jump to the next event */
4751 if (iter->head == iter->next_event) {
4752 /* If the event gets overwritten again, there's nothing to do */
4753 if (rb_iter_head_event(iter) == NULL)
4754 return;
4755 }
4756
4757 iter->head = iter->next_event;
4758
4759 /*
4760 * Check if we are at the end of the buffer.
4761 */
4762 if (iter->next_event >= rb_page_size(iter->head_page)) {
4763 /* discarded commits can make the page empty */
4764 if (iter->head_page == cpu_buffer->commit_page)
4765 return;
4766 rb_inc_iter(iter);
4767 return;
4768 }
4769
4770 rb_update_iter_read_stamp(iter, iter->event);
4771}
4772
4773static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4774{
4775 return cpu_buffer->lost_events;
4776}
4777
4778static struct ring_buffer_event *
4779rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4780 unsigned long *lost_events)
4781{
4782 struct ring_buffer_event *event;
4783 struct buffer_page *reader;
4784 int nr_loops = 0;
4785
4786 if (ts)
4787 *ts = 0;
4788 again:
4789 /*
4790 * We repeat when a time extend is encountered.
4791 * Since the time extend is always attached to a data event,
4792 * we should never loop more than once.
4793 * (We never hit the following condition more than twice).
4794 */
4795 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4796 return NULL;
4797
4798 reader = rb_get_reader_page(cpu_buffer);
4799 if (!reader)
4800 return NULL;
4801
4802 event = rb_reader_event(cpu_buffer);
4803
4804 switch (event->type_len) {
4805 case RINGBUF_TYPE_PADDING:
4806 if (rb_null_event(event))
4807 RB_WARN_ON(cpu_buffer, 1);
4808 /*
4809 * Because the writer could be discarding every
4810 * event it creates (which would probably be bad)
4811 * if we were to go back to "again" then we may never
4812 * catch up, and will trigger the warn on, or lock
4813 * the box. Return the padding, and we will release
4814 * the current locks, and try again.
4815 */
4816 return event;
4817
4818 case RINGBUF_TYPE_TIME_EXTEND:
4819 /* Internal data, OK to advance */
4820 rb_advance_reader(cpu_buffer);
4821 goto again;
4822
4823 case RINGBUF_TYPE_TIME_STAMP:
4824 if (ts) {
4825 *ts = rb_event_time_stamp(event);
4826 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4827 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4828 cpu_buffer->cpu, ts);
4829 }
4830 /* Internal data, OK to advance */
4831 rb_advance_reader(cpu_buffer);
4832 goto again;
4833
4834 case RINGBUF_TYPE_DATA:
4835 if (ts && !(*ts)) {
4836 *ts = cpu_buffer->read_stamp + event->time_delta;
4837 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4838 cpu_buffer->cpu, ts);
4839 }
4840 if (lost_events)
4841 *lost_events = rb_lost_events(cpu_buffer);
4842 return event;
4843
4844 default:
4845 RB_WARN_ON(cpu_buffer, 1);
4846 }
4847
4848 return NULL;
4849}
4850EXPORT_SYMBOL_GPL(ring_buffer_peek);
4851
4852static struct ring_buffer_event *
4853rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4854{
4855 struct trace_buffer *buffer;
4856 struct ring_buffer_per_cpu *cpu_buffer;
4857 struct ring_buffer_event *event;
4858 int nr_loops = 0;
4859
4860 if (ts)
4861 *ts = 0;
4862
4863 cpu_buffer = iter->cpu_buffer;
4864 buffer = cpu_buffer->buffer;
4865
4866 /*
4867 * Check if someone performed a consuming read to
4868 * the buffer. A consuming read invalidates the iterator
4869 * and we need to reset the iterator in this case.
4870 */
4871 if (unlikely(iter->cache_read != cpu_buffer->read ||
4872 iter->cache_reader_page != cpu_buffer->reader_page))
4873 rb_iter_reset(iter);
4874
4875 again:
4876 if (ring_buffer_iter_empty(iter))
4877 return NULL;
4878
4879 /*
4880 * As the writer can mess with what the iterator is trying
4881 * to read, just give up if we fail to get an event after
4882 * three tries. The iterator is not as reliable when reading
4883 * the ring buffer with an active write as the consumer is.
4884 * Do not warn if the three failures is reached.
4885 */
4886 if (++nr_loops > 3)
4887 return NULL;
4888
4889 if (rb_per_cpu_empty(cpu_buffer))
4890 return NULL;
4891
4892 if (iter->head >= rb_page_size(iter->head_page)) {
4893 rb_inc_iter(iter);
4894 goto again;
4895 }
4896
4897 event = rb_iter_head_event(iter);
4898 if (!event)
4899 goto again;
4900
4901 switch (event->type_len) {
4902 case RINGBUF_TYPE_PADDING:
4903 if (rb_null_event(event)) {
4904 rb_inc_iter(iter);
4905 goto again;
4906 }
4907 rb_advance_iter(iter);
4908 return event;
4909
4910 case RINGBUF_TYPE_TIME_EXTEND:
4911 /* Internal data, OK to advance */
4912 rb_advance_iter(iter);
4913 goto again;
4914
4915 case RINGBUF_TYPE_TIME_STAMP:
4916 if (ts) {
4917 *ts = rb_event_time_stamp(event);
4918 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4919 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4920 cpu_buffer->cpu, ts);
4921 }
4922 /* Internal data, OK to advance */
4923 rb_advance_iter(iter);
4924 goto again;
4925
4926 case RINGBUF_TYPE_DATA:
4927 if (ts && !(*ts)) {
4928 *ts = iter->read_stamp + event->time_delta;
4929 ring_buffer_normalize_time_stamp(buffer,
4930 cpu_buffer->cpu, ts);
4931 }
4932 return event;
4933
4934 default:
4935 RB_WARN_ON(cpu_buffer, 1);
4936 }
4937
4938 return NULL;
4939}
4940EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4941
4942static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4943{
4944 if (likely(!in_nmi())) {
4945 raw_spin_lock(&cpu_buffer->reader_lock);
4946 return true;
4947 }
4948
4949 /*
4950 * If an NMI die dumps out the content of the ring buffer
4951 * trylock must be used to prevent a deadlock if the NMI
4952 * preempted a task that holds the ring buffer locks. If
4953 * we get the lock then all is fine, if not, then continue
4954 * to do the read, but this can corrupt the ring buffer,
4955 * so it must be permanently disabled from future writes.
4956 * Reading from NMI is a oneshot deal.
4957 */
4958 if (raw_spin_trylock(&cpu_buffer->reader_lock))
4959 return true;
4960
4961 /* Continue without locking, but disable the ring buffer */
4962 atomic_inc(&cpu_buffer->record_disabled);
4963 return false;
4964}
4965
4966static inline void
4967rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4968{
4969 if (likely(locked))
4970 raw_spin_unlock(&cpu_buffer->reader_lock);
4971 return;
4972}
4973
4974/**
4975 * ring_buffer_peek - peek at the next event to be read
4976 * @buffer: The ring buffer to read
4977 * @cpu: The cpu to peak at
4978 * @ts: The timestamp counter of this event.
4979 * @lost_events: a variable to store if events were lost (may be NULL)
4980 *
4981 * This will return the event that will be read next, but does
4982 * not consume the data.
4983 */
4984struct ring_buffer_event *
4985ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4986 unsigned long *lost_events)
4987{
4988 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4989 struct ring_buffer_event *event;
4990 unsigned long flags;
4991 bool dolock;
4992
4993 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4994 return NULL;
4995
4996 again:
4997 local_irq_save(flags);
4998 dolock = rb_reader_lock(cpu_buffer);
4999 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5000 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5001 rb_advance_reader(cpu_buffer);
5002 rb_reader_unlock(cpu_buffer, dolock);
5003 local_irq_restore(flags);
5004
5005 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5006 goto again;
5007
5008 return event;
5009}
5010
5011/** ring_buffer_iter_dropped - report if there are dropped events
5012 * @iter: The ring buffer iterator
5013 *
5014 * Returns true if there was dropped events since the last peek.
5015 */
5016bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5017{
5018 bool ret = iter->missed_events != 0;
5019
5020 iter->missed_events = 0;
5021 return ret;
5022}
5023EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5024
5025/**
5026 * ring_buffer_iter_peek - peek at the next event to be read
5027 * @iter: The ring buffer iterator
5028 * @ts: The timestamp counter of this event.
5029 *
5030 * This will return the event that will be read next, but does
5031 * not increment the iterator.
5032 */
5033struct ring_buffer_event *
5034ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5035{
5036 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5037 struct ring_buffer_event *event;
5038 unsigned long flags;
5039
5040 again:
5041 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5042 event = rb_iter_peek(iter, ts);
5043 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5044
5045 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5046 goto again;
5047
5048 return event;
5049}
5050
5051/**
5052 * ring_buffer_consume - return an event and consume it
5053 * @buffer: The ring buffer to get the next event from
5054 * @cpu: the cpu to read the buffer from
5055 * @ts: a variable to store the timestamp (may be NULL)
5056 * @lost_events: a variable to store if events were lost (may be NULL)
5057 *
5058 * Returns the next event in the ring buffer, and that event is consumed.
5059 * Meaning, that sequential reads will keep returning a different event,
5060 * and eventually empty the ring buffer if the producer is slower.
5061 */
5062struct ring_buffer_event *
5063ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5064 unsigned long *lost_events)
5065{
5066 struct ring_buffer_per_cpu *cpu_buffer;
5067 struct ring_buffer_event *event = NULL;
5068 unsigned long flags;
5069 bool dolock;
5070
5071 again:
5072 /* might be called in atomic */
5073 preempt_disable();
5074
5075 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5076 goto out;
5077
5078 cpu_buffer = buffer->buffers[cpu];
5079 local_irq_save(flags);
5080 dolock = rb_reader_lock(cpu_buffer);
5081
5082 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5083 if (event) {
5084 cpu_buffer->lost_events = 0;
5085 rb_advance_reader(cpu_buffer);
5086 }
5087
5088 rb_reader_unlock(cpu_buffer, dolock);
5089 local_irq_restore(flags);
5090
5091 out:
5092 preempt_enable();
5093
5094 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5095 goto again;
5096
5097 return event;
5098}
5099EXPORT_SYMBOL_GPL(ring_buffer_consume);
5100
5101/**
5102 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5103 * @buffer: The ring buffer to read from
5104 * @cpu: The cpu buffer to iterate over
5105 * @flags: gfp flags to use for memory allocation
5106 *
5107 * This performs the initial preparations necessary to iterate
5108 * through the buffer. Memory is allocated, buffer recording
5109 * is disabled, and the iterator pointer is returned to the caller.
5110 *
5111 * Disabling buffer recording prevents the reading from being
5112 * corrupted. This is not a consuming read, so a producer is not
5113 * expected.
5114 *
5115 * After a sequence of ring_buffer_read_prepare calls, the user is
5116 * expected to make at least one call to ring_buffer_read_prepare_sync.
5117 * Afterwards, ring_buffer_read_start is invoked to get things going
5118 * for real.
5119 *
5120 * This overall must be paired with ring_buffer_read_finish.
5121 */
5122struct ring_buffer_iter *
5123ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5124{
5125 struct ring_buffer_per_cpu *cpu_buffer;
5126 struct ring_buffer_iter *iter;
5127
5128 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5129 return NULL;
5130
5131 iter = kzalloc(sizeof(*iter), flags);
5132 if (!iter)
5133 return NULL;
5134
5135 iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
5136 if (!iter->event) {
5137 kfree(iter);
5138 return NULL;
5139 }
5140
5141 cpu_buffer = buffer->buffers[cpu];
5142
5143 iter->cpu_buffer = cpu_buffer;
5144
5145 atomic_inc(&cpu_buffer->resize_disabled);
5146
5147 return iter;
5148}
5149EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5150
5151/**
5152 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5153 *
5154 * All previously invoked ring_buffer_read_prepare calls to prepare
5155 * iterators will be synchronized. Afterwards, read_buffer_read_start
5156 * calls on those iterators are allowed.
5157 */
5158void
5159ring_buffer_read_prepare_sync(void)
5160{
5161 synchronize_rcu();
5162}
5163EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5164
5165/**
5166 * ring_buffer_read_start - start a non consuming read of the buffer
5167 * @iter: The iterator returned by ring_buffer_read_prepare
5168 *
5169 * This finalizes the startup of an iteration through the buffer.
5170 * The iterator comes from a call to ring_buffer_read_prepare and
5171 * an intervening ring_buffer_read_prepare_sync must have been
5172 * performed.
5173 *
5174 * Must be paired with ring_buffer_read_finish.
5175 */
5176void
5177ring_buffer_read_start(struct ring_buffer_iter *iter)
5178{
5179 struct ring_buffer_per_cpu *cpu_buffer;
5180 unsigned long flags;
5181
5182 if (!iter)
5183 return;
5184
5185 cpu_buffer = iter->cpu_buffer;
5186
5187 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5188 arch_spin_lock(&cpu_buffer->lock);
5189 rb_iter_reset(iter);
5190 arch_spin_unlock(&cpu_buffer->lock);
5191 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5192}
5193EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5194
5195/**
5196 * ring_buffer_read_finish - finish reading the iterator of the buffer
5197 * @iter: The iterator retrieved by ring_buffer_start
5198 *
5199 * This re-enables the recording to the buffer, and frees the
5200 * iterator.
5201 */
5202void
5203ring_buffer_read_finish(struct ring_buffer_iter *iter)
5204{
5205 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5206 unsigned long flags;
5207
5208 /*
5209 * Ring buffer is disabled from recording, here's a good place
5210 * to check the integrity of the ring buffer.
5211 * Must prevent readers from trying to read, as the check
5212 * clears the HEAD page and readers require it.
5213 */
5214 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5215 rb_check_pages(cpu_buffer);
5216 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5217
5218 atomic_dec(&cpu_buffer->resize_disabled);
5219 kfree(iter->event);
5220 kfree(iter);
5221}
5222EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5223
5224/**
5225 * ring_buffer_iter_advance - advance the iterator to the next location
5226 * @iter: The ring buffer iterator
5227 *
5228 * Move the location of the iterator such that the next read will
5229 * be the next location of the iterator.
5230 */
5231void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5232{
5233 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5234 unsigned long flags;
5235
5236 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5237
5238 rb_advance_iter(iter);
5239
5240 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5241}
5242EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5243
5244/**
5245 * ring_buffer_size - return the size of the ring buffer (in bytes)
5246 * @buffer: The ring buffer.
5247 * @cpu: The CPU to get ring buffer size from.
5248 */
5249unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5250{
5251 /*
5252 * Earlier, this method returned
5253 * BUF_PAGE_SIZE * buffer->nr_pages
5254 * Since the nr_pages field is now removed, we have converted this to
5255 * return the per cpu buffer value.
5256 */
5257 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5258 return 0;
5259
5260 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5261}
5262EXPORT_SYMBOL_GPL(ring_buffer_size);
5263
5264static void
5265rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5266{
5267 rb_head_page_deactivate(cpu_buffer);
5268
5269 cpu_buffer->head_page
5270 = list_entry(cpu_buffer->pages, struct buffer_page, list);
5271 local_set(&cpu_buffer->head_page->write, 0);
5272 local_set(&cpu_buffer->head_page->entries, 0);
5273 local_set(&cpu_buffer->head_page->page->commit, 0);
5274
5275 cpu_buffer->head_page->read = 0;
5276
5277 cpu_buffer->tail_page = cpu_buffer->head_page;
5278 cpu_buffer->commit_page = cpu_buffer->head_page;
5279
5280 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5281 INIT_LIST_HEAD(&cpu_buffer->new_pages);
5282 local_set(&cpu_buffer->reader_page->write, 0);
5283 local_set(&cpu_buffer->reader_page->entries, 0);
5284 local_set(&cpu_buffer->reader_page->page->commit, 0);
5285 cpu_buffer->reader_page->read = 0;
5286
5287 local_set(&cpu_buffer->entries_bytes, 0);
5288 local_set(&cpu_buffer->overrun, 0);
5289 local_set(&cpu_buffer->commit_overrun, 0);
5290 local_set(&cpu_buffer->dropped_events, 0);
5291 local_set(&cpu_buffer->entries, 0);
5292 local_set(&cpu_buffer->committing, 0);
5293 local_set(&cpu_buffer->commits, 0);
5294 local_set(&cpu_buffer->pages_touched, 0);
5295 local_set(&cpu_buffer->pages_lost, 0);
5296 local_set(&cpu_buffer->pages_read, 0);
5297 cpu_buffer->last_pages_touch = 0;
5298 cpu_buffer->shortest_full = 0;
5299 cpu_buffer->read = 0;
5300 cpu_buffer->read_bytes = 0;
5301
5302 rb_time_set(&cpu_buffer->write_stamp, 0);
5303 rb_time_set(&cpu_buffer->before_stamp, 0);
5304
5305 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5306
5307 cpu_buffer->lost_events = 0;
5308 cpu_buffer->last_overrun = 0;
5309
5310 rb_head_page_activate(cpu_buffer);
5311}
5312
5313/* Must have disabled the cpu buffer then done a synchronize_rcu */
5314static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5315{
5316 unsigned long flags;
5317
5318 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5319
5320 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5321 goto out;
5322
5323 arch_spin_lock(&cpu_buffer->lock);
5324
5325 rb_reset_cpu(cpu_buffer);
5326
5327 arch_spin_unlock(&cpu_buffer->lock);
5328
5329 out:
5330 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5331}
5332
5333/**
5334 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5335 * @buffer: The ring buffer to reset a per cpu buffer of
5336 * @cpu: The CPU buffer to be reset
5337 */
5338void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5339{
5340 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5341
5342 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5343 return;
5344
5345 /* prevent another thread from changing buffer sizes */
5346 mutex_lock(&buffer->mutex);
5347
5348 atomic_inc(&cpu_buffer->resize_disabled);
5349 atomic_inc(&cpu_buffer->record_disabled);
5350
5351 /* Make sure all commits have finished */
5352 synchronize_rcu();
5353
5354 reset_disabled_cpu_buffer(cpu_buffer);
5355
5356 atomic_dec(&cpu_buffer->record_disabled);
5357 atomic_dec(&cpu_buffer->resize_disabled);
5358
5359 mutex_unlock(&buffer->mutex);
5360}
5361EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5362
5363/**
5364 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5365 * @buffer: The ring buffer to reset a per cpu buffer of
5366 * @cpu: The CPU buffer to be reset
5367 */
5368void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5369{
5370 struct ring_buffer_per_cpu *cpu_buffer;
5371 int cpu;
5372
5373 /* prevent another thread from changing buffer sizes */
5374 mutex_lock(&buffer->mutex);
5375
5376 for_each_online_buffer_cpu(buffer, cpu) {
5377 cpu_buffer = buffer->buffers[cpu];
5378
5379 atomic_inc(&cpu_buffer->resize_disabled);
5380 atomic_inc(&cpu_buffer->record_disabled);
5381 }
5382
5383 /* Make sure all commits have finished */
5384 synchronize_rcu();
5385
5386 for_each_online_buffer_cpu(buffer, cpu) {
5387 cpu_buffer = buffer->buffers[cpu];
5388
5389 reset_disabled_cpu_buffer(cpu_buffer);
5390
5391 atomic_dec(&cpu_buffer->record_disabled);
5392 atomic_dec(&cpu_buffer->resize_disabled);
5393 }
5394
5395 mutex_unlock(&buffer->mutex);
5396}
5397
5398/**
5399 * ring_buffer_reset - reset a ring buffer
5400 * @buffer: The ring buffer to reset all cpu buffers
5401 */
5402void ring_buffer_reset(struct trace_buffer *buffer)
5403{
5404 struct ring_buffer_per_cpu *cpu_buffer;
5405 int cpu;
5406
5407 /* prevent another thread from changing buffer sizes */
5408 mutex_lock(&buffer->mutex);
5409
5410 for_each_buffer_cpu(buffer, cpu) {
5411 cpu_buffer = buffer->buffers[cpu];
5412
5413 atomic_inc(&cpu_buffer->resize_disabled);
5414 atomic_inc(&cpu_buffer->record_disabled);
5415 }
5416
5417 /* Make sure all commits have finished */
5418 synchronize_rcu();
5419
5420 for_each_buffer_cpu(buffer, cpu) {
5421 cpu_buffer = buffer->buffers[cpu];
5422
5423 reset_disabled_cpu_buffer(cpu_buffer);
5424
5425 atomic_dec(&cpu_buffer->record_disabled);
5426 atomic_dec(&cpu_buffer->resize_disabled);
5427 }
5428
5429 mutex_unlock(&buffer->mutex);
5430}
5431EXPORT_SYMBOL_GPL(ring_buffer_reset);
5432
5433/**
5434 * ring_buffer_empty - is the ring buffer empty?
5435 * @buffer: The ring buffer to test
5436 */
5437bool ring_buffer_empty(struct trace_buffer *buffer)
5438{
5439 struct ring_buffer_per_cpu *cpu_buffer;
5440 unsigned long flags;
5441 bool dolock;
5442 int cpu;
5443 int ret;
5444
5445 /* yes this is racy, but if you don't like the race, lock the buffer */
5446 for_each_buffer_cpu(buffer, cpu) {
5447 cpu_buffer = buffer->buffers[cpu];
5448 local_irq_save(flags);
5449 dolock = rb_reader_lock(cpu_buffer);
5450 ret = rb_per_cpu_empty(cpu_buffer);
5451 rb_reader_unlock(cpu_buffer, dolock);
5452 local_irq_restore(flags);
5453
5454 if (!ret)
5455 return false;
5456 }
5457
5458 return true;
5459}
5460EXPORT_SYMBOL_GPL(ring_buffer_empty);
5461
5462/**
5463 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5464 * @buffer: The ring buffer
5465 * @cpu: The CPU buffer to test
5466 */
5467bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5468{
5469 struct ring_buffer_per_cpu *cpu_buffer;
5470 unsigned long flags;
5471 bool dolock;
5472 int ret;
5473
5474 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5475 return true;
5476
5477 cpu_buffer = buffer->buffers[cpu];
5478 local_irq_save(flags);
5479 dolock = rb_reader_lock(cpu_buffer);
5480 ret = rb_per_cpu_empty(cpu_buffer);
5481 rb_reader_unlock(cpu_buffer, dolock);
5482 local_irq_restore(flags);
5483
5484 return ret;
5485}
5486EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5487
5488#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5489/**
5490 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5491 * @buffer_a: One buffer to swap with
5492 * @buffer_b: The other buffer to swap with
5493 * @cpu: the CPU of the buffers to swap
5494 *
5495 * This function is useful for tracers that want to take a "snapshot"
5496 * of a CPU buffer and has another back up buffer lying around.
5497 * it is expected that the tracer handles the cpu buffer not being
5498 * used at the moment.
5499 */
5500int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5501 struct trace_buffer *buffer_b, int cpu)
5502{
5503 struct ring_buffer_per_cpu *cpu_buffer_a;
5504 struct ring_buffer_per_cpu *cpu_buffer_b;
5505 int ret = -EINVAL;
5506
5507 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5508 !cpumask_test_cpu(cpu, buffer_b->cpumask))
5509 goto out;
5510
5511 cpu_buffer_a = buffer_a->buffers[cpu];
5512 cpu_buffer_b = buffer_b->buffers[cpu];
5513
5514 /* At least make sure the two buffers are somewhat the same */
5515 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5516 goto out;
5517
5518 ret = -EAGAIN;
5519
5520 if (atomic_read(&buffer_a->record_disabled))
5521 goto out;
5522
5523 if (atomic_read(&buffer_b->record_disabled))
5524 goto out;
5525
5526 if (atomic_read(&cpu_buffer_a->record_disabled))
5527 goto out;
5528
5529 if (atomic_read(&cpu_buffer_b->record_disabled))
5530 goto out;
5531
5532 /*
5533 * We can't do a synchronize_rcu here because this
5534 * function can be called in atomic context.
5535 * Normally this will be called from the same CPU as cpu.
5536 * If not it's up to the caller to protect this.
5537 */
5538 atomic_inc(&cpu_buffer_a->record_disabled);
5539 atomic_inc(&cpu_buffer_b->record_disabled);
5540
5541 ret = -EBUSY;
5542 if (local_read(&cpu_buffer_a->committing))
5543 goto out_dec;
5544 if (local_read(&cpu_buffer_b->committing))
5545 goto out_dec;
5546
5547 buffer_a->buffers[cpu] = cpu_buffer_b;
5548 buffer_b->buffers[cpu] = cpu_buffer_a;
5549
5550 cpu_buffer_b->buffer = buffer_a;
5551 cpu_buffer_a->buffer = buffer_b;
5552
5553 ret = 0;
5554
5555out_dec:
5556 atomic_dec(&cpu_buffer_a->record_disabled);
5557 atomic_dec(&cpu_buffer_b->record_disabled);
5558out:
5559 return ret;
5560}
5561EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5562#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5563
5564/**
5565 * ring_buffer_alloc_read_page - allocate a page to read from buffer
5566 * @buffer: the buffer to allocate for.
5567 * @cpu: the cpu buffer to allocate.
5568 *
5569 * This function is used in conjunction with ring_buffer_read_page.
5570 * When reading a full page from the ring buffer, these functions
5571 * can be used to speed up the process. The calling function should
5572 * allocate a few pages first with this function. Then when it
5573 * needs to get pages from the ring buffer, it passes the result
5574 * of this function into ring_buffer_read_page, which will swap
5575 * the page that was allocated, with the read page of the buffer.
5576 *
5577 * Returns:
5578 * The page allocated, or ERR_PTR
5579 */
5580void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5581{
5582 struct ring_buffer_per_cpu *cpu_buffer;
5583 struct buffer_data_page *bpage = NULL;
5584 unsigned long flags;
5585 struct page *page;
5586
5587 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5588 return ERR_PTR(-ENODEV);
5589
5590 cpu_buffer = buffer->buffers[cpu];
5591 local_irq_save(flags);
5592 arch_spin_lock(&cpu_buffer->lock);
5593
5594 if (cpu_buffer->free_page) {
5595 bpage = cpu_buffer->free_page;
5596 cpu_buffer->free_page = NULL;
5597 }
5598
5599 arch_spin_unlock(&cpu_buffer->lock);
5600 local_irq_restore(flags);
5601
5602 if (bpage)
5603 goto out;
5604
5605 page = alloc_pages_node(cpu_to_node(cpu),
5606 GFP_KERNEL | __GFP_NORETRY, 0);
5607 if (!page)
5608 return ERR_PTR(-ENOMEM);
5609
5610 bpage = page_address(page);
5611
5612 out:
5613 rb_init_page(bpage);
5614
5615 return bpage;
5616}
5617EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5618
5619/**
5620 * ring_buffer_free_read_page - free an allocated read page
5621 * @buffer: the buffer the page was allocate for
5622 * @cpu: the cpu buffer the page came from
5623 * @data: the page to free
5624 *
5625 * Free a page allocated from ring_buffer_alloc_read_page.
5626 */
5627void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5628{
5629 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5630 struct buffer_data_page *bpage = data;
5631 struct page *page = virt_to_page(bpage);
5632 unsigned long flags;
5633
5634 /* If the page is still in use someplace else, we can't reuse it */
5635 if (page_ref_count(page) > 1)
5636 goto out;
5637
5638 local_irq_save(flags);
5639 arch_spin_lock(&cpu_buffer->lock);
5640
5641 if (!cpu_buffer->free_page) {
5642 cpu_buffer->free_page = bpage;
5643 bpage = NULL;
5644 }
5645
5646 arch_spin_unlock(&cpu_buffer->lock);
5647 local_irq_restore(flags);
5648
5649 out:
5650 free_page((unsigned long)bpage);
5651}
5652EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5653
5654/**
5655 * ring_buffer_read_page - extract a page from the ring buffer
5656 * @buffer: buffer to extract from
5657 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5658 * @len: amount to extract
5659 * @cpu: the cpu of the buffer to extract
5660 * @full: should the extraction only happen when the page is full.
5661 *
5662 * This function will pull out a page from the ring buffer and consume it.
5663 * @data_page must be the address of the variable that was returned
5664 * from ring_buffer_alloc_read_page. This is because the page might be used
5665 * to swap with a page in the ring buffer.
5666 *
5667 * for example:
5668 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
5669 * if (IS_ERR(rpage))
5670 * return PTR_ERR(rpage);
5671 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5672 * if (ret >= 0)
5673 * process_page(rpage, ret);
5674 *
5675 * When @full is set, the function will not return true unless
5676 * the writer is off the reader page.
5677 *
5678 * Note: it is up to the calling functions to handle sleeps and wakeups.
5679 * The ring buffer can be used anywhere in the kernel and can not
5680 * blindly call wake_up. The layer that uses the ring buffer must be
5681 * responsible for that.
5682 *
5683 * Returns:
5684 * >=0 if data has been transferred, returns the offset of consumed data.
5685 * <0 if no data has been transferred.
5686 */
5687int ring_buffer_read_page(struct trace_buffer *buffer,
5688 void **data_page, size_t len, int cpu, int full)
5689{
5690 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5691 struct ring_buffer_event *event;
5692 struct buffer_data_page *bpage;
5693 struct buffer_page *reader;
5694 unsigned long missed_events;
5695 unsigned long flags;
5696 unsigned int commit;
5697 unsigned int read;
5698 u64 save_timestamp;
5699 int ret = -1;
5700
5701 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5702 goto out;
5703
5704 /*
5705 * If len is not big enough to hold the page header, then
5706 * we can not copy anything.
5707 */
5708 if (len <= BUF_PAGE_HDR_SIZE)
5709 goto out;
5710
5711 len -= BUF_PAGE_HDR_SIZE;
5712
5713 if (!data_page)
5714 goto out;
5715
5716 bpage = *data_page;
5717 if (!bpage)
5718 goto out;
5719
5720 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5721
5722 reader = rb_get_reader_page(cpu_buffer);
5723 if (!reader)
5724 goto out_unlock;
5725
5726 event = rb_reader_event(cpu_buffer);
5727
5728 read = reader->read;
5729 commit = rb_page_commit(reader);
5730
5731 /* Check if any events were dropped */
5732 missed_events = cpu_buffer->lost_events;
5733
5734 /*
5735 * If this page has been partially read or
5736 * if len is not big enough to read the rest of the page or
5737 * a writer is still on the page, then
5738 * we must copy the data from the page to the buffer.
5739 * Otherwise, we can simply swap the page with the one passed in.
5740 */
5741 if (read || (len < (commit - read)) ||
5742 cpu_buffer->reader_page == cpu_buffer->commit_page) {
5743 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5744 unsigned int rpos = read;
5745 unsigned int pos = 0;
5746 unsigned int size;
5747
5748 /*
5749 * If a full page is expected, this can still be returned
5750 * if there's been a previous partial read and the
5751 * rest of the page can be read and the commit page is off
5752 * the reader page.
5753 */
5754 if (full &&
5755 (!read || (len < (commit - read)) ||
5756 cpu_buffer->reader_page == cpu_buffer->commit_page))
5757 goto out_unlock;
5758
5759 if (len > (commit - read))
5760 len = (commit - read);
5761
5762 /* Always keep the time extend and data together */
5763 size = rb_event_ts_length(event);
5764
5765 if (len < size)
5766 goto out_unlock;
5767
5768 /* save the current timestamp, since the user will need it */
5769 save_timestamp = cpu_buffer->read_stamp;
5770
5771 /* Need to copy one event at a time */
5772 do {
5773 /* We need the size of one event, because
5774 * rb_advance_reader only advances by one event,
5775 * whereas rb_event_ts_length may include the size of
5776 * one or two events.
5777 * We have already ensured there's enough space if this
5778 * is a time extend. */
5779 size = rb_event_length(event);
5780 memcpy(bpage->data + pos, rpage->data + rpos, size);
5781
5782 len -= size;
5783
5784 rb_advance_reader(cpu_buffer);
5785 rpos = reader->read;
5786 pos += size;
5787
5788 if (rpos >= commit)
5789 break;
5790
5791 event = rb_reader_event(cpu_buffer);
5792 /* Always keep the time extend and data together */
5793 size = rb_event_ts_length(event);
5794 } while (len >= size);
5795
5796 /* update bpage */
5797 local_set(&bpage->commit, pos);
5798 bpage->time_stamp = save_timestamp;
5799
5800 /* we copied everything to the beginning */
5801 read = 0;
5802 } else {
5803 /* update the entry counter */
5804 cpu_buffer->read += rb_page_entries(reader);
5805 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5806
5807 /* swap the pages */
5808 rb_init_page(bpage);
5809 bpage = reader->page;
5810 reader->page = *data_page;
5811 local_set(&reader->write, 0);
5812 local_set(&reader->entries, 0);
5813 reader->read = 0;
5814 *data_page = bpage;
5815
5816 /*
5817 * Use the real_end for the data size,
5818 * This gives us a chance to store the lost events
5819 * on the page.
5820 */
5821 if (reader->real_end)
5822 local_set(&bpage->commit, reader->real_end);
5823 }
5824 ret = read;
5825
5826 cpu_buffer->lost_events = 0;
5827
5828 commit = local_read(&bpage->commit);
5829 /*
5830 * Set a flag in the commit field if we lost events
5831 */
5832 if (missed_events) {
5833 /* If there is room at the end of the page to save the
5834 * missed events, then record it there.
5835 */
5836 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5837 memcpy(&bpage->data[commit], &missed_events,
5838 sizeof(missed_events));
5839 local_add(RB_MISSED_STORED, &bpage->commit);
5840 commit += sizeof(missed_events);
5841 }
5842 local_add(RB_MISSED_EVENTS, &bpage->commit);
5843 }
5844
5845 /*
5846 * This page may be off to user land. Zero it out here.
5847 */
5848 if (commit < BUF_PAGE_SIZE)
5849 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5850
5851 out_unlock:
5852 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5853
5854 out:
5855 return ret;
5856}
5857EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5858
5859/*
5860 * We only allocate new buffers, never free them if the CPU goes down.
5861 * If we were to free the buffer, then the user would lose any trace that was in
5862 * the buffer.
5863 */
5864int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5865{
5866 struct trace_buffer *buffer;
5867 long nr_pages_same;
5868 int cpu_i;
5869 unsigned long nr_pages;
5870
5871 buffer = container_of(node, struct trace_buffer, node);
5872 if (cpumask_test_cpu(cpu, buffer->cpumask))
5873 return 0;
5874
5875 nr_pages = 0;
5876 nr_pages_same = 1;
5877 /* check if all cpu sizes are same */
5878 for_each_buffer_cpu(buffer, cpu_i) {
5879 /* fill in the size from first enabled cpu */
5880 if (nr_pages == 0)
5881 nr_pages = buffer->buffers[cpu_i]->nr_pages;
5882 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5883 nr_pages_same = 0;
5884 break;
5885 }
5886 }
5887 /* allocate minimum pages, user can later expand it */
5888 if (!nr_pages_same)
5889 nr_pages = 2;
5890 buffer->buffers[cpu] =
5891 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5892 if (!buffer->buffers[cpu]) {
5893 WARN(1, "failed to allocate ring buffer on CPU %u\n",
5894 cpu);
5895 return -ENOMEM;
5896 }
5897 smp_wmb();
5898 cpumask_set_cpu(cpu, buffer->cpumask);
5899 return 0;
5900}
5901
5902#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5903/*
5904 * This is a basic integrity check of the ring buffer.
5905 * Late in the boot cycle this test will run when configured in.
5906 * It will kick off a thread per CPU that will go into a loop
5907 * writing to the per cpu ring buffer various sizes of data.
5908 * Some of the data will be large items, some small.
5909 *
5910 * Another thread is created that goes into a spin, sending out
5911 * IPIs to the other CPUs to also write into the ring buffer.
5912 * this is to test the nesting ability of the buffer.
5913 *
5914 * Basic stats are recorded and reported. If something in the
5915 * ring buffer should happen that's not expected, a big warning
5916 * is displayed and all ring buffers are disabled.
5917 */
5918static struct task_struct *rb_threads[NR_CPUS] __initdata;
5919
5920struct rb_test_data {
5921 struct trace_buffer *buffer;
5922 unsigned long events;
5923 unsigned long bytes_written;
5924 unsigned long bytes_alloc;
5925 unsigned long bytes_dropped;
5926 unsigned long events_nested;
5927 unsigned long bytes_written_nested;
5928 unsigned long bytes_alloc_nested;
5929 unsigned long bytes_dropped_nested;
5930 int min_size_nested;
5931 int max_size_nested;
5932 int max_size;
5933 int min_size;
5934 int cpu;
5935 int cnt;
5936};
5937
5938static struct rb_test_data rb_data[NR_CPUS] __initdata;
5939
5940/* 1 meg per cpu */
5941#define RB_TEST_BUFFER_SIZE 1048576
5942
5943static char rb_string[] __initdata =
5944 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5945 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5946 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5947
5948static bool rb_test_started __initdata;
5949
5950struct rb_item {
5951 int size;
5952 char str[];
5953};
5954
5955static __init int rb_write_something(struct rb_test_data *data, bool nested)
5956{
5957 struct ring_buffer_event *event;
5958 struct rb_item *item;
5959 bool started;
5960 int event_len;
5961 int size;
5962 int len;
5963 int cnt;
5964
5965 /* Have nested writes different that what is written */
5966 cnt = data->cnt + (nested ? 27 : 0);
5967
5968 /* Multiply cnt by ~e, to make some unique increment */
5969 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5970
5971 len = size + sizeof(struct rb_item);
5972
5973 started = rb_test_started;
5974 /* read rb_test_started before checking buffer enabled */
5975 smp_rmb();
5976
5977 event = ring_buffer_lock_reserve(data->buffer, len);
5978 if (!event) {
5979 /* Ignore dropped events before test starts. */
5980 if (started) {
5981 if (nested)
5982 data->bytes_dropped += len;
5983 else
5984 data->bytes_dropped_nested += len;
5985 }
5986 return len;
5987 }
5988
5989 event_len = ring_buffer_event_length(event);
5990
5991 if (RB_WARN_ON(data->buffer, event_len < len))
5992 goto out;
5993
5994 item = ring_buffer_event_data(event);
5995 item->size = size;
5996 memcpy(item->str, rb_string, size);
5997
5998 if (nested) {
5999 data->bytes_alloc_nested += event_len;
6000 data->bytes_written_nested += len;
6001 data->events_nested++;
6002 if (!data->min_size_nested || len < data->min_size_nested)
6003 data->min_size_nested = len;
6004 if (len > data->max_size_nested)
6005 data->max_size_nested = len;
6006 } else {
6007 data->bytes_alloc += event_len;
6008 data->bytes_written += len;
6009 data->events++;
6010 if (!data->min_size || len < data->min_size)
6011 data->max_size = len;
6012 if (len > data->max_size)
6013 data->max_size = len;
6014 }
6015
6016 out:
6017 ring_buffer_unlock_commit(data->buffer);
6018
6019 return 0;
6020}
6021
6022static __init int rb_test(void *arg)
6023{
6024 struct rb_test_data *data = arg;
6025
6026 while (!kthread_should_stop()) {
6027 rb_write_something(data, false);
6028 data->cnt++;
6029
6030 set_current_state(TASK_INTERRUPTIBLE);
6031 /* Now sleep between a min of 100-300us and a max of 1ms */
6032 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6033 }
6034
6035 return 0;
6036}
6037
6038static __init void rb_ipi(void *ignore)
6039{
6040 struct rb_test_data *data;
6041 int cpu = smp_processor_id();
6042
6043 data = &rb_data[cpu];
6044 rb_write_something(data, true);
6045}
6046
6047static __init int rb_hammer_test(void *arg)
6048{
6049 while (!kthread_should_stop()) {
6050
6051 /* Send an IPI to all cpus to write data! */
6052 smp_call_function(rb_ipi, NULL, 1);
6053 /* No sleep, but for non preempt, let others run */
6054 schedule();
6055 }
6056
6057 return 0;
6058}
6059
6060static __init int test_ringbuffer(void)
6061{
6062 struct task_struct *rb_hammer;
6063 struct trace_buffer *buffer;
6064 int cpu;
6065 int ret = 0;
6066
6067 if (security_locked_down(LOCKDOWN_TRACEFS)) {
6068 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6069 return 0;
6070 }
6071
6072 pr_info("Running ring buffer tests...\n");
6073
6074 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6075 if (WARN_ON(!buffer))
6076 return 0;
6077
6078 /* Disable buffer so that threads can't write to it yet */
6079 ring_buffer_record_off(buffer);
6080
6081 for_each_online_cpu(cpu) {
6082 rb_data[cpu].buffer = buffer;
6083 rb_data[cpu].cpu = cpu;
6084 rb_data[cpu].cnt = cpu;
6085 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6086 cpu, "rbtester/%u");
6087 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6088 pr_cont("FAILED\n");
6089 ret = PTR_ERR(rb_threads[cpu]);
6090 goto out_free;
6091 }
6092 }
6093
6094 /* Now create the rb hammer! */
6095 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6096 if (WARN_ON(IS_ERR(rb_hammer))) {
6097 pr_cont("FAILED\n");
6098 ret = PTR_ERR(rb_hammer);
6099 goto out_free;
6100 }
6101
6102 ring_buffer_record_on(buffer);
6103 /*
6104 * Show buffer is enabled before setting rb_test_started.
6105 * Yes there's a small race window where events could be
6106 * dropped and the thread wont catch it. But when a ring
6107 * buffer gets enabled, there will always be some kind of
6108 * delay before other CPUs see it. Thus, we don't care about
6109 * those dropped events. We care about events dropped after
6110 * the threads see that the buffer is active.
6111 */
6112 smp_wmb();
6113 rb_test_started = true;
6114
6115 set_current_state(TASK_INTERRUPTIBLE);
6116 /* Just run for 10 seconds */;
6117 schedule_timeout(10 * HZ);
6118
6119 kthread_stop(rb_hammer);
6120
6121 out_free:
6122 for_each_online_cpu(cpu) {
6123 if (!rb_threads[cpu])
6124 break;
6125 kthread_stop(rb_threads[cpu]);
6126 }
6127 if (ret) {
6128 ring_buffer_free(buffer);
6129 return ret;
6130 }
6131
6132 /* Report! */
6133 pr_info("finished\n");
6134 for_each_online_cpu(cpu) {
6135 struct ring_buffer_event *event;
6136 struct rb_test_data *data = &rb_data[cpu];
6137 struct rb_item *item;
6138 unsigned long total_events;
6139 unsigned long total_dropped;
6140 unsigned long total_written;
6141 unsigned long total_alloc;
6142 unsigned long total_read = 0;
6143 unsigned long total_size = 0;
6144 unsigned long total_len = 0;
6145 unsigned long total_lost = 0;
6146 unsigned long lost;
6147 int big_event_size;
6148 int small_event_size;
6149
6150 ret = -1;
6151
6152 total_events = data->events + data->events_nested;
6153 total_written = data->bytes_written + data->bytes_written_nested;
6154 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6155 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6156
6157 big_event_size = data->max_size + data->max_size_nested;
6158 small_event_size = data->min_size + data->min_size_nested;
6159
6160 pr_info("CPU %d:\n", cpu);
6161 pr_info(" events: %ld\n", total_events);
6162 pr_info(" dropped bytes: %ld\n", total_dropped);
6163 pr_info(" alloced bytes: %ld\n", total_alloc);
6164 pr_info(" written bytes: %ld\n", total_written);
6165 pr_info(" biggest event: %d\n", big_event_size);
6166 pr_info(" smallest event: %d\n", small_event_size);
6167
6168 if (RB_WARN_ON(buffer, total_dropped))
6169 break;
6170
6171 ret = 0;
6172
6173 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6174 total_lost += lost;
6175 item = ring_buffer_event_data(event);
6176 total_len += ring_buffer_event_length(event);
6177 total_size += item->size + sizeof(struct rb_item);
6178 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6179 pr_info("FAILED!\n");
6180 pr_info("buffer had: %.*s\n", item->size, item->str);
6181 pr_info("expected: %.*s\n", item->size, rb_string);
6182 RB_WARN_ON(buffer, 1);
6183 ret = -1;
6184 break;
6185 }
6186 total_read++;
6187 }
6188 if (ret)
6189 break;
6190
6191 ret = -1;
6192
6193 pr_info(" read events: %ld\n", total_read);
6194 pr_info(" lost events: %ld\n", total_lost);
6195 pr_info(" total events: %ld\n", total_lost + total_read);
6196 pr_info(" recorded len bytes: %ld\n", total_len);
6197 pr_info(" recorded size bytes: %ld\n", total_size);
6198 if (total_lost) {
6199 pr_info(" With dropped events, record len and size may not match\n"
6200 " alloced and written from above\n");
6201 } else {
6202 if (RB_WARN_ON(buffer, total_len != total_alloc ||
6203 total_size != total_written))
6204 break;
6205 }
6206 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6207 break;
6208
6209 ret = 0;
6210 }
6211 if (!ret)
6212 pr_info("Ring buffer PASSED!\n");
6213
6214 ring_buffer_free(buffer);
6215 return 0;
6216}
6217
6218late_initcall(test_ringbuffer);
6219#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/trace_events.h>
7#include <linux/ring_buffer.h>
8#include <linux/trace_clock.h>
9#include <linux/trace_seq.h>
10#include <linux/spinlock.h>
11#include <linux/irq_work.h>
12#include <linux/uaccess.h>
13#include <linux/hardirq.h>
14#include <linux/kthread.h> /* for self test */
15#include <linux/kmemcheck.h>
16#include <linux/module.h>
17#include <linux/percpu.h>
18#include <linux/mutex.h>
19#include <linux/delay.h>
20#include <linux/slab.h>
21#include <linux/init.h>
22#include <linux/hash.h>
23#include <linux/list.h>
24#include <linux/cpu.h>
25
26#include <asm/local.h>
27
28static void update_pages_handler(struct work_struct *work);
29
30/*
31 * The ring buffer header is special. We must manually up keep it.
32 */
33int ring_buffer_print_entry_header(struct trace_seq *s)
34{
35 trace_seq_puts(s, "# compressed entry header\n");
36 trace_seq_puts(s, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s, "\tarray : 32 bits\n");
39 trace_seq_putc(s, '\n');
40 trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
44 trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47 return !trace_seq_has_overflowed(s);
48}
49
50/*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
118/* Used for individual buffers (after the counter) */
119#define RB_BUFFER_OFF (1 << 20)
120
121#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122
123#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124#define RB_ALIGNMENT 4U
125#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
127
128#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129# define RB_FORCE_8BYTE_ALIGNMENT 0
130# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
131#else
132# define RB_FORCE_8BYTE_ALIGNMENT 1
133# define RB_ARCH_ALIGNMENT 8U
134#endif
135
136#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
137
138/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140
141enum {
142 RB_LEN_TIME_EXTEND = 8,
143 RB_LEN_TIME_STAMP = 16,
144};
145
146#define skip_time_extend(event) \
147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
149static inline int rb_null_event(struct ring_buffer_event *event)
150{
151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152}
153
154static void rb_event_set_padding(struct ring_buffer_event *event)
155{
156 /* padding has a NULL time_delta */
157 event->type_len = RINGBUF_TYPE_PADDING;
158 event->time_delta = 0;
159}
160
161static unsigned
162rb_event_data_length(struct ring_buffer_event *event)
163{
164 unsigned length;
165
166 if (event->type_len)
167 length = event->type_len * RB_ALIGNMENT;
168 else
169 length = event->array[0];
170 return length + RB_EVNT_HDR_SIZE;
171}
172
173/*
174 * Return the length of the given event. Will return
175 * the length of the time extend if the event is a
176 * time extend.
177 */
178static inline unsigned
179rb_event_length(struct ring_buffer_event *event)
180{
181 switch (event->type_len) {
182 case RINGBUF_TYPE_PADDING:
183 if (rb_null_event(event))
184 /* undefined */
185 return -1;
186 return event->array[0] + RB_EVNT_HDR_SIZE;
187
188 case RINGBUF_TYPE_TIME_EXTEND:
189 return RB_LEN_TIME_EXTEND;
190
191 case RINGBUF_TYPE_TIME_STAMP:
192 return RB_LEN_TIME_STAMP;
193
194 case RINGBUF_TYPE_DATA:
195 return rb_event_data_length(event);
196 default:
197 BUG();
198 }
199 /* not hit */
200 return 0;
201}
202
203/*
204 * Return total length of time extend and data,
205 * or just the event length for all other events.
206 */
207static inline unsigned
208rb_event_ts_length(struct ring_buffer_event *event)
209{
210 unsigned len = 0;
211
212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 /* time extends include the data event after it */
214 len = RB_LEN_TIME_EXTEND;
215 event = skip_time_extend(event);
216 }
217 return len + rb_event_length(event);
218}
219
220/**
221 * ring_buffer_event_length - return the length of the event
222 * @event: the event to get the length of
223 *
224 * Returns the size of the data load of a data event.
225 * If the event is something other than a data event, it
226 * returns the size of the event itself. With the exception
227 * of a TIME EXTEND, where it still returns the size of the
228 * data load of the data event after it.
229 */
230unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231{
232 unsigned length;
233
234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 event = skip_time_extend(event);
236
237 length = rb_event_length(event);
238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239 return length;
240 length -= RB_EVNT_HDR_SIZE;
241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242 length -= sizeof(event->array[0]);
243 return length;
244}
245EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246
247/* inline for ring buffer fast paths */
248static void *
249rb_event_data(struct ring_buffer_event *event)
250{
251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 event = skip_time_extend(event);
253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254 /* If length is in len field, then array[0] has the data */
255 if (event->type_len)
256 return (void *)&event->array[0];
257 /* Otherwise length is in array[0] and array[1] has the data */
258 return (void *)&event->array[1];
259}
260
261/**
262 * ring_buffer_event_data - return the data of the event
263 * @event: the event to get the data from
264 */
265void *ring_buffer_event_data(struct ring_buffer_event *event)
266{
267 return rb_event_data(event);
268}
269EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270
271#define for_each_buffer_cpu(buffer, cpu) \
272 for_each_cpu(cpu, buffer->cpumask)
273
274#define TS_SHIFT 27
275#define TS_MASK ((1ULL << TS_SHIFT) - 1)
276#define TS_DELTA_TEST (~TS_MASK)
277
278/* Flag when events were overwritten */
279#define RB_MISSED_EVENTS (1 << 31)
280/* Missed count stored at end */
281#define RB_MISSED_STORED (1 << 30)
282
283struct buffer_data_page {
284 u64 time_stamp; /* page time stamp */
285 local_t commit; /* write committed index */
286 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
287};
288
289/*
290 * Note, the buffer_page list must be first. The buffer pages
291 * are allocated in cache lines, which means that each buffer
292 * page will be at the beginning of a cache line, and thus
293 * the least significant bits will be zero. We use this to
294 * add flags in the list struct pointers, to make the ring buffer
295 * lockless.
296 */
297struct buffer_page {
298 struct list_head list; /* list of buffer pages */
299 local_t write; /* index for next write */
300 unsigned read; /* index for next read */
301 local_t entries; /* entries on this page */
302 unsigned long real_end; /* real end of data */
303 struct buffer_data_page *page; /* Actual data page */
304};
305
306/*
307 * The buffer page counters, write and entries, must be reset
308 * atomically when crossing page boundaries. To synchronize this
309 * update, two counters are inserted into the number. One is
310 * the actual counter for the write position or count on the page.
311 *
312 * The other is a counter of updaters. Before an update happens
313 * the update partition of the counter is incremented. This will
314 * allow the updater to update the counter atomically.
315 *
316 * The counter is 20 bits, and the state data is 12.
317 */
318#define RB_WRITE_MASK 0xfffff
319#define RB_WRITE_INTCNT (1 << 20)
320
321static void rb_init_page(struct buffer_data_page *bpage)
322{
323 local_set(&bpage->commit, 0);
324}
325
326/**
327 * ring_buffer_page_len - the size of data on the page.
328 * @page: The page to read
329 *
330 * Returns the amount of data on the page, including buffer page header.
331 */
332size_t ring_buffer_page_len(void *page)
333{
334 return local_read(&((struct buffer_data_page *)page)->commit)
335 + BUF_PAGE_HDR_SIZE;
336}
337
338/*
339 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
340 * this issue out.
341 */
342static void free_buffer_page(struct buffer_page *bpage)
343{
344 free_page((unsigned long)bpage->page);
345 kfree(bpage);
346}
347
348/*
349 * We need to fit the time_stamp delta into 27 bits.
350 */
351static inline int test_time_stamp(u64 delta)
352{
353 if (delta & TS_DELTA_TEST)
354 return 1;
355 return 0;
356}
357
358#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
359
360/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
361#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
362
363int ring_buffer_print_page_header(struct trace_seq *s)
364{
365 struct buffer_data_page field;
366
367 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
368 "offset:0;\tsize:%u;\tsigned:%u;\n",
369 (unsigned int)sizeof(field.time_stamp),
370 (unsigned int)is_signed_type(u64));
371
372 trace_seq_printf(s, "\tfield: local_t commit;\t"
373 "offset:%u;\tsize:%u;\tsigned:%u;\n",
374 (unsigned int)offsetof(typeof(field), commit),
375 (unsigned int)sizeof(field.commit),
376 (unsigned int)is_signed_type(long));
377
378 trace_seq_printf(s, "\tfield: int overwrite;\t"
379 "offset:%u;\tsize:%u;\tsigned:%u;\n",
380 (unsigned int)offsetof(typeof(field), commit),
381 1,
382 (unsigned int)is_signed_type(long));
383
384 trace_seq_printf(s, "\tfield: char data;\t"
385 "offset:%u;\tsize:%u;\tsigned:%u;\n",
386 (unsigned int)offsetof(typeof(field), data),
387 (unsigned int)BUF_PAGE_SIZE,
388 (unsigned int)is_signed_type(char));
389
390 return !trace_seq_has_overflowed(s);
391}
392
393struct rb_irq_work {
394 struct irq_work work;
395 wait_queue_head_t waiters;
396 wait_queue_head_t full_waiters;
397 bool waiters_pending;
398 bool full_waiters_pending;
399 bool wakeup_full;
400};
401
402/*
403 * Structure to hold event state and handle nested events.
404 */
405struct rb_event_info {
406 u64 ts;
407 u64 delta;
408 unsigned long length;
409 struct buffer_page *tail_page;
410 int add_timestamp;
411};
412
413/*
414 * Used for which event context the event is in.
415 * NMI = 0
416 * IRQ = 1
417 * SOFTIRQ = 2
418 * NORMAL = 3
419 *
420 * See trace_recursive_lock() comment below for more details.
421 */
422enum {
423 RB_CTX_NMI,
424 RB_CTX_IRQ,
425 RB_CTX_SOFTIRQ,
426 RB_CTX_NORMAL,
427 RB_CTX_MAX
428};
429
430/*
431 * head_page == tail_page && head == tail then buffer is empty.
432 */
433struct ring_buffer_per_cpu {
434 int cpu;
435 atomic_t record_disabled;
436 struct ring_buffer *buffer;
437 raw_spinlock_t reader_lock; /* serialize readers */
438 arch_spinlock_t lock;
439 struct lock_class_key lock_key;
440 unsigned int nr_pages;
441 unsigned int current_context;
442 struct list_head *pages;
443 struct buffer_page *head_page; /* read from head */
444 struct buffer_page *tail_page; /* write to tail */
445 struct buffer_page *commit_page; /* committed pages */
446 struct buffer_page *reader_page;
447 unsigned long lost_events;
448 unsigned long last_overrun;
449 local_t entries_bytes;
450 local_t entries;
451 local_t overrun;
452 local_t commit_overrun;
453 local_t dropped_events;
454 local_t committing;
455 local_t commits;
456 unsigned long read;
457 unsigned long read_bytes;
458 u64 write_stamp;
459 u64 read_stamp;
460 /* ring buffer pages to update, > 0 to add, < 0 to remove */
461 int nr_pages_to_update;
462 struct list_head new_pages; /* new pages to add */
463 struct work_struct update_pages_work;
464 struct completion update_done;
465
466 struct rb_irq_work irq_work;
467};
468
469struct ring_buffer {
470 unsigned flags;
471 int cpus;
472 atomic_t record_disabled;
473 atomic_t resize_disabled;
474 cpumask_var_t cpumask;
475
476 struct lock_class_key *reader_lock_key;
477
478 struct mutex mutex;
479
480 struct ring_buffer_per_cpu **buffers;
481
482#ifdef CONFIG_HOTPLUG_CPU
483 struct notifier_block cpu_notify;
484#endif
485 u64 (*clock)(void);
486
487 struct rb_irq_work irq_work;
488};
489
490struct ring_buffer_iter {
491 struct ring_buffer_per_cpu *cpu_buffer;
492 unsigned long head;
493 struct buffer_page *head_page;
494 struct buffer_page *cache_reader_page;
495 unsigned long cache_read;
496 u64 read_stamp;
497};
498
499/*
500 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
501 *
502 * Schedules a delayed work to wake up any task that is blocked on the
503 * ring buffer waiters queue.
504 */
505static void rb_wake_up_waiters(struct irq_work *work)
506{
507 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
508
509 wake_up_all(&rbwork->waiters);
510 if (rbwork->wakeup_full) {
511 rbwork->wakeup_full = false;
512 wake_up_all(&rbwork->full_waiters);
513 }
514}
515
516/**
517 * ring_buffer_wait - wait for input to the ring buffer
518 * @buffer: buffer to wait on
519 * @cpu: the cpu buffer to wait on
520 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
521 *
522 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
523 * as data is added to any of the @buffer's cpu buffers. Otherwise
524 * it will wait for data to be added to a specific cpu buffer.
525 */
526int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
527{
528 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
529 DEFINE_WAIT(wait);
530 struct rb_irq_work *work;
531 int ret = 0;
532
533 /*
534 * Depending on what the caller is waiting for, either any
535 * data in any cpu buffer, or a specific buffer, put the
536 * caller on the appropriate wait queue.
537 */
538 if (cpu == RING_BUFFER_ALL_CPUS) {
539 work = &buffer->irq_work;
540 /* Full only makes sense on per cpu reads */
541 full = false;
542 } else {
543 if (!cpumask_test_cpu(cpu, buffer->cpumask))
544 return -ENODEV;
545 cpu_buffer = buffer->buffers[cpu];
546 work = &cpu_buffer->irq_work;
547 }
548
549
550 while (true) {
551 if (full)
552 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
553 else
554 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
555
556 /*
557 * The events can happen in critical sections where
558 * checking a work queue can cause deadlocks.
559 * After adding a task to the queue, this flag is set
560 * only to notify events to try to wake up the queue
561 * using irq_work.
562 *
563 * We don't clear it even if the buffer is no longer
564 * empty. The flag only causes the next event to run
565 * irq_work to do the work queue wake up. The worse
566 * that can happen if we race with !trace_empty() is that
567 * an event will cause an irq_work to try to wake up
568 * an empty queue.
569 *
570 * There's no reason to protect this flag either, as
571 * the work queue and irq_work logic will do the necessary
572 * synchronization for the wake ups. The only thing
573 * that is necessary is that the wake up happens after
574 * a task has been queued. It's OK for spurious wake ups.
575 */
576 if (full)
577 work->full_waiters_pending = true;
578 else
579 work->waiters_pending = true;
580
581 if (signal_pending(current)) {
582 ret = -EINTR;
583 break;
584 }
585
586 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
587 break;
588
589 if (cpu != RING_BUFFER_ALL_CPUS &&
590 !ring_buffer_empty_cpu(buffer, cpu)) {
591 unsigned long flags;
592 bool pagebusy;
593
594 if (!full)
595 break;
596
597 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
598 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
599 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
600
601 if (!pagebusy)
602 break;
603 }
604
605 schedule();
606 }
607
608 if (full)
609 finish_wait(&work->full_waiters, &wait);
610 else
611 finish_wait(&work->waiters, &wait);
612
613 return ret;
614}
615
616/**
617 * ring_buffer_poll_wait - poll on buffer input
618 * @buffer: buffer to wait on
619 * @cpu: the cpu buffer to wait on
620 * @filp: the file descriptor
621 * @poll_table: The poll descriptor
622 *
623 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
624 * as data is added to any of the @buffer's cpu buffers. Otherwise
625 * it will wait for data to be added to a specific cpu buffer.
626 *
627 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
628 * zero otherwise.
629 */
630int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
631 struct file *filp, poll_table *poll_table)
632{
633 struct ring_buffer_per_cpu *cpu_buffer;
634 struct rb_irq_work *work;
635
636 if (cpu == RING_BUFFER_ALL_CPUS)
637 work = &buffer->irq_work;
638 else {
639 if (!cpumask_test_cpu(cpu, buffer->cpumask))
640 return -EINVAL;
641
642 cpu_buffer = buffer->buffers[cpu];
643 work = &cpu_buffer->irq_work;
644 }
645
646 poll_wait(filp, &work->waiters, poll_table);
647 work->waiters_pending = true;
648 /*
649 * There's a tight race between setting the waiters_pending and
650 * checking if the ring buffer is empty. Once the waiters_pending bit
651 * is set, the next event will wake the task up, but we can get stuck
652 * if there's only a single event in.
653 *
654 * FIXME: Ideally, we need a memory barrier on the writer side as well,
655 * but adding a memory barrier to all events will cause too much of a
656 * performance hit in the fast path. We only need a memory barrier when
657 * the buffer goes from empty to having content. But as this race is
658 * extremely small, and it's not a problem if another event comes in, we
659 * will fix it later.
660 */
661 smp_mb();
662
663 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
664 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
665 return POLLIN | POLLRDNORM;
666 return 0;
667}
668
669/* buffer may be either ring_buffer or ring_buffer_per_cpu */
670#define RB_WARN_ON(b, cond) \
671 ({ \
672 int _____ret = unlikely(cond); \
673 if (_____ret) { \
674 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
675 struct ring_buffer_per_cpu *__b = \
676 (void *)b; \
677 atomic_inc(&__b->buffer->record_disabled); \
678 } else \
679 atomic_inc(&b->record_disabled); \
680 WARN_ON(1); \
681 } \
682 _____ret; \
683 })
684
685/* Up this if you want to test the TIME_EXTENTS and normalization */
686#define DEBUG_SHIFT 0
687
688static inline u64 rb_time_stamp(struct ring_buffer *buffer)
689{
690 /* shift to debug/test normalization and TIME_EXTENTS */
691 return buffer->clock() << DEBUG_SHIFT;
692}
693
694u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
695{
696 u64 time;
697
698 preempt_disable_notrace();
699 time = rb_time_stamp(buffer);
700 preempt_enable_no_resched_notrace();
701
702 return time;
703}
704EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
705
706void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
707 int cpu, u64 *ts)
708{
709 /* Just stupid testing the normalize function and deltas */
710 *ts >>= DEBUG_SHIFT;
711}
712EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
713
714/*
715 * Making the ring buffer lockless makes things tricky.
716 * Although writes only happen on the CPU that they are on,
717 * and they only need to worry about interrupts. Reads can
718 * happen on any CPU.
719 *
720 * The reader page is always off the ring buffer, but when the
721 * reader finishes with a page, it needs to swap its page with
722 * a new one from the buffer. The reader needs to take from
723 * the head (writes go to the tail). But if a writer is in overwrite
724 * mode and wraps, it must push the head page forward.
725 *
726 * Here lies the problem.
727 *
728 * The reader must be careful to replace only the head page, and
729 * not another one. As described at the top of the file in the
730 * ASCII art, the reader sets its old page to point to the next
731 * page after head. It then sets the page after head to point to
732 * the old reader page. But if the writer moves the head page
733 * during this operation, the reader could end up with the tail.
734 *
735 * We use cmpxchg to help prevent this race. We also do something
736 * special with the page before head. We set the LSB to 1.
737 *
738 * When the writer must push the page forward, it will clear the
739 * bit that points to the head page, move the head, and then set
740 * the bit that points to the new head page.
741 *
742 * We also don't want an interrupt coming in and moving the head
743 * page on another writer. Thus we use the second LSB to catch
744 * that too. Thus:
745 *
746 * head->list->prev->next bit 1 bit 0
747 * ------- -------
748 * Normal page 0 0
749 * Points to head page 0 1
750 * New head page 1 0
751 *
752 * Note we can not trust the prev pointer of the head page, because:
753 *
754 * +----+ +-----+ +-----+
755 * | |------>| T |---X--->| N |
756 * | |<------| | | |
757 * +----+ +-----+ +-----+
758 * ^ ^ |
759 * | +-----+ | |
760 * +----------| R |----------+ |
761 * | |<-----------+
762 * +-----+
763 *
764 * Key: ---X--> HEAD flag set in pointer
765 * T Tail page
766 * R Reader page
767 * N Next page
768 *
769 * (see __rb_reserve_next() to see where this happens)
770 *
771 * What the above shows is that the reader just swapped out
772 * the reader page with a page in the buffer, but before it
773 * could make the new header point back to the new page added
774 * it was preempted by a writer. The writer moved forward onto
775 * the new page added by the reader and is about to move forward
776 * again.
777 *
778 * You can see, it is legitimate for the previous pointer of
779 * the head (or any page) not to point back to itself. But only
780 * temporarially.
781 */
782
783#define RB_PAGE_NORMAL 0UL
784#define RB_PAGE_HEAD 1UL
785#define RB_PAGE_UPDATE 2UL
786
787
788#define RB_FLAG_MASK 3UL
789
790/* PAGE_MOVED is not part of the mask */
791#define RB_PAGE_MOVED 4UL
792
793/*
794 * rb_list_head - remove any bit
795 */
796static struct list_head *rb_list_head(struct list_head *list)
797{
798 unsigned long val = (unsigned long)list;
799
800 return (struct list_head *)(val & ~RB_FLAG_MASK);
801}
802
803/*
804 * rb_is_head_page - test if the given page is the head page
805 *
806 * Because the reader may move the head_page pointer, we can
807 * not trust what the head page is (it may be pointing to
808 * the reader page). But if the next page is a header page,
809 * its flags will be non zero.
810 */
811static inline int
812rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
813 struct buffer_page *page, struct list_head *list)
814{
815 unsigned long val;
816
817 val = (unsigned long)list->next;
818
819 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
820 return RB_PAGE_MOVED;
821
822 return val & RB_FLAG_MASK;
823}
824
825/*
826 * rb_is_reader_page
827 *
828 * The unique thing about the reader page, is that, if the
829 * writer is ever on it, the previous pointer never points
830 * back to the reader page.
831 */
832static bool rb_is_reader_page(struct buffer_page *page)
833{
834 struct list_head *list = page->list.prev;
835
836 return rb_list_head(list->next) != &page->list;
837}
838
839/*
840 * rb_set_list_to_head - set a list_head to be pointing to head.
841 */
842static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
843 struct list_head *list)
844{
845 unsigned long *ptr;
846
847 ptr = (unsigned long *)&list->next;
848 *ptr |= RB_PAGE_HEAD;
849 *ptr &= ~RB_PAGE_UPDATE;
850}
851
852/*
853 * rb_head_page_activate - sets up head page
854 */
855static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
856{
857 struct buffer_page *head;
858
859 head = cpu_buffer->head_page;
860 if (!head)
861 return;
862
863 /*
864 * Set the previous list pointer to have the HEAD flag.
865 */
866 rb_set_list_to_head(cpu_buffer, head->list.prev);
867}
868
869static void rb_list_head_clear(struct list_head *list)
870{
871 unsigned long *ptr = (unsigned long *)&list->next;
872
873 *ptr &= ~RB_FLAG_MASK;
874}
875
876/*
877 * rb_head_page_dactivate - clears head page ptr (for free list)
878 */
879static void
880rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
881{
882 struct list_head *hd;
883
884 /* Go through the whole list and clear any pointers found. */
885 rb_list_head_clear(cpu_buffer->pages);
886
887 list_for_each(hd, cpu_buffer->pages)
888 rb_list_head_clear(hd);
889}
890
891static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
892 struct buffer_page *head,
893 struct buffer_page *prev,
894 int old_flag, int new_flag)
895{
896 struct list_head *list;
897 unsigned long val = (unsigned long)&head->list;
898 unsigned long ret;
899
900 list = &prev->list;
901
902 val &= ~RB_FLAG_MASK;
903
904 ret = cmpxchg((unsigned long *)&list->next,
905 val | old_flag, val | new_flag);
906
907 /* check if the reader took the page */
908 if ((ret & ~RB_FLAG_MASK) != val)
909 return RB_PAGE_MOVED;
910
911 return ret & RB_FLAG_MASK;
912}
913
914static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
915 struct buffer_page *head,
916 struct buffer_page *prev,
917 int old_flag)
918{
919 return rb_head_page_set(cpu_buffer, head, prev,
920 old_flag, RB_PAGE_UPDATE);
921}
922
923static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
924 struct buffer_page *head,
925 struct buffer_page *prev,
926 int old_flag)
927{
928 return rb_head_page_set(cpu_buffer, head, prev,
929 old_flag, RB_PAGE_HEAD);
930}
931
932static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
933 struct buffer_page *head,
934 struct buffer_page *prev,
935 int old_flag)
936{
937 return rb_head_page_set(cpu_buffer, head, prev,
938 old_flag, RB_PAGE_NORMAL);
939}
940
941static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
942 struct buffer_page **bpage)
943{
944 struct list_head *p = rb_list_head((*bpage)->list.next);
945
946 *bpage = list_entry(p, struct buffer_page, list);
947}
948
949static struct buffer_page *
950rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
951{
952 struct buffer_page *head;
953 struct buffer_page *page;
954 struct list_head *list;
955 int i;
956
957 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
958 return NULL;
959
960 /* sanity check */
961 list = cpu_buffer->pages;
962 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
963 return NULL;
964
965 page = head = cpu_buffer->head_page;
966 /*
967 * It is possible that the writer moves the header behind
968 * where we started, and we miss in one loop.
969 * A second loop should grab the header, but we'll do
970 * three loops just because I'm paranoid.
971 */
972 for (i = 0; i < 3; i++) {
973 do {
974 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
975 cpu_buffer->head_page = page;
976 return page;
977 }
978 rb_inc_page(cpu_buffer, &page);
979 } while (page != head);
980 }
981
982 RB_WARN_ON(cpu_buffer, 1);
983
984 return NULL;
985}
986
987static int rb_head_page_replace(struct buffer_page *old,
988 struct buffer_page *new)
989{
990 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
991 unsigned long val;
992 unsigned long ret;
993
994 val = *ptr & ~RB_FLAG_MASK;
995 val |= RB_PAGE_HEAD;
996
997 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
998
999 return ret == val;
1000}
1001
1002/*
1003 * rb_tail_page_update - move the tail page forward
1004 */
1005static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1006 struct buffer_page *tail_page,
1007 struct buffer_page *next_page)
1008{
1009 unsigned long old_entries;
1010 unsigned long old_write;
1011
1012 /*
1013 * The tail page now needs to be moved forward.
1014 *
1015 * We need to reset the tail page, but without messing
1016 * with possible erasing of data brought in by interrupts
1017 * that have moved the tail page and are currently on it.
1018 *
1019 * We add a counter to the write field to denote this.
1020 */
1021 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1022 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1023
1024 /*
1025 * Just make sure we have seen our old_write and synchronize
1026 * with any interrupts that come in.
1027 */
1028 barrier();
1029
1030 /*
1031 * If the tail page is still the same as what we think
1032 * it is, then it is up to us to update the tail
1033 * pointer.
1034 */
1035 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1036 /* Zero the write counter */
1037 unsigned long val = old_write & ~RB_WRITE_MASK;
1038 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1039
1040 /*
1041 * This will only succeed if an interrupt did
1042 * not come in and change it. In which case, we
1043 * do not want to modify it.
1044 *
1045 * We add (void) to let the compiler know that we do not care
1046 * about the return value of these functions. We use the
1047 * cmpxchg to only update if an interrupt did not already
1048 * do it for us. If the cmpxchg fails, we don't care.
1049 */
1050 (void)local_cmpxchg(&next_page->write, old_write, val);
1051 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1052
1053 /*
1054 * No need to worry about races with clearing out the commit.
1055 * it only can increment when a commit takes place. But that
1056 * only happens in the outer most nested commit.
1057 */
1058 local_set(&next_page->page->commit, 0);
1059
1060 /* Again, either we update tail_page or an interrupt does */
1061 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1062 }
1063}
1064
1065static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1066 struct buffer_page *bpage)
1067{
1068 unsigned long val = (unsigned long)bpage;
1069
1070 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1071 return 1;
1072
1073 return 0;
1074}
1075
1076/**
1077 * rb_check_list - make sure a pointer to a list has the last bits zero
1078 */
1079static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1080 struct list_head *list)
1081{
1082 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1083 return 1;
1084 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1085 return 1;
1086 return 0;
1087}
1088
1089/**
1090 * rb_check_pages - integrity check of buffer pages
1091 * @cpu_buffer: CPU buffer with pages to test
1092 *
1093 * As a safety measure we check to make sure the data pages have not
1094 * been corrupted.
1095 */
1096static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1097{
1098 struct list_head *head = cpu_buffer->pages;
1099 struct buffer_page *bpage, *tmp;
1100
1101 /* Reset the head page if it exists */
1102 if (cpu_buffer->head_page)
1103 rb_set_head_page(cpu_buffer);
1104
1105 rb_head_page_deactivate(cpu_buffer);
1106
1107 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1108 return -1;
1109 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1110 return -1;
1111
1112 if (rb_check_list(cpu_buffer, head))
1113 return -1;
1114
1115 list_for_each_entry_safe(bpage, tmp, head, list) {
1116 if (RB_WARN_ON(cpu_buffer,
1117 bpage->list.next->prev != &bpage->list))
1118 return -1;
1119 if (RB_WARN_ON(cpu_buffer,
1120 bpage->list.prev->next != &bpage->list))
1121 return -1;
1122 if (rb_check_list(cpu_buffer, &bpage->list))
1123 return -1;
1124 }
1125
1126 rb_head_page_activate(cpu_buffer);
1127
1128 return 0;
1129}
1130
1131static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1132{
1133 int i;
1134 struct buffer_page *bpage, *tmp;
1135
1136 for (i = 0; i < nr_pages; i++) {
1137 struct page *page;
1138 /*
1139 * __GFP_NORETRY flag makes sure that the allocation fails
1140 * gracefully without invoking oom-killer and the system is
1141 * not destabilized.
1142 */
1143 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1144 GFP_KERNEL | __GFP_NORETRY,
1145 cpu_to_node(cpu));
1146 if (!bpage)
1147 goto free_pages;
1148
1149 list_add(&bpage->list, pages);
1150
1151 page = alloc_pages_node(cpu_to_node(cpu),
1152 GFP_KERNEL | __GFP_NORETRY, 0);
1153 if (!page)
1154 goto free_pages;
1155 bpage->page = page_address(page);
1156 rb_init_page(bpage->page);
1157 }
1158
1159 return 0;
1160
1161free_pages:
1162 list_for_each_entry_safe(bpage, tmp, pages, list) {
1163 list_del_init(&bpage->list);
1164 free_buffer_page(bpage);
1165 }
1166
1167 return -ENOMEM;
1168}
1169
1170static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1171 unsigned nr_pages)
1172{
1173 LIST_HEAD(pages);
1174
1175 WARN_ON(!nr_pages);
1176
1177 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1178 return -ENOMEM;
1179
1180 /*
1181 * The ring buffer page list is a circular list that does not
1182 * start and end with a list head. All page list items point to
1183 * other pages.
1184 */
1185 cpu_buffer->pages = pages.next;
1186 list_del(&pages);
1187
1188 cpu_buffer->nr_pages = nr_pages;
1189
1190 rb_check_pages(cpu_buffer);
1191
1192 return 0;
1193}
1194
1195static struct ring_buffer_per_cpu *
1196rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1197{
1198 struct ring_buffer_per_cpu *cpu_buffer;
1199 struct buffer_page *bpage;
1200 struct page *page;
1201 int ret;
1202
1203 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1204 GFP_KERNEL, cpu_to_node(cpu));
1205 if (!cpu_buffer)
1206 return NULL;
1207
1208 cpu_buffer->cpu = cpu;
1209 cpu_buffer->buffer = buffer;
1210 raw_spin_lock_init(&cpu_buffer->reader_lock);
1211 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1212 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1213 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1214 init_completion(&cpu_buffer->update_done);
1215 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1216 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1217 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1218
1219 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1220 GFP_KERNEL, cpu_to_node(cpu));
1221 if (!bpage)
1222 goto fail_free_buffer;
1223
1224 rb_check_bpage(cpu_buffer, bpage);
1225
1226 cpu_buffer->reader_page = bpage;
1227 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1228 if (!page)
1229 goto fail_free_reader;
1230 bpage->page = page_address(page);
1231 rb_init_page(bpage->page);
1232
1233 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1234 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1235
1236 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1237 if (ret < 0)
1238 goto fail_free_reader;
1239
1240 cpu_buffer->head_page
1241 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1242 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1243
1244 rb_head_page_activate(cpu_buffer);
1245
1246 return cpu_buffer;
1247
1248 fail_free_reader:
1249 free_buffer_page(cpu_buffer->reader_page);
1250
1251 fail_free_buffer:
1252 kfree(cpu_buffer);
1253 return NULL;
1254}
1255
1256static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1257{
1258 struct list_head *head = cpu_buffer->pages;
1259 struct buffer_page *bpage, *tmp;
1260
1261 free_buffer_page(cpu_buffer->reader_page);
1262
1263 rb_head_page_deactivate(cpu_buffer);
1264
1265 if (head) {
1266 list_for_each_entry_safe(bpage, tmp, head, list) {
1267 list_del_init(&bpage->list);
1268 free_buffer_page(bpage);
1269 }
1270 bpage = list_entry(head, struct buffer_page, list);
1271 free_buffer_page(bpage);
1272 }
1273
1274 kfree(cpu_buffer);
1275}
1276
1277#ifdef CONFIG_HOTPLUG_CPU
1278static int rb_cpu_notify(struct notifier_block *self,
1279 unsigned long action, void *hcpu);
1280#endif
1281
1282/**
1283 * __ring_buffer_alloc - allocate a new ring_buffer
1284 * @size: the size in bytes per cpu that is needed.
1285 * @flags: attributes to set for the ring buffer.
1286 *
1287 * Currently the only flag that is available is the RB_FL_OVERWRITE
1288 * flag. This flag means that the buffer will overwrite old data
1289 * when the buffer wraps. If this flag is not set, the buffer will
1290 * drop data when the tail hits the head.
1291 */
1292struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1293 struct lock_class_key *key)
1294{
1295 struct ring_buffer *buffer;
1296 int bsize;
1297 int cpu, nr_pages;
1298
1299 /* keep it in its own cache line */
1300 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1301 GFP_KERNEL);
1302 if (!buffer)
1303 return NULL;
1304
1305 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1306 goto fail_free_buffer;
1307
1308 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1309 buffer->flags = flags;
1310 buffer->clock = trace_clock_local;
1311 buffer->reader_lock_key = key;
1312
1313 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1314 init_waitqueue_head(&buffer->irq_work.waiters);
1315
1316 /* need at least two pages */
1317 if (nr_pages < 2)
1318 nr_pages = 2;
1319
1320 /*
1321 * In case of non-hotplug cpu, if the ring-buffer is allocated
1322 * in early initcall, it will not be notified of secondary cpus.
1323 * In that off case, we need to allocate for all possible cpus.
1324 */
1325#ifdef CONFIG_HOTPLUG_CPU
1326 cpu_notifier_register_begin();
1327 cpumask_copy(buffer->cpumask, cpu_online_mask);
1328#else
1329 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1330#endif
1331 buffer->cpus = nr_cpu_ids;
1332
1333 bsize = sizeof(void *) * nr_cpu_ids;
1334 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1335 GFP_KERNEL);
1336 if (!buffer->buffers)
1337 goto fail_free_cpumask;
1338
1339 for_each_buffer_cpu(buffer, cpu) {
1340 buffer->buffers[cpu] =
1341 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1342 if (!buffer->buffers[cpu])
1343 goto fail_free_buffers;
1344 }
1345
1346#ifdef CONFIG_HOTPLUG_CPU
1347 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1348 buffer->cpu_notify.priority = 0;
1349 __register_cpu_notifier(&buffer->cpu_notify);
1350 cpu_notifier_register_done();
1351#endif
1352
1353 mutex_init(&buffer->mutex);
1354
1355 return buffer;
1356
1357 fail_free_buffers:
1358 for_each_buffer_cpu(buffer, cpu) {
1359 if (buffer->buffers[cpu])
1360 rb_free_cpu_buffer(buffer->buffers[cpu]);
1361 }
1362 kfree(buffer->buffers);
1363
1364 fail_free_cpumask:
1365 free_cpumask_var(buffer->cpumask);
1366#ifdef CONFIG_HOTPLUG_CPU
1367 cpu_notifier_register_done();
1368#endif
1369
1370 fail_free_buffer:
1371 kfree(buffer);
1372 return NULL;
1373}
1374EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1375
1376/**
1377 * ring_buffer_free - free a ring buffer.
1378 * @buffer: the buffer to free.
1379 */
1380void
1381ring_buffer_free(struct ring_buffer *buffer)
1382{
1383 int cpu;
1384
1385#ifdef CONFIG_HOTPLUG_CPU
1386 cpu_notifier_register_begin();
1387 __unregister_cpu_notifier(&buffer->cpu_notify);
1388#endif
1389
1390 for_each_buffer_cpu(buffer, cpu)
1391 rb_free_cpu_buffer(buffer->buffers[cpu]);
1392
1393#ifdef CONFIG_HOTPLUG_CPU
1394 cpu_notifier_register_done();
1395#endif
1396
1397 kfree(buffer->buffers);
1398 free_cpumask_var(buffer->cpumask);
1399
1400 kfree(buffer);
1401}
1402EXPORT_SYMBOL_GPL(ring_buffer_free);
1403
1404void ring_buffer_set_clock(struct ring_buffer *buffer,
1405 u64 (*clock)(void))
1406{
1407 buffer->clock = clock;
1408}
1409
1410static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1411
1412static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1413{
1414 return local_read(&bpage->entries) & RB_WRITE_MASK;
1415}
1416
1417static inline unsigned long rb_page_write(struct buffer_page *bpage)
1418{
1419 return local_read(&bpage->write) & RB_WRITE_MASK;
1420}
1421
1422static int
1423rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1424{
1425 struct list_head *tail_page, *to_remove, *next_page;
1426 struct buffer_page *to_remove_page, *tmp_iter_page;
1427 struct buffer_page *last_page, *first_page;
1428 unsigned int nr_removed;
1429 unsigned long head_bit;
1430 int page_entries;
1431
1432 head_bit = 0;
1433
1434 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1435 atomic_inc(&cpu_buffer->record_disabled);
1436 /*
1437 * We don't race with the readers since we have acquired the reader
1438 * lock. We also don't race with writers after disabling recording.
1439 * This makes it easy to figure out the first and the last page to be
1440 * removed from the list. We unlink all the pages in between including
1441 * the first and last pages. This is done in a busy loop so that we
1442 * lose the least number of traces.
1443 * The pages are freed after we restart recording and unlock readers.
1444 */
1445 tail_page = &cpu_buffer->tail_page->list;
1446
1447 /*
1448 * tail page might be on reader page, we remove the next page
1449 * from the ring buffer
1450 */
1451 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1452 tail_page = rb_list_head(tail_page->next);
1453 to_remove = tail_page;
1454
1455 /* start of pages to remove */
1456 first_page = list_entry(rb_list_head(to_remove->next),
1457 struct buffer_page, list);
1458
1459 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1460 to_remove = rb_list_head(to_remove)->next;
1461 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1462 }
1463
1464 next_page = rb_list_head(to_remove)->next;
1465
1466 /*
1467 * Now we remove all pages between tail_page and next_page.
1468 * Make sure that we have head_bit value preserved for the
1469 * next page
1470 */
1471 tail_page->next = (struct list_head *)((unsigned long)next_page |
1472 head_bit);
1473 next_page = rb_list_head(next_page);
1474 next_page->prev = tail_page;
1475
1476 /* make sure pages points to a valid page in the ring buffer */
1477 cpu_buffer->pages = next_page;
1478
1479 /* update head page */
1480 if (head_bit)
1481 cpu_buffer->head_page = list_entry(next_page,
1482 struct buffer_page, list);
1483
1484 /*
1485 * change read pointer to make sure any read iterators reset
1486 * themselves
1487 */
1488 cpu_buffer->read = 0;
1489
1490 /* pages are removed, resume tracing and then free the pages */
1491 atomic_dec(&cpu_buffer->record_disabled);
1492 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1493
1494 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1495
1496 /* last buffer page to remove */
1497 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1498 list);
1499 tmp_iter_page = first_page;
1500
1501 do {
1502 to_remove_page = tmp_iter_page;
1503 rb_inc_page(cpu_buffer, &tmp_iter_page);
1504
1505 /* update the counters */
1506 page_entries = rb_page_entries(to_remove_page);
1507 if (page_entries) {
1508 /*
1509 * If something was added to this page, it was full
1510 * since it is not the tail page. So we deduct the
1511 * bytes consumed in ring buffer from here.
1512 * Increment overrun to account for the lost events.
1513 */
1514 local_add(page_entries, &cpu_buffer->overrun);
1515 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1516 }
1517
1518 /*
1519 * We have already removed references to this list item, just
1520 * free up the buffer_page and its page
1521 */
1522 free_buffer_page(to_remove_page);
1523 nr_removed--;
1524
1525 } while (to_remove_page != last_page);
1526
1527 RB_WARN_ON(cpu_buffer, nr_removed);
1528
1529 return nr_removed == 0;
1530}
1531
1532static int
1533rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1534{
1535 struct list_head *pages = &cpu_buffer->new_pages;
1536 int retries, success;
1537
1538 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1539 /*
1540 * We are holding the reader lock, so the reader page won't be swapped
1541 * in the ring buffer. Now we are racing with the writer trying to
1542 * move head page and the tail page.
1543 * We are going to adapt the reader page update process where:
1544 * 1. We first splice the start and end of list of new pages between
1545 * the head page and its previous page.
1546 * 2. We cmpxchg the prev_page->next to point from head page to the
1547 * start of new pages list.
1548 * 3. Finally, we update the head->prev to the end of new list.
1549 *
1550 * We will try this process 10 times, to make sure that we don't keep
1551 * spinning.
1552 */
1553 retries = 10;
1554 success = 0;
1555 while (retries--) {
1556 struct list_head *head_page, *prev_page, *r;
1557 struct list_head *last_page, *first_page;
1558 struct list_head *head_page_with_bit;
1559
1560 head_page = &rb_set_head_page(cpu_buffer)->list;
1561 if (!head_page)
1562 break;
1563 prev_page = head_page->prev;
1564
1565 first_page = pages->next;
1566 last_page = pages->prev;
1567
1568 head_page_with_bit = (struct list_head *)
1569 ((unsigned long)head_page | RB_PAGE_HEAD);
1570
1571 last_page->next = head_page_with_bit;
1572 first_page->prev = prev_page;
1573
1574 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1575
1576 if (r == head_page_with_bit) {
1577 /*
1578 * yay, we replaced the page pointer to our new list,
1579 * now, we just have to update to head page's prev
1580 * pointer to point to end of list
1581 */
1582 head_page->prev = last_page;
1583 success = 1;
1584 break;
1585 }
1586 }
1587
1588 if (success)
1589 INIT_LIST_HEAD(pages);
1590 /*
1591 * If we weren't successful in adding in new pages, warn and stop
1592 * tracing
1593 */
1594 RB_WARN_ON(cpu_buffer, !success);
1595 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1596
1597 /* free pages if they weren't inserted */
1598 if (!success) {
1599 struct buffer_page *bpage, *tmp;
1600 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1601 list) {
1602 list_del_init(&bpage->list);
1603 free_buffer_page(bpage);
1604 }
1605 }
1606 return success;
1607}
1608
1609static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1610{
1611 int success;
1612
1613 if (cpu_buffer->nr_pages_to_update > 0)
1614 success = rb_insert_pages(cpu_buffer);
1615 else
1616 success = rb_remove_pages(cpu_buffer,
1617 -cpu_buffer->nr_pages_to_update);
1618
1619 if (success)
1620 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1621}
1622
1623static void update_pages_handler(struct work_struct *work)
1624{
1625 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1626 struct ring_buffer_per_cpu, update_pages_work);
1627 rb_update_pages(cpu_buffer);
1628 complete(&cpu_buffer->update_done);
1629}
1630
1631/**
1632 * ring_buffer_resize - resize the ring buffer
1633 * @buffer: the buffer to resize.
1634 * @size: the new size.
1635 * @cpu_id: the cpu buffer to resize
1636 *
1637 * Minimum size is 2 * BUF_PAGE_SIZE.
1638 *
1639 * Returns 0 on success and < 0 on failure.
1640 */
1641int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1642 int cpu_id)
1643{
1644 struct ring_buffer_per_cpu *cpu_buffer;
1645 unsigned nr_pages;
1646 int cpu, err = 0;
1647
1648 /*
1649 * Always succeed at resizing a non-existent buffer:
1650 */
1651 if (!buffer)
1652 return size;
1653
1654 /* Make sure the requested buffer exists */
1655 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1656 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1657 return size;
1658
1659 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1660 size *= BUF_PAGE_SIZE;
1661
1662 /* we need a minimum of two pages */
1663 if (size < BUF_PAGE_SIZE * 2)
1664 size = BUF_PAGE_SIZE * 2;
1665
1666 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1667
1668 /*
1669 * Don't succeed if resizing is disabled, as a reader might be
1670 * manipulating the ring buffer and is expecting a sane state while
1671 * this is true.
1672 */
1673 if (atomic_read(&buffer->resize_disabled))
1674 return -EBUSY;
1675
1676 /* prevent another thread from changing buffer sizes */
1677 mutex_lock(&buffer->mutex);
1678
1679 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1680 /* calculate the pages to update */
1681 for_each_buffer_cpu(buffer, cpu) {
1682 cpu_buffer = buffer->buffers[cpu];
1683
1684 cpu_buffer->nr_pages_to_update = nr_pages -
1685 cpu_buffer->nr_pages;
1686 /*
1687 * nothing more to do for removing pages or no update
1688 */
1689 if (cpu_buffer->nr_pages_to_update <= 0)
1690 continue;
1691 /*
1692 * to add pages, make sure all new pages can be
1693 * allocated without receiving ENOMEM
1694 */
1695 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1696 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1697 &cpu_buffer->new_pages, cpu)) {
1698 /* not enough memory for new pages */
1699 err = -ENOMEM;
1700 goto out_err;
1701 }
1702 }
1703
1704 get_online_cpus();
1705 /*
1706 * Fire off all the required work handlers
1707 * We can't schedule on offline CPUs, but it's not necessary
1708 * since we can change their buffer sizes without any race.
1709 */
1710 for_each_buffer_cpu(buffer, cpu) {
1711 cpu_buffer = buffer->buffers[cpu];
1712 if (!cpu_buffer->nr_pages_to_update)
1713 continue;
1714
1715 /* Can't run something on an offline CPU. */
1716 if (!cpu_online(cpu)) {
1717 rb_update_pages(cpu_buffer);
1718 cpu_buffer->nr_pages_to_update = 0;
1719 } else {
1720 schedule_work_on(cpu,
1721 &cpu_buffer->update_pages_work);
1722 }
1723 }
1724
1725 /* wait for all the updates to complete */
1726 for_each_buffer_cpu(buffer, cpu) {
1727 cpu_buffer = buffer->buffers[cpu];
1728 if (!cpu_buffer->nr_pages_to_update)
1729 continue;
1730
1731 if (cpu_online(cpu))
1732 wait_for_completion(&cpu_buffer->update_done);
1733 cpu_buffer->nr_pages_to_update = 0;
1734 }
1735
1736 put_online_cpus();
1737 } else {
1738 /* Make sure this CPU has been intitialized */
1739 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1740 goto out;
1741
1742 cpu_buffer = buffer->buffers[cpu_id];
1743
1744 if (nr_pages == cpu_buffer->nr_pages)
1745 goto out;
1746
1747 cpu_buffer->nr_pages_to_update = nr_pages -
1748 cpu_buffer->nr_pages;
1749
1750 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1751 if (cpu_buffer->nr_pages_to_update > 0 &&
1752 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1753 &cpu_buffer->new_pages, cpu_id)) {
1754 err = -ENOMEM;
1755 goto out_err;
1756 }
1757
1758 get_online_cpus();
1759
1760 /* Can't run something on an offline CPU. */
1761 if (!cpu_online(cpu_id))
1762 rb_update_pages(cpu_buffer);
1763 else {
1764 schedule_work_on(cpu_id,
1765 &cpu_buffer->update_pages_work);
1766 wait_for_completion(&cpu_buffer->update_done);
1767 }
1768
1769 cpu_buffer->nr_pages_to_update = 0;
1770 put_online_cpus();
1771 }
1772
1773 out:
1774 /*
1775 * The ring buffer resize can happen with the ring buffer
1776 * enabled, so that the update disturbs the tracing as little
1777 * as possible. But if the buffer is disabled, we do not need
1778 * to worry about that, and we can take the time to verify
1779 * that the buffer is not corrupt.
1780 */
1781 if (atomic_read(&buffer->record_disabled)) {
1782 atomic_inc(&buffer->record_disabled);
1783 /*
1784 * Even though the buffer was disabled, we must make sure
1785 * that it is truly disabled before calling rb_check_pages.
1786 * There could have been a race between checking
1787 * record_disable and incrementing it.
1788 */
1789 synchronize_sched();
1790 for_each_buffer_cpu(buffer, cpu) {
1791 cpu_buffer = buffer->buffers[cpu];
1792 rb_check_pages(cpu_buffer);
1793 }
1794 atomic_dec(&buffer->record_disabled);
1795 }
1796
1797 mutex_unlock(&buffer->mutex);
1798 return size;
1799
1800 out_err:
1801 for_each_buffer_cpu(buffer, cpu) {
1802 struct buffer_page *bpage, *tmp;
1803
1804 cpu_buffer = buffer->buffers[cpu];
1805 cpu_buffer->nr_pages_to_update = 0;
1806
1807 if (list_empty(&cpu_buffer->new_pages))
1808 continue;
1809
1810 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1811 list) {
1812 list_del_init(&bpage->list);
1813 free_buffer_page(bpage);
1814 }
1815 }
1816 mutex_unlock(&buffer->mutex);
1817 return err;
1818}
1819EXPORT_SYMBOL_GPL(ring_buffer_resize);
1820
1821void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1822{
1823 mutex_lock(&buffer->mutex);
1824 if (val)
1825 buffer->flags |= RB_FL_OVERWRITE;
1826 else
1827 buffer->flags &= ~RB_FL_OVERWRITE;
1828 mutex_unlock(&buffer->mutex);
1829}
1830EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1831
1832static inline void *
1833__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1834{
1835 return bpage->data + index;
1836}
1837
1838static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1839{
1840 return bpage->page->data + index;
1841}
1842
1843static inline struct ring_buffer_event *
1844rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1845{
1846 return __rb_page_index(cpu_buffer->reader_page,
1847 cpu_buffer->reader_page->read);
1848}
1849
1850static inline struct ring_buffer_event *
1851rb_iter_head_event(struct ring_buffer_iter *iter)
1852{
1853 return __rb_page_index(iter->head_page, iter->head);
1854}
1855
1856static inline unsigned rb_page_commit(struct buffer_page *bpage)
1857{
1858 return local_read(&bpage->page->commit);
1859}
1860
1861/* Size is determined by what has been committed */
1862static inline unsigned rb_page_size(struct buffer_page *bpage)
1863{
1864 return rb_page_commit(bpage);
1865}
1866
1867static inline unsigned
1868rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1869{
1870 return rb_page_commit(cpu_buffer->commit_page);
1871}
1872
1873static inline unsigned
1874rb_event_index(struct ring_buffer_event *event)
1875{
1876 unsigned long addr = (unsigned long)event;
1877
1878 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1879}
1880
1881static void rb_inc_iter(struct ring_buffer_iter *iter)
1882{
1883 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1884
1885 /*
1886 * The iterator could be on the reader page (it starts there).
1887 * But the head could have moved, since the reader was
1888 * found. Check for this case and assign the iterator
1889 * to the head page instead of next.
1890 */
1891 if (iter->head_page == cpu_buffer->reader_page)
1892 iter->head_page = rb_set_head_page(cpu_buffer);
1893 else
1894 rb_inc_page(cpu_buffer, &iter->head_page);
1895
1896 iter->read_stamp = iter->head_page->page->time_stamp;
1897 iter->head = 0;
1898}
1899
1900/*
1901 * rb_handle_head_page - writer hit the head page
1902 *
1903 * Returns: +1 to retry page
1904 * 0 to continue
1905 * -1 on error
1906 */
1907static int
1908rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1909 struct buffer_page *tail_page,
1910 struct buffer_page *next_page)
1911{
1912 struct buffer_page *new_head;
1913 int entries;
1914 int type;
1915 int ret;
1916
1917 entries = rb_page_entries(next_page);
1918
1919 /*
1920 * The hard part is here. We need to move the head
1921 * forward, and protect against both readers on
1922 * other CPUs and writers coming in via interrupts.
1923 */
1924 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1925 RB_PAGE_HEAD);
1926
1927 /*
1928 * type can be one of four:
1929 * NORMAL - an interrupt already moved it for us
1930 * HEAD - we are the first to get here.
1931 * UPDATE - we are the interrupt interrupting
1932 * a current move.
1933 * MOVED - a reader on another CPU moved the next
1934 * pointer to its reader page. Give up
1935 * and try again.
1936 */
1937
1938 switch (type) {
1939 case RB_PAGE_HEAD:
1940 /*
1941 * We changed the head to UPDATE, thus
1942 * it is our responsibility to update
1943 * the counters.
1944 */
1945 local_add(entries, &cpu_buffer->overrun);
1946 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1947
1948 /*
1949 * The entries will be zeroed out when we move the
1950 * tail page.
1951 */
1952
1953 /* still more to do */
1954 break;
1955
1956 case RB_PAGE_UPDATE:
1957 /*
1958 * This is an interrupt that interrupt the
1959 * previous update. Still more to do.
1960 */
1961 break;
1962 case RB_PAGE_NORMAL:
1963 /*
1964 * An interrupt came in before the update
1965 * and processed this for us.
1966 * Nothing left to do.
1967 */
1968 return 1;
1969 case RB_PAGE_MOVED:
1970 /*
1971 * The reader is on another CPU and just did
1972 * a swap with our next_page.
1973 * Try again.
1974 */
1975 return 1;
1976 default:
1977 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1978 return -1;
1979 }
1980
1981 /*
1982 * Now that we are here, the old head pointer is
1983 * set to UPDATE. This will keep the reader from
1984 * swapping the head page with the reader page.
1985 * The reader (on another CPU) will spin till
1986 * we are finished.
1987 *
1988 * We just need to protect against interrupts
1989 * doing the job. We will set the next pointer
1990 * to HEAD. After that, we set the old pointer
1991 * to NORMAL, but only if it was HEAD before.
1992 * otherwise we are an interrupt, and only
1993 * want the outer most commit to reset it.
1994 */
1995 new_head = next_page;
1996 rb_inc_page(cpu_buffer, &new_head);
1997
1998 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1999 RB_PAGE_NORMAL);
2000
2001 /*
2002 * Valid returns are:
2003 * HEAD - an interrupt came in and already set it.
2004 * NORMAL - One of two things:
2005 * 1) We really set it.
2006 * 2) A bunch of interrupts came in and moved
2007 * the page forward again.
2008 */
2009 switch (ret) {
2010 case RB_PAGE_HEAD:
2011 case RB_PAGE_NORMAL:
2012 /* OK */
2013 break;
2014 default:
2015 RB_WARN_ON(cpu_buffer, 1);
2016 return -1;
2017 }
2018
2019 /*
2020 * It is possible that an interrupt came in,
2021 * set the head up, then more interrupts came in
2022 * and moved it again. When we get back here,
2023 * the page would have been set to NORMAL but we
2024 * just set it back to HEAD.
2025 *
2026 * How do you detect this? Well, if that happened
2027 * the tail page would have moved.
2028 */
2029 if (ret == RB_PAGE_NORMAL) {
2030 struct buffer_page *buffer_tail_page;
2031
2032 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2033 /*
2034 * If the tail had moved passed next, then we need
2035 * to reset the pointer.
2036 */
2037 if (buffer_tail_page != tail_page &&
2038 buffer_tail_page != next_page)
2039 rb_head_page_set_normal(cpu_buffer, new_head,
2040 next_page,
2041 RB_PAGE_HEAD);
2042 }
2043
2044 /*
2045 * If this was the outer most commit (the one that
2046 * changed the original pointer from HEAD to UPDATE),
2047 * then it is up to us to reset it to NORMAL.
2048 */
2049 if (type == RB_PAGE_HEAD) {
2050 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2051 tail_page,
2052 RB_PAGE_UPDATE);
2053 if (RB_WARN_ON(cpu_buffer,
2054 ret != RB_PAGE_UPDATE))
2055 return -1;
2056 }
2057
2058 return 0;
2059}
2060
2061static inline void
2062rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2063 unsigned long tail, struct rb_event_info *info)
2064{
2065 struct buffer_page *tail_page = info->tail_page;
2066 struct ring_buffer_event *event;
2067 unsigned long length = info->length;
2068
2069 /*
2070 * Only the event that crossed the page boundary
2071 * must fill the old tail_page with padding.
2072 */
2073 if (tail >= BUF_PAGE_SIZE) {
2074 /*
2075 * If the page was filled, then we still need
2076 * to update the real_end. Reset it to zero
2077 * and the reader will ignore it.
2078 */
2079 if (tail == BUF_PAGE_SIZE)
2080 tail_page->real_end = 0;
2081
2082 local_sub(length, &tail_page->write);
2083 return;
2084 }
2085
2086 event = __rb_page_index(tail_page, tail);
2087 kmemcheck_annotate_bitfield(event, bitfield);
2088
2089 /* account for padding bytes */
2090 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2091
2092 /*
2093 * Save the original length to the meta data.
2094 * This will be used by the reader to add lost event
2095 * counter.
2096 */
2097 tail_page->real_end = tail;
2098
2099 /*
2100 * If this event is bigger than the minimum size, then
2101 * we need to be careful that we don't subtract the
2102 * write counter enough to allow another writer to slip
2103 * in on this page.
2104 * We put in a discarded commit instead, to make sure
2105 * that this space is not used again.
2106 *
2107 * If we are less than the minimum size, we don't need to
2108 * worry about it.
2109 */
2110 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2111 /* No room for any events */
2112
2113 /* Mark the rest of the page with padding */
2114 rb_event_set_padding(event);
2115
2116 /* Set the write back to the previous setting */
2117 local_sub(length, &tail_page->write);
2118 return;
2119 }
2120
2121 /* Put in a discarded event */
2122 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2123 event->type_len = RINGBUF_TYPE_PADDING;
2124 /* time delta must be non zero */
2125 event->time_delta = 1;
2126
2127 /* Set write to end of buffer */
2128 length = (tail + length) - BUF_PAGE_SIZE;
2129 local_sub(length, &tail_page->write);
2130}
2131
2132static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2133
2134/*
2135 * This is the slow path, force gcc not to inline it.
2136 */
2137static noinline struct ring_buffer_event *
2138rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2139 unsigned long tail, struct rb_event_info *info)
2140{
2141 struct buffer_page *tail_page = info->tail_page;
2142 struct buffer_page *commit_page = cpu_buffer->commit_page;
2143 struct ring_buffer *buffer = cpu_buffer->buffer;
2144 struct buffer_page *next_page;
2145 int ret;
2146
2147 next_page = tail_page;
2148
2149 rb_inc_page(cpu_buffer, &next_page);
2150
2151 /*
2152 * If for some reason, we had an interrupt storm that made
2153 * it all the way around the buffer, bail, and warn
2154 * about it.
2155 */
2156 if (unlikely(next_page == commit_page)) {
2157 local_inc(&cpu_buffer->commit_overrun);
2158 goto out_reset;
2159 }
2160
2161 /*
2162 * This is where the fun begins!
2163 *
2164 * We are fighting against races between a reader that
2165 * could be on another CPU trying to swap its reader
2166 * page with the buffer head.
2167 *
2168 * We are also fighting against interrupts coming in and
2169 * moving the head or tail on us as well.
2170 *
2171 * If the next page is the head page then we have filled
2172 * the buffer, unless the commit page is still on the
2173 * reader page.
2174 */
2175 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2176
2177 /*
2178 * If the commit is not on the reader page, then
2179 * move the header page.
2180 */
2181 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2182 /*
2183 * If we are not in overwrite mode,
2184 * this is easy, just stop here.
2185 */
2186 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2187 local_inc(&cpu_buffer->dropped_events);
2188 goto out_reset;
2189 }
2190
2191 ret = rb_handle_head_page(cpu_buffer,
2192 tail_page,
2193 next_page);
2194 if (ret < 0)
2195 goto out_reset;
2196 if (ret)
2197 goto out_again;
2198 } else {
2199 /*
2200 * We need to be careful here too. The
2201 * commit page could still be on the reader
2202 * page. We could have a small buffer, and
2203 * have filled up the buffer with events
2204 * from interrupts and such, and wrapped.
2205 *
2206 * Note, if the tail page is also the on the
2207 * reader_page, we let it move out.
2208 */
2209 if (unlikely((cpu_buffer->commit_page !=
2210 cpu_buffer->tail_page) &&
2211 (cpu_buffer->commit_page ==
2212 cpu_buffer->reader_page))) {
2213 local_inc(&cpu_buffer->commit_overrun);
2214 goto out_reset;
2215 }
2216 }
2217 }
2218
2219 rb_tail_page_update(cpu_buffer, tail_page, next_page);
2220
2221 out_again:
2222
2223 rb_reset_tail(cpu_buffer, tail, info);
2224
2225 /* Commit what we have for now. */
2226 rb_end_commit(cpu_buffer);
2227 /* rb_end_commit() decs committing */
2228 local_inc(&cpu_buffer->committing);
2229
2230 /* fail and let the caller try again */
2231 return ERR_PTR(-EAGAIN);
2232
2233 out_reset:
2234 /* reset write */
2235 rb_reset_tail(cpu_buffer, tail, info);
2236
2237 return NULL;
2238}
2239
2240/* Slow path, do not inline */
2241static noinline struct ring_buffer_event *
2242rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2243{
2244 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2245
2246 /* Not the first event on the page? */
2247 if (rb_event_index(event)) {
2248 event->time_delta = delta & TS_MASK;
2249 event->array[0] = delta >> TS_SHIFT;
2250 } else {
2251 /* nope, just zero it */
2252 event->time_delta = 0;
2253 event->array[0] = 0;
2254 }
2255
2256 return skip_time_extend(event);
2257}
2258
2259static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2260 struct ring_buffer_event *event);
2261
2262/**
2263 * rb_update_event - update event type and data
2264 * @event: the event to update
2265 * @type: the type of event
2266 * @length: the size of the event field in the ring buffer
2267 *
2268 * Update the type and data fields of the event. The length
2269 * is the actual size that is written to the ring buffer,
2270 * and with this, we can determine what to place into the
2271 * data field.
2272 */
2273static void
2274rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2275 struct ring_buffer_event *event,
2276 struct rb_event_info *info)
2277{
2278 unsigned length = info->length;
2279 u64 delta = info->delta;
2280
2281 /* Only a commit updates the timestamp */
2282 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2283 delta = 0;
2284
2285 /*
2286 * If we need to add a timestamp, then we
2287 * add it to the start of the resevered space.
2288 */
2289 if (unlikely(info->add_timestamp)) {
2290 event = rb_add_time_stamp(event, delta);
2291 length -= RB_LEN_TIME_EXTEND;
2292 delta = 0;
2293 }
2294
2295 event->time_delta = delta;
2296 length -= RB_EVNT_HDR_SIZE;
2297 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2298 event->type_len = 0;
2299 event->array[0] = length;
2300 } else
2301 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2302}
2303
2304static unsigned rb_calculate_event_length(unsigned length)
2305{
2306 struct ring_buffer_event event; /* Used only for sizeof array */
2307
2308 /* zero length can cause confusions */
2309 if (!length)
2310 length++;
2311
2312 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2313 length += sizeof(event.array[0]);
2314
2315 length += RB_EVNT_HDR_SIZE;
2316 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2317
2318 /*
2319 * In case the time delta is larger than the 27 bits for it
2320 * in the header, we need to add a timestamp. If another
2321 * event comes in when trying to discard this one to increase
2322 * the length, then the timestamp will be added in the allocated
2323 * space of this event. If length is bigger than the size needed
2324 * for the TIME_EXTEND, then padding has to be used. The events
2325 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2326 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2327 * As length is a multiple of 4, we only need to worry if it
2328 * is 12 (RB_LEN_TIME_EXTEND + 4).
2329 */
2330 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2331 length += RB_ALIGNMENT;
2332
2333 return length;
2334}
2335
2336#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2337static inline bool sched_clock_stable(void)
2338{
2339 return true;
2340}
2341#endif
2342
2343static inline int
2344rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2345 struct ring_buffer_event *event)
2346{
2347 unsigned long new_index, old_index;
2348 struct buffer_page *bpage;
2349 unsigned long index;
2350 unsigned long addr;
2351
2352 new_index = rb_event_index(event);
2353 old_index = new_index + rb_event_ts_length(event);
2354 addr = (unsigned long)event;
2355 addr &= PAGE_MASK;
2356
2357 bpage = READ_ONCE(cpu_buffer->tail_page);
2358
2359 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2360 unsigned long write_mask =
2361 local_read(&bpage->write) & ~RB_WRITE_MASK;
2362 unsigned long event_length = rb_event_length(event);
2363 /*
2364 * This is on the tail page. It is possible that
2365 * a write could come in and move the tail page
2366 * and write to the next page. That is fine
2367 * because we just shorten what is on this page.
2368 */
2369 old_index += write_mask;
2370 new_index += write_mask;
2371 index = local_cmpxchg(&bpage->write, old_index, new_index);
2372 if (index == old_index) {
2373 /* update counters */
2374 local_sub(event_length, &cpu_buffer->entries_bytes);
2375 return 1;
2376 }
2377 }
2378
2379 /* could not discard */
2380 return 0;
2381}
2382
2383static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2384{
2385 local_inc(&cpu_buffer->committing);
2386 local_inc(&cpu_buffer->commits);
2387}
2388
2389static void
2390rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2391{
2392 unsigned long max_count;
2393
2394 /*
2395 * We only race with interrupts and NMIs on this CPU.
2396 * If we own the commit event, then we can commit
2397 * all others that interrupted us, since the interruptions
2398 * are in stack format (they finish before they come
2399 * back to us). This allows us to do a simple loop to
2400 * assign the commit to the tail.
2401 */
2402 again:
2403 max_count = cpu_buffer->nr_pages * 100;
2404
2405 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2406 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2407 return;
2408 if (RB_WARN_ON(cpu_buffer,
2409 rb_is_reader_page(cpu_buffer->tail_page)))
2410 return;
2411 local_set(&cpu_buffer->commit_page->page->commit,
2412 rb_page_write(cpu_buffer->commit_page));
2413 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2414 /* Only update the write stamp if the page has an event */
2415 if (rb_page_write(cpu_buffer->commit_page))
2416 cpu_buffer->write_stamp =
2417 cpu_buffer->commit_page->page->time_stamp;
2418 /* add barrier to keep gcc from optimizing too much */
2419 barrier();
2420 }
2421 while (rb_commit_index(cpu_buffer) !=
2422 rb_page_write(cpu_buffer->commit_page)) {
2423
2424 local_set(&cpu_buffer->commit_page->page->commit,
2425 rb_page_write(cpu_buffer->commit_page));
2426 RB_WARN_ON(cpu_buffer,
2427 local_read(&cpu_buffer->commit_page->page->commit) &
2428 ~RB_WRITE_MASK);
2429 barrier();
2430 }
2431
2432 /* again, keep gcc from optimizing */
2433 barrier();
2434
2435 /*
2436 * If an interrupt came in just after the first while loop
2437 * and pushed the tail page forward, we will be left with
2438 * a dangling commit that will never go forward.
2439 */
2440 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2441 goto again;
2442}
2443
2444static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2445{
2446 unsigned long commits;
2447
2448 if (RB_WARN_ON(cpu_buffer,
2449 !local_read(&cpu_buffer->committing)))
2450 return;
2451
2452 again:
2453 commits = local_read(&cpu_buffer->commits);
2454 /* synchronize with interrupts */
2455 barrier();
2456 if (local_read(&cpu_buffer->committing) == 1)
2457 rb_set_commit_to_write(cpu_buffer);
2458
2459 local_dec(&cpu_buffer->committing);
2460
2461 /* synchronize with interrupts */
2462 barrier();
2463
2464 /*
2465 * Need to account for interrupts coming in between the
2466 * updating of the commit page and the clearing of the
2467 * committing counter.
2468 */
2469 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2470 !local_read(&cpu_buffer->committing)) {
2471 local_inc(&cpu_buffer->committing);
2472 goto again;
2473 }
2474}
2475
2476static inline void rb_event_discard(struct ring_buffer_event *event)
2477{
2478 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2479 event = skip_time_extend(event);
2480
2481 /* array[0] holds the actual length for the discarded event */
2482 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2483 event->type_len = RINGBUF_TYPE_PADDING;
2484 /* time delta must be non zero */
2485 if (!event->time_delta)
2486 event->time_delta = 1;
2487}
2488
2489static inline bool
2490rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2491 struct ring_buffer_event *event)
2492{
2493 unsigned long addr = (unsigned long)event;
2494 unsigned long index;
2495
2496 index = rb_event_index(event);
2497 addr &= PAGE_MASK;
2498
2499 return cpu_buffer->commit_page->page == (void *)addr &&
2500 rb_commit_index(cpu_buffer) == index;
2501}
2502
2503static void
2504rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2505 struct ring_buffer_event *event)
2506{
2507 u64 delta;
2508
2509 /*
2510 * The event first in the commit queue updates the
2511 * time stamp.
2512 */
2513 if (rb_event_is_commit(cpu_buffer, event)) {
2514 /*
2515 * A commit event that is first on a page
2516 * updates the write timestamp with the page stamp
2517 */
2518 if (!rb_event_index(event))
2519 cpu_buffer->write_stamp =
2520 cpu_buffer->commit_page->page->time_stamp;
2521 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2522 delta = event->array[0];
2523 delta <<= TS_SHIFT;
2524 delta += event->time_delta;
2525 cpu_buffer->write_stamp += delta;
2526 } else
2527 cpu_buffer->write_stamp += event->time_delta;
2528 }
2529}
2530
2531static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2532 struct ring_buffer_event *event)
2533{
2534 local_inc(&cpu_buffer->entries);
2535 rb_update_write_stamp(cpu_buffer, event);
2536 rb_end_commit(cpu_buffer);
2537}
2538
2539static __always_inline void
2540rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2541{
2542 bool pagebusy;
2543
2544 if (buffer->irq_work.waiters_pending) {
2545 buffer->irq_work.waiters_pending = false;
2546 /* irq_work_queue() supplies it's own memory barriers */
2547 irq_work_queue(&buffer->irq_work.work);
2548 }
2549
2550 if (cpu_buffer->irq_work.waiters_pending) {
2551 cpu_buffer->irq_work.waiters_pending = false;
2552 /* irq_work_queue() supplies it's own memory barriers */
2553 irq_work_queue(&cpu_buffer->irq_work.work);
2554 }
2555
2556 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2557
2558 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2559 cpu_buffer->irq_work.wakeup_full = true;
2560 cpu_buffer->irq_work.full_waiters_pending = false;
2561 /* irq_work_queue() supplies it's own memory barriers */
2562 irq_work_queue(&cpu_buffer->irq_work.work);
2563 }
2564}
2565
2566/*
2567 * The lock and unlock are done within a preempt disable section.
2568 * The current_context per_cpu variable can only be modified
2569 * by the current task between lock and unlock. But it can
2570 * be modified more than once via an interrupt. To pass this
2571 * information from the lock to the unlock without having to
2572 * access the 'in_interrupt()' functions again (which do show
2573 * a bit of overhead in something as critical as function tracing,
2574 * we use a bitmask trick.
2575 *
2576 * bit 0 = NMI context
2577 * bit 1 = IRQ context
2578 * bit 2 = SoftIRQ context
2579 * bit 3 = normal context.
2580 *
2581 * This works because this is the order of contexts that can
2582 * preempt other contexts. A SoftIRQ never preempts an IRQ
2583 * context.
2584 *
2585 * When the context is determined, the corresponding bit is
2586 * checked and set (if it was set, then a recursion of that context
2587 * happened).
2588 *
2589 * On unlock, we need to clear this bit. To do so, just subtract
2590 * 1 from the current_context and AND it to itself.
2591 *
2592 * (binary)
2593 * 101 - 1 = 100
2594 * 101 & 100 = 100 (clearing bit zero)
2595 *
2596 * 1010 - 1 = 1001
2597 * 1010 & 1001 = 1000 (clearing bit 1)
2598 *
2599 * The least significant bit can be cleared this way, and it
2600 * just so happens that it is the same bit corresponding to
2601 * the current context.
2602 */
2603
2604static __always_inline int
2605trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2606{
2607 unsigned int val = cpu_buffer->current_context;
2608 int bit;
2609
2610 if (in_interrupt()) {
2611 if (in_nmi())
2612 bit = RB_CTX_NMI;
2613 else if (in_irq())
2614 bit = RB_CTX_IRQ;
2615 else
2616 bit = RB_CTX_SOFTIRQ;
2617 } else
2618 bit = RB_CTX_NORMAL;
2619
2620 if (unlikely(val & (1 << bit)))
2621 return 1;
2622
2623 val |= (1 << bit);
2624 cpu_buffer->current_context = val;
2625
2626 return 0;
2627}
2628
2629static __always_inline void
2630trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2631{
2632 cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2633}
2634
2635/**
2636 * ring_buffer_unlock_commit - commit a reserved
2637 * @buffer: The buffer to commit to
2638 * @event: The event pointer to commit.
2639 *
2640 * This commits the data to the ring buffer, and releases any locks held.
2641 *
2642 * Must be paired with ring_buffer_lock_reserve.
2643 */
2644int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2645 struct ring_buffer_event *event)
2646{
2647 struct ring_buffer_per_cpu *cpu_buffer;
2648 int cpu = raw_smp_processor_id();
2649
2650 cpu_buffer = buffer->buffers[cpu];
2651
2652 rb_commit(cpu_buffer, event);
2653
2654 rb_wakeups(buffer, cpu_buffer);
2655
2656 trace_recursive_unlock(cpu_buffer);
2657
2658 preempt_enable_notrace();
2659
2660 return 0;
2661}
2662EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2663
2664static noinline void
2665rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2666 struct rb_event_info *info)
2667{
2668 WARN_ONCE(info->delta > (1ULL << 59),
2669 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2670 (unsigned long long)info->delta,
2671 (unsigned long long)info->ts,
2672 (unsigned long long)cpu_buffer->write_stamp,
2673 sched_clock_stable() ? "" :
2674 "If you just came from a suspend/resume,\n"
2675 "please switch to the trace global clock:\n"
2676 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2677 info->add_timestamp = 1;
2678}
2679
2680static struct ring_buffer_event *
2681__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2682 struct rb_event_info *info)
2683{
2684 struct ring_buffer_event *event;
2685 struct buffer_page *tail_page;
2686 unsigned long tail, write;
2687
2688 /*
2689 * If the time delta since the last event is too big to
2690 * hold in the time field of the event, then we append a
2691 * TIME EXTEND event ahead of the data event.
2692 */
2693 if (unlikely(info->add_timestamp))
2694 info->length += RB_LEN_TIME_EXTEND;
2695
2696 /* Don't let the compiler play games with cpu_buffer->tail_page */
2697 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2698 write = local_add_return(info->length, &tail_page->write);
2699
2700 /* set write to only the index of the write */
2701 write &= RB_WRITE_MASK;
2702 tail = write - info->length;
2703
2704 /*
2705 * If this is the first commit on the page, then it has the same
2706 * timestamp as the page itself.
2707 */
2708 if (!tail)
2709 info->delta = 0;
2710
2711 /* See if we shot pass the end of this buffer page */
2712 if (unlikely(write > BUF_PAGE_SIZE))
2713 return rb_move_tail(cpu_buffer, tail, info);
2714
2715 /* We reserved something on the buffer */
2716
2717 event = __rb_page_index(tail_page, tail);
2718 kmemcheck_annotate_bitfield(event, bitfield);
2719 rb_update_event(cpu_buffer, event, info);
2720
2721 local_inc(&tail_page->entries);
2722
2723 /*
2724 * If this is the first commit on the page, then update
2725 * its timestamp.
2726 */
2727 if (!tail)
2728 tail_page->page->time_stamp = info->ts;
2729
2730 /* account for these added bytes */
2731 local_add(info->length, &cpu_buffer->entries_bytes);
2732
2733 return event;
2734}
2735
2736static struct ring_buffer_event *
2737rb_reserve_next_event(struct ring_buffer *buffer,
2738 struct ring_buffer_per_cpu *cpu_buffer,
2739 unsigned long length)
2740{
2741 struct ring_buffer_event *event;
2742 struct rb_event_info info;
2743 int nr_loops = 0;
2744 u64 diff;
2745
2746 rb_start_commit(cpu_buffer);
2747
2748#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2749 /*
2750 * Due to the ability to swap a cpu buffer from a buffer
2751 * it is possible it was swapped before we committed.
2752 * (committing stops a swap). We check for it here and
2753 * if it happened, we have to fail the write.
2754 */
2755 barrier();
2756 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2757 local_dec(&cpu_buffer->committing);
2758 local_dec(&cpu_buffer->commits);
2759 return NULL;
2760 }
2761#endif
2762
2763 info.length = rb_calculate_event_length(length);
2764 again:
2765 info.add_timestamp = 0;
2766 info.delta = 0;
2767
2768 /*
2769 * We allow for interrupts to reenter here and do a trace.
2770 * If one does, it will cause this original code to loop
2771 * back here. Even with heavy interrupts happening, this
2772 * should only happen a few times in a row. If this happens
2773 * 1000 times in a row, there must be either an interrupt
2774 * storm or we have something buggy.
2775 * Bail!
2776 */
2777 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2778 goto out_fail;
2779
2780 info.ts = rb_time_stamp(cpu_buffer->buffer);
2781 diff = info.ts - cpu_buffer->write_stamp;
2782
2783 /* make sure this diff is calculated here */
2784 barrier();
2785
2786 /* Did the write stamp get updated already? */
2787 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2788 info.delta = diff;
2789 if (unlikely(test_time_stamp(info.delta)))
2790 rb_handle_timestamp(cpu_buffer, &info);
2791 }
2792
2793 event = __rb_reserve_next(cpu_buffer, &info);
2794
2795 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2796 if (info.add_timestamp)
2797 info.length -= RB_LEN_TIME_EXTEND;
2798 goto again;
2799 }
2800
2801 if (!event)
2802 goto out_fail;
2803
2804 return event;
2805
2806 out_fail:
2807 rb_end_commit(cpu_buffer);
2808 return NULL;
2809}
2810
2811/**
2812 * ring_buffer_lock_reserve - reserve a part of the buffer
2813 * @buffer: the ring buffer to reserve from
2814 * @length: the length of the data to reserve (excluding event header)
2815 *
2816 * Returns a reseverd event on the ring buffer to copy directly to.
2817 * The user of this interface will need to get the body to write into
2818 * and can use the ring_buffer_event_data() interface.
2819 *
2820 * The length is the length of the data needed, not the event length
2821 * which also includes the event header.
2822 *
2823 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2824 * If NULL is returned, then nothing has been allocated or locked.
2825 */
2826struct ring_buffer_event *
2827ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2828{
2829 struct ring_buffer_per_cpu *cpu_buffer;
2830 struct ring_buffer_event *event;
2831 int cpu;
2832
2833 /* If we are tracing schedule, we don't want to recurse */
2834 preempt_disable_notrace();
2835
2836 if (unlikely(atomic_read(&buffer->record_disabled)))
2837 goto out;
2838
2839 cpu = raw_smp_processor_id();
2840
2841 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2842 goto out;
2843
2844 cpu_buffer = buffer->buffers[cpu];
2845
2846 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2847 goto out;
2848
2849 if (unlikely(length > BUF_MAX_DATA_SIZE))
2850 goto out;
2851
2852 if (unlikely(trace_recursive_lock(cpu_buffer)))
2853 goto out;
2854
2855 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2856 if (!event)
2857 goto out_unlock;
2858
2859 return event;
2860
2861 out_unlock:
2862 trace_recursive_unlock(cpu_buffer);
2863 out:
2864 preempt_enable_notrace();
2865 return NULL;
2866}
2867EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2868
2869/*
2870 * Decrement the entries to the page that an event is on.
2871 * The event does not even need to exist, only the pointer
2872 * to the page it is on. This may only be called before the commit
2873 * takes place.
2874 */
2875static inline void
2876rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2877 struct ring_buffer_event *event)
2878{
2879 unsigned long addr = (unsigned long)event;
2880 struct buffer_page *bpage = cpu_buffer->commit_page;
2881 struct buffer_page *start;
2882
2883 addr &= PAGE_MASK;
2884
2885 /* Do the likely case first */
2886 if (likely(bpage->page == (void *)addr)) {
2887 local_dec(&bpage->entries);
2888 return;
2889 }
2890
2891 /*
2892 * Because the commit page may be on the reader page we
2893 * start with the next page and check the end loop there.
2894 */
2895 rb_inc_page(cpu_buffer, &bpage);
2896 start = bpage;
2897 do {
2898 if (bpage->page == (void *)addr) {
2899 local_dec(&bpage->entries);
2900 return;
2901 }
2902 rb_inc_page(cpu_buffer, &bpage);
2903 } while (bpage != start);
2904
2905 /* commit not part of this buffer?? */
2906 RB_WARN_ON(cpu_buffer, 1);
2907}
2908
2909/**
2910 * ring_buffer_commit_discard - discard an event that has not been committed
2911 * @buffer: the ring buffer
2912 * @event: non committed event to discard
2913 *
2914 * Sometimes an event that is in the ring buffer needs to be ignored.
2915 * This function lets the user discard an event in the ring buffer
2916 * and then that event will not be read later.
2917 *
2918 * This function only works if it is called before the the item has been
2919 * committed. It will try to free the event from the ring buffer
2920 * if another event has not been added behind it.
2921 *
2922 * If another event has been added behind it, it will set the event
2923 * up as discarded, and perform the commit.
2924 *
2925 * If this function is called, do not call ring_buffer_unlock_commit on
2926 * the event.
2927 */
2928void ring_buffer_discard_commit(struct ring_buffer *buffer,
2929 struct ring_buffer_event *event)
2930{
2931 struct ring_buffer_per_cpu *cpu_buffer;
2932 int cpu;
2933
2934 /* The event is discarded regardless */
2935 rb_event_discard(event);
2936
2937 cpu = smp_processor_id();
2938 cpu_buffer = buffer->buffers[cpu];
2939
2940 /*
2941 * This must only be called if the event has not been
2942 * committed yet. Thus we can assume that preemption
2943 * is still disabled.
2944 */
2945 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2946
2947 rb_decrement_entry(cpu_buffer, event);
2948 if (rb_try_to_discard(cpu_buffer, event))
2949 goto out;
2950
2951 /*
2952 * The commit is still visible by the reader, so we
2953 * must still update the timestamp.
2954 */
2955 rb_update_write_stamp(cpu_buffer, event);
2956 out:
2957 rb_end_commit(cpu_buffer);
2958
2959 trace_recursive_unlock(cpu_buffer);
2960
2961 preempt_enable_notrace();
2962
2963}
2964EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2965
2966/**
2967 * ring_buffer_write - write data to the buffer without reserving
2968 * @buffer: The ring buffer to write to.
2969 * @length: The length of the data being written (excluding the event header)
2970 * @data: The data to write to the buffer.
2971 *
2972 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2973 * one function. If you already have the data to write to the buffer, it
2974 * may be easier to simply call this function.
2975 *
2976 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2977 * and not the length of the event which would hold the header.
2978 */
2979int ring_buffer_write(struct ring_buffer *buffer,
2980 unsigned long length,
2981 void *data)
2982{
2983 struct ring_buffer_per_cpu *cpu_buffer;
2984 struct ring_buffer_event *event;
2985 void *body;
2986 int ret = -EBUSY;
2987 int cpu;
2988
2989 preempt_disable_notrace();
2990
2991 if (atomic_read(&buffer->record_disabled))
2992 goto out;
2993
2994 cpu = raw_smp_processor_id();
2995
2996 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2997 goto out;
2998
2999 cpu_buffer = buffer->buffers[cpu];
3000
3001 if (atomic_read(&cpu_buffer->record_disabled))
3002 goto out;
3003
3004 if (length > BUF_MAX_DATA_SIZE)
3005 goto out;
3006
3007 if (unlikely(trace_recursive_lock(cpu_buffer)))
3008 goto out;
3009
3010 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3011 if (!event)
3012 goto out_unlock;
3013
3014 body = rb_event_data(event);
3015
3016 memcpy(body, data, length);
3017
3018 rb_commit(cpu_buffer, event);
3019
3020 rb_wakeups(buffer, cpu_buffer);
3021
3022 ret = 0;
3023
3024 out_unlock:
3025 trace_recursive_unlock(cpu_buffer);
3026
3027 out:
3028 preempt_enable_notrace();
3029
3030 return ret;
3031}
3032EXPORT_SYMBOL_GPL(ring_buffer_write);
3033
3034static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3035{
3036 struct buffer_page *reader = cpu_buffer->reader_page;
3037 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3038 struct buffer_page *commit = cpu_buffer->commit_page;
3039
3040 /* In case of error, head will be NULL */
3041 if (unlikely(!head))
3042 return true;
3043
3044 return reader->read == rb_page_commit(reader) &&
3045 (commit == reader ||
3046 (commit == head &&
3047 head->read == rb_page_commit(commit)));
3048}
3049
3050/**
3051 * ring_buffer_record_disable - stop all writes into the buffer
3052 * @buffer: The ring buffer to stop writes to.
3053 *
3054 * This prevents all writes to the buffer. Any attempt to write
3055 * to the buffer after this will fail and return NULL.
3056 *
3057 * The caller should call synchronize_sched() after this.
3058 */
3059void ring_buffer_record_disable(struct ring_buffer *buffer)
3060{
3061 atomic_inc(&buffer->record_disabled);
3062}
3063EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3064
3065/**
3066 * ring_buffer_record_enable - enable writes to the buffer
3067 * @buffer: The ring buffer to enable writes
3068 *
3069 * Note, multiple disables will need the same number of enables
3070 * to truly enable the writing (much like preempt_disable).
3071 */
3072void ring_buffer_record_enable(struct ring_buffer *buffer)
3073{
3074 atomic_dec(&buffer->record_disabled);
3075}
3076EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3077
3078/**
3079 * ring_buffer_record_off - stop all writes into the buffer
3080 * @buffer: The ring buffer to stop writes to.
3081 *
3082 * This prevents all writes to the buffer. Any attempt to write
3083 * to the buffer after this will fail and return NULL.
3084 *
3085 * This is different than ring_buffer_record_disable() as
3086 * it works like an on/off switch, where as the disable() version
3087 * must be paired with a enable().
3088 */
3089void ring_buffer_record_off(struct ring_buffer *buffer)
3090{
3091 unsigned int rd;
3092 unsigned int new_rd;
3093
3094 do {
3095 rd = atomic_read(&buffer->record_disabled);
3096 new_rd = rd | RB_BUFFER_OFF;
3097 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3098}
3099EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3100
3101/**
3102 * ring_buffer_record_on - restart writes into the buffer
3103 * @buffer: The ring buffer to start writes to.
3104 *
3105 * This enables all writes to the buffer that was disabled by
3106 * ring_buffer_record_off().
3107 *
3108 * This is different than ring_buffer_record_enable() as
3109 * it works like an on/off switch, where as the enable() version
3110 * must be paired with a disable().
3111 */
3112void ring_buffer_record_on(struct ring_buffer *buffer)
3113{
3114 unsigned int rd;
3115 unsigned int new_rd;
3116
3117 do {
3118 rd = atomic_read(&buffer->record_disabled);
3119 new_rd = rd & ~RB_BUFFER_OFF;
3120 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3121}
3122EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3123
3124/**
3125 * ring_buffer_record_is_on - return true if the ring buffer can write
3126 * @buffer: The ring buffer to see if write is enabled
3127 *
3128 * Returns true if the ring buffer is in a state that it accepts writes.
3129 */
3130int ring_buffer_record_is_on(struct ring_buffer *buffer)
3131{
3132 return !atomic_read(&buffer->record_disabled);
3133}
3134
3135/**
3136 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3137 * @buffer: The ring buffer to stop writes to.
3138 * @cpu: The CPU buffer to stop
3139 *
3140 * This prevents all writes to the buffer. Any attempt to write
3141 * to the buffer after this will fail and return NULL.
3142 *
3143 * The caller should call synchronize_sched() after this.
3144 */
3145void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3146{
3147 struct ring_buffer_per_cpu *cpu_buffer;
3148
3149 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3150 return;
3151
3152 cpu_buffer = buffer->buffers[cpu];
3153 atomic_inc(&cpu_buffer->record_disabled);
3154}
3155EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3156
3157/**
3158 * ring_buffer_record_enable_cpu - enable writes to the buffer
3159 * @buffer: The ring buffer to enable writes
3160 * @cpu: The CPU to enable.
3161 *
3162 * Note, multiple disables will need the same number of enables
3163 * to truly enable the writing (much like preempt_disable).
3164 */
3165void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3166{
3167 struct ring_buffer_per_cpu *cpu_buffer;
3168
3169 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3170 return;
3171
3172 cpu_buffer = buffer->buffers[cpu];
3173 atomic_dec(&cpu_buffer->record_disabled);
3174}
3175EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3176
3177/*
3178 * The total entries in the ring buffer is the running counter
3179 * of entries entered into the ring buffer, minus the sum of
3180 * the entries read from the ring buffer and the number of
3181 * entries that were overwritten.
3182 */
3183static inline unsigned long
3184rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3185{
3186 return local_read(&cpu_buffer->entries) -
3187 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3188}
3189
3190/**
3191 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3192 * @buffer: The ring buffer
3193 * @cpu: The per CPU buffer to read from.
3194 */
3195u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3196{
3197 unsigned long flags;
3198 struct ring_buffer_per_cpu *cpu_buffer;
3199 struct buffer_page *bpage;
3200 u64 ret = 0;
3201
3202 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3203 return 0;
3204
3205 cpu_buffer = buffer->buffers[cpu];
3206 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3207 /*
3208 * if the tail is on reader_page, oldest time stamp is on the reader
3209 * page
3210 */
3211 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3212 bpage = cpu_buffer->reader_page;
3213 else
3214 bpage = rb_set_head_page(cpu_buffer);
3215 if (bpage)
3216 ret = bpage->page->time_stamp;
3217 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3218
3219 return ret;
3220}
3221EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3222
3223/**
3224 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3225 * @buffer: The ring buffer
3226 * @cpu: The per CPU buffer to read from.
3227 */
3228unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3229{
3230 struct ring_buffer_per_cpu *cpu_buffer;
3231 unsigned long ret;
3232
3233 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3234 return 0;
3235
3236 cpu_buffer = buffer->buffers[cpu];
3237 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3238
3239 return ret;
3240}
3241EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3242
3243/**
3244 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3245 * @buffer: The ring buffer
3246 * @cpu: The per CPU buffer to get the entries from.
3247 */
3248unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3249{
3250 struct ring_buffer_per_cpu *cpu_buffer;
3251
3252 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3253 return 0;
3254
3255 cpu_buffer = buffer->buffers[cpu];
3256
3257 return rb_num_of_entries(cpu_buffer);
3258}
3259EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3260
3261/**
3262 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3263 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3264 * @buffer: The ring buffer
3265 * @cpu: The per CPU buffer to get the number of overruns from
3266 */
3267unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3268{
3269 struct ring_buffer_per_cpu *cpu_buffer;
3270 unsigned long ret;
3271
3272 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3273 return 0;
3274
3275 cpu_buffer = buffer->buffers[cpu];
3276 ret = local_read(&cpu_buffer->overrun);
3277
3278 return ret;
3279}
3280EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3281
3282/**
3283 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3284 * commits failing due to the buffer wrapping around while there are uncommitted
3285 * events, such as during an interrupt storm.
3286 * @buffer: The ring buffer
3287 * @cpu: The per CPU buffer to get the number of overruns from
3288 */
3289unsigned long
3290ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3291{
3292 struct ring_buffer_per_cpu *cpu_buffer;
3293 unsigned long ret;
3294
3295 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3296 return 0;
3297
3298 cpu_buffer = buffer->buffers[cpu];
3299 ret = local_read(&cpu_buffer->commit_overrun);
3300
3301 return ret;
3302}
3303EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3304
3305/**
3306 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3307 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3308 * @buffer: The ring buffer
3309 * @cpu: The per CPU buffer to get the number of overruns from
3310 */
3311unsigned long
3312ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3313{
3314 struct ring_buffer_per_cpu *cpu_buffer;
3315 unsigned long ret;
3316
3317 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3318 return 0;
3319
3320 cpu_buffer = buffer->buffers[cpu];
3321 ret = local_read(&cpu_buffer->dropped_events);
3322
3323 return ret;
3324}
3325EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3326
3327/**
3328 * ring_buffer_read_events_cpu - get the number of events successfully read
3329 * @buffer: The ring buffer
3330 * @cpu: The per CPU buffer to get the number of events read
3331 */
3332unsigned long
3333ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3334{
3335 struct ring_buffer_per_cpu *cpu_buffer;
3336
3337 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3338 return 0;
3339
3340 cpu_buffer = buffer->buffers[cpu];
3341 return cpu_buffer->read;
3342}
3343EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3344
3345/**
3346 * ring_buffer_entries - get the number of entries in a buffer
3347 * @buffer: The ring buffer
3348 *
3349 * Returns the total number of entries in the ring buffer
3350 * (all CPU entries)
3351 */
3352unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3353{
3354 struct ring_buffer_per_cpu *cpu_buffer;
3355 unsigned long entries = 0;
3356 int cpu;
3357
3358 /* if you care about this being correct, lock the buffer */
3359 for_each_buffer_cpu(buffer, cpu) {
3360 cpu_buffer = buffer->buffers[cpu];
3361 entries += rb_num_of_entries(cpu_buffer);
3362 }
3363
3364 return entries;
3365}
3366EXPORT_SYMBOL_GPL(ring_buffer_entries);
3367
3368/**
3369 * ring_buffer_overruns - get the number of overruns in buffer
3370 * @buffer: The ring buffer
3371 *
3372 * Returns the total number of overruns in the ring buffer
3373 * (all CPU entries)
3374 */
3375unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3376{
3377 struct ring_buffer_per_cpu *cpu_buffer;
3378 unsigned long overruns = 0;
3379 int cpu;
3380
3381 /* if you care about this being correct, lock the buffer */
3382 for_each_buffer_cpu(buffer, cpu) {
3383 cpu_buffer = buffer->buffers[cpu];
3384 overruns += local_read(&cpu_buffer->overrun);
3385 }
3386
3387 return overruns;
3388}
3389EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3390
3391static void rb_iter_reset(struct ring_buffer_iter *iter)
3392{
3393 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3394
3395 /* Iterator usage is expected to have record disabled */
3396 iter->head_page = cpu_buffer->reader_page;
3397 iter->head = cpu_buffer->reader_page->read;
3398
3399 iter->cache_reader_page = iter->head_page;
3400 iter->cache_read = cpu_buffer->read;
3401
3402 if (iter->head)
3403 iter->read_stamp = cpu_buffer->read_stamp;
3404 else
3405 iter->read_stamp = iter->head_page->page->time_stamp;
3406}
3407
3408/**
3409 * ring_buffer_iter_reset - reset an iterator
3410 * @iter: The iterator to reset
3411 *
3412 * Resets the iterator, so that it will start from the beginning
3413 * again.
3414 */
3415void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3416{
3417 struct ring_buffer_per_cpu *cpu_buffer;
3418 unsigned long flags;
3419
3420 if (!iter)
3421 return;
3422
3423 cpu_buffer = iter->cpu_buffer;
3424
3425 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3426 rb_iter_reset(iter);
3427 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3428}
3429EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3430
3431/**
3432 * ring_buffer_iter_empty - check if an iterator has no more to read
3433 * @iter: The iterator to check
3434 */
3435int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3436{
3437 struct ring_buffer_per_cpu *cpu_buffer;
3438
3439 cpu_buffer = iter->cpu_buffer;
3440
3441 return iter->head_page == cpu_buffer->commit_page &&
3442 iter->head == rb_commit_index(cpu_buffer);
3443}
3444EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3445
3446static void
3447rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3448 struct ring_buffer_event *event)
3449{
3450 u64 delta;
3451
3452 switch (event->type_len) {
3453 case RINGBUF_TYPE_PADDING:
3454 return;
3455
3456 case RINGBUF_TYPE_TIME_EXTEND:
3457 delta = event->array[0];
3458 delta <<= TS_SHIFT;
3459 delta += event->time_delta;
3460 cpu_buffer->read_stamp += delta;
3461 return;
3462
3463 case RINGBUF_TYPE_TIME_STAMP:
3464 /* FIXME: not implemented */
3465 return;
3466
3467 case RINGBUF_TYPE_DATA:
3468 cpu_buffer->read_stamp += event->time_delta;
3469 return;
3470
3471 default:
3472 BUG();
3473 }
3474 return;
3475}
3476
3477static void
3478rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3479 struct ring_buffer_event *event)
3480{
3481 u64 delta;
3482
3483 switch (event->type_len) {
3484 case RINGBUF_TYPE_PADDING:
3485 return;
3486
3487 case RINGBUF_TYPE_TIME_EXTEND:
3488 delta = event->array[0];
3489 delta <<= TS_SHIFT;
3490 delta += event->time_delta;
3491 iter->read_stamp += delta;
3492 return;
3493
3494 case RINGBUF_TYPE_TIME_STAMP:
3495 /* FIXME: not implemented */
3496 return;
3497
3498 case RINGBUF_TYPE_DATA:
3499 iter->read_stamp += event->time_delta;
3500 return;
3501
3502 default:
3503 BUG();
3504 }
3505 return;
3506}
3507
3508static struct buffer_page *
3509rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3510{
3511 struct buffer_page *reader = NULL;
3512 unsigned long overwrite;
3513 unsigned long flags;
3514 int nr_loops = 0;
3515 int ret;
3516
3517 local_irq_save(flags);
3518 arch_spin_lock(&cpu_buffer->lock);
3519
3520 again:
3521 /*
3522 * This should normally only loop twice. But because the
3523 * start of the reader inserts an empty page, it causes
3524 * a case where we will loop three times. There should be no
3525 * reason to loop four times (that I know of).
3526 */
3527 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3528 reader = NULL;
3529 goto out;
3530 }
3531
3532 reader = cpu_buffer->reader_page;
3533
3534 /* If there's more to read, return this page */
3535 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3536 goto out;
3537
3538 /* Never should we have an index greater than the size */
3539 if (RB_WARN_ON(cpu_buffer,
3540 cpu_buffer->reader_page->read > rb_page_size(reader)))
3541 goto out;
3542
3543 /* check if we caught up to the tail */
3544 reader = NULL;
3545 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3546 goto out;
3547
3548 /* Don't bother swapping if the ring buffer is empty */
3549 if (rb_num_of_entries(cpu_buffer) == 0)
3550 goto out;
3551
3552 /*
3553 * Reset the reader page to size zero.
3554 */
3555 local_set(&cpu_buffer->reader_page->write, 0);
3556 local_set(&cpu_buffer->reader_page->entries, 0);
3557 local_set(&cpu_buffer->reader_page->page->commit, 0);
3558 cpu_buffer->reader_page->real_end = 0;
3559
3560 spin:
3561 /*
3562 * Splice the empty reader page into the list around the head.
3563 */
3564 reader = rb_set_head_page(cpu_buffer);
3565 if (!reader)
3566 goto out;
3567 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3568 cpu_buffer->reader_page->list.prev = reader->list.prev;
3569
3570 /*
3571 * cpu_buffer->pages just needs to point to the buffer, it
3572 * has no specific buffer page to point to. Lets move it out
3573 * of our way so we don't accidentally swap it.
3574 */
3575 cpu_buffer->pages = reader->list.prev;
3576
3577 /* The reader page will be pointing to the new head */
3578 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3579
3580 /*
3581 * We want to make sure we read the overruns after we set up our
3582 * pointers to the next object. The writer side does a
3583 * cmpxchg to cross pages which acts as the mb on the writer
3584 * side. Note, the reader will constantly fail the swap
3585 * while the writer is updating the pointers, so this
3586 * guarantees that the overwrite recorded here is the one we
3587 * want to compare with the last_overrun.
3588 */
3589 smp_mb();
3590 overwrite = local_read(&(cpu_buffer->overrun));
3591
3592 /*
3593 * Here's the tricky part.
3594 *
3595 * We need to move the pointer past the header page.
3596 * But we can only do that if a writer is not currently
3597 * moving it. The page before the header page has the
3598 * flag bit '1' set if it is pointing to the page we want.
3599 * but if the writer is in the process of moving it
3600 * than it will be '2' or already moved '0'.
3601 */
3602
3603 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3604
3605 /*
3606 * If we did not convert it, then we must try again.
3607 */
3608 if (!ret)
3609 goto spin;
3610
3611 /*
3612 * Yeah! We succeeded in replacing the page.
3613 *
3614 * Now make the new head point back to the reader page.
3615 */
3616 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3617 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3618
3619 /* Finally update the reader page to the new head */
3620 cpu_buffer->reader_page = reader;
3621 cpu_buffer->reader_page->read = 0;
3622
3623 if (overwrite != cpu_buffer->last_overrun) {
3624 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3625 cpu_buffer->last_overrun = overwrite;
3626 }
3627
3628 goto again;
3629
3630 out:
3631 /* Update the read_stamp on the first event */
3632 if (reader && reader->read == 0)
3633 cpu_buffer->read_stamp = reader->page->time_stamp;
3634
3635 arch_spin_unlock(&cpu_buffer->lock);
3636 local_irq_restore(flags);
3637
3638 return reader;
3639}
3640
3641static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3642{
3643 struct ring_buffer_event *event;
3644 struct buffer_page *reader;
3645 unsigned length;
3646
3647 reader = rb_get_reader_page(cpu_buffer);
3648
3649 /* This function should not be called when buffer is empty */
3650 if (RB_WARN_ON(cpu_buffer, !reader))
3651 return;
3652
3653 event = rb_reader_event(cpu_buffer);
3654
3655 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3656 cpu_buffer->read++;
3657
3658 rb_update_read_stamp(cpu_buffer, event);
3659
3660 length = rb_event_length(event);
3661 cpu_buffer->reader_page->read += length;
3662}
3663
3664static void rb_advance_iter(struct ring_buffer_iter *iter)
3665{
3666 struct ring_buffer_per_cpu *cpu_buffer;
3667 struct ring_buffer_event *event;
3668 unsigned length;
3669
3670 cpu_buffer = iter->cpu_buffer;
3671
3672 /*
3673 * Check if we are at the end of the buffer.
3674 */
3675 if (iter->head >= rb_page_size(iter->head_page)) {
3676 /* discarded commits can make the page empty */
3677 if (iter->head_page == cpu_buffer->commit_page)
3678 return;
3679 rb_inc_iter(iter);
3680 return;
3681 }
3682
3683 event = rb_iter_head_event(iter);
3684
3685 length = rb_event_length(event);
3686
3687 /*
3688 * This should not be called to advance the header if we are
3689 * at the tail of the buffer.
3690 */
3691 if (RB_WARN_ON(cpu_buffer,
3692 (iter->head_page == cpu_buffer->commit_page) &&
3693 (iter->head + length > rb_commit_index(cpu_buffer))))
3694 return;
3695
3696 rb_update_iter_read_stamp(iter, event);
3697
3698 iter->head += length;
3699
3700 /* check for end of page padding */
3701 if ((iter->head >= rb_page_size(iter->head_page)) &&
3702 (iter->head_page != cpu_buffer->commit_page))
3703 rb_inc_iter(iter);
3704}
3705
3706static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3707{
3708 return cpu_buffer->lost_events;
3709}
3710
3711static struct ring_buffer_event *
3712rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3713 unsigned long *lost_events)
3714{
3715 struct ring_buffer_event *event;
3716 struct buffer_page *reader;
3717 int nr_loops = 0;
3718
3719 again:
3720 /*
3721 * We repeat when a time extend is encountered.
3722 * Since the time extend is always attached to a data event,
3723 * we should never loop more than once.
3724 * (We never hit the following condition more than twice).
3725 */
3726 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3727 return NULL;
3728
3729 reader = rb_get_reader_page(cpu_buffer);
3730 if (!reader)
3731 return NULL;
3732
3733 event = rb_reader_event(cpu_buffer);
3734
3735 switch (event->type_len) {
3736 case RINGBUF_TYPE_PADDING:
3737 if (rb_null_event(event))
3738 RB_WARN_ON(cpu_buffer, 1);
3739 /*
3740 * Because the writer could be discarding every
3741 * event it creates (which would probably be bad)
3742 * if we were to go back to "again" then we may never
3743 * catch up, and will trigger the warn on, or lock
3744 * the box. Return the padding, and we will release
3745 * the current locks, and try again.
3746 */
3747 return event;
3748
3749 case RINGBUF_TYPE_TIME_EXTEND:
3750 /* Internal data, OK to advance */
3751 rb_advance_reader(cpu_buffer);
3752 goto again;
3753
3754 case RINGBUF_TYPE_TIME_STAMP:
3755 /* FIXME: not implemented */
3756 rb_advance_reader(cpu_buffer);
3757 goto again;
3758
3759 case RINGBUF_TYPE_DATA:
3760 if (ts) {
3761 *ts = cpu_buffer->read_stamp + event->time_delta;
3762 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3763 cpu_buffer->cpu, ts);
3764 }
3765 if (lost_events)
3766 *lost_events = rb_lost_events(cpu_buffer);
3767 return event;
3768
3769 default:
3770 BUG();
3771 }
3772
3773 return NULL;
3774}
3775EXPORT_SYMBOL_GPL(ring_buffer_peek);
3776
3777static struct ring_buffer_event *
3778rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3779{
3780 struct ring_buffer *buffer;
3781 struct ring_buffer_per_cpu *cpu_buffer;
3782 struct ring_buffer_event *event;
3783 int nr_loops = 0;
3784
3785 cpu_buffer = iter->cpu_buffer;
3786 buffer = cpu_buffer->buffer;
3787
3788 /*
3789 * Check if someone performed a consuming read to
3790 * the buffer. A consuming read invalidates the iterator
3791 * and we need to reset the iterator in this case.
3792 */
3793 if (unlikely(iter->cache_read != cpu_buffer->read ||
3794 iter->cache_reader_page != cpu_buffer->reader_page))
3795 rb_iter_reset(iter);
3796
3797 again:
3798 if (ring_buffer_iter_empty(iter))
3799 return NULL;
3800
3801 /*
3802 * We repeat when a time extend is encountered or we hit
3803 * the end of the page. Since the time extend is always attached
3804 * to a data event, we should never loop more than three times.
3805 * Once for going to next page, once on time extend, and
3806 * finally once to get the event.
3807 * (We never hit the following condition more than thrice).
3808 */
3809 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3810 return NULL;
3811
3812 if (rb_per_cpu_empty(cpu_buffer))
3813 return NULL;
3814
3815 if (iter->head >= rb_page_size(iter->head_page)) {
3816 rb_inc_iter(iter);
3817 goto again;
3818 }
3819
3820 event = rb_iter_head_event(iter);
3821
3822 switch (event->type_len) {
3823 case RINGBUF_TYPE_PADDING:
3824 if (rb_null_event(event)) {
3825 rb_inc_iter(iter);
3826 goto again;
3827 }
3828 rb_advance_iter(iter);
3829 return event;
3830
3831 case RINGBUF_TYPE_TIME_EXTEND:
3832 /* Internal data, OK to advance */
3833 rb_advance_iter(iter);
3834 goto again;
3835
3836 case RINGBUF_TYPE_TIME_STAMP:
3837 /* FIXME: not implemented */
3838 rb_advance_iter(iter);
3839 goto again;
3840
3841 case RINGBUF_TYPE_DATA:
3842 if (ts) {
3843 *ts = iter->read_stamp + event->time_delta;
3844 ring_buffer_normalize_time_stamp(buffer,
3845 cpu_buffer->cpu, ts);
3846 }
3847 return event;
3848
3849 default:
3850 BUG();
3851 }
3852
3853 return NULL;
3854}
3855EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3856
3857static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3858{
3859 if (likely(!in_nmi())) {
3860 raw_spin_lock(&cpu_buffer->reader_lock);
3861 return true;
3862 }
3863
3864 /*
3865 * If an NMI die dumps out the content of the ring buffer
3866 * trylock must be used to prevent a deadlock if the NMI
3867 * preempted a task that holds the ring buffer locks. If
3868 * we get the lock then all is fine, if not, then continue
3869 * to do the read, but this can corrupt the ring buffer,
3870 * so it must be permanently disabled from future writes.
3871 * Reading from NMI is a oneshot deal.
3872 */
3873 if (raw_spin_trylock(&cpu_buffer->reader_lock))
3874 return true;
3875
3876 /* Continue without locking, but disable the ring buffer */
3877 atomic_inc(&cpu_buffer->record_disabled);
3878 return false;
3879}
3880
3881static inline void
3882rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3883{
3884 if (likely(locked))
3885 raw_spin_unlock(&cpu_buffer->reader_lock);
3886 return;
3887}
3888
3889/**
3890 * ring_buffer_peek - peek at the next event to be read
3891 * @buffer: The ring buffer to read
3892 * @cpu: The cpu to peak at
3893 * @ts: The timestamp counter of this event.
3894 * @lost_events: a variable to store if events were lost (may be NULL)
3895 *
3896 * This will return the event that will be read next, but does
3897 * not consume the data.
3898 */
3899struct ring_buffer_event *
3900ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3901 unsigned long *lost_events)
3902{
3903 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3904 struct ring_buffer_event *event;
3905 unsigned long flags;
3906 bool dolock;
3907
3908 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3909 return NULL;
3910
3911 again:
3912 local_irq_save(flags);
3913 dolock = rb_reader_lock(cpu_buffer);
3914 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3915 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3916 rb_advance_reader(cpu_buffer);
3917 rb_reader_unlock(cpu_buffer, dolock);
3918 local_irq_restore(flags);
3919
3920 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3921 goto again;
3922
3923 return event;
3924}
3925
3926/**
3927 * ring_buffer_iter_peek - peek at the next event to be read
3928 * @iter: The ring buffer iterator
3929 * @ts: The timestamp counter of this event.
3930 *
3931 * This will return the event that will be read next, but does
3932 * not increment the iterator.
3933 */
3934struct ring_buffer_event *
3935ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3936{
3937 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3938 struct ring_buffer_event *event;
3939 unsigned long flags;
3940
3941 again:
3942 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3943 event = rb_iter_peek(iter, ts);
3944 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3945
3946 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3947 goto again;
3948
3949 return event;
3950}
3951
3952/**
3953 * ring_buffer_consume - return an event and consume it
3954 * @buffer: The ring buffer to get the next event from
3955 * @cpu: the cpu to read the buffer from
3956 * @ts: a variable to store the timestamp (may be NULL)
3957 * @lost_events: a variable to store if events were lost (may be NULL)
3958 *
3959 * Returns the next event in the ring buffer, and that event is consumed.
3960 * Meaning, that sequential reads will keep returning a different event,
3961 * and eventually empty the ring buffer if the producer is slower.
3962 */
3963struct ring_buffer_event *
3964ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3965 unsigned long *lost_events)
3966{
3967 struct ring_buffer_per_cpu *cpu_buffer;
3968 struct ring_buffer_event *event = NULL;
3969 unsigned long flags;
3970 bool dolock;
3971
3972 again:
3973 /* might be called in atomic */
3974 preempt_disable();
3975
3976 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3977 goto out;
3978
3979 cpu_buffer = buffer->buffers[cpu];
3980 local_irq_save(flags);
3981 dolock = rb_reader_lock(cpu_buffer);
3982
3983 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3984 if (event) {
3985 cpu_buffer->lost_events = 0;
3986 rb_advance_reader(cpu_buffer);
3987 }
3988
3989 rb_reader_unlock(cpu_buffer, dolock);
3990 local_irq_restore(flags);
3991
3992 out:
3993 preempt_enable();
3994
3995 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3996 goto again;
3997
3998 return event;
3999}
4000EXPORT_SYMBOL_GPL(ring_buffer_consume);
4001
4002/**
4003 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4004 * @buffer: The ring buffer to read from
4005 * @cpu: The cpu buffer to iterate over
4006 *
4007 * This performs the initial preparations necessary to iterate
4008 * through the buffer. Memory is allocated, buffer recording
4009 * is disabled, and the iterator pointer is returned to the caller.
4010 *
4011 * Disabling buffer recordng prevents the reading from being
4012 * corrupted. This is not a consuming read, so a producer is not
4013 * expected.
4014 *
4015 * After a sequence of ring_buffer_read_prepare calls, the user is
4016 * expected to make at least one call to ring_buffer_read_prepare_sync.
4017 * Afterwards, ring_buffer_read_start is invoked to get things going
4018 * for real.
4019 *
4020 * This overall must be paired with ring_buffer_read_finish.
4021 */
4022struct ring_buffer_iter *
4023ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4024{
4025 struct ring_buffer_per_cpu *cpu_buffer;
4026 struct ring_buffer_iter *iter;
4027
4028 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4029 return NULL;
4030
4031 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4032 if (!iter)
4033 return NULL;
4034
4035 cpu_buffer = buffer->buffers[cpu];
4036
4037 iter->cpu_buffer = cpu_buffer;
4038
4039 atomic_inc(&buffer->resize_disabled);
4040 atomic_inc(&cpu_buffer->record_disabled);
4041
4042 return iter;
4043}
4044EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4045
4046/**
4047 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4048 *
4049 * All previously invoked ring_buffer_read_prepare calls to prepare
4050 * iterators will be synchronized. Afterwards, read_buffer_read_start
4051 * calls on those iterators are allowed.
4052 */
4053void
4054ring_buffer_read_prepare_sync(void)
4055{
4056 synchronize_sched();
4057}
4058EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4059
4060/**
4061 * ring_buffer_read_start - start a non consuming read of the buffer
4062 * @iter: The iterator returned by ring_buffer_read_prepare
4063 *
4064 * This finalizes the startup of an iteration through the buffer.
4065 * The iterator comes from a call to ring_buffer_read_prepare and
4066 * an intervening ring_buffer_read_prepare_sync must have been
4067 * performed.
4068 *
4069 * Must be paired with ring_buffer_read_finish.
4070 */
4071void
4072ring_buffer_read_start(struct ring_buffer_iter *iter)
4073{
4074 struct ring_buffer_per_cpu *cpu_buffer;
4075 unsigned long flags;
4076
4077 if (!iter)
4078 return;
4079
4080 cpu_buffer = iter->cpu_buffer;
4081
4082 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4083 arch_spin_lock(&cpu_buffer->lock);
4084 rb_iter_reset(iter);
4085 arch_spin_unlock(&cpu_buffer->lock);
4086 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4087}
4088EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4089
4090/**
4091 * ring_buffer_read_finish - finish reading the iterator of the buffer
4092 * @iter: The iterator retrieved by ring_buffer_start
4093 *
4094 * This re-enables the recording to the buffer, and frees the
4095 * iterator.
4096 */
4097void
4098ring_buffer_read_finish(struct ring_buffer_iter *iter)
4099{
4100 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4101 unsigned long flags;
4102
4103 /*
4104 * Ring buffer is disabled from recording, here's a good place
4105 * to check the integrity of the ring buffer.
4106 * Must prevent readers from trying to read, as the check
4107 * clears the HEAD page and readers require it.
4108 */
4109 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4110 rb_check_pages(cpu_buffer);
4111 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4112
4113 atomic_dec(&cpu_buffer->record_disabled);
4114 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4115 kfree(iter);
4116}
4117EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4118
4119/**
4120 * ring_buffer_read - read the next item in the ring buffer by the iterator
4121 * @iter: The ring buffer iterator
4122 * @ts: The time stamp of the event read.
4123 *
4124 * This reads the next event in the ring buffer and increments the iterator.
4125 */
4126struct ring_buffer_event *
4127ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4128{
4129 struct ring_buffer_event *event;
4130 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4131 unsigned long flags;
4132
4133 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4134 again:
4135 event = rb_iter_peek(iter, ts);
4136 if (!event)
4137 goto out;
4138
4139 if (event->type_len == RINGBUF_TYPE_PADDING)
4140 goto again;
4141
4142 rb_advance_iter(iter);
4143 out:
4144 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4145
4146 return event;
4147}
4148EXPORT_SYMBOL_GPL(ring_buffer_read);
4149
4150/**
4151 * ring_buffer_size - return the size of the ring buffer (in bytes)
4152 * @buffer: The ring buffer.
4153 */
4154unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4155{
4156 /*
4157 * Earlier, this method returned
4158 * BUF_PAGE_SIZE * buffer->nr_pages
4159 * Since the nr_pages field is now removed, we have converted this to
4160 * return the per cpu buffer value.
4161 */
4162 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4163 return 0;
4164
4165 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4166}
4167EXPORT_SYMBOL_GPL(ring_buffer_size);
4168
4169static void
4170rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4171{
4172 rb_head_page_deactivate(cpu_buffer);
4173
4174 cpu_buffer->head_page
4175 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4176 local_set(&cpu_buffer->head_page->write, 0);
4177 local_set(&cpu_buffer->head_page->entries, 0);
4178 local_set(&cpu_buffer->head_page->page->commit, 0);
4179
4180 cpu_buffer->head_page->read = 0;
4181
4182 cpu_buffer->tail_page = cpu_buffer->head_page;
4183 cpu_buffer->commit_page = cpu_buffer->head_page;
4184
4185 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4186 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4187 local_set(&cpu_buffer->reader_page->write, 0);
4188 local_set(&cpu_buffer->reader_page->entries, 0);
4189 local_set(&cpu_buffer->reader_page->page->commit, 0);
4190 cpu_buffer->reader_page->read = 0;
4191
4192 local_set(&cpu_buffer->entries_bytes, 0);
4193 local_set(&cpu_buffer->overrun, 0);
4194 local_set(&cpu_buffer->commit_overrun, 0);
4195 local_set(&cpu_buffer->dropped_events, 0);
4196 local_set(&cpu_buffer->entries, 0);
4197 local_set(&cpu_buffer->committing, 0);
4198 local_set(&cpu_buffer->commits, 0);
4199 cpu_buffer->read = 0;
4200 cpu_buffer->read_bytes = 0;
4201
4202 cpu_buffer->write_stamp = 0;
4203 cpu_buffer->read_stamp = 0;
4204
4205 cpu_buffer->lost_events = 0;
4206 cpu_buffer->last_overrun = 0;
4207
4208 rb_head_page_activate(cpu_buffer);
4209}
4210
4211/**
4212 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4213 * @buffer: The ring buffer to reset a per cpu buffer of
4214 * @cpu: The CPU buffer to be reset
4215 */
4216void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4217{
4218 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4219 unsigned long flags;
4220
4221 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4222 return;
4223
4224 atomic_inc(&buffer->resize_disabled);
4225 atomic_inc(&cpu_buffer->record_disabled);
4226
4227 /* Make sure all commits have finished */
4228 synchronize_sched();
4229
4230 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4231
4232 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4233 goto out;
4234
4235 arch_spin_lock(&cpu_buffer->lock);
4236
4237 rb_reset_cpu(cpu_buffer);
4238
4239 arch_spin_unlock(&cpu_buffer->lock);
4240
4241 out:
4242 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4243
4244 atomic_dec(&cpu_buffer->record_disabled);
4245 atomic_dec(&buffer->resize_disabled);
4246}
4247EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4248
4249/**
4250 * ring_buffer_reset - reset a ring buffer
4251 * @buffer: The ring buffer to reset all cpu buffers
4252 */
4253void ring_buffer_reset(struct ring_buffer *buffer)
4254{
4255 int cpu;
4256
4257 for_each_buffer_cpu(buffer, cpu)
4258 ring_buffer_reset_cpu(buffer, cpu);
4259}
4260EXPORT_SYMBOL_GPL(ring_buffer_reset);
4261
4262/**
4263 * rind_buffer_empty - is the ring buffer empty?
4264 * @buffer: The ring buffer to test
4265 */
4266bool ring_buffer_empty(struct ring_buffer *buffer)
4267{
4268 struct ring_buffer_per_cpu *cpu_buffer;
4269 unsigned long flags;
4270 bool dolock;
4271 int cpu;
4272 int ret;
4273
4274 /* yes this is racy, but if you don't like the race, lock the buffer */
4275 for_each_buffer_cpu(buffer, cpu) {
4276 cpu_buffer = buffer->buffers[cpu];
4277 local_irq_save(flags);
4278 dolock = rb_reader_lock(cpu_buffer);
4279 ret = rb_per_cpu_empty(cpu_buffer);
4280 rb_reader_unlock(cpu_buffer, dolock);
4281 local_irq_restore(flags);
4282
4283 if (!ret)
4284 return false;
4285 }
4286
4287 return true;
4288}
4289EXPORT_SYMBOL_GPL(ring_buffer_empty);
4290
4291/**
4292 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4293 * @buffer: The ring buffer
4294 * @cpu: The CPU buffer to test
4295 */
4296bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4297{
4298 struct ring_buffer_per_cpu *cpu_buffer;
4299 unsigned long flags;
4300 bool dolock;
4301 int ret;
4302
4303 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4304 return true;
4305
4306 cpu_buffer = buffer->buffers[cpu];
4307 local_irq_save(flags);
4308 dolock = rb_reader_lock(cpu_buffer);
4309 ret = rb_per_cpu_empty(cpu_buffer);
4310 rb_reader_unlock(cpu_buffer, dolock);
4311 local_irq_restore(flags);
4312
4313 return ret;
4314}
4315EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4316
4317#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4318/**
4319 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4320 * @buffer_a: One buffer to swap with
4321 * @buffer_b: The other buffer to swap with
4322 *
4323 * This function is useful for tracers that want to take a "snapshot"
4324 * of a CPU buffer and has another back up buffer lying around.
4325 * it is expected that the tracer handles the cpu buffer not being
4326 * used at the moment.
4327 */
4328int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4329 struct ring_buffer *buffer_b, int cpu)
4330{
4331 struct ring_buffer_per_cpu *cpu_buffer_a;
4332 struct ring_buffer_per_cpu *cpu_buffer_b;
4333 int ret = -EINVAL;
4334
4335 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4336 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4337 goto out;
4338
4339 cpu_buffer_a = buffer_a->buffers[cpu];
4340 cpu_buffer_b = buffer_b->buffers[cpu];
4341
4342 /* At least make sure the two buffers are somewhat the same */
4343 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4344 goto out;
4345
4346 ret = -EAGAIN;
4347
4348 if (atomic_read(&buffer_a->record_disabled))
4349 goto out;
4350
4351 if (atomic_read(&buffer_b->record_disabled))
4352 goto out;
4353
4354 if (atomic_read(&cpu_buffer_a->record_disabled))
4355 goto out;
4356
4357 if (atomic_read(&cpu_buffer_b->record_disabled))
4358 goto out;
4359
4360 /*
4361 * We can't do a synchronize_sched here because this
4362 * function can be called in atomic context.
4363 * Normally this will be called from the same CPU as cpu.
4364 * If not it's up to the caller to protect this.
4365 */
4366 atomic_inc(&cpu_buffer_a->record_disabled);
4367 atomic_inc(&cpu_buffer_b->record_disabled);
4368
4369 ret = -EBUSY;
4370 if (local_read(&cpu_buffer_a->committing))
4371 goto out_dec;
4372 if (local_read(&cpu_buffer_b->committing))
4373 goto out_dec;
4374
4375 buffer_a->buffers[cpu] = cpu_buffer_b;
4376 buffer_b->buffers[cpu] = cpu_buffer_a;
4377
4378 cpu_buffer_b->buffer = buffer_a;
4379 cpu_buffer_a->buffer = buffer_b;
4380
4381 ret = 0;
4382
4383out_dec:
4384 atomic_dec(&cpu_buffer_a->record_disabled);
4385 atomic_dec(&cpu_buffer_b->record_disabled);
4386out:
4387 return ret;
4388}
4389EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4390#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4391
4392/**
4393 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4394 * @buffer: the buffer to allocate for.
4395 * @cpu: the cpu buffer to allocate.
4396 *
4397 * This function is used in conjunction with ring_buffer_read_page.
4398 * When reading a full page from the ring buffer, these functions
4399 * can be used to speed up the process. The calling function should
4400 * allocate a few pages first with this function. Then when it
4401 * needs to get pages from the ring buffer, it passes the result
4402 * of this function into ring_buffer_read_page, which will swap
4403 * the page that was allocated, with the read page of the buffer.
4404 *
4405 * Returns:
4406 * The page allocated, or NULL on error.
4407 */
4408void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4409{
4410 struct buffer_data_page *bpage;
4411 struct page *page;
4412
4413 page = alloc_pages_node(cpu_to_node(cpu),
4414 GFP_KERNEL | __GFP_NORETRY, 0);
4415 if (!page)
4416 return NULL;
4417
4418 bpage = page_address(page);
4419
4420 rb_init_page(bpage);
4421
4422 return bpage;
4423}
4424EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4425
4426/**
4427 * ring_buffer_free_read_page - free an allocated read page
4428 * @buffer: the buffer the page was allocate for
4429 * @data: the page to free
4430 *
4431 * Free a page allocated from ring_buffer_alloc_read_page.
4432 */
4433void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4434{
4435 free_page((unsigned long)data);
4436}
4437EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4438
4439/**
4440 * ring_buffer_read_page - extract a page from the ring buffer
4441 * @buffer: buffer to extract from
4442 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4443 * @len: amount to extract
4444 * @cpu: the cpu of the buffer to extract
4445 * @full: should the extraction only happen when the page is full.
4446 *
4447 * This function will pull out a page from the ring buffer and consume it.
4448 * @data_page must be the address of the variable that was returned
4449 * from ring_buffer_alloc_read_page. This is because the page might be used
4450 * to swap with a page in the ring buffer.
4451 *
4452 * for example:
4453 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4454 * if (!rpage)
4455 * return error;
4456 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4457 * if (ret >= 0)
4458 * process_page(rpage, ret);
4459 *
4460 * When @full is set, the function will not return true unless
4461 * the writer is off the reader page.
4462 *
4463 * Note: it is up to the calling functions to handle sleeps and wakeups.
4464 * The ring buffer can be used anywhere in the kernel and can not
4465 * blindly call wake_up. The layer that uses the ring buffer must be
4466 * responsible for that.
4467 *
4468 * Returns:
4469 * >=0 if data has been transferred, returns the offset of consumed data.
4470 * <0 if no data has been transferred.
4471 */
4472int ring_buffer_read_page(struct ring_buffer *buffer,
4473 void **data_page, size_t len, int cpu, int full)
4474{
4475 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4476 struct ring_buffer_event *event;
4477 struct buffer_data_page *bpage;
4478 struct buffer_page *reader;
4479 unsigned long missed_events;
4480 unsigned long flags;
4481 unsigned int commit;
4482 unsigned int read;
4483 u64 save_timestamp;
4484 int ret = -1;
4485
4486 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4487 goto out;
4488
4489 /*
4490 * If len is not big enough to hold the page header, then
4491 * we can not copy anything.
4492 */
4493 if (len <= BUF_PAGE_HDR_SIZE)
4494 goto out;
4495
4496 len -= BUF_PAGE_HDR_SIZE;
4497
4498 if (!data_page)
4499 goto out;
4500
4501 bpage = *data_page;
4502 if (!bpage)
4503 goto out;
4504
4505 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4506
4507 reader = rb_get_reader_page(cpu_buffer);
4508 if (!reader)
4509 goto out_unlock;
4510
4511 event = rb_reader_event(cpu_buffer);
4512
4513 read = reader->read;
4514 commit = rb_page_commit(reader);
4515
4516 /* Check if any events were dropped */
4517 missed_events = cpu_buffer->lost_events;
4518
4519 /*
4520 * If this page has been partially read or
4521 * if len is not big enough to read the rest of the page or
4522 * a writer is still on the page, then
4523 * we must copy the data from the page to the buffer.
4524 * Otherwise, we can simply swap the page with the one passed in.
4525 */
4526 if (read || (len < (commit - read)) ||
4527 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4528 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4529 unsigned int rpos = read;
4530 unsigned int pos = 0;
4531 unsigned int size;
4532
4533 if (full)
4534 goto out_unlock;
4535
4536 if (len > (commit - read))
4537 len = (commit - read);
4538
4539 /* Always keep the time extend and data together */
4540 size = rb_event_ts_length(event);
4541
4542 if (len < size)
4543 goto out_unlock;
4544
4545 /* save the current timestamp, since the user will need it */
4546 save_timestamp = cpu_buffer->read_stamp;
4547
4548 /* Need to copy one event at a time */
4549 do {
4550 /* We need the size of one event, because
4551 * rb_advance_reader only advances by one event,
4552 * whereas rb_event_ts_length may include the size of
4553 * one or two events.
4554 * We have already ensured there's enough space if this
4555 * is a time extend. */
4556 size = rb_event_length(event);
4557 memcpy(bpage->data + pos, rpage->data + rpos, size);
4558
4559 len -= size;
4560
4561 rb_advance_reader(cpu_buffer);
4562 rpos = reader->read;
4563 pos += size;
4564
4565 if (rpos >= commit)
4566 break;
4567
4568 event = rb_reader_event(cpu_buffer);
4569 /* Always keep the time extend and data together */
4570 size = rb_event_ts_length(event);
4571 } while (len >= size);
4572
4573 /* update bpage */
4574 local_set(&bpage->commit, pos);
4575 bpage->time_stamp = save_timestamp;
4576
4577 /* we copied everything to the beginning */
4578 read = 0;
4579 } else {
4580 /* update the entry counter */
4581 cpu_buffer->read += rb_page_entries(reader);
4582 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4583
4584 /* swap the pages */
4585 rb_init_page(bpage);
4586 bpage = reader->page;
4587 reader->page = *data_page;
4588 local_set(&reader->write, 0);
4589 local_set(&reader->entries, 0);
4590 reader->read = 0;
4591 *data_page = bpage;
4592
4593 /*
4594 * Use the real_end for the data size,
4595 * This gives us a chance to store the lost events
4596 * on the page.
4597 */
4598 if (reader->real_end)
4599 local_set(&bpage->commit, reader->real_end);
4600 }
4601 ret = read;
4602
4603 cpu_buffer->lost_events = 0;
4604
4605 commit = local_read(&bpage->commit);
4606 /*
4607 * Set a flag in the commit field if we lost events
4608 */
4609 if (missed_events) {
4610 /* If there is room at the end of the page to save the
4611 * missed events, then record it there.
4612 */
4613 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4614 memcpy(&bpage->data[commit], &missed_events,
4615 sizeof(missed_events));
4616 local_add(RB_MISSED_STORED, &bpage->commit);
4617 commit += sizeof(missed_events);
4618 }
4619 local_add(RB_MISSED_EVENTS, &bpage->commit);
4620 }
4621
4622 /*
4623 * This page may be off to user land. Zero it out here.
4624 */
4625 if (commit < BUF_PAGE_SIZE)
4626 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4627
4628 out_unlock:
4629 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4630
4631 out:
4632 return ret;
4633}
4634EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4635
4636#ifdef CONFIG_HOTPLUG_CPU
4637static int rb_cpu_notify(struct notifier_block *self,
4638 unsigned long action, void *hcpu)
4639{
4640 struct ring_buffer *buffer =
4641 container_of(self, struct ring_buffer, cpu_notify);
4642 long cpu = (long)hcpu;
4643 int cpu_i, nr_pages_same;
4644 unsigned int nr_pages;
4645
4646 switch (action) {
4647 case CPU_UP_PREPARE:
4648 case CPU_UP_PREPARE_FROZEN:
4649 if (cpumask_test_cpu(cpu, buffer->cpumask))
4650 return NOTIFY_OK;
4651
4652 nr_pages = 0;
4653 nr_pages_same = 1;
4654 /* check if all cpu sizes are same */
4655 for_each_buffer_cpu(buffer, cpu_i) {
4656 /* fill in the size from first enabled cpu */
4657 if (nr_pages == 0)
4658 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4659 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4660 nr_pages_same = 0;
4661 break;
4662 }
4663 }
4664 /* allocate minimum pages, user can later expand it */
4665 if (!nr_pages_same)
4666 nr_pages = 2;
4667 buffer->buffers[cpu] =
4668 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4669 if (!buffer->buffers[cpu]) {
4670 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4671 cpu);
4672 return NOTIFY_OK;
4673 }
4674 smp_wmb();
4675 cpumask_set_cpu(cpu, buffer->cpumask);
4676 break;
4677 case CPU_DOWN_PREPARE:
4678 case CPU_DOWN_PREPARE_FROZEN:
4679 /*
4680 * Do nothing.
4681 * If we were to free the buffer, then the user would
4682 * lose any trace that was in the buffer.
4683 */
4684 break;
4685 default:
4686 break;
4687 }
4688 return NOTIFY_OK;
4689}
4690#endif
4691
4692#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4693/*
4694 * This is a basic integrity check of the ring buffer.
4695 * Late in the boot cycle this test will run when configured in.
4696 * It will kick off a thread per CPU that will go into a loop
4697 * writing to the per cpu ring buffer various sizes of data.
4698 * Some of the data will be large items, some small.
4699 *
4700 * Another thread is created that goes into a spin, sending out
4701 * IPIs to the other CPUs to also write into the ring buffer.
4702 * this is to test the nesting ability of the buffer.
4703 *
4704 * Basic stats are recorded and reported. If something in the
4705 * ring buffer should happen that's not expected, a big warning
4706 * is displayed and all ring buffers are disabled.
4707 */
4708static struct task_struct *rb_threads[NR_CPUS] __initdata;
4709
4710struct rb_test_data {
4711 struct ring_buffer *buffer;
4712 unsigned long events;
4713 unsigned long bytes_written;
4714 unsigned long bytes_alloc;
4715 unsigned long bytes_dropped;
4716 unsigned long events_nested;
4717 unsigned long bytes_written_nested;
4718 unsigned long bytes_alloc_nested;
4719 unsigned long bytes_dropped_nested;
4720 int min_size_nested;
4721 int max_size_nested;
4722 int max_size;
4723 int min_size;
4724 int cpu;
4725 int cnt;
4726};
4727
4728static struct rb_test_data rb_data[NR_CPUS] __initdata;
4729
4730/* 1 meg per cpu */
4731#define RB_TEST_BUFFER_SIZE 1048576
4732
4733static char rb_string[] __initdata =
4734 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4735 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4736 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4737
4738static bool rb_test_started __initdata;
4739
4740struct rb_item {
4741 int size;
4742 char str[];
4743};
4744
4745static __init int rb_write_something(struct rb_test_data *data, bool nested)
4746{
4747 struct ring_buffer_event *event;
4748 struct rb_item *item;
4749 bool started;
4750 int event_len;
4751 int size;
4752 int len;
4753 int cnt;
4754
4755 /* Have nested writes different that what is written */
4756 cnt = data->cnt + (nested ? 27 : 0);
4757
4758 /* Multiply cnt by ~e, to make some unique increment */
4759 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4760
4761 len = size + sizeof(struct rb_item);
4762
4763 started = rb_test_started;
4764 /* read rb_test_started before checking buffer enabled */
4765 smp_rmb();
4766
4767 event = ring_buffer_lock_reserve(data->buffer, len);
4768 if (!event) {
4769 /* Ignore dropped events before test starts. */
4770 if (started) {
4771 if (nested)
4772 data->bytes_dropped += len;
4773 else
4774 data->bytes_dropped_nested += len;
4775 }
4776 return len;
4777 }
4778
4779 event_len = ring_buffer_event_length(event);
4780
4781 if (RB_WARN_ON(data->buffer, event_len < len))
4782 goto out;
4783
4784 item = ring_buffer_event_data(event);
4785 item->size = size;
4786 memcpy(item->str, rb_string, size);
4787
4788 if (nested) {
4789 data->bytes_alloc_nested += event_len;
4790 data->bytes_written_nested += len;
4791 data->events_nested++;
4792 if (!data->min_size_nested || len < data->min_size_nested)
4793 data->min_size_nested = len;
4794 if (len > data->max_size_nested)
4795 data->max_size_nested = len;
4796 } else {
4797 data->bytes_alloc += event_len;
4798 data->bytes_written += len;
4799 data->events++;
4800 if (!data->min_size || len < data->min_size)
4801 data->max_size = len;
4802 if (len > data->max_size)
4803 data->max_size = len;
4804 }
4805
4806 out:
4807 ring_buffer_unlock_commit(data->buffer, event);
4808
4809 return 0;
4810}
4811
4812static __init int rb_test(void *arg)
4813{
4814 struct rb_test_data *data = arg;
4815
4816 while (!kthread_should_stop()) {
4817 rb_write_something(data, false);
4818 data->cnt++;
4819
4820 set_current_state(TASK_INTERRUPTIBLE);
4821 /* Now sleep between a min of 100-300us and a max of 1ms */
4822 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4823 }
4824
4825 return 0;
4826}
4827
4828static __init void rb_ipi(void *ignore)
4829{
4830 struct rb_test_data *data;
4831 int cpu = smp_processor_id();
4832
4833 data = &rb_data[cpu];
4834 rb_write_something(data, true);
4835}
4836
4837static __init int rb_hammer_test(void *arg)
4838{
4839 while (!kthread_should_stop()) {
4840
4841 /* Send an IPI to all cpus to write data! */
4842 smp_call_function(rb_ipi, NULL, 1);
4843 /* No sleep, but for non preempt, let others run */
4844 schedule();
4845 }
4846
4847 return 0;
4848}
4849
4850static __init int test_ringbuffer(void)
4851{
4852 struct task_struct *rb_hammer;
4853 struct ring_buffer *buffer;
4854 int cpu;
4855 int ret = 0;
4856
4857 pr_info("Running ring buffer tests...\n");
4858
4859 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4860 if (WARN_ON(!buffer))
4861 return 0;
4862
4863 /* Disable buffer so that threads can't write to it yet */
4864 ring_buffer_record_off(buffer);
4865
4866 for_each_online_cpu(cpu) {
4867 rb_data[cpu].buffer = buffer;
4868 rb_data[cpu].cpu = cpu;
4869 rb_data[cpu].cnt = cpu;
4870 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4871 "rbtester/%d", cpu);
4872 if (WARN_ON(!rb_threads[cpu])) {
4873 pr_cont("FAILED\n");
4874 ret = -1;
4875 goto out_free;
4876 }
4877
4878 kthread_bind(rb_threads[cpu], cpu);
4879 wake_up_process(rb_threads[cpu]);
4880 }
4881
4882 /* Now create the rb hammer! */
4883 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4884 if (WARN_ON(!rb_hammer)) {
4885 pr_cont("FAILED\n");
4886 ret = -1;
4887 goto out_free;
4888 }
4889
4890 ring_buffer_record_on(buffer);
4891 /*
4892 * Show buffer is enabled before setting rb_test_started.
4893 * Yes there's a small race window where events could be
4894 * dropped and the thread wont catch it. But when a ring
4895 * buffer gets enabled, there will always be some kind of
4896 * delay before other CPUs see it. Thus, we don't care about
4897 * those dropped events. We care about events dropped after
4898 * the threads see that the buffer is active.
4899 */
4900 smp_wmb();
4901 rb_test_started = true;
4902
4903 set_current_state(TASK_INTERRUPTIBLE);
4904 /* Just run for 10 seconds */;
4905 schedule_timeout(10 * HZ);
4906
4907 kthread_stop(rb_hammer);
4908
4909 out_free:
4910 for_each_online_cpu(cpu) {
4911 if (!rb_threads[cpu])
4912 break;
4913 kthread_stop(rb_threads[cpu]);
4914 }
4915 if (ret) {
4916 ring_buffer_free(buffer);
4917 return ret;
4918 }
4919
4920 /* Report! */
4921 pr_info("finished\n");
4922 for_each_online_cpu(cpu) {
4923 struct ring_buffer_event *event;
4924 struct rb_test_data *data = &rb_data[cpu];
4925 struct rb_item *item;
4926 unsigned long total_events;
4927 unsigned long total_dropped;
4928 unsigned long total_written;
4929 unsigned long total_alloc;
4930 unsigned long total_read = 0;
4931 unsigned long total_size = 0;
4932 unsigned long total_len = 0;
4933 unsigned long total_lost = 0;
4934 unsigned long lost;
4935 int big_event_size;
4936 int small_event_size;
4937
4938 ret = -1;
4939
4940 total_events = data->events + data->events_nested;
4941 total_written = data->bytes_written + data->bytes_written_nested;
4942 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4943 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4944
4945 big_event_size = data->max_size + data->max_size_nested;
4946 small_event_size = data->min_size + data->min_size_nested;
4947
4948 pr_info("CPU %d:\n", cpu);
4949 pr_info(" events: %ld\n", total_events);
4950 pr_info(" dropped bytes: %ld\n", total_dropped);
4951 pr_info(" alloced bytes: %ld\n", total_alloc);
4952 pr_info(" written bytes: %ld\n", total_written);
4953 pr_info(" biggest event: %d\n", big_event_size);
4954 pr_info(" smallest event: %d\n", small_event_size);
4955
4956 if (RB_WARN_ON(buffer, total_dropped))
4957 break;
4958
4959 ret = 0;
4960
4961 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4962 total_lost += lost;
4963 item = ring_buffer_event_data(event);
4964 total_len += ring_buffer_event_length(event);
4965 total_size += item->size + sizeof(struct rb_item);
4966 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4967 pr_info("FAILED!\n");
4968 pr_info("buffer had: %.*s\n", item->size, item->str);
4969 pr_info("expected: %.*s\n", item->size, rb_string);
4970 RB_WARN_ON(buffer, 1);
4971 ret = -1;
4972 break;
4973 }
4974 total_read++;
4975 }
4976 if (ret)
4977 break;
4978
4979 ret = -1;
4980
4981 pr_info(" read events: %ld\n", total_read);
4982 pr_info(" lost events: %ld\n", total_lost);
4983 pr_info(" total events: %ld\n", total_lost + total_read);
4984 pr_info(" recorded len bytes: %ld\n", total_len);
4985 pr_info(" recorded size bytes: %ld\n", total_size);
4986 if (total_lost)
4987 pr_info(" With dropped events, record len and size may not match\n"
4988 " alloced and written from above\n");
4989 if (!total_lost) {
4990 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4991 total_size != total_written))
4992 break;
4993 }
4994 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4995 break;
4996
4997 ret = 0;
4998 }
4999 if (!ret)
5000 pr_info("Ring buffer PASSED!\n");
5001
5002 ring_buffer_free(buffer);
5003 return 0;
5004}
5005
5006late_initcall(test_ringbuffer);
5007#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */