Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
v6.2
    1// SPDX-License-Identifier: GPL-2.0-only
    2/*
    3 *  kernel/sched/core.c
    4 *
    5 *  Core kernel scheduler code and related syscalls
    6 *
    7 *  Copyright (C) 1991-2002  Linus Torvalds
    8 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    9#include <linux/highmem.h>
   10#include <linux/hrtimer_api.h>
   11#include <linux/ktime_api.h>
   12#include <linux/sched/signal.h>
   13#include <linux/syscalls_api.h>
   14#include <linux/debug_locks.h>
   15#include <linux/prefetch.h>
   16#include <linux/capability.h>
   17#include <linux/pgtable_api.h>
   18#include <linux/wait_bit.h>
   19#include <linux/jiffies.h>
   20#include <linux/spinlock_api.h>
   21#include <linux/cpumask_api.h>
   22#include <linux/lockdep_api.h>
   23#include <linux/hardirq.h>
   24#include <linux/softirq.h>
   25#include <linux/refcount_api.h>
   26#include <linux/topology.h>
   27#include <linux/sched/clock.h>
   28#include <linux/sched/cond_resched.h>
   29#include <linux/sched/cputime.h>
   30#include <linux/sched/debug.h>
   31#include <linux/sched/hotplug.h>
   32#include <linux/sched/init.h>
   33#include <linux/sched/isolation.h>
   34#include <linux/sched/loadavg.h>
   35#include <linux/sched/mm.h>
   36#include <linux/sched/nohz.h>
   37#include <linux/sched/rseq_api.h>
   38#include <linux/sched/rt.h>
   39
   40#include <linux/blkdev.h>
   41#include <linux/context_tracking.h>
 
 
 
 
 
 
   42#include <linux/cpuset.h>
   43#include <linux/delayacct.h>
   44#include <linux/init_task.h>
   45#include <linux/interrupt.h>
   46#include <linux/ioprio.h>
   47#include <linux/kallsyms.h>
   48#include <linux/kcov.h>
 
   49#include <linux/kprobes.h>
   50#include <linux/llist_api.h>
   51#include <linux/mmu_context.h>
   52#include <linux/mmzone.h>
   53#include <linux/mutex_api.h>
   54#include <linux/nmi.h>
   55#include <linux/nospec.h>
   56#include <linux/perf_event_api.h>
   57#include <linux/profile.h>
   58#include <linux/psi.h>
   59#include <linux/rcuwait_api.h>
   60#include <linux/sched/wake_q.h>
   61#include <linux/scs.h>
   62#include <linux/slab.h>
   63#include <linux/syscalls.h>
   64#include <linux/vtime.h>
   65#include <linux/wait_api.h>
   66#include <linux/workqueue_api.h>
   67
   68#ifdef CONFIG_PREEMPT_DYNAMIC
   69# ifdef CONFIG_GENERIC_ENTRY
   70#  include <linux/entry-common.h>
   71# endif
   72#endif
   73
   74#include <uapi/linux/sched/types.h>
   75
   76#include <asm/irq_regs.h>
   77#include <asm/switch_to.h>
   78#include <asm/tlb.h>
   79
   80#define CREATE_TRACE_POINTS
   81#include <linux/sched/rseq_api.h>
   82#include <trace/events/sched.h>
   83#undef CREATE_TRACE_POINTS
   84
   85#include "sched.h"
   86#include "stats.h"
   87#include "autogroup.h"
   88
   89#include "autogroup.h"
   90#include "pelt.h"
   91#include "smp.h"
   92#include "stats.h"
   93
   94#include "../workqueue_internal.h"
   95#include "../../io_uring/io-wq.h"
   96#include "../smpboot.h"
   97
   98/*
   99 * Export tracepoints that act as a bare tracehook (ie: have no trace event
  100 * associated with them) to allow external modules to probe them.
  101 */
  102EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
  103EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
  104EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
  105EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
  106EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
  107EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
  108EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
  109EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
  110EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
  111EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
  112EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
  113
 
  114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  115
  116#ifdef CONFIG_SCHED_DEBUG
  117/*
  118 * Debugging: various feature bits
  119 *
  120 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
  121 * sysctl_sched_features, defined in sched.h, to allow constants propagation
  122 * at compile time and compiler optimization based on features default.
  123 */
  124#define SCHED_FEAT(name, enabled)	\
  125	(1UL << __SCHED_FEAT_##name) * enabled |
  126const_debug unsigned int sysctl_sched_features =
  127#include "features.h"
  128	0;
  129#undef SCHED_FEAT
  130
  131/*
  132 * Print a warning if need_resched is set for the given duration (if
  133 * LATENCY_WARN is enabled).
  134 *
  135 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
  136 * per boot.
  137 */
  138__read_mostly int sysctl_resched_latency_warn_ms = 100;
  139__read_mostly int sysctl_resched_latency_warn_once = 1;
  140#endif /* CONFIG_SCHED_DEBUG */
  141
  142/*
  143 * Number of tasks to iterate in a single balance run.
  144 * Limited because this is done with IRQs disabled.
  145 */
  146const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
  147
  148__read_mostly int scheduler_running;
  149
  150#ifdef CONFIG_SCHED_CORE
  151
  152DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
  153
  154/* kernel prio, less is more */
  155static inline int __task_prio(struct task_struct *p)
  156{
  157	if (p->sched_class == &stop_sched_class) /* trumps deadline */
  158		return -2;
  159
  160	if (rt_prio(p->prio)) /* includes deadline */
  161		return p->prio; /* [-1, 99] */
  162
  163	if (p->sched_class == &idle_sched_class)
  164		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
  165
  166	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
  167}
  168
  169/*
  170 * l(a,b)
  171 * le(a,b) := !l(b,a)
  172 * g(a,b)  := l(b,a)
  173 * ge(a,b) := !l(a,b)
  174 */
  175
  176/* real prio, less is less */
  177static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
  178{
  179
  180	int pa = __task_prio(a), pb = __task_prio(b);
  181
  182	if (-pa < -pb)
  183		return true;
  184
  185	if (-pb < -pa)
  186		return false;
  187
  188	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
  189		return !dl_time_before(a->dl.deadline, b->dl.deadline);
  190
  191	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
  192		return cfs_prio_less(a, b, in_fi);
  193
  194	return false;
  195}
  196
  197static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
  198{
  199	if (a->core_cookie < b->core_cookie)
  200		return true;
  201
  202	if (a->core_cookie > b->core_cookie)
  203		return false;
  204
  205	/* flip prio, so high prio is leftmost */
  206	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
  207		return true;
  208
  209	return false;
  210}
  211
  212#define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
  213
  214static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
  215{
  216	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
  217}
  218
  219static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
  220{
  221	const struct task_struct *p = __node_2_sc(node);
  222	unsigned long cookie = (unsigned long)key;
  223
  224	if (cookie < p->core_cookie)
  225		return -1;
  226
  227	if (cookie > p->core_cookie)
  228		return 1;
  229
  230	return 0;
  231}
  232
  233void sched_core_enqueue(struct rq *rq, struct task_struct *p)
  234{
  235	rq->core->core_task_seq++;
  236
  237	if (!p->core_cookie)
  238		return;
  239
  240	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
  241}
  242
  243void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
  244{
  245	rq->core->core_task_seq++;
  246
  247	if (sched_core_enqueued(p)) {
  248		rb_erase(&p->core_node, &rq->core_tree);
  249		RB_CLEAR_NODE(&p->core_node);
  250	}
  251
  252	/*
  253	 * Migrating the last task off the cpu, with the cpu in forced idle
  254	 * state. Reschedule to create an accounting edge for forced idle,
  255	 * and re-examine whether the core is still in forced idle state.
  256	 */
  257	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
  258	    rq->core->core_forceidle_count && rq->curr == rq->idle)
  259		resched_curr(rq);
  260}
  261
  262/*
  263 * Find left-most (aka, highest priority) task matching @cookie.
  264 */
  265static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
  266{
  267	struct rb_node *node;
  268
  269	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
  270	/*
  271	 * The idle task always matches any cookie!
  272	 */
  273	if (!node)
  274		return idle_sched_class.pick_task(rq);
  275
  276	return __node_2_sc(node);
  277}
  278
  279static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
  280{
  281	struct rb_node *node = &p->core_node;
  282
  283	node = rb_next(node);
  284	if (!node)
  285		return NULL;
  286
  287	p = container_of(node, struct task_struct, core_node);
  288	if (p->core_cookie != cookie)
  289		return NULL;
  290
  291	return p;
  292}
  293
  294/*
  295 * Magic required such that:
  296 *
  297 *	raw_spin_rq_lock(rq);
  298 *	...
  299 *	raw_spin_rq_unlock(rq);
  300 *
  301 * ends up locking and unlocking the _same_ lock, and all CPUs
  302 * always agree on what rq has what lock.
  303 *
  304 * XXX entirely possible to selectively enable cores, don't bother for now.
  305 */
  306
  307static DEFINE_MUTEX(sched_core_mutex);
  308static atomic_t sched_core_count;
  309static struct cpumask sched_core_mask;
  310
  311static void sched_core_lock(int cpu, unsigned long *flags)
  312{
  313	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
  314	int t, i = 0;
  315
  316	local_irq_save(*flags);
  317	for_each_cpu(t, smt_mask)
  318		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
  319}
  320
  321static void sched_core_unlock(int cpu, unsigned long *flags)
  322{
  323	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
  324	int t;
  325
  326	for_each_cpu(t, smt_mask)
  327		raw_spin_unlock(&cpu_rq(t)->__lock);
  328	local_irq_restore(*flags);
  329}
  330
  331static void __sched_core_flip(bool enabled)
  332{
  333	unsigned long flags;
  334	int cpu, t;
  335
  336	cpus_read_lock();
  337
  338	/*
  339	 * Toggle the online cores, one by one.
  340	 */
  341	cpumask_copy(&sched_core_mask, cpu_online_mask);
  342	for_each_cpu(cpu, &sched_core_mask) {
  343		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
  344
  345		sched_core_lock(cpu, &flags);
  346
  347		for_each_cpu(t, smt_mask)
  348			cpu_rq(t)->core_enabled = enabled;
  349
  350		cpu_rq(cpu)->core->core_forceidle_start = 0;
  351
  352		sched_core_unlock(cpu, &flags);
  353
  354		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
  355	}
  356
  357	/*
  358	 * Toggle the offline CPUs.
  359	 */
  360	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
  361		cpu_rq(cpu)->core_enabled = enabled;
  362
  363	cpus_read_unlock();
  364}
  365
  366static void sched_core_assert_empty(void)
  367{
  368	int cpu;
  369
  370	for_each_possible_cpu(cpu)
  371		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
  372}
  373
  374static void __sched_core_enable(void)
  375{
  376	static_branch_enable(&__sched_core_enabled);
  377	/*
  378	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
  379	 * and future ones will observe !sched_core_disabled().
  380	 */
  381	synchronize_rcu();
  382	__sched_core_flip(true);
  383	sched_core_assert_empty();
  384}
  385
  386static void __sched_core_disable(void)
  387{
  388	sched_core_assert_empty();
  389	__sched_core_flip(false);
  390	static_branch_disable(&__sched_core_enabled);
  391}
  392
  393void sched_core_get(void)
  394{
  395	if (atomic_inc_not_zero(&sched_core_count))
  396		return;
  397
  398	mutex_lock(&sched_core_mutex);
  399	if (!atomic_read(&sched_core_count))
  400		__sched_core_enable();
  401
  402	smp_mb__before_atomic();
  403	atomic_inc(&sched_core_count);
  404	mutex_unlock(&sched_core_mutex);
  405}
  406
  407static void __sched_core_put(struct work_struct *work)
  408{
  409	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
  410		__sched_core_disable();
  411		mutex_unlock(&sched_core_mutex);
  412	}
  413}
  414
  415void sched_core_put(void)
  416{
  417	static DECLARE_WORK(_work, __sched_core_put);
  418
  419	/*
  420	 * "There can be only one"
  421	 *
  422	 * Either this is the last one, or we don't actually need to do any
  423	 * 'work'. If it is the last *again*, we rely on
  424	 * WORK_STRUCT_PENDING_BIT.
  425	 */
  426	if (!atomic_add_unless(&sched_core_count, -1, 1))
  427		schedule_work(&_work);
  428}
  429
  430#else /* !CONFIG_SCHED_CORE */
  431
  432static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
  433static inline void
  434sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
  435
  436#endif /* CONFIG_SCHED_CORE */
  437
  438/*
  439 * Serialization rules:
  440 *
  441 * Lock order:
  442 *
  443 *   p->pi_lock
  444 *     rq->lock
  445 *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
  446 *
  447 *  rq1->lock
  448 *    rq2->lock  where: rq1 < rq2
  449 *
  450 * Regular state:
  451 *
  452 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
  453 * local CPU's rq->lock, it optionally removes the task from the runqueue and
  454 * always looks at the local rq data structures to find the most eligible task
  455 * to run next.
  456 *
  457 * Task enqueue is also under rq->lock, possibly taken from another CPU.
  458 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
  459 * the local CPU to avoid bouncing the runqueue state around [ see
  460 * ttwu_queue_wakelist() ]
  461 *
  462 * Task wakeup, specifically wakeups that involve migration, are horribly
  463 * complicated to avoid having to take two rq->locks.
  464 *
  465 * Special state:
  466 *
  467 * System-calls and anything external will use task_rq_lock() which acquires
  468 * both p->pi_lock and rq->lock. As a consequence the state they change is
  469 * stable while holding either lock:
  470 *
  471 *  - sched_setaffinity()/
  472 *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
  473 *  - set_user_nice():		p->se.load, p->*prio
  474 *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
  475 *				p->se.load, p->rt_priority,
  476 *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
  477 *  - sched_setnuma():		p->numa_preferred_nid
  478 *  - sched_move_task():	p->sched_task_group
  479 *  - uclamp_update_active()	p->uclamp*
  480 *
  481 * p->state <- TASK_*:
  482 *
  483 *   is changed locklessly using set_current_state(), __set_current_state() or
  484 *   set_special_state(), see their respective comments, or by
  485 *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
  486 *   concurrent self.
  487 *
  488 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
  489 *
  490 *   is set by activate_task() and cleared by deactivate_task(), under
  491 *   rq->lock. Non-zero indicates the task is runnable, the special
  492 *   ON_RQ_MIGRATING state is used for migration without holding both
  493 *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
  494 *
  495 * p->on_cpu <- { 0, 1 }:
  496 *
  497 *   is set by prepare_task() and cleared by finish_task() such that it will be
  498 *   set before p is scheduled-in and cleared after p is scheduled-out, both
  499 *   under rq->lock. Non-zero indicates the task is running on its CPU.
  500 *
  501 *   [ The astute reader will observe that it is possible for two tasks on one
  502 *     CPU to have ->on_cpu = 1 at the same time. ]
  503 *
  504 * task_cpu(p): is changed by set_task_cpu(), the rules are:
  505 *
  506 *  - Don't call set_task_cpu() on a blocked task:
  507 *
  508 *    We don't care what CPU we're not running on, this simplifies hotplug,
  509 *    the CPU assignment of blocked tasks isn't required to be valid.
  510 *
  511 *  - for try_to_wake_up(), called under p->pi_lock:
  512 *
  513 *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
  514 *
  515 *  - for migration called under rq->lock:
  516 *    [ see task_on_rq_migrating() in task_rq_lock() ]
  517 *
  518 *    o move_queued_task()
  519 *    o detach_task()
  520 *
  521 *  - for migration called under double_rq_lock():
  522 *
  523 *    o __migrate_swap_task()
  524 *    o push_rt_task() / pull_rt_task()
  525 *    o push_dl_task() / pull_dl_task()
  526 *    o dl_task_offline_migration()
  527 *
 
  528 */
 
  529
  530void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
  531{
  532	raw_spinlock_t *lock;
  533
  534	/* Matches synchronize_rcu() in __sched_core_enable() */
  535	preempt_disable();
  536	if (sched_core_disabled()) {
  537		raw_spin_lock_nested(&rq->__lock, subclass);
  538		/* preempt_count *MUST* be > 1 */
  539		preempt_enable_no_resched();
  540		return;
  541	}
  542
  543	for (;;) {
  544		lock = __rq_lockp(rq);
  545		raw_spin_lock_nested(lock, subclass);
  546		if (likely(lock == __rq_lockp(rq))) {
  547			/* preempt_count *MUST* be > 1 */
  548			preempt_enable_no_resched();
  549			return;
  550		}
  551		raw_spin_unlock(lock);
  552	}
  553}
  554
  555bool raw_spin_rq_trylock(struct rq *rq)
  556{
  557	raw_spinlock_t *lock;
  558	bool ret;
  559
  560	/* Matches synchronize_rcu() in __sched_core_enable() */
  561	preempt_disable();
  562	if (sched_core_disabled()) {
  563		ret = raw_spin_trylock(&rq->__lock);
  564		preempt_enable();
  565		return ret;
  566	}
  567
  568	for (;;) {
  569		lock = __rq_lockp(rq);
  570		ret = raw_spin_trylock(lock);
  571		if (!ret || (likely(lock == __rq_lockp(rq)))) {
  572			preempt_enable();
  573			return ret;
  574		}
  575		raw_spin_unlock(lock);
  576	}
  577}
  578
  579void raw_spin_rq_unlock(struct rq *rq)
  580{
  581	raw_spin_unlock(rq_lockp(rq));
  582}
  583
  584#ifdef CONFIG_SMP
  585/*
  586 * double_rq_lock - safely lock two runqueues
 
  587 */
  588void double_rq_lock(struct rq *rq1, struct rq *rq2)
  589{
  590	lockdep_assert_irqs_disabled();
  591
  592	if (rq_order_less(rq2, rq1))
  593		swap(rq1, rq2);
  594
  595	raw_spin_rq_lock(rq1);
  596	if (__rq_lockp(rq1) != __rq_lockp(rq2))
  597		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
  598
  599	double_rq_clock_clear_update(rq1, rq2);
  600}
  601#endif
  602
  603/*
  604 * __task_rq_lock - lock the rq @p resides on.
 
  605 */
  606struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
  607	__acquires(rq->lock)
  608{
  609	struct rq *rq;
  610
  611	lockdep_assert_held(&p->pi_lock);
  612
  613	for (;;) {
  614		rq = task_rq(p);
  615		raw_spin_rq_lock(rq);
  616		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
  617			rq_pin_lock(rq, rf);
  618			return rq;
  619		}
  620		raw_spin_rq_unlock(rq);
  621
  622		while (unlikely(task_on_rq_migrating(p)))
  623			cpu_relax();
  624	}
  625}
  626
  627/*
  628 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  629 */
  630struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
  631	__acquires(p->pi_lock)
  632	__acquires(rq->lock)
  633{
  634	struct rq *rq;
  635
  636	for (;;) {
  637		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
  638		rq = task_rq(p);
  639		raw_spin_rq_lock(rq);
  640		/*
  641		 *	move_queued_task()		task_rq_lock()
  642		 *
  643		 *	ACQUIRE (rq->lock)
  644		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
  645		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
  646		 *	[S] ->cpu = new_cpu		[L] task_rq()
  647		 *					[L] ->on_rq
  648		 *	RELEASE (rq->lock)
  649		 *
  650		 * If we observe the old CPU in task_rq_lock(), the acquire of
  651		 * the old rq->lock will fully serialize against the stores.
  652		 *
  653		 * If we observe the new CPU in task_rq_lock(), the address
  654		 * dependency headed by '[L] rq = task_rq()' and the acquire
  655		 * will pair with the WMB to ensure we then also see migrating.
  656		 */
  657		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
  658			rq_pin_lock(rq, rf);
  659			return rq;
  660		}
  661		raw_spin_rq_unlock(rq);
  662		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
  663
  664		while (unlikely(task_on_rq_migrating(p)))
  665			cpu_relax();
  666	}
  667}
  668
  669/*
  670 * RQ-clock updating methods:
  671 */
  672
  673static void update_rq_clock_task(struct rq *rq, s64 delta)
  674{
  675/*
  676 * In theory, the compile should just see 0 here, and optimize out the call
  677 * to sched_rt_avg_update. But I don't trust it...
  678 */
  679	s64 __maybe_unused steal = 0, irq_delta = 0;
  680
  681#ifdef CONFIG_IRQ_TIME_ACCOUNTING
  682	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  683
  684	/*
  685	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
  686	 * this case when a previous update_rq_clock() happened inside a
  687	 * {soft,}irq region.
  688	 *
  689	 * When this happens, we stop ->clock_task and only update the
  690	 * prev_irq_time stamp to account for the part that fit, so that a next
  691	 * update will consume the rest. This ensures ->clock_task is
  692	 * monotonic.
  693	 *
  694	 * It does however cause some slight miss-attribution of {soft,}irq
  695	 * time, a more accurate solution would be to update the irq_time using
  696	 * the current rq->clock timestamp, except that would require using
  697	 * atomic ops.
  698	 */
  699	if (irq_delta > delta)
  700		irq_delta = delta;
  701
  702	rq->prev_irq_time += irq_delta;
  703	delta -= irq_delta;
  704	psi_account_irqtime(rq->curr, irq_delta);
  705#endif
  706#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  707	if (static_key_false((&paravirt_steal_rq_enabled))) {
  708		steal = paravirt_steal_clock(cpu_of(rq));
  709		steal -= rq->prev_steal_time_rq;
  710
  711		if (unlikely(steal > delta))
  712			steal = delta;
  713
  714		rq->prev_steal_time_rq += steal;
  715		delta -= steal;
  716	}
  717#endif
  718
  719	rq->clock_task += delta;
  720
  721#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
  722	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
  723		update_irq_load_avg(rq, irq_delta + steal);
  724#endif
  725	update_rq_clock_pelt(rq, delta);
  726}
  727
  728void update_rq_clock(struct rq *rq)
  729{
  730	s64 delta;
  731
  732	lockdep_assert_rq_held(rq);
  733
  734	if (rq->clock_update_flags & RQCF_ACT_SKIP)
  735		return;
  736
  737#ifdef CONFIG_SCHED_DEBUG
  738	if (sched_feat(WARN_DOUBLE_CLOCK))
  739		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
  740	rq->clock_update_flags |= RQCF_UPDATED;
  741#endif
  742
  743	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  744	if (delta < 0)
  745		return;
  746	rq->clock += delta;
  747	update_rq_clock_task(rq, delta);
  748}
  749
  750#ifdef CONFIG_SCHED_HRTICK
  751/*
  752 * Use HR-timers to deliver accurate preemption points.
  753 */
  754
  755static void hrtick_clear(struct rq *rq)
  756{
  757	if (hrtimer_active(&rq->hrtick_timer))
  758		hrtimer_cancel(&rq->hrtick_timer);
  759}
  760
  761/*
  762 * High-resolution timer tick.
  763 * Runs from hardirq context with interrupts disabled.
  764 */
  765static enum hrtimer_restart hrtick(struct hrtimer *timer)
  766{
  767	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  768	struct rq_flags rf;
  769
  770	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  771
  772	rq_lock(rq, &rf);
  773	update_rq_clock(rq);
  774	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  775	rq_unlock(rq, &rf);
  776
  777	return HRTIMER_NORESTART;
  778}
  779
  780#ifdef CONFIG_SMP
  781
  782static void __hrtick_restart(struct rq *rq)
  783{
  784	struct hrtimer *timer = &rq->hrtick_timer;
  785	ktime_t time = rq->hrtick_time;
  786
  787	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
  788}
  789
  790/*
  791 * called from hardirq (IPI) context
  792 */
  793static void __hrtick_start(void *arg)
  794{
  795	struct rq *rq = arg;
  796	struct rq_flags rf;
  797
  798	rq_lock(rq, &rf);
  799	__hrtick_restart(rq);
  800	rq_unlock(rq, &rf);
 
  801}
  802
  803/*
  804 * Called to set the hrtick timer state.
  805 *
  806 * called with rq->lock held and irqs disabled
  807 */
  808void hrtick_start(struct rq *rq, u64 delay)
  809{
  810	struct hrtimer *timer = &rq->hrtick_timer;
 
  811	s64 delta;
  812
  813	/*
  814	 * Don't schedule slices shorter than 10000ns, that just
  815	 * doesn't make sense and can cause timer DoS.
  816	 */
  817	delta = max_t(s64, delay, 10000LL);
  818	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
 
 
  819
  820	if (rq == this_rq())
  821		__hrtick_restart(rq);
  822	else
  823		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
 
 
  824}
  825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  826#else
  827/*
  828 * Called to set the hrtick timer state.
  829 *
  830 * called with rq->lock held and irqs disabled
  831 */
  832void hrtick_start(struct rq *rq, u64 delay)
  833{
  834	/*
  835	 * Don't schedule slices shorter than 10000ns, that just
  836	 * doesn't make sense. Rely on vruntime for fairness.
  837	 */
  838	delay = max_t(u64, delay, 10000LL);
  839	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
  840		      HRTIMER_MODE_REL_PINNED_HARD);
  841}
  842
 
 
 
  843#endif /* CONFIG_SMP */
  844
  845static void hrtick_rq_init(struct rq *rq)
  846{
  847#ifdef CONFIG_SMP
  848	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
 
 
 
 
  849#endif
  850	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
 
  851	rq->hrtick_timer.function = hrtick;
  852}
  853#else	/* CONFIG_SCHED_HRTICK */
  854static inline void hrtick_clear(struct rq *rq)
  855{
  856}
  857
  858static inline void hrtick_rq_init(struct rq *rq)
 
 
 
 
  859{
  860}
  861#endif	/* CONFIG_SCHED_HRTICK */
  862
  863/*
  864 * cmpxchg based fetch_or, macro so it works for different integer types
  865 */
  866#define fetch_or(ptr, mask)						\
  867	({								\
  868		typeof(ptr) _ptr = (ptr);				\
  869		typeof(mask) _mask = (mask);				\
  870		typeof(*_ptr) _val = *_ptr;				\
  871									\
  872		do {							\
  873		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
  874	_val;								\
 
 
 
 
  875})
  876
  877#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
  878/*
  879 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
  880 * this avoids any races wrt polling state changes and thereby avoids
  881 * spurious IPIs.
  882 */
  883static inline bool set_nr_and_not_polling(struct task_struct *p)
  884{
  885	struct thread_info *ti = task_thread_info(p);
  886	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
  887}
  888
  889/*
  890 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
  891 *
  892 * If this returns true, then the idle task promises to call
  893 * sched_ttwu_pending() and reschedule soon.
  894 */
  895static bool set_nr_if_polling(struct task_struct *p)
  896{
  897	struct thread_info *ti = task_thread_info(p);
  898	typeof(ti->flags) val = READ_ONCE(ti->flags);
  899
  900	for (;;) {
  901		if (!(val & _TIF_POLLING_NRFLAG))
  902			return false;
  903		if (val & _TIF_NEED_RESCHED)
  904			return true;
  905		if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
 
  906			break;
 
  907	}
  908	return true;
  909}
  910
  911#else
  912static inline bool set_nr_and_not_polling(struct task_struct *p)
  913{
  914	set_tsk_need_resched(p);
  915	return true;
  916}
  917
  918#ifdef CONFIG_SMP
  919static inline bool set_nr_if_polling(struct task_struct *p)
  920{
  921	return false;
  922}
  923#endif
  924#endif
  925
  926static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
  927{
  928	struct wake_q_node *node = &task->wake_q;
  929
  930	/*
  931	 * Atomically grab the task, if ->wake_q is !nil already it means
  932	 * it's already queued (either by us or someone else) and will get the
  933	 * wakeup due to that.
  934	 *
  935	 * In order to ensure that a pending wakeup will observe our pending
  936	 * state, even in the failed case, an explicit smp_mb() must be used.
  937	 */
  938	smp_mb__before_atomic();
  939	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
  940		return false;
 
  941
  942	/*
  943	 * The head is context local, there can be no concurrency.
  944	 */
  945	*head->lastp = node;
  946	head->lastp = &node->next;
  947	return true;
  948}
  949
  950/**
  951 * wake_q_add() - queue a wakeup for 'later' waking.
  952 * @head: the wake_q_head to add @task to
  953 * @task: the task to queue for 'later' wakeup
  954 *
  955 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
  956 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
  957 * instantly.
  958 *
  959 * This function must be used as-if it were wake_up_process(); IOW the task
  960 * must be ready to be woken at this location.
  961 */
  962void wake_q_add(struct wake_q_head *head, struct task_struct *task)
  963{
  964	if (__wake_q_add(head, task))
  965		get_task_struct(task);
  966}
  967
  968/**
  969 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
  970 * @head: the wake_q_head to add @task to
  971 * @task: the task to queue for 'later' wakeup
  972 *
  973 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
  974 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
  975 * instantly.
  976 *
  977 * This function must be used as-if it were wake_up_process(); IOW the task
  978 * must be ready to be woken at this location.
  979 *
  980 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
  981 * that already hold reference to @task can call the 'safe' version and trust
  982 * wake_q to do the right thing depending whether or not the @task is already
  983 * queued for wakeup.
  984 */
  985void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
  986{
  987	if (!__wake_q_add(head, task))
  988		put_task_struct(task);
  989}
  990
  991void wake_up_q(struct wake_q_head *head)
  992{
  993	struct wake_q_node *node = head->first;
  994
  995	while (node != WAKE_Q_TAIL) {
  996		struct task_struct *task;
  997
  998		task = container_of(node, struct task_struct, wake_q);
  999		/* Task can safely be re-inserted now: */
 
 1000		node = node->next;
 1001		task->wake_q.next = NULL;
 1002
 1003		/*
 1004		 * wake_up_process() executes a full barrier, which pairs with
 1005		 * the queueing in wake_q_add() so as not to miss wakeups.
 1006		 */
 1007		wake_up_process(task);
 1008		put_task_struct(task);
 1009	}
 1010}
 1011
 1012/*
 1013 * resched_curr - mark rq's current task 'to be rescheduled now'.
 1014 *
 1015 * On UP this means the setting of the need_resched flag, on SMP it
 1016 * might also involve a cross-CPU call to trigger the scheduler on
 1017 * the target CPU.
 1018 */
 1019void resched_curr(struct rq *rq)
 1020{
 1021	struct task_struct *curr = rq->curr;
 1022	int cpu;
 1023
 1024	lockdep_assert_rq_held(rq);
 1025
 1026	if (test_tsk_need_resched(curr))
 1027		return;
 1028
 1029	cpu = cpu_of(rq);
 1030
 1031	if (cpu == smp_processor_id()) {
 1032		set_tsk_need_resched(curr);
 1033		set_preempt_need_resched();
 1034		return;
 1035	}
 1036
 1037	if (set_nr_and_not_polling(curr))
 1038		smp_send_reschedule(cpu);
 1039	else
 1040		trace_sched_wake_idle_without_ipi(cpu);
 1041}
 1042
 1043void resched_cpu(int cpu)
 1044{
 1045	struct rq *rq = cpu_rq(cpu);
 1046	unsigned long flags;
 1047
 1048	raw_spin_rq_lock_irqsave(rq, flags);
 1049	if (cpu_online(cpu) || cpu == smp_processor_id())
 1050		resched_curr(rq);
 1051	raw_spin_rq_unlock_irqrestore(rq, flags);
 1052}
 1053
 1054#ifdef CONFIG_SMP
 1055#ifdef CONFIG_NO_HZ_COMMON
 1056/*
 1057 * In the semi idle case, use the nearest busy CPU for migrating timers
 1058 * from an idle CPU.  This is good for power-savings.
 1059 *
 1060 * We don't do similar optimization for completely idle system, as
 1061 * selecting an idle CPU will add more delays to the timers than intended
 1062 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
 1063 */
 1064int get_nohz_timer_target(void)
 1065{
 1066	int i, cpu = smp_processor_id(), default_cpu = -1;
 1067	struct sched_domain *sd;
 1068	const struct cpumask *hk_mask;
 1069
 1070	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
 1071		if (!idle_cpu(cpu))
 1072			return cpu;
 1073		default_cpu = cpu;
 1074	}
 1075
 1076	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
 
 1077
 1078	rcu_read_lock();
 1079	for_each_domain(cpu, sd) {
 1080		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
 1081			if (cpu == i)
 1082				continue;
 1083
 1084			if (!idle_cpu(i)) {
 1085				cpu = i;
 1086				goto unlock;
 1087			}
 1088		}
 1089	}
 1090
 1091	if (default_cpu == -1)
 1092		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
 1093	cpu = default_cpu;
 1094unlock:
 1095	rcu_read_unlock();
 1096	return cpu;
 1097}
 1098
 1099/*
 1100 * When add_timer_on() enqueues a timer into the timer wheel of an
 1101 * idle CPU then this timer might expire before the next timer event
 1102 * which is scheduled to wake up that CPU. In case of a completely
 1103 * idle system the next event might even be infinite time into the
 1104 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 1105 * leaves the inner idle loop so the newly added timer is taken into
 1106 * account when the CPU goes back to idle and evaluates the timer
 1107 * wheel for the next timer event.
 1108 */
 1109static void wake_up_idle_cpu(int cpu)
 1110{
 1111	struct rq *rq = cpu_rq(cpu);
 1112
 1113	if (cpu == smp_processor_id())
 1114		return;
 1115
 1116	if (set_nr_and_not_polling(rq->idle))
 1117		smp_send_reschedule(cpu);
 1118	else
 1119		trace_sched_wake_idle_without_ipi(cpu);
 1120}
 1121
 1122static bool wake_up_full_nohz_cpu(int cpu)
 1123{
 1124	/*
 1125	 * We just need the target to call irq_exit() and re-evaluate
 1126	 * the next tick. The nohz full kick at least implies that.
 1127	 * If needed we can still optimize that later with an
 1128	 * empty IRQ.
 1129	 */
 1130	if (cpu_is_offline(cpu))
 1131		return true;  /* Don't try to wake offline CPUs. */
 1132	if (tick_nohz_full_cpu(cpu)) {
 1133		if (cpu != smp_processor_id() ||
 1134		    tick_nohz_tick_stopped())
 1135			tick_nohz_full_kick_cpu(cpu);
 1136		return true;
 1137	}
 1138
 1139	return false;
 1140}
 1141
 1142/*
 1143 * Wake up the specified CPU.  If the CPU is going offline, it is the
 1144 * caller's responsibility to deal with the lost wakeup, for example,
 1145 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 1146 */
 1147void wake_up_nohz_cpu(int cpu)
 1148{
 1149	if (!wake_up_full_nohz_cpu(cpu))
 1150		wake_up_idle_cpu(cpu);
 1151}
 1152
 1153static void nohz_csd_func(void *info)
 1154{
 1155	struct rq *rq = info;
 1156	int cpu = cpu_of(rq);
 1157	unsigned int flags;
 
 
 
 
 1158
 1159	/*
 1160	 * Release the rq::nohz_csd.
 
 1161	 */
 1162	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
 1163	WARN_ON(!(flags & NOHZ_KICK_MASK));
 
 1164
 1165	rq->idle_balance = idle_cpu(cpu);
 1166	if (rq->idle_balance && !need_resched()) {
 1167		rq->nohz_idle_balance = flags;
 1168		raise_softirq_irqoff(SCHED_SOFTIRQ);
 1169	}
 1170}
 1171
 1172#endif /* CONFIG_NO_HZ_COMMON */
 1173
 1174#ifdef CONFIG_NO_HZ_FULL
 1175bool sched_can_stop_tick(struct rq *rq)
 1176{
 1177	int fifo_nr_running;
 1178
 1179	/* Deadline tasks, even if single, need the tick */
 1180	if (rq->dl.dl_nr_running)
 1181		return false;
 1182
 1183	/*
 1184	 * If there are more than one RR tasks, we need the tick to affect the
 1185	 * actual RR behaviour.
 1186	 */
 1187	if (rq->rt.rr_nr_running) {
 1188		if (rq->rt.rr_nr_running == 1)
 1189			return true;
 1190		else
 1191			return false;
 1192	}
 1193
 1194	/*
 1195	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
 1196	 * forced preemption between FIFO tasks.
 1197	 */
 1198	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
 1199	if (fifo_nr_running)
 1200		return true;
 1201
 1202	/*
 1203	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
 1204	 * if there's more than one we need the tick for involuntary
 1205	 * preemption.
 1206	 */
 1207	if (rq->nr_running > 1)
 1208		return false;
 1209
 1210	return true;
 1211}
 1212#endif /* CONFIG_NO_HZ_FULL */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1213#endif /* CONFIG_SMP */
 1214
 1215#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 1216			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 1217/*
 1218 * Iterate task_group tree rooted at *from, calling @down when first entering a
 1219 * node and @up when leaving it for the final time.
 1220 *
 1221 * Caller must hold rcu_lock or sufficient equivalent.
 1222 */
 1223int walk_tg_tree_from(struct task_group *from,
 1224			     tg_visitor down, tg_visitor up, void *data)
 1225{
 1226	struct task_group *parent, *child;
 1227	int ret;
 1228
 1229	parent = from;
 1230
 1231down:
 1232	ret = (*down)(parent, data);
 1233	if (ret)
 1234		goto out;
 1235	list_for_each_entry_rcu(child, &parent->children, siblings) {
 1236		parent = child;
 1237		goto down;
 1238
 1239up:
 1240		continue;
 1241	}
 1242	ret = (*up)(parent, data);
 1243	if (ret || parent == from)
 1244		goto out;
 1245
 1246	child = parent;
 1247	parent = parent->parent;
 1248	if (parent)
 1249		goto up;
 1250out:
 1251	return ret;
 1252}
 1253
 1254int tg_nop(struct task_group *tg, void *data)
 1255{
 1256	return 0;
 1257}
 1258#endif
 1259
 1260static void set_load_weight(struct task_struct *p, bool update_load)
 1261{
 1262	int prio = p->static_prio - MAX_RT_PRIO;
 1263	struct load_weight *load = &p->se.load;
 1264
 1265	/*
 1266	 * SCHED_IDLE tasks get minimal weight:
 1267	 */
 1268	if (task_has_idle_policy(p)) {
 1269		load->weight = scale_load(WEIGHT_IDLEPRIO);
 1270		load->inv_weight = WMULT_IDLEPRIO;
 1271		return;
 1272	}
 1273
 1274	/*
 1275	 * SCHED_OTHER tasks have to update their load when changing their
 1276	 * weight
 1277	 */
 1278	if (update_load && p->sched_class == &fair_sched_class) {
 1279		reweight_task(p, prio);
 1280	} else {
 1281		load->weight = scale_load(sched_prio_to_weight[prio]);
 1282		load->inv_weight = sched_prio_to_wmult[prio];
 1283	}
 1284}
 1285
 1286#ifdef CONFIG_UCLAMP_TASK
 1287/*
 1288 * Serializes updates of utilization clamp values
 1289 *
 1290 * The (slow-path) user-space triggers utilization clamp value updates which
 1291 * can require updates on (fast-path) scheduler's data structures used to
 1292 * support enqueue/dequeue operations.
 1293 * While the per-CPU rq lock protects fast-path update operations, user-space
 1294 * requests are serialized using a mutex to reduce the risk of conflicting
 1295 * updates or API abuses.
 1296 */
 1297static DEFINE_MUTEX(uclamp_mutex);
 1298
 1299/* Max allowed minimum utilization */
 1300static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
 1301
 1302/* Max allowed maximum utilization */
 1303static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
 1304
 1305/*
 1306 * By default RT tasks run at the maximum performance point/capacity of the
 1307 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
 1308 * SCHED_CAPACITY_SCALE.
 1309 *
 1310 * This knob allows admins to change the default behavior when uclamp is being
 1311 * used. In battery powered devices, particularly, running at the maximum
 1312 * capacity and frequency will increase energy consumption and shorten the
 1313 * battery life.
 1314 *
 1315 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
 1316 *
 1317 * This knob will not override the system default sched_util_clamp_min defined
 1318 * above.
 1319 */
 1320static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
 1321
 1322/* All clamps are required to be less or equal than these values */
 1323static struct uclamp_se uclamp_default[UCLAMP_CNT];
 1324
 1325/*
 1326 * This static key is used to reduce the uclamp overhead in the fast path. It
 1327 * primarily disables the call to uclamp_rq_{inc, dec}() in
 1328 * enqueue/dequeue_task().
 1329 *
 1330 * This allows users to continue to enable uclamp in their kernel config with
 1331 * minimum uclamp overhead in the fast path.
 1332 *
 1333 * As soon as userspace modifies any of the uclamp knobs, the static key is
 1334 * enabled, since we have an actual users that make use of uclamp
 1335 * functionality.
 1336 *
 1337 * The knobs that would enable this static key are:
 1338 *
 1339 *   * A task modifying its uclamp value with sched_setattr().
 1340 *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
 1341 *   * An admin modifying the cgroup cpu.uclamp.{min, max}
 1342 */
 1343DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
 1344
 1345/* Integer rounded range for each bucket */
 1346#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
 1347
 1348#define for_each_clamp_id(clamp_id) \
 1349	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
 1350
 1351static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
 1352{
 1353	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
 1354}
 1355
 1356static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
 1357{
 1358	if (clamp_id == UCLAMP_MIN)
 1359		return 0;
 1360	return SCHED_CAPACITY_SCALE;
 1361}
 1362
 1363static inline void uclamp_se_set(struct uclamp_se *uc_se,
 1364				 unsigned int value, bool user_defined)
 1365{
 1366	uc_se->value = value;
 1367	uc_se->bucket_id = uclamp_bucket_id(value);
 1368	uc_se->user_defined = user_defined;
 1369}
 1370
 1371static inline unsigned int
 1372uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
 1373		  unsigned int clamp_value)
 1374{
 1375	/*
 1376	 * Avoid blocked utilization pushing up the frequency when we go
 1377	 * idle (which drops the max-clamp) by retaining the last known
 1378	 * max-clamp.
 1379	 */
 1380	if (clamp_id == UCLAMP_MAX) {
 1381		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
 1382		return clamp_value;
 1383	}
 1384
 1385	return uclamp_none(UCLAMP_MIN);
 1386}
 1387
 1388static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
 1389				     unsigned int clamp_value)
 1390{
 1391	/* Reset max-clamp retention only on idle exit */
 1392	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
 1393		return;
 1394
 1395	uclamp_rq_set(rq, clamp_id, clamp_value);
 1396}
 1397
 1398static inline
 1399unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
 1400				   unsigned int clamp_value)
 1401{
 1402	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
 1403	int bucket_id = UCLAMP_BUCKETS - 1;
 1404
 1405	/*
 1406	 * Since both min and max clamps are max aggregated, find the
 1407	 * top most bucket with tasks in.
 1408	 */
 1409	for ( ; bucket_id >= 0; bucket_id--) {
 1410		if (!bucket[bucket_id].tasks)
 1411			continue;
 1412		return bucket[bucket_id].value;
 1413	}
 1414
 1415	/* No tasks -- default clamp values */
 1416	return uclamp_idle_value(rq, clamp_id, clamp_value);
 1417}
 1418
 1419static void __uclamp_update_util_min_rt_default(struct task_struct *p)
 1420{
 1421	unsigned int default_util_min;
 1422	struct uclamp_se *uc_se;
 1423
 1424	lockdep_assert_held(&p->pi_lock);
 1425
 1426	uc_se = &p->uclamp_req[UCLAMP_MIN];
 1427
 1428	/* Only sync if user didn't override the default */
 1429	if (uc_se->user_defined)
 1430		return;
 1431
 1432	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
 1433	uclamp_se_set(uc_se, default_util_min, false);
 1434}
 1435
 1436static void uclamp_update_util_min_rt_default(struct task_struct *p)
 1437{
 1438	struct rq_flags rf;
 1439	struct rq *rq;
 1440
 1441	if (!rt_task(p))
 1442		return;
 1443
 1444	/* Protect updates to p->uclamp_* */
 1445	rq = task_rq_lock(p, &rf);
 1446	__uclamp_update_util_min_rt_default(p);
 1447	task_rq_unlock(rq, p, &rf);
 1448}
 1449
 1450static inline struct uclamp_se
 1451uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
 1452{
 1453	/* Copy by value as we could modify it */
 1454	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
 1455#ifdef CONFIG_UCLAMP_TASK_GROUP
 1456	unsigned int tg_min, tg_max, value;
 1457
 1458	/*
 1459	 * Tasks in autogroups or root task group will be
 1460	 * restricted by system defaults.
 1461	 */
 1462	if (task_group_is_autogroup(task_group(p)))
 1463		return uc_req;
 1464	if (task_group(p) == &root_task_group)
 1465		return uc_req;
 1466
 1467	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
 1468	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
 1469	value = uc_req.value;
 1470	value = clamp(value, tg_min, tg_max);
 1471	uclamp_se_set(&uc_req, value, false);
 1472#endif
 1473
 1474	return uc_req;
 1475}
 1476
 1477/*
 1478 * The effective clamp bucket index of a task depends on, by increasing
 1479 * priority:
 1480 * - the task specific clamp value, when explicitly requested from userspace
 1481 * - the task group effective clamp value, for tasks not either in the root
 1482 *   group or in an autogroup
 1483 * - the system default clamp value, defined by the sysadmin
 1484 */
 1485static inline struct uclamp_se
 1486uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
 1487{
 1488	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
 1489	struct uclamp_se uc_max = uclamp_default[clamp_id];
 1490
 1491	/* System default restrictions always apply */
 1492	if (unlikely(uc_req.value > uc_max.value))
 1493		return uc_max;
 1494
 1495	return uc_req;
 1496}
 1497
 1498unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
 1499{
 1500	struct uclamp_se uc_eff;
 1501
 1502	/* Task currently refcounted: use back-annotated (effective) value */
 1503	if (p->uclamp[clamp_id].active)
 1504		return (unsigned long)p->uclamp[clamp_id].value;
 1505
 1506	uc_eff = uclamp_eff_get(p, clamp_id);
 1507
 1508	return (unsigned long)uc_eff.value;
 1509}
 1510
 1511/*
 1512 * When a task is enqueued on a rq, the clamp bucket currently defined by the
 1513 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
 1514 * updates the rq's clamp value if required.
 1515 *
 1516 * Tasks can have a task-specific value requested from user-space, track
 1517 * within each bucket the maximum value for tasks refcounted in it.
 1518 * This "local max aggregation" allows to track the exact "requested" value
 1519 * for each bucket when all its RUNNABLE tasks require the same clamp.
 1520 */
 1521static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
 1522				    enum uclamp_id clamp_id)
 1523{
 1524	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
 1525	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
 1526	struct uclamp_bucket *bucket;
 1527
 1528	lockdep_assert_rq_held(rq);
 1529
 1530	/* Update task effective clamp */
 1531	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
 1532
 1533	bucket = &uc_rq->bucket[uc_se->bucket_id];
 1534	bucket->tasks++;
 1535	uc_se->active = true;
 1536
 1537	uclamp_idle_reset(rq, clamp_id, uc_se->value);
 1538
 1539	/*
 1540	 * Local max aggregation: rq buckets always track the max
 1541	 * "requested" clamp value of its RUNNABLE tasks.
 1542	 */
 1543	if (bucket->tasks == 1 || uc_se->value > bucket->value)
 1544		bucket->value = uc_se->value;
 1545
 1546	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
 1547		uclamp_rq_set(rq, clamp_id, uc_se->value);
 1548}
 1549
 1550/*
 1551 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
 1552 * is released. If this is the last task reference counting the rq's max
 1553 * active clamp value, then the rq's clamp value is updated.
 1554 *
 1555 * Both refcounted tasks and rq's cached clamp values are expected to be
 1556 * always valid. If it's detected they are not, as defensive programming,
 1557 * enforce the expected state and warn.
 1558 */
 1559static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
 1560				    enum uclamp_id clamp_id)
 1561{
 1562	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
 1563	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
 1564	struct uclamp_bucket *bucket;
 1565	unsigned int bkt_clamp;
 1566	unsigned int rq_clamp;
 1567
 1568	lockdep_assert_rq_held(rq);
 1569
 1570	/*
 1571	 * If sched_uclamp_used was enabled after task @p was enqueued,
 1572	 * we could end up with unbalanced call to uclamp_rq_dec_id().
 1573	 *
 1574	 * In this case the uc_se->active flag should be false since no uclamp
 1575	 * accounting was performed at enqueue time and we can just return
 1576	 * here.
 1577	 *
 1578	 * Need to be careful of the following enqueue/dequeue ordering
 1579	 * problem too
 1580	 *
 1581	 *	enqueue(taskA)
 1582	 *	// sched_uclamp_used gets enabled
 1583	 *	enqueue(taskB)
 1584	 *	dequeue(taskA)
 1585	 *	// Must not decrement bucket->tasks here
 1586	 *	dequeue(taskB)
 1587	 *
 1588	 * where we could end up with stale data in uc_se and
 1589	 * bucket[uc_se->bucket_id].
 1590	 *
 1591	 * The following check here eliminates the possibility of such race.
 1592	 */
 1593	if (unlikely(!uc_se->active))
 1594		return;
 1595
 1596	bucket = &uc_rq->bucket[uc_se->bucket_id];
 1597
 1598	SCHED_WARN_ON(!bucket->tasks);
 1599	if (likely(bucket->tasks))
 1600		bucket->tasks--;
 1601
 1602	uc_se->active = false;
 1603
 1604	/*
 1605	 * Keep "local max aggregation" simple and accept to (possibly)
 1606	 * overboost some RUNNABLE tasks in the same bucket.
 1607	 * The rq clamp bucket value is reset to its base value whenever
 1608	 * there are no more RUNNABLE tasks refcounting it.
 1609	 */
 1610	if (likely(bucket->tasks))
 1611		return;
 1612
 1613	rq_clamp = uclamp_rq_get(rq, clamp_id);
 1614	/*
 1615	 * Defensive programming: this should never happen. If it happens,
 1616	 * e.g. due to future modification, warn and fixup the expected value.
 1617	 */
 1618	SCHED_WARN_ON(bucket->value > rq_clamp);
 1619	if (bucket->value >= rq_clamp) {
 1620		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
 1621		uclamp_rq_set(rq, clamp_id, bkt_clamp);
 1622	}
 1623}
 1624
 1625static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
 1626{
 1627	enum uclamp_id clamp_id;
 1628
 1629	/*
 1630	 * Avoid any overhead until uclamp is actually used by the userspace.
 1631	 *
 1632	 * The condition is constructed such that a NOP is generated when
 1633	 * sched_uclamp_used is disabled.
 1634	 */
 1635	if (!static_branch_unlikely(&sched_uclamp_used))
 1636		return;
 1637
 1638	if (unlikely(!p->sched_class->uclamp_enabled))
 1639		return;
 1640
 1641	for_each_clamp_id(clamp_id)
 1642		uclamp_rq_inc_id(rq, p, clamp_id);
 1643
 1644	/* Reset clamp idle holding when there is one RUNNABLE task */
 1645	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
 1646		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
 1647}
 1648
 1649static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
 1650{
 1651	enum uclamp_id clamp_id;
 1652
 1653	/*
 1654	 * Avoid any overhead until uclamp is actually used by the userspace.
 
 
 1655	 *
 1656	 * The condition is constructed such that a NOP is generated when
 1657	 * sched_uclamp_used is disabled.
 1658	 */
 1659	if (!static_branch_unlikely(&sched_uclamp_used))
 1660		return;
 1661
 1662	if (unlikely(!p->sched_class->uclamp_enabled))
 1663		return;
 1664
 1665	for_each_clamp_id(clamp_id)
 1666		uclamp_rq_dec_id(rq, p, clamp_id);
 1667}
 1668
 1669static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
 1670				      enum uclamp_id clamp_id)
 1671{
 1672	if (!p->uclamp[clamp_id].active)
 1673		return;
 1674
 1675	uclamp_rq_dec_id(rq, p, clamp_id);
 1676	uclamp_rq_inc_id(rq, p, clamp_id);
 1677
 1678	/*
 1679	 * Make sure to clear the idle flag if we've transiently reached 0
 1680	 * active tasks on rq.
 1681	 */
 1682	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
 1683		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
 1684}
 1685
 1686static inline void
 1687uclamp_update_active(struct task_struct *p)
 1688{
 1689	enum uclamp_id clamp_id;
 1690	struct rq_flags rf;
 1691	struct rq *rq;
 1692
 1693	/*
 1694	 * Lock the task and the rq where the task is (or was) queued.
 1695	 *
 1696	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
 1697	 * price to pay to safely serialize util_{min,max} updates with
 1698	 * enqueues, dequeues and migration operations.
 1699	 * This is the same locking schema used by __set_cpus_allowed_ptr().
 1700	 */
 1701	rq = task_rq_lock(p, &rf);
 1702
 1703	/*
 1704	 * Setting the clamp bucket is serialized by task_rq_lock().
 1705	 * If the task is not yet RUNNABLE and its task_struct is not
 1706	 * affecting a valid clamp bucket, the next time it's enqueued,
 1707	 * it will already see the updated clamp bucket value.
 1708	 */
 1709	for_each_clamp_id(clamp_id)
 1710		uclamp_rq_reinc_id(rq, p, clamp_id);
 1711
 1712	task_rq_unlock(rq, p, &rf);
 1713}
 1714
 1715#ifdef CONFIG_UCLAMP_TASK_GROUP
 1716static inline void
 1717uclamp_update_active_tasks(struct cgroup_subsys_state *css)
 1718{
 1719	struct css_task_iter it;
 1720	struct task_struct *p;
 1721
 1722	css_task_iter_start(css, 0, &it);
 1723	while ((p = css_task_iter_next(&it)))
 1724		uclamp_update_active(p);
 1725	css_task_iter_end(&it);
 1726}
 1727
 1728static void cpu_util_update_eff(struct cgroup_subsys_state *css);
 1729#endif
 1730
 1731#ifdef CONFIG_SYSCTL
 1732#ifdef CONFIG_UCLAMP_TASK
 1733#ifdef CONFIG_UCLAMP_TASK_GROUP
 1734static void uclamp_update_root_tg(void)
 1735{
 1736	struct task_group *tg = &root_task_group;
 1737
 1738	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
 1739		      sysctl_sched_uclamp_util_min, false);
 1740	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
 1741		      sysctl_sched_uclamp_util_max, false);
 1742
 1743	rcu_read_lock();
 1744	cpu_util_update_eff(&root_task_group.css);
 1745	rcu_read_unlock();
 1746}
 1747#else
 1748static void uclamp_update_root_tg(void) { }
 1749#endif
 
 
 
 
 1750
 1751static void uclamp_sync_util_min_rt_default(void)
 1752{
 1753	struct task_struct *g, *p;
 1754
 1755	/*
 1756	 * copy_process()			sysctl_uclamp
 1757	 *					  uclamp_min_rt = X;
 1758	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
 1759	 *   // link thread			  smp_mb__after_spinlock()
 1760	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
 1761	 *   sched_post_fork()			  for_each_process_thread()
 1762	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
 1763	 *
 1764	 * Ensures that either sched_post_fork() will observe the new
 1765	 * uclamp_min_rt or for_each_process_thread() will observe the new
 1766	 * task.
 1767	 */
 1768	read_lock(&tasklist_lock);
 1769	smp_mb__after_spinlock();
 1770	read_unlock(&tasklist_lock);
 1771
 1772	rcu_read_lock();
 1773	for_each_process_thread(g, p)
 1774		uclamp_update_util_min_rt_default(p);
 1775	rcu_read_unlock();
 1776}
 1777
 1778static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
 1779				void *buffer, size_t *lenp, loff_t *ppos)
 1780{
 1781	bool update_root_tg = false;
 1782	int old_min, old_max, old_min_rt;
 1783	int result;
 1784
 1785	mutex_lock(&uclamp_mutex);
 1786	old_min = sysctl_sched_uclamp_util_min;
 1787	old_max = sysctl_sched_uclamp_util_max;
 1788	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
 1789
 1790	result = proc_dointvec(table, write, buffer, lenp, ppos);
 1791	if (result)
 1792		goto undo;
 1793	if (!write)
 1794		goto done;
 1795
 1796	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
 1797	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
 1798	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
 1799
 1800		result = -EINVAL;
 1801		goto undo;
 1802	}
 1803
 1804	if (old_min != sysctl_sched_uclamp_util_min) {
 1805		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
 1806			      sysctl_sched_uclamp_util_min, false);
 1807		update_root_tg = true;
 1808	}
 1809	if (old_max != sysctl_sched_uclamp_util_max) {
 1810		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
 1811			      sysctl_sched_uclamp_util_max, false);
 1812		update_root_tg = true;
 1813	}
 1814
 1815	if (update_root_tg) {
 1816		static_branch_enable(&sched_uclamp_used);
 1817		uclamp_update_root_tg();
 1818	}
 1819
 1820	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
 1821		static_branch_enable(&sched_uclamp_used);
 1822		uclamp_sync_util_min_rt_default();
 1823	}
 1824
 1825	/*
 1826	 * We update all RUNNABLE tasks only when task groups are in use.
 1827	 * Otherwise, keep it simple and do just a lazy update at each next
 1828	 * task enqueue time.
 1829	 */
 1830
 1831	goto done;
 1832
 1833undo:
 1834	sysctl_sched_uclamp_util_min = old_min;
 1835	sysctl_sched_uclamp_util_max = old_max;
 1836	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
 1837done:
 1838	mutex_unlock(&uclamp_mutex);
 1839
 1840	return result;
 1841}
 1842#endif
 1843#endif
 1844
 1845static int uclamp_validate(struct task_struct *p,
 1846			   const struct sched_attr *attr)
 1847{
 1848	int util_min = p->uclamp_req[UCLAMP_MIN].value;
 1849	int util_max = p->uclamp_req[UCLAMP_MAX].value;
 1850
 1851	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
 1852		util_min = attr->sched_util_min;
 1853
 1854		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
 1855			return -EINVAL;
 1856	}
 1857
 1858	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
 1859		util_max = attr->sched_util_max;
 1860
 1861		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
 1862			return -EINVAL;
 1863	}
 1864
 1865	if (util_min != -1 && util_max != -1 && util_min > util_max)
 1866		return -EINVAL;
 1867
 1868	/*
 1869	 * We have valid uclamp attributes; make sure uclamp is enabled.
 1870	 *
 1871	 * We need to do that here, because enabling static branches is a
 1872	 * blocking operation which obviously cannot be done while holding
 1873	 * scheduler locks.
 1874	 */
 1875	static_branch_enable(&sched_uclamp_used);
 1876
 1877	return 0;
 1878}
 1879
 1880static bool uclamp_reset(const struct sched_attr *attr,
 1881			 enum uclamp_id clamp_id,
 1882			 struct uclamp_se *uc_se)
 1883{
 1884	/* Reset on sched class change for a non user-defined clamp value. */
 1885	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
 1886	    !uc_se->user_defined)
 1887		return true;
 1888
 1889	/* Reset on sched_util_{min,max} == -1. */
 1890	if (clamp_id == UCLAMP_MIN &&
 1891	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
 1892	    attr->sched_util_min == -1) {
 1893		return true;
 1894	}
 1895
 1896	if (clamp_id == UCLAMP_MAX &&
 1897	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
 1898	    attr->sched_util_max == -1) {
 1899		return true;
 1900	}
 1901
 1902	return false;
 
 
 
 1903}
 1904
 1905static void __setscheduler_uclamp(struct task_struct *p,
 1906				  const struct sched_attr *attr)
 1907{
 1908	enum uclamp_id clamp_id;
 1909
 1910	for_each_clamp_id(clamp_id) {
 1911		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
 1912		unsigned int value;
 1913
 1914		if (!uclamp_reset(attr, clamp_id, uc_se))
 1915			continue;
 1916
 
 1917		/*
 1918		 * RT by default have a 100% boost value that could be modified
 1919		 * at runtime.
 
 
 
 
 1920		 */
 1921		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
 1922			value = sysctl_sched_uclamp_util_min_rt_default;
 1923		else
 1924			value = uclamp_none(clamp_id);
 1925
 1926		uclamp_se_set(uc_se, value, false);
 1927
 1928	}
 1929
 1930	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
 1931		return;
 1932
 1933	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
 1934	    attr->sched_util_min != -1) {
 1935		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
 1936			      attr->sched_util_min, true);
 1937	}
 1938
 1939	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
 1940	    attr->sched_util_max != -1) {
 1941		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
 1942			      attr->sched_util_max, true);
 1943	}
 1944}
 1945
 1946static void uclamp_fork(struct task_struct *p)
 1947{
 1948	enum uclamp_id clamp_id;
 1949
 1950	/*
 1951	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
 1952	 * as the task is still at its early fork stages.
 1953	 */
 1954	for_each_clamp_id(clamp_id)
 1955		p->uclamp[clamp_id].active = false;
 1956
 1957	if (likely(!p->sched_reset_on_fork))
 1958		return;
 1959
 1960	for_each_clamp_id(clamp_id) {
 1961		uclamp_se_set(&p->uclamp_req[clamp_id],
 1962			      uclamp_none(clamp_id), false);
 1963	}
 1964}
 1965
 1966static void uclamp_post_fork(struct task_struct *p)
 1967{
 1968	uclamp_update_util_min_rt_default(p);
 1969}
 1970
 1971static void __init init_uclamp_rq(struct rq *rq)
 1972{
 1973	enum uclamp_id clamp_id;
 1974	struct uclamp_rq *uc_rq = rq->uclamp;
 1975
 1976	for_each_clamp_id(clamp_id) {
 1977		uc_rq[clamp_id] = (struct uclamp_rq) {
 1978			.value = uclamp_none(clamp_id)
 1979		};
 1980	}
 1981
 1982	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
 1983}
 1984
 1985static void __init init_uclamp(void)
 1986{
 1987	struct uclamp_se uc_max = {};
 1988	enum uclamp_id clamp_id;
 1989	int cpu;
 1990
 1991	for_each_possible_cpu(cpu)
 1992		init_uclamp_rq(cpu_rq(cpu));
 1993
 1994	for_each_clamp_id(clamp_id) {
 1995		uclamp_se_set(&init_task.uclamp_req[clamp_id],
 1996			      uclamp_none(clamp_id), false);
 1997	}
 1998
 1999	/* System defaults allow max clamp values for both indexes */
 2000	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
 2001	for_each_clamp_id(clamp_id) {
 2002		uclamp_default[clamp_id] = uc_max;
 2003#ifdef CONFIG_UCLAMP_TASK_GROUP
 2004		root_task_group.uclamp_req[clamp_id] = uc_max;
 2005		root_task_group.uclamp[clamp_id] = uc_max;
 2006#endif
 2007	}
 2008}
 2009
 2010#else /* CONFIG_UCLAMP_TASK */
 2011static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
 2012static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
 2013static inline int uclamp_validate(struct task_struct *p,
 2014				  const struct sched_attr *attr)
 2015{
 2016	return -EOPNOTSUPP;
 2017}
 2018static void __setscheduler_uclamp(struct task_struct *p,
 2019				  const struct sched_attr *attr) { }
 2020static inline void uclamp_fork(struct task_struct *p) { }
 2021static inline void uclamp_post_fork(struct task_struct *p) { }
 2022static inline void init_uclamp(void) { }
 2023#endif /* CONFIG_UCLAMP_TASK */
 2024
 2025bool sched_task_on_rq(struct task_struct *p)
 2026{
 2027	return task_on_rq_queued(p);
 2028}
 2029
 2030unsigned long get_wchan(struct task_struct *p)
 2031{
 2032	unsigned long ip = 0;
 2033	unsigned int state;
 2034
 2035	if (!p || p == current)
 2036		return 0;
 2037
 2038	/* Only get wchan if task is blocked and we can keep it that way. */
 2039	raw_spin_lock_irq(&p->pi_lock);
 2040	state = READ_ONCE(p->__state);
 2041	smp_rmb(); /* see try_to_wake_up() */
 2042	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
 2043		ip = __get_wchan(p);
 2044	raw_spin_unlock_irq(&p->pi_lock);
 2045
 2046	return ip;
 2047}
 2048
 2049static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
 2050{
 2051	if (!(flags & ENQUEUE_NOCLOCK))
 2052		update_rq_clock(rq);
 2053
 2054	if (!(flags & ENQUEUE_RESTORE)) {
 2055		sched_info_enqueue(rq, p);
 2056		psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
 2057	}
 2058
 2059	uclamp_rq_inc(rq, p);
 2060	p->sched_class->enqueue_task(rq, p, flags);
 2061
 2062	if (sched_core_enabled(rq))
 2063		sched_core_enqueue(rq, p);
 2064}
 2065
 2066static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
 2067{
 2068	if (sched_core_enabled(rq))
 2069		sched_core_dequeue(rq, p, flags);
 2070
 2071	if (!(flags & DEQUEUE_NOCLOCK))
 2072		update_rq_clock(rq);
 2073
 2074	if (!(flags & DEQUEUE_SAVE)) {
 2075		sched_info_dequeue(rq, p);
 2076		psi_dequeue(p, flags & DEQUEUE_SLEEP);
 
 
 
 2077	}
 2078
 2079	uclamp_rq_dec(rq, p);
 2080	p->sched_class->dequeue_task(rq, p, flags);
 2081}
 2082
 2083void activate_task(struct rq *rq, struct task_struct *p, int flags)
 2084{
 2085	enqueue_task(rq, p, flags);
 2086
 2087	p->on_rq = TASK_ON_RQ_QUEUED;
 2088}
 2089
 2090void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
 2091{
 2092	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
 2093
 2094	dequeue_task(rq, p, flags);
 2095}
 2096
 2097static inline int __normal_prio(int policy, int rt_prio, int nice)
 
 
 
 2098{
 2099	int prio;
 2100
 2101	if (dl_policy(policy))
 2102		prio = MAX_DL_PRIO - 1;
 2103	else if (rt_policy(policy))
 2104		prio = MAX_RT_PRIO - 1 - rt_prio;
 2105	else
 2106		prio = NICE_TO_PRIO(nice);
 2107
 2108	return prio;
 2109}
 2110
 2111/*
 2112 * Calculate the expected normal priority: i.e. priority
 2113 * without taking RT-inheritance into account. Might be
 2114 * boosted by interactivity modifiers. Changes upon fork,
 2115 * setprio syscalls, and whenever the interactivity
 2116 * estimator recalculates.
 2117 */
 2118static inline int normal_prio(struct task_struct *p)
 2119{
 2120	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
 
 
 
 
 
 
 
 
 2121}
 2122
 2123/*
 2124 * Calculate the current priority, i.e. the priority
 2125 * taken into account by the scheduler. This value might
 2126 * be boosted by RT tasks, or might be boosted by
 2127 * interactivity modifiers. Will be RT if the task got
 2128 * RT-boosted. If not then it returns p->normal_prio.
 2129 */
 2130static int effective_prio(struct task_struct *p)
 2131{
 2132	p->normal_prio = normal_prio(p);
 2133	/*
 2134	 * If we are RT tasks or we were boosted to RT priority,
 2135	 * keep the priority unchanged. Otherwise, update priority
 2136	 * to the normal priority:
 2137	 */
 2138	if (!rt_prio(p->prio))
 2139		return p->normal_prio;
 2140	return p->prio;
 2141}
 2142
 2143/**
 2144 * task_curr - is this task currently executing on a CPU?
 2145 * @p: the task in question.
 2146 *
 2147 * Return: 1 if the task is currently executing. 0 otherwise.
 2148 */
 2149inline int task_curr(const struct task_struct *p)
 2150{
 2151	return cpu_curr(task_cpu(p)) == p;
 2152}
 2153
 2154/*
 2155 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 2156 * use the balance_callback list if you want balancing.
 2157 *
 2158 * this means any call to check_class_changed() must be followed by a call to
 2159 * balance_callback().
 2160 */
 2161static inline void check_class_changed(struct rq *rq, struct task_struct *p,
 2162				       const struct sched_class *prev_class,
 2163				       int oldprio)
 2164{
 2165	if (prev_class != p->sched_class) {
 2166		if (prev_class->switched_from)
 2167			prev_class->switched_from(rq, p);
 2168
 2169		p->sched_class->switched_to(rq, p);
 2170	} else if (oldprio != p->prio || dl_task(p))
 2171		p->sched_class->prio_changed(rq, p, oldprio);
 2172}
 2173
 2174void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
 2175{
 2176	if (p->sched_class == rq->curr->sched_class)
 
 
 2177		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
 2178	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
 2179		resched_curr(rq);
 
 
 
 
 
 
 
 
 2180
 2181	/*
 2182	 * A queue event has occurred, and we're going to schedule.  In
 2183	 * this case, we can save a useless back to back clock update.
 2184	 */
 2185	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
 2186		rq_clock_skip_update(rq);
 2187}
 2188
 2189#ifdef CONFIG_SMP
 2190
 2191static void
 2192__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
 2193
 2194static int __set_cpus_allowed_ptr(struct task_struct *p,
 2195				  struct affinity_context *ctx);
 2196
 2197static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
 2198{
 2199	struct affinity_context ac = {
 2200		.new_mask  = cpumask_of(rq->cpu),
 2201		.flags     = SCA_MIGRATE_DISABLE,
 2202	};
 2203
 2204	if (likely(!p->migration_disabled))
 2205		return;
 2206
 2207	if (p->cpus_ptr != &p->cpus_mask)
 2208		return;
 2209
 2210	/*
 2211	 * Violates locking rules! see comment in __do_set_cpus_allowed().
 2212	 */
 2213	__do_set_cpus_allowed(p, &ac);
 2214}
 2215
 2216void migrate_disable(void)
 2217{
 2218	struct task_struct *p = current;
 2219
 2220	if (p->migration_disabled) {
 2221		p->migration_disabled++;
 2222		return;
 2223	}
 2224
 2225	preempt_disable();
 2226	this_rq()->nr_pinned++;
 2227	p->migration_disabled = 1;
 2228	preempt_enable();
 2229}
 2230EXPORT_SYMBOL_GPL(migrate_disable);
 2231
 2232void migrate_enable(void)
 2233{
 2234	struct task_struct *p = current;
 2235	struct affinity_context ac = {
 2236		.new_mask  = &p->cpus_mask,
 2237		.flags     = SCA_MIGRATE_ENABLE,
 2238	};
 2239
 2240	if (p->migration_disabled > 1) {
 2241		p->migration_disabled--;
 2242		return;
 2243	}
 2244
 2245	if (WARN_ON_ONCE(!p->migration_disabled))
 2246		return;
 2247
 2248	/*
 2249	 * Ensure stop_task runs either before or after this, and that
 2250	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
 2251	 */
 2252	preempt_disable();
 2253	if (p->cpus_ptr != &p->cpus_mask)
 2254		__set_cpus_allowed_ptr(p, &ac);
 2255	/*
 2256	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
 2257	 * regular cpus_mask, otherwise things that race (eg.
 2258	 * select_fallback_rq) get confused.
 2259	 */
 2260	barrier();
 2261	p->migration_disabled = 0;
 2262	this_rq()->nr_pinned--;
 2263	preempt_enable();
 2264}
 2265EXPORT_SYMBOL_GPL(migrate_enable);
 2266
 2267static inline bool rq_has_pinned_tasks(struct rq *rq)
 2268{
 2269	return rq->nr_pinned;
 2270}
 2271
 2272/*
 2273 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
 2274 * __set_cpus_allowed_ptr() and select_fallback_rq().
 2275 */
 2276static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
 2277{
 2278	/* When not in the task's cpumask, no point in looking further. */
 2279	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
 2280		return false;
 2281
 2282	/* migrate_disabled() must be allowed to finish. */
 2283	if (is_migration_disabled(p))
 2284		return cpu_online(cpu);
 2285
 2286	/* Non kernel threads are not allowed during either online or offline. */
 2287	if (!(p->flags & PF_KTHREAD))
 2288		return cpu_active(cpu) && task_cpu_possible(cpu, p);
 2289
 2290	/* KTHREAD_IS_PER_CPU is always allowed. */
 2291	if (kthread_is_per_cpu(p))
 2292		return cpu_online(cpu);
 2293
 2294	/* Regular kernel threads don't get to stay during offline. */
 2295	if (cpu_dying(cpu))
 2296		return false;
 2297
 2298	/* But are allowed during online. */
 2299	return cpu_online(cpu);
 2300}
 2301
 2302/*
 2303 * This is how migration works:
 2304 *
 2305 * 1) we invoke migration_cpu_stop() on the target CPU using
 2306 *    stop_one_cpu().
 2307 * 2) stopper starts to run (implicitly forcing the migrated thread
 2308 *    off the CPU)
 2309 * 3) it checks whether the migrated task is still in the wrong runqueue.
 2310 * 4) if it's in the wrong runqueue then the migration thread removes
 2311 *    it and puts it into the right queue.
 2312 * 5) stopper completes and stop_one_cpu() returns and the migration
 2313 *    is done.
 2314 */
 2315
 2316/*
 2317 * move_queued_task - move a queued task to new rq.
 2318 *
 2319 * Returns (locked) new rq. Old rq's lock is released.
 2320 */
 2321static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
 2322				   struct task_struct *p, int new_cpu)
 2323{
 2324	lockdep_assert_rq_held(rq);
 2325
 2326	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
 
 2327	set_task_cpu(p, new_cpu);
 2328	rq_unlock(rq, rf);
 2329
 2330	rq = cpu_rq(new_cpu);
 2331
 2332	rq_lock(rq, rf);
 2333	WARN_ON_ONCE(task_cpu(p) != new_cpu);
 2334	activate_task(rq, p, 0);
 
 2335	check_preempt_curr(rq, p, 0);
 2336
 2337	return rq;
 2338}
 2339
 2340struct migration_arg {
 2341	struct task_struct		*task;
 2342	int				dest_cpu;
 2343	struct set_affinity_pending	*pending;
 2344};
 2345
 2346/*
 2347 * @refs: number of wait_for_completion()
 2348 * @stop_pending: is @stop_work in use
 2349 */
 2350struct set_affinity_pending {
 2351	refcount_t		refs;
 2352	unsigned int		stop_pending;
 2353	struct completion	done;
 2354	struct cpu_stop_work	stop_work;
 2355	struct migration_arg	arg;
 2356};
 2357
 2358/*
 2359 * Move (not current) task off this CPU, onto the destination CPU. We're doing
 2360 * this because either it can't run here any more (set_cpus_allowed()
 2361 * away from this CPU, or CPU going down), or because we're
 2362 * attempting to rebalance this task on exec (sched_exec).
 2363 *
 2364 * So we race with normal scheduler movements, but that's OK, as long
 2365 * as the task is no longer on this CPU.
 2366 */
 2367static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
 2368				 struct task_struct *p, int dest_cpu)
 2369{
 
 
 
 2370	/* Affinity changed (again). */
 2371	if (!is_cpu_allowed(p, dest_cpu))
 2372		return rq;
 2373
 2374	update_rq_clock(rq);
 2375	rq = move_queued_task(rq, rf, p, dest_cpu);
 2376
 2377	return rq;
 2378}
 2379
 2380/*
 2381 * migration_cpu_stop - this will be executed by a highprio stopper thread
 2382 * and performs thread migration by bumping thread off CPU then
 2383 * 'pushing' onto another runqueue.
 2384 */
 2385static int migration_cpu_stop(void *data)
 2386{
 2387	struct migration_arg *arg = data;
 2388	struct set_affinity_pending *pending = arg->pending;
 2389	struct task_struct *p = arg->task;
 2390	struct rq *rq = this_rq();
 2391	bool complete = false;
 2392	struct rq_flags rf;
 2393
 2394	/*
 2395	 * The original target CPU might have gone down and we might
 2396	 * be on another CPU but it doesn't matter.
 2397	 */
 2398	local_irq_save(rf.flags);
 2399	/*
 2400	 * We need to explicitly wake pending tasks before running
 2401	 * __migrate_task() such that we will not miss enforcing cpus_ptr
 2402	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
 2403	 */
 2404	flush_smp_call_function_queue();
 2405
 2406	raw_spin_lock(&p->pi_lock);
 2407	rq_lock(rq, &rf);
 2408
 2409	/*
 2410	 * If we were passed a pending, then ->stop_pending was set, thus
 2411	 * p->migration_pending must have remained stable.
 2412	 */
 2413	WARN_ON_ONCE(pending && pending != p->migration_pending);
 2414
 2415	/*
 2416	 * If task_rq(p) != rq, it cannot be migrated here, because we're
 2417	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
 2418	 * we're holding p->pi_lock.
 2419	 */
 2420	if (task_rq(p) == rq) {
 2421		if (is_migration_disabled(p))
 2422			goto out;
 2423
 2424		if (pending) {
 2425			p->migration_pending = NULL;
 2426			complete = true;
 2427
 2428			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
 2429				goto out;
 2430		}
 2431
 2432		if (task_on_rq_queued(p))
 2433			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
 2434		else
 2435			p->wake_cpu = arg->dest_cpu;
 2436
 2437		/*
 2438		 * XXX __migrate_task() can fail, at which point we might end
 2439		 * up running on a dodgy CPU, AFAICT this can only happen
 2440		 * during CPU hotplug, at which point we'll get pushed out
 2441		 * anyway, so it's probably not a big deal.
 2442		 */
 2443
 2444	} else if (pending) {
 2445		/*
 2446		 * This happens when we get migrated between migrate_enable()'s
 2447		 * preempt_enable() and scheduling the stopper task. At that
 2448		 * point we're a regular task again and not current anymore.
 2449		 *
 2450		 * A !PREEMPT kernel has a giant hole here, which makes it far
 2451		 * more likely.
 2452		 */
 2453
 2454		/*
 2455		 * The task moved before the stopper got to run. We're holding
 2456		 * ->pi_lock, so the allowed mask is stable - if it got
 2457		 * somewhere allowed, we're done.
 2458		 */
 2459		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
 2460			p->migration_pending = NULL;
 2461			complete = true;
 2462			goto out;
 2463		}
 2464
 2465		/*
 2466		 * When migrate_enable() hits a rq mis-match we can't reliably
 2467		 * determine is_migration_disabled() and so have to chase after
 2468		 * it.
 2469		 */
 2470		WARN_ON_ONCE(!pending->stop_pending);
 2471		task_rq_unlock(rq, p, &rf);
 2472		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
 2473				    &pending->arg, &pending->stop_work);
 2474		return 0;
 2475	}
 2476out:
 2477	if (pending)
 2478		pending->stop_pending = false;
 2479	task_rq_unlock(rq, p, &rf);
 2480
 2481	if (complete)
 2482		complete_all(&pending->done);
 2483
 2484	return 0;
 2485}
 2486
 2487int push_cpu_stop(void *arg)
 2488{
 2489	struct rq *lowest_rq = NULL, *rq = this_rq();
 2490	struct task_struct *p = arg;
 2491
 2492	raw_spin_lock_irq(&p->pi_lock);
 2493	raw_spin_rq_lock(rq);
 2494
 2495	if (task_rq(p) != rq)
 2496		goto out_unlock;
 2497
 2498	if (is_migration_disabled(p)) {
 2499		p->migration_flags |= MDF_PUSH;
 2500		goto out_unlock;
 2501	}
 2502
 2503	p->migration_flags &= ~MDF_PUSH;
 2504
 2505	if (p->sched_class->find_lock_rq)
 2506		lowest_rq = p->sched_class->find_lock_rq(p, rq);
 2507
 2508	if (!lowest_rq)
 2509		goto out_unlock;
 2510
 2511	// XXX validate p is still the highest prio task
 2512	if (task_rq(p) == rq) {
 2513		deactivate_task(rq, p, 0);
 2514		set_task_cpu(p, lowest_rq->cpu);
 2515		activate_task(lowest_rq, p, 0);
 2516		resched_curr(lowest_rq);
 2517	}
 2518
 2519	double_unlock_balance(rq, lowest_rq);
 2520
 2521out_unlock:
 2522	rq->push_busy = false;
 2523	raw_spin_rq_unlock(rq);
 2524	raw_spin_unlock_irq(&p->pi_lock);
 2525
 2526	put_task_struct(p);
 2527	return 0;
 2528}
 2529
 2530/*
 2531 * sched_class::set_cpus_allowed must do the below, but is not required to
 2532 * actually call this function.
 2533 */
 2534void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
 2535{
 2536	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
 2537		p->cpus_ptr = ctx->new_mask;
 2538		return;
 2539	}
 2540
 2541	cpumask_copy(&p->cpus_mask, ctx->new_mask);
 2542	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
 2543
 2544	/*
 2545	 * Swap in a new user_cpus_ptr if SCA_USER flag set
 2546	 */
 2547	if (ctx->flags & SCA_USER)
 2548		swap(p->user_cpus_ptr, ctx->user_mask);
 2549}
 2550
 2551static void
 2552__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
 2553{
 2554	struct rq *rq = task_rq(p);
 2555	bool queued, running;
 2556
 2557	/*
 2558	 * This here violates the locking rules for affinity, since we're only
 2559	 * supposed to change these variables while holding both rq->lock and
 2560	 * p->pi_lock.
 2561	 *
 2562	 * HOWEVER, it magically works, because ttwu() is the only code that
 2563	 * accesses these variables under p->pi_lock and only does so after
 2564	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
 2565	 * before finish_task().
 2566	 *
 2567	 * XXX do further audits, this smells like something putrid.
 2568	 */
 2569	if (ctx->flags & SCA_MIGRATE_DISABLE)
 2570		SCHED_WARN_ON(!p->on_cpu);
 2571	else
 2572		lockdep_assert_held(&p->pi_lock);
 2573
 2574	queued = task_on_rq_queued(p);
 2575	running = task_current(rq, p);
 2576
 2577	if (queued) {
 2578		/*
 2579		 * Because __kthread_bind() calls this on blocked tasks without
 2580		 * holding rq->lock.
 2581		 */
 2582		lockdep_assert_rq_held(rq);
 2583		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
 2584	}
 2585	if (running)
 2586		put_prev_task(rq, p);
 2587
 2588	p->sched_class->set_cpus_allowed(p, ctx);
 2589
 2590	if (queued)
 2591		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
 2592	if (running)
 2593		set_next_task(rq, p);
 2594}
 2595
 2596/*
 2597 * Used for kthread_bind() and select_fallback_rq(), in both cases the user
 2598 * affinity (if any) should be destroyed too.
 2599 */
 2600void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
 2601{
 2602	struct affinity_context ac = {
 2603		.new_mask  = new_mask,
 2604		.user_mask = NULL,
 2605		.flags     = SCA_USER,	/* clear the user requested mask */
 2606	};
 2607	union cpumask_rcuhead {
 2608		cpumask_t cpumask;
 2609		struct rcu_head rcu;
 2610	};
 2611
 2612	__do_set_cpus_allowed(p, &ac);
 2613
 2614	/*
 2615	 * Because this is called with p->pi_lock held, it is not possible
 2616	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
 2617	 * kfree_rcu().
 2618	 */
 2619	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
 2620}
 2621
 2622static cpumask_t *alloc_user_cpus_ptr(int node)
 2623{
 2624	/*
 2625	 * See do_set_cpus_allowed() above for the rcu_head usage.
 2626	 */
 2627	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
 2628
 2629	return kmalloc_node(size, GFP_KERNEL, node);
 2630}
 2631
 2632int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
 2633		      int node)
 2634{
 2635	cpumask_t *user_mask;
 2636	unsigned long flags;
 2637
 2638	/*
 2639	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
 2640	 * may differ by now due to racing.
 2641	 */
 2642	dst->user_cpus_ptr = NULL;
 2643
 2644	/*
 2645	 * This check is racy and losing the race is a valid situation.
 2646	 * It is not worth the extra overhead of taking the pi_lock on
 2647	 * every fork/clone.
 2648	 */
 2649	if (data_race(!src->user_cpus_ptr))
 2650		return 0;
 2651
 2652	user_mask = alloc_user_cpus_ptr(node);
 2653	if (!user_mask)
 2654		return -ENOMEM;
 2655
 2656	/*
 2657	 * Use pi_lock to protect content of user_cpus_ptr
 2658	 *
 2659	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
 2660	 * do_set_cpus_allowed().
 2661	 */
 2662	raw_spin_lock_irqsave(&src->pi_lock, flags);
 2663	if (src->user_cpus_ptr) {
 2664		swap(dst->user_cpus_ptr, user_mask);
 2665		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
 2666	}
 2667	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
 2668
 2669	if (unlikely(user_mask))
 2670		kfree(user_mask);
 2671
 2672	return 0;
 2673}
 2674
 2675static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
 2676{
 2677	struct cpumask *user_mask = NULL;
 2678
 2679	swap(p->user_cpus_ptr, user_mask);
 2680
 2681	return user_mask;
 2682}
 2683
 2684void release_user_cpus_ptr(struct task_struct *p)
 2685{
 2686	kfree(clear_user_cpus_ptr(p));
 2687}
 2688
 2689/*
 2690 * This function is wildly self concurrent; here be dragons.
 2691 *
 2692 *
 2693 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
 2694 * designated task is enqueued on an allowed CPU. If that task is currently
 2695 * running, we have to kick it out using the CPU stopper.
 2696 *
 2697 * Migrate-Disable comes along and tramples all over our nice sandcastle.
 2698 * Consider:
 2699 *
 2700 *     Initial conditions: P0->cpus_mask = [0, 1]
 2701 *
 2702 *     P0@CPU0                  P1
 2703 *
 2704 *     migrate_disable();
 2705 *     <preempted>
 2706 *                              set_cpus_allowed_ptr(P0, [1]);
 2707 *
 2708 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
 2709 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
 2710 * This means we need the following scheme:
 2711 *
 2712 *     P0@CPU0                  P1
 2713 *
 2714 *     migrate_disable();
 2715 *     <preempted>
 2716 *                              set_cpus_allowed_ptr(P0, [1]);
 2717 *                                <blocks>
 2718 *     <resumes>
 2719 *     migrate_enable();
 2720 *       __set_cpus_allowed_ptr();
 2721 *       <wakes local stopper>
 2722 *                         `--> <woken on migration completion>
 2723 *
 2724 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
 2725 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
 2726 * task p are serialized by p->pi_lock, which we can leverage: the one that
 2727 * should come into effect at the end of the Migrate-Disable region is the last
 2728 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
 2729 * but we still need to properly signal those waiting tasks at the appropriate
 2730 * moment.
 2731 *
 2732 * This is implemented using struct set_affinity_pending. The first
 2733 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
 2734 * setup an instance of that struct and install it on the targeted task_struct.
 2735 * Any and all further callers will reuse that instance. Those then wait for
 2736 * a completion signaled at the tail of the CPU stopper callback (1), triggered
 2737 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
 2738 *
 2739 *
 2740 * (1) In the cases covered above. There is one more where the completion is
 2741 * signaled within affine_move_task() itself: when a subsequent affinity request
 2742 * occurs after the stopper bailed out due to the targeted task still being
 2743 * Migrate-Disable. Consider:
 2744 *
 2745 *     Initial conditions: P0->cpus_mask = [0, 1]
 2746 *
 2747 *     CPU0		  P1				P2
 2748 *     <P0>
 2749 *       migrate_disable();
 2750 *       <preempted>
 2751 *                        set_cpus_allowed_ptr(P0, [1]);
 2752 *                          <blocks>
 2753 *     <migration/0>
 2754 *       migration_cpu_stop()
 2755 *         is_migration_disabled()
 2756 *           <bails>
 2757 *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
 2758 *                                                         <signal completion>
 2759 *                          <awakes>
 2760 *
 2761 * Note that the above is safe vs a concurrent migrate_enable(), as any
 2762 * pending affinity completion is preceded by an uninstallation of
 2763 * p->migration_pending done with p->pi_lock held.
 2764 */
 2765static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
 2766			    int dest_cpu, unsigned int flags)
 2767	__releases(rq->lock)
 2768	__releases(p->pi_lock)
 2769{
 2770	struct set_affinity_pending my_pending = { }, *pending = NULL;
 2771	bool stop_pending, complete = false;
 2772
 2773	/* Can the task run on the task's current CPU? If so, we're done */
 2774	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
 2775		struct task_struct *push_task = NULL;
 2776
 2777		if ((flags & SCA_MIGRATE_ENABLE) &&
 2778		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
 2779			rq->push_busy = true;
 2780			push_task = get_task_struct(p);
 2781		}
 2782
 2783		/*
 2784		 * If there are pending waiters, but no pending stop_work,
 2785		 * then complete now.
 2786		 */
 2787		pending = p->migration_pending;
 2788		if (pending && !pending->stop_pending) {
 2789			p->migration_pending = NULL;
 2790			complete = true;
 2791		}
 2792
 2793		task_rq_unlock(rq, p, rf);
 2794
 2795		if (push_task) {
 2796			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
 2797					    p, &rq->push_work);
 2798		}
 2799
 2800		if (complete)
 2801			complete_all(&pending->done);
 2802
 2803		return 0;
 2804	}
 2805
 2806	if (!(flags & SCA_MIGRATE_ENABLE)) {
 2807		/* serialized by p->pi_lock */
 2808		if (!p->migration_pending) {
 2809			/* Install the request */
 2810			refcount_set(&my_pending.refs, 1);
 2811			init_completion(&my_pending.done);
 2812			my_pending.arg = (struct migration_arg) {
 2813				.task = p,
 2814				.dest_cpu = dest_cpu,
 2815				.pending = &my_pending,
 2816			};
 2817
 2818			p->migration_pending = &my_pending;
 2819		} else {
 2820			pending = p->migration_pending;
 2821			refcount_inc(&pending->refs);
 2822			/*
 2823			 * Affinity has changed, but we've already installed a
 2824			 * pending. migration_cpu_stop() *must* see this, else
 2825			 * we risk a completion of the pending despite having a
 2826			 * task on a disallowed CPU.
 2827			 *
 2828			 * Serialized by p->pi_lock, so this is safe.
 2829			 */
 2830			pending->arg.dest_cpu = dest_cpu;
 2831		}
 2832	}
 2833	pending = p->migration_pending;
 2834	/*
 2835	 * - !MIGRATE_ENABLE:
 2836	 *   we'll have installed a pending if there wasn't one already.
 2837	 *
 2838	 * - MIGRATE_ENABLE:
 2839	 *   we're here because the current CPU isn't matching anymore,
 2840	 *   the only way that can happen is because of a concurrent
 2841	 *   set_cpus_allowed_ptr() call, which should then still be
 2842	 *   pending completion.
 2843	 *
 2844	 * Either way, we really should have a @pending here.
 2845	 */
 2846	if (WARN_ON_ONCE(!pending)) {
 2847		task_rq_unlock(rq, p, rf);
 2848		return -EINVAL;
 2849	}
 2850
 2851	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
 2852		/*
 2853		 * MIGRATE_ENABLE gets here because 'p == current', but for
 2854		 * anything else we cannot do is_migration_disabled(), punt
 2855		 * and have the stopper function handle it all race-free.
 2856		 */
 2857		stop_pending = pending->stop_pending;
 2858		if (!stop_pending)
 2859			pending->stop_pending = true;
 2860
 2861		if (flags & SCA_MIGRATE_ENABLE)
 2862			p->migration_flags &= ~MDF_PUSH;
 2863
 2864		task_rq_unlock(rq, p, rf);
 2865
 2866		if (!stop_pending) {
 2867			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
 2868					    &pending->arg, &pending->stop_work);
 2869		}
 2870
 2871		if (flags & SCA_MIGRATE_ENABLE)
 2872			return 0;
 2873	} else {
 2874
 2875		if (!is_migration_disabled(p)) {
 2876			if (task_on_rq_queued(p))
 2877				rq = move_queued_task(rq, rf, p, dest_cpu);
 2878
 2879			if (!pending->stop_pending) {
 2880				p->migration_pending = NULL;
 2881				complete = true;
 2882			}
 2883		}
 2884		task_rq_unlock(rq, p, rf);
 2885
 2886		if (complete)
 2887			complete_all(&pending->done);
 2888	}
 2889
 2890	wait_for_completion(&pending->done);
 2891
 2892	if (refcount_dec_and_test(&pending->refs))
 2893		wake_up_var(&pending->refs); /* No UaF, just an address */
 2894
 2895	/*
 2896	 * Block the original owner of &pending until all subsequent callers
 2897	 * have seen the completion and decremented the refcount
 2898	 */
 2899	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
 2900
 2901	/* ARGH */
 2902	WARN_ON_ONCE(my_pending.stop_pending);
 2903
 2904	return 0;
 2905}
 2906
 2907/*
 2908 * Called with both p->pi_lock and rq->lock held; drops both before returning.
 2909 */
 2910static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
 2911					 struct affinity_context *ctx,
 2912					 struct rq *rq,
 2913					 struct rq_flags *rf)
 2914	__releases(rq->lock)
 2915	__releases(p->pi_lock)
 2916{
 2917	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
 2918	const struct cpumask *cpu_valid_mask = cpu_active_mask;
 2919	bool kthread = p->flags & PF_KTHREAD;
 2920	unsigned int dest_cpu;
 2921	int ret = 0;
 2922
 2923	update_rq_clock(rq);
 2924
 2925	if (kthread || is_migration_disabled(p)) {
 2926		/*
 2927		 * Kernel threads are allowed on online && !active CPUs,
 2928		 * however, during cpu-hot-unplug, even these might get pushed
 2929		 * away if not KTHREAD_IS_PER_CPU.
 2930		 *
 2931		 * Specifically, migration_disabled() tasks must not fail the
 2932		 * cpumask_any_and_distribute() pick below, esp. so on
 2933		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
 2934		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
 2935		 */
 2936		cpu_valid_mask = cpu_online_mask;
 2937	}
 2938
 2939	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
 2940		ret = -EINVAL;
 2941		goto out;
 2942	}
 2943
 2944	/*
 2945	 * Must re-check here, to close a race against __kthread_bind(),
 2946	 * sched_setaffinity() is not guaranteed to observe the flag.
 2947	 */
 2948	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
 2949		ret = -EINVAL;
 2950		goto out;
 2951	}
 2952
 2953	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
 2954		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
 2955			if (ctx->flags & SCA_USER)
 2956				swap(p->user_cpus_ptr, ctx->user_mask);
 2957			goto out;
 2958		}
 2959
 2960		if (WARN_ON_ONCE(p == current &&
 2961				 is_migration_disabled(p) &&
 2962				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
 2963			ret = -EBUSY;
 2964			goto out;
 2965		}
 2966	}
 2967
 2968	/*
 2969	 * Picking a ~random cpu helps in cases where we are changing affinity
 2970	 * for groups of tasks (ie. cpuset), so that load balancing is not
 2971	 * immediately required to distribute the tasks within their new mask.
 2972	 */
 2973	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
 2974	if (dest_cpu >= nr_cpu_ids) {
 2975		ret = -EINVAL;
 2976		goto out;
 2977	}
 2978
 2979	__do_set_cpus_allowed(p, ctx);
 2980
 2981	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
 
 
 2982
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2983out:
 2984	task_rq_unlock(rq, p, rf);
 2985
 2986	return ret;
 2987}
 2988
 2989/*
 2990 * Change a given task's CPU affinity. Migrate the thread to a
 2991 * proper CPU and schedule it away if the CPU it's executing on
 2992 * is removed from the allowed bitmask.
 2993 *
 2994 * NOTE: the caller must have a valid reference to the task, the
 2995 * task must not exit() & deallocate itself prematurely. The
 2996 * call is not atomic; no spinlocks may be held.
 2997 */
 2998static int __set_cpus_allowed_ptr(struct task_struct *p,
 2999				  struct affinity_context *ctx)
 3000{
 3001	struct rq_flags rf;
 3002	struct rq *rq;
 3003
 3004	rq = task_rq_lock(p, &rf);
 3005	/*
 3006	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
 3007	 * flags are set.
 3008	 */
 3009	if (p->user_cpus_ptr &&
 3010	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
 3011	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
 3012		ctx->new_mask = rq->scratch_mask;
 3013
 3014	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
 3015}
 3016
 3017int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
 3018{
 3019	struct affinity_context ac = {
 3020		.new_mask  = new_mask,
 3021		.flags     = 0,
 3022	};
 3023
 3024	return __set_cpus_allowed_ptr(p, &ac);
 3025}
 3026EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
 3027
 3028/*
 3029 * Change a given task's CPU affinity to the intersection of its current
 3030 * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
 3031 * If user_cpus_ptr is defined, use it as the basis for restricting CPU
 3032 * affinity or use cpu_online_mask instead.
 3033 *
 3034 * If the resulting mask is empty, leave the affinity unchanged and return
 3035 * -EINVAL.
 3036 */
 3037static int restrict_cpus_allowed_ptr(struct task_struct *p,
 3038				     struct cpumask *new_mask,
 3039				     const struct cpumask *subset_mask)
 3040{
 3041	struct affinity_context ac = {
 3042		.new_mask  = new_mask,
 3043		.flags     = 0,
 3044	};
 3045	struct rq_flags rf;
 3046	struct rq *rq;
 3047	int err;
 3048
 3049	rq = task_rq_lock(p, &rf);
 3050
 3051	/*
 3052	 * Forcefully restricting the affinity of a deadline task is
 3053	 * likely to cause problems, so fail and noisily override the
 3054	 * mask entirely.
 3055	 */
 3056	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
 3057		err = -EPERM;
 3058		goto err_unlock;
 3059	}
 3060
 3061	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
 3062		err = -EINVAL;
 3063		goto err_unlock;
 3064	}
 3065
 3066	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
 3067
 3068err_unlock:
 3069	task_rq_unlock(rq, p, &rf);
 3070	return err;
 3071}
 3072
 3073/*
 3074 * Restrict the CPU affinity of task @p so that it is a subset of
 3075 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
 3076 * old affinity mask. If the resulting mask is empty, we warn and walk
 3077 * up the cpuset hierarchy until we find a suitable mask.
 3078 */
 3079void force_compatible_cpus_allowed_ptr(struct task_struct *p)
 3080{
 3081	cpumask_var_t new_mask;
 3082	const struct cpumask *override_mask = task_cpu_possible_mask(p);
 3083
 3084	alloc_cpumask_var(&new_mask, GFP_KERNEL);
 3085
 3086	/*
 3087	 * __migrate_task() can fail silently in the face of concurrent
 3088	 * offlining of the chosen destination CPU, so take the hotplug
 3089	 * lock to ensure that the migration succeeds.
 3090	 */
 3091	cpus_read_lock();
 3092	if (!cpumask_available(new_mask))
 3093		goto out_set_mask;
 3094
 3095	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
 3096		goto out_free_mask;
 3097
 3098	/*
 3099	 * We failed to find a valid subset of the affinity mask for the
 3100	 * task, so override it based on its cpuset hierarchy.
 3101	 */
 3102	cpuset_cpus_allowed(p, new_mask);
 3103	override_mask = new_mask;
 3104
 3105out_set_mask:
 3106	if (printk_ratelimit()) {
 3107		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
 3108				task_pid_nr(p), p->comm,
 3109				cpumask_pr_args(override_mask));
 3110	}
 3111
 3112	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
 3113out_free_mask:
 3114	cpus_read_unlock();
 3115	free_cpumask_var(new_mask);
 3116}
 3117
 3118static int
 3119__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
 3120
 3121/*
 3122 * Restore the affinity of a task @p which was previously restricted by a
 3123 * call to force_compatible_cpus_allowed_ptr().
 3124 *
 3125 * It is the caller's responsibility to serialise this with any calls to
 3126 * force_compatible_cpus_allowed_ptr(@p).
 3127 */
 3128void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
 3129{
 3130	struct affinity_context ac = {
 3131		.new_mask  = task_user_cpus(p),
 3132		.flags     = 0,
 3133	};
 3134	int ret;
 3135
 3136	/*
 3137	 * Try to restore the old affinity mask with __sched_setaffinity().
 3138	 * Cpuset masking will be done there too.
 3139	 */
 3140	ret = __sched_setaffinity(p, &ac);
 3141	WARN_ON_ONCE(ret);
 3142}
 3143
 3144void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
 3145{
 3146#ifdef CONFIG_SCHED_DEBUG
 3147	unsigned int state = READ_ONCE(p->__state);
 3148
 3149	/*
 3150	 * We should never call set_task_cpu() on a blocked task,
 3151	 * ttwu() will sort out the placement.
 3152	 */
 3153	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
 
 3154
 3155	/*
 3156	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
 3157	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
 3158	 * time relying on p->on_rq.
 3159	 */
 3160	WARN_ON_ONCE(state == TASK_RUNNING &&
 3161		     p->sched_class == &fair_sched_class &&
 3162		     (p->on_rq && !task_on_rq_migrating(p)));
 3163
 3164#ifdef CONFIG_LOCKDEP
 3165	/*
 3166	 * The caller should hold either p->pi_lock or rq->lock, when changing
 3167	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
 3168	 *
 3169	 * sched_move_task() holds both and thus holding either pins the cgroup,
 3170	 * see task_group().
 3171	 *
 3172	 * Furthermore, all task_rq users should acquire both locks, see
 3173	 * task_rq_lock().
 3174	 */
 3175	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
 3176				      lockdep_is_held(__rq_lockp(task_rq(p)))));
 3177#endif
 3178	/*
 3179	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
 3180	 */
 3181	WARN_ON_ONCE(!cpu_online(new_cpu));
 3182
 3183	WARN_ON_ONCE(is_migration_disabled(p));
 3184#endif
 3185
 3186	trace_sched_migrate_task(p, new_cpu);
 3187
 3188	if (task_cpu(p) != new_cpu) {
 3189		if (p->sched_class->migrate_task_rq)
 3190			p->sched_class->migrate_task_rq(p, new_cpu);
 3191		p->se.nr_migrations++;
 3192		rseq_migrate(p);
 3193		perf_event_task_migrate(p);
 3194	}
 3195
 3196	__set_task_cpu(p, new_cpu);
 3197}
 3198
 3199#ifdef CONFIG_NUMA_BALANCING
 3200static void __migrate_swap_task(struct task_struct *p, int cpu)
 3201{
 3202	if (task_on_rq_queued(p)) {
 3203		struct rq *src_rq, *dst_rq;
 3204		struct rq_flags srf, drf;
 3205
 3206		src_rq = task_rq(p);
 3207		dst_rq = cpu_rq(cpu);
 3208
 3209		rq_pin_lock(src_rq, &srf);
 3210		rq_pin_lock(dst_rq, &drf);
 3211
 3212		deactivate_task(src_rq, p, 0);
 3213		set_task_cpu(p, cpu);
 3214		activate_task(dst_rq, p, 0);
 
 3215		check_preempt_curr(dst_rq, p, 0);
 3216
 3217		rq_unpin_lock(dst_rq, &drf);
 3218		rq_unpin_lock(src_rq, &srf);
 3219
 3220	} else {
 3221		/*
 3222		 * Task isn't running anymore; make it appear like we migrated
 3223		 * it before it went to sleep. This means on wakeup we make the
 3224		 * previous CPU our target instead of where it really is.
 3225		 */
 3226		p->wake_cpu = cpu;
 3227	}
 3228}
 3229
 3230struct migration_swap_arg {
 3231	struct task_struct *src_task, *dst_task;
 3232	int src_cpu, dst_cpu;
 3233};
 3234
 3235static int migrate_swap_stop(void *data)
 3236{
 3237	struct migration_swap_arg *arg = data;
 3238	struct rq *src_rq, *dst_rq;
 3239	int ret = -EAGAIN;
 3240
 3241	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
 3242		return -EAGAIN;
 3243
 3244	src_rq = cpu_rq(arg->src_cpu);
 3245	dst_rq = cpu_rq(arg->dst_cpu);
 3246
 3247	double_raw_lock(&arg->src_task->pi_lock,
 3248			&arg->dst_task->pi_lock);
 3249	double_rq_lock(src_rq, dst_rq);
 3250
 3251	if (task_cpu(arg->dst_task) != arg->dst_cpu)
 3252		goto unlock;
 3253
 3254	if (task_cpu(arg->src_task) != arg->src_cpu)
 3255		goto unlock;
 3256
 3257	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
 3258		goto unlock;
 3259
 3260	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
 3261		goto unlock;
 3262
 3263	__migrate_swap_task(arg->src_task, arg->dst_cpu);
 3264	__migrate_swap_task(arg->dst_task, arg->src_cpu);
 3265
 3266	ret = 0;
 3267
 3268unlock:
 3269	double_rq_unlock(src_rq, dst_rq);
 3270	raw_spin_unlock(&arg->dst_task->pi_lock);
 3271	raw_spin_unlock(&arg->src_task->pi_lock);
 3272
 3273	return ret;
 3274}
 3275
 3276/*
 3277 * Cross migrate two tasks
 3278 */
 3279int migrate_swap(struct task_struct *cur, struct task_struct *p,
 3280		int target_cpu, int curr_cpu)
 3281{
 3282	struct migration_swap_arg arg;
 3283	int ret = -EINVAL;
 3284
 3285	arg = (struct migration_swap_arg){
 3286		.src_task = cur,
 3287		.src_cpu = curr_cpu,
 3288		.dst_task = p,
 3289		.dst_cpu = target_cpu,
 3290	};
 3291
 3292	if (arg.src_cpu == arg.dst_cpu)
 3293		goto out;
 3294
 3295	/*
 3296	 * These three tests are all lockless; this is OK since all of them
 3297	 * will be re-checked with proper locks held further down the line.
 3298	 */
 3299	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
 3300		goto out;
 3301
 3302	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
 3303		goto out;
 3304
 3305	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
 3306		goto out;
 3307
 3308	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
 3309	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
 3310
 3311out:
 3312	return ret;
 3313}
 3314#endif /* CONFIG_NUMA_BALANCING */
 3315
 3316/*
 3317 * wait_task_inactive - wait for a thread to unschedule.
 3318 *
 3319 * Wait for the thread to block in any of the states set in @match_state.
 3320 * If it changes, i.e. @p might have woken up, then return zero.  When we
 3321 * succeed in waiting for @p to be off its CPU, we return a positive number
 3322 * (its total switch count).  If a second call a short while later returns the
 3323 * same number, the caller can be sure that @p has remained unscheduled the
 3324 * whole time.
 3325 *
 3326 * The caller must ensure that the task *will* unschedule sometime soon,
 3327 * else this function might spin for a *long* time. This function can't
 3328 * be called with interrupts off, or it may introduce deadlock with
 3329 * smp_call_function() if an IPI is sent by the same process we are
 3330 * waiting to become inactive.
 3331 */
 3332unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
 3333{
 
 3334	int running, queued;
 3335	struct rq_flags rf;
 3336	unsigned long ncsw;
 3337	struct rq *rq;
 3338
 3339	for (;;) {
 3340		/*
 3341		 * We do the initial early heuristics without holding
 3342		 * any task-queue locks at all. We'll only try to get
 3343		 * the runqueue lock when things look like they will
 3344		 * work out!
 3345		 */
 3346		rq = task_rq(p);
 3347
 3348		/*
 3349		 * If the task is actively running on another CPU
 3350		 * still, just relax and busy-wait without holding
 3351		 * any locks.
 3352		 *
 3353		 * NOTE! Since we don't hold any locks, it's not
 3354		 * even sure that "rq" stays as the right runqueue!
 3355		 * But we don't care, since "task_on_cpu()" will
 3356		 * return false if the runqueue has changed and p
 3357		 * is actually now running somewhere else!
 3358		 */
 3359		while (task_on_cpu(rq, p)) {
 3360			if (!(READ_ONCE(p->__state) & match_state))
 3361				return 0;
 3362			cpu_relax();
 3363		}
 3364
 3365		/*
 3366		 * Ok, time to look more closely! We need the rq
 3367		 * lock now, to be *sure*. If we're wrong, we'll
 3368		 * just go back and repeat.
 3369		 */
 3370		rq = task_rq_lock(p, &rf);
 3371		trace_sched_wait_task(p);
 3372		running = task_on_cpu(rq, p);
 3373		queued = task_on_rq_queued(p);
 3374		ncsw = 0;
 3375		if (READ_ONCE(p->__state) & match_state)
 3376			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
 3377		task_rq_unlock(rq, p, &rf);
 3378
 3379		/*
 3380		 * If it changed from the expected state, bail out now.
 3381		 */
 3382		if (unlikely(!ncsw))
 3383			break;
 3384
 3385		/*
 3386		 * Was it really running after all now that we
 3387		 * checked with the proper locks actually held?
 3388		 *
 3389		 * Oops. Go back and try again..
 3390		 */
 3391		if (unlikely(running)) {
 3392			cpu_relax();
 3393			continue;
 3394		}
 3395
 3396		/*
 3397		 * It's not enough that it's not actively running,
 3398		 * it must be off the runqueue _entirely_, and not
 3399		 * preempted!
 3400		 *
 3401		 * So if it was still runnable (but just not actively
 3402		 * running right now), it's preempted, and we should
 3403		 * yield - it could be a while.
 3404		 */
 3405		if (unlikely(queued)) {
 3406			ktime_t to = NSEC_PER_SEC / HZ;
 3407
 3408			set_current_state(TASK_UNINTERRUPTIBLE);
 3409			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
 3410			continue;
 3411		}
 3412
 3413		/*
 3414		 * Ahh, all good. It wasn't running, and it wasn't
 3415		 * runnable, which means that it will never become
 3416		 * running in the future either. We're all done!
 3417		 */
 3418		break;
 3419	}
 3420
 3421	return ncsw;
 3422}
 3423
 3424/***
 3425 * kick_process - kick a running thread to enter/exit the kernel
 3426 * @p: the to-be-kicked thread
 3427 *
 3428 * Cause a process which is running on another CPU to enter
 3429 * kernel-mode, without any delay. (to get signals handled.)
 3430 *
 3431 * NOTE: this function doesn't have to take the runqueue lock,
 3432 * because all it wants to ensure is that the remote task enters
 3433 * the kernel. If the IPI races and the task has been migrated
 3434 * to another CPU then no harm is done and the purpose has been
 3435 * achieved as well.
 3436 */
 3437void kick_process(struct task_struct *p)
 3438{
 3439	int cpu;
 3440
 3441	preempt_disable();
 3442	cpu = task_cpu(p);
 3443	if ((cpu != smp_processor_id()) && task_curr(p))
 3444		smp_send_reschedule(cpu);
 3445	preempt_enable();
 3446}
 3447EXPORT_SYMBOL_GPL(kick_process);
 3448
 3449/*
 3450 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
 3451 *
 3452 * A few notes on cpu_active vs cpu_online:
 3453 *
 3454 *  - cpu_active must be a subset of cpu_online
 3455 *
 3456 *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
 3457 *    see __set_cpus_allowed_ptr(). At this point the newly online
 3458 *    CPU isn't yet part of the sched domains, and balancing will not
 3459 *    see it.
 3460 *
 3461 *  - on CPU-down we clear cpu_active() to mask the sched domains and
 3462 *    avoid the load balancer to place new tasks on the to be removed
 3463 *    CPU. Existing tasks will remain running there and will be taken
 3464 *    off.
 3465 *
 3466 * This means that fallback selection must not select !active CPUs.
 3467 * And can assume that any active CPU must be online. Conversely
 3468 * select_task_rq() below may allow selection of !active CPUs in order
 3469 * to satisfy the above rules.
 3470 */
 3471static int select_fallback_rq(int cpu, struct task_struct *p)
 3472{
 3473	int nid = cpu_to_node(cpu);
 3474	const struct cpumask *nodemask = NULL;
 3475	enum { cpuset, possible, fail } state = cpuset;
 3476	int dest_cpu;
 3477
 3478	/*
 3479	 * If the node that the CPU is on has been offlined, cpu_to_node()
 3480	 * will return -1. There is no CPU on the node, and we should
 3481	 * select the CPU on the other node.
 3482	 */
 3483	if (nid != -1) {
 3484		nodemask = cpumask_of_node(nid);
 3485
 3486		/* Look for allowed, online CPU in same node. */
 3487		for_each_cpu(dest_cpu, nodemask) {
 3488			if (is_cpu_allowed(p, dest_cpu))
 
 
 
 
 3489				return dest_cpu;
 3490		}
 3491	}
 3492
 3493	for (;;) {
 3494		/* Any allowed, online CPU? */
 3495		for_each_cpu(dest_cpu, p->cpus_ptr) {
 3496			if (!is_cpu_allowed(p, dest_cpu))
 
 
 3497				continue;
 3498
 3499			goto out;
 3500		}
 3501
 3502		/* No more Mr. Nice Guy. */
 3503		switch (state) {
 3504		case cpuset:
 3505			if (cpuset_cpus_allowed_fallback(p)) {
 
 3506				state = possible;
 3507				break;
 3508			}
 3509			fallthrough;
 3510		case possible:
 3511			/*
 3512			 * XXX When called from select_task_rq() we only
 3513			 * hold p->pi_lock and again violate locking order.
 3514			 *
 3515			 * More yuck to audit.
 3516			 */
 3517			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
 3518			state = fail;
 3519			break;
 
 3520		case fail:
 3521			BUG();
 3522			break;
 3523		}
 3524	}
 3525
 3526out:
 3527	if (state != cpuset) {
 3528		/*
 3529		 * Don't tell them about moving exiting tasks or
 3530		 * kernel threads (both mm NULL), since they never
 3531		 * leave kernel.
 3532		 */
 3533		if (p->mm && printk_ratelimit()) {
 3534			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
 3535					task_pid_nr(p), p->comm, cpu);
 3536		}
 3537	}
 3538
 3539	return dest_cpu;
 3540}
 3541
 3542/*
 3543 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
 3544 */
 3545static inline
 3546int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
 3547{
 3548	lockdep_assert_held(&p->pi_lock);
 3549
 3550	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
 3551		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
 3552	else
 3553		cpu = cpumask_any(p->cpus_ptr);
 3554
 3555	/*
 3556	 * In order not to call set_task_cpu() on a blocking task we need
 3557	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
 3558	 * CPU.
 3559	 *
 3560	 * Since this is common to all placement strategies, this lives here.
 3561	 *
 3562	 * [ this allows ->select_task() to simply return task_cpu(p) and
 3563	 *   not worry about this generic constraint ]
 3564	 */
 3565	if (unlikely(!is_cpu_allowed(p, cpu)))
 
 3566		cpu = select_fallback_rq(task_cpu(p), p);
 3567
 3568	return cpu;
 3569}
 3570
 3571void sched_set_stop_task(int cpu, struct task_struct *stop)
 3572{
 3573	static struct lock_class_key stop_pi_lock;
 3574	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 3575	struct task_struct *old_stop = cpu_rq(cpu)->stop;
 3576
 3577	if (stop) {
 3578		/*
 3579		 * Make it appear like a SCHED_FIFO task, its something
 3580		 * userspace knows about and won't get confused about.
 3581		 *
 3582		 * Also, it will make PI more or less work without too
 3583		 * much confusion -- but then, stop work should not
 3584		 * rely on PI working anyway.
 3585		 */
 3586		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
 3587
 3588		stop->sched_class = &stop_sched_class;
 3589
 3590		/*
 3591		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
 3592		 * adjust the effective priority of a task. As a result,
 3593		 * rt_mutex_setprio() can trigger (RT) balancing operations,
 3594		 * which can then trigger wakeups of the stop thread to push
 3595		 * around the current task.
 3596		 *
 3597		 * The stop task itself will never be part of the PI-chain, it
 3598		 * never blocks, therefore that ->pi_lock recursion is safe.
 3599		 * Tell lockdep about this by placing the stop->pi_lock in its
 3600		 * own class.
 3601		 */
 3602		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
 3603	}
 3604
 3605	cpu_rq(cpu)->stop = stop;
 3606
 3607	if (old_stop) {
 3608		/*
 3609		 * Reset it back to a normal scheduling class so that
 3610		 * it can die in pieces.
 3611		 */
 3612		old_stop->sched_class = &rt_sched_class;
 3613	}
 3614}
 3615
 3616#else /* CONFIG_SMP */
 3617
 3618static inline int __set_cpus_allowed_ptr(struct task_struct *p,
 3619					 struct affinity_context *ctx)
 3620{
 3621	return set_cpus_allowed_ptr(p, ctx->new_mask);
 3622}
 3623
 3624static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
 3625
 3626static inline bool rq_has_pinned_tasks(struct rq *rq)
 3627{
 3628	return false;
 3629}
 3630
 3631static inline cpumask_t *alloc_user_cpus_ptr(int node)
 3632{
 3633	return NULL;
 3634}
 3635
 3636#endif /* !CONFIG_SMP */
 3637
 3638static void
 3639ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
 3640{
 3641	struct rq *rq;
 3642
 3643	if (!schedstat_enabled())
 3644		return;
 3645
 3646	rq = this_rq();
 3647
 3648#ifdef CONFIG_SMP
 3649	if (cpu == rq->cpu) {
 3650		__schedstat_inc(rq->ttwu_local);
 3651		__schedstat_inc(p->stats.nr_wakeups_local);
 
 
 3652	} else {
 3653		struct sched_domain *sd;
 3654
 3655		__schedstat_inc(p->stats.nr_wakeups_remote);
 3656		rcu_read_lock();
 3657		for_each_domain(rq->cpu, sd) {
 3658			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
 3659				__schedstat_inc(sd->ttwu_wake_remote);
 3660				break;
 3661			}
 3662		}
 3663		rcu_read_unlock();
 3664	}
 3665
 3666	if (wake_flags & WF_MIGRATED)
 3667		__schedstat_inc(p->stats.nr_wakeups_migrate);
 
 3668#endif /* CONFIG_SMP */
 3669
 3670	__schedstat_inc(rq->ttwu_count);
 3671	__schedstat_inc(p->stats.nr_wakeups);
 3672
 3673	if (wake_flags & WF_SYNC)
 3674		__schedstat_inc(p->stats.nr_wakeups_sync);
 
 
 
 
 
 
 
 
 
 
 
 
 3675}
 3676
 3677/*
 3678 * Mark the task runnable and perform wakeup-preemption.
 3679 */
 3680static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
 3681			   struct rq_flags *rf)
 3682{
 3683	check_preempt_curr(rq, p, wake_flags);
 3684	WRITE_ONCE(p->__state, TASK_RUNNING);
 3685	trace_sched_wakeup(p);
 3686
 3687#ifdef CONFIG_SMP
 3688	if (p->sched_class->task_woken) {
 3689		/*
 3690		 * Our task @p is fully woken up and running; so it's safe to
 3691		 * drop the rq->lock, hereafter rq is only used for statistics.
 3692		 */
 3693		rq_unpin_lock(rq, rf);
 3694		p->sched_class->task_woken(rq, p);
 3695		rq_repin_lock(rq, rf);
 3696	}
 3697
 3698	if (rq->idle_stamp) {
 3699		u64 delta = rq_clock(rq) - rq->idle_stamp;
 3700		u64 max = 2*rq->max_idle_balance_cost;
 3701
 3702		update_avg(&rq->avg_idle, delta);
 3703
 3704		if (rq->avg_idle > max)
 3705			rq->avg_idle = max;
 3706
 3707		rq->wake_stamp = jiffies;
 3708		rq->wake_avg_idle = rq->avg_idle / 2;
 3709
 3710		rq->idle_stamp = 0;
 3711	}
 3712#endif
 3713}
 3714
 3715static void
 3716ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
 3717		 struct rq_flags *rf)
 3718{
 3719	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
 3720
 3721	lockdep_assert_rq_held(rq);
 3722
 
 3723	if (p->sched_contributes_to_load)
 3724		rq->nr_uninterruptible--;
 3725
 3726#ifdef CONFIG_SMP
 3727	if (wake_flags & WF_MIGRATED)
 3728		en_flags |= ENQUEUE_MIGRATED;
 3729	else
 3730#endif
 3731	if (p->in_iowait) {
 3732		delayacct_blkio_end(p);
 3733		atomic_dec(&task_rq(p)->nr_iowait);
 3734	}
 3735
 3736	activate_task(rq, p, en_flags);
 3737	ttwu_do_wakeup(rq, p, wake_flags, rf);
 3738}
 3739
 3740/*
 3741 * Consider @p being inside a wait loop:
 3742 *
 3743 *   for (;;) {
 3744 *      set_current_state(TASK_UNINTERRUPTIBLE);
 3745 *
 3746 *      if (CONDITION)
 3747 *         break;
 3748 *
 3749 *      schedule();
 3750 *   }
 3751 *   __set_current_state(TASK_RUNNING);
 3752 *
 3753 * between set_current_state() and schedule(). In this case @p is still
 3754 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
 3755 * an atomic manner.
 3756 *
 3757 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
 3758 * then schedule() must still happen and p->state can be changed to
 3759 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
 3760 * need to do a full wakeup with enqueue.
 3761 *
 3762 * Returns: %true when the wakeup is done,
 3763 *          %false otherwise.
 3764 */
 3765static int ttwu_runnable(struct task_struct *p, int wake_flags)
 3766{
 3767	struct rq_flags rf;
 3768	struct rq *rq;
 3769	int ret = 0;
 3770
 3771	rq = __task_rq_lock(p, &rf);
 3772	if (task_on_rq_queued(p)) {
 3773		/* check_preempt_curr() may use rq clock */
 3774		update_rq_clock(rq);
 3775		ttwu_do_wakeup(rq, p, wake_flags, &rf);
 3776		ret = 1;
 3777	}
 3778	__task_rq_unlock(rq, &rf);
 3779
 3780	return ret;
 3781}
 3782
 3783#ifdef CONFIG_SMP
 3784void sched_ttwu_pending(void *arg)
 3785{
 3786	struct llist_node *llist = arg;
 3787	struct rq *rq = this_rq();
 3788	struct task_struct *p, *t;
 3789	struct rq_flags rf;
 
 3790
 3791	if (!llist)
 3792		return;
 3793
 3794	rq_lock_irqsave(rq, &rf);
 3795	update_rq_clock(rq);
 
 
 
 
 
 
 3796
 3797	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
 3798		if (WARN_ON_ONCE(p->on_cpu))
 3799			smp_cond_load_acquire(&p->on_cpu, !VAL);
 3800
 3801		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
 3802			set_task_cpu(p, cpu_of(rq));
 
 
 
 
 
 
 3803
 3804		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
 3805	}
 3806
 3807	/*
 3808	 * Must be after enqueueing at least once task such that
 3809	 * idle_cpu() does not observe a false-negative -- if it does,
 3810	 * it is possible for select_idle_siblings() to stack a number
 3811	 * of tasks on this CPU during that window.
 
 
 
 3812	 *
 3813	 * It is ok to clear ttwu_pending when another task pending.
 3814	 * We will receive IPI after local irq enabled and then enqueue it.
 3815	 * Since now nr_running > 0, idle_cpu() will always get correct result.
 3816	 */
 3817	WRITE_ONCE(rq->ttwu_pending, 0);
 3818	rq_unlock_irqrestore(rq, &rf);
 3819}
 3820
 3821void send_call_function_single_ipi(int cpu)
 3822{
 3823	struct rq *rq = cpu_rq(cpu);
 3824
 3825	if (!set_nr_if_polling(rq->idle))
 3826		arch_send_call_function_single_ipi(cpu);
 3827	else
 3828		trace_sched_wake_idle_without_ipi(cpu);
 
 
 
 
 3829}
 3830
 3831/*
 3832 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
 3833 * necessary. The wakee CPU on receipt of the IPI will queue the task
 3834 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
 3835 * of the wakeup instead of the waker.
 3836 */
 3837static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
 3838{
 3839	struct rq *rq = cpu_rq(cpu);
 3840
 3841	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
 3842
 3843	WRITE_ONCE(rq->ttwu_pending, 1);
 3844	__smp_call_single_queue(cpu, &p->wake_entry.llist);
 
 
 3845}
 3846
 3847void wake_up_if_idle(int cpu)
 3848{
 3849	struct rq *rq = cpu_rq(cpu);
 3850	struct rq_flags rf;
 3851
 3852	rcu_read_lock();
 3853
 3854	if (!is_idle_task(rcu_dereference(rq->curr)))
 3855		goto out;
 3856
 3857	rq_lock_irqsave(rq, &rf);
 3858	if (is_idle_task(rq->curr))
 3859		resched_curr(rq);
 3860	/* Else CPU is not idle, do nothing here: */
 3861	rq_unlock_irqrestore(rq, &rf);
 
 
 
 
 3862
 3863out:
 3864	rcu_read_unlock();
 3865}
 3866
 3867bool cpus_share_cache(int this_cpu, int that_cpu)
 3868{
 3869	if (this_cpu == that_cpu)
 3870		return true;
 3871
 3872	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
 3873}
 3874
 3875static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
 3876{
 3877	/*
 3878	 * Do not complicate things with the async wake_list while the CPU is
 3879	 * in hotplug state.
 3880	 */
 3881	if (!cpu_active(cpu))
 3882		return false;
 3883
 3884	/* Ensure the task will still be allowed to run on the CPU. */
 3885	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
 3886		return false;
 3887
 3888	/*
 3889	 * If the CPU does not share cache, then queue the task on the
 3890	 * remote rqs wakelist to avoid accessing remote data.
 3891	 */
 3892	if (!cpus_share_cache(smp_processor_id(), cpu))
 3893		return true;
 3894
 3895	if (cpu == smp_processor_id())
 3896		return false;
 3897
 3898	/*
 3899	 * If the wakee cpu is idle, or the task is descheduling and the
 3900	 * only running task on the CPU, then use the wakelist to offload
 3901	 * the task activation to the idle (or soon-to-be-idle) CPU as
 3902	 * the current CPU is likely busy. nr_running is checked to
 3903	 * avoid unnecessary task stacking.
 3904	 *
 3905	 * Note that we can only get here with (wakee) p->on_rq=0,
 3906	 * p->on_cpu can be whatever, we've done the dequeue, so
 3907	 * the wakee has been accounted out of ->nr_running.
 3908	 */
 3909	if (!cpu_rq(cpu)->nr_running)
 3910		return true;
 3911
 3912	return false;
 3913}
 3914
 3915static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
 3916{
 3917	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
 3918		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
 3919		__ttwu_queue_wakelist(p, cpu, wake_flags);
 3920		return true;
 3921	}
 3922
 3923	return false;
 3924}
 3925
 3926#else /* !CONFIG_SMP */
 3927
 3928static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
 3929{
 3930	return false;
 3931}
 3932
 3933#endif /* CONFIG_SMP */
 3934
 3935static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
 3936{
 3937	struct rq *rq = cpu_rq(cpu);
 3938	struct rq_flags rf;
 3939
 3940	if (ttwu_queue_wakelist(p, cpu, wake_flags))
 
 
 
 3941		return;
 3942
 3943	rq_lock(rq, &rf);
 3944	update_rq_clock(rq);
 3945	ttwu_do_activate(rq, p, wake_flags, &rf);
 3946	rq_unlock(rq, &rf);
 3947}
 3948
 3949/*
 3950 * Invoked from try_to_wake_up() to check whether the task can be woken up.
 3951 *
 3952 * The caller holds p::pi_lock if p != current or has preemption
 3953 * disabled when p == current.
 3954 *
 3955 * The rules of PREEMPT_RT saved_state:
 3956 *
 3957 *   The related locking code always holds p::pi_lock when updating
 3958 *   p::saved_state, which means the code is fully serialized in both cases.
 3959 *
 3960 *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
 3961 *   bits set. This allows to distinguish all wakeup scenarios.
 3962 */
 3963static __always_inline
 3964bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
 3965{
 3966	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
 3967		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
 3968			     state != TASK_RTLOCK_WAIT);
 3969	}
 3970
 3971	if (READ_ONCE(p->__state) & state) {
 3972		*success = 1;
 3973		return true;
 3974	}
 3975
 3976#ifdef CONFIG_PREEMPT_RT
 3977	/*
 3978	 * Saved state preserves the task state across blocking on
 3979	 * an RT lock.  If the state matches, set p::saved_state to
 3980	 * TASK_RUNNING, but do not wake the task because it waits
 3981	 * for a lock wakeup. Also indicate success because from
 3982	 * the regular waker's point of view this has succeeded.
 3983	 *
 3984	 * After acquiring the lock the task will restore p::__state
 3985	 * from p::saved_state which ensures that the regular
 3986	 * wakeup is not lost. The restore will also set
 3987	 * p::saved_state to TASK_RUNNING so any further tests will
 3988	 * not result in false positives vs. @success
 3989	 */
 3990	if (p->saved_state & state) {
 3991		p->saved_state = TASK_RUNNING;
 3992		*success = 1;
 3993	}
 3994#endif
 3995	return false;
 
 
 
 
 
 3996}
 3997
 3998/*
 3999 * Notes on Program-Order guarantees on SMP systems.
 4000 *
 4001 *  MIGRATION
 4002 *
 4003 * The basic program-order guarantee on SMP systems is that when a task [t]
 4004 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
 4005 * execution on its new CPU [c1].
 4006 *
 4007 * For migration (of runnable tasks) this is provided by the following means:
 4008 *
 4009 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 4010 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 4011 *     rq(c1)->lock (if not at the same time, then in that order).
 4012 *  C) LOCK of the rq(c1)->lock scheduling in task
 4013 *
 4014 * Release/acquire chaining guarantees that B happens after A and C after B.
 4015 * Note: the CPU doing B need not be c0 or c1
 
 4016 *
 4017 * Example:
 4018 *
 4019 *   CPU0            CPU1            CPU2
 4020 *
 4021 *   LOCK rq(0)->lock
 4022 *   sched-out X
 4023 *   sched-in Y
 4024 *   UNLOCK rq(0)->lock
 4025 *
 4026 *                                   LOCK rq(0)->lock // orders against CPU0
 4027 *                                   dequeue X
 4028 *                                   UNLOCK rq(0)->lock
 4029 *
 4030 *                                   LOCK rq(1)->lock
 4031 *                                   enqueue X
 4032 *                                   UNLOCK rq(1)->lock
 4033 *
 4034 *                   LOCK rq(1)->lock // orders against CPU2
 4035 *                   sched-out Z
 4036 *                   sched-in X
 4037 *                   UNLOCK rq(1)->lock
 4038 *
 4039 *
 4040 *  BLOCKING -- aka. SLEEP + WAKEUP
 4041 *
 4042 * For blocking we (obviously) need to provide the same guarantee as for
 4043 * migration. However the means are completely different as there is no lock
 4044 * chain to provide order. Instead we do:
 4045 *
 4046 *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
 4047 *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
 4048 *
 4049 * Example:
 4050 *
 4051 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 4052 *
 4053 *   LOCK rq(0)->lock LOCK X->pi_lock
 4054 *   dequeue X
 4055 *   sched-out X
 4056 *   smp_store_release(X->on_cpu, 0);
 4057 *
 4058 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
 4059 *                    X->state = WAKING
 4060 *                    set_task_cpu(X,2)
 4061 *
 4062 *                    LOCK rq(2)->lock
 4063 *                    enqueue X
 4064 *                    X->state = RUNNING
 4065 *                    UNLOCK rq(2)->lock
 4066 *
 4067 *                                          LOCK rq(2)->lock // orders against CPU1
 4068 *                                          sched-out Z
 4069 *                                          sched-in X
 4070 *                                          UNLOCK rq(2)->lock
 4071 *
 4072 *                    UNLOCK X->pi_lock
 4073 *   UNLOCK rq(0)->lock
 4074 *
 4075 *
 4076 * However, for wakeups there is a second guarantee we must provide, namely we
 4077 * must ensure that CONDITION=1 done by the caller can not be reordered with
 4078 * accesses to the task state; see try_to_wake_up() and set_current_state().
 
 
 
 
 
 
 
 4079 */
 4080
 4081/**
 4082 * try_to_wake_up - wake up a thread
 4083 * @p: the thread to be awakened
 4084 * @state: the mask of task states that can be woken
 4085 * @wake_flags: wake modifier flags (WF_*)
 4086 *
 4087 * Conceptually does:
 4088 *
 4089 *   If (@state & @p->state) @p->state = TASK_RUNNING.
 4090 *
 4091 * If the task was not queued/runnable, also place it back on a runqueue.
 4092 *
 4093 * This function is atomic against schedule() which would dequeue the task.
 4094 *
 4095 * It issues a full memory barrier before accessing @p->state, see the comment
 4096 * with set_current_state().
 4097 *
 4098 * Uses p->pi_lock to serialize against concurrent wake-ups.
 4099 *
 4100 * Relies on p->pi_lock stabilizing:
 4101 *  - p->sched_class
 4102 *  - p->cpus_ptr
 4103 *  - p->sched_task_group
 4104 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
 4105 *
 4106 * Tries really hard to only take one task_rq(p)->lock for performance.
 4107 * Takes rq->lock in:
 4108 *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
 4109 *  - ttwu_queue()       -- new rq, for enqueue of the task;
 4110 *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
 4111 *
 4112 * As a consequence we race really badly with just about everything. See the
 4113 * many memory barriers and their comments for details.
 4114 *
 4115 * Return: %true if @p->state changes (an actual wakeup was done),
 4116 *	   %false otherwise.
 4117 */
 4118static int
 4119try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
 4120{
 4121	unsigned long flags;
 4122	int cpu, success = 0;
 4123
 4124	preempt_disable();
 4125	if (p == current) {
 4126		/*
 4127		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
 4128		 * == smp_processor_id()'. Together this means we can special
 4129		 * case the whole 'p->on_rq && ttwu_runnable()' case below
 4130		 * without taking any locks.
 4131		 *
 4132		 * In particular:
 4133		 *  - we rely on Program-Order guarantees for all the ordering,
 4134		 *  - we're serialized against set_special_state() by virtue of
 4135		 *    it disabling IRQs (this allows not taking ->pi_lock).
 4136		 */
 4137		if (!ttwu_state_match(p, state, &success))
 4138			goto out;
 4139
 4140		trace_sched_waking(p);
 4141		WRITE_ONCE(p->__state, TASK_RUNNING);
 4142		trace_sched_wakeup(p);
 4143		goto out;
 4144	}
 4145
 4146	/*
 4147	 * If we are going to wake up a thread waiting for CONDITION we
 4148	 * need to ensure that CONDITION=1 done by the caller can not be
 4149	 * reordered with p->state check below. This pairs with smp_store_mb()
 4150	 * in set_current_state() that the waiting thread does.
 4151	 */
 
 4152	raw_spin_lock_irqsave(&p->pi_lock, flags);
 4153	smp_mb__after_spinlock();
 4154	if (!ttwu_state_match(p, state, &success))
 4155		goto unlock;
 4156
 4157	trace_sched_waking(p);
 4158
 4159	/*
 4160	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
 4161	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
 4162	 * in smp_cond_load_acquire() below.
 4163	 *
 4164	 * sched_ttwu_pending()			try_to_wake_up()
 4165	 *   STORE p->on_rq = 1			  LOAD p->state
 4166	 *   UNLOCK rq->lock
 4167	 *
 4168	 * __schedule() (switch to task 'p')
 4169	 *   LOCK rq->lock			  smp_rmb();
 4170	 *   smp_mb__after_spinlock();
 4171	 *   UNLOCK rq->lock
 4172	 *
 4173	 * [task p]
 4174	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
 4175	 *
 4176	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
 4177	 * __schedule().  See the comment for smp_mb__after_spinlock().
 4178	 *
 4179	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
 4180	 */
 4181	smp_rmb();
 4182	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
 4183		goto unlock;
 4184
 4185#ifdef CONFIG_SMP
 4186	/*
 4187	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
 4188	 * possible to, falsely, observe p->on_cpu == 0.
 4189	 *
 4190	 * One must be running (->on_cpu == 1) in order to remove oneself
 4191	 * from the runqueue.
 4192	 *
 4193	 * __schedule() (switch to task 'p')	try_to_wake_up()
 4194	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
 4195	 *   UNLOCK rq->lock
 4196	 *
 4197	 * __schedule() (put 'p' to sleep)
 4198	 *   LOCK rq->lock			  smp_rmb();
 4199	 *   smp_mb__after_spinlock();
 4200	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
 4201	 *
 4202	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
 4203	 * __schedule().  See the comment for smp_mb__after_spinlock().
 4204	 *
 4205	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
 4206	 * schedule()'s deactivate_task() has 'happened' and p will no longer
 4207	 * care about it's own p->state. See the comment in __schedule().
 4208	 */
 4209	smp_acquire__after_ctrl_dep();
 4210
 4211	/*
 4212	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
 4213	 * == 0), which means we need to do an enqueue, change p->state to
 4214	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
 4215	 * enqueue, such as ttwu_queue_wakelist().
 4216	 */
 4217	WRITE_ONCE(p->__state, TASK_WAKING);
 4218
 4219	/*
 4220	 * If the owning (remote) CPU is still in the middle of schedule() with
 4221	 * this task as prev, considering queueing p on the remote CPUs wake_list
 4222	 * which potentially sends an IPI instead of spinning on p->on_cpu to
 4223	 * let the waker make forward progress. This is safe because IRQs are
 4224	 * disabled and the IPI will deliver after on_cpu is cleared.
 4225	 *
 4226	 * Ensure we load task_cpu(p) after p->on_cpu:
 4227	 *
 4228	 * set_task_cpu(p, cpu);
 4229	 *   STORE p->cpu = @cpu
 4230	 * __schedule() (switch to task 'p')
 4231	 *   LOCK rq->lock
 4232	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
 4233	 *   STORE p->on_cpu = 1		LOAD p->cpu
 4234	 *
 4235	 * to ensure we observe the correct CPU on which the task is currently
 4236	 * scheduling.
 4237	 */
 4238	if (smp_load_acquire(&p->on_cpu) &&
 4239	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
 4240		goto unlock;
 4241
 4242	/*
 4243	 * If the owning (remote) CPU is still in the middle of schedule() with
 4244	 * this task as prev, wait until it's done referencing the task.
 4245	 *
 4246	 * Pairs with the smp_store_release() in finish_task().
 4247	 *
 4248	 * This ensures that tasks getting woken will be fully ordered against
 4249	 * their previous state and preserve Program Order.
 4250	 */
 4251	smp_cond_load_acquire(&p->on_cpu, !VAL);
 4252
 4253	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
 4254	if (task_cpu(p) != cpu) {
 4255		if (p->in_iowait) {
 4256			delayacct_blkio_end(p);
 4257			atomic_dec(&task_rq(p)->nr_iowait);
 4258		}
 4259
 
 
 4260		wake_flags |= WF_MIGRATED;
 4261		psi_ttwu_dequeue(p);
 4262		set_task_cpu(p, cpu);
 4263	}
 4264#else
 4265	cpu = task_cpu(p);
 4266#endif /* CONFIG_SMP */
 4267
 4268	ttwu_queue(p, cpu, wake_flags);
 4269unlock:
 4270	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 
 4271out:
 4272	if (success)
 4273		ttwu_stat(p, task_cpu(p), wake_flags);
 4274	preempt_enable();
 4275
 4276	return success;
 4277}
 4278
 4279static bool __task_needs_rq_lock(struct task_struct *p)
 4280{
 4281	unsigned int state = READ_ONCE(p->__state);
 4282
 4283	/*
 4284	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
 4285	 * the task is blocked. Make sure to check @state since ttwu() can drop
 4286	 * locks at the end, see ttwu_queue_wakelist().
 4287	 */
 4288	if (state == TASK_RUNNING || state == TASK_WAKING)
 4289		return true;
 4290
 4291	/*
 4292	 * Ensure we load p->on_rq after p->__state, otherwise it would be
 4293	 * possible to, falsely, observe p->on_rq == 0.
 4294	 *
 4295	 * See try_to_wake_up() for a longer comment.
 4296	 */
 4297	smp_rmb();
 4298	if (p->on_rq)
 4299		return true;
 4300
 4301#ifdef CONFIG_SMP
 4302	/*
 4303	 * Ensure the task has finished __schedule() and will not be referenced
 4304	 * anymore. Again, see try_to_wake_up() for a longer comment.
 4305	 */
 4306	smp_rmb();
 4307	smp_cond_load_acquire(&p->on_cpu, !VAL);
 4308#endif
 4309
 4310	return false;
 4311}
 4312
 4313/**
 4314 * task_call_func - Invoke a function on task in fixed state
 4315 * @p: Process for which the function is to be invoked, can be @current.
 4316 * @func: Function to invoke.
 4317 * @arg: Argument to function.
 4318 *
 4319 * Fix the task in it's current state by avoiding wakeups and or rq operations
 4320 * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
 4321 * to work out what the state is, if required.  Given that @func can be invoked
 4322 * with a runqueue lock held, it had better be quite lightweight.
 4323 *
 4324 * Returns:
 4325 *   Whatever @func returns
 
 4326 */
 4327int task_call_func(struct task_struct *p, task_call_f func, void *arg)
 4328{
 4329	struct rq *rq = NULL;
 4330	struct rq_flags rf;
 4331	int ret;
 4332
 4333	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
 
 
 4334
 4335	if (__task_needs_rq_lock(p))
 4336		rq = __task_rq_lock(p, &rf);
 4337
 4338	/*
 4339	 * At this point the task is pinned; either:
 4340	 *  - blocked and we're holding off wakeups	 (pi->lock)
 4341	 *  - woken, and we're holding off enqueue	 (rq->lock)
 4342	 *  - queued, and we're holding off schedule	 (rq->lock)
 4343	 *  - running, and we're holding off de-schedule (rq->lock)
 4344	 *
 4345	 * The called function (@func) can use: task_curr(), p->on_rq and
 4346	 * p->__state to differentiate between these states.
 4347	 */
 4348	ret = func(p, arg);
 
 
 4349
 4350	if (rq)
 4351		rq_unlock(rq, &rf);
 4352
 4353	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
 4354	return ret;
 4355}
 4356
 4357/**
 4358 * cpu_curr_snapshot - Return a snapshot of the currently running task
 4359 * @cpu: The CPU on which to snapshot the task.
 4360 *
 4361 * Returns the task_struct pointer of the task "currently" running on
 4362 * the specified CPU.  If the same task is running on that CPU throughout,
 4363 * the return value will be a pointer to that task's task_struct structure.
 4364 * If the CPU did any context switches even vaguely concurrently with the
 4365 * execution of this function, the return value will be a pointer to the
 4366 * task_struct structure of a randomly chosen task that was running on
 4367 * that CPU somewhere around the time that this function was executing.
 4368 *
 4369 * If the specified CPU was offline, the return value is whatever it
 4370 * is, perhaps a pointer to the task_struct structure of that CPU's idle
 4371 * task, but there is no guarantee.  Callers wishing a useful return
 4372 * value must take some action to ensure that the specified CPU remains
 4373 * online throughout.
 4374 *
 4375 * This function executes full memory barriers before and after fetching
 4376 * the pointer, which permits the caller to confine this function's fetch
 4377 * with respect to the caller's accesses to other shared variables.
 4378 */
 4379struct task_struct *cpu_curr_snapshot(int cpu)
 4380{
 4381	struct task_struct *t;
 4382
 4383	smp_mb(); /* Pairing determined by caller's synchronization design. */
 4384	t = rcu_dereference(cpu_curr(cpu));
 4385	smp_mb(); /* Pairing determined by caller's synchronization design. */
 4386	return t;
 4387}
 4388
 4389/**
 4390 * wake_up_process - Wake up a specific process
 4391 * @p: The process to be woken up.
 4392 *
 4393 * Attempt to wake up the nominated process and move it to the set of runnable
 4394 * processes.
 4395 *
 4396 * Return: 1 if the process was woken up, 0 if it was already running.
 4397 *
 4398 * This function executes a full memory barrier before accessing the task state.
 
 4399 */
 4400int wake_up_process(struct task_struct *p)
 4401{
 4402	return try_to_wake_up(p, TASK_NORMAL, 0);
 4403}
 4404EXPORT_SYMBOL(wake_up_process);
 4405
 4406int wake_up_state(struct task_struct *p, unsigned int state)
 4407{
 4408	return try_to_wake_up(p, state, 0);
 4409}
 4410
 4411/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4412 * Perform scheduler related setup for a newly forked process p.
 4413 * p is forked by current.
 4414 *
 4415 * __sched_fork() is basic setup used by init_idle() too:
 4416 */
 4417static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
 4418{
 4419	p->on_rq			= 0;
 4420
 4421	p->se.on_rq			= 0;
 4422	p->se.exec_start		= 0;
 4423	p->se.sum_exec_runtime		= 0;
 4424	p->se.prev_sum_exec_runtime	= 0;
 4425	p->se.nr_migrations		= 0;
 4426	p->se.vruntime			= 0;
 4427	INIT_LIST_HEAD(&p->se.group_node);
 4428
 4429#ifdef CONFIG_FAIR_GROUP_SCHED
 4430	p->se.cfs_rq			= NULL;
 4431#endif
 4432
 4433#ifdef CONFIG_SCHEDSTATS
 4434	/* Even if schedstat is disabled, there should not be garbage */
 4435	memset(&p->stats, 0, sizeof(p->stats));
 4436#endif
 4437
 4438	RB_CLEAR_NODE(&p->dl.rb_node);
 4439	init_dl_task_timer(&p->dl);
 4440	init_dl_inactive_task_timer(&p->dl);
 4441	__dl_clear_params(p);
 4442
 4443	INIT_LIST_HEAD(&p->rt.run_list);
 4444	p->rt.timeout		= 0;
 4445	p->rt.time_slice	= sched_rr_timeslice;
 4446	p->rt.on_rq		= 0;
 4447	p->rt.on_list		= 0;
 4448
 4449#ifdef CONFIG_PREEMPT_NOTIFIERS
 4450	INIT_HLIST_HEAD(&p->preempt_notifiers);
 4451#endif
 4452
 4453#ifdef CONFIG_COMPACTION
 4454	p->capture_control = NULL;
 4455#endif
 4456	init_numa_balancing(clone_flags, p);
 4457#ifdef CONFIG_SMP
 4458	p->wake_entry.u_flags = CSD_TYPE_TTWU;
 4459	p->migration_pending = NULL;
 4460#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 4461}
 4462
 4463DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
 4464
 4465#ifdef CONFIG_NUMA_BALANCING
 4466
 4467int sysctl_numa_balancing_mode;
 4468
 4469static void __set_numabalancing_state(bool enabled)
 4470{
 4471	if (enabled)
 4472		static_branch_enable(&sched_numa_balancing);
 4473	else
 4474		static_branch_disable(&sched_numa_balancing);
 4475}
 4476
 4477void set_numabalancing_state(bool enabled)
 4478{
 4479	if (enabled)
 4480		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
 4481	else
 4482		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
 4483	__set_numabalancing_state(enabled);
 4484}
 4485
 4486#ifdef CONFIG_PROC_SYSCTL
 4487static void reset_memory_tiering(void)
 4488{
 4489	struct pglist_data *pgdat;
 4490
 4491	for_each_online_pgdat(pgdat) {
 4492		pgdat->nbp_threshold = 0;
 4493		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
 4494		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
 4495	}
 4496}
 4497
 4498static int sysctl_numa_balancing(struct ctl_table *table, int write,
 4499			  void *buffer, size_t *lenp, loff_t *ppos)
 4500{
 4501	struct ctl_table t;
 4502	int err;
 4503	int state = sysctl_numa_balancing_mode;
 4504
 4505	if (write && !capable(CAP_SYS_ADMIN))
 4506		return -EPERM;
 4507
 4508	t = *table;
 4509	t.data = &state;
 4510	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
 4511	if (err < 0)
 4512		return err;
 4513	if (write) {
 4514		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
 4515		    (state & NUMA_BALANCING_MEMORY_TIERING))
 4516			reset_memory_tiering();
 4517		sysctl_numa_balancing_mode = state;
 4518		__set_numabalancing_state(state);
 4519	}
 4520	return err;
 4521}
 4522#endif
 4523#endif
 4524
 4525#ifdef CONFIG_SCHEDSTATS
 4526
 4527DEFINE_STATIC_KEY_FALSE(sched_schedstats);
 4528
 
 4529static void set_schedstats(bool enabled)
 4530{
 4531	if (enabled)
 4532		static_branch_enable(&sched_schedstats);
 4533	else
 4534		static_branch_disable(&sched_schedstats);
 4535}
 4536
 4537void force_schedstat_enabled(void)
 4538{
 4539	if (!schedstat_enabled()) {
 4540		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
 4541		static_branch_enable(&sched_schedstats);
 4542	}
 4543}
 4544
 4545static int __init setup_schedstats(char *str)
 4546{
 4547	int ret = 0;
 4548	if (!str)
 4549		goto out;
 4550
 4551	if (!strcmp(str, "enable")) {
 4552		set_schedstats(true);
 4553		ret = 1;
 4554	} else if (!strcmp(str, "disable")) {
 4555		set_schedstats(false);
 4556		ret = 1;
 4557	}
 4558out:
 4559	if (!ret)
 4560		pr_warn("Unable to parse schedstats=\n");
 4561
 4562	return ret;
 4563}
 4564__setup("schedstats=", setup_schedstats);
 4565
 4566#ifdef CONFIG_PROC_SYSCTL
 4567static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
 4568		size_t *lenp, loff_t *ppos)
 4569{
 4570	struct ctl_table t;
 4571	int err;
 4572	int state = static_branch_likely(&sched_schedstats);
 4573
 4574	if (write && !capable(CAP_SYS_ADMIN))
 4575		return -EPERM;
 4576
 4577	t = *table;
 4578	t.data = &state;
 4579	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
 4580	if (err < 0)
 4581		return err;
 4582	if (write)
 4583		set_schedstats(state);
 4584	return err;
 4585}
 4586#endif /* CONFIG_PROC_SYSCTL */
 4587#endif /* CONFIG_SCHEDSTATS */
 4588
 4589#ifdef CONFIG_SYSCTL
 4590static struct ctl_table sched_core_sysctls[] = {
 4591#ifdef CONFIG_SCHEDSTATS
 4592	{
 4593		.procname       = "sched_schedstats",
 4594		.data           = NULL,
 4595		.maxlen         = sizeof(unsigned int),
 4596		.mode           = 0644,
 4597		.proc_handler   = sysctl_schedstats,
 4598		.extra1         = SYSCTL_ZERO,
 4599		.extra2         = SYSCTL_ONE,
 4600	},
 4601#endif /* CONFIG_SCHEDSTATS */
 4602#ifdef CONFIG_UCLAMP_TASK
 4603	{
 4604		.procname       = "sched_util_clamp_min",
 4605		.data           = &sysctl_sched_uclamp_util_min,
 4606		.maxlen         = sizeof(unsigned int),
 4607		.mode           = 0644,
 4608		.proc_handler   = sysctl_sched_uclamp_handler,
 4609	},
 4610	{
 4611		.procname       = "sched_util_clamp_max",
 4612		.data           = &sysctl_sched_uclamp_util_max,
 4613		.maxlen         = sizeof(unsigned int),
 4614		.mode           = 0644,
 4615		.proc_handler   = sysctl_sched_uclamp_handler,
 4616	},
 4617	{
 4618		.procname       = "sched_util_clamp_min_rt_default",
 4619		.data           = &sysctl_sched_uclamp_util_min_rt_default,
 4620		.maxlen         = sizeof(unsigned int),
 4621		.mode           = 0644,
 4622		.proc_handler   = sysctl_sched_uclamp_handler,
 4623	},
 4624#endif /* CONFIG_UCLAMP_TASK */
 4625#ifdef CONFIG_NUMA_BALANCING
 4626	{
 4627		.procname	= "numa_balancing",
 4628		.data		= NULL, /* filled in by handler */
 4629		.maxlen		= sizeof(unsigned int),
 4630		.mode		= 0644,
 4631		.proc_handler	= sysctl_numa_balancing,
 4632		.extra1		= SYSCTL_ZERO,
 4633		.extra2		= SYSCTL_FOUR,
 4634	},
 4635#endif /* CONFIG_NUMA_BALANCING */
 4636	{}
 4637};
 4638static int __init sched_core_sysctl_init(void)
 4639{
 4640	register_sysctl_init("kernel", sched_core_sysctls);
 4641	return 0;
 4642}
 4643late_initcall(sched_core_sysctl_init);
 4644#endif /* CONFIG_SYSCTL */
 4645
 4646/*
 4647 * fork()/clone()-time setup:
 4648 */
 4649int sched_fork(unsigned long clone_flags, struct task_struct *p)
 4650{
 
 
 
 4651	__sched_fork(clone_flags, p);
 4652	/*
 4653	 * We mark the process as NEW here. This guarantees that
 4654	 * nobody will actually run it, and a signal or other external
 4655	 * event cannot wake it up and insert it on the runqueue either.
 4656	 */
 4657	p->__state = TASK_NEW;
 4658
 4659	/*
 4660	 * Make sure we do not leak PI boosting priority to the child.
 4661	 */
 4662	p->prio = current->normal_prio;
 4663
 4664	uclamp_fork(p);
 4665
 4666	/*
 4667	 * Revert to default priority/policy on fork if requested.
 4668	 */
 4669	if (unlikely(p->sched_reset_on_fork)) {
 4670		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
 4671			p->policy = SCHED_NORMAL;
 4672			p->static_prio = NICE_TO_PRIO(0);
 4673			p->rt_priority = 0;
 4674		} else if (PRIO_TO_NICE(p->static_prio) < 0)
 4675			p->static_prio = NICE_TO_PRIO(0);
 4676
 4677		p->prio = p->normal_prio = p->static_prio;
 4678		set_load_weight(p, false);
 4679
 4680		/*
 4681		 * We don't need the reset flag anymore after the fork. It has
 4682		 * fulfilled its duty:
 4683		 */
 4684		p->sched_reset_on_fork = 0;
 4685	}
 4686
 4687	if (dl_prio(p->prio))
 
 4688		return -EAGAIN;
 4689	else if (rt_prio(p->prio))
 4690		p->sched_class = &rt_sched_class;
 4691	else
 4692		p->sched_class = &fair_sched_class;
 
 4693
 4694	init_entity_runnable_average(&p->se);
 
 4695
 
 
 
 
 
 
 
 
 
 
 4696
 4697#ifdef CONFIG_SCHED_INFO
 4698	if (likely(sched_info_on()))
 4699		memset(&p->sched_info, 0, sizeof(p->sched_info));
 4700#endif
 4701#if defined(CONFIG_SMP)
 4702	p->on_cpu = 0;
 4703#endif
 4704	init_task_preempt_count(p);
 4705#ifdef CONFIG_SMP
 4706	plist_node_init(&p->pushable_tasks, MAX_PRIO);
 4707	RB_CLEAR_NODE(&p->pushable_dl_tasks);
 4708#endif
 
 
 4709	return 0;
 4710}
 4711
 4712void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
 4713{
 4714	unsigned long flags;
 
 4715
 4716	/*
 4717	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
 4718	 * required yet, but lockdep gets upset if rules are violated.
 4719	 */
 4720	raw_spin_lock_irqsave(&p->pi_lock, flags);
 4721#ifdef CONFIG_CGROUP_SCHED
 4722	if (1) {
 4723		struct task_group *tg;
 4724		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
 4725				  struct task_group, css);
 4726		tg = autogroup_task_group(p, tg);
 4727		p->sched_task_group = tg;
 4728	}
 4729#endif
 4730	rseq_migrate(p);
 4731	/*
 4732	 * We're setting the CPU for the first time, we don't migrate,
 4733	 * so use __set_task_cpu().
 4734	 */
 4735	__set_task_cpu(p, smp_processor_id());
 4736	if (p->sched_class->task_fork)
 4737		p->sched_class->task_fork(p);
 4738	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 4739}
 4740
 4741void sched_post_fork(struct task_struct *p)
 
 4742{
 4743	uclamp_post_fork(p);
 
 
 4744}
 4745
 4746unsigned long to_ratio(u64 period, u64 runtime)
 4747{
 4748	if (runtime == RUNTIME_INF)
 4749		return BW_UNIT;
 4750
 4751	/*
 4752	 * Doing this here saves a lot of checks in all
 4753	 * the calling paths, and returning zero seems
 4754	 * safe for them anyway.
 4755	 */
 4756	if (period == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4757		return 0;
 4758
 4759	return div64_u64(runtime << BW_SHIFT, period);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4760}
 4761
 
 
 4762/*
 4763 * wake_up_new_task - wake up a newly created task for the first time.
 4764 *
 4765 * This function will do some initial scheduler statistics housekeeping
 4766 * that must be done for every newly created context, then puts the task
 4767 * on the runqueue and wakes it.
 4768 */
 4769void wake_up_new_task(struct task_struct *p)
 4770{
 4771	struct rq_flags rf;
 4772	struct rq *rq;
 4773
 4774	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
 4775	WRITE_ONCE(p->__state, TASK_RUNNING);
 
 4776#ifdef CONFIG_SMP
 4777	/*
 4778	 * Fork balancing, do it here and not earlier because:
 4779	 *  - cpus_ptr can change in the fork path
 4780	 *  - any previously selected CPU might disappear through hotplug
 4781	 *
 4782	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
 4783	 * as we're not fully set-up yet.
 4784	 */
 4785	p->recent_used_cpu = task_cpu(p);
 4786	rseq_migrate(p);
 4787	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
 4788#endif
 4789	rq = __task_rq_lock(p, &rf);
 4790	update_rq_clock(rq);
 4791	post_init_entity_util_avg(p);
 4792
 4793	activate_task(rq, p, ENQUEUE_NOCLOCK);
 
 
 4794	trace_sched_wakeup_new(p);
 4795	check_preempt_curr(rq, p, WF_FORK);
 4796#ifdef CONFIG_SMP
 4797	if (p->sched_class->task_woken) {
 4798		/*
 4799		 * Nothing relies on rq->lock after this, so it's fine to
 4800		 * drop it.
 4801		 */
 4802		rq_unpin_lock(rq, &rf);
 4803		p->sched_class->task_woken(rq, p);
 4804		rq_repin_lock(rq, &rf);
 4805	}
 4806#endif
 4807	task_rq_unlock(rq, p, &rf);
 4808}
 4809
 4810#ifdef CONFIG_PREEMPT_NOTIFIERS
 4811
 4812static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
 4813
 4814void preempt_notifier_inc(void)
 4815{
 4816	static_branch_inc(&preempt_notifier_key);
 4817}
 4818EXPORT_SYMBOL_GPL(preempt_notifier_inc);
 4819
 4820void preempt_notifier_dec(void)
 4821{
 4822	static_branch_dec(&preempt_notifier_key);
 4823}
 4824EXPORT_SYMBOL_GPL(preempt_notifier_dec);
 4825
 4826/**
 4827 * preempt_notifier_register - tell me when current is being preempted & rescheduled
 4828 * @notifier: notifier struct to register
 4829 */
 4830void preempt_notifier_register(struct preempt_notifier *notifier)
 4831{
 4832	if (!static_branch_unlikely(&preempt_notifier_key))
 4833		WARN(1, "registering preempt_notifier while notifiers disabled\n");
 4834
 4835	hlist_add_head(&notifier->link, &current->preempt_notifiers);
 4836}
 4837EXPORT_SYMBOL_GPL(preempt_notifier_register);
 4838
 4839/**
 4840 * preempt_notifier_unregister - no longer interested in preemption notifications
 4841 * @notifier: notifier struct to unregister
 4842 *
 4843 * This is *not* safe to call from within a preemption notifier.
 4844 */
 4845void preempt_notifier_unregister(struct preempt_notifier *notifier)
 4846{
 4847	hlist_del(&notifier->link);
 4848}
 4849EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
 4850
 4851static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
 4852{
 4853	struct preempt_notifier *notifier;
 4854
 4855	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
 4856		notifier->ops->sched_in(notifier, raw_smp_processor_id());
 4857}
 4858
 4859static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
 4860{
 4861	if (static_branch_unlikely(&preempt_notifier_key))
 4862		__fire_sched_in_preempt_notifiers(curr);
 4863}
 4864
 4865static void
 4866__fire_sched_out_preempt_notifiers(struct task_struct *curr,
 4867				   struct task_struct *next)
 4868{
 4869	struct preempt_notifier *notifier;
 4870
 4871	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
 4872		notifier->ops->sched_out(notifier, next);
 4873}
 4874
 4875static __always_inline void
 4876fire_sched_out_preempt_notifiers(struct task_struct *curr,
 4877				 struct task_struct *next)
 4878{
 4879	if (static_branch_unlikely(&preempt_notifier_key))
 4880		__fire_sched_out_preempt_notifiers(curr, next);
 4881}
 4882
 4883#else /* !CONFIG_PREEMPT_NOTIFIERS */
 4884
 4885static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
 4886{
 4887}
 4888
 4889static inline void
 4890fire_sched_out_preempt_notifiers(struct task_struct *curr,
 4891				 struct task_struct *next)
 4892{
 4893}
 4894
 4895#endif /* CONFIG_PREEMPT_NOTIFIERS */
 4896
 4897static inline void prepare_task(struct task_struct *next)
 4898{
 4899#ifdef CONFIG_SMP
 4900	/*
 4901	 * Claim the task as running, we do this before switching to it
 4902	 * such that any running task will have this set.
 4903	 *
 4904	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
 4905	 * its ordering comment.
 4906	 */
 4907	WRITE_ONCE(next->on_cpu, 1);
 4908#endif
 4909}
 4910
 4911static inline void finish_task(struct task_struct *prev)
 4912{
 4913#ifdef CONFIG_SMP
 4914	/*
 4915	 * This must be the very last reference to @prev from this CPU. After
 4916	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
 4917	 * must ensure this doesn't happen until the switch is completely
 4918	 * finished.
 4919	 *
 4920	 * In particular, the load of prev->state in finish_task_switch() must
 4921	 * happen before this.
 4922	 *
 4923	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
 4924	 */
 4925	smp_store_release(&prev->on_cpu, 0);
 4926#endif
 4927}
 4928
 4929#ifdef CONFIG_SMP
 4930
 4931static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
 4932{
 4933	void (*func)(struct rq *rq);
 4934	struct balance_callback *next;
 4935
 4936	lockdep_assert_rq_held(rq);
 4937
 4938	while (head) {
 4939		func = (void (*)(struct rq *))head->func;
 4940		next = head->next;
 4941		head->next = NULL;
 4942		head = next;
 4943
 4944		func(rq);
 4945	}
 4946}
 4947
 4948static void balance_push(struct rq *rq);
 4949
 4950/*
 4951 * balance_push_callback is a right abuse of the callback interface and plays
 4952 * by significantly different rules.
 4953 *
 4954 * Where the normal balance_callback's purpose is to be ran in the same context
 4955 * that queued it (only later, when it's safe to drop rq->lock again),
 4956 * balance_push_callback is specifically targeted at __schedule().
 4957 *
 4958 * This abuse is tolerated because it places all the unlikely/odd cases behind
 4959 * a single test, namely: rq->balance_callback == NULL.
 4960 */
 4961struct balance_callback balance_push_callback = {
 4962	.next = NULL,
 4963	.func = balance_push,
 4964};
 4965
 4966static inline struct balance_callback *
 4967__splice_balance_callbacks(struct rq *rq, bool split)
 4968{
 4969	struct balance_callback *head = rq->balance_callback;
 4970
 4971	if (likely(!head))
 4972		return NULL;
 4973
 4974	lockdep_assert_rq_held(rq);
 4975	/*
 4976	 * Must not take balance_push_callback off the list when
 4977	 * splice_balance_callbacks() and balance_callbacks() are not
 4978	 * in the same rq->lock section.
 4979	 *
 4980	 * In that case it would be possible for __schedule() to interleave
 4981	 * and observe the list empty.
 4982	 */
 4983	if (split && head == &balance_push_callback)
 4984		head = NULL;
 4985	else
 4986		rq->balance_callback = NULL;
 4987
 4988	return head;
 4989}
 4990
 4991static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
 4992{
 4993	return __splice_balance_callbacks(rq, true);
 4994}
 4995
 4996static void __balance_callbacks(struct rq *rq)
 4997{
 4998	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
 4999}
 5000
 5001static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
 5002{
 5003	unsigned long flags;
 5004
 5005	if (unlikely(head)) {
 5006		raw_spin_rq_lock_irqsave(rq, flags);
 5007		do_balance_callbacks(rq, head);
 5008		raw_spin_rq_unlock_irqrestore(rq, flags);
 5009	}
 5010}
 5011
 5012#else
 5013
 5014static inline void __balance_callbacks(struct rq *rq)
 5015{
 5016}
 5017
 5018static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
 5019{
 5020	return NULL;
 5021}
 5022
 5023static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
 5024{
 5025}
 5026
 5027#endif
 5028
 5029static inline void
 5030prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
 5031{
 5032	/*
 5033	 * Since the runqueue lock will be released by the next
 5034	 * task (which is an invalid locking op but in the case
 5035	 * of the scheduler it's an obvious special-case), so we
 5036	 * do an early lockdep release here:
 5037	 */
 5038	rq_unpin_lock(rq, rf);
 5039	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
 5040#ifdef CONFIG_DEBUG_SPINLOCK
 5041	/* this is a valid case when another task releases the spinlock */
 5042	rq_lockp(rq)->owner = next;
 5043#endif
 5044}
 5045
 5046static inline void finish_lock_switch(struct rq *rq)
 5047{
 5048	/*
 5049	 * If we are tracking spinlock dependencies then we have to
 5050	 * fix up the runqueue lock - which gets 'carried over' from
 5051	 * prev into current:
 5052	 */
 5053	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
 5054	__balance_callbacks(rq);
 5055	raw_spin_rq_unlock_irq(rq);
 5056}
 5057
 5058/*
 5059 * NOP if the arch has not defined these:
 5060 */
 5061
 5062#ifndef prepare_arch_switch
 5063# define prepare_arch_switch(next)	do { } while (0)
 5064#endif
 5065
 5066#ifndef finish_arch_post_lock_switch
 5067# define finish_arch_post_lock_switch()	do { } while (0)
 5068#endif
 5069
 5070static inline void kmap_local_sched_out(void)
 5071{
 5072#ifdef CONFIG_KMAP_LOCAL
 5073	if (unlikely(current->kmap_ctrl.idx))
 5074		__kmap_local_sched_out();
 5075#endif
 5076}
 5077
 5078static inline void kmap_local_sched_in(void)
 5079{
 5080#ifdef CONFIG_KMAP_LOCAL
 5081	if (unlikely(current->kmap_ctrl.idx))
 5082		__kmap_local_sched_in();
 5083#endif
 5084}
 5085
 5086/**
 5087 * prepare_task_switch - prepare to switch tasks
 5088 * @rq: the runqueue preparing to switch
 5089 * @prev: the current task that is being switched out
 5090 * @next: the task we are going to switch to.
 5091 *
 5092 * This is called with the rq lock held and interrupts off. It must
 5093 * be paired with a subsequent finish_task_switch after the context
 5094 * switch.
 5095 *
 5096 * prepare_task_switch sets up locking and calls architecture specific
 5097 * hooks.
 5098 */
 5099static inline void
 5100prepare_task_switch(struct rq *rq, struct task_struct *prev,
 5101		    struct task_struct *next)
 5102{
 5103	kcov_prepare_switch(prev);
 5104	sched_info_switch(rq, prev, next);
 5105	perf_event_task_sched_out(prev, next);
 5106	rseq_preempt(prev);
 5107	fire_sched_out_preempt_notifiers(prev, next);
 5108	kmap_local_sched_out();
 5109	prepare_task(next);
 5110	prepare_arch_switch(next);
 5111}
 5112
 5113/**
 5114 * finish_task_switch - clean up after a task-switch
 5115 * @prev: the thread we just switched away from.
 5116 *
 5117 * finish_task_switch must be called after the context switch, paired
 5118 * with a prepare_task_switch call before the context switch.
 5119 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 5120 * and do any other architecture-specific cleanup actions.
 5121 *
 5122 * Note that we may have delayed dropping an mm in context_switch(). If
 5123 * so, we finish that here outside of the runqueue lock. (Doing it
 5124 * with the lock held can cause deadlocks; see schedule() for
 5125 * details.)
 5126 *
 5127 * The context switch have flipped the stack from under us and restored the
 5128 * local variables which were saved when this task called schedule() in the
 5129 * past. prev == current is still correct but we need to recalculate this_rq
 5130 * because prev may have moved to another CPU.
 5131 */
 5132static struct rq *finish_task_switch(struct task_struct *prev)
 5133	__releases(rq->lock)
 5134{
 5135	struct rq *rq = this_rq();
 5136	struct mm_struct *mm = rq->prev_mm;
 5137	unsigned int prev_state;
 5138
 5139	/*
 5140	 * The previous task will have left us with a preempt_count of 2
 5141	 * because it left us after:
 5142	 *
 5143	 *	schedule()
 5144	 *	  preempt_disable();			// 1
 5145	 *	  __schedule()
 5146	 *	    raw_spin_lock_irq(&rq->lock)	// 2
 5147	 *
 5148	 * Also, see FORK_PREEMPT_COUNT.
 5149	 */
 5150	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
 5151		      "corrupted preempt_count: %s/%d/0x%x\n",
 5152		      current->comm, current->pid, preempt_count()))
 5153		preempt_count_set(FORK_PREEMPT_COUNT);
 5154
 5155	rq->prev_mm = NULL;
 5156
 5157	/*
 5158	 * A task struct has one reference for the use as "current".
 5159	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
 5160	 * schedule one last time. The schedule call will never return, and
 5161	 * the scheduled task must drop that reference.
 5162	 *
 5163	 * We must observe prev->state before clearing prev->on_cpu (in
 5164	 * finish_task), otherwise a concurrent wakeup can get prev
 5165	 * running on another CPU and we could rave with its RUNNING -> DEAD
 5166	 * transition, resulting in a double drop.
 5167	 */
 5168	prev_state = READ_ONCE(prev->__state);
 5169	vtime_task_switch(prev);
 5170	perf_event_task_sched_in(prev, current);
 5171	finish_task(prev);
 5172	tick_nohz_task_switch();
 5173	finish_lock_switch(rq);
 5174	finish_arch_post_lock_switch();
 5175	kcov_finish_switch(current);
 5176	/*
 5177	 * kmap_local_sched_out() is invoked with rq::lock held and
 5178	 * interrupts disabled. There is no requirement for that, but the
 5179	 * sched out code does not have an interrupt enabled section.
 5180	 * Restoring the maps on sched in does not require interrupts being
 5181	 * disabled either.
 5182	 */
 5183	kmap_local_sched_in();
 5184
 5185	fire_sched_in_preempt_notifiers(current);
 5186	/*
 5187	 * When switching through a kernel thread, the loop in
 5188	 * membarrier_{private,global}_expedited() may have observed that
 5189	 * kernel thread and not issued an IPI. It is therefore possible to
 5190	 * schedule between user->kernel->user threads without passing though
 5191	 * switch_mm(). Membarrier requires a barrier after storing to
 5192	 * rq->curr, before returning to userspace, so provide them here:
 5193	 *
 5194	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
 5195	 *   provided by mmdrop(),
 5196	 * - a sync_core for SYNC_CORE.
 5197	 */
 5198	if (mm) {
 5199		membarrier_mm_sync_core_before_usermode(mm);
 5200		mmdrop_sched(mm);
 5201	}
 5202	if (unlikely(prev_state == TASK_DEAD)) {
 5203		if (prev->sched_class->task_dead)
 5204			prev->sched_class->task_dead(prev);
 5205
 5206		/* Task is done with its stack. */
 5207		put_task_stack(prev);
 5208
 5209		put_task_struct_rcu_user(prev);
 
 
 5210	}
 5211
 
 5212	return rq;
 5213}
 5214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5215/**
 5216 * schedule_tail - first thing a freshly forked thread must call.
 5217 * @prev: the thread we just switched away from.
 5218 */
 5219asmlinkage __visible void schedule_tail(struct task_struct *prev)
 5220	__releases(rq->lock)
 5221{
 
 
 5222	/*
 5223	 * New tasks start with FORK_PREEMPT_COUNT, see there and
 5224	 * finish_task_switch() for details.
 5225	 *
 5226	 * finish_task_switch() will drop rq->lock() and lower preempt_count
 5227	 * and the preempt_enable() will end up enabling preemption (on
 5228	 * PREEMPT_COUNT kernels).
 5229	 */
 5230
 5231	finish_task_switch(prev);
 
 5232	preempt_enable();
 5233
 5234	if (current->set_child_tid)
 5235		put_user(task_pid_vnr(current), current->set_child_tid);
 5236
 5237	calculate_sigpending();
 5238}
 5239
 5240/*
 5241 * context_switch - switch to the new MM and the new thread's register state.
 5242 */
 5243static __always_inline struct rq *
 5244context_switch(struct rq *rq, struct task_struct *prev,
 5245	       struct task_struct *next, struct rq_flags *rf)
 5246{
 
 
 5247	prepare_task_switch(rq, prev, next);
 5248
 
 
 5249	/*
 5250	 * For paravirt, this is coupled with an exit in switch_to to
 5251	 * combine the page table reload and the switch backend into
 5252	 * one hypercall.
 5253	 */
 5254	arch_start_context_switch(prev);
 5255
 
 
 
 
 
 
 
 
 
 
 
 5256	/*
 5257	 * kernel -> kernel   lazy + transfer active
 5258	 *   user -> kernel   lazy + mmgrab() active
 5259	 *
 5260	 * kernel ->   user   switch + mmdrop() active
 5261	 *   user ->   user   switch
 5262	 */
 5263	if (!next->mm) {                                // to kernel
 5264		enter_lazy_tlb(prev->active_mm, next);
 5265
 5266		next->active_mm = prev->active_mm;
 5267		if (prev->mm)                           // from user
 5268			mmgrab(prev->active_mm);
 5269		else
 5270			prev->active_mm = NULL;
 5271	} else {                                        // to user
 5272		membarrier_switch_mm(rq, prev->active_mm, next->mm);
 5273		/*
 5274		 * sys_membarrier() requires an smp_mb() between setting
 5275		 * rq->curr / membarrier_switch_mm() and returning to userspace.
 5276		 *
 5277		 * The below provides this either through switch_mm(), or in
 5278		 * case 'prev->active_mm == next->mm' through
 5279		 * finish_task_switch()'s mmdrop().
 5280		 */
 5281		switch_mm_irqs_off(prev->active_mm, next->mm, next);
 5282		lru_gen_use_mm(next->mm);
 5283
 5284		if (!prev->mm) {                        // from kernel
 5285			/* will mmdrop() in finish_task_switch(). */
 5286			rq->prev_mm = prev->active_mm;
 5287			prev->active_mm = NULL;
 5288		}
 5289	}
 5290
 5291	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
 5292
 5293	prepare_lock_switch(rq, next, rf);
 5294
 5295	/* Here we just switch the register state and the stack. */
 5296	switch_to(prev, next, prev);
 5297	barrier();
 5298
 5299	return finish_task_switch(prev);
 5300}
 5301
 5302/*
 5303 * nr_running and nr_context_switches:
 5304 *
 5305 * externally visible scheduler statistics: current number of runnable
 5306 * threads, total number of context switches performed since bootup.
 5307 */
 5308unsigned int nr_running(void)
 5309{
 5310	unsigned int i, sum = 0;
 5311
 5312	for_each_online_cpu(i)
 5313		sum += cpu_rq(i)->nr_running;
 5314
 5315	return sum;
 5316}
 5317
 5318/*
 5319 * Check if only the current task is running on the CPU.
 5320 *
 5321 * Caution: this function does not check that the caller has disabled
 5322 * preemption, thus the result might have a time-of-check-to-time-of-use
 5323 * race.  The caller is responsible to use it correctly, for example:
 5324 *
 5325 * - from a non-preemptible section (of course)
 5326 *
 5327 * - from a thread that is bound to a single CPU
 5328 *
 5329 * - in a loop with very short iterations (e.g. a polling loop)
 5330 */
 5331bool single_task_running(void)
 5332{
 5333	return raw_rq()->nr_running == 1;
 5334}
 5335EXPORT_SYMBOL(single_task_running);
 5336
 5337unsigned long long nr_context_switches(void)
 5338{
 5339	int i;
 5340	unsigned long long sum = 0;
 5341
 5342	for_each_possible_cpu(i)
 5343		sum += cpu_rq(i)->nr_switches;
 5344
 5345	return sum;
 5346}
 5347
 5348/*
 5349 * Consumers of these two interfaces, like for example the cpuidle menu
 5350 * governor, are using nonsensical data. Preferring shallow idle state selection
 5351 * for a CPU that has IO-wait which might not even end up running the task when
 5352 * it does become runnable.
 5353 */
 5354
 5355unsigned int nr_iowait_cpu(int cpu)
 5356{
 5357	return atomic_read(&cpu_rq(cpu)->nr_iowait);
 5358}
 5359
 5360/*
 5361 * IO-wait accounting, and how it's mostly bollocks (on SMP).
 5362 *
 5363 * The idea behind IO-wait account is to account the idle time that we could
 5364 * have spend running if it were not for IO. That is, if we were to improve the
 5365 * storage performance, we'd have a proportional reduction in IO-wait time.
 5366 *
 5367 * This all works nicely on UP, where, when a task blocks on IO, we account
 5368 * idle time as IO-wait, because if the storage were faster, it could've been
 5369 * running and we'd not be idle.
 5370 *
 5371 * This has been extended to SMP, by doing the same for each CPU. This however
 5372 * is broken.
 5373 *
 5374 * Imagine for instance the case where two tasks block on one CPU, only the one
 5375 * CPU will have IO-wait accounted, while the other has regular idle. Even
 5376 * though, if the storage were faster, both could've ran at the same time,
 5377 * utilising both CPUs.
 5378 *
 5379 * This means, that when looking globally, the current IO-wait accounting on
 5380 * SMP is a lower bound, by reason of under accounting.
 5381 *
 5382 * Worse, since the numbers are provided per CPU, they are sometimes
 5383 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
 5384 * associated with any one particular CPU, it can wake to another CPU than it
 5385 * blocked on. This means the per CPU IO-wait number is meaningless.
 5386 *
 5387 * Task CPU affinities can make all that even more 'interesting'.
 5388 */
 5389
 5390unsigned int nr_iowait(void)
 5391{
 5392	unsigned int i, sum = 0;
 5393
 5394	for_each_possible_cpu(i)
 5395		sum += nr_iowait_cpu(i);
 5396
 5397	return sum;
 5398}
 5399
 
 
 
 
 
 
 
 
 
 
 
 
 
 5400#ifdef CONFIG_SMP
 5401
 5402/*
 5403 * sched_exec - execve() is a valuable balancing opportunity, because at
 5404 * this point the task has the smallest effective memory and cache footprint.
 5405 */
 5406void sched_exec(void)
 5407{
 5408	struct task_struct *p = current;
 5409	unsigned long flags;
 5410	int dest_cpu;
 5411
 5412	raw_spin_lock_irqsave(&p->pi_lock, flags);
 5413	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
 5414	if (dest_cpu == smp_processor_id())
 5415		goto unlock;
 5416
 5417	if (likely(cpu_active(dest_cpu))) {
 5418		struct migration_arg arg = { p, dest_cpu };
 5419
 5420		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 5421		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
 5422		return;
 5423	}
 5424unlock:
 5425	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 5426}
 5427
 5428#endif
 5429
 5430DEFINE_PER_CPU(struct kernel_stat, kstat);
 5431DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
 5432
 5433EXPORT_PER_CPU_SYMBOL(kstat);
 5434EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
 5435
 5436/*
 5437 * The function fair_sched_class.update_curr accesses the struct curr
 5438 * and its field curr->exec_start; when called from task_sched_runtime(),
 5439 * we observe a high rate of cache misses in practice.
 5440 * Prefetching this data results in improved performance.
 5441 */
 5442static inline void prefetch_curr_exec_start(struct task_struct *p)
 5443{
 5444#ifdef CONFIG_FAIR_GROUP_SCHED
 5445	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
 5446#else
 5447	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
 5448#endif
 5449	prefetch(curr);
 5450	prefetch(&curr->exec_start);
 5451}
 5452
 5453/*
 5454 * Return accounted runtime for the task.
 5455 * In case the task is currently running, return the runtime plus current's
 5456 * pending runtime that have not been accounted yet.
 5457 */
 5458unsigned long long task_sched_runtime(struct task_struct *p)
 5459{
 5460	struct rq_flags rf;
 5461	struct rq *rq;
 5462	u64 ns;
 5463
 5464#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
 5465	/*
 5466	 * 64-bit doesn't need locks to atomically read a 64-bit value.
 5467	 * So we have a optimization chance when the task's delta_exec is 0.
 5468	 * Reading ->on_cpu is racy, but this is ok.
 5469	 *
 5470	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
 5471	 * If we race with it entering CPU, unaccounted time is 0. This is
 5472	 * indistinguishable from the read occurring a few cycles earlier.
 5473	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
 5474	 * been accounted, so we're correct here as well.
 5475	 */
 5476	if (!p->on_cpu || !task_on_rq_queued(p))
 5477		return p->se.sum_exec_runtime;
 5478#endif
 5479
 5480	rq = task_rq_lock(p, &rf);
 5481	/*
 5482	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
 5483	 * project cycles that may never be accounted to this
 5484	 * thread, breaking clock_gettime().
 5485	 */
 5486	if (task_current(rq, p) && task_on_rq_queued(p)) {
 5487		prefetch_curr_exec_start(p);
 5488		update_rq_clock(rq);
 5489		p->sched_class->update_curr(rq);
 5490	}
 5491	ns = p->se.sum_exec_runtime;
 5492	task_rq_unlock(rq, p, &rf);
 5493
 5494	return ns;
 5495}
 5496
 5497#ifdef CONFIG_SCHED_DEBUG
 5498static u64 cpu_resched_latency(struct rq *rq)
 5499{
 5500	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
 5501	u64 resched_latency, now = rq_clock(rq);
 5502	static bool warned_once;
 5503
 5504	if (sysctl_resched_latency_warn_once && warned_once)
 5505		return 0;
 5506
 5507	if (!need_resched() || !latency_warn_ms)
 5508		return 0;
 5509
 5510	if (system_state == SYSTEM_BOOTING)
 5511		return 0;
 5512
 5513	if (!rq->last_seen_need_resched_ns) {
 5514		rq->last_seen_need_resched_ns = now;
 5515		rq->ticks_without_resched = 0;
 5516		return 0;
 5517	}
 5518
 5519	rq->ticks_without_resched++;
 5520	resched_latency = now - rq->last_seen_need_resched_ns;
 5521	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
 5522		return 0;
 5523
 5524	warned_once = true;
 5525
 5526	return resched_latency;
 5527}
 5528
 5529static int __init setup_resched_latency_warn_ms(char *str)
 5530{
 5531	long val;
 5532
 5533	if ((kstrtol(str, 0, &val))) {
 5534		pr_warn("Unable to set resched_latency_warn_ms\n");
 5535		return 1;
 5536	}
 5537
 5538	sysctl_resched_latency_warn_ms = val;
 5539	return 1;
 5540}
 5541__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
 5542#else
 5543static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
 5544#endif /* CONFIG_SCHED_DEBUG */
 5545
 5546/*
 5547 * This function gets called by the timer code, with HZ frequency.
 5548 * We call it with interrupts disabled.
 5549 */
 5550void scheduler_tick(void)
 5551{
 5552	int cpu = smp_processor_id();
 5553	struct rq *rq = cpu_rq(cpu);
 5554	struct task_struct *curr = rq->curr;
 5555	struct rq_flags rf;
 5556	unsigned long thermal_pressure;
 5557	u64 resched_latency;
 5558
 5559	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
 5560		arch_scale_freq_tick();
 5561
 5562	sched_clock_tick();
 5563
 5564	rq_lock(rq, &rf);
 5565
 5566	update_rq_clock(rq);
 5567	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
 5568	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
 5569	curr->sched_class->task_tick(rq, curr, 0);
 5570	if (sched_feat(LATENCY_WARN))
 5571		resched_latency = cpu_resched_latency(rq);
 5572	calc_global_load_tick(rq);
 5573	sched_core_tick(rq);
 5574
 5575	rq_unlock(rq, &rf);
 5576
 5577	if (sched_feat(LATENCY_WARN) && resched_latency)
 5578		resched_latency_warn(cpu, resched_latency);
 5579
 5580	perf_event_task_tick();
 5581
 5582#ifdef CONFIG_SMP
 5583	rq->idle_balance = idle_cpu(cpu);
 5584	trigger_load_balance(rq);
 5585#endif
 
 5586}
 5587
 5588#ifdef CONFIG_NO_HZ_FULL
 5589
 5590struct tick_work {
 5591	int			cpu;
 5592	atomic_t		state;
 5593	struct delayed_work	work;
 5594};
 5595/* Values for ->state, see diagram below. */
 5596#define TICK_SCHED_REMOTE_OFFLINE	0
 5597#define TICK_SCHED_REMOTE_OFFLINING	1
 5598#define TICK_SCHED_REMOTE_RUNNING	2
 5599
 5600/*
 5601 * State diagram for ->state:
 5602 *
 5603 *
 5604 *          TICK_SCHED_REMOTE_OFFLINE
 5605 *                    |   ^
 5606 *                    |   |
 5607 *                    |   | sched_tick_remote()
 5608 *                    |   |
 5609 *                    |   |
 5610 *                    +--TICK_SCHED_REMOTE_OFFLINING
 5611 *                    |   ^
 5612 *                    |   |
 5613 * sched_tick_start() |   | sched_tick_stop()
 5614 *                    |   |
 5615 *                    V   |
 5616 *          TICK_SCHED_REMOTE_RUNNING
 5617 *
 
 
 
 5618 *
 5619 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
 5620 * and sched_tick_start() are happy to leave the state in RUNNING.
 5621 */
 5622
 5623static struct tick_work __percpu *tick_work_cpu;
 5624
 5625static void sched_tick_remote(struct work_struct *work)
 5626{
 5627	struct delayed_work *dwork = to_delayed_work(work);
 5628	struct tick_work *twork = container_of(dwork, struct tick_work, work);
 5629	int cpu = twork->cpu;
 5630	struct rq *rq = cpu_rq(cpu);
 5631	struct task_struct *curr;
 5632	struct rq_flags rf;
 5633	u64 delta;
 5634	int os;
 5635
 5636	/*
 5637	 * Handle the tick only if it appears the remote CPU is running in full
 5638	 * dynticks mode. The check is racy by nature, but missing a tick or
 5639	 * having one too much is no big deal because the scheduler tick updates
 5640	 * statistics and checks timeslices in a time-independent way, regardless
 5641	 * of when exactly it is running.
 5642	 */
 5643	if (!tick_nohz_tick_stopped_cpu(cpu))
 5644		goto out_requeue;
 5645
 5646	rq_lock_irq(rq, &rf);
 5647	curr = rq->curr;
 5648	if (cpu_is_offline(cpu))
 5649		goto out_unlock;
 5650
 5651	update_rq_clock(rq);
 5652
 5653	if (!is_idle_task(curr)) {
 5654		/*
 5655		 * Make sure the next tick runs within a reasonable
 5656		 * amount of time.
 5657		 */
 5658		delta = rq_clock_task(rq) - curr->se.exec_start;
 5659		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
 5660	}
 5661	curr->sched_class->task_tick(rq, curr, 0);
 5662
 5663	calc_load_nohz_remote(rq);
 5664out_unlock:
 5665	rq_unlock_irq(rq, &rf);
 5666out_requeue:
 5667
 5668	/*
 5669	 * Run the remote tick once per second (1Hz). This arbitrary
 5670	 * frequency is large enough to avoid overload but short enough
 5671	 * to keep scheduler internal stats reasonably up to date.  But
 5672	 * first update state to reflect hotplug activity if required.
 5673	 */
 5674	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
 5675	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
 5676	if (os == TICK_SCHED_REMOTE_RUNNING)
 5677		queue_delayed_work(system_unbound_wq, dwork, HZ);
 5678}
 5679
 5680static void sched_tick_start(int cpu)
 5681{
 5682	int os;
 5683	struct tick_work *twork;
 5684
 5685	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
 5686		return;
 5687
 5688	WARN_ON_ONCE(!tick_work_cpu);
 5689
 5690	twork = per_cpu_ptr(tick_work_cpu, cpu);
 5691	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
 5692	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
 5693	if (os == TICK_SCHED_REMOTE_OFFLINE) {
 5694		twork->cpu = cpu;
 5695		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
 5696		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
 5697	}
 5698}
 5699
 5700#ifdef CONFIG_HOTPLUG_CPU
 5701static void sched_tick_stop(int cpu)
 5702{
 5703	struct tick_work *twork;
 5704	int os;
 5705
 5706	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
 5707		return;
 5708
 5709	WARN_ON_ONCE(!tick_work_cpu);
 5710
 5711	twork = per_cpu_ptr(tick_work_cpu, cpu);
 5712	/* There cannot be competing actions, but don't rely on stop-machine. */
 5713	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
 5714	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
 5715	/* Don't cancel, as this would mess up the state machine. */
 5716}
 5717#endif /* CONFIG_HOTPLUG_CPU */
 5718
 5719int __init sched_tick_offload_init(void)
 5720{
 5721	tick_work_cpu = alloc_percpu(struct tick_work);
 5722	BUG_ON(!tick_work_cpu);
 5723	return 0;
 5724}
 5725
 5726#else /* !CONFIG_NO_HZ_FULL */
 5727static inline void sched_tick_start(int cpu) { }
 5728static inline void sched_tick_stop(int cpu) { }
 5729#endif
 5730
 5731#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
 5732				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
 5733/*
 5734 * If the value passed in is equal to the current preempt count
 5735 * then we just disabled preemption. Start timing the latency.
 5736 */
 5737static inline void preempt_latency_start(int val)
 5738{
 5739	if (preempt_count() == val) {
 5740		unsigned long ip = get_lock_parent_ip();
 5741#ifdef CONFIG_DEBUG_PREEMPT
 5742		current->preempt_disable_ip = ip;
 5743#endif
 5744		trace_preempt_off(CALLER_ADDR0, ip);
 5745	}
 5746}
 5747
 5748void preempt_count_add(int val)
 5749{
 5750#ifdef CONFIG_DEBUG_PREEMPT
 5751	/*
 5752	 * Underflow?
 5753	 */
 5754	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
 5755		return;
 5756#endif
 5757	__preempt_count_add(val);
 5758#ifdef CONFIG_DEBUG_PREEMPT
 5759	/*
 5760	 * Spinlock count overflowing soon?
 5761	 */
 5762	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
 5763				PREEMPT_MASK - 10);
 5764#endif
 5765	preempt_latency_start(val);
 
 
 
 
 
 
 5766}
 5767EXPORT_SYMBOL(preempt_count_add);
 5768NOKPROBE_SYMBOL(preempt_count_add);
 5769
 5770/*
 5771 * If the value passed in equals to the current preempt count
 5772 * then we just enabled preemption. Stop timing the latency.
 5773 */
 5774static inline void preempt_latency_stop(int val)
 5775{
 5776	if (preempt_count() == val)
 5777		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
 5778}
 5779
 5780void preempt_count_sub(int val)
 5781{
 5782#ifdef CONFIG_DEBUG_PREEMPT
 5783	/*
 5784	 * Underflow?
 5785	 */
 5786	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
 5787		return;
 5788	/*
 5789	 * Is the spinlock portion underflowing?
 5790	 */
 5791	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
 5792			!(preempt_count() & PREEMPT_MASK)))
 5793		return;
 5794#endif
 5795
 5796	preempt_latency_stop(val);
 
 5797	__preempt_count_sub(val);
 5798}
 5799EXPORT_SYMBOL(preempt_count_sub);
 5800NOKPROBE_SYMBOL(preempt_count_sub);
 5801
 5802#else
 5803static inline void preempt_latency_start(int val) { }
 5804static inline void preempt_latency_stop(int val) { }
 5805#endif
 5806
 5807static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
 5808{
 5809#ifdef CONFIG_DEBUG_PREEMPT
 5810	return p->preempt_disable_ip;
 5811#else
 5812	return 0;
 5813#endif
 5814}
 5815
 5816/*
 5817 * Print scheduling while atomic bug:
 5818 */
 5819static noinline void __schedule_bug(struct task_struct *prev)
 5820{
 5821	/* Save this before calling printk(), since that will clobber it */
 5822	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
 5823
 5824	if (oops_in_progress)
 5825		return;
 5826
 5827	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
 5828		prev->comm, prev->pid, preempt_count());
 5829
 5830	debug_show_held_locks(prev);
 5831	print_modules();
 5832	if (irqs_disabled())
 5833		print_irqtrace_events(prev);
 5834	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
 5835	    && in_atomic_preempt_off()) {
 5836		pr_err("Preemption disabled at:");
 5837		print_ip_sym(KERN_ERR, preempt_disable_ip);
 
 5838	}
 5839	check_panic_on_warn("scheduling while atomic");
 5840
 5841	dump_stack();
 5842	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
 5843}
 5844
 5845/*
 5846 * Various schedule()-time debugging checks and statistics:
 5847 */
 5848static inline void schedule_debug(struct task_struct *prev, bool preempt)
 5849{
 5850#ifdef CONFIG_SCHED_STACK_END_CHECK
 5851	if (task_stack_end_corrupted(prev))
 5852		panic("corrupted stack end detected inside scheduler\n");
 5853
 5854	if (task_scs_end_corrupted(prev))
 5855		panic("corrupted shadow stack detected inside scheduler\n");
 5856#endif
 5857
 5858#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 5859	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
 5860		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
 5861			prev->comm, prev->pid, prev->non_block_count);
 5862		dump_stack();
 5863		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
 5864	}
 5865#endif
 5866
 5867	if (unlikely(in_atomic_preempt_off())) {
 5868		__schedule_bug(prev);
 5869		preempt_count_set(PREEMPT_DISABLED);
 5870	}
 5871	rcu_sleep_check();
 5872	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
 5873
 5874	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
 5875
 5876	schedstat_inc(this_rq()->sched_count);
 5877}
 5878
 5879static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
 5880				  struct rq_flags *rf)
 5881{
 5882#ifdef CONFIG_SMP
 5883	const struct sched_class *class;
 5884	/*
 5885	 * We must do the balancing pass before put_prev_task(), such
 5886	 * that when we release the rq->lock the task is in the same
 5887	 * state as before we took rq->lock.
 5888	 *
 5889	 * We can terminate the balance pass as soon as we know there is
 5890	 * a runnable task of @class priority or higher.
 5891	 */
 5892	for_class_range(class, prev->sched_class, &idle_sched_class) {
 5893		if (class->balance(rq, prev, rf))
 5894			break;
 5895	}
 5896#endif
 5897
 5898	put_prev_task(rq, prev);
 5899}
 5900
 5901/*
 5902 * Pick up the highest-prio task:
 5903 */
 5904static inline struct task_struct *
 5905__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 5906{
 5907	const struct sched_class *class;
 5908	struct task_struct *p;
 5909
 5910	/*
 5911	 * Optimization: we know that if all tasks are in the fair class we can
 5912	 * call that function directly, but only if the @prev task wasn't of a
 5913	 * higher scheduling class, because otherwise those lose the
 5914	 * opportunity to pull in more work from other CPUs.
 5915	 */
 5916	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
 5917		   rq->nr_running == rq->cfs.h_nr_running)) {
 5918
 5919		p = pick_next_task_fair(rq, prev, rf);
 5920		if (unlikely(p == RETRY_TASK))
 5921			goto restart;
 5922
 5923		/* Assume the next prioritized class is idle_sched_class */
 5924		if (!p) {
 5925			put_prev_task(rq, prev);
 5926			p = pick_next_task_idle(rq);
 5927		}
 5928
 5929		return p;
 5930	}
 5931
 5932restart:
 5933	put_prev_task_balance(rq, prev, rf);
 5934
 5935	for_each_class(class) {
 5936		p = class->pick_next_task(rq);
 5937		if (p)
 5938			return p;
 5939	}
 5940
 5941	BUG(); /* The idle class should always have a runnable task. */
 5942}
 5943
 5944#ifdef CONFIG_SCHED_CORE
 5945static inline bool is_task_rq_idle(struct task_struct *t)
 5946{
 5947	return (task_rq(t)->idle == t);
 5948}
 5949
 5950static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
 5951{
 5952	return is_task_rq_idle(a) || (a->core_cookie == cookie);
 5953}
 5954
 5955static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
 5956{
 5957	if (is_task_rq_idle(a) || is_task_rq_idle(b))
 5958		return true;
 5959
 5960	return a->core_cookie == b->core_cookie;
 5961}
 5962
 5963static inline struct task_struct *pick_task(struct rq *rq)
 5964{
 5965	const struct sched_class *class;
 5966	struct task_struct *p;
 5967
 5968	for_each_class(class) {
 5969		p = class->pick_task(rq);
 5970		if (p)
 
 
 5971			return p;
 5972	}
 5973
 5974	BUG(); /* The idle class should always have a runnable task. */
 5975}
 5976
 5977extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
 5978
 5979static void queue_core_balance(struct rq *rq);
 5980
 5981static struct task_struct *
 5982pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 5983{
 5984	struct task_struct *next, *p, *max = NULL;
 5985	const struct cpumask *smt_mask;
 5986	bool fi_before = false;
 5987	bool core_clock_updated = (rq == rq->core);
 5988	unsigned long cookie;
 5989	int i, cpu, occ = 0;
 5990	struct rq *rq_i;
 5991	bool need_sync;
 5992
 5993	if (!sched_core_enabled(rq))
 5994		return __pick_next_task(rq, prev, rf);
 5995
 5996	cpu = cpu_of(rq);
 5997
 5998	/* Stopper task is switching into idle, no need core-wide selection. */
 5999	if (cpu_is_offline(cpu)) {
 6000		/*
 6001		 * Reset core_pick so that we don't enter the fastpath when
 6002		 * coming online. core_pick would already be migrated to
 6003		 * another cpu during offline.
 6004		 */
 6005		rq->core_pick = NULL;
 6006		return __pick_next_task(rq, prev, rf);
 6007	}
 6008
 6009	/*
 6010	 * If there were no {en,de}queues since we picked (IOW, the task
 6011	 * pointers are all still valid), and we haven't scheduled the last
 6012	 * pick yet, do so now.
 6013	 *
 6014	 * rq->core_pick can be NULL if no selection was made for a CPU because
 6015	 * it was either offline or went offline during a sibling's core-wide
 6016	 * selection. In this case, do a core-wide selection.
 6017	 */
 6018	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
 6019	    rq->core->core_pick_seq != rq->core_sched_seq &&
 6020	    rq->core_pick) {
 6021		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
 6022
 6023		next = rq->core_pick;
 6024		if (next != prev) {
 6025			put_prev_task(rq, prev);
 6026			set_next_task(rq, next);
 6027		}
 6028
 6029		rq->core_pick = NULL;
 6030		goto out;
 6031	}
 6032
 6033	put_prev_task_balance(rq, prev, rf);
 6034
 6035	smt_mask = cpu_smt_mask(cpu);
 6036	need_sync = !!rq->core->core_cookie;
 6037
 6038	/* reset state */
 6039	rq->core->core_cookie = 0UL;
 6040	if (rq->core->core_forceidle_count) {
 6041		if (!core_clock_updated) {
 6042			update_rq_clock(rq->core);
 6043			core_clock_updated = true;
 6044		}
 6045		sched_core_account_forceidle(rq);
 6046		/* reset after accounting force idle */
 6047		rq->core->core_forceidle_start = 0;
 6048		rq->core->core_forceidle_count = 0;
 6049		rq->core->core_forceidle_occupation = 0;
 6050		need_sync = true;
 6051		fi_before = true;
 6052	}
 6053
 6054	/*
 6055	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
 6056	 *
 6057	 * @task_seq guards the task state ({en,de}queues)
 6058	 * @pick_seq is the @task_seq we did a selection on
 6059	 * @sched_seq is the @pick_seq we scheduled
 6060	 *
 6061	 * However, preemptions can cause multiple picks on the same task set.
 6062	 * 'Fix' this by also increasing @task_seq for every pick.
 6063	 */
 6064	rq->core->core_task_seq++;
 6065
 6066	/*
 6067	 * Optimize for common case where this CPU has no cookies
 6068	 * and there are no cookied tasks running on siblings.
 6069	 */
 6070	if (!need_sync) {
 6071		next = pick_task(rq);
 6072		if (!next->core_cookie) {
 6073			rq->core_pick = NULL;
 6074			/*
 6075			 * For robustness, update the min_vruntime_fi for
 6076			 * unconstrained picks as well.
 6077			 */
 6078			WARN_ON_ONCE(fi_before);
 6079			task_vruntime_update(rq, next, false);
 6080			goto out_set_next;
 6081		}
 6082	}
 6083
 6084	/*
 6085	 * For each thread: do the regular task pick and find the max prio task
 6086	 * amongst them.
 6087	 *
 6088	 * Tie-break prio towards the current CPU
 6089	 */
 6090	for_each_cpu_wrap(i, smt_mask, cpu) {
 6091		rq_i = cpu_rq(i);
 6092
 6093		/*
 6094		 * Current cpu always has its clock updated on entrance to
 6095		 * pick_next_task(). If the current cpu is not the core,
 6096		 * the core may also have been updated above.
 6097		 */
 6098		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
 6099			update_rq_clock(rq_i);
 6100
 6101		p = rq_i->core_pick = pick_task(rq_i);
 6102		if (!max || prio_less(max, p, fi_before))
 6103			max = p;
 6104	}
 6105
 6106	cookie = rq->core->core_cookie = max->core_cookie;
 6107
 6108	/*
 6109	 * For each thread: try and find a runnable task that matches @max or
 6110	 * force idle.
 6111	 */
 6112	for_each_cpu(i, smt_mask) {
 6113		rq_i = cpu_rq(i);
 6114		p = rq_i->core_pick;
 6115
 6116		if (!cookie_equals(p, cookie)) {
 6117			p = NULL;
 6118			if (cookie)
 6119				p = sched_core_find(rq_i, cookie);
 6120			if (!p)
 6121				p = idle_sched_class.pick_task(rq_i);
 6122		}
 6123
 6124		rq_i->core_pick = p;
 6125
 6126		if (p == rq_i->idle) {
 6127			if (rq_i->nr_running) {
 6128				rq->core->core_forceidle_count++;
 6129				if (!fi_before)
 6130					rq->core->core_forceidle_seq++;
 6131			}
 6132		} else {
 6133			occ++;
 6134		}
 6135	}
 6136
 6137	if (schedstat_enabled() && rq->core->core_forceidle_count) {
 6138		rq->core->core_forceidle_start = rq_clock(rq->core);
 6139		rq->core->core_forceidle_occupation = occ;
 6140	}
 6141
 6142	rq->core->core_pick_seq = rq->core->core_task_seq;
 6143	next = rq->core_pick;
 6144	rq->core_sched_seq = rq->core->core_pick_seq;
 6145
 6146	/* Something should have been selected for current CPU */
 6147	WARN_ON_ONCE(!next);
 6148
 6149	/*
 6150	 * Reschedule siblings
 6151	 *
 6152	 * NOTE: L1TF -- at this point we're no longer running the old task and
 6153	 * sending an IPI (below) ensures the sibling will no longer be running
 6154	 * their task. This ensures there is no inter-sibling overlap between
 6155	 * non-matching user state.
 6156	 */
 6157	for_each_cpu(i, smt_mask) {
 6158		rq_i = cpu_rq(i);
 6159
 6160		/*
 6161		 * An online sibling might have gone offline before a task
 6162		 * could be picked for it, or it might be offline but later
 6163		 * happen to come online, but its too late and nothing was
 6164		 * picked for it.  That's Ok - it will pick tasks for itself,
 6165		 * so ignore it.
 6166		 */
 6167		if (!rq_i->core_pick)
 6168			continue;
 6169
 6170		/*
 6171		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
 6172		 * fi_before     fi      update?
 6173		 *  0            0       1
 6174		 *  0            1       1
 6175		 *  1            0       1
 6176		 *  1            1       0
 6177		 */
 6178		if (!(fi_before && rq->core->core_forceidle_count))
 6179			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
 6180
 6181		rq_i->core_pick->core_occupation = occ;
 6182
 6183		if (i == cpu) {
 6184			rq_i->core_pick = NULL;
 6185			continue;
 6186		}
 6187
 6188		/* Did we break L1TF mitigation requirements? */
 6189		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
 6190
 6191		if (rq_i->curr == rq_i->core_pick) {
 6192			rq_i->core_pick = NULL;
 6193			continue;
 6194		}
 6195
 6196		resched_curr(rq_i);
 6197	}
 6198
 6199out_set_next:
 6200	set_next_task(rq, next);
 6201out:
 6202	if (rq->core->core_forceidle_count && next == rq->idle)
 6203		queue_core_balance(rq);
 6204
 6205	return next;
 6206}
 6207
 6208static bool try_steal_cookie(int this, int that)
 6209{
 6210	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
 6211	struct task_struct *p;
 6212	unsigned long cookie;
 6213	bool success = false;
 6214
 6215	local_irq_disable();
 6216	double_rq_lock(dst, src);
 6217
 6218	cookie = dst->core->core_cookie;
 6219	if (!cookie)
 6220		goto unlock;
 6221
 6222	if (dst->curr != dst->idle)
 6223		goto unlock;
 6224
 6225	p = sched_core_find(src, cookie);
 6226	if (p == src->idle)
 6227		goto unlock;
 6228
 6229	do {
 6230		if (p == src->core_pick || p == src->curr)
 6231			goto next;
 6232
 6233		if (!is_cpu_allowed(p, this))
 6234			goto next;
 6235
 6236		if (p->core_occupation > dst->idle->core_occupation)
 6237			goto next;
 6238
 6239		deactivate_task(src, p, 0);
 6240		set_task_cpu(p, this);
 6241		activate_task(dst, p, 0);
 6242
 6243		resched_curr(dst);
 6244
 6245		success = true;
 6246		break;
 6247
 6248next:
 6249		p = sched_core_next(p, cookie);
 6250	} while (p);
 6251
 6252unlock:
 6253	double_rq_unlock(dst, src);
 6254	local_irq_enable();
 6255
 6256	return success;
 6257}
 6258
 6259static bool steal_cookie_task(int cpu, struct sched_domain *sd)
 6260{
 6261	int i;
 6262
 6263	for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
 6264		if (i == cpu)
 6265			continue;
 6266
 6267		if (need_resched())
 6268			break;
 6269
 6270		if (try_steal_cookie(cpu, i))
 6271			return true;
 6272	}
 6273
 6274	return false;
 6275}
 6276
 6277static void sched_core_balance(struct rq *rq)
 6278{
 6279	struct sched_domain *sd;
 6280	int cpu = cpu_of(rq);
 6281
 6282	preempt_disable();
 6283	rcu_read_lock();
 6284	raw_spin_rq_unlock_irq(rq);
 6285	for_each_domain(cpu, sd) {
 6286		if (need_resched())
 6287			break;
 6288
 6289		if (steal_cookie_task(cpu, sd))
 6290			break;
 6291	}
 6292	raw_spin_rq_lock_irq(rq);
 6293	rcu_read_unlock();
 6294	preempt_enable();
 6295}
 6296
 6297static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
 6298
 6299static void queue_core_balance(struct rq *rq)
 6300{
 6301	if (!sched_core_enabled(rq))
 6302		return;
 6303
 6304	if (!rq->core->core_cookie)
 6305		return;
 6306
 6307	if (!rq->nr_running) /* not forced idle */
 6308		return;
 6309
 6310	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
 6311}
 6312
 6313static void sched_core_cpu_starting(unsigned int cpu)
 6314{
 6315	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
 6316	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
 6317	unsigned long flags;
 6318	int t;
 6319
 6320	sched_core_lock(cpu, &flags);
 6321
 6322	WARN_ON_ONCE(rq->core != rq);
 6323
 6324	/* if we're the first, we'll be our own leader */
 6325	if (cpumask_weight(smt_mask) == 1)
 6326		goto unlock;
 6327
 6328	/* find the leader */
 6329	for_each_cpu(t, smt_mask) {
 6330		if (t == cpu)
 6331			continue;
 6332		rq = cpu_rq(t);
 6333		if (rq->core == rq) {
 6334			core_rq = rq;
 6335			break;
 6336		}
 6337	}
 6338
 6339	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
 6340		goto unlock;
 6341
 6342	/* install and validate core_rq */
 6343	for_each_cpu(t, smt_mask) {
 6344		rq = cpu_rq(t);
 6345
 6346		if (t == cpu)
 6347			rq->core = core_rq;
 6348
 6349		WARN_ON_ONCE(rq->core != core_rq);
 6350	}
 6351
 6352unlock:
 6353	sched_core_unlock(cpu, &flags);
 6354}
 6355
 6356static void sched_core_cpu_deactivate(unsigned int cpu)
 6357{
 6358	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
 6359	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
 6360	unsigned long flags;
 6361	int t;
 6362
 6363	sched_core_lock(cpu, &flags);
 6364
 6365	/* if we're the last man standing, nothing to do */
 6366	if (cpumask_weight(smt_mask) == 1) {
 6367		WARN_ON_ONCE(rq->core != rq);
 6368		goto unlock;
 6369	}
 6370
 6371	/* if we're not the leader, nothing to do */
 6372	if (rq->core != rq)
 6373		goto unlock;
 6374
 6375	/* find a new leader */
 6376	for_each_cpu(t, smt_mask) {
 6377		if (t == cpu)
 6378			continue;
 6379		core_rq = cpu_rq(t);
 6380		break;
 6381	}
 6382
 6383	if (WARN_ON_ONCE(!core_rq)) /* impossible */
 6384		goto unlock;
 6385
 6386	/* copy the shared state to the new leader */
 6387	core_rq->core_task_seq             = rq->core_task_seq;
 6388	core_rq->core_pick_seq             = rq->core_pick_seq;
 6389	core_rq->core_cookie               = rq->core_cookie;
 6390	core_rq->core_forceidle_count      = rq->core_forceidle_count;
 6391	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
 6392	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
 6393
 6394	/*
 6395	 * Accounting edge for forced idle is handled in pick_next_task().
 6396	 * Don't need another one here, since the hotplug thread shouldn't
 6397	 * have a cookie.
 6398	 */
 6399	core_rq->core_forceidle_start = 0;
 6400
 6401	/* install new leader */
 6402	for_each_cpu(t, smt_mask) {
 6403		rq = cpu_rq(t);
 6404		rq->core = core_rq;
 6405	}
 6406
 6407unlock:
 6408	sched_core_unlock(cpu, &flags);
 6409}
 6410
 6411static inline void sched_core_cpu_dying(unsigned int cpu)
 6412{
 6413	struct rq *rq = cpu_rq(cpu);
 6414
 6415	if (rq->core != rq)
 6416		rq->core = rq;
 6417}
 6418
 6419#else /* !CONFIG_SCHED_CORE */
 6420
 6421static inline void sched_core_cpu_starting(unsigned int cpu) {}
 6422static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
 6423static inline void sched_core_cpu_dying(unsigned int cpu) {}
 6424
 6425static struct task_struct *
 6426pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 6427{
 6428	return __pick_next_task(rq, prev, rf);
 6429}
 6430
 6431#endif /* CONFIG_SCHED_CORE */
 6432
 6433/*
 6434 * Constants for the sched_mode argument of __schedule().
 6435 *
 6436 * The mode argument allows RT enabled kernels to differentiate a
 6437 * preemption from blocking on an 'sleeping' spin/rwlock. Note that
 6438 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
 6439 * optimize the AND operation out and just check for zero.
 6440 */
 6441#define SM_NONE			0x0
 6442#define SM_PREEMPT		0x1
 6443#define SM_RTLOCK_WAIT		0x2
 6444
 6445#ifndef CONFIG_PREEMPT_RT
 6446# define SM_MASK_PREEMPT	(~0U)
 6447#else
 6448# define SM_MASK_PREEMPT	SM_PREEMPT
 6449#endif
 6450
 6451/*
 6452 * __schedule() is the main scheduler function.
 6453 *
 6454 * The main means of driving the scheduler and thus entering this function are:
 6455 *
 6456 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 6457 *
 6458 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 6459 *      paths. For example, see arch/x86/entry_64.S.
 6460 *
 6461 *      To drive preemption between tasks, the scheduler sets the flag in timer
 6462 *      interrupt handler scheduler_tick().
 6463 *
 6464 *   3. Wakeups don't really cause entry into schedule(). They add a
 6465 *      task to the run-queue and that's it.
 6466 *
 6467 *      Now, if the new task added to the run-queue preempts the current
 6468 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 6469 *      called on the nearest possible occasion:
 6470 *
 6471 *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
 6472 *
 6473 *         - in syscall or exception context, at the next outmost
 6474 *           preempt_enable(). (this might be as soon as the wake_up()'s
 6475 *           spin_unlock()!)
 6476 *
 6477 *         - in IRQ context, return from interrupt-handler to
 6478 *           preemptible context
 6479 *
 6480 *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
 6481 *         then at the next:
 6482 *
 6483 *          - cond_resched() call
 6484 *          - explicit schedule() call
 6485 *          - return from syscall or exception to user-space
 6486 *          - return from interrupt-handler to user-space
 6487 *
 6488 * WARNING: must be called with preemption disabled!
 6489 */
 6490static void __sched notrace __schedule(unsigned int sched_mode)
 6491{
 6492	struct task_struct *prev, *next;
 6493	unsigned long *switch_count;
 6494	unsigned long prev_state;
 6495	struct rq_flags rf;
 6496	struct rq *rq;
 6497	int cpu;
 6498
 6499	cpu = smp_processor_id();
 6500	rq = cpu_rq(cpu);
 6501	prev = rq->curr;
 6502
 6503	schedule_debug(prev, !!sched_mode);
 
 
 
 
 
 
 
 
 
 
 
 6504
 6505	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
 6506		hrtick_clear(rq);
 6507
 6508	local_irq_disable();
 6509	rcu_note_context_switch(!!sched_mode);
 6510
 6511	/*
 6512	 * Make sure that signal_pending_state()->signal_pending() below
 6513	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
 6514	 * done by the caller to avoid the race with signal_wake_up():
 6515	 *
 6516	 * __set_current_state(@state)		signal_wake_up()
 6517	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
 6518	 *					  wake_up_state(p, state)
 6519	 *   LOCK rq->lock			    LOCK p->pi_state
 6520	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
 6521	 *     if (signal_pending_state())	    if (p->state & @state)
 6522	 *
 6523	 * Also, the membarrier system call requires a full memory barrier
 6524	 * after coming from user-space, before storing to rq->curr.
 6525	 */
 6526	rq_lock(rq, &rf);
 6527	smp_mb__after_spinlock();
 
 6528
 6529	/* Promote REQ to ACT */
 6530	rq->clock_update_flags <<= 1;
 6531	update_rq_clock(rq);
 6532
 6533	switch_count = &prev->nivcsw;
 6534
 6535	/*
 6536	 * We must load prev->state once (task_struct::state is volatile), such
 6537	 * that we form a control dependency vs deactivate_task() below.
 6538	 */
 6539	prev_state = READ_ONCE(prev->__state);
 6540	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
 6541		if (signal_pending_state(prev_state, prev)) {
 6542			WRITE_ONCE(prev->__state, TASK_RUNNING);
 6543		} else {
 6544			prev->sched_contributes_to_load =
 6545				(prev_state & TASK_UNINTERRUPTIBLE) &&
 6546				!(prev_state & TASK_NOLOAD) &&
 6547				!(prev_state & TASK_FROZEN);
 6548
 6549			if (prev->sched_contributes_to_load)
 6550				rq->nr_uninterruptible++;
 6551
 6552			/*
 6553			 * __schedule()			ttwu()
 6554			 *   prev_state = prev->state;    if (p->on_rq && ...)
 6555			 *   if (prev_state)		    goto out;
 6556			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
 6557			 *				  p->state = TASK_WAKING
 6558			 *
 6559			 * Where __schedule() and ttwu() have matching control dependencies.
 6560			 *
 6561			 * After this, schedule() must not care about p->state any more.
 6562			 */
 6563			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
 
 6564
 6565			if (prev->in_iowait) {
 6566				atomic_inc(&rq->nr_iowait);
 6567				delayacct_blkio_start();
 6568			}
 6569		}
 6570		switch_count = &prev->nvcsw;
 6571	}
 6572
 6573	next = pick_next_task(rq, prev, &rf);
 
 
 
 6574	clear_tsk_need_resched(prev);
 6575	clear_preempt_need_resched();
 6576#ifdef CONFIG_SCHED_DEBUG
 6577	rq->last_seen_need_resched_ns = 0;
 6578#endif
 6579
 6580	if (likely(prev != next)) {
 6581		rq->nr_switches++;
 6582		/*
 6583		 * RCU users of rcu_dereference(rq->curr) may not see
 6584		 * changes to task_struct made by pick_next_task().
 6585		 */
 6586		RCU_INIT_POINTER(rq->curr, next);
 6587		/*
 6588		 * The membarrier system call requires each architecture
 6589		 * to have a full memory barrier after updating
 6590		 * rq->curr, before returning to user-space.
 6591		 *
 6592		 * Here are the schemes providing that barrier on the
 6593		 * various architectures:
 6594		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
 6595		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
 6596		 * - finish_lock_switch() for weakly-ordered
 6597		 *   architectures where spin_unlock is a full barrier,
 6598		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
 6599		 *   is a RELEASE barrier),
 6600		 */
 6601		++*switch_count;
 6602
 6603		migrate_disable_switch(rq, prev);
 6604		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
 6605
 6606		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
 6607
 6608		/* Also unlocks the rq: */
 6609		rq = context_switch(rq, prev, next, &rf);
 6610	} else {
 6611		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
 6612
 6613		rq_unpin_lock(rq, &rf);
 6614		__balance_callbacks(rq);
 6615		raw_spin_rq_unlock_irq(rq);
 6616	}
 6617}
 6618
 6619void __noreturn do_task_dead(void)
 6620{
 6621	/* Causes final put_task_struct in finish_task_switch(): */
 6622	set_special_state(TASK_DEAD);
 6623
 6624	/* Tell freezer to ignore us: */
 6625	current->flags |= PF_NOFREEZE;
 6626
 6627	__schedule(SM_NONE);
 6628	BUG();
 6629
 6630	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
 6631	for (;;)
 6632		cpu_relax();
 6633}
 
 6634
 6635static inline void sched_submit_work(struct task_struct *tsk)
 6636{
 6637	unsigned int task_flags;
 6638
 6639	if (task_is_running(tsk))
 6640		return;
 6641
 6642	task_flags = tsk->flags;
 6643	/*
 6644	 * If a worker goes to sleep, notify and ask workqueue whether it
 6645	 * wants to wake up a task to maintain concurrency.
 6646	 */
 6647	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
 6648		if (task_flags & PF_WQ_WORKER)
 6649			wq_worker_sleeping(tsk);
 6650		else
 6651			io_wq_worker_sleeping(tsk);
 6652	}
 6653
 6654	/*
 6655	 * spinlock and rwlock must not flush block requests.  This will
 6656	 * deadlock if the callback attempts to acquire a lock which is
 6657	 * already acquired.
 6658	 */
 6659	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
 6660
 6661	/*
 6662	 * If we are going to sleep and we have plugged IO queued,
 6663	 * make sure to submit it to avoid deadlocks.
 6664	 */
 6665	blk_flush_plug(tsk->plug, true);
 6666}
 6667
 6668static void sched_update_worker(struct task_struct *tsk)
 6669{
 6670	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
 6671		if (tsk->flags & PF_WQ_WORKER)
 6672			wq_worker_running(tsk);
 6673		else
 6674			io_wq_worker_running(tsk);
 6675	}
 6676}
 6677
 6678asmlinkage __visible void __sched schedule(void)
 6679{
 6680	struct task_struct *tsk = current;
 6681
 6682	sched_submit_work(tsk);
 6683	do {
 6684		preempt_disable();
 6685		__schedule(SM_NONE);
 6686		sched_preempt_enable_no_resched();
 6687	} while (need_resched());
 6688	sched_update_worker(tsk);
 6689}
 6690EXPORT_SYMBOL(schedule);
 6691
 6692/*
 6693 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
 6694 * state (have scheduled out non-voluntarily) by making sure that all
 6695 * tasks have either left the run queue or have gone into user space.
 6696 * As idle tasks do not do either, they must not ever be preempted
 6697 * (schedule out non-voluntarily).
 6698 *
 6699 * schedule_idle() is similar to schedule_preempt_disable() except that it
 6700 * never enables preemption because it does not call sched_submit_work().
 6701 */
 6702void __sched schedule_idle(void)
 6703{
 6704	/*
 6705	 * As this skips calling sched_submit_work(), which the idle task does
 6706	 * regardless because that function is a nop when the task is in a
 6707	 * TASK_RUNNING state, make sure this isn't used someplace that the
 6708	 * current task can be in any other state. Note, idle is always in the
 6709	 * TASK_RUNNING state.
 6710	 */
 6711	WARN_ON_ONCE(current->__state);
 6712	do {
 6713		__schedule(SM_NONE);
 6714	} while (need_resched());
 6715}
 6716
 6717#if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
 6718asmlinkage __visible void __sched schedule_user(void)
 6719{
 6720	/*
 6721	 * If we come here after a random call to set_need_resched(),
 6722	 * or we have been woken up remotely but the IPI has not yet arrived,
 6723	 * we haven't yet exited the RCU idle mode. Do it here manually until
 6724	 * we find a better solution.
 6725	 *
 6726	 * NB: There are buggy callers of this function.  Ideally we
 6727	 * should warn if prev_state != CONTEXT_USER, but that will trigger
 6728	 * too frequently to make sense yet.
 6729	 */
 6730	enum ctx_state prev_state = exception_enter();
 6731	schedule();
 6732	exception_exit(prev_state);
 6733}
 6734#endif
 6735
 6736/**
 6737 * schedule_preempt_disabled - called with preemption disabled
 6738 *
 6739 * Returns with preemption disabled. Note: preempt_count must be 1
 6740 */
 6741void __sched schedule_preempt_disabled(void)
 6742{
 6743	sched_preempt_enable_no_resched();
 6744	schedule();
 6745	preempt_disable();
 6746}
 6747
 6748#ifdef CONFIG_PREEMPT_RT
 6749void __sched notrace schedule_rtlock(void)
 6750{
 6751	do {
 6752		preempt_disable();
 6753		__schedule(SM_RTLOCK_WAIT);
 6754		sched_preempt_enable_no_resched();
 6755	} while (need_resched());
 6756}
 6757NOKPROBE_SYMBOL(schedule_rtlock);
 6758#endif
 6759
 6760static void __sched notrace preempt_schedule_common(void)
 6761{
 6762	do {
 6763		/*
 6764		 * Because the function tracer can trace preempt_count_sub()
 6765		 * and it also uses preempt_enable/disable_notrace(), if
 6766		 * NEED_RESCHED is set, the preempt_enable_notrace() called
 6767		 * by the function tracer will call this function again and
 6768		 * cause infinite recursion.
 6769		 *
 6770		 * Preemption must be disabled here before the function
 6771		 * tracer can trace. Break up preempt_disable() into two
 6772		 * calls. One to disable preemption without fear of being
 6773		 * traced. The other to still record the preemption latency,
 6774		 * which can also be traced by the function tracer.
 6775		 */
 6776		preempt_disable_notrace();
 6777		preempt_latency_start(1);
 6778		__schedule(SM_PREEMPT);
 6779		preempt_latency_stop(1);
 6780		preempt_enable_no_resched_notrace();
 6781
 6782		/*
 6783		 * Check again in case we missed a preemption opportunity
 6784		 * between schedule and now.
 6785		 */
 6786	} while (need_resched());
 6787}
 6788
 6789#ifdef CONFIG_PREEMPTION
 6790/*
 6791 * This is the entry point to schedule() from in-kernel preemption
 6792 * off of preempt_enable.
 
 6793 */
 6794asmlinkage __visible void __sched notrace preempt_schedule(void)
 6795{
 6796	/*
 6797	 * If there is a non-zero preempt_count or interrupts are disabled,
 6798	 * we do not want to preempt the current task. Just return..
 6799	 */
 6800	if (likely(!preemptible()))
 6801		return;
 
 6802	preempt_schedule_common();
 6803}
 6804NOKPROBE_SYMBOL(preempt_schedule);
 6805EXPORT_SYMBOL(preempt_schedule);
 6806
 6807#ifdef CONFIG_PREEMPT_DYNAMIC
 6808#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
 6809#ifndef preempt_schedule_dynamic_enabled
 6810#define preempt_schedule_dynamic_enabled	preempt_schedule
 6811#define preempt_schedule_dynamic_disabled	NULL
 6812#endif
 6813DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
 6814EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
 6815#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
 6816static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
 6817void __sched notrace dynamic_preempt_schedule(void)
 6818{
 6819	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
 6820		return;
 6821	preempt_schedule();
 6822}
 6823NOKPROBE_SYMBOL(dynamic_preempt_schedule);
 6824EXPORT_SYMBOL(dynamic_preempt_schedule);
 6825#endif
 6826#endif
 6827
 6828/**
 6829 * preempt_schedule_notrace - preempt_schedule called by tracing
 6830 *
 6831 * The tracing infrastructure uses preempt_enable_notrace to prevent
 6832 * recursion and tracing preempt enabling caused by the tracing
 6833 * infrastructure itself. But as tracing can happen in areas coming
 6834 * from userspace or just about to enter userspace, a preempt enable
 6835 * can occur before user_exit() is called. This will cause the scheduler
 6836 * to be called when the system is still in usermode.
 6837 *
 6838 * To prevent this, the preempt_enable_notrace will use this function
 6839 * instead of preempt_schedule() to exit user context if needed before
 6840 * calling the scheduler.
 6841 */
 6842asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
 6843{
 6844	enum ctx_state prev_ctx;
 6845
 6846	if (likely(!preemptible()))
 6847		return;
 6848
 6849	do {
 6850		/*
 6851		 * Because the function tracer can trace preempt_count_sub()
 6852		 * and it also uses preempt_enable/disable_notrace(), if
 6853		 * NEED_RESCHED is set, the preempt_enable_notrace() called
 6854		 * by the function tracer will call this function again and
 6855		 * cause infinite recursion.
 6856		 *
 6857		 * Preemption must be disabled here before the function
 6858		 * tracer can trace. Break up preempt_disable() into two
 6859		 * calls. One to disable preemption without fear of being
 6860		 * traced. The other to still record the preemption latency,
 6861		 * which can also be traced by the function tracer.
 6862		 */
 6863		preempt_disable_notrace();
 6864		preempt_latency_start(1);
 6865		/*
 6866		 * Needs preempt disabled in case user_exit() is traced
 6867		 * and the tracer calls preempt_enable_notrace() causing
 6868		 * an infinite recursion.
 6869		 */
 6870		prev_ctx = exception_enter();
 6871		__schedule(SM_PREEMPT);
 6872		exception_exit(prev_ctx);
 6873
 6874		preempt_latency_stop(1);
 6875		preempt_enable_no_resched_notrace();
 6876	} while (need_resched());
 6877}
 6878EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
 6879
 6880#ifdef CONFIG_PREEMPT_DYNAMIC
 6881#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
 6882#ifndef preempt_schedule_notrace_dynamic_enabled
 6883#define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
 6884#define preempt_schedule_notrace_dynamic_disabled	NULL
 6885#endif
 6886DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
 6887EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
 6888#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
 6889static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
 6890void __sched notrace dynamic_preempt_schedule_notrace(void)
 6891{
 6892	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
 6893		return;
 6894	preempt_schedule_notrace();
 6895}
 6896NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
 6897EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
 6898#endif
 6899#endif
 6900
 6901#endif /* CONFIG_PREEMPTION */
 6902
 6903/*
 6904 * This is the entry point to schedule() from kernel preemption
 6905 * off of irq context.
 6906 * Note, that this is called and return with irqs disabled. This will
 6907 * protect us against recursive calling from irq.
 6908 */
 6909asmlinkage __visible void __sched preempt_schedule_irq(void)
 6910{
 6911	enum ctx_state prev_state;
 6912
 6913	/* Catch callers which need to be fixed */
 6914	BUG_ON(preempt_count() || !irqs_disabled());
 6915
 6916	prev_state = exception_enter();
 6917
 6918	do {
 6919		preempt_disable();
 6920		local_irq_enable();
 6921		__schedule(SM_PREEMPT);
 6922		local_irq_disable();
 6923		sched_preempt_enable_no_resched();
 6924	} while (need_resched());
 6925
 6926	exception_exit(prev_state);
 6927}
 6928
 6929int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
 6930			  void *key)
 6931{
 6932	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
 6933	return try_to_wake_up(curr->private, mode, wake_flags);
 6934}
 6935EXPORT_SYMBOL(default_wake_function);
 6936
 6937static void __setscheduler_prio(struct task_struct *p, int prio)
 6938{
 6939	if (dl_prio(prio))
 6940		p->sched_class = &dl_sched_class;
 6941	else if (rt_prio(prio))
 6942		p->sched_class = &rt_sched_class;
 6943	else
 6944		p->sched_class = &fair_sched_class;
 6945
 6946	p->prio = prio;
 6947}
 6948
 6949#ifdef CONFIG_RT_MUTEXES
 6950
 6951static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
 6952{
 6953	if (pi_task)
 6954		prio = min(prio, pi_task->prio);
 6955
 6956	return prio;
 6957}
 6958
 6959static inline int rt_effective_prio(struct task_struct *p, int prio)
 6960{
 6961	struct task_struct *pi_task = rt_mutex_get_top_task(p);
 6962
 6963	return __rt_effective_prio(pi_task, prio);
 6964}
 6965
 6966/*
 6967 * rt_mutex_setprio - set the current priority of a task
 6968 * @p: task to boost
 6969 * @pi_task: donor task
 6970 *
 6971 * This function changes the 'effective' priority of a task. It does
 6972 * not touch ->normal_prio like __setscheduler().
 6973 *
 6974 * Used by the rt_mutex code to implement priority inheritance
 6975 * logic. Call site only calls if the priority of the task changed.
 6976 */
 6977void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
 6978{
 6979	int prio, oldprio, queued, running, queue_flag =
 6980		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
 6981	const struct sched_class *prev_class;
 6982	struct rq_flags rf;
 6983	struct rq *rq;
 
 6984
 6985	/* XXX used to be waiter->prio, not waiter->task->prio */
 6986	prio = __rt_effective_prio(pi_task, p->normal_prio);
 6987
 6988	/*
 6989	 * If nothing changed; bail early.
 6990	 */
 6991	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
 6992		return;
 6993
 6994	rq = __task_rq_lock(p, &rf);
 6995	update_rq_clock(rq);
 6996	/*
 6997	 * Set under pi_lock && rq->lock, such that the value can be used under
 6998	 * either lock.
 6999	 *
 7000	 * Note that there is loads of tricky to make this pointer cache work
 7001	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
 7002	 * ensure a task is de-boosted (pi_task is set to NULL) before the
 7003	 * task is allowed to run again (and can exit). This ensures the pointer
 7004	 * points to a blocked task -- which guarantees the task is present.
 7005	 */
 7006	p->pi_top_task = pi_task;
 7007
 7008	/*
 7009	 * For FIFO/RR we only need to set prio, if that matches we're done.
 7010	 */
 7011	if (prio == p->prio && !dl_prio(prio))
 7012		goto out_unlock;
 7013
 7014	/*
 7015	 * Idle task boosting is a nono in general. There is one
 7016	 * exception, when PREEMPT_RT and NOHZ is active:
 7017	 *
 7018	 * The idle task calls get_next_timer_interrupt() and holds
 7019	 * the timer wheel base->lock on the CPU and another CPU wants
 7020	 * to access the timer (probably to cancel it). We can safely
 7021	 * ignore the boosting request, as the idle CPU runs this code
 7022	 * with interrupts disabled and will complete the lock
 7023	 * protected section without being interrupted. So there is no
 7024	 * real need to boost.
 7025	 */
 7026	if (unlikely(p == rq->idle)) {
 7027		WARN_ON(p != rq->curr);
 7028		WARN_ON(p->pi_blocked_on);
 7029		goto out_unlock;
 7030	}
 7031
 7032	trace_sched_pi_setprio(p, pi_task);
 7033	oldprio = p->prio;
 7034
 7035	if (oldprio == prio)
 7036		queue_flag &= ~DEQUEUE_MOVE;
 7037
 7038	prev_class = p->sched_class;
 7039	queued = task_on_rq_queued(p);
 7040	running = task_current(rq, p);
 7041	if (queued)
 7042		dequeue_task(rq, p, queue_flag);
 7043	if (running)
 7044		put_prev_task(rq, p);
 7045
 7046	/*
 7047	 * Boosting condition are:
 7048	 * 1. -rt task is running and holds mutex A
 7049	 *      --> -dl task blocks on mutex A
 7050	 *
 7051	 * 2. -dl task is running and holds mutex A
 7052	 *      --> -dl task blocks on mutex A and could preempt the
 7053	 *          running task
 7054	 */
 7055	if (dl_prio(prio)) {
 
 7056		if (!dl_prio(p->normal_prio) ||
 7057		    (pi_task && dl_prio(pi_task->prio) &&
 7058		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
 7059			p->dl.pi_se = pi_task->dl.pi_se;
 7060			queue_flag |= ENQUEUE_REPLENISH;
 7061		} else {
 7062			p->dl.pi_se = &p->dl;
 7063		}
 7064	} else if (rt_prio(prio)) {
 7065		if (dl_prio(oldprio))
 7066			p->dl.pi_se = &p->dl;
 7067		if (oldprio < prio)
 7068			queue_flag |= ENQUEUE_HEAD;
 
 7069	} else {
 7070		if (dl_prio(oldprio))
 7071			p->dl.pi_se = &p->dl;
 7072		if (rt_prio(oldprio))
 7073			p->rt.timeout = 0;
 
 7074	}
 7075
 7076	__setscheduler_prio(p, prio);
 7077
 
 
 7078	if (queued)
 7079		enqueue_task(rq, p, queue_flag);
 7080	if (running)
 7081		set_next_task(rq, p);
 7082
 7083	check_class_changed(rq, p, prev_class, oldprio);
 7084out_unlock:
 7085	/* Avoid rq from going away on us: */
 7086	preempt_disable();
 7087
 7088	rq_unpin_lock(rq, &rf);
 7089	__balance_callbacks(rq);
 7090	raw_spin_rq_unlock(rq);
 7091
 
 7092	preempt_enable();
 7093}
 7094#else
 7095static inline int rt_effective_prio(struct task_struct *p, int prio)
 7096{
 7097	return prio;
 7098}
 7099#endif
 7100
 7101void set_user_nice(struct task_struct *p, long nice)
 7102{
 7103	bool queued, running;
 7104	int old_prio;
 7105	struct rq_flags rf;
 7106	struct rq *rq;
 7107
 7108	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
 7109		return;
 7110	/*
 7111	 * We have to be careful, if called from sys_setpriority(),
 7112	 * the task might be in the middle of scheduling on another CPU.
 7113	 */
 7114	rq = task_rq_lock(p, &rf);
 7115	update_rq_clock(rq);
 7116
 7117	/*
 7118	 * The RT priorities are set via sched_setscheduler(), but we still
 7119	 * allow the 'normal' nice value to be set - but as expected
 7120	 * it won't have any effect on scheduling until the task is
 7121	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
 7122	 */
 7123	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
 7124		p->static_prio = NICE_TO_PRIO(nice);
 7125		goto out_unlock;
 7126	}
 7127	queued = task_on_rq_queued(p);
 7128	running = task_current(rq, p);
 7129	if (queued)
 7130		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
 7131	if (running)
 7132		put_prev_task(rq, p);
 7133
 7134	p->static_prio = NICE_TO_PRIO(nice);
 7135	set_load_weight(p, true);
 7136	old_prio = p->prio;
 7137	p->prio = effective_prio(p);
 
 7138
 7139	if (queued)
 7140		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
 7141	if (running)
 7142		set_next_task(rq, p);
 7143
 7144	/*
 7145	 * If the task increased its priority or is running and
 7146	 * lowered its priority, then reschedule its CPU:
 7147	 */
 7148	p->sched_class->prio_changed(rq, p, old_prio);
 7149
 7150out_unlock:
 7151	task_rq_unlock(rq, p, &rf);
 7152}
 7153EXPORT_SYMBOL(set_user_nice);
 7154
 7155/*
 7156 * is_nice_reduction - check if nice value is an actual reduction
 7157 *
 7158 * Similar to can_nice() but does not perform a capability check.
 7159 *
 7160 * @p: task
 7161 * @nice: nice value
 7162 */
 7163static bool is_nice_reduction(const struct task_struct *p, const int nice)
 7164{
 7165	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
 7166	int nice_rlim = nice_to_rlimit(nice);
 7167
 7168	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
 7169}
 7170
 7171/*
 7172 * can_nice - check if a task can reduce its nice value
 7173 * @p: task
 7174 * @nice: nice value
 7175 */
 7176int can_nice(const struct task_struct *p, const int nice)
 7177{
 7178	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
 
 
 
 
 7179}
 7180
 7181#ifdef __ARCH_WANT_SYS_NICE
 7182
 7183/*
 7184 * sys_nice - change the priority of the current process.
 7185 * @increment: priority increment
 7186 *
 7187 * sys_setpriority is a more generic, but much slower function that
 7188 * does similar things.
 7189 */
 7190SYSCALL_DEFINE1(nice, int, increment)
 7191{
 7192	long nice, retval;
 7193
 7194	/*
 7195	 * Setpriority might change our priority at the same moment.
 7196	 * We don't have to worry. Conceptually one call occurs first
 7197	 * and we have a single winner.
 7198	 */
 7199	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
 7200	nice = task_nice(current) + increment;
 7201
 7202	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
 7203	if (increment < 0 && !can_nice(current, nice))
 7204		return -EPERM;
 7205
 7206	retval = security_task_setnice(current, nice);
 7207	if (retval)
 7208		return retval;
 7209
 7210	set_user_nice(current, nice);
 7211	return 0;
 7212}
 7213
 7214#endif
 7215
 7216/**
 7217 * task_prio - return the priority value of a given task.
 7218 * @p: the task in question.
 7219 *
 7220 * Return: The priority value as seen by users in /proc.
 7221 *
 7222 * sched policy         return value   kernel prio    user prio/nice
 7223 *
 7224 * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
 7225 * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
 7226 * deadline                     -101             -1           0
 7227 */
 7228int task_prio(const struct task_struct *p)
 7229{
 7230	return p->prio - MAX_RT_PRIO;
 7231}
 7232
 7233/**
 7234 * idle_cpu - is a given CPU idle currently?
 7235 * @cpu: the processor in question.
 7236 *
 7237 * Return: 1 if the CPU is currently idle. 0 otherwise.
 7238 */
 7239int idle_cpu(int cpu)
 7240{
 7241	struct rq *rq = cpu_rq(cpu);
 7242
 7243	if (rq->curr != rq->idle)
 7244		return 0;
 7245
 7246	if (rq->nr_running)
 7247		return 0;
 7248
 7249#ifdef CONFIG_SMP
 7250	if (rq->ttwu_pending)
 7251		return 0;
 7252#endif
 7253
 7254	return 1;
 7255}
 7256
 7257/**
 7258 * available_idle_cpu - is a given CPU idle for enqueuing work.
 7259 * @cpu: the CPU in question.
 7260 *
 7261 * Return: 1 if the CPU is currently idle. 0 otherwise.
 7262 */
 7263int available_idle_cpu(int cpu)
 7264{
 7265	if (!idle_cpu(cpu))
 7266		return 0;
 7267
 7268	if (vcpu_is_preempted(cpu))
 7269		return 0;
 7270
 7271	return 1;
 7272}
 7273
 7274/**
 7275 * idle_task - return the idle task for a given CPU.
 7276 * @cpu: the processor in question.
 7277 *
 7278 * Return: The idle task for the CPU @cpu.
 7279 */
 7280struct task_struct *idle_task(int cpu)
 7281{
 7282	return cpu_rq(cpu)->idle;
 7283}
 7284
 7285#ifdef CONFIG_SMP
 7286/*
 7287 * This function computes an effective utilization for the given CPU, to be
 7288 * used for frequency selection given the linear relation: f = u * f_max.
 7289 *
 7290 * The scheduler tracks the following metrics:
 7291 *
 7292 *   cpu_util_{cfs,rt,dl,irq}()
 7293 *   cpu_bw_dl()
 7294 *
 7295 * Where the cfs,rt and dl util numbers are tracked with the same metric and
 7296 * synchronized windows and are thus directly comparable.
 7297 *
 7298 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
 7299 * which excludes things like IRQ and steal-time. These latter are then accrued
 7300 * in the irq utilization.
 7301 *
 7302 * The DL bandwidth number otoh is not a measured metric but a value computed
 7303 * based on the task model parameters and gives the minimal utilization
 7304 * required to meet deadlines.
 7305 */
 7306unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
 7307				 enum cpu_util_type type,
 7308				 struct task_struct *p)
 7309{
 7310	unsigned long dl_util, util, irq, max;
 7311	struct rq *rq = cpu_rq(cpu);
 7312
 7313	max = arch_scale_cpu_capacity(cpu);
 7314
 7315	if (!uclamp_is_used() &&
 7316	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
 7317		return max;
 7318	}
 7319
 7320	/*
 7321	 * Early check to see if IRQ/steal time saturates the CPU, can be
 7322	 * because of inaccuracies in how we track these -- see
 7323	 * update_irq_load_avg().
 7324	 */
 7325	irq = cpu_util_irq(rq);
 7326	if (unlikely(irq >= max))
 7327		return max;
 7328
 7329	/*
 7330	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
 7331	 * CFS tasks and we use the same metric to track the effective
 7332	 * utilization (PELT windows are synchronized) we can directly add them
 7333	 * to obtain the CPU's actual utilization.
 7334	 *
 7335	 * CFS and RT utilization can be boosted or capped, depending on
 7336	 * utilization clamp constraints requested by currently RUNNABLE
 7337	 * tasks.
 7338	 * When there are no CFS RUNNABLE tasks, clamps are released and
 7339	 * frequency will be gracefully reduced with the utilization decay.
 7340	 */
 7341	util = util_cfs + cpu_util_rt(rq);
 7342	if (type == FREQUENCY_UTIL)
 7343		util = uclamp_rq_util_with(rq, util, p);
 7344
 7345	dl_util = cpu_util_dl(rq);
 7346
 7347	/*
 7348	 * For frequency selection we do not make cpu_util_dl() a permanent part
 7349	 * of this sum because we want to use cpu_bw_dl() later on, but we need
 7350	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
 7351	 * that we select f_max when there is no idle time.
 7352	 *
 7353	 * NOTE: numerical errors or stop class might cause us to not quite hit
 7354	 * saturation when we should -- something for later.
 7355	 */
 7356	if (util + dl_util >= max)
 7357		return max;
 7358
 7359	/*
 7360	 * OTOH, for energy computation we need the estimated running time, so
 7361	 * include util_dl and ignore dl_bw.
 7362	 */
 7363	if (type == ENERGY_UTIL)
 7364		util += dl_util;
 7365
 7366	/*
 7367	 * There is still idle time; further improve the number by using the
 7368	 * irq metric. Because IRQ/steal time is hidden from the task clock we
 7369	 * need to scale the task numbers:
 7370	 *
 7371	 *              max - irq
 7372	 *   U' = irq + --------- * U
 7373	 *                 max
 7374	 */
 7375	util = scale_irq_capacity(util, irq, max);
 7376	util += irq;
 7377
 7378	/*
 7379	 * Bandwidth required by DEADLINE must always be granted while, for
 7380	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
 7381	 * to gracefully reduce the frequency when no tasks show up for longer
 7382	 * periods of time.
 7383	 *
 7384	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
 7385	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
 7386	 * an interface. So, we only do the latter for now.
 7387	 */
 7388	if (type == FREQUENCY_UTIL)
 7389		util += cpu_bw_dl(rq);
 7390
 7391	return min(max, util);
 7392}
 7393
 7394unsigned long sched_cpu_util(int cpu)
 7395{
 7396	return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
 7397}
 7398#endif /* CONFIG_SMP */
 7399
 7400/**
 7401 * find_process_by_pid - find a process with a matching PID value.
 7402 * @pid: the pid in question.
 7403 *
 7404 * The task of @pid, if found. %NULL otherwise.
 7405 */
 7406static struct task_struct *find_process_by_pid(pid_t pid)
 7407{
 7408	return pid ? find_task_by_vpid(pid) : current;
 7409}
 7410
 7411/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7412 * sched_setparam() passes in -1 for its policy, to let the functions
 7413 * it calls know not to change it.
 7414 */
 7415#define SETPARAM_POLICY	-1
 7416
 7417static void __setscheduler_params(struct task_struct *p,
 7418		const struct sched_attr *attr)
 7419{
 7420	int policy = attr->sched_policy;
 7421
 7422	if (policy == SETPARAM_POLICY)
 7423		policy = p->policy;
 7424
 7425	p->policy = policy;
 7426
 7427	if (dl_policy(policy))
 7428		__setparam_dl(p, attr);
 7429	else if (fair_policy(policy))
 7430		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
 7431
 7432	/*
 7433	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
 7434	 * !rt_policy. Always setting this ensures that things like
 7435	 * getparam()/getattr() don't report silly values for !rt tasks.
 7436	 */
 7437	p->rt_priority = attr->sched_priority;
 7438	p->normal_prio = normal_prio(p);
 7439	set_load_weight(p, true);
 7440}
 7441
 7442/*
 7443 * Check the target process has a UID that matches the current process's:
 7444 */
 7445static bool check_same_owner(struct task_struct *p)
 7446{
 7447	const struct cred *cred = current_cred(), *pcred;
 7448	bool match;
 7449
 7450	rcu_read_lock();
 7451	pcred = __task_cred(p);
 7452	match = (uid_eq(cred->euid, pcred->euid) ||
 7453		 uid_eq(cred->euid, pcred->uid));
 7454	rcu_read_unlock();
 7455	return match;
 
 
 
 
 
 
 
 
 
 7456}
 7457
 7458/*
 7459 * Allow unprivileged RT tasks to decrease priority.
 7460 * Only issue a capable test if needed and only once to avoid an audit
 7461 * event on permitted non-privileged operations:
 7462 */
 7463static int user_check_sched_setscheduler(struct task_struct *p,
 7464					 const struct sched_attr *attr,
 7465					 int policy, int reset_on_fork)
 7466{
 7467	if (fair_policy(policy)) {
 7468		if (attr->sched_nice < task_nice(p) &&
 7469		    !is_nice_reduction(p, attr->sched_nice))
 7470			goto req_priv;
 7471	}
 7472
 7473	if (rt_policy(policy)) {
 7474		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
 7475
 7476		/* Can't set/change the rt policy: */
 7477		if (policy != p->policy && !rlim_rtprio)
 7478			goto req_priv;
 
 
 
 7479
 7480		/* Can't increase priority: */
 7481		if (attr->sched_priority > p->rt_priority &&
 7482		    attr->sched_priority > rlim_rtprio)
 7483			goto req_priv;
 7484	}
 
 
 
 
 
 
 
 
 
 
 
 7485
 7486	/*
 7487	 * Can't set/change SCHED_DEADLINE policy at all for now
 7488	 * (safest behavior); in the future we would like to allow
 7489	 * unprivileged DL tasks to increase their relative deadline
 7490	 * or reduce their runtime (both ways reducing utilization)
 7491	 */
 7492	if (dl_policy(policy))
 7493		goto req_priv;
 7494
 7495	/*
 7496	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
 7497	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
 7498	 */
 7499	if (task_has_idle_policy(p) && !idle_policy(policy)) {
 7500		if (!is_nice_reduction(p, task_nice(p)))
 7501			goto req_priv;
 7502	}
 7503
 7504	/* Can't change other user's priorities: */
 7505	if (!check_same_owner(p))
 7506		goto req_priv;
 
 
 7507
 7508	/* Normal users shall not reset the sched_reset_on_fork flag: */
 7509	if (p->sched_reset_on_fork && !reset_on_fork)
 7510		goto req_priv;
 7511
 7512	return 0;
 
 
 
 
 
 
 7513
 7514req_priv:
 7515	if (!capable(CAP_SYS_NICE))
 7516		return -EPERM;
 
 
 
 
 7517
 7518	return 0;
 
 
 
 
 
 
 
 
 
 
 
 7519}
 7520
 7521static int __sched_setscheduler(struct task_struct *p,
 7522				const struct sched_attr *attr,
 7523				bool user, bool pi)
 7524{
 7525	int oldpolicy = -1, policy = attr->sched_policy;
 7526	int retval, oldprio, newprio, queued, running;
 
 
 
 7527	const struct sched_class *prev_class;
 7528	struct balance_callback *head;
 7529	struct rq_flags rf;
 7530	int reset_on_fork;
 7531	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
 7532	struct rq *rq;
 
 
 7533
 7534	/* The pi code expects interrupts enabled */
 7535	BUG_ON(pi && in_interrupt());
 7536recheck:
 7537	/* Double check policy once rq lock held: */
 7538	if (policy < 0) {
 7539		reset_on_fork = p->sched_reset_on_fork;
 7540		policy = oldpolicy = p->policy;
 7541	} else {
 7542		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
 7543
 7544		if (!valid_policy(policy))
 7545			return -EINVAL;
 7546	}
 7547
 7548	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
 7549		return -EINVAL;
 7550
 7551	/*
 7552	 * Valid priorities for SCHED_FIFO and SCHED_RR are
 7553	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
 7554	 * SCHED_BATCH and SCHED_IDLE is 0.
 7555	 */
 7556	if (attr->sched_priority > MAX_RT_PRIO-1)
 
 7557		return -EINVAL;
 7558	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
 7559	    (rt_policy(policy) != (attr->sched_priority != 0)))
 7560		return -EINVAL;
 7561
 7562	if (user) {
 7563		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
 7564		if (retval)
 7565			return retval;
 
 
 
 
 
 7566
 7567		if (attr->sched_flags & SCHED_FLAG_SUGOV)
 7568			return -EINVAL;
 
 7569
 7570		retval = security_task_setscheduler(p);
 7571		if (retval)
 7572			return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7573	}
 7574
 7575	/* Update task specific "requested" clamps */
 7576	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
 7577		retval = uclamp_validate(p, attr);
 7578		if (retval)
 7579			return retval;
 7580	}
 7581
 7582	if (pi)
 7583		cpuset_read_lock();
 7584
 7585	/*
 7586	 * Make sure no PI-waiters arrive (or leave) while we are
 7587	 * changing the priority of the task:
 7588	 *
 7589	 * To be able to change p->policy safely, the appropriate
 7590	 * runqueue lock must be held.
 7591	 */
 7592	rq = task_rq_lock(p, &rf);
 7593	update_rq_clock(rq);
 7594
 7595	/*
 7596	 * Changing the policy of the stop threads its a very bad idea:
 7597	 */
 7598	if (p == rq->stop) {
 7599		retval = -EINVAL;
 7600		goto unlock;
 7601	}
 7602
 7603	/*
 7604	 * If not changing anything there's no need to proceed further,
 7605	 * but store a possible modification of reset_on_fork.
 7606	 */
 7607	if (unlikely(policy == p->policy)) {
 7608		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
 7609			goto change;
 7610		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
 7611			goto change;
 7612		if (dl_policy(policy) && dl_param_changed(p, attr))
 7613			goto change;
 7614		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
 7615			goto change;
 7616
 7617		p->sched_reset_on_fork = reset_on_fork;
 7618		retval = 0;
 7619		goto unlock;
 7620	}
 7621change:
 7622
 7623	if (user) {
 7624#ifdef CONFIG_RT_GROUP_SCHED
 7625		/*
 7626		 * Do not allow realtime tasks into groups that have no runtime
 7627		 * assigned.
 7628		 */
 7629		if (rt_bandwidth_enabled() && rt_policy(policy) &&
 7630				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
 7631				!task_group_is_autogroup(task_group(p))) {
 7632			retval = -EPERM;
 7633			goto unlock;
 7634		}
 7635#endif
 7636#ifdef CONFIG_SMP
 7637		if (dl_bandwidth_enabled() && dl_policy(policy) &&
 7638				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
 7639			cpumask_t *span = rq->rd->span;
 7640
 7641			/*
 7642			 * Don't allow tasks with an affinity mask smaller than
 7643			 * the entire root_domain to become SCHED_DEADLINE. We
 7644			 * will also fail if there's no bandwidth available.
 7645			 */
 7646			if (!cpumask_subset(span, p->cpus_ptr) ||
 7647			    rq->rd->dl_bw.bw == 0) {
 7648				retval = -EPERM;
 7649				goto unlock;
 7650			}
 7651		}
 7652#endif
 7653	}
 7654
 7655	/* Re-check policy now with rq lock held: */
 7656	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
 7657		policy = oldpolicy = -1;
 7658		task_rq_unlock(rq, p, &rf);
 7659		if (pi)
 7660			cpuset_read_unlock();
 7661		goto recheck;
 7662	}
 7663
 7664	/*
 7665	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
 7666	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
 7667	 * is available.
 7668	 */
 7669	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
 7670		retval = -EBUSY;
 7671		goto unlock;
 7672	}
 7673
 7674	p->sched_reset_on_fork = reset_on_fork;
 7675	oldprio = p->prio;
 7676
 7677	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
 7678	if (pi) {
 7679		/*
 7680		 * Take priority boosted tasks into account. If the new
 7681		 * effective priority is unchanged, we just store the new
 7682		 * normal parameters and do not touch the scheduler class and
 7683		 * the runqueue. This will be done when the task deboost
 7684		 * itself.
 7685		 */
 7686		newprio = rt_effective_prio(p, newprio);
 7687		if (newprio == oldprio)
 7688			queue_flags &= ~DEQUEUE_MOVE;
 7689	}
 7690
 7691	queued = task_on_rq_queued(p);
 7692	running = task_current(rq, p);
 7693	if (queued)
 7694		dequeue_task(rq, p, queue_flags);
 7695	if (running)
 7696		put_prev_task(rq, p);
 7697
 7698	prev_class = p->sched_class;
 
 7699
 7700	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
 7701		__setscheduler_params(p, attr);
 7702		__setscheduler_prio(p, newprio);
 7703	}
 7704	__setscheduler_uclamp(p, attr);
 7705
 7706	if (queued) {
 7707		/*
 7708		 * We enqueue to tail when the priority of a task is
 7709		 * increased (user space view).
 7710		 */
 7711		if (oldprio < p->prio)
 7712			queue_flags |= ENQUEUE_HEAD;
 7713
 7714		enqueue_task(rq, p, queue_flags);
 7715	}
 7716	if (running)
 7717		set_next_task(rq, p);
 7718
 7719	check_class_changed(rq, p, prev_class, oldprio);
 
 
 7720
 7721	/* Avoid rq from going away on us: */
 7722	preempt_disable();
 7723	head = splice_balance_callbacks(rq);
 7724	task_rq_unlock(rq, p, &rf);
 7725
 7726	if (pi) {
 7727		cpuset_read_unlock();
 7728		rt_mutex_adjust_pi(p);
 7729	}
 7730
 7731	/* Run balance callbacks after we've adjusted the PI chain: */
 7732	balance_callbacks(rq, head);
 
 
 7733	preempt_enable();
 7734
 7735	return 0;
 7736
 7737unlock:
 7738	task_rq_unlock(rq, p, &rf);
 7739	if (pi)
 7740		cpuset_read_unlock();
 7741	return retval;
 7742}
 7743
 7744static int _sched_setscheduler(struct task_struct *p, int policy,
 7745			       const struct sched_param *param, bool check)
 7746{
 7747	struct sched_attr attr = {
 7748		.sched_policy   = policy,
 7749		.sched_priority = param->sched_priority,
 7750		.sched_nice	= PRIO_TO_NICE(p->static_prio),
 7751	};
 7752
 7753	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
 7754	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
 7755		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
 7756		policy &= ~SCHED_RESET_ON_FORK;
 7757		attr.sched_policy = policy;
 7758	}
 7759
 7760	return __sched_setscheduler(p, &attr, check, true);
 7761}
 7762/**
 7763 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 7764 * @p: the task in question.
 7765 * @policy: new policy.
 7766 * @param: structure containing the new RT priority.
 7767 *
 7768 * Use sched_set_fifo(), read its comment.
 7769 *
 7770 * Return: 0 on success. An error code otherwise.
 7771 *
 7772 * NOTE that the task may be already dead.
 7773 */
 7774int sched_setscheduler(struct task_struct *p, int policy,
 7775		       const struct sched_param *param)
 7776{
 7777	return _sched_setscheduler(p, policy, param, true);
 7778}
 
 7779
 7780int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
 7781{
 7782	return __sched_setscheduler(p, attr, true, true);
 7783}
 7784
 7785int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
 7786{
 7787	return __sched_setscheduler(p, attr, false, true);
 7788}
 7789EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
 7790
 7791/**
 7792 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 7793 * @p: the task in question.
 7794 * @policy: new policy.
 7795 * @param: structure containing the new RT priority.
 7796 *
 7797 * Just like sched_setscheduler, only don't bother checking if the
 7798 * current context has permission.  For example, this is needed in
 7799 * stop_machine(): we create temporary high priority worker threads,
 7800 * but our caller might not have that capability.
 7801 *
 7802 * Return: 0 on success. An error code otherwise.
 7803 */
 7804int sched_setscheduler_nocheck(struct task_struct *p, int policy,
 7805			       const struct sched_param *param)
 7806{
 7807	return _sched_setscheduler(p, policy, param, false);
 7808}
 7809
 7810/*
 7811 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
 7812 * incapable of resource management, which is the one thing an OS really should
 7813 * be doing.
 7814 *
 7815 * This is of course the reason it is limited to privileged users only.
 7816 *
 7817 * Worse still; it is fundamentally impossible to compose static priority
 7818 * workloads. You cannot take two correctly working static prio workloads
 7819 * and smash them together and still expect them to work.
 7820 *
 7821 * For this reason 'all' FIFO tasks the kernel creates are basically at:
 7822 *
 7823 *   MAX_RT_PRIO / 2
 7824 *
 7825 * The administrator _MUST_ configure the system, the kernel simply doesn't
 7826 * know enough information to make a sensible choice.
 7827 */
 7828void sched_set_fifo(struct task_struct *p)
 7829{
 7830	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
 7831	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
 7832}
 7833EXPORT_SYMBOL_GPL(sched_set_fifo);
 7834
 7835/*
 7836 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
 7837 */
 7838void sched_set_fifo_low(struct task_struct *p)
 7839{
 7840	struct sched_param sp = { .sched_priority = 1 };
 7841	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
 7842}
 7843EXPORT_SYMBOL_GPL(sched_set_fifo_low);
 7844
 7845void sched_set_normal(struct task_struct *p, int nice)
 7846{
 7847	struct sched_attr attr = {
 7848		.sched_policy = SCHED_NORMAL,
 7849		.sched_nice = nice,
 7850	};
 7851	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
 7852}
 7853EXPORT_SYMBOL_GPL(sched_set_normal);
 7854
 7855static int
 7856do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
 7857{
 7858	struct sched_param lparam;
 7859	struct task_struct *p;
 7860	int retval;
 7861
 7862	if (!param || pid < 0)
 7863		return -EINVAL;
 7864	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
 7865		return -EFAULT;
 7866
 7867	rcu_read_lock();
 7868	retval = -ESRCH;
 7869	p = find_process_by_pid(pid);
 7870	if (likely(p))
 7871		get_task_struct(p);
 7872	rcu_read_unlock();
 7873
 7874	if (likely(p)) {
 7875		retval = sched_setscheduler(p, policy, &lparam);
 7876		put_task_struct(p);
 7877	}
 7878
 7879	return retval;
 7880}
 7881
 7882/*
 7883 * Mimics kernel/events/core.c perf_copy_attr().
 7884 */
 7885static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
 
 7886{
 7887	u32 size;
 7888	int ret;
 7889
 7890	/* Zero the full structure, so that a short copy will be nice: */
 
 
 
 
 
 7891	memset(attr, 0, sizeof(*attr));
 7892
 7893	ret = get_user(size, &uattr->size);
 7894	if (ret)
 7895		return ret;
 7896
 7897	/* ABI compatibility quirk: */
 7898	if (!size)
 
 
 7899		size = SCHED_ATTR_SIZE_VER0;
 7900	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
 
 7901		goto err_size;
 7902
 7903	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
 7904	if (ret) {
 7905		if (ret == -E2BIG)
 7906			goto err_size;
 7907		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7908	}
 7909
 7910	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
 7911	    size < SCHED_ATTR_SIZE_VER1)
 7912		return -EINVAL;
 7913
 7914	/*
 7915	 * XXX: Do we want to be lenient like existing syscalls; or do we want
 7916	 * to be strict and return an error on out-of-bounds values?
 7917	 */
 7918	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
 7919
 7920	return 0;
 7921
 7922err_size:
 7923	put_user(sizeof(*attr), &uattr->size);
 7924	return -E2BIG;
 7925}
 7926
 7927static void get_params(struct task_struct *p, struct sched_attr *attr)
 7928{
 7929	if (task_has_dl_policy(p))
 7930		__getparam_dl(p, attr);
 7931	else if (task_has_rt_policy(p))
 7932		attr->sched_priority = p->rt_priority;
 7933	else
 7934		attr->sched_nice = task_nice(p);
 7935}
 7936
 7937/**
 7938 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 7939 * @pid: the pid in question.
 7940 * @policy: new policy.
 7941 * @param: structure containing the new RT priority.
 7942 *
 7943 * Return: 0 on success. An error code otherwise.
 7944 */
 7945SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
 
 7946{
 
 7947	if (policy < 0)
 7948		return -EINVAL;
 7949
 7950	return do_sched_setscheduler(pid, policy, param);
 7951}
 7952
 7953/**
 7954 * sys_sched_setparam - set/change the RT priority of a thread
 7955 * @pid: the pid in question.
 7956 * @param: structure containing the new RT priority.
 7957 *
 7958 * Return: 0 on success. An error code otherwise.
 7959 */
 7960SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
 7961{
 7962	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
 7963}
 7964
 7965/**
 7966 * sys_sched_setattr - same as above, but with extended sched_attr
 7967 * @pid: the pid in question.
 7968 * @uattr: structure containing the extended parameters.
 7969 * @flags: for future extension.
 7970 */
 7971SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
 7972			       unsigned int, flags)
 7973{
 7974	struct sched_attr attr;
 7975	struct task_struct *p;
 7976	int retval;
 7977
 7978	if (!uattr || pid < 0 || flags)
 7979		return -EINVAL;
 7980
 7981	retval = sched_copy_attr(uattr, &attr);
 7982	if (retval)
 7983		return retval;
 7984
 7985	if ((int)attr.sched_policy < 0)
 7986		return -EINVAL;
 7987	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
 7988		attr.sched_policy = SETPARAM_POLICY;
 7989
 7990	rcu_read_lock();
 7991	retval = -ESRCH;
 7992	p = find_process_by_pid(pid);
 7993	if (likely(p))
 7994		get_task_struct(p);
 7995	rcu_read_unlock();
 7996
 7997	if (likely(p)) {
 7998		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
 7999			get_params(p, &attr);
 8000		retval = sched_setattr(p, &attr);
 8001		put_task_struct(p);
 8002	}
 8003
 8004	return retval;
 8005}
 8006
 8007/**
 8008 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 8009 * @pid: the pid in question.
 8010 *
 8011 * Return: On success, the policy of the thread. Otherwise, a negative error
 8012 * code.
 8013 */
 8014SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
 8015{
 8016	struct task_struct *p;
 8017	int retval;
 8018
 8019	if (pid < 0)
 8020		return -EINVAL;
 8021
 8022	retval = -ESRCH;
 8023	rcu_read_lock();
 8024	p = find_process_by_pid(pid);
 8025	if (p) {
 8026		retval = security_task_getscheduler(p);
 8027		if (!retval)
 8028			retval = p->policy
 8029				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
 8030	}
 8031	rcu_read_unlock();
 8032	return retval;
 8033}
 8034
 8035/**
 8036 * sys_sched_getparam - get the RT priority of a thread
 8037 * @pid: the pid in question.
 8038 * @param: structure containing the RT priority.
 8039 *
 8040 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 8041 * code.
 8042 */
 8043SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
 8044{
 8045	struct sched_param lp = { .sched_priority = 0 };
 8046	struct task_struct *p;
 8047	int retval;
 8048
 8049	if (!param || pid < 0)
 8050		return -EINVAL;
 8051
 8052	rcu_read_lock();
 8053	p = find_process_by_pid(pid);
 8054	retval = -ESRCH;
 8055	if (!p)
 8056		goto out_unlock;
 8057
 8058	retval = security_task_getscheduler(p);
 8059	if (retval)
 8060		goto out_unlock;
 8061
 8062	if (task_has_rt_policy(p))
 8063		lp.sched_priority = p->rt_priority;
 8064	rcu_read_unlock();
 8065
 8066	/*
 8067	 * This one might sleep, we cannot do it with a spinlock held ...
 8068	 */
 8069	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
 8070
 8071	return retval;
 8072
 8073out_unlock:
 8074	rcu_read_unlock();
 8075	return retval;
 8076}
 8077
 8078/*
 8079 * Copy the kernel size attribute structure (which might be larger
 8080 * than what user-space knows about) to user-space.
 8081 *
 8082 * Note that all cases are valid: user-space buffer can be larger or
 8083 * smaller than the kernel-space buffer. The usual case is that both
 8084 * have the same size.
 8085 */
 8086static int
 8087sched_attr_copy_to_user(struct sched_attr __user *uattr,
 8088			struct sched_attr *kattr,
 8089			unsigned int usize)
 8090{
 8091	unsigned int ksize = sizeof(*kattr);
 8092
 8093	if (!access_ok(uattr, usize))
 8094		return -EFAULT;
 8095
 8096	/*
 8097	 * sched_getattr() ABI forwards and backwards compatibility:
 8098	 *
 8099	 * If usize == ksize then we just copy everything to user-space and all is good.
 8100	 *
 8101	 * If usize < ksize then we only copy as much as user-space has space for,
 8102	 * this keeps ABI compatibility as well. We skip the rest.
 8103	 *
 8104	 * If usize > ksize then user-space is using a newer version of the ABI,
 8105	 * which part the kernel doesn't know about. Just ignore it - tooling can
 8106	 * detect the kernel's knowledge of attributes from the attr->size value
 8107	 * which is set to ksize in this case.
 8108	 */
 8109	kattr->size = min(usize, ksize);
 
 
 
 
 
 
 
 
 
 
 8110
 8111	if (copy_to_user(uattr, kattr, kattr->size))
 
 
 
 
 8112		return -EFAULT;
 8113
 8114	return 0;
 8115}
 8116
 8117/**
 8118 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
 8119 * @pid: the pid in question.
 8120 * @uattr: structure containing the extended parameters.
 8121 * @usize: sizeof(attr) for fwd/bwd comp.
 8122 * @flags: for future extension.
 8123 */
 8124SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
 8125		unsigned int, usize, unsigned int, flags)
 8126{
 8127	struct sched_attr kattr = { };
 
 
 8128	struct task_struct *p;
 8129	int retval;
 8130
 8131	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
 8132	    usize < SCHED_ATTR_SIZE_VER0 || flags)
 8133		return -EINVAL;
 8134
 8135	rcu_read_lock();
 8136	p = find_process_by_pid(pid);
 8137	retval = -ESRCH;
 8138	if (!p)
 8139		goto out_unlock;
 8140
 8141	retval = security_task_getscheduler(p);
 8142	if (retval)
 8143		goto out_unlock;
 8144
 8145	kattr.sched_policy = p->policy;
 8146	if (p->sched_reset_on_fork)
 8147		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
 8148	get_params(p, &kattr);
 8149	kattr.sched_flags &= SCHED_FLAG_ALL;
 8150
 8151#ifdef CONFIG_UCLAMP_TASK
 8152	/*
 8153	 * This could race with another potential updater, but this is fine
 8154	 * because it'll correctly read the old or the new value. We don't need
 8155	 * to guarantee who wins the race as long as it doesn't return garbage.
 8156	 */
 8157	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
 8158	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
 8159#endif
 8160
 8161	rcu_read_unlock();
 8162
 8163	return sched_attr_copy_to_user(uattr, &kattr, usize);
 
 8164
 8165out_unlock:
 8166	rcu_read_unlock();
 8167	return retval;
 8168}
 8169
 8170#ifdef CONFIG_SMP
 8171int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
 8172{
 8173	int ret = 0;
 8174
 8175	/*
 8176	 * If the task isn't a deadline task or admission control is
 8177	 * disabled then we don't care about affinity changes.
 8178	 */
 8179	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
 8180		return 0;
 8181
 8182	/*
 8183	 * Since bandwidth control happens on root_domain basis,
 8184	 * if admission test is enabled, we only admit -deadline
 8185	 * tasks allowed to run on all the CPUs in the task's
 8186	 * root_domain.
 8187	 */
 8188	rcu_read_lock();
 8189	if (!cpumask_subset(task_rq(p)->rd->span, mask))
 8190		ret = -EBUSY;
 8191	rcu_read_unlock();
 8192	return ret;
 8193}
 8194#endif
 8195
 8196static int
 8197__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
 8198{
 8199	int retval;
 8200	cpumask_var_t cpus_allowed, new_mask;
 8201
 8202	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
 8203		return -ENOMEM;
 8204
 8205	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
 8206		retval = -ENOMEM;
 8207		goto out_free_cpus_allowed;
 8208	}
 8209
 8210	cpuset_cpus_allowed(p, cpus_allowed);
 8211	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
 8212
 8213	ctx->new_mask = new_mask;
 8214	ctx->flags |= SCA_CHECK;
 8215
 8216	retval = dl_task_check_affinity(p, new_mask);
 8217	if (retval)
 8218		goto out_free_new_mask;
 8219
 8220	retval = __set_cpus_allowed_ptr(p, ctx);
 8221	if (retval)
 8222		goto out_free_new_mask;
 8223
 8224	cpuset_cpus_allowed(p, cpus_allowed);
 8225	if (!cpumask_subset(new_mask, cpus_allowed)) {
 8226		/*
 8227		 * We must have raced with a concurrent cpuset update.
 8228		 * Just reset the cpumask to the cpuset's cpus_allowed.
 8229		 */
 8230		cpumask_copy(new_mask, cpus_allowed);
 8231
 8232		/*
 8233		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
 8234		 * will restore the previous user_cpus_ptr value.
 8235		 *
 8236		 * In the unlikely event a previous user_cpus_ptr exists,
 8237		 * we need to further restrict the mask to what is allowed
 8238		 * by that old user_cpus_ptr.
 8239		 */
 8240		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
 8241			bool empty = !cpumask_and(new_mask, new_mask,
 8242						  ctx->user_mask);
 8243
 8244			if (WARN_ON_ONCE(empty))
 8245				cpumask_copy(new_mask, cpus_allowed);
 8246		}
 8247		__set_cpus_allowed_ptr(p, ctx);
 8248		retval = -EINVAL;
 8249	}
 8250
 8251out_free_new_mask:
 8252	free_cpumask_var(new_mask);
 8253out_free_cpus_allowed:
 8254	free_cpumask_var(cpus_allowed);
 8255	return retval;
 8256}
 8257
 8258long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
 8259{
 8260	struct affinity_context ac;
 8261	struct cpumask *user_mask;
 8262	struct task_struct *p;
 8263	int retval;
 8264
 8265	rcu_read_lock();
 8266
 8267	p = find_process_by_pid(pid);
 8268	if (!p) {
 8269		rcu_read_unlock();
 8270		return -ESRCH;
 8271	}
 8272
 8273	/* Prevent p going away */
 8274	get_task_struct(p);
 8275	rcu_read_unlock();
 8276
 8277	if (p->flags & PF_NO_SETAFFINITY) {
 8278		retval = -EINVAL;
 8279		goto out_put_task;
 8280	}
 8281
 
 
 
 
 
 
 
 
 8282	if (!check_same_owner(p)) {
 8283		rcu_read_lock();
 8284		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
 8285			rcu_read_unlock();
 8286			retval = -EPERM;
 8287			goto out_put_task;
 8288		}
 8289		rcu_read_unlock();
 8290	}
 8291
 8292	retval = security_task_setscheduler(p);
 8293	if (retval)
 8294		goto out_put_task;
 
 
 
 
 8295
 8296	/*
 8297	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
 8298	 * alloc_user_cpus_ptr() returns NULL.
 
 
 8299	 */
 8300	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
 8301	if (user_mask) {
 8302		cpumask_copy(user_mask, in_mask);
 8303	} else if (IS_ENABLED(CONFIG_SMP)) {
 8304		retval = -ENOMEM;
 8305		goto out_put_task;
 
 
 
 8306	}
 
 
 
 8307
 8308	ac = (struct affinity_context){
 8309		.new_mask  = in_mask,
 8310		.user_mask = user_mask,
 8311		.flags     = SCA_USER,
 8312	};
 8313
 8314	retval = __sched_setaffinity(p, &ac);
 8315	kfree(ac.user_mask);
 8316
 
 
 
 
 
 
 
 8317out_put_task:
 8318	put_task_struct(p);
 8319	return retval;
 8320}
 8321
 8322static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
 8323			     struct cpumask *new_mask)
 8324{
 8325	if (len < cpumask_size())
 8326		cpumask_clear(new_mask);
 8327	else if (len > cpumask_size())
 8328		len = cpumask_size();
 8329
 8330	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
 8331}
 8332
 8333/**
 8334 * sys_sched_setaffinity - set the CPU affinity of a process
 8335 * @pid: pid of the process
 8336 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 8337 * @user_mask_ptr: user-space pointer to the new CPU mask
 8338 *
 8339 * Return: 0 on success. An error code otherwise.
 8340 */
 8341SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
 8342		unsigned long __user *, user_mask_ptr)
 8343{
 8344	cpumask_var_t new_mask;
 8345	int retval;
 8346
 8347	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
 8348		return -ENOMEM;
 8349
 8350	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
 8351	if (retval == 0)
 8352		retval = sched_setaffinity(pid, new_mask);
 8353	free_cpumask_var(new_mask);
 8354	return retval;
 8355}
 8356
 8357long sched_getaffinity(pid_t pid, struct cpumask *mask)
 8358{
 8359	struct task_struct *p;
 8360	unsigned long flags;
 8361	int retval;
 8362
 8363	rcu_read_lock();
 8364
 8365	retval = -ESRCH;
 8366	p = find_process_by_pid(pid);
 8367	if (!p)
 8368		goto out_unlock;
 8369
 8370	retval = security_task_getscheduler(p);
 8371	if (retval)
 8372		goto out_unlock;
 8373
 8374	raw_spin_lock_irqsave(&p->pi_lock, flags);
 8375	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
 8376	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 8377
 8378out_unlock:
 8379	rcu_read_unlock();
 8380
 8381	return retval;
 8382}
 8383
 8384/**
 8385 * sys_sched_getaffinity - get the CPU affinity of a process
 8386 * @pid: pid of the process
 8387 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 8388 * @user_mask_ptr: user-space pointer to hold the current CPU mask
 8389 *
 8390 * Return: size of CPU mask copied to user_mask_ptr on success. An
 8391 * error code otherwise.
 8392 */
 8393SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
 8394		unsigned long __user *, user_mask_ptr)
 8395{
 8396	int ret;
 8397	cpumask_var_t mask;
 8398
 8399	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
 8400		return -EINVAL;
 8401	if (len & (sizeof(unsigned long)-1))
 8402		return -EINVAL;
 8403
 8404	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
 8405		return -ENOMEM;
 8406
 8407	ret = sched_getaffinity(pid, mask);
 8408	if (ret == 0) {
 8409		unsigned int retlen = min(len, cpumask_size());
 8410
 8411		if (copy_to_user(user_mask_ptr, mask, retlen))
 8412			ret = -EFAULT;
 8413		else
 8414			ret = retlen;
 8415	}
 8416	free_cpumask_var(mask);
 8417
 8418	return ret;
 8419}
 8420
 8421static void do_sched_yield(void)
 8422{
 8423	struct rq_flags rf;
 8424	struct rq *rq;
 8425
 8426	rq = this_rq_lock_irq(&rf);
 8427
 8428	schedstat_inc(rq->yld_count);
 8429	current->sched_class->yield_task(rq);
 8430
 8431	preempt_disable();
 8432	rq_unlock_irq(rq, &rf);
 8433	sched_preempt_enable_no_resched();
 8434
 8435	schedule();
 8436}
 8437
 8438/**
 8439 * sys_sched_yield - yield the current processor to other threads.
 8440 *
 8441 * This function yields the current CPU to other tasks. If there are no
 8442 * other threads running on this CPU then this function will return.
 8443 *
 8444 * Return: 0.
 8445 */
 8446SYSCALL_DEFINE0(sched_yield)
 8447{
 8448	do_sched_yield();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8449	return 0;
 8450}
 8451
 8452#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
 8453int __sched __cond_resched(void)
 8454{
 8455	if (should_resched(0)) {
 8456		preempt_schedule_common();
 8457		return 1;
 8458	}
 8459	/*
 8460	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
 8461	 * whether the current CPU is in an RCU read-side critical section,
 8462	 * so the tick can report quiescent states even for CPUs looping
 8463	 * in kernel context.  In contrast, in non-preemptible kernels,
 8464	 * RCU readers leave no in-memory hints, which means that CPU-bound
 8465	 * processes executing in kernel context might never report an
 8466	 * RCU quiescent state.  Therefore, the following code causes
 8467	 * cond_resched() to report a quiescent state, but only when RCU
 8468	 * is in urgent need of one.
 8469	 */
 8470#ifndef CONFIG_PREEMPT_RCU
 8471	rcu_all_qs();
 8472#endif
 8473	return 0;
 8474}
 8475EXPORT_SYMBOL(__cond_resched);
 8476#endif
 8477
 8478#ifdef CONFIG_PREEMPT_DYNAMIC
 8479#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
 8480#define cond_resched_dynamic_enabled	__cond_resched
 8481#define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
 8482DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
 8483EXPORT_STATIC_CALL_TRAMP(cond_resched);
 8484
 8485#define might_resched_dynamic_enabled	__cond_resched
 8486#define might_resched_dynamic_disabled	((void *)&__static_call_return0)
 8487DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
 8488EXPORT_STATIC_CALL_TRAMP(might_resched);
 8489#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
 8490static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
 8491int __sched dynamic_cond_resched(void)
 8492{
 8493	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
 8494		return 0;
 8495	return __cond_resched();
 8496}
 8497EXPORT_SYMBOL(dynamic_cond_resched);
 8498
 8499static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
 8500int __sched dynamic_might_resched(void)
 8501{
 8502	if (!static_branch_unlikely(&sk_dynamic_might_resched))
 8503		return 0;
 8504	return __cond_resched();
 8505}
 8506EXPORT_SYMBOL(dynamic_might_resched);
 8507#endif
 8508#endif
 8509
 8510/*
 8511 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
 8512 * call schedule, and on return reacquire the lock.
 8513 *
 8514 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
 8515 * operations here to prevent schedule() from being called twice (once via
 8516 * spin_unlock(), once by hand).
 8517 */
 8518int __cond_resched_lock(spinlock_t *lock)
 8519{
 8520	int resched = should_resched(PREEMPT_LOCK_OFFSET);
 8521	int ret = 0;
 8522
 8523	lockdep_assert_held(lock);
 8524
 8525	if (spin_needbreak(lock) || resched) {
 8526		spin_unlock(lock);
 8527		if (!_cond_resched())
 
 
 8528			cpu_relax();
 8529		ret = 1;
 8530		spin_lock(lock);
 8531	}
 8532	return ret;
 8533}
 8534EXPORT_SYMBOL(__cond_resched_lock);
 8535
 8536int __cond_resched_rwlock_read(rwlock_t *lock)
 8537{
 8538	int resched = should_resched(PREEMPT_LOCK_OFFSET);
 8539	int ret = 0;
 8540
 8541	lockdep_assert_held_read(lock);
 8542
 8543	if (rwlock_needbreak(lock) || resched) {
 8544		read_unlock(lock);
 8545		if (!_cond_resched())
 8546			cpu_relax();
 8547		ret = 1;
 8548		read_lock(lock);
 8549	}
 8550	return ret;
 8551}
 8552EXPORT_SYMBOL(__cond_resched_rwlock_read);
 8553
 8554int __cond_resched_rwlock_write(rwlock_t *lock)
 8555{
 8556	int resched = should_resched(PREEMPT_LOCK_OFFSET);
 8557	int ret = 0;
 8558
 8559	lockdep_assert_held_write(lock);
 8560
 8561	if (rwlock_needbreak(lock) || resched) {
 8562		write_unlock(lock);
 8563		if (!_cond_resched())
 8564			cpu_relax();
 8565		ret = 1;
 8566		write_lock(lock);
 8567	}
 8568	return ret;
 8569}
 8570EXPORT_SYMBOL(__cond_resched_rwlock_write);
 8571
 8572#ifdef CONFIG_PREEMPT_DYNAMIC
 8573
 8574#ifdef CONFIG_GENERIC_ENTRY
 8575#include <linux/entry-common.h>
 8576#endif
 8577
 8578/*
 8579 * SC:cond_resched
 8580 * SC:might_resched
 8581 * SC:preempt_schedule
 8582 * SC:preempt_schedule_notrace
 8583 * SC:irqentry_exit_cond_resched
 8584 *
 8585 *
 8586 * NONE:
 8587 *   cond_resched               <- __cond_resched
 8588 *   might_resched              <- RET0
 8589 *   preempt_schedule           <- NOP
 8590 *   preempt_schedule_notrace   <- NOP
 8591 *   irqentry_exit_cond_resched <- NOP
 8592 *
 8593 * VOLUNTARY:
 8594 *   cond_resched               <- __cond_resched
 8595 *   might_resched              <- __cond_resched
 8596 *   preempt_schedule           <- NOP
 8597 *   preempt_schedule_notrace   <- NOP
 8598 *   irqentry_exit_cond_resched <- NOP
 8599 *
 8600 * FULL:
 8601 *   cond_resched               <- RET0
 8602 *   might_resched              <- RET0
 8603 *   preempt_schedule           <- preempt_schedule
 8604 *   preempt_schedule_notrace   <- preempt_schedule_notrace
 8605 *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
 8606 */
 8607
 8608enum {
 8609	preempt_dynamic_undefined = -1,
 8610	preempt_dynamic_none,
 8611	preempt_dynamic_voluntary,
 8612	preempt_dynamic_full,
 8613};
 8614
 8615int preempt_dynamic_mode = preempt_dynamic_undefined;
 8616
 8617int sched_dynamic_mode(const char *str)
 8618{
 8619	if (!strcmp(str, "none"))
 8620		return preempt_dynamic_none;
 8621
 8622	if (!strcmp(str, "voluntary"))
 8623		return preempt_dynamic_voluntary;
 8624
 8625	if (!strcmp(str, "full"))
 8626		return preempt_dynamic_full;
 8627
 8628	return -EINVAL;
 8629}
 8630
 8631#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
 8632#define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
 8633#define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
 8634#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
 8635#define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
 8636#define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
 8637#else
 8638#error "Unsupported PREEMPT_DYNAMIC mechanism"
 8639#endif
 8640
 8641void sched_dynamic_update(int mode)
 8642{
 8643	/*
 8644	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
 8645	 * the ZERO state, which is invalid.
 8646	 */
 8647	preempt_dynamic_enable(cond_resched);
 8648	preempt_dynamic_enable(might_resched);
 8649	preempt_dynamic_enable(preempt_schedule);
 8650	preempt_dynamic_enable(preempt_schedule_notrace);
 8651	preempt_dynamic_enable(irqentry_exit_cond_resched);
 8652
 8653	switch (mode) {
 8654	case preempt_dynamic_none:
 8655		preempt_dynamic_enable(cond_resched);
 8656		preempt_dynamic_disable(might_resched);
 8657		preempt_dynamic_disable(preempt_schedule);
 8658		preempt_dynamic_disable(preempt_schedule_notrace);
 8659		preempt_dynamic_disable(irqentry_exit_cond_resched);
 8660		pr_info("Dynamic Preempt: none\n");
 8661		break;
 8662
 8663	case preempt_dynamic_voluntary:
 8664		preempt_dynamic_enable(cond_resched);
 8665		preempt_dynamic_enable(might_resched);
 8666		preempt_dynamic_disable(preempt_schedule);
 8667		preempt_dynamic_disable(preempt_schedule_notrace);
 8668		preempt_dynamic_disable(irqentry_exit_cond_resched);
 8669		pr_info("Dynamic Preempt: voluntary\n");
 8670		break;
 8671
 8672	case preempt_dynamic_full:
 8673		preempt_dynamic_disable(cond_resched);
 8674		preempt_dynamic_disable(might_resched);
 8675		preempt_dynamic_enable(preempt_schedule);
 8676		preempt_dynamic_enable(preempt_schedule_notrace);
 8677		preempt_dynamic_enable(irqentry_exit_cond_resched);
 8678		pr_info("Dynamic Preempt: full\n");
 8679		break;
 8680	}
 8681
 8682	preempt_dynamic_mode = mode;
 8683}
 8684
 8685static int __init setup_preempt_mode(char *str)
 8686{
 8687	int mode = sched_dynamic_mode(str);
 8688	if (mode < 0) {
 8689		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
 8690		return 0;
 8691	}
 8692
 8693	sched_dynamic_update(mode);
 8694	return 1;
 8695}
 8696__setup("preempt=", setup_preempt_mode);
 8697
 8698static void __init preempt_dynamic_init(void)
 8699{
 8700	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
 8701		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
 8702			sched_dynamic_update(preempt_dynamic_none);
 8703		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
 8704			sched_dynamic_update(preempt_dynamic_voluntary);
 8705		} else {
 8706			/* Default static call setting, nothing to do */
 8707			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
 8708			preempt_dynamic_mode = preempt_dynamic_full;
 8709			pr_info("Dynamic Preempt: full\n");
 8710		}
 8711	}
 
 8712}
 8713
 8714#define PREEMPT_MODEL_ACCESSOR(mode) \
 8715	bool preempt_model_##mode(void)						 \
 8716	{									 \
 8717		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
 8718		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
 8719	}									 \
 8720	EXPORT_SYMBOL_GPL(preempt_model_##mode)
 8721
 8722PREEMPT_MODEL_ACCESSOR(none);
 8723PREEMPT_MODEL_ACCESSOR(voluntary);
 8724PREEMPT_MODEL_ACCESSOR(full);
 8725
 8726#else /* !CONFIG_PREEMPT_DYNAMIC */
 8727
 8728static inline void preempt_dynamic_init(void) { }
 8729
 8730#endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
 8731
 8732/**
 8733 * yield - yield the current processor to other threads.
 8734 *
 8735 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 8736 *
 8737 * The scheduler is at all times free to pick the calling task as the most
 8738 * eligible task to run, if removing the yield() call from your code breaks
 8739 * it, it's already broken.
 8740 *
 8741 * Typical broken usage is:
 8742 *
 8743 * while (!event)
 8744 *	yield();
 8745 *
 8746 * where one assumes that yield() will let 'the other' process run that will
 8747 * make event true. If the current task is a SCHED_FIFO task that will never
 8748 * happen. Never use yield() as a progress guarantee!!
 8749 *
 8750 * If you want to use yield() to wait for something, use wait_event().
 8751 * If you want to use yield() to be 'nice' for others, use cond_resched().
 8752 * If you still want to use yield(), do not!
 8753 */
 8754void __sched yield(void)
 8755{
 8756	set_current_state(TASK_RUNNING);
 8757	do_sched_yield();
 8758}
 8759EXPORT_SYMBOL(yield);
 8760
 8761/**
 8762 * yield_to - yield the current processor to another thread in
 8763 * your thread group, or accelerate that thread toward the
 8764 * processor it's on.
 8765 * @p: target task
 8766 * @preempt: whether task preemption is allowed or not
 8767 *
 8768 * It's the caller's job to ensure that the target task struct
 8769 * can't go away on us before we can do any checks.
 8770 *
 8771 * Return:
 8772 *	true (>0) if we indeed boosted the target task.
 8773 *	false (0) if we failed to boost the target.
 8774 *	-ESRCH if there's no task to yield to.
 8775 */
 8776int __sched yield_to(struct task_struct *p, bool preempt)
 8777{
 8778	struct task_struct *curr = current;
 8779	struct rq *rq, *p_rq;
 8780	unsigned long flags;
 8781	int yielded = 0;
 8782
 8783	local_irq_save(flags);
 8784	rq = this_rq();
 8785
 8786again:
 8787	p_rq = task_rq(p);
 8788	/*
 8789	 * If we're the only runnable task on the rq and target rq also
 8790	 * has only one task, there's absolutely no point in yielding.
 8791	 */
 8792	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
 8793		yielded = -ESRCH;
 8794		goto out_irq;
 8795	}
 8796
 8797	double_rq_lock(rq, p_rq);
 8798	if (task_rq(p) != p_rq) {
 8799		double_rq_unlock(rq, p_rq);
 8800		goto again;
 8801	}
 8802
 8803	if (!curr->sched_class->yield_to_task)
 8804		goto out_unlock;
 8805
 8806	if (curr->sched_class != p->sched_class)
 8807		goto out_unlock;
 8808
 8809	if (task_on_cpu(p_rq, p) || !task_is_running(p))
 8810		goto out_unlock;
 8811
 8812	yielded = curr->sched_class->yield_to_task(rq, p);
 8813	if (yielded) {
 8814		schedstat_inc(rq->yld_count);
 8815		/*
 8816		 * Make p's CPU reschedule; pick_next_entity takes care of
 8817		 * fairness.
 8818		 */
 8819		if (preempt && rq != p_rq)
 8820			resched_curr(p_rq);
 8821	}
 8822
 8823out_unlock:
 8824	double_rq_unlock(rq, p_rq);
 8825out_irq:
 8826	local_irq_restore(flags);
 8827
 8828	if (yielded > 0)
 8829		schedule();
 8830
 8831	return yielded;
 8832}
 8833EXPORT_SYMBOL_GPL(yield_to);
 8834
 8835int io_schedule_prepare(void)
 8836{
 8837	int old_iowait = current->in_iowait;
 8838
 8839	current->in_iowait = 1;
 8840	blk_flush_plug(current->plug, true);
 8841	return old_iowait;
 8842}
 8843
 8844void io_schedule_finish(int token)
 8845{
 8846	current->in_iowait = token;
 8847}
 8848
 8849/*
 8850 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
 8851 * that process accounting knows that this is a task in IO wait state.
 8852 */
 8853long __sched io_schedule_timeout(long timeout)
 8854{
 8855	int token;
 
 8856	long ret;
 8857
 8858	token = io_schedule_prepare();
 
 
 
 
 
 8859	ret = schedule_timeout(timeout);
 8860	io_schedule_finish(token);
 
 
 8861
 8862	return ret;
 8863}
 8864EXPORT_SYMBOL(io_schedule_timeout);
 8865
 8866void __sched io_schedule(void)
 8867{
 8868	int token;
 8869
 8870	token = io_schedule_prepare();
 8871	schedule();
 8872	io_schedule_finish(token);
 8873}
 8874EXPORT_SYMBOL(io_schedule);
 8875
 8876/**
 8877 * sys_sched_get_priority_max - return maximum RT priority.
 8878 * @policy: scheduling class.
 8879 *
 8880 * Return: On success, this syscall returns the maximum
 8881 * rt_priority that can be used by a given scheduling class.
 8882 * On failure, a negative error code is returned.
 8883 */
 8884SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
 8885{
 8886	int ret = -EINVAL;
 8887
 8888	switch (policy) {
 8889	case SCHED_FIFO:
 8890	case SCHED_RR:
 8891		ret = MAX_RT_PRIO-1;
 8892		break;
 8893	case SCHED_DEADLINE:
 8894	case SCHED_NORMAL:
 8895	case SCHED_BATCH:
 8896	case SCHED_IDLE:
 8897		ret = 0;
 8898		break;
 8899	}
 8900	return ret;
 8901}
 8902
 8903/**
 8904 * sys_sched_get_priority_min - return minimum RT priority.
 8905 * @policy: scheduling class.
 8906 *
 8907 * Return: On success, this syscall returns the minimum
 8908 * rt_priority that can be used by a given scheduling class.
 8909 * On failure, a negative error code is returned.
 8910 */
 8911SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
 8912{
 8913	int ret = -EINVAL;
 8914
 8915	switch (policy) {
 8916	case SCHED_FIFO:
 8917	case SCHED_RR:
 8918		ret = 1;
 8919		break;
 8920	case SCHED_DEADLINE:
 8921	case SCHED_NORMAL:
 8922	case SCHED_BATCH:
 8923	case SCHED_IDLE:
 8924		ret = 0;
 8925	}
 8926	return ret;
 8927}
 8928
 8929static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
 
 
 
 
 
 
 
 
 
 
 
 
 8930{
 8931	struct task_struct *p;
 8932	unsigned int time_slice;
 8933	struct rq_flags rf;
 8934	struct rq *rq;
 8935	int retval;
 
 8936
 8937	if (pid < 0)
 8938		return -EINVAL;
 8939
 8940	retval = -ESRCH;
 8941	rcu_read_lock();
 8942	p = find_process_by_pid(pid);
 8943	if (!p)
 8944		goto out_unlock;
 8945
 8946	retval = security_task_getscheduler(p);
 8947	if (retval)
 8948		goto out_unlock;
 8949
 8950	rq = task_rq_lock(p, &rf);
 8951	time_slice = 0;
 8952	if (p->sched_class->get_rr_interval)
 8953		time_slice = p->sched_class->get_rr_interval(rq, p);
 8954	task_rq_unlock(rq, p, &rf);
 8955
 8956	rcu_read_unlock();
 8957	jiffies_to_timespec64(time_slice, t);
 8958	return 0;
 
 8959
 8960out_unlock:
 8961	rcu_read_unlock();
 8962	return retval;
 8963}
 8964
 8965/**
 8966 * sys_sched_rr_get_interval - return the default timeslice of a process.
 8967 * @pid: pid of the process.
 8968 * @interval: userspace pointer to the timeslice value.
 8969 *
 8970 * this syscall writes the default timeslice value of a given process
 8971 * into the user-space timespec buffer. A value of '0' means infinity.
 8972 *
 8973 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 8974 * an error code.
 8975 */
 8976SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
 8977		struct __kernel_timespec __user *, interval)
 8978{
 8979	struct timespec64 t;
 8980	int retval = sched_rr_get_interval(pid, &t);
 8981
 8982	if (retval == 0)
 8983		retval = put_timespec64(&t, interval);
 8984
 8985	return retval;
 8986}
 8987
 8988#ifdef CONFIG_COMPAT_32BIT_TIME
 8989SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
 8990		struct old_timespec32 __user *, interval)
 8991{
 8992	struct timespec64 t;
 8993	int retval = sched_rr_get_interval(pid, &t);
 8994
 8995	if (retval == 0)
 8996		retval = put_old_timespec32(&t, interval);
 8997	return retval;
 8998}
 8999#endif
 9000
 9001void sched_show_task(struct task_struct *p)
 9002{
 9003	unsigned long free = 0;
 9004	int ppid;
 
 9005
 9006	if (!try_get_task_stack(p))
 9007		return;
 9008
 9009	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
 9010
 9011	if (task_is_running(p))
 9012		pr_cont("  running task    ");
 
 
 
 
 
 
 
 
 9013#ifdef CONFIG_DEBUG_STACK_USAGE
 9014	free = stack_not_used(p);
 9015#endif
 9016	ppid = 0;
 9017	rcu_read_lock();
 9018	if (pid_alive(p))
 9019		ppid = task_pid_nr(rcu_dereference(p->real_parent));
 9020	rcu_read_unlock();
 9021	pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
 9022		free, task_pid_nr(p), ppid,
 9023		read_task_thread_flags(p));
 9024
 9025	print_worker_info(KERN_INFO, p);
 9026	print_stop_info(KERN_INFO, p);
 9027	show_stack(p, NULL, KERN_INFO);
 9028	put_task_stack(p);
 9029}
 9030EXPORT_SYMBOL_GPL(sched_show_task);
 9031
 9032static inline bool
 9033state_filter_match(unsigned long state_filter, struct task_struct *p)
 9034{
 9035	unsigned int state = READ_ONCE(p->__state);
 9036
 9037	/* no filter, everything matches */
 9038	if (!state_filter)
 9039		return true;
 9040
 9041	/* filter, but doesn't match */
 9042	if (!(state & state_filter))
 9043		return false;
 9044
 9045	/*
 9046	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
 9047	 * TASK_KILLABLE).
 9048	 */
 9049	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
 9050		return false;
 9051
 9052	return true;
 9053}
 9054
 9055
 9056void show_state_filter(unsigned int state_filter)
 9057{
 9058	struct task_struct *g, *p;
 9059
 
 
 
 
 
 
 
 9060	rcu_read_lock();
 9061	for_each_process_thread(g, p) {
 9062		/*
 9063		 * reset the NMI-timeout, listing all files on a slow
 9064		 * console might take a lot of time:
 9065		 * Also, reset softlockup watchdogs on all CPUs, because
 9066		 * another CPU might be blocked waiting for us to process
 9067		 * an IPI.
 9068		 */
 9069		touch_nmi_watchdog();
 9070		touch_all_softlockup_watchdogs();
 9071		if (state_filter_match(state_filter, p))
 9072			sched_show_task(p);
 9073	}
 9074
 
 
 9075#ifdef CONFIG_SCHED_DEBUG
 9076	if (!state_filter)
 9077		sysrq_sched_debug_show();
 9078#endif
 9079	rcu_read_unlock();
 9080	/*
 9081	 * Only show locks if all tasks are dumped:
 9082	 */
 9083	if (!state_filter)
 9084		debug_show_all_locks();
 9085}
 9086
 
 
 
 
 
 9087/**
 9088 * init_idle - set up an idle thread for a given CPU
 9089 * @idle: task in question
 9090 * @cpu: CPU the idle task belongs to
 9091 *
 9092 * NOTE: this function does not set the idle thread's NEED_RESCHED
 9093 * flag, to make booting more robust.
 9094 */
 9095void __init init_idle(struct task_struct *idle, int cpu)
 9096{
 9097#ifdef CONFIG_SMP
 9098	struct affinity_context ac = (struct affinity_context) {
 9099		.new_mask  = cpumask_of(cpu),
 9100		.flags     = 0,
 9101	};
 9102#endif
 9103	struct rq *rq = cpu_rq(cpu);
 9104	unsigned long flags;
 9105
 9106	__sched_fork(0, idle);
 9107
 9108	raw_spin_lock_irqsave(&idle->pi_lock, flags);
 9109	raw_spin_rq_lock(rq);
 9110
 9111	idle->__state = TASK_RUNNING;
 
 9112	idle->se.exec_start = sched_clock();
 9113	/*
 9114	 * PF_KTHREAD should already be set at this point; regardless, make it
 9115	 * look like a proper per-CPU kthread.
 9116	 */
 9117	idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
 9118	kthread_set_per_cpu(idle, cpu);
 9119
 9120#ifdef CONFIG_SMP
 9121	/*
 9122	 * It's possible that init_idle() gets called multiple times on a task,
 9123	 * in that case do_set_cpus_allowed() will not do the right thing.
 9124	 *
 9125	 * And since this is boot we can forgo the serialization.
 9126	 */
 9127	set_cpus_allowed_common(idle, &ac);
 9128#endif
 9129	/*
 9130	 * We're having a chicken and egg problem, even though we are
 9131	 * holding rq->lock, the CPU isn't yet set to this CPU so the
 9132	 * lockdep check in task_group() will fail.
 9133	 *
 9134	 * Similar case to sched_fork(). / Alternatively we could
 9135	 * use task_rq_lock() here and obtain the other rq->lock.
 9136	 *
 9137	 * Silence PROVE_RCU
 9138	 */
 9139	rcu_read_lock();
 9140	__set_task_cpu(idle, cpu);
 9141	rcu_read_unlock();
 9142
 9143	rq->idle = idle;
 9144	rcu_assign_pointer(rq->curr, idle);
 9145	idle->on_rq = TASK_ON_RQ_QUEUED;
 9146#ifdef CONFIG_SMP
 9147	idle->on_cpu = 1;
 9148#endif
 9149	raw_spin_rq_unlock(rq);
 9150	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
 9151
 9152	/* Set the preempt count _outside_ the spinlocks! */
 9153	init_idle_preempt_count(idle, cpu);
 9154
 9155	/*
 9156	 * The idle tasks have their own, simple scheduling class:
 9157	 */
 9158	idle->sched_class = &idle_sched_class;
 9159	ftrace_graph_init_idle_task(idle, cpu);
 9160	vtime_init_idle(idle, cpu);
 9161#ifdef CONFIG_SMP
 9162	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
 9163#endif
 9164}
 9165
 9166#ifdef CONFIG_SMP
 9167
 9168int cpuset_cpumask_can_shrink(const struct cpumask *cur,
 9169			      const struct cpumask *trial)
 9170{
 9171	int ret = 1;
 
 
 9172
 9173	if (cpumask_empty(cur))
 9174		return ret;
 9175
 9176	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
 
 
 
 
 
 
 
 
 
 9177
 9178	return ret;
 9179}
 9180
 9181int task_can_attach(struct task_struct *p,
 9182		    const struct cpumask *cs_effective_cpus)
 9183{
 9184	int ret = 0;
 9185
 9186	/*
 9187	 * Kthreads which disallow setaffinity shouldn't be moved
 9188	 * to a new cpuset; we don't want to change their CPU
 9189	 * affinity and isolating such threads by their set of
 9190	 * allowed nodes is unnecessary.  Thus, cpusets are not
 9191	 * applicable for such threads.  This prevents checking for
 9192	 * success of set_cpus_allowed_ptr() on all attached tasks
 9193	 * before cpus_mask may be changed.
 9194	 */
 9195	if (p->flags & PF_NO_SETAFFINITY) {
 9196		ret = -EINVAL;
 9197		goto out;
 9198	}
 9199
 
 9200	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
 9201					      cs_effective_cpus)) {
 9202		int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9203
 9204		if (unlikely(cpu >= nr_cpu_ids))
 9205			return -EINVAL;
 9206		ret = dl_cpu_busy(cpu, p);
 9207	}
 9208
 9209out:
 9210	return ret;
 9211}
 9212
 9213bool sched_smp_initialized __read_mostly;
 9214
 9215#ifdef CONFIG_NUMA_BALANCING
 9216/* Migrate current task p to target_cpu */
 9217int migrate_task_to(struct task_struct *p, int target_cpu)
 9218{
 9219	struct migration_arg arg = { p, target_cpu };
 9220	int curr_cpu = task_cpu(p);
 9221
 9222	if (curr_cpu == target_cpu)
 9223		return 0;
 9224
 9225	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
 9226		return -EINVAL;
 9227
 9228	/* TODO: This is not properly updating schedstats */
 9229
 9230	trace_sched_move_numa(p, curr_cpu, target_cpu);
 9231	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
 9232}
 9233
 9234/*
 9235 * Requeue a task on a given node and accurately track the number of NUMA
 9236 * tasks on the runqueues
 9237 */
 9238void sched_setnuma(struct task_struct *p, int nid)
 9239{
 9240	bool queued, running;
 9241	struct rq_flags rf;
 9242	struct rq *rq;
 
 
 9243
 9244	rq = task_rq_lock(p, &rf);
 9245	queued = task_on_rq_queued(p);
 9246	running = task_current(rq, p);
 9247
 9248	if (queued)
 9249		dequeue_task(rq, p, DEQUEUE_SAVE);
 9250	if (running)
 9251		put_prev_task(rq, p);
 9252
 9253	p->numa_preferred_nid = nid;
 9254
 9255	if (queued)
 9256		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
 9257	if (running)
 9258		set_next_task(rq, p);
 9259	task_rq_unlock(rq, p, &rf);
 
 
 9260}
 9261#endif /* CONFIG_NUMA_BALANCING */
 9262
 9263#ifdef CONFIG_HOTPLUG_CPU
 9264/*
 9265 * Ensure that the idle task is using init_mm right before its CPU goes
 9266 * offline.
 9267 */
 9268void idle_task_exit(void)
 9269{
 9270	struct mm_struct *mm = current->active_mm;
 9271
 9272	BUG_ON(cpu_online(smp_processor_id()));
 9273	BUG_ON(current != this_rq()->idle);
 9274
 9275	if (mm != &init_mm) {
 9276		switch_mm(mm, &init_mm, current);
 9277		finish_arch_post_lock_switch();
 9278	}
 9279
 9280	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
 9281}
 9282
 9283static int __balance_push_cpu_stop(void *arg)
 
 
 
 
 
 
 
 9284{
 9285	struct task_struct *p = arg;
 9286	struct rq *rq = this_rq();
 9287	struct rq_flags rf;
 9288	int cpu;
 9289
 9290	raw_spin_lock_irq(&p->pi_lock);
 9291	rq_lock(rq, &rf);
 9292
 9293	update_rq_clock(rq);
 9294
 9295	if (task_rq(p) == rq && task_on_rq_queued(p)) {
 9296		cpu = select_fallback_rq(rq->cpu, p);
 9297		rq = __migrate_task(rq, &rf, p, cpu);
 9298	}
 9299
 9300	rq_unlock(rq, &rf);
 9301	raw_spin_unlock_irq(&p->pi_lock);
 9302
 9303	put_task_struct(p);
 9304
 9305	return 0;
 
 9306}
 9307
 9308static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
 
 
 
 
 
 
 
 
 
 
 9309
 9310/*
 9311 * Ensure we only run per-cpu kthreads once the CPU goes !active.
 
 9312 *
 9313 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
 9314 * effective when the hotplug motion is down.
 
 9315 */
 9316static void balance_push(struct rq *rq)
 9317{
 9318	struct task_struct *push_task = rq->curr;
 9319
 9320	lockdep_assert_rq_held(rq);
 9321
 9322	/*
 9323	 * Ensure the thing is persistent until balance_push_set(.on = false);
 
 
 
 
 
 
 9324	 */
 9325	rq->balance_callback = &balance_push_callback;
 9326
 9327	/*
 9328	 * Only active while going offline and when invoked on the outgoing
 9329	 * CPU.
 
 9330	 */
 9331	if (!cpu_dying(rq->cpu) || rq != this_rq())
 9332		return;
 9333
 9334	/*
 9335	 * Both the cpu-hotplug and stop task are in this case and are
 9336	 * required to complete the hotplug process.
 9337	 */
 9338	if (kthread_is_per_cpu(push_task) ||
 9339	    is_migration_disabled(push_task)) {
 
 9340
 9341		/*
 9342		 * If this is the idle task on the outgoing CPU try to wake
 9343		 * up the hotplug control thread which might wait for the
 9344		 * last task to vanish. The rcuwait_active() check is
 9345		 * accurate here because the waiter is pinned on this CPU
 9346		 * and can't obviously be running in parallel.
 
 
 
 
 
 
 9347		 *
 9348		 * On RT kernels this also has to check whether there are
 9349		 * pinned and scheduled out tasks on the runqueue. They
 9350		 * need to leave the migrate disabled section first.
 9351		 */
 9352		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
 9353		    rcuwait_active(&rq->hotplug_wait)) {
 9354			raw_spin_rq_unlock(rq);
 9355			rcuwait_wake_up(&rq->hotplug_wait);
 9356			raw_spin_rq_lock(rq);
 
 
 
 
 
 
 
 
 9357		}
 9358		return;
 
 
 
 
 
 
 
 
 
 
 9359	}
 9360
 9361	get_task_struct(push_task);
 9362	/*
 9363	 * Temporarily drop rq->lock such that we can wake-up the stop task.
 9364	 * Both preemption and IRQs are still disabled.
 9365	 */
 9366	raw_spin_rq_unlock(rq);
 9367	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
 9368			    this_cpu_ptr(&push_work));
 9369	/*
 9370	 * At this point need_resched() is true and we'll take the loop in
 9371	 * schedule(). The next pick is obviously going to be the stop task
 9372	 * which kthread_is_per_cpu() and will push this task away.
 9373	 */
 9374	raw_spin_rq_lock(rq);
 9375}
 
 9376
 9377static void balance_push_set(int cpu, bool on)
 9378{
 9379	struct rq *rq = cpu_rq(cpu);
 9380	struct rq_flags rf;
 9381
 9382	rq_lock_irqsave(rq, &rf);
 9383	if (on) {
 9384		WARN_ON_ONCE(rq->balance_callback);
 9385		rq->balance_callback = &balance_push_callback;
 9386	} else if (rq->balance_callback == &balance_push_callback) {
 9387		rq->balance_callback = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9388	}
 9389	rq_unlock_irqrestore(rq, &rf);
 9390}
 9391
 9392/*
 9393 * Invoked from a CPUs hotplug control thread after the CPU has been marked
 9394 * inactive. All tasks which are not per CPU kernel threads are either
 9395 * pushed off this CPU now via balance_push() or placed on a different CPU
 9396 * during wakeup. Wait until the CPU is quiescent.
 9397 */
 9398static void balance_hotplug_wait(void)
 
 9399{
 9400	struct rq *rq = this_rq();
 
 
 
 
 
 
 
 
 
 9401
 9402	rcuwait_wait_event(&rq->hotplug_wait,
 9403			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
 9404			   TASK_UNINTERRUPTIBLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9405}
 9406
 9407#else
 
 
 
 
 
 
 
 
 9408
 9409static inline void balance_push(struct rq *rq)
 9410{
 
 
 
 9411}
 9412
 9413static inline void balance_push_set(int cpu, bool on)
 
 9414{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9415}
 9416
 9417static inline void balance_hotplug_wait(void)
 
 9418{
 
 
 
 
 
 
 
 9419}
 9420
 9421#endif /* CONFIG_HOTPLUG_CPU */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9422
 9423void set_rq_online(struct rq *rq)
 9424{
 9425	if (!rq->online) {
 9426		const struct sched_class *class;
 9427
 9428		cpumask_set_cpu(rq->cpu, rq->rd->online);
 9429		rq->online = 1;
 
 9430
 9431		for_each_class(class) {
 9432			if (class->rq_online)
 9433				class->rq_online(rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9434		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9435	}
 9436}
 
 
 
 
 
 
 
 9437
 9438void set_rq_offline(struct rq *rq)
 9439{
 9440	if (rq->online) {
 9441		const struct sched_class *class;
 9442
 9443		for_each_class(class) {
 9444			if (class->rq_offline)
 9445				class->rq_offline(rq);
 9446		}
 
 
 
 
 
 
 
 9447
 9448		cpumask_clear_cpu(rq->cpu, rq->rd->online);
 9449		rq->online = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9450	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9451}
 9452
 9453/*
 9454 * used to mark begin/end of suspend/resume:
 
 9455 */
 9456static int num_cpus_frozen;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9457
 9458/*
 9459 * Update cpusets according to cpu_active mask.  If cpusets are
 9460 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 9461 * around partition_sched_domains().
 9462 *
 9463 * If we come here as part of a suspend/resume, don't touch cpusets because we
 9464 * want to restore it back to its original state upon resume anyway.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9465 */
 9466static void cpuset_cpu_active(void)
 9467{
 9468	if (cpuhp_tasks_frozen) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9469		/*
 9470		 * num_cpus_frozen tracks how many CPUs are involved in suspend
 9471		 * resume sequence. As long as this is not the last online
 9472		 * operation in the resume sequence, just build a single sched
 9473		 * domain, ignoring cpusets.
 9474		 */
 9475		partition_sched_domains(1, NULL, NULL);
 9476		if (--num_cpus_frozen)
 9477			return;
 9478		/*
 9479		 * This is the last CPU online operation. So fall through and
 9480		 * restore the original sched domains by considering the
 9481		 * cpuset configurations.
 9482		 */
 9483		cpuset_force_rebuild();
 
 
 
 
 
 
 
 
 
 9484	}
 9485	cpuset_update_active_cpus();
 
 
 
 
 
 
 
 9486}
 9487
 9488static int cpuset_cpu_inactive(unsigned int cpu)
 9489{
 9490	if (!cpuhp_tasks_frozen) {
 9491		int ret = dl_cpu_busy(cpu, NULL);
 9492
 9493		if (ret)
 9494			return ret;
 9495		cpuset_update_active_cpus();
 9496	} else {
 9497		num_cpus_frozen++;
 9498		partition_sched_domains(1, NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9499	}
 
 
 9500	return 0;
 9501}
 9502
 9503int sched_cpu_activate(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9504{
 9505	struct rq *rq = cpu_rq(cpu);
 9506	struct rq_flags rf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9507
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9508	/*
 9509	 * Clear the balance_push callback and prepare to schedule
 9510	 * regular tasks.
 9511	 */
 9512	balance_push_set(cpu, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9513
 9514#ifdef CONFIG_SCHED_SMT
 9515	/*
 9516	 * When going up, increment the number of cores with SMT present.
 9517	 */
 9518	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
 9519		static_branch_inc_cpuslocked(&sched_smt_present);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9520#endif
 9521	set_cpu_active(cpu, true);
 
 
 
 
 
 9522
 9523	if (sched_smp_initialized) {
 9524		sched_update_numa(cpu, true);
 9525		sched_domains_numa_masks_set(cpu);
 9526		cpuset_cpu_active();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9527	}
 
 
 9528
 9529	/*
 9530	 * Put the rq online, if not already. This happens:
 9531	 *
 9532	 * 1) In the early boot process, because we build the real domains
 9533	 *    after all CPUs have been brought up.
 9534	 *
 9535	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
 9536	 *    domains.
 9537	 */
 9538	rq_lock_irqsave(rq, &rf);
 9539	if (rq->rd) {
 9540		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
 9541		set_rq_online(rq);
 9542	}
 9543	rq_unlock_irqrestore(rq, &rf);
 9544
 9545	return 0;
 9546}
 9547
 9548int sched_cpu_deactivate(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9549{
 9550	struct rq *rq = cpu_rq(cpu);
 9551	struct rq_flags rf;
 9552	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9553
 9554	/*
 9555	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
 9556	 * load balancing when not active
 
 
 
 9557	 */
 9558	nohz_balance_exit_idle(rq);
 
 
 
 
 
 
 
 
 
 9559
 9560	set_cpu_active(cpu, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9561
 9562	/*
 9563	 * From this point forward, this CPU will refuse to run any task that
 9564	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
 9565	 * push those tasks away until this gets cleared, see
 9566	 * sched_cpu_dying().
 
 9567	 */
 9568	balance_push_set(cpu, true);
 9569
 9570	/*
 9571	 * We've cleared cpu_active_mask / set balance_push, wait for all
 9572	 * preempt-disabled and RCU users of this state to go away such that
 9573	 * all new such users will observe it.
 9574	 *
 9575	 * Specifically, we rely on ttwu to no longer target this CPU, see
 9576	 * ttwu_queue_cond() and is_cpu_allowed().
 9577	 *
 9578	 * Do sync before park smpboot threads to take care the rcu boost case.
 9579	 */
 9580	synchronize_rcu();
 9581
 9582	rq_lock_irqsave(rq, &rf);
 9583	if (rq->rd) {
 9584		update_rq_clock(rq);
 9585		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
 9586		set_rq_offline(rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9587	}
 9588	rq_unlock_irqrestore(rq, &rf);
 9589
 9590#ifdef CONFIG_SCHED_SMT
 
 
 
 
 
 
 
 9591	/*
 9592	 * When going down, decrement the number of cores with SMT present.
 9593	 */
 9594	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
 9595		static_branch_dec_cpuslocked(&sched_smt_present);
 9596
 9597	sched_core_cpu_deactivate(cpu);
 9598#endif
 
 
 
 
 
 
 
 
 
 
 9599
 9600	if (!sched_smp_initialized)
 9601		return 0;
 9602
 9603	sched_update_numa(cpu, false);
 9604	ret = cpuset_cpu_inactive(cpu);
 9605	if (ret) {
 9606		balance_push_set(cpu, false);
 9607		set_cpu_active(cpu, true);
 9608		sched_update_numa(cpu, true);
 9609		return ret;
 
 
 
 
 
 
 
 
 
 9610	}
 9611	sched_domains_numa_masks_clear(cpu);
 9612	return 0;
 9613}
 9614
 9615static void sched_rq_cpu_starting(unsigned int cpu)
 9616{
 9617	struct rq *rq = cpu_rq(cpu);
 
 
 
 
 
 9618
 9619	rq->calc_load_update = calc_load_update;
 9620	update_max_interval();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9621}
 9622
 9623int sched_cpu_starting(unsigned int cpu)
 
 
 9624{
 9625	sched_core_cpu_starting(cpu);
 9626	sched_rq_cpu_starting(cpu);
 9627	sched_tick_start(cpu);
 9628	return 0;
 9629}
 
 9630
 9631#ifdef CONFIG_HOTPLUG_CPU
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9632
 9633/*
 9634 * Invoked immediately before the stopper thread is invoked to bring the
 9635 * CPU down completely. At this point all per CPU kthreads except the
 9636 * hotplug thread (current) and the stopper thread (inactive) have been
 9637 * either parked or have been unbound from the outgoing CPU. Ensure that
 9638 * any of those which might be on the way out are gone.
 9639 *
 9640 * If after this point a bound task is being woken on this CPU then the
 9641 * responsible hotplug callback has failed to do it's job.
 9642 * sched_cpu_dying() will catch it with the appropriate fireworks.
 9643 */
 9644int sched_cpu_wait_empty(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9645{
 9646	balance_hotplug_wait();
 9647	return 0;
 9648}
 9649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9650/*
 9651 * Since this CPU is going 'away' for a while, fold any nr_active delta we
 9652 * might have. Called from the CPU stopper task after ensuring that the
 9653 * stopper is the last running task on the CPU, so nr_active count is
 9654 * stable. We need to take the teardown thread which is calling this into
 9655 * account, so we hand in adjust = 1 to the load calculation.
 9656 *
 9657 * Also see the comment "Global load-average calculations".
 9658 */
 9659static void calc_load_migrate(struct rq *rq)
 9660{
 9661	long delta = calc_load_fold_active(rq, 1);
 9662
 9663	if (delta)
 9664		atomic_long_add(delta, &calc_load_tasks);
 
 
 
 
 
 
 
 
 9665}
 9666
 9667static void dump_rq_tasks(struct rq *rq, const char *loglvl)
 
 
 
 
 9668{
 9669	struct task_struct *g, *p;
 9670	int cpu = cpu_of(rq);
 9671
 9672	lockdep_assert_rq_held(rq);
 
 
 
 
 9673
 9674	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
 9675	for_each_process_thread(g, p) {
 9676		if (task_cpu(p) != cpu)
 9677			continue;
 
 9678
 9679		if (!task_on_rq_queued(p))
 9680			continue;
 
 9681
 9682		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
 9683	}
 
 
 9684}
 9685
 9686int sched_cpu_dying(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9687{
 9688	struct rq *rq = cpu_rq(cpu);
 9689	struct rq_flags rf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9690
 9691	/* Handle pending wakeups and then migrate everything off */
 9692	sched_tick_stop(cpu);
 
 
 
 9693
 9694	rq_lock_irqsave(rq, &rf);
 9695	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
 9696		WARN(true, "Dying CPU not properly vacated!");
 9697		dump_rq_tasks(rq, KERN_WARNING);
 
 9698	}
 9699	rq_unlock_irqrestore(rq, &rf);
 
 9700
 9701	calc_load_migrate(rq);
 9702	update_max_interval();
 9703	hrtick_clear(rq);
 9704	sched_core_cpu_dying(cpu);
 9705	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9706}
 9707#endif
 9708
 9709void __init sched_init_smp(void)
 9710{
 9711	sched_init_numa(NUMA_NO_NODE);
 
 
 
 
 
 9712
 9713	/*
 9714	 * There's no userspace yet to cause hotplug operations; hence all the
 9715	 * CPU masks are stable and all blatant races in the below code cannot
 9716	 * happen.
 9717	 */
 9718	mutex_lock(&sched_domains_mutex);
 9719	sched_init_domains(cpu_active_mask);
 
 
 
 9720	mutex_unlock(&sched_domains_mutex);
 9721
 
 
 
 
 
 
 9722	/* Move init over to a non-isolated CPU */
 9723	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
 9724		BUG();
 9725	current->flags &= ~PF_NO_SETAFFINITY;
 9726	sched_init_granularity();
 
 9727
 9728	init_sched_rt_class();
 9729	init_sched_dl_class();
 9730
 9731	sched_smp_initialized = true;
 9732}
 9733
 9734static int __init migration_init(void)
 9735{
 9736	sched_cpu_starting(smp_processor_id());
 9737	return 0;
 9738}
 9739early_initcall(migration_init);
 9740
 9741#else
 9742void __init sched_init_smp(void)
 9743{
 9744	sched_init_granularity();
 9745}
 9746#endif /* CONFIG_SMP */
 9747
 9748int in_sched_functions(unsigned long addr)
 9749{
 9750	return in_lock_functions(addr) ||
 9751		(addr >= (unsigned long)__sched_text_start
 9752		&& addr < (unsigned long)__sched_text_end);
 9753}
 9754
 9755#ifdef CONFIG_CGROUP_SCHED
 9756/*
 9757 * Default task group.
 9758 * Every task in system belongs to this group at bootup.
 9759 */
 9760struct task_group root_task_group;
 9761LIST_HEAD(task_groups);
 9762
 9763/* Cacheline aligned slab cache for task_group */
 9764static struct kmem_cache *task_group_cache __read_mostly;
 9765#endif
 9766
 
 
 9767void __init sched_init(void)
 9768{
 9769	unsigned long ptr = 0;
 9770	int i;
 9771
 9772	/* Make sure the linker didn't screw up */
 9773	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
 9774	       &fair_sched_class != &rt_sched_class + 1 ||
 9775	       &rt_sched_class   != &dl_sched_class + 1);
 9776#ifdef CONFIG_SMP
 9777	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
 9778#endif
 9779
 9780	wait_bit_init();
 9781
 9782#ifdef CONFIG_FAIR_GROUP_SCHED
 9783	ptr += 2 * nr_cpu_ids * sizeof(void **);
 9784#endif
 9785#ifdef CONFIG_RT_GROUP_SCHED
 9786	ptr += 2 * nr_cpu_ids * sizeof(void **);
 9787#endif
 9788	if (ptr) {
 9789		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
 9790
 9791#ifdef CONFIG_FAIR_GROUP_SCHED
 9792		root_task_group.se = (struct sched_entity **)ptr;
 9793		ptr += nr_cpu_ids * sizeof(void **);
 9794
 9795		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
 9796		ptr += nr_cpu_ids * sizeof(void **);
 9797
 9798		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
 9799		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
 9800#endif /* CONFIG_FAIR_GROUP_SCHED */
 9801#ifdef CONFIG_RT_GROUP_SCHED
 9802		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
 9803		ptr += nr_cpu_ids * sizeof(void **);
 9804
 9805		root_task_group.rt_rq = (struct rt_rq **)ptr;
 9806		ptr += nr_cpu_ids * sizeof(void **);
 9807
 9808#endif /* CONFIG_RT_GROUP_SCHED */
 9809	}
 
 
 
 
 
 
 9810
 9811	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
 
 
 
 9812
 9813#ifdef CONFIG_SMP
 9814	init_defrootdomain();
 9815#endif
 9816
 9817#ifdef CONFIG_RT_GROUP_SCHED
 9818	init_rt_bandwidth(&root_task_group.rt_bandwidth,
 9819			global_rt_period(), global_rt_runtime());
 9820#endif /* CONFIG_RT_GROUP_SCHED */
 9821
 9822#ifdef CONFIG_CGROUP_SCHED
 9823	task_group_cache = KMEM_CACHE(task_group, 0);
 9824
 9825	list_add(&root_task_group.list, &task_groups);
 9826	INIT_LIST_HEAD(&root_task_group.children);
 9827	INIT_LIST_HEAD(&root_task_group.siblings);
 9828	autogroup_init(&init_task);
 9829#endif /* CONFIG_CGROUP_SCHED */
 9830
 9831	for_each_possible_cpu(i) {
 9832		struct rq *rq;
 9833
 9834		rq = cpu_rq(i);
 9835		raw_spin_lock_init(&rq->__lock);
 9836		rq->nr_running = 0;
 9837		rq->calc_load_active = 0;
 9838		rq->calc_load_update = jiffies + LOAD_FREQ;
 9839		init_cfs_rq(&rq->cfs);
 9840		init_rt_rq(&rq->rt);
 9841		init_dl_rq(&rq->dl);
 9842#ifdef CONFIG_FAIR_GROUP_SCHED
 
 9843		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
 9844		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
 9845		/*
 9846		 * How much CPU bandwidth does root_task_group get?
 9847		 *
 9848		 * In case of task-groups formed thr' the cgroup filesystem, it
 9849		 * gets 100% of the CPU resources in the system. This overall
 9850		 * system CPU resource is divided among the tasks of
 9851		 * root_task_group and its child task-groups in a fair manner,
 9852		 * based on each entity's (task or task-group's) weight
 9853		 * (se->load.weight).
 9854		 *
 9855		 * In other words, if root_task_group has 10 tasks of weight
 9856		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
 9857		 * then A0's share of the CPU resource is:
 9858		 *
 9859		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
 9860		 *
 9861		 * We achieve this by letting root_task_group's tasks sit
 9862		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
 9863		 */
 
 9864		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
 9865#endif /* CONFIG_FAIR_GROUP_SCHED */
 9866
 9867		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
 9868#ifdef CONFIG_RT_GROUP_SCHED
 9869		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
 9870#endif
 
 
 
 
 
 
 9871#ifdef CONFIG_SMP
 9872		rq->sd = NULL;
 9873		rq->rd = NULL;
 9874		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
 9875		rq->balance_callback = &balance_push_callback;
 9876		rq->active_balance = 0;
 9877		rq->next_balance = jiffies;
 9878		rq->push_cpu = 0;
 9879		rq->cpu = i;
 9880		rq->online = 0;
 9881		rq->idle_stamp = 0;
 9882		rq->avg_idle = 2*sysctl_sched_migration_cost;
 9883		rq->wake_stamp = jiffies;
 9884		rq->wake_avg_idle = rq->avg_idle;
 9885		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
 9886
 9887		INIT_LIST_HEAD(&rq->cfs_tasks);
 9888
 9889		rq_attach_root(rq, &def_root_domain);
 9890#ifdef CONFIG_NO_HZ_COMMON
 9891		rq->last_blocked_load_update_tick = jiffies;
 9892		atomic_set(&rq->nohz_flags, 0);
 9893
 9894		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
 9895#endif
 9896#ifdef CONFIG_HOTPLUG_CPU
 9897		rcuwait_init(&rq->hotplug_wait);
 9898#endif
 9899#endif /* CONFIG_SMP */
 9900		hrtick_rq_init(rq);
 9901		atomic_set(&rq->nr_iowait, 0);
 
 9902
 9903#ifdef CONFIG_SCHED_CORE
 9904		rq->core = rq;
 9905		rq->core_pick = NULL;
 9906		rq->core_enabled = 0;
 9907		rq->core_tree = RB_ROOT;
 9908		rq->core_forceidle_count = 0;
 9909		rq->core_forceidle_occupation = 0;
 9910		rq->core_forceidle_start = 0;
 9911
 9912		rq->core_cookie = 0UL;
 
 9913#endif
 9914		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
 9915	}
 9916
 9917	set_load_weight(&init_task, false);
 9918
 9919	/*
 9920	 * The boot idle thread does lazy MMU switching as well:
 9921	 */
 9922	mmgrab(&init_mm);
 9923	enter_lazy_tlb(&init_mm, current);
 9924
 9925	/*
 9926	 * The idle task doesn't need the kthread struct to function, but it
 9927	 * is dressed up as a per-CPU kthread and thus needs to play the part
 9928	 * if we want to avoid special-casing it in code that deals with per-CPU
 9929	 * kthreads.
 9930	 */
 9931	WARN_ON(!set_kthread_struct(current));
 9932
 9933	/*
 9934	 * Make us the idle thread. Technically, schedule() should not be
 9935	 * called from this thread, however somewhere below it might be,
 9936	 * but because we are the idle thread, we just pick up running again
 9937	 * when this runqueue becomes "idle".
 9938	 */
 9939	init_idle(current, smp_processor_id());
 9940
 9941	calc_load_update = jiffies + LOAD_FREQ;
 9942
 9943#ifdef CONFIG_SMP
 
 
 
 
 9944	idle_thread_set_boot_cpu();
 9945	balance_push_set(smp_processor_id(), false);
 9946#endif
 9947	init_sched_fair_class();
 9948
 9949	psi_init();
 9950
 9951	init_uclamp();
 9952
 9953	preempt_dynamic_init();
 9954
 9955	scheduler_running = 1;
 9956}
 9957
 9958#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 
 
 
 
 
 
 9959
 9960void __might_sleep(const char *file, int line)
 9961{
 9962	unsigned int state = get_current_state();
 9963	/*
 9964	 * Blocking primitives will set (and therefore destroy) current->state,
 9965	 * since we will exit with TASK_RUNNING make sure we enter with it,
 9966	 * otherwise we will destroy state.
 9967	 */
 9968	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
 9969			"do not call blocking ops when !TASK_RUNNING; "
 9970			"state=%x set at [<%p>] %pS\n", state,
 
 9971			(void *)current->task_state_change,
 9972			(void *)current->task_state_change);
 9973
 9974	__might_resched(file, line, 0);
 9975}
 9976EXPORT_SYMBOL(__might_sleep);
 9977
 9978static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
 9979{
 9980	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
 9981		return;
 9982
 9983	if (preempt_count() == preempt_offset)
 9984		return;
 9985
 9986	pr_err("Preemption disabled at:");
 9987	print_ip_sym(KERN_ERR, ip);
 9988}
 9989
 9990static inline bool resched_offsets_ok(unsigned int offsets)
 9991{
 9992	unsigned int nested = preempt_count();
 9993
 9994	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
 9995
 9996	return nested == offsets;
 9997}
 9998
 9999void __might_resched(const char *file, int line, unsigned int offsets)
10000{
10001	/* Ratelimiting timestamp: */
10002	static unsigned long prev_jiffy;
10003
10004	unsigned long preempt_disable_ip;
10005
10006	/* WARN_ON_ONCE() by default, no rate limit required: */
10007	rcu_sleep_check();
10008
10009	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10010	     !is_idle_task(current) && !current->non_block_count) ||
10011	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10012	    oops_in_progress)
10013		return;
10014
10015	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10016		return;
10017	prev_jiffy = jiffies;
10018
10019	/* Save this before calling printk(), since that will clobber it: */
10020	preempt_disable_ip = get_preempt_disable_ip(current);
10021
10022	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10023	       file, line);
10024	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10025	       in_atomic(), irqs_disabled(), current->non_block_count,
10026	       current->pid, current->comm);
10027	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10028	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
10029
10030	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10031		pr_err("RCU nest depth: %d, expected: %u\n",
10032		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10033	}
10034
10035	if (task_stack_end_corrupted(current))
10036		pr_emerg("Thread overran stack, or stack corrupted\n");
10037
10038	debug_show_held_locks(current);
10039	if (irqs_disabled())
10040		print_irqtrace_events(current);
10041
10042	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10043				 preempt_disable_ip);
10044
10045	dump_stack();
10046	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10047}
10048EXPORT_SYMBOL(__might_resched);
10049
10050void __cant_sleep(const char *file, int line, int preempt_offset)
10051{
10052	static unsigned long prev_jiffy;
10053
10054	if (irqs_disabled())
10055		return;
10056
10057	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10058		return;
10059
10060	if (preempt_count() > preempt_offset)
10061		return;
10062
10063	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10064		return;
10065	prev_jiffy = jiffies;
10066
10067	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10068	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10069			in_atomic(), irqs_disabled(),
10070			current->pid, current->comm);
10071
10072	debug_show_held_locks(current);
10073	dump_stack();
10074	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10075}
10076EXPORT_SYMBOL_GPL(__cant_sleep);
10077
10078#ifdef CONFIG_SMP
10079void __cant_migrate(const char *file, int line)
10080{
10081	static unsigned long prev_jiffy;
10082
10083	if (irqs_disabled())
10084		return;
10085
10086	if (is_migration_disabled(current))
10087		return;
10088
10089	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10090		return;
10091
10092	if (preempt_count() > 0)
10093		return;
10094
10095	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10096		return;
10097	prev_jiffy = jiffies;
10098
10099	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10100	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10101	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
10102	       current->pid, current->comm);
10103
10104	debug_show_held_locks(current);
10105	dump_stack();
10106	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10107}
10108EXPORT_SYMBOL_GPL(__cant_migrate);
10109#endif
10110#endif
10111
10112#ifdef CONFIG_MAGIC_SYSRQ
10113void normalize_rt_tasks(void)
10114{
10115	struct task_struct *g, *p;
10116	struct sched_attr attr = {
10117		.sched_policy = SCHED_NORMAL,
10118	};
10119
10120	read_lock(&tasklist_lock);
10121	for_each_process_thread(g, p) {
10122		/*
10123		 * Only normalize user tasks:
10124		 */
10125		if (p->flags & PF_KTHREAD)
10126			continue;
10127
10128		p->se.exec_start = 0;
10129		schedstat_set(p->stats.wait_start,  0);
10130		schedstat_set(p->stats.sleep_start, 0);
10131		schedstat_set(p->stats.block_start, 0);
 
 
10132
10133		if (!dl_task(p) && !rt_task(p)) {
10134			/*
10135			 * Renice negative nice level userspace
10136			 * tasks back to 0:
10137			 */
10138			if (task_nice(p) < 0)
10139				set_user_nice(p, 0);
10140			continue;
10141		}
10142
10143		__sched_setscheduler(p, &attr, false, false);
10144	}
10145	read_unlock(&tasklist_lock);
10146}
10147
10148#endif /* CONFIG_MAGIC_SYSRQ */
10149
10150#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
10151/*
10152 * These functions are only useful for the IA64 MCA handling, or kdb.
10153 *
10154 * They can only be called when the whole system has been
10155 * stopped - every CPU needs to be quiescent, and no scheduling
10156 * activity can take place. Using them for anything else would
10157 * be a serious bug, and as a result, they aren't even visible
10158 * under any other configuration.
10159 */
10160
10161/**
10162 * curr_task - return the current task for a given CPU.
10163 * @cpu: the processor in question.
10164 *
10165 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10166 *
10167 * Return: The current task for @cpu.
10168 */
10169struct task_struct *curr_task(int cpu)
10170{
10171	return cpu_curr(cpu);
10172}
10173
10174#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10175
10176#ifdef CONFIG_IA64
10177/**
10178 * ia64_set_curr_task - set the current task for a given CPU.
10179 * @cpu: the processor in question.
10180 * @p: the task pointer to set.
10181 *
10182 * Description: This function must only be used when non-maskable interrupts
10183 * are serviced on a separate stack. It allows the architecture to switch the
10184 * notion of the current task on a CPU in a non-blocking manner. This function
10185 * must be called with all CPU's synchronized, and interrupts disabled, the
10186 * and caller must save the original value of the current task (see
10187 * curr_task() above) and restore that value before reenabling interrupts and
10188 * re-starting the system.
10189 *
10190 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10191 */
10192void ia64_set_curr_task(int cpu, struct task_struct *p)
10193{
10194	cpu_curr(cpu) = p;
10195}
10196
10197#endif
10198
10199#ifdef CONFIG_CGROUP_SCHED
10200/* task_group_lock serializes the addition/removal of task groups */
10201static DEFINE_SPINLOCK(task_group_lock);
10202
10203static inline void alloc_uclamp_sched_group(struct task_group *tg,
10204					    struct task_group *parent)
10205{
10206#ifdef CONFIG_UCLAMP_TASK_GROUP
10207	enum uclamp_id clamp_id;
10208
10209	for_each_clamp_id(clamp_id) {
10210		uclamp_se_set(&tg->uclamp_req[clamp_id],
10211			      uclamp_none(clamp_id), false);
10212		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10213	}
10214#endif
10215}
10216
10217static void sched_free_group(struct task_group *tg)
10218{
10219	free_fair_sched_group(tg);
10220	free_rt_sched_group(tg);
10221	autogroup_free(tg);
10222	kmem_cache_free(task_group_cache, tg);
10223}
10224
10225static void sched_free_group_rcu(struct rcu_head *rcu)
10226{
10227	sched_free_group(container_of(rcu, struct task_group, rcu));
10228}
10229
10230static void sched_unregister_group(struct task_group *tg)
10231{
10232	unregister_fair_sched_group(tg);
10233	unregister_rt_sched_group(tg);
10234	/*
10235	 * We have to wait for yet another RCU grace period to expire, as
10236	 * print_cfs_stats() might run concurrently.
10237	 */
10238	call_rcu(&tg->rcu, sched_free_group_rcu);
10239}
10240
10241/* allocate runqueue etc for a new task group */
10242struct task_group *sched_create_group(struct task_group *parent)
10243{
10244	struct task_group *tg;
10245
10246	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10247	if (!tg)
10248		return ERR_PTR(-ENOMEM);
10249
10250	if (!alloc_fair_sched_group(tg, parent))
10251		goto err;
10252
10253	if (!alloc_rt_sched_group(tg, parent))
10254		goto err;
10255
10256	alloc_uclamp_sched_group(tg, parent);
10257
10258	return tg;
10259
10260err:
10261	sched_free_group(tg);
10262	return ERR_PTR(-ENOMEM);
10263}
10264
10265void sched_online_group(struct task_group *tg, struct task_group *parent)
10266{
10267	unsigned long flags;
10268
10269	spin_lock_irqsave(&task_group_lock, flags);
10270	list_add_rcu(&tg->list, &task_groups);
10271
10272	/* Root should already exist: */
10273	WARN_ON(!parent);
10274
10275	tg->parent = parent;
10276	INIT_LIST_HEAD(&tg->children);
10277	list_add_rcu(&tg->siblings, &parent->children);
10278	spin_unlock_irqrestore(&task_group_lock, flags);
10279
10280	online_fair_sched_group(tg);
10281}
10282
10283/* rcu callback to free various structures associated with a task group */
10284static void sched_unregister_group_rcu(struct rcu_head *rhp)
10285{
10286	/* Now it should be safe to free those cfs_rqs: */
10287	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10288}
10289
10290void sched_destroy_group(struct task_group *tg)
10291{
10292	/* Wait for possible concurrent references to cfs_rqs complete: */
10293	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10294}
10295
10296void sched_release_group(struct task_group *tg)
10297{
10298	unsigned long flags;
10299
10300	/*
10301	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10302	 * sched_cfs_period_timer()).
10303	 *
10304	 * For this to be effective, we have to wait for all pending users of
10305	 * this task group to leave their RCU critical section to ensure no new
10306	 * user will see our dying task group any more. Specifically ensure
10307	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10308	 *
10309	 * We therefore defer calling unregister_fair_sched_group() to
10310	 * sched_unregister_group() which is guarantied to get called only after the
10311	 * current RCU grace period has expired.
10312	 */
10313	spin_lock_irqsave(&task_group_lock, flags);
10314	list_del_rcu(&tg->list);
10315	list_del_rcu(&tg->siblings);
10316	spin_unlock_irqrestore(&task_group_lock, flags);
10317}
10318
10319static void sched_change_group(struct task_struct *tsk)
 
 
 
 
 
10320{
10321	struct task_group *tg;
 
 
 
 
 
 
 
 
 
 
 
 
 
10322
10323	/*
10324	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10325	 * which is pointless here. Thus, we pass "true" to task_css_check()
10326	 * to prevent lockdep warnings.
10327	 */
10328	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10329			  struct task_group, css);
10330	tg = autogroup_task_group(tsk, tg);
10331	tsk->sched_task_group = tg;
10332
10333#ifdef CONFIG_FAIR_GROUP_SCHED
10334	if (tsk->sched_class->task_change_group)
10335		tsk->sched_class->task_change_group(tsk);
10336	else
10337#endif
10338		set_task_rq(tsk, task_cpu(tsk));
 
 
 
 
 
 
 
10339}
 
10340
 
10341/*
10342 * Change task's runqueue when it moves between groups.
10343 *
10344 * The caller of this function should have put the task in its new group by
10345 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10346 * its new group.
10347 */
10348void sched_move_task(struct task_struct *tsk)
 
 
 
10349{
10350	int queued, running, queue_flags =
10351		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10352	struct rq_flags rf;
10353	struct rq *rq;
10354
10355	rq = task_rq_lock(tsk, &rf);
10356	update_rq_clock(rq);
 
 
 
10357
10358	running = task_current(rq, tsk);
10359	queued = task_on_rq_queued(tsk);
 
 
10360
10361	if (queued)
10362		dequeue_task(rq, tsk, queue_flags);
10363	if (running)
10364		put_prev_task(rq, tsk);
10365
10366	sched_change_group(tsk);
 
 
 
 
10367
10368	if (queued)
10369		enqueue_task(rq, tsk, queue_flags);
10370	if (running) {
10371		set_next_task(rq, tsk);
10372		/*
10373		 * After changing group, the running task may have joined a
10374		 * throttled one but it's still the running task. Trigger a
10375		 * resched to make sure that task can still run.
10376		 */
10377		resched_curr(rq);
 
 
 
10378	}
10379
10380	task_rq_unlock(rq, tsk, &rf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10381}
10382
10383static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10384{
10385	return css ? container_of(css, struct task_group, css) : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
10386}
10387
10388static struct cgroup_subsys_state *
10389cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10390{
10391	struct task_group *parent = css_tg(parent_css);
10392	struct task_group *tg;
10393
10394	if (!parent) {
10395		/* This is early initialization for the top cgroup */
10396		return &root_task_group.css;
10397	}
 
 
10398
10399	tg = sched_create_group(parent);
10400	if (IS_ERR(tg))
10401		return ERR_PTR(-ENOMEM);
10402
10403	return &tg->css;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10404}
10405
10406/* Expose task group only after completing cgroup initialization */
10407static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10408{
10409	struct task_group *tg = css_tg(css);
10410	struct task_group *parent = css_tg(css->parent);
10411
10412	if (parent)
10413		sched_online_group(tg, parent);
 
 
10414
10415#ifdef CONFIG_UCLAMP_TASK_GROUP
10416	/* Propagate the effective uclamp value for the new group */
10417	mutex_lock(&uclamp_mutex);
10418	rcu_read_lock();
10419	cpu_util_update_eff(css);
10420	rcu_read_unlock();
10421	mutex_unlock(&uclamp_mutex);
10422#endif
10423
10424	return 0;
 
 
 
 
 
 
 
 
 
10425}
10426
10427static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10428{
10429	struct task_group *tg = css_tg(css);
10430
10431	sched_release_group(tg);
 
 
 
10432}
10433
10434static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10435{
10436	struct task_group *tg = css_tg(css);
10437
10438	/*
10439	 * Relies on the RCU grace period between css_released() and this.
10440	 */
10441	sched_unregister_group(tg);
10442}
 
10443
10444#ifdef CONFIG_RT_GROUP_SCHED
10445static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10446{
10447	struct task_struct *task;
10448	struct cgroup_subsys_state *css;
10449
10450	cgroup_taskset_for_each(task, css, tset) {
10451		if (!sched_rt_can_attach(css_tg(css), task))
10452			return -EINVAL;
10453	}
10454	return 0;
 
 
10455}
10456#endif
10457
10458static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10459{
10460	struct task_struct *task;
10461	struct cgroup_subsys_state *css;
 
10462
10463	cgroup_taskset_for_each(task, css, tset)
10464		sched_move_task(task);
10465}
10466
10467#ifdef CONFIG_UCLAMP_TASK_GROUP
10468static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10469{
10470	struct cgroup_subsys_state *top_css = css;
10471	struct uclamp_se *uc_parent = NULL;
10472	struct uclamp_se *uc_se = NULL;
10473	unsigned int eff[UCLAMP_CNT];
10474	enum uclamp_id clamp_id;
10475	unsigned int clamps;
10476
10477	lockdep_assert_held(&uclamp_mutex);
10478	SCHED_WARN_ON(!rcu_read_lock_held());
10479
10480	css_for_each_descendant_pre(css, top_css) {
10481		uc_parent = css_tg(css)->parent
10482			? css_tg(css)->parent->uclamp : NULL;
10483
10484		for_each_clamp_id(clamp_id) {
10485			/* Assume effective clamps matches requested clamps */
10486			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10487			/* Cap effective clamps with parent's effective clamps */
10488			if (uc_parent &&
10489			    eff[clamp_id] > uc_parent[clamp_id].value) {
10490				eff[clamp_id] = uc_parent[clamp_id].value;
10491			}
10492		}
10493		/* Ensure protection is always capped by limit */
10494		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10495
10496		/* Propagate most restrictive effective clamps */
10497		clamps = 0x0;
10498		uc_se = css_tg(css)->uclamp;
10499		for_each_clamp_id(clamp_id) {
10500			if (eff[clamp_id] == uc_se[clamp_id].value)
10501				continue;
10502			uc_se[clamp_id].value = eff[clamp_id];
10503			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10504			clamps |= (0x1 << clamp_id);
10505		}
10506		if (!clamps) {
10507			css = css_rightmost_descendant(css);
10508			continue;
10509		}
10510
10511		/* Immediately update descendants RUNNABLE tasks */
10512		uclamp_update_active_tasks(css);
 
10513	}
 
 
 
10514}
 
10515
10516/*
10517 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10518 * C expression. Since there is no way to convert a macro argument (N) into a
10519 * character constant, use two levels of macros.
10520 */
10521#define _POW10(exp) ((unsigned int)1e##exp)
10522#define POW10(exp) _POW10(exp)
 
10523
10524struct uclamp_request {
10525#define UCLAMP_PERCENT_SHIFT	2
10526#define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10527	s64 percent;
10528	u64 util;
10529	int ret;
10530};
 
 
 
 
 
 
 
 
 
 
10531
10532static inline struct uclamp_request
10533capacity_from_percent(char *buf)
 
 
 
 
 
 
 
 
10534{
10535	struct uclamp_request req = {
10536		.percent = UCLAMP_PERCENT_SCALE,
10537		.util = SCHED_CAPACITY_SCALE,
10538		.ret = 0,
10539	};
10540
10541	buf = strim(buf);
10542	if (strcmp(buf, "max")) {
10543		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10544					     &req.percent);
10545		if (req.ret)
10546			return req;
10547		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10548			req.ret = -ERANGE;
10549			return req;
10550		}
10551
10552		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10553		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
 
 
 
 
 
 
 
 
 
 
10554	}
 
 
 
 
 
 
10555
10556	return req;
 
 
 
 
10557}
10558
10559static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10560				size_t nbytes, loff_t off,
10561				enum uclamp_id clamp_id)
10562{
10563	struct uclamp_request req;
10564	struct task_group *tg;
 
10565
10566	req = capacity_from_percent(buf);
10567	if (req.ret)
10568		return req.ret;
 
 
 
 
10569
10570	static_branch_enable(&sched_uclamp_used);
 
 
10571
10572	mutex_lock(&uclamp_mutex);
10573	rcu_read_lock();
10574
10575	tg = css_tg(of_css(of));
10576	if (tg->uclamp_req[clamp_id].value != req.util)
10577		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
 
10578
10579	/*
10580	 * Because of not recoverable conversion rounding we keep track of the
10581	 * exact requested value
10582	 */
10583	tg->uclamp_pct[clamp_id] = req.percent;
10584
10585	/* Update effective clamps to track the most restrictive value */
10586	cpu_util_update_eff(of_css(of));
 
10587
10588	rcu_read_unlock();
10589	mutex_unlock(&uclamp_mutex);
 
 
 
 
 
 
 
10590
10591	return nbytes;
10592}
10593
10594static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10595				    char *buf, size_t nbytes,
10596				    loff_t off)
10597{
10598	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
 
 
 
 
 
 
 
 
 
 
 
 
10599}
10600
10601static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10602				    char *buf, size_t nbytes,
10603				    loff_t off)
10604{
10605	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10606}
10607
10608static inline void cpu_uclamp_print(struct seq_file *sf,
10609				    enum uclamp_id clamp_id)
10610{
 
10611	struct task_group *tg;
10612	u64 util_clamp;
10613	u64 percent;
10614	u32 rem;
10615
10616	rcu_read_lock();
10617	tg = css_tg(seq_css(sf));
10618	util_clamp = tg->uclamp_req[clamp_id].value;
10619	rcu_read_unlock();
10620
10621	if (util_clamp == SCHED_CAPACITY_SCALE) {
10622		seq_puts(sf, "max\n");
10623		return;
10624	}
10625
10626	percent = tg->uclamp_pct[clamp_id];
10627	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10628	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
 
 
 
 
10629}
10630
10631static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10632{
10633	cpu_uclamp_print(sf, UCLAMP_MIN);
10634	return 0;
 
10635}
10636
10637static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10638{
10639	cpu_uclamp_print(sf, UCLAMP_MAX);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10640	return 0;
10641}
10642#endif /* CONFIG_UCLAMP_TASK_GROUP */
 
 
 
 
 
 
 
 
10643
10644#ifdef CONFIG_FAIR_GROUP_SCHED
10645static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10646				struct cftype *cftype, u64 shareval)
10647{
10648	if (shareval > scale_load_down(ULONG_MAX))
10649		shareval = MAX_SHARES;
10650	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10651}
10652
10653static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10654			       struct cftype *cft)
10655{
10656	struct task_group *tg = css_tg(css);
10657
10658	return (u64) scale_load_down(tg->shares);
10659}
10660
10661#ifdef CONFIG_CFS_BANDWIDTH
10662static DEFINE_MUTEX(cfs_constraints_mutex);
10663
10664const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10665static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10666/* More than 203 days if BW_SHIFT equals 20. */
10667static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10668
10669static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10670
10671static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10672				u64 burst)
10673{
10674	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10675	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10676
10677	if (tg == &root_task_group)
10678		return -EINVAL;
10679
10680	/*
10681	 * Ensure we have at some amount of bandwidth every period.  This is
10682	 * to prevent reaching a state of large arrears when throttled via
10683	 * entity_tick() resulting in prolonged exit starvation.
10684	 */
10685	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10686		return -EINVAL;
10687
10688	/*
10689	 * Likewise, bound things on the other side by preventing insane quota
10690	 * periods.  This also allows us to normalize in computing quota
10691	 * feasibility.
10692	 */
10693	if (period > max_cfs_quota_period)
10694		return -EINVAL;
10695
10696	/*
10697	 * Bound quota to defend quota against overflow during bandwidth shift.
10698	 */
10699	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10700		return -EINVAL;
10701
10702	if (quota != RUNTIME_INF && (burst > quota ||
10703				     burst + quota > max_cfs_runtime))
10704		return -EINVAL;
10705
10706	/*
10707	 * Prevent race between setting of cfs_rq->runtime_enabled and
10708	 * unthrottle_offline_cfs_rqs().
10709	 */
10710	cpus_read_lock();
10711	mutex_lock(&cfs_constraints_mutex);
10712	ret = __cfs_schedulable(tg, period, quota);
10713	if (ret)
10714		goto out_unlock;
10715
10716	runtime_enabled = quota != RUNTIME_INF;
10717	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10718	/*
10719	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10720	 * before making related changes, and on->off must occur afterwards
10721	 */
10722	if (runtime_enabled && !runtime_was_enabled)
10723		cfs_bandwidth_usage_inc();
10724	raw_spin_lock_irq(&cfs_b->lock);
10725	cfs_b->period = ns_to_ktime(period);
10726	cfs_b->quota = quota;
10727	cfs_b->burst = burst;
10728
10729	__refill_cfs_bandwidth_runtime(cfs_b);
10730
10731	/* Restart the period timer (if active) to handle new period expiry: */
10732	if (runtime_enabled)
10733		start_cfs_bandwidth(cfs_b);
10734
10735	raw_spin_unlock_irq(&cfs_b->lock);
10736
10737	for_each_online_cpu(i) {
10738		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10739		struct rq *rq = cfs_rq->rq;
10740		struct rq_flags rf;
10741
10742		rq_lock_irq(rq, &rf);
10743		cfs_rq->runtime_enabled = runtime_enabled;
10744		cfs_rq->runtime_remaining = 0;
10745
10746		if (cfs_rq->throttled)
10747			unthrottle_cfs_rq(cfs_rq);
10748		rq_unlock_irq(rq, &rf);
10749	}
10750	if (runtime_was_enabled && !runtime_enabled)
10751		cfs_bandwidth_usage_dec();
10752out_unlock:
10753	mutex_unlock(&cfs_constraints_mutex);
10754	cpus_read_unlock();
10755
10756	return ret;
10757}
10758
10759static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10760{
10761	u64 quota, period, burst;
10762
10763	period = ktime_to_ns(tg->cfs_bandwidth.period);
10764	burst = tg->cfs_bandwidth.burst;
10765	if (cfs_quota_us < 0)
10766		quota = RUNTIME_INF;
10767	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10768		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10769	else
10770		return -EINVAL;
10771
10772	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10773}
10774
10775static long tg_get_cfs_quota(struct task_group *tg)
10776{
10777	u64 quota_us;
10778
10779	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10780		return -1;
10781
10782	quota_us = tg->cfs_bandwidth.quota;
10783	do_div(quota_us, NSEC_PER_USEC);
10784
10785	return quota_us;
10786}
10787
10788static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10789{
10790	u64 quota, period, burst;
10791
10792	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10793		return -EINVAL;
10794
10795	period = (u64)cfs_period_us * NSEC_PER_USEC;
10796	quota = tg->cfs_bandwidth.quota;
10797	burst = tg->cfs_bandwidth.burst;
10798
10799	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10800}
10801
10802static long tg_get_cfs_period(struct task_group *tg)
10803{
10804	u64 cfs_period_us;
10805
10806	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10807	do_div(cfs_period_us, NSEC_PER_USEC);
10808
10809	return cfs_period_us;
10810}
10811
10812static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10813{
10814	u64 quota, period, burst;
10815
10816	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10817		return -EINVAL;
10818
10819	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10820	period = ktime_to_ns(tg->cfs_bandwidth.period);
10821	quota = tg->cfs_bandwidth.quota;
10822
10823	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10824}
10825
10826static long tg_get_cfs_burst(struct task_group *tg)
10827{
10828	u64 burst_us;
10829
10830	burst_us = tg->cfs_bandwidth.burst;
10831	do_div(burst_us, NSEC_PER_USEC);
10832
10833	return burst_us;
10834}
10835
10836static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10837				  struct cftype *cft)
10838{
10839	return tg_get_cfs_quota(css_tg(css));
10840}
10841
10842static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10843				   struct cftype *cftype, s64 cfs_quota_us)
10844{
10845	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10846}
10847
10848static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10849				   struct cftype *cft)
10850{
10851	return tg_get_cfs_period(css_tg(css));
10852}
10853
10854static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10855				    struct cftype *cftype, u64 cfs_period_us)
10856{
10857	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10858}
10859
10860static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10861				  struct cftype *cft)
10862{
10863	return tg_get_cfs_burst(css_tg(css));
10864}
10865
10866static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10867				   struct cftype *cftype, u64 cfs_burst_us)
10868{
10869	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10870}
10871
10872struct cfs_schedulable_data {
10873	struct task_group *tg;
10874	u64 period, quota;
10875};
10876
10877/*
10878 * normalize group quota/period to be quota/max_period
10879 * note: units are usecs
10880 */
10881static u64 normalize_cfs_quota(struct task_group *tg,
10882			       struct cfs_schedulable_data *d)
10883{
10884	u64 quota, period;
10885
10886	if (tg == d->tg) {
10887		period = d->period;
10888		quota = d->quota;
10889	} else {
10890		period = tg_get_cfs_period(tg);
10891		quota = tg_get_cfs_quota(tg);
10892	}
10893
10894	/* note: these should typically be equivalent */
10895	if (quota == RUNTIME_INF || quota == -1)
10896		return RUNTIME_INF;
10897
10898	return to_ratio(period, quota);
10899}
10900
10901static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10902{
10903	struct cfs_schedulable_data *d = data;
10904	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10905	s64 quota = 0, parent_quota = -1;
10906
10907	if (!tg->parent) {
10908		quota = RUNTIME_INF;
10909	} else {
10910		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10911
10912		quota = normalize_cfs_quota(tg, d);
10913		parent_quota = parent_b->hierarchical_quota;
10914
10915		/*
10916		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
10917		 * always take the min.  On cgroup1, only inherit when no
10918		 * limit is set:
10919		 */
10920		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10921			quota = min(quota, parent_quota);
10922		} else {
10923			if (quota == RUNTIME_INF)
10924				quota = parent_quota;
10925			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10926				return -EINVAL;
10927		}
10928	}
10929	cfs_b->hierarchical_quota = quota;
10930
10931	return 0;
10932}
10933
10934static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10935{
10936	int ret;
10937	struct cfs_schedulable_data data = {
10938		.tg = tg,
10939		.period = period,
10940		.quota = quota,
10941	};
10942
10943	if (quota != RUNTIME_INF) {
10944		do_div(data.period, NSEC_PER_USEC);
10945		do_div(data.quota, NSEC_PER_USEC);
10946	}
10947
10948	rcu_read_lock();
10949	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10950	rcu_read_unlock();
10951
10952	return ret;
10953}
10954
10955static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10956{
10957	struct task_group *tg = css_tg(seq_css(sf));
10958	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10959
10960	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10961	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10962	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10963
10964	if (schedstat_enabled() && tg != &root_task_group) {
10965		struct sched_statistics *stats;
10966		u64 ws = 0;
10967		int i;
10968
10969		for_each_possible_cpu(i) {
10970			stats = __schedstats_from_se(tg->se[i]);
10971			ws += schedstat_val(stats->wait_sum);
10972		}
10973
10974		seq_printf(sf, "wait_sum %llu\n", ws);
10975	}
10976
10977	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
10978	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
10979
10980	return 0;
10981}
10982#endif /* CONFIG_CFS_BANDWIDTH */
10983#endif /* CONFIG_FAIR_GROUP_SCHED */
10984
10985#ifdef CONFIG_RT_GROUP_SCHED
10986static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10987				struct cftype *cft, s64 val)
10988{
10989	return sched_group_set_rt_runtime(css_tg(css), val);
10990}
10991
10992static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10993			       struct cftype *cft)
10994{
10995	return sched_group_rt_runtime(css_tg(css));
10996}
10997
10998static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10999				    struct cftype *cftype, u64 rt_period_us)
11000{
11001	return sched_group_set_rt_period(css_tg(css), rt_period_us);
11002}
11003
11004static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11005				   struct cftype *cft)
11006{
11007	return sched_group_rt_period(css_tg(css));
11008}
11009#endif /* CONFIG_RT_GROUP_SCHED */
11010
11011#ifdef CONFIG_FAIR_GROUP_SCHED
11012static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11013			       struct cftype *cft)
11014{
11015	return css_tg(css)->idle;
11016}
11017
11018static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11019				struct cftype *cft, s64 idle)
11020{
11021	return sched_group_set_idle(css_tg(css), idle);
11022}
11023#endif
11024
11025static struct cftype cpu_legacy_files[] = {
11026#ifdef CONFIG_FAIR_GROUP_SCHED
11027	{
11028		.name = "shares",
11029		.read_u64 = cpu_shares_read_u64,
11030		.write_u64 = cpu_shares_write_u64,
11031	},
11032	{
11033		.name = "idle",
11034		.read_s64 = cpu_idle_read_s64,
11035		.write_s64 = cpu_idle_write_s64,
11036	},
11037#endif
11038#ifdef CONFIG_CFS_BANDWIDTH
11039	{
11040		.name = "cfs_quota_us",
11041		.read_s64 = cpu_cfs_quota_read_s64,
11042		.write_s64 = cpu_cfs_quota_write_s64,
11043	},
11044	{
11045		.name = "cfs_period_us",
11046		.read_u64 = cpu_cfs_period_read_u64,
11047		.write_u64 = cpu_cfs_period_write_u64,
11048	},
11049	{
11050		.name = "cfs_burst_us",
11051		.read_u64 = cpu_cfs_burst_read_u64,
11052		.write_u64 = cpu_cfs_burst_write_u64,
11053	},
11054	{
11055		.name = "stat",
11056		.seq_show = cpu_cfs_stat_show,
11057	},
11058#endif
11059#ifdef CONFIG_RT_GROUP_SCHED
11060	{
11061		.name = "rt_runtime_us",
11062		.read_s64 = cpu_rt_runtime_read,
11063		.write_s64 = cpu_rt_runtime_write,
11064	},
11065	{
11066		.name = "rt_period_us",
11067		.read_u64 = cpu_rt_period_read_uint,
11068		.write_u64 = cpu_rt_period_write_uint,
11069	},
11070#endif
11071#ifdef CONFIG_UCLAMP_TASK_GROUP
11072	{
11073		.name = "uclamp.min",
11074		.flags = CFTYPE_NOT_ON_ROOT,
11075		.seq_show = cpu_uclamp_min_show,
11076		.write = cpu_uclamp_min_write,
11077	},
11078	{
11079		.name = "uclamp.max",
11080		.flags = CFTYPE_NOT_ON_ROOT,
11081		.seq_show = cpu_uclamp_max_show,
11082		.write = cpu_uclamp_max_write,
11083	},
11084#endif
11085	{ }	/* Terminate */
11086};
11087
11088static int cpu_extra_stat_show(struct seq_file *sf,
11089			       struct cgroup_subsys_state *css)
11090{
11091#ifdef CONFIG_CFS_BANDWIDTH
11092	{
11093		struct task_group *tg = css_tg(css);
11094		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11095		u64 throttled_usec, burst_usec;
11096
11097		throttled_usec = cfs_b->throttled_time;
11098		do_div(throttled_usec, NSEC_PER_USEC);
11099		burst_usec = cfs_b->burst_time;
11100		do_div(burst_usec, NSEC_PER_USEC);
11101
11102		seq_printf(sf, "nr_periods %d\n"
11103			   "nr_throttled %d\n"
11104			   "throttled_usec %llu\n"
11105			   "nr_bursts %d\n"
11106			   "burst_usec %llu\n",
11107			   cfs_b->nr_periods, cfs_b->nr_throttled,
11108			   throttled_usec, cfs_b->nr_burst, burst_usec);
11109	}
11110#endif
11111	return 0;
11112}
11113
11114#ifdef CONFIG_FAIR_GROUP_SCHED
11115static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11116			       struct cftype *cft)
11117{
11118	struct task_group *tg = css_tg(css);
11119	u64 weight = scale_load_down(tg->shares);
11120
11121	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11122}
11123
11124static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11125				struct cftype *cft, u64 weight)
11126{
11127	/*
11128	 * cgroup weight knobs should use the common MIN, DFL and MAX
11129	 * values which are 1, 100 and 10000 respectively.  While it loses
11130	 * a bit of range on both ends, it maps pretty well onto the shares
11131	 * value used by scheduler and the round-trip conversions preserve
11132	 * the original value over the entire range.
11133	 */
11134	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11135		return -ERANGE;
11136
11137	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11138
11139	return sched_group_set_shares(css_tg(css), scale_load(weight));
11140}
11141
11142static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11143				    struct cftype *cft)
11144{
11145	unsigned long weight = scale_load_down(css_tg(css)->shares);
11146	int last_delta = INT_MAX;
11147	int prio, delta;
11148
11149	/* find the closest nice value to the current weight */
11150	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11151		delta = abs(sched_prio_to_weight[prio] - weight);
11152		if (delta >= last_delta)
11153			break;
11154		last_delta = delta;
11155	}
11156
11157	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11158}
11159
11160static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11161				     struct cftype *cft, s64 nice)
11162{
11163	unsigned long weight;
11164	int idx;
11165
11166	if (nice < MIN_NICE || nice > MAX_NICE)
11167		return -ERANGE;
11168
11169	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11170	idx = array_index_nospec(idx, 40);
11171	weight = sched_prio_to_weight[idx];
11172
11173	return sched_group_set_shares(css_tg(css), scale_load(weight));
11174}
11175#endif
11176
11177static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11178						  long period, long quota)
11179{
11180	if (quota < 0)
11181		seq_puts(sf, "max");
11182	else
11183		seq_printf(sf, "%ld", quota);
11184
11185	seq_printf(sf, " %ld\n", period);
11186}
11187
11188/* caller should put the current value in *@periodp before calling */
11189static int __maybe_unused cpu_period_quota_parse(char *buf,
11190						 u64 *periodp, u64 *quotap)
11191{
11192	char tok[21];	/* U64_MAX */
11193
11194	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11195		return -EINVAL;
11196
11197	*periodp *= NSEC_PER_USEC;
11198
11199	if (sscanf(tok, "%llu", quotap))
11200		*quotap *= NSEC_PER_USEC;
11201	else if (!strcmp(tok, "max"))
11202		*quotap = RUNTIME_INF;
11203	else
11204		return -EINVAL;
11205
11206	return 0;
11207}
11208
11209#ifdef CONFIG_CFS_BANDWIDTH
11210static int cpu_max_show(struct seq_file *sf, void *v)
11211{
11212	struct task_group *tg = css_tg(seq_css(sf));
11213
11214	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11215	return 0;
11216}
11217
11218static ssize_t cpu_max_write(struct kernfs_open_file *of,
11219			     char *buf, size_t nbytes, loff_t off)
11220{
11221	struct task_group *tg = css_tg(of_css(of));
11222	u64 period = tg_get_cfs_period(tg);
11223	u64 burst = tg_get_cfs_burst(tg);
11224	u64 quota;
11225	int ret;
11226
11227	ret = cpu_period_quota_parse(buf, &period, &quota);
11228	if (!ret)
11229		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11230	return ret ?: nbytes;
11231}
11232#endif
11233
11234static struct cftype cpu_files[] = {
11235#ifdef CONFIG_FAIR_GROUP_SCHED
11236	{
11237		.name = "weight",
11238		.flags = CFTYPE_NOT_ON_ROOT,
11239		.read_u64 = cpu_weight_read_u64,
11240		.write_u64 = cpu_weight_write_u64,
11241	},
11242	{
11243		.name = "weight.nice",
11244		.flags = CFTYPE_NOT_ON_ROOT,
11245		.read_s64 = cpu_weight_nice_read_s64,
11246		.write_s64 = cpu_weight_nice_write_s64,
11247	},
11248	{
11249		.name = "idle",
11250		.flags = CFTYPE_NOT_ON_ROOT,
11251		.read_s64 = cpu_idle_read_s64,
11252		.write_s64 = cpu_idle_write_s64,
11253	},
11254#endif
11255#ifdef CONFIG_CFS_BANDWIDTH
11256	{
11257		.name = "max",
11258		.flags = CFTYPE_NOT_ON_ROOT,
11259		.seq_show = cpu_max_show,
11260		.write = cpu_max_write,
11261	},
11262	{
11263		.name = "max.burst",
11264		.flags = CFTYPE_NOT_ON_ROOT,
11265		.read_u64 = cpu_cfs_burst_read_u64,
11266		.write_u64 = cpu_cfs_burst_write_u64,
11267	},
11268#endif
11269#ifdef CONFIG_UCLAMP_TASK_GROUP
11270	{
11271		.name = "uclamp.min",
11272		.flags = CFTYPE_NOT_ON_ROOT,
11273		.seq_show = cpu_uclamp_min_show,
11274		.write = cpu_uclamp_min_write,
11275	},
11276	{
11277		.name = "uclamp.max",
11278		.flags = CFTYPE_NOT_ON_ROOT,
11279		.seq_show = cpu_uclamp_max_show,
11280		.write = cpu_uclamp_max_write,
11281	},
11282#endif
11283	{ }	/* terminate */
11284};
11285
11286struct cgroup_subsys cpu_cgrp_subsys = {
11287	.css_alloc	= cpu_cgroup_css_alloc,
11288	.css_online	= cpu_cgroup_css_online,
11289	.css_released	= cpu_cgroup_css_released,
11290	.css_free	= cpu_cgroup_css_free,
11291	.css_extra_stat_show = cpu_extra_stat_show,
11292#ifdef CONFIG_RT_GROUP_SCHED
11293	.can_attach	= cpu_cgroup_can_attach,
11294#endif
11295	.attach		= cpu_cgroup_attach,
11296	.legacy_cftypes	= cpu_legacy_files,
11297	.dfl_cftypes	= cpu_files,
11298	.early_init	= true,
11299	.threaded	= true,
11300};
11301
11302#endif	/* CONFIG_CGROUP_SCHED */
11303
11304void dump_cpu_task(int cpu)
11305{
11306	if (cpu == smp_processor_id() && in_hardirq()) {
11307		struct pt_regs *regs;
11308
11309		regs = get_irq_regs();
11310		if (regs) {
11311			show_regs(regs);
11312			return;
11313		}
11314	}
11315
11316	if (trigger_single_cpu_backtrace(cpu))
11317		return;
11318
11319	pr_info("Task dump for CPU %d:\n", cpu);
11320	sched_show_task(cpu_curr(cpu));
11321}
11322
11323/*
11324 * Nice levels are multiplicative, with a gentle 10% change for every
11325 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11326 * nice 1, it will get ~10% less CPU time than another CPU-bound task
11327 * that remained on nice 0.
11328 *
11329 * The "10% effect" is relative and cumulative: from _any_ nice level,
11330 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11331 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11332 * If a task goes up by ~10% and another task goes down by ~10% then
11333 * the relative distance between them is ~25%.)
11334 */
11335const int sched_prio_to_weight[40] = {
11336 /* -20 */     88761,     71755,     56483,     46273,     36291,
11337 /* -15 */     29154,     23254,     18705,     14949,     11916,
11338 /* -10 */      9548,      7620,      6100,      4904,      3906,
11339 /*  -5 */      3121,      2501,      1991,      1586,      1277,
11340 /*   0 */      1024,       820,       655,       526,       423,
11341 /*   5 */       335,       272,       215,       172,       137,
11342 /*  10 */       110,        87,        70,        56,        45,
11343 /*  15 */        36,        29,        23,        18,        15,
11344};
11345
11346/*
11347 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11348 *
11349 * In cases where the weight does not change often, we can use the
11350 * precalculated inverse to speed up arithmetics by turning divisions
11351 * into multiplications:
11352 */
11353const u32 sched_prio_to_wmult[40] = {
11354 /* -20 */     48388,     59856,     76040,     92818,    118348,
11355 /* -15 */    147320,    184698,    229616,    287308,    360437,
11356 /* -10 */    449829,    563644,    704093,    875809,   1099582,
11357 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11358 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11359 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11360 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11361 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11362};
11363
11364void call_trace_sched_update_nr_running(struct rq *rq, int count)
11365{
11366        trace_sched_update_nr_running_tp(rq, count);
11367}
v4.6
 
   1/*
   2 *  kernel/sched/core.c
   3 *
   4 *  Kernel scheduler and related syscalls
   5 *
   6 *  Copyright (C) 1991-2002  Linus Torvalds
   7 *
   8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
   9 *		make semaphores SMP safe
  10 *  1998-11-19	Implemented schedule_timeout() and related stuff
  11 *		by Andrea Arcangeli
  12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
  13 *		hybrid priority-list and round-robin design with
  14 *		an array-switch method of distributing timeslices
  15 *		and per-CPU runqueues.  Cleanups and useful suggestions
  16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
  17 *  2003-09-03	Interactivity tuning by Con Kolivas.
  18 *  2004-04-02	Scheduler domains code by Nick Piggin
  19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
  20 *              fair scheduling design by Con Kolivas.
  21 *  2007-05-05  Load balancing (smp-nice) and other improvements
  22 *              by Peter Williams
  23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
  24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
  25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26 *              Thomas Gleixner, Mike Kravetz
  27 */
  28
  29#include <linux/kasan.h>
  30#include <linux/mm.h>
  31#include <linux/module.h>
  32#include <linux/nmi.h>
  33#include <linux/init.h>
  34#include <linux/uaccess.h>
  35#include <linux/highmem.h>
  36#include <asm/mmu_context.h>
  37#include <linux/interrupt.h>
 
 
 
 
  38#include <linux/capability.h>
  39#include <linux/completion.h>
  40#include <linux/kernel_stat.h>
  41#include <linux/debug_locks.h>
  42#include <linux/perf_event.h>
  43#include <linux/security.h>
  44#include <linux/notifier.h>
  45#include <linux/profile.h>
  46#include <linux/freezer.h>
  47#include <linux/vmalloc.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48#include <linux/blkdev.h>
  49#include <linux/delay.h>
  50#include <linux/pid_namespace.h>
  51#include <linux/smp.h>
  52#include <linux/threads.h>
  53#include <linux/timer.h>
  54#include <linux/rcupdate.h>
  55#include <linux/cpu.h>
  56#include <linux/cpuset.h>
  57#include <linux/percpu.h>
  58#include <linux/proc_fs.h>
  59#include <linux/seq_file.h>
  60#include <linux/sysctl.h>
  61#include <linux/syscalls.h>
  62#include <linux/times.h>
  63#include <linux/tsacct_kern.h>
  64#include <linux/kprobes.h>
  65#include <linux/delayacct.h>
  66#include <linux/unistd.h>
  67#include <linux/pagemap.h>
  68#include <linux/hrtimer.h>
  69#include <linux/tick.h>
  70#include <linux/ctype.h>
  71#include <linux/ftrace.h>
 
 
 
 
 
  72#include <linux/slab.h>
  73#include <linux/init_task.h>
  74#include <linux/context_tracking.h>
  75#include <linux/compiler.h>
  76#include <linux/frame.h>
 
 
 
 
 
 
 
 
  77
 
  78#include <asm/switch_to.h>
  79#include <asm/tlb.h>
  80#include <asm/irq_regs.h>
  81#include <asm/mutex.h>
  82#ifdef CONFIG_PARAVIRT
  83#include <asm/paravirt.h>
  84#endif
  85
  86#include "sched.h"
 
 
 
 
 
 
 
 
  87#include "../workqueue_internal.h"
 
  88#include "../smpboot.h"
  89
  90#define CREATE_TRACE_POINTS
  91#include <trace/events/sched.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
  92
  93DEFINE_MUTEX(sched_domains_mutex);
  94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  95
  96static void update_rq_clock_task(struct rq *rq, s64 delta);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  97
  98void update_rq_clock(struct rq *rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  99{
 100	s64 delta;
 
 
 
 
 
 
 
 
 
 
 101
 102	lockdep_assert_held(&rq->lock);
 
 
 103
 104	if (rq->clock_skip_update & RQCF_ACT_SKIP)
 105		return;
 106
 107	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
 108	if (delta < 0)
 109		return;
 110	rq->clock += delta;
 111	update_rq_clock_task(rq, delta);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 112}
 113
 114/*
 115 * Debugging: various feature bits
 116 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117
 118#define SCHED_FEAT(name, enabled)	\
 119	(1UL << __SCHED_FEAT_##name) * enabled |
 
 120
 121const_debug unsigned int sysctl_sched_features =
 122#include "features.h"
 123	0;
 124
 125#undef SCHED_FEAT
 
 126
 127/*
 128 * Number of tasks to iterate in a single balance run.
 129 * Limited because this is done with IRQs disabled.
 
 
 
 
 
 
 
 
 130 */
 131const_debug unsigned int sysctl_sched_nr_migrate = 32;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132
 133/*
 134 * period over which we average the RT time consumption, measured
 135 * in ms.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136 *
 137 * default: 1s
 138 */
 139const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
 140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 141/*
 142 * period over which we measure -rt task cpu usage in us.
 143 * default: 1s
 144 */
 145unsigned int sysctl_sched_rt_period = 1000000;
 
 
 
 
 
 146
 147__read_mostly int scheduler_running;
 
 
 
 
 
 
 148
 149/*
 150 * part of the period that we allow rt tasks to run in us.
 151 * default: 0.95s
 152 */
 153int sysctl_sched_rt_runtime = 950000;
 
 
 
 154
 155/* cpus with isolated domains */
 156cpumask_var_t cpu_isolated_map;
 
 
 
 
 
 
 
 
 
 
 
 
 
 157
 158/*
 159 * this_rq_lock - lock this runqueue and disable interrupts.
 160 */
 161static struct rq *this_rq_lock(void)
 
 162	__acquires(rq->lock)
 163{
 164	struct rq *rq;
 165
 166	local_irq_disable();
 167	rq = this_rq();
 168	raw_spin_lock(&rq->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 169
 170	return rq;
 
 
 
 
 171}
 172
 173#ifdef CONFIG_SCHED_HRTICK
 174/*
 175 * Use HR-timers to deliver accurate preemption points.
 176 */
 177
 178static void hrtick_clear(struct rq *rq)
 179{
 180	if (hrtimer_active(&rq->hrtick_timer))
 181		hrtimer_cancel(&rq->hrtick_timer);
 182}
 183
 184/*
 185 * High-resolution timer tick.
 186 * Runs from hardirq context with interrupts disabled.
 187 */
 188static enum hrtimer_restart hrtick(struct hrtimer *timer)
 189{
 190	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
 
 191
 192	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 193
 194	raw_spin_lock(&rq->lock);
 195	update_rq_clock(rq);
 196	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
 197	raw_spin_unlock(&rq->lock);
 198
 199	return HRTIMER_NORESTART;
 200}
 201
 202#ifdef CONFIG_SMP
 203
 204static void __hrtick_restart(struct rq *rq)
 205{
 206	struct hrtimer *timer = &rq->hrtick_timer;
 
 207
 208	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
 209}
 210
 211/*
 212 * called from hardirq (IPI) context
 213 */
 214static void __hrtick_start(void *arg)
 215{
 216	struct rq *rq = arg;
 
 217
 218	raw_spin_lock(&rq->lock);
 219	__hrtick_restart(rq);
 220	rq->hrtick_csd_pending = 0;
 221	raw_spin_unlock(&rq->lock);
 222}
 223
 224/*
 225 * Called to set the hrtick timer state.
 226 *
 227 * called with rq->lock held and irqs disabled
 228 */
 229void hrtick_start(struct rq *rq, u64 delay)
 230{
 231	struct hrtimer *timer = &rq->hrtick_timer;
 232	ktime_t time;
 233	s64 delta;
 234
 235	/*
 236	 * Don't schedule slices shorter than 10000ns, that just
 237	 * doesn't make sense and can cause timer DoS.
 238	 */
 239	delta = max_t(s64, delay, 10000LL);
 240	time = ktime_add_ns(timer->base->get_time(), delta);
 241
 242	hrtimer_set_expires(timer, time);
 243
 244	if (rq == this_rq()) {
 245		__hrtick_restart(rq);
 246	} else if (!rq->hrtick_csd_pending) {
 247		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
 248		rq->hrtick_csd_pending = 1;
 249	}
 250}
 251
 252static int
 253hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
 254{
 255	int cpu = (int)(long)hcpu;
 256
 257	switch (action) {
 258	case CPU_UP_CANCELED:
 259	case CPU_UP_CANCELED_FROZEN:
 260	case CPU_DOWN_PREPARE:
 261	case CPU_DOWN_PREPARE_FROZEN:
 262	case CPU_DEAD:
 263	case CPU_DEAD_FROZEN:
 264		hrtick_clear(cpu_rq(cpu));
 265		return NOTIFY_OK;
 266	}
 267
 268	return NOTIFY_DONE;
 269}
 270
 271static __init void init_hrtick(void)
 272{
 273	hotcpu_notifier(hotplug_hrtick, 0);
 274}
 275#else
 276/*
 277 * Called to set the hrtick timer state.
 278 *
 279 * called with rq->lock held and irqs disabled
 280 */
 281void hrtick_start(struct rq *rq, u64 delay)
 282{
 283	/*
 284	 * Don't schedule slices shorter than 10000ns, that just
 285	 * doesn't make sense. Rely on vruntime for fairness.
 286	 */
 287	delay = max_t(u64, delay, 10000LL);
 288	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
 289		      HRTIMER_MODE_REL_PINNED);
 290}
 291
 292static inline void init_hrtick(void)
 293{
 294}
 295#endif /* CONFIG_SMP */
 296
 297static void init_rq_hrtick(struct rq *rq)
 298{
 299#ifdef CONFIG_SMP
 300	rq->hrtick_csd_pending = 0;
 301
 302	rq->hrtick_csd.flags = 0;
 303	rq->hrtick_csd.func = __hrtick_start;
 304	rq->hrtick_csd.info = rq;
 305#endif
 306
 307	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 308	rq->hrtick_timer.function = hrtick;
 309}
 310#else	/* CONFIG_SCHED_HRTICK */
 311static inline void hrtick_clear(struct rq *rq)
 312{
 313}
 314
 315static inline void init_rq_hrtick(struct rq *rq)
 316{
 317}
 318
 319static inline void init_hrtick(void)
 320{
 321}
 322#endif	/* CONFIG_SCHED_HRTICK */
 323
 324/*
 325 * cmpxchg based fetch_or, macro so it works for different integer types
 326 */
 327#define fetch_or(ptr, mask)						\
 328	({								\
 329		typeof(ptr) _ptr = (ptr);				\
 330		typeof(mask) _mask = (mask);				\
 331		typeof(*_ptr) _old, _val = *_ptr;			\
 332									\
 333		for (;;) {						\
 334			_old = cmpxchg(_ptr, _val, _val | _mask);	\
 335			if (_old == _val)				\
 336				break;					\
 337			_val = _old;					\
 338		}							\
 339	_old;								\
 340})
 341
 342#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
 343/*
 344 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 345 * this avoids any races wrt polling state changes and thereby avoids
 346 * spurious IPIs.
 347 */
 348static bool set_nr_and_not_polling(struct task_struct *p)
 349{
 350	struct thread_info *ti = task_thread_info(p);
 351	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
 352}
 353
 354/*
 355 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 356 *
 357 * If this returns true, then the idle task promises to call
 358 * sched_ttwu_pending() and reschedule soon.
 359 */
 360static bool set_nr_if_polling(struct task_struct *p)
 361{
 362	struct thread_info *ti = task_thread_info(p);
 363	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
 364
 365	for (;;) {
 366		if (!(val & _TIF_POLLING_NRFLAG))
 367			return false;
 368		if (val & _TIF_NEED_RESCHED)
 369			return true;
 370		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
 371		if (old == val)
 372			break;
 373		val = old;
 374	}
 375	return true;
 376}
 377
 378#else
 379static bool set_nr_and_not_polling(struct task_struct *p)
 380{
 381	set_tsk_need_resched(p);
 382	return true;
 383}
 384
 385#ifdef CONFIG_SMP
 386static bool set_nr_if_polling(struct task_struct *p)
 387{
 388	return false;
 389}
 390#endif
 391#endif
 392
 393void wake_q_add(struct wake_q_head *head, struct task_struct *task)
 394{
 395	struct wake_q_node *node = &task->wake_q;
 396
 397	/*
 398	 * Atomically grab the task, if ->wake_q is !nil already it means
 399	 * its already queued (either by us or someone else) and will get the
 400	 * wakeup due to that.
 401	 *
 402	 * This cmpxchg() implies a full barrier, which pairs with the write
 403	 * barrier implied by the wakeup in wake_up_list().
 404	 */
 405	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
 406		return;
 407
 408	get_task_struct(task);
 409
 410	/*
 411	 * The head is context local, there can be no concurrency.
 412	 */
 413	*head->lastp = node;
 414	head->lastp = &node->next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 415}
 416
 417void wake_up_q(struct wake_q_head *head)
 418{
 419	struct wake_q_node *node = head->first;
 420
 421	while (node != WAKE_Q_TAIL) {
 422		struct task_struct *task;
 423
 424		task = container_of(node, struct task_struct, wake_q);
 425		BUG_ON(!task);
 426		/* task can safely be re-inserted now */
 427		node = node->next;
 428		task->wake_q.next = NULL;
 429
 430		/*
 431		 * wake_up_process() implies a wmb() to pair with the queueing
 432		 * in wake_q_add() so as not to miss wakeups.
 433		 */
 434		wake_up_process(task);
 435		put_task_struct(task);
 436	}
 437}
 438
 439/*
 440 * resched_curr - mark rq's current task 'to be rescheduled now'.
 441 *
 442 * On UP this means the setting of the need_resched flag, on SMP it
 443 * might also involve a cross-CPU call to trigger the scheduler on
 444 * the target CPU.
 445 */
 446void resched_curr(struct rq *rq)
 447{
 448	struct task_struct *curr = rq->curr;
 449	int cpu;
 450
 451	lockdep_assert_held(&rq->lock);
 452
 453	if (test_tsk_need_resched(curr))
 454		return;
 455
 456	cpu = cpu_of(rq);
 457
 458	if (cpu == smp_processor_id()) {
 459		set_tsk_need_resched(curr);
 460		set_preempt_need_resched();
 461		return;
 462	}
 463
 464	if (set_nr_and_not_polling(curr))
 465		smp_send_reschedule(cpu);
 466	else
 467		trace_sched_wake_idle_without_ipi(cpu);
 468}
 469
 470void resched_cpu(int cpu)
 471{
 472	struct rq *rq = cpu_rq(cpu);
 473	unsigned long flags;
 474
 475	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
 476		return;
 477	resched_curr(rq);
 478	raw_spin_unlock_irqrestore(&rq->lock, flags);
 479}
 480
 481#ifdef CONFIG_SMP
 482#ifdef CONFIG_NO_HZ_COMMON
 483/*
 484 * In the semi idle case, use the nearest busy cpu for migrating timers
 485 * from an idle cpu.  This is good for power-savings.
 486 *
 487 * We don't do similar optimization for completely idle system, as
 488 * selecting an idle cpu will add more delays to the timers than intended
 489 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 490 */
 491int get_nohz_timer_target(void)
 492{
 493	int i, cpu = smp_processor_id();
 494	struct sched_domain *sd;
 
 
 
 
 
 
 
 495
 496	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
 497		return cpu;
 498
 499	rcu_read_lock();
 500	for_each_domain(cpu, sd) {
 501		for_each_cpu(i, sched_domain_span(sd)) {
 502			if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
 
 
 
 503				cpu = i;
 504				goto unlock;
 505			}
 506		}
 507	}
 508
 509	if (!is_housekeeping_cpu(cpu))
 510		cpu = housekeeping_any_cpu();
 
 511unlock:
 512	rcu_read_unlock();
 513	return cpu;
 514}
 
 515/*
 516 * When add_timer_on() enqueues a timer into the timer wheel of an
 517 * idle CPU then this timer might expire before the next timer event
 518 * which is scheduled to wake up that CPU. In case of a completely
 519 * idle system the next event might even be infinite time into the
 520 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 521 * leaves the inner idle loop so the newly added timer is taken into
 522 * account when the CPU goes back to idle and evaluates the timer
 523 * wheel for the next timer event.
 524 */
 525static void wake_up_idle_cpu(int cpu)
 526{
 527	struct rq *rq = cpu_rq(cpu);
 528
 529	if (cpu == smp_processor_id())
 530		return;
 531
 532	if (set_nr_and_not_polling(rq->idle))
 533		smp_send_reschedule(cpu);
 534	else
 535		trace_sched_wake_idle_without_ipi(cpu);
 536}
 537
 538static bool wake_up_full_nohz_cpu(int cpu)
 539{
 540	/*
 541	 * We just need the target to call irq_exit() and re-evaluate
 542	 * the next tick. The nohz full kick at least implies that.
 543	 * If needed we can still optimize that later with an
 544	 * empty IRQ.
 545	 */
 
 
 546	if (tick_nohz_full_cpu(cpu)) {
 547		if (cpu != smp_processor_id() ||
 548		    tick_nohz_tick_stopped())
 549			tick_nohz_full_kick_cpu(cpu);
 550		return true;
 551	}
 552
 553	return false;
 554}
 555
 
 
 
 
 
 556void wake_up_nohz_cpu(int cpu)
 557{
 558	if (!wake_up_full_nohz_cpu(cpu))
 559		wake_up_idle_cpu(cpu);
 560}
 561
 562static inline bool got_nohz_idle_kick(void)
 563{
 564	int cpu = smp_processor_id();
 565
 566	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
 567		return false;
 568
 569	if (idle_cpu(cpu) && !need_resched())
 570		return true;
 571
 572	/*
 573	 * We can't run Idle Load Balance on this CPU for this time so we
 574	 * cancel it and clear NOHZ_BALANCE_KICK
 575	 */
 576	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
 577	return false;
 578}
 579
 580#else /* CONFIG_NO_HZ_COMMON */
 581
 582static inline bool got_nohz_idle_kick(void)
 583{
 584	return false;
 585}
 586
 587#endif /* CONFIG_NO_HZ_COMMON */
 588
 589#ifdef CONFIG_NO_HZ_FULL
 590bool sched_can_stop_tick(struct rq *rq)
 591{
 592	int fifo_nr_running;
 593
 594	/* Deadline tasks, even if single, need the tick */
 595	if (rq->dl.dl_nr_running)
 596		return false;
 597
 598	/*
 599	 * If there are more than one RR tasks, we need the tick to effect the
 600	 * actual RR behaviour.
 601	 */
 602	if (rq->rt.rr_nr_running) {
 603		if (rq->rt.rr_nr_running == 1)
 604			return true;
 605		else
 606			return false;
 607	}
 608
 609	/*
 610	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
 611	 * forced preemption between FIFO tasks.
 612	 */
 613	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
 614	if (fifo_nr_running)
 615		return true;
 616
 617	/*
 618	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
 619	 * if there's more than one we need the tick for involuntary
 620	 * preemption.
 621	 */
 622	if (rq->nr_running > 1)
 623		return false;
 624
 625	return true;
 626}
 627#endif /* CONFIG_NO_HZ_FULL */
 628
 629void sched_avg_update(struct rq *rq)
 630{
 631	s64 period = sched_avg_period();
 632
 633	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
 634		/*
 635		 * Inline assembly required to prevent the compiler
 636		 * optimising this loop into a divmod call.
 637		 * See __iter_div_u64_rem() for another example of this.
 638		 */
 639		asm("" : "+rm" (rq->age_stamp));
 640		rq->age_stamp += period;
 641		rq->rt_avg /= 2;
 642	}
 643}
 644
 645#endif /* CONFIG_SMP */
 646
 647#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 648			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 649/*
 650 * Iterate task_group tree rooted at *from, calling @down when first entering a
 651 * node and @up when leaving it for the final time.
 652 *
 653 * Caller must hold rcu_lock or sufficient equivalent.
 654 */
 655int walk_tg_tree_from(struct task_group *from,
 656			     tg_visitor down, tg_visitor up, void *data)
 657{
 658	struct task_group *parent, *child;
 659	int ret;
 660
 661	parent = from;
 662
 663down:
 664	ret = (*down)(parent, data);
 665	if (ret)
 666		goto out;
 667	list_for_each_entry_rcu(child, &parent->children, siblings) {
 668		parent = child;
 669		goto down;
 670
 671up:
 672		continue;
 673	}
 674	ret = (*up)(parent, data);
 675	if (ret || parent == from)
 676		goto out;
 677
 678	child = parent;
 679	parent = parent->parent;
 680	if (parent)
 681		goto up;
 682out:
 683	return ret;
 684}
 685
 686int tg_nop(struct task_group *tg, void *data)
 687{
 688	return 0;
 689}
 690#endif
 691
 692static void set_load_weight(struct task_struct *p)
 693{
 694	int prio = p->static_prio - MAX_RT_PRIO;
 695	struct load_weight *load = &p->se.load;
 696
 697	/*
 698	 * SCHED_IDLE tasks get minimal weight:
 699	 */
 700	if (idle_policy(p->policy)) {
 701		load->weight = scale_load(WEIGHT_IDLEPRIO);
 702		load->inv_weight = WMULT_IDLEPRIO;
 703		return;
 704	}
 705
 706	load->weight = scale_load(sched_prio_to_weight[prio]);
 707	load->inv_weight = sched_prio_to_wmult[prio];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 708}
 709
 710static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 711{
 712	update_rq_clock(rq);
 713	if (!(flags & ENQUEUE_RESTORE))
 714		sched_info_queued(rq, p);
 715	p->sched_class->enqueue_task(rq, p, flags);
 
 
 
 
 
 
 
 
 
 716}
 717
 718static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
 719{
 720	update_rq_clock(rq);
 721	if (!(flags & DEQUEUE_SAVE))
 722		sched_info_dequeued(rq, p);
 723	p->sched_class->dequeue_task(rq, p, flags);
 
 
 
 
 
 
 724}
 725
 726void activate_task(struct rq *rq, struct task_struct *p, int flags)
 
 727{
 728	if (task_contributes_to_load(p))
 729		rq->nr_uninterruptible--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 730
 731	enqueue_task(rq, p, flags);
 732}
 733
 734void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
 
 
 
 
 
 
 
 
 
 735{
 736	if (task_contributes_to_load(p))
 737		rq->nr_uninterruptible++;
 
 
 
 
 738
 739	dequeue_task(rq, p, flags);
 740}
 741
 742static void update_rq_clock_task(struct rq *rq, s64 delta)
 743{
 
 
 
 
 
 
 
 
 
 
 
 744/*
 745 * In theory, the compile should just see 0 here, and optimize out the call
 746 * to sched_rt_avg_update. But I don't trust it...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 747 */
 748#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 749	s64 steal = 0, irq_delta = 0;
 750#endif
 751#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 752	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 753
 754	/*
 755	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
 756	 * this case when a previous update_rq_clock() happened inside a
 757	 * {soft,}irq region.
 758	 *
 759	 * When this happens, we stop ->clock_task and only update the
 760	 * prev_irq_time stamp to account for the part that fit, so that a next
 761	 * update will consume the rest. This ensures ->clock_task is
 762	 * monotonic.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 763	 *
 764	 * It does however cause some slight miss-attribution of {soft,}irq
 765	 * time, a more accurate solution would be to update the irq_time using
 766	 * the current rq->clock timestamp, except that would require using
 767	 * atomic ops.
 
 
 
 
 
 
 
 
 768	 */
 769	if (irq_delta > delta)
 770		irq_delta = delta;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 771
 772	rq->prev_irq_time += irq_delta;
 773	delta -= irq_delta;
 
 
 
 
 774#endif
 775#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 776	if (static_key_false((&paravirt_steal_rq_enabled))) {
 777		steal = paravirt_steal_clock(cpu_of(rq));
 778		steal -= rq->prev_steal_time_rq;
 779
 780		if (unlikely(steal > delta))
 781			steal = delta;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 782
 783		rq->prev_steal_time_rq += steal;
 784		delta -= steal;
 
 785	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 786#endif
 787
 788	rq->clock_task += delta;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 789
 790#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 791	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
 792		sched_rt_avg_update(rq, irq_delta + steal);
 793#endif
 794}
 795
 796void sched_set_stop_task(int cpu, struct task_struct *stop)
 
 797{
 798	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 799	struct task_struct *old_stop = cpu_rq(cpu)->stop;
 
 
 
 
 
 
 800
 801	if (stop) {
 802		/*
 803		 * Make it appear like a SCHED_FIFO task, its something
 804		 * userspace knows about and won't get confused about.
 805		 *
 806		 * Also, it will make PI more or less work without too
 807		 * much confusion -- but then, stop work should not
 808		 * rely on PI working anyway.
 809		 */
 810		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 811
 812		stop->sched_class = &stop_sched_class;
 
 
 813	}
 814
 815	cpu_rq(cpu)->stop = stop;
 
 
 
 
 
 
 
 
 
 
 
 
 
 816
 817	if (old_stop) {
 818		/*
 819		 * Reset it back to a normal scheduling class so that
 820		 * it can die in pieces.
 821		 */
 822		old_stop->sched_class = &rt_sched_class;
 823	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 824}
 825
 826/*
 827 * __normal_prio - return the priority that is based on the static prio
 828 */
 829static inline int __normal_prio(struct task_struct *p)
 830{
 831	return p->static_prio;
 
 
 
 
 
 
 
 
 
 832}
 833
 834/*
 835 * Calculate the expected normal priority: i.e. priority
 836 * without taking RT-inheritance into account. Might be
 837 * boosted by interactivity modifiers. Changes upon fork,
 838 * setprio syscalls, and whenever the interactivity
 839 * estimator recalculates.
 840 */
 841static inline int normal_prio(struct task_struct *p)
 842{
 843	int prio;
 844
 845	if (task_has_dl_policy(p))
 846		prio = MAX_DL_PRIO-1;
 847	else if (task_has_rt_policy(p))
 848		prio = MAX_RT_PRIO-1 - p->rt_priority;
 849	else
 850		prio = __normal_prio(p);
 851	return prio;
 852}
 853
 854/*
 855 * Calculate the current priority, i.e. the priority
 856 * taken into account by the scheduler. This value might
 857 * be boosted by RT tasks, or might be boosted by
 858 * interactivity modifiers. Will be RT if the task got
 859 * RT-boosted. If not then it returns p->normal_prio.
 860 */
 861static int effective_prio(struct task_struct *p)
 862{
 863	p->normal_prio = normal_prio(p);
 864	/*
 865	 * If we are RT tasks or we were boosted to RT priority,
 866	 * keep the priority unchanged. Otherwise, update priority
 867	 * to the normal priority:
 868	 */
 869	if (!rt_prio(p->prio))
 870		return p->normal_prio;
 871	return p->prio;
 872}
 873
 874/**
 875 * task_curr - is this task currently executing on a CPU?
 876 * @p: the task in question.
 877 *
 878 * Return: 1 if the task is currently executing. 0 otherwise.
 879 */
 880inline int task_curr(const struct task_struct *p)
 881{
 882	return cpu_curr(task_cpu(p)) == p;
 883}
 884
 885/*
 886 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 887 * use the balance_callback list if you want balancing.
 888 *
 889 * this means any call to check_class_changed() must be followed by a call to
 890 * balance_callback().
 891 */
 892static inline void check_class_changed(struct rq *rq, struct task_struct *p,
 893				       const struct sched_class *prev_class,
 894				       int oldprio)
 895{
 896	if (prev_class != p->sched_class) {
 897		if (prev_class->switched_from)
 898			prev_class->switched_from(rq, p);
 899
 900		p->sched_class->switched_to(rq, p);
 901	} else if (oldprio != p->prio || dl_task(p))
 902		p->sched_class->prio_changed(rq, p, oldprio);
 903}
 904
 905void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
 906{
 907	const struct sched_class *class;
 908
 909	if (p->sched_class == rq->curr->sched_class) {
 910		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
 911	} else {
 912		for_each_class(class) {
 913			if (class == rq->curr->sched_class)
 914				break;
 915			if (class == p->sched_class) {
 916				resched_curr(rq);
 917				break;
 918			}
 919		}
 920	}
 921
 922	/*
 923	 * A queue event has occurred, and we're going to schedule.  In
 924	 * this case, we can save a useless back to back clock update.
 925	 */
 926	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
 927		rq_clock_skip_update(rq, true);
 928}
 929
 930#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 931/*
 932 * This is how migration works:
 933 *
 934 * 1) we invoke migration_cpu_stop() on the target CPU using
 935 *    stop_one_cpu().
 936 * 2) stopper starts to run (implicitly forcing the migrated thread
 937 *    off the CPU)
 938 * 3) it checks whether the migrated task is still in the wrong runqueue.
 939 * 4) if it's in the wrong runqueue then the migration thread removes
 940 *    it and puts it into the right queue.
 941 * 5) stopper completes and stop_one_cpu() returns and the migration
 942 *    is done.
 943 */
 944
 945/*
 946 * move_queued_task - move a queued task to new rq.
 947 *
 948 * Returns (locked) new rq. Old rq's lock is released.
 949 */
 950static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
 
 951{
 952	lockdep_assert_held(&rq->lock);
 953
 954	p->on_rq = TASK_ON_RQ_MIGRATING;
 955	dequeue_task(rq, p, 0);
 956	set_task_cpu(p, new_cpu);
 957	raw_spin_unlock(&rq->lock);
 958
 959	rq = cpu_rq(new_cpu);
 960
 961	raw_spin_lock(&rq->lock);
 962	BUG_ON(task_cpu(p) != new_cpu);
 963	enqueue_task(rq, p, 0);
 964	p->on_rq = TASK_ON_RQ_QUEUED;
 965	check_preempt_curr(rq, p, 0);
 966
 967	return rq;
 968}
 969
 970struct migration_arg {
 971	struct task_struct *task;
 972	int dest_cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 973};
 974
 975/*
 976 * Move (not current) task off this cpu, onto dest cpu. We're doing
 977 * this because either it can't run here any more (set_cpus_allowed()
 978 * away from this CPU, or CPU going down), or because we're
 979 * attempting to rebalance this task on exec (sched_exec).
 980 *
 981 * So we race with normal scheduler movements, but that's OK, as long
 982 * as the task is no longer on this CPU.
 983 */
 984static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
 
 985{
 986	if (unlikely(!cpu_active(dest_cpu)))
 987		return rq;
 988
 989	/* Affinity changed (again). */
 990	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
 991		return rq;
 992
 993	rq = move_queued_task(rq, p, dest_cpu);
 
 994
 995	return rq;
 996}
 997
 998/*
 999 * migration_cpu_stop - this will be executed by a highprio stopper thread
1000 * and performs thread migration by bumping thread off CPU then
1001 * 'pushing' onto another runqueue.
1002 */
1003static int migration_cpu_stop(void *data)
1004{
1005	struct migration_arg *arg = data;
 
1006	struct task_struct *p = arg->task;
1007	struct rq *rq = this_rq();
 
 
1008
1009	/*
1010	 * The original target cpu might have gone down and we might
1011	 * be on another cpu but it doesn't matter.
1012	 */
1013	local_irq_disable();
1014	/*
1015	 * We need to explicitly wake pending tasks before running
1016	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1017	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1018	 */
1019	sched_ttwu_pending();
1020
1021	raw_spin_lock(&p->pi_lock);
1022	raw_spin_lock(&rq->lock);
 
 
 
 
 
 
 
1023	/*
1024	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1025	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1026	 * we're holding p->pi_lock.
1027	 */
1028	if (task_rq(p) == rq && task_on_rq_queued(p))
1029		rq = __migrate_task(rq, p, arg->dest_cpu);
1030	raw_spin_unlock(&rq->lock);
1031	raw_spin_unlock(&p->pi_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1032
1033	local_irq_enable();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1034	return 0;
1035}
1036
1037/*
1038 * sched_class::set_cpus_allowed must do the below, but is not required to
1039 * actually call this function.
1040 */
1041void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1042{
1043	cpumask_copy(&p->cpus_allowed, new_mask);
1044	p->nr_cpus_allowed = cpumask_weight(new_mask);
 
 
 
 
 
 
 
 
 
 
 
1045}
1046
1047void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
 
1048{
1049	struct rq *rq = task_rq(p);
1050	bool queued, running;
1051
1052	lockdep_assert_held(&p->pi_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1053
1054	queued = task_on_rq_queued(p);
1055	running = task_current(rq, p);
1056
1057	if (queued) {
1058		/*
1059		 * Because __kthread_bind() calls this on blocked tasks without
1060		 * holding rq->lock.
1061		 */
1062		lockdep_assert_held(&rq->lock);
1063		dequeue_task(rq, p, DEQUEUE_SAVE);
1064	}
1065	if (running)
1066		put_prev_task(rq, p);
1067
1068	p->sched_class->set_cpus_allowed(p, new_mask);
1069
 
 
1070	if (running)
1071		p->sched_class->set_curr_task(rq);
1072	if (queued)
1073		enqueue_task(rq, p, ENQUEUE_RESTORE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1074}
1075
1076/*
1077 * Change a given task's CPU affinity. Migrate the thread to a
1078 * proper CPU and schedule it away if the CPU it's executing on
1079 * is removed from the allowed bitmask.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1080 *
1081 * NOTE: the caller must have a valid reference to the task, the
1082 * task must not exit() & deallocate itself prematurely. The
1083 * call is not atomic; no spinlocks may be held.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1084 */
1085static int __set_cpus_allowed_ptr(struct task_struct *p,
1086				  const struct cpumask *new_mask, bool check)
 
 
 
 
1087{
1088	unsigned long flags;
1089	struct rq *rq;
 
1090	unsigned int dest_cpu;
1091	int ret = 0;
1092
1093	rq = task_rq_lock(p, &flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1094
1095	/*
1096	 * Must re-check here, to close a race against __kthread_bind(),
1097	 * sched_setaffinity() is not guaranteed to observe the flag.
1098	 */
1099	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1100		ret = -EINVAL;
1101		goto out;
1102	}
1103
1104	if (cpumask_equal(&p->cpus_allowed, new_mask))
1105		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
1106
1107	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
 
 
 
 
 
 
1108		ret = -EINVAL;
1109		goto out;
1110	}
1111
1112	do_set_cpus_allowed(p, new_mask);
1113
1114	/* Can the task run on the task's current CPU? If so, we're done */
1115	if (cpumask_test_cpu(task_cpu(p), new_mask))
1116		goto out;
1117
1118	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1119	if (task_running(rq, p) || p->state == TASK_WAKING) {
1120		struct migration_arg arg = { p, dest_cpu };
1121		/* Need help from migration thread: drop lock and wait. */
1122		task_rq_unlock(rq, p, &flags);
1123		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1124		tlb_migrate_finish(p->mm);
1125		return 0;
1126	} else if (task_on_rq_queued(p)) {
1127		/*
1128		 * OK, since we're going to drop the lock immediately
1129		 * afterwards anyway.
1130		 */
1131		lockdep_unpin_lock(&rq->lock);
1132		rq = move_queued_task(rq, p, dest_cpu);
1133		lockdep_pin_lock(&rq->lock);
1134	}
1135out:
1136	task_rq_unlock(rq, p, &flags);
1137
1138	return ret;
1139}
1140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1141int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1142{
1143	return __set_cpus_allowed_ptr(p, new_mask, false);
 
 
 
 
 
1144}
1145EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1147void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1148{
1149#ifdef CONFIG_SCHED_DEBUG
 
 
1150	/*
1151	 * We should never call set_task_cpu() on a blocked task,
1152	 * ttwu() will sort out the placement.
1153	 */
1154	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1155			!p->on_rq);
1156
1157	/*
1158	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1159	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1160	 * time relying on p->on_rq.
1161	 */
1162	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1163		     p->sched_class == &fair_sched_class &&
1164		     (p->on_rq && !task_on_rq_migrating(p)));
1165
1166#ifdef CONFIG_LOCKDEP
1167	/*
1168	 * The caller should hold either p->pi_lock or rq->lock, when changing
1169	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1170	 *
1171	 * sched_move_task() holds both and thus holding either pins the cgroup,
1172	 * see task_group().
1173	 *
1174	 * Furthermore, all task_rq users should acquire both locks, see
1175	 * task_rq_lock().
1176	 */
1177	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1178				      lockdep_is_held(&task_rq(p)->lock)));
1179#endif
 
 
 
 
 
 
1180#endif
1181
1182	trace_sched_migrate_task(p, new_cpu);
1183
1184	if (task_cpu(p) != new_cpu) {
1185		if (p->sched_class->migrate_task_rq)
1186			p->sched_class->migrate_task_rq(p);
1187		p->se.nr_migrations++;
 
1188		perf_event_task_migrate(p);
1189	}
1190
1191	__set_task_cpu(p, new_cpu);
1192}
1193
 
1194static void __migrate_swap_task(struct task_struct *p, int cpu)
1195{
1196	if (task_on_rq_queued(p)) {
1197		struct rq *src_rq, *dst_rq;
 
1198
1199		src_rq = task_rq(p);
1200		dst_rq = cpu_rq(cpu);
1201
1202		p->on_rq = TASK_ON_RQ_MIGRATING;
 
 
1203		deactivate_task(src_rq, p, 0);
1204		set_task_cpu(p, cpu);
1205		activate_task(dst_rq, p, 0);
1206		p->on_rq = TASK_ON_RQ_QUEUED;
1207		check_preempt_curr(dst_rq, p, 0);
 
 
 
 
1208	} else {
1209		/*
1210		 * Task isn't running anymore; make it appear like we migrated
1211		 * it before it went to sleep. This means on wakeup we make the
1212		 * previous cpu our targer instead of where it really is.
1213		 */
1214		p->wake_cpu = cpu;
1215	}
1216}
1217
1218struct migration_swap_arg {
1219	struct task_struct *src_task, *dst_task;
1220	int src_cpu, dst_cpu;
1221};
1222
1223static int migrate_swap_stop(void *data)
1224{
1225	struct migration_swap_arg *arg = data;
1226	struct rq *src_rq, *dst_rq;
1227	int ret = -EAGAIN;
1228
1229	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1230		return -EAGAIN;
1231
1232	src_rq = cpu_rq(arg->src_cpu);
1233	dst_rq = cpu_rq(arg->dst_cpu);
1234
1235	double_raw_lock(&arg->src_task->pi_lock,
1236			&arg->dst_task->pi_lock);
1237	double_rq_lock(src_rq, dst_rq);
1238
1239	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1240		goto unlock;
1241
1242	if (task_cpu(arg->src_task) != arg->src_cpu)
1243		goto unlock;
1244
1245	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1246		goto unlock;
1247
1248	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1249		goto unlock;
1250
1251	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1252	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1253
1254	ret = 0;
1255
1256unlock:
1257	double_rq_unlock(src_rq, dst_rq);
1258	raw_spin_unlock(&arg->dst_task->pi_lock);
1259	raw_spin_unlock(&arg->src_task->pi_lock);
1260
1261	return ret;
1262}
1263
1264/*
1265 * Cross migrate two tasks
1266 */
1267int migrate_swap(struct task_struct *cur, struct task_struct *p)
 
1268{
1269	struct migration_swap_arg arg;
1270	int ret = -EINVAL;
1271
1272	arg = (struct migration_swap_arg){
1273		.src_task = cur,
1274		.src_cpu = task_cpu(cur),
1275		.dst_task = p,
1276		.dst_cpu = task_cpu(p),
1277	};
1278
1279	if (arg.src_cpu == arg.dst_cpu)
1280		goto out;
1281
1282	/*
1283	 * These three tests are all lockless; this is OK since all of them
1284	 * will be re-checked with proper locks held further down the line.
1285	 */
1286	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1287		goto out;
1288
1289	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1290		goto out;
1291
1292	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1293		goto out;
1294
1295	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1296	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1297
1298out:
1299	return ret;
1300}
 
1301
1302/*
1303 * wait_task_inactive - wait for a thread to unschedule.
1304 *
1305 * If @match_state is nonzero, it's the @p->state value just checked and
1306 * not expected to change.  If it changes, i.e. @p might have woken up,
1307 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1308 * we return a positive number (its total switch count).  If a second call
1309 * a short while later returns the same number, the caller can be sure that
1310 * @p has remained unscheduled the whole time.
1311 *
1312 * The caller must ensure that the task *will* unschedule sometime soon,
1313 * else this function might spin for a *long* time. This function can't
1314 * be called with interrupts off, or it may introduce deadlock with
1315 * smp_call_function() if an IPI is sent by the same process we are
1316 * waiting to become inactive.
1317 */
1318unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1319{
1320	unsigned long flags;
1321	int running, queued;
 
1322	unsigned long ncsw;
1323	struct rq *rq;
1324
1325	for (;;) {
1326		/*
1327		 * We do the initial early heuristics without holding
1328		 * any task-queue locks at all. We'll only try to get
1329		 * the runqueue lock when things look like they will
1330		 * work out!
1331		 */
1332		rq = task_rq(p);
1333
1334		/*
1335		 * If the task is actively running on another CPU
1336		 * still, just relax and busy-wait without holding
1337		 * any locks.
1338		 *
1339		 * NOTE! Since we don't hold any locks, it's not
1340		 * even sure that "rq" stays as the right runqueue!
1341		 * But we don't care, since "task_running()" will
1342		 * return false if the runqueue has changed and p
1343		 * is actually now running somewhere else!
1344		 */
1345		while (task_running(rq, p)) {
1346			if (match_state && unlikely(p->state != match_state))
1347				return 0;
1348			cpu_relax();
1349		}
1350
1351		/*
1352		 * Ok, time to look more closely! We need the rq
1353		 * lock now, to be *sure*. If we're wrong, we'll
1354		 * just go back and repeat.
1355		 */
1356		rq = task_rq_lock(p, &flags);
1357		trace_sched_wait_task(p);
1358		running = task_running(rq, p);
1359		queued = task_on_rq_queued(p);
1360		ncsw = 0;
1361		if (!match_state || p->state == match_state)
1362			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1363		task_rq_unlock(rq, p, &flags);
1364
1365		/*
1366		 * If it changed from the expected state, bail out now.
1367		 */
1368		if (unlikely(!ncsw))
1369			break;
1370
1371		/*
1372		 * Was it really running after all now that we
1373		 * checked with the proper locks actually held?
1374		 *
1375		 * Oops. Go back and try again..
1376		 */
1377		if (unlikely(running)) {
1378			cpu_relax();
1379			continue;
1380		}
1381
1382		/*
1383		 * It's not enough that it's not actively running,
1384		 * it must be off the runqueue _entirely_, and not
1385		 * preempted!
1386		 *
1387		 * So if it was still runnable (but just not actively
1388		 * running right now), it's preempted, and we should
1389		 * yield - it could be a while.
1390		 */
1391		if (unlikely(queued)) {
1392			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1393
1394			set_current_state(TASK_UNINTERRUPTIBLE);
1395			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1396			continue;
1397		}
1398
1399		/*
1400		 * Ahh, all good. It wasn't running, and it wasn't
1401		 * runnable, which means that it will never become
1402		 * running in the future either. We're all done!
1403		 */
1404		break;
1405	}
1406
1407	return ncsw;
1408}
1409
1410/***
1411 * kick_process - kick a running thread to enter/exit the kernel
1412 * @p: the to-be-kicked thread
1413 *
1414 * Cause a process which is running on another CPU to enter
1415 * kernel-mode, without any delay. (to get signals handled.)
1416 *
1417 * NOTE: this function doesn't have to take the runqueue lock,
1418 * because all it wants to ensure is that the remote task enters
1419 * the kernel. If the IPI races and the task has been migrated
1420 * to another CPU then no harm is done and the purpose has been
1421 * achieved as well.
1422 */
1423void kick_process(struct task_struct *p)
1424{
1425	int cpu;
1426
1427	preempt_disable();
1428	cpu = task_cpu(p);
1429	if ((cpu != smp_processor_id()) && task_curr(p))
1430		smp_send_reschedule(cpu);
1431	preempt_enable();
1432}
1433EXPORT_SYMBOL_GPL(kick_process);
1434
1435/*
1436 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1437 */
1438static int select_fallback_rq(int cpu, struct task_struct *p)
1439{
1440	int nid = cpu_to_node(cpu);
1441	const struct cpumask *nodemask = NULL;
1442	enum { cpuset, possible, fail } state = cpuset;
1443	int dest_cpu;
1444
1445	/*
1446	 * If the node that the cpu is on has been offlined, cpu_to_node()
1447	 * will return -1. There is no cpu on the node, and we should
1448	 * select the cpu on the other node.
1449	 */
1450	if (nid != -1) {
1451		nodemask = cpumask_of_node(nid);
1452
1453		/* Look for allowed, online CPU in same node. */
1454		for_each_cpu(dest_cpu, nodemask) {
1455			if (!cpu_online(dest_cpu))
1456				continue;
1457			if (!cpu_active(dest_cpu))
1458				continue;
1459			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1460				return dest_cpu;
1461		}
1462	}
1463
1464	for (;;) {
1465		/* Any allowed, online CPU? */
1466		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1467			if (!cpu_online(dest_cpu))
1468				continue;
1469			if (!cpu_active(dest_cpu))
1470				continue;
 
1471			goto out;
1472		}
1473
1474		/* No more Mr. Nice Guy. */
1475		switch (state) {
1476		case cpuset:
1477			if (IS_ENABLED(CONFIG_CPUSETS)) {
1478				cpuset_cpus_allowed_fallback(p);
1479				state = possible;
1480				break;
1481			}
1482			/* fall-through */
1483		case possible:
1484			do_set_cpus_allowed(p, cpu_possible_mask);
 
 
 
 
 
 
1485			state = fail;
1486			break;
1487
1488		case fail:
1489			BUG();
1490			break;
1491		}
1492	}
1493
1494out:
1495	if (state != cpuset) {
1496		/*
1497		 * Don't tell them about moving exiting tasks or
1498		 * kernel threads (both mm NULL), since they never
1499		 * leave kernel.
1500		 */
1501		if (p->mm && printk_ratelimit()) {
1502			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1503					task_pid_nr(p), p->comm, cpu);
1504		}
1505	}
1506
1507	return dest_cpu;
1508}
1509
1510/*
1511 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1512 */
1513static inline
1514int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1515{
1516	lockdep_assert_held(&p->pi_lock);
1517
1518	if (p->nr_cpus_allowed > 1)
1519		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
 
 
1520
1521	/*
1522	 * In order not to call set_task_cpu() on a blocking task we need
1523	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1524	 * cpu.
1525	 *
1526	 * Since this is common to all placement strategies, this lives here.
1527	 *
1528	 * [ this allows ->select_task() to simply return task_cpu(p) and
1529	 *   not worry about this generic constraint ]
1530	 */
1531	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1532		     !cpu_online(cpu)))
1533		cpu = select_fallback_rq(task_cpu(p), p);
1534
1535	return cpu;
1536}
1537
1538static void update_avg(u64 *avg, u64 sample)
1539{
1540	s64 diff = sample - *avg;
1541	*avg += diff >> 3;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1542}
1543
1544#else
1545
1546static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1547					 const struct cpumask *new_mask, bool check)
 
 
 
 
 
 
 
1548{
1549	return set_cpus_allowed_ptr(p, new_mask);
1550}
1551
1552#endif /* CONFIG_SMP */
 
 
 
 
 
1553
1554static void
1555ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1556{
1557#ifdef CONFIG_SCHEDSTATS
1558	struct rq *rq = this_rq();
 
 
 
 
1559
1560#ifdef CONFIG_SMP
1561	int this_cpu = smp_processor_id();
1562
1563	if (cpu == this_cpu) {
1564		schedstat_inc(rq, ttwu_local);
1565		schedstat_inc(p, se.statistics.nr_wakeups_local);
1566	} else {
1567		struct sched_domain *sd;
1568
1569		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1570		rcu_read_lock();
1571		for_each_domain(this_cpu, sd) {
1572			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1573				schedstat_inc(sd, ttwu_wake_remote);
1574				break;
1575			}
1576		}
1577		rcu_read_unlock();
1578	}
1579
1580	if (wake_flags & WF_MIGRATED)
1581		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1582
1583#endif /* CONFIG_SMP */
1584
1585	schedstat_inc(rq, ttwu_count);
1586	schedstat_inc(p, se.statistics.nr_wakeups);
1587
1588	if (wake_flags & WF_SYNC)
1589		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1590
1591#endif /* CONFIG_SCHEDSTATS */
1592}
1593
1594static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1595{
1596	activate_task(rq, p, en_flags);
1597	p->on_rq = TASK_ON_RQ_QUEUED;
1598
1599	/* if a worker is waking up, notify workqueue */
1600	if (p->flags & PF_WQ_WORKER)
1601		wq_worker_waking_up(p, cpu_of(rq));
1602}
1603
1604/*
1605 * Mark the task runnable and perform wakeup-preemption.
1606 */
1607static void
1608ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1609{
1610	check_preempt_curr(rq, p, wake_flags);
1611	p->state = TASK_RUNNING;
1612	trace_sched_wakeup(p);
1613
1614#ifdef CONFIG_SMP
1615	if (p->sched_class->task_woken) {
1616		/*
1617		 * Our task @p is fully woken up and running; so its safe to
1618		 * drop the rq->lock, hereafter rq is only used for statistics.
1619		 */
1620		lockdep_unpin_lock(&rq->lock);
1621		p->sched_class->task_woken(rq, p);
1622		lockdep_pin_lock(&rq->lock);
1623	}
1624
1625	if (rq->idle_stamp) {
1626		u64 delta = rq_clock(rq) - rq->idle_stamp;
1627		u64 max = 2*rq->max_idle_balance_cost;
1628
1629		update_avg(&rq->avg_idle, delta);
1630
1631		if (rq->avg_idle > max)
1632			rq->avg_idle = max;
1633
 
 
 
1634		rq->idle_stamp = 0;
1635	}
1636#endif
1637}
1638
1639static void
1640ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
 
1641{
1642	lockdep_assert_held(&rq->lock);
 
 
1643
1644#ifdef CONFIG_SMP
1645	if (p->sched_contributes_to_load)
1646		rq->nr_uninterruptible--;
 
 
 
 
 
1647#endif
 
 
 
 
1648
1649	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1650	ttwu_do_wakeup(rq, p, wake_flags);
1651}
1652
1653/*
1654 * Called in case the task @p isn't fully descheduled from its runqueue,
1655 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1656 * since all we need to do is flip p->state to TASK_RUNNING, since
1657 * the task is still ->on_rq.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1658 */
1659static int ttwu_remote(struct task_struct *p, int wake_flags)
1660{
 
1661	struct rq *rq;
1662	int ret = 0;
1663
1664	rq = __task_rq_lock(p);
1665	if (task_on_rq_queued(p)) {
1666		/* check_preempt_curr() may use rq clock */
1667		update_rq_clock(rq);
1668		ttwu_do_wakeup(rq, p, wake_flags);
1669		ret = 1;
1670	}
1671	__task_rq_unlock(rq);
1672
1673	return ret;
1674}
1675
1676#ifdef CONFIG_SMP
1677void sched_ttwu_pending(void)
1678{
 
1679	struct rq *rq = this_rq();
1680	struct llist_node *llist = llist_del_all(&rq->wake_list);
1681	struct task_struct *p;
1682	unsigned long flags;
1683
1684	if (!llist)
1685		return;
1686
1687	raw_spin_lock_irqsave(&rq->lock, flags);
1688	lockdep_pin_lock(&rq->lock);
1689
1690	while (llist) {
1691		p = llist_entry(llist, struct task_struct, wake_entry);
1692		llist = llist_next(llist);
1693		ttwu_do_activate(rq, p, 0);
1694	}
1695
1696	lockdep_unpin_lock(&rq->lock);
1697	raw_spin_unlock_irqrestore(&rq->lock, flags);
1698}
1699
1700void scheduler_ipi(void)
1701{
1702	/*
1703	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1704	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1705	 * this IPI.
1706	 */
1707	preempt_fold_need_resched();
1708
1709	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1710		return;
1711
1712	/*
1713	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1714	 * traditionally all their work was done from the interrupt return
1715	 * path. Now that we actually do some work, we need to make sure
1716	 * we do call them.
1717	 *
1718	 * Some archs already do call them, luckily irq_enter/exit nest
1719	 * properly.
1720	 *
1721	 * Arguably we should visit all archs and update all handlers,
1722	 * however a fair share of IPIs are still resched only so this would
1723	 * somewhat pessimize the simple resched case.
1724	 */
1725	irq_enter();
1726	sched_ttwu_pending();
 
 
 
 
 
1727
1728	/*
1729	 * Check if someone kicked us for doing the nohz idle load balance.
1730	 */
1731	if (unlikely(got_nohz_idle_kick())) {
1732		this_rq()->idle_balance = 1;
1733		raise_softirq_irqoff(SCHED_SOFTIRQ);
1734	}
1735	irq_exit();
1736}
1737
1738static void ttwu_queue_remote(struct task_struct *p, int cpu)
 
 
 
 
 
 
1739{
1740	struct rq *rq = cpu_rq(cpu);
1741
1742	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1743		if (!set_nr_if_polling(rq->idle))
1744			smp_send_reschedule(cpu);
1745		else
1746			trace_sched_wake_idle_without_ipi(cpu);
1747	}
1748}
1749
1750void wake_up_if_idle(int cpu)
1751{
1752	struct rq *rq = cpu_rq(cpu);
1753	unsigned long flags;
1754
1755	rcu_read_lock();
1756
1757	if (!is_idle_task(rcu_dereference(rq->curr)))
1758		goto out;
1759
1760	if (set_nr_if_polling(rq->idle)) {
1761		trace_sched_wake_idle_without_ipi(cpu);
1762	} else {
1763		raw_spin_lock_irqsave(&rq->lock, flags);
1764		if (is_idle_task(rq->curr))
1765			smp_send_reschedule(cpu);
1766		/* Else cpu is not in idle, do nothing here */
1767		raw_spin_unlock_irqrestore(&rq->lock, flags);
1768	}
1769
1770out:
1771	rcu_read_unlock();
1772}
1773
1774bool cpus_share_cache(int this_cpu, int that_cpu)
1775{
 
 
 
1776	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1777}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1778#endif /* CONFIG_SMP */
1779
1780static void ttwu_queue(struct task_struct *p, int cpu)
1781{
1782	struct rq *rq = cpu_rq(cpu);
 
1783
1784#if defined(CONFIG_SMP)
1785	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1786		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1787		ttwu_queue_remote(p, cpu);
1788		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1789	}
1790#endif
1791
1792	raw_spin_lock(&rq->lock);
1793	lockdep_pin_lock(&rq->lock);
1794	ttwu_do_activate(rq, p, 0);
1795	lockdep_unpin_lock(&rq->lock);
1796	raw_spin_unlock(&rq->lock);
1797}
1798
1799/*
1800 * Notes on Program-Order guarantees on SMP systems.
1801 *
1802 *  MIGRATION
1803 *
1804 * The basic program-order guarantee on SMP systems is that when a task [t]
1805 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1806 * execution on its new cpu [c1].
1807 *
1808 * For migration (of runnable tasks) this is provided by the following means:
1809 *
1810 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1811 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1812 *     rq(c1)->lock (if not at the same time, then in that order).
1813 *  C) LOCK of the rq(c1)->lock scheduling in task
1814 *
1815 * Transitivity guarantees that B happens after A and C after B.
1816 * Note: we only require RCpc transitivity.
1817 * Note: the cpu doing B need not be c0 or c1
1818 *
1819 * Example:
1820 *
1821 *   CPU0            CPU1            CPU2
1822 *
1823 *   LOCK rq(0)->lock
1824 *   sched-out X
1825 *   sched-in Y
1826 *   UNLOCK rq(0)->lock
1827 *
1828 *                                   LOCK rq(0)->lock // orders against CPU0
1829 *                                   dequeue X
1830 *                                   UNLOCK rq(0)->lock
1831 *
1832 *                                   LOCK rq(1)->lock
1833 *                                   enqueue X
1834 *                                   UNLOCK rq(1)->lock
1835 *
1836 *                   LOCK rq(1)->lock // orders against CPU2
1837 *                   sched-out Z
1838 *                   sched-in X
1839 *                   UNLOCK rq(1)->lock
1840 *
1841 *
1842 *  BLOCKING -- aka. SLEEP + WAKEUP
1843 *
1844 * For blocking we (obviously) need to provide the same guarantee as for
1845 * migration. However the means are completely different as there is no lock
1846 * chain to provide order. Instead we do:
1847 *
1848 *   1) smp_store_release(X->on_cpu, 0)
1849 *   2) smp_cond_acquire(!X->on_cpu)
1850 *
1851 * Example:
1852 *
1853 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1854 *
1855 *   LOCK rq(0)->lock LOCK X->pi_lock
1856 *   dequeue X
1857 *   sched-out X
1858 *   smp_store_release(X->on_cpu, 0);
1859 *
1860 *                    smp_cond_acquire(!X->on_cpu);
1861 *                    X->state = WAKING
1862 *                    set_task_cpu(X,2)
1863 *
1864 *                    LOCK rq(2)->lock
1865 *                    enqueue X
1866 *                    X->state = RUNNING
1867 *                    UNLOCK rq(2)->lock
1868 *
1869 *                                          LOCK rq(2)->lock // orders against CPU1
1870 *                                          sched-out Z
1871 *                                          sched-in X
1872 *                                          UNLOCK rq(2)->lock
1873 *
1874 *                    UNLOCK X->pi_lock
1875 *   UNLOCK rq(0)->lock
1876 *
1877 *
1878 * However; for wakeups there is a second guarantee we must provide, namely we
1879 * must observe the state that lead to our wakeup. That is, not only must our
1880 * task observe its own prior state, it must also observe the stores prior to
1881 * its wakeup.
1882 *
1883 * This means that any means of doing remote wakeups must order the CPU doing
1884 * the wakeup against the CPU the task is going to end up running on. This,
1885 * however, is already required for the regular Program-Order guarantee above,
1886 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1887 *
1888 */
1889
1890/**
1891 * try_to_wake_up - wake up a thread
1892 * @p: the thread to be awakened
1893 * @state: the mask of task states that can be woken
1894 * @wake_flags: wake modifier flags (WF_*)
1895 *
1896 * Put it on the run-queue if it's not already there. The "current"
1897 * thread is always on the run-queue (except when the actual
1898 * re-schedule is in progress), and as such you're allowed to do
1899 * the simpler "current->state = TASK_RUNNING" to mark yourself
1900 * runnable without the overhead of this.
 
 
 
 
 
1901 *
1902 * Return: %true if @p was woken up, %false if it was already running.
1903 * or @state didn't match @p's state.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1904 */
1905static int
1906try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1907{
1908	unsigned long flags;
1909	int cpu, success = 0;
1910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1911	/*
1912	 * If we are going to wake up a thread waiting for CONDITION we
1913	 * need to ensure that CONDITION=1 done by the caller can not be
1914	 * reordered with p->state check below. This pairs with mb() in
1915	 * set_current_state() the waiting thread does.
1916	 */
1917	smp_mb__before_spinlock();
1918	raw_spin_lock_irqsave(&p->pi_lock, flags);
1919	if (!(p->state & state))
1920		goto out;
 
1921
1922	trace_sched_waking(p);
1923
1924	success = 1; /* we're going to change ->state */
1925	cpu = task_cpu(p);
1926
1927	if (p->on_rq && ttwu_remote(p, wake_flags))
1928		goto stat;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1929
1930#ifdef CONFIG_SMP
1931	/*
1932	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1933	 * possible to, falsely, observe p->on_cpu == 0.
1934	 *
1935	 * One must be running (->on_cpu == 1) in order to remove oneself
1936	 * from the runqueue.
1937	 *
1938	 *  [S] ->on_cpu = 1;	[L] ->on_rq
1939	 *      UNLOCK rq->lock
1940	 *			RMB
1941	 *      LOCK   rq->lock
1942	 *  [S] ->on_rq = 0;    [L] ->on_cpu
1943	 *
1944	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1945	 * from the consecutive calls to schedule(); the first switching to our
1946	 * task, the second putting it to sleep.
 
 
 
 
 
 
1947	 */
1948	smp_rmb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1949
1950	/*
1951	 * If the owning (remote) cpu is still in the middle of schedule() with
1952	 * this task as prev, wait until its done referencing the task.
1953	 *
1954	 * Pairs with the smp_store_release() in finish_lock_switch().
1955	 *
1956	 * This ensures that tasks getting woken will be fully ordered against
1957	 * their previous state and preserve Program Order.
1958	 */
1959	smp_cond_acquire(!p->on_cpu);
1960
1961	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1962	p->state = TASK_WAKING;
1963
1964	if (p->sched_class->task_waking)
1965		p->sched_class->task_waking(p);
 
1966
1967	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1968	if (task_cpu(p) != cpu) {
1969		wake_flags |= WF_MIGRATED;
 
1970		set_task_cpu(p, cpu);
1971	}
 
 
1972#endif /* CONFIG_SMP */
1973
1974	ttwu_queue(p, cpu);
1975stat:
1976	if (schedstat_enabled())
1977		ttwu_stat(p, cpu, wake_flags);
1978out:
1979	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 
 
1980
1981	return success;
1982}
1983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1984/**
1985 * try_to_wake_up_local - try to wake up a local task with rq lock held
1986 * @p: the thread to be awakened
 
 
 
 
 
 
 
1987 *
1988 * Put @p on the run-queue if it's not already there. The caller must
1989 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1990 * the current task.
1991 */
1992static void try_to_wake_up_local(struct task_struct *p)
1993{
1994	struct rq *rq = task_rq(p);
 
 
1995
1996	if (WARN_ON_ONCE(rq != this_rq()) ||
1997	    WARN_ON_ONCE(p == current))
1998		return;
1999
2000	lockdep_assert_held(&rq->lock);
 
2001
2002	if (!raw_spin_trylock(&p->pi_lock)) {
2003		/*
2004		 * This is OK, because current is on_cpu, which avoids it being
2005		 * picked for load-balance and preemption/IRQs are still
2006		 * disabled avoiding further scheduler activity on it and we've
2007		 * not yet picked a replacement task.
2008		 */
2009		lockdep_unpin_lock(&rq->lock);
2010		raw_spin_unlock(&rq->lock);
2011		raw_spin_lock(&p->pi_lock);
2012		raw_spin_lock(&rq->lock);
2013		lockdep_pin_lock(&rq->lock);
2014	}
2015
2016	if (!(p->state & TASK_NORMAL))
2017		goto out;
2018
2019	trace_sched_waking(p);
 
 
2020
2021	if (!task_on_rq_queued(p))
2022		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2023
2024	ttwu_do_wakeup(rq, p, 0);
2025	if (schedstat_enabled())
2026		ttwu_stat(p, smp_processor_id(), 0);
2027out:
2028	raw_spin_unlock(&p->pi_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2029}
2030
2031/**
2032 * wake_up_process - Wake up a specific process
2033 * @p: The process to be woken up.
2034 *
2035 * Attempt to wake up the nominated process and move it to the set of runnable
2036 * processes.
2037 *
2038 * Return: 1 if the process was woken up, 0 if it was already running.
2039 *
2040 * It may be assumed that this function implies a write memory barrier before
2041 * changing the task state if and only if any tasks are woken up.
2042 */
2043int wake_up_process(struct task_struct *p)
2044{
2045	return try_to_wake_up(p, TASK_NORMAL, 0);
2046}
2047EXPORT_SYMBOL(wake_up_process);
2048
2049int wake_up_state(struct task_struct *p, unsigned int state)
2050{
2051	return try_to_wake_up(p, state, 0);
2052}
2053
2054/*
2055 * This function clears the sched_dl_entity static params.
2056 */
2057void __dl_clear_params(struct task_struct *p)
2058{
2059	struct sched_dl_entity *dl_se = &p->dl;
2060
2061	dl_se->dl_runtime = 0;
2062	dl_se->dl_deadline = 0;
2063	dl_se->dl_period = 0;
2064	dl_se->flags = 0;
2065	dl_se->dl_bw = 0;
2066
2067	dl_se->dl_throttled = 0;
2068	dl_se->dl_yielded = 0;
2069}
2070
2071/*
2072 * Perform scheduler related setup for a newly forked process p.
2073 * p is forked by current.
2074 *
2075 * __sched_fork() is basic setup used by init_idle() too:
2076 */
2077static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2078{
2079	p->on_rq			= 0;
2080
2081	p->se.on_rq			= 0;
2082	p->se.exec_start		= 0;
2083	p->se.sum_exec_runtime		= 0;
2084	p->se.prev_sum_exec_runtime	= 0;
2085	p->se.nr_migrations		= 0;
2086	p->se.vruntime			= 0;
2087	INIT_LIST_HEAD(&p->se.group_node);
2088
2089#ifdef CONFIG_FAIR_GROUP_SCHED
2090	p->se.cfs_rq			= NULL;
2091#endif
2092
2093#ifdef CONFIG_SCHEDSTATS
2094	/* Even if schedstat is disabled, there should not be garbage */
2095	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2096#endif
2097
2098	RB_CLEAR_NODE(&p->dl.rb_node);
2099	init_dl_task_timer(&p->dl);
 
2100	__dl_clear_params(p);
2101
2102	INIT_LIST_HEAD(&p->rt.run_list);
2103	p->rt.timeout		= 0;
2104	p->rt.time_slice	= sched_rr_timeslice;
2105	p->rt.on_rq		= 0;
2106	p->rt.on_list		= 0;
2107
2108#ifdef CONFIG_PREEMPT_NOTIFIERS
2109	INIT_HLIST_HEAD(&p->preempt_notifiers);
2110#endif
2111
2112#ifdef CONFIG_NUMA_BALANCING
2113	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2114		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2115		p->mm->numa_scan_seq = 0;
2116	}
2117
2118	if (clone_flags & CLONE_VM)
2119		p->numa_preferred_nid = current->numa_preferred_nid;
2120	else
2121		p->numa_preferred_nid = -1;
2122
2123	p->node_stamp = 0ULL;
2124	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2125	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2126	p->numa_work.next = &p->numa_work;
2127	p->numa_faults = NULL;
2128	p->last_task_numa_placement = 0;
2129	p->last_sum_exec_runtime = 0;
2130
2131	p->numa_group = NULL;
2132#endif /* CONFIG_NUMA_BALANCING */
2133}
2134
2135DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2136
2137#ifdef CONFIG_NUMA_BALANCING
2138
2139void set_numabalancing_state(bool enabled)
 
 
2140{
2141	if (enabled)
2142		static_branch_enable(&sched_numa_balancing);
2143	else
2144		static_branch_disable(&sched_numa_balancing);
2145}
2146
 
 
 
 
 
 
 
 
 
2147#ifdef CONFIG_PROC_SYSCTL
2148int sysctl_numa_balancing(struct ctl_table *table, int write,
2149			 void __user *buffer, size_t *lenp, loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 
2150{
2151	struct ctl_table t;
2152	int err;
2153	int state = static_branch_likely(&sched_numa_balancing);
2154
2155	if (write && !capable(CAP_SYS_ADMIN))
2156		return -EPERM;
2157
2158	t = *table;
2159	t.data = &state;
2160	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2161	if (err < 0)
2162		return err;
2163	if (write)
2164		set_numabalancing_state(state);
 
 
 
 
 
2165	return err;
2166}
2167#endif
2168#endif
2169
 
 
2170DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2171
2172#ifdef CONFIG_SCHEDSTATS
2173static void set_schedstats(bool enabled)
2174{
2175	if (enabled)
2176		static_branch_enable(&sched_schedstats);
2177	else
2178		static_branch_disable(&sched_schedstats);
2179}
2180
2181void force_schedstat_enabled(void)
2182{
2183	if (!schedstat_enabled()) {
2184		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2185		static_branch_enable(&sched_schedstats);
2186	}
2187}
2188
2189static int __init setup_schedstats(char *str)
2190{
2191	int ret = 0;
2192	if (!str)
2193		goto out;
2194
2195	if (!strcmp(str, "enable")) {
2196		set_schedstats(true);
2197		ret = 1;
2198	} else if (!strcmp(str, "disable")) {
2199		set_schedstats(false);
2200		ret = 1;
2201	}
2202out:
2203	if (!ret)
2204		pr_warn("Unable to parse schedstats=\n");
2205
2206	return ret;
2207}
2208__setup("schedstats=", setup_schedstats);
2209
2210#ifdef CONFIG_PROC_SYSCTL
2211int sysctl_schedstats(struct ctl_table *table, int write,
2212			 void __user *buffer, size_t *lenp, loff_t *ppos)
2213{
2214	struct ctl_table t;
2215	int err;
2216	int state = static_branch_likely(&sched_schedstats);
2217
2218	if (write && !capable(CAP_SYS_ADMIN))
2219		return -EPERM;
2220
2221	t = *table;
2222	t.data = &state;
2223	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2224	if (err < 0)
2225		return err;
2226	if (write)
2227		set_schedstats(state);
2228	return err;
2229}
2230#endif
2231#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2232
2233/*
2234 * fork()/clone()-time setup:
2235 */
2236int sched_fork(unsigned long clone_flags, struct task_struct *p)
2237{
2238	unsigned long flags;
2239	int cpu = get_cpu();
2240
2241	__sched_fork(clone_flags, p);
2242	/*
2243	 * We mark the process as running here. This guarantees that
2244	 * nobody will actually run it, and a signal or other external
2245	 * event cannot wake it up and insert it on the runqueue either.
2246	 */
2247	p->state = TASK_RUNNING;
2248
2249	/*
2250	 * Make sure we do not leak PI boosting priority to the child.
2251	 */
2252	p->prio = current->normal_prio;
2253
 
 
2254	/*
2255	 * Revert to default priority/policy on fork if requested.
2256	 */
2257	if (unlikely(p->sched_reset_on_fork)) {
2258		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2259			p->policy = SCHED_NORMAL;
2260			p->static_prio = NICE_TO_PRIO(0);
2261			p->rt_priority = 0;
2262		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2263			p->static_prio = NICE_TO_PRIO(0);
2264
2265		p->prio = p->normal_prio = __normal_prio(p);
2266		set_load_weight(p);
2267
2268		/*
2269		 * We don't need the reset flag anymore after the fork. It has
2270		 * fulfilled its duty:
2271		 */
2272		p->sched_reset_on_fork = 0;
2273	}
2274
2275	if (dl_prio(p->prio)) {
2276		put_cpu();
2277		return -EAGAIN;
2278	} else if (rt_prio(p->prio)) {
2279		p->sched_class = &rt_sched_class;
2280	} else {
2281		p->sched_class = &fair_sched_class;
2282	}
2283
2284	if (p->sched_class->task_fork)
2285		p->sched_class->task_fork(p);
2286
2287	/*
2288	 * The child is not yet in the pid-hash so no cgroup attach races,
2289	 * and the cgroup is pinned to this child due to cgroup_fork()
2290	 * is ran before sched_fork().
2291	 *
2292	 * Silence PROVE_RCU.
2293	 */
2294	raw_spin_lock_irqsave(&p->pi_lock, flags);
2295	set_task_cpu(p, cpu);
2296	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2297
2298#ifdef CONFIG_SCHED_INFO
2299	if (likely(sched_info_on()))
2300		memset(&p->sched_info, 0, sizeof(p->sched_info));
2301#endif
2302#if defined(CONFIG_SMP)
2303	p->on_cpu = 0;
2304#endif
2305	init_task_preempt_count(p);
2306#ifdef CONFIG_SMP
2307	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2308	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2309#endif
2310
2311	put_cpu();
2312	return 0;
2313}
2314
2315unsigned long to_ratio(u64 period, u64 runtime)
2316{
2317	if (runtime == RUNTIME_INF)
2318		return 1ULL << 20;
2319
2320	/*
2321	 * Doing this here saves a lot of checks in all
2322	 * the calling paths, and returning zero seems
2323	 * safe for them anyway.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2324	 */
2325	if (period == 0)
2326		return 0;
2327
2328	return div64_u64(runtime << 20, period);
2329}
2330
2331#ifdef CONFIG_SMP
2332inline struct dl_bw *dl_bw_of(int i)
2333{
2334	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2335			 "sched RCU must be held");
2336	return &cpu_rq(i)->rd->dl_bw;
2337}
2338
2339static inline int dl_bw_cpus(int i)
2340{
2341	struct root_domain *rd = cpu_rq(i)->rd;
2342	int cpus = 0;
2343
2344	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2345			 "sched RCU must be held");
2346	for_each_cpu_and(i, rd->span, cpu_active_mask)
2347		cpus++;
2348
2349	return cpus;
2350}
2351#else
2352inline struct dl_bw *dl_bw_of(int i)
2353{
2354	return &cpu_rq(i)->dl.dl_bw;
2355}
2356
2357static inline int dl_bw_cpus(int i)
2358{
2359	return 1;
2360}
2361#endif
2362
2363/*
2364 * We must be sure that accepting a new task (or allowing changing the
2365 * parameters of an existing one) is consistent with the bandwidth
2366 * constraints. If yes, this function also accordingly updates the currently
2367 * allocated bandwidth to reflect the new situation.
2368 *
2369 * This function is called while holding p's rq->lock.
2370 *
2371 * XXX we should delay bw change until the task's 0-lag point, see
2372 * __setparam_dl().
2373 */
2374static int dl_overflow(struct task_struct *p, int policy,
2375		       const struct sched_attr *attr)
2376{
2377
2378	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2379	u64 period = attr->sched_period ?: attr->sched_deadline;
2380	u64 runtime = attr->sched_runtime;
2381	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2382	int cpus, err = -1;
2383
2384	if (new_bw == p->dl.dl_bw)
2385		return 0;
2386
2387	/*
2388	 * Either if a task, enters, leave, or stays -deadline but changes
2389	 * its parameters, we may need to update accordingly the total
2390	 * allocated bandwidth of the container.
2391	 */
2392	raw_spin_lock(&dl_b->lock);
2393	cpus = dl_bw_cpus(task_cpu(p));
2394	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2395	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2396		__dl_add(dl_b, new_bw);
2397		err = 0;
2398	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2399		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2400		__dl_clear(dl_b, p->dl.dl_bw);
2401		__dl_add(dl_b, new_bw);
2402		err = 0;
2403	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2404		__dl_clear(dl_b, p->dl.dl_bw);
2405		err = 0;
2406	}
2407	raw_spin_unlock(&dl_b->lock);
2408
2409	return err;
2410}
2411
2412extern void init_dl_bw(struct dl_bw *dl_b);
2413
2414/*
2415 * wake_up_new_task - wake up a newly created task for the first time.
2416 *
2417 * This function will do some initial scheduler statistics housekeeping
2418 * that must be done for every newly created context, then puts the task
2419 * on the runqueue and wakes it.
2420 */
2421void wake_up_new_task(struct task_struct *p)
2422{
2423	unsigned long flags;
2424	struct rq *rq;
2425
2426	raw_spin_lock_irqsave(&p->pi_lock, flags);
2427	/* Initialize new task's runnable average */
2428	init_entity_runnable_average(&p->se);
2429#ifdef CONFIG_SMP
2430	/*
2431	 * Fork balancing, do it here and not earlier because:
2432	 *  - cpus_allowed can change in the fork path
2433	 *  - any previously selected cpu might disappear through hotplug
 
 
 
2434	 */
2435	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
 
 
2436#endif
 
 
 
2437
2438	rq = __task_rq_lock(p);
2439	activate_task(rq, p, 0);
2440	p->on_rq = TASK_ON_RQ_QUEUED;
2441	trace_sched_wakeup_new(p);
2442	check_preempt_curr(rq, p, WF_FORK);
2443#ifdef CONFIG_SMP
2444	if (p->sched_class->task_woken) {
2445		/*
2446		 * Nothing relies on rq->lock after this, so its fine to
2447		 * drop it.
2448		 */
2449		lockdep_unpin_lock(&rq->lock);
2450		p->sched_class->task_woken(rq, p);
2451		lockdep_pin_lock(&rq->lock);
2452	}
2453#endif
2454	task_rq_unlock(rq, p, &flags);
2455}
2456
2457#ifdef CONFIG_PREEMPT_NOTIFIERS
2458
2459static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2460
2461void preempt_notifier_inc(void)
2462{
2463	static_key_slow_inc(&preempt_notifier_key);
2464}
2465EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2466
2467void preempt_notifier_dec(void)
2468{
2469	static_key_slow_dec(&preempt_notifier_key);
2470}
2471EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2472
2473/**
2474 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2475 * @notifier: notifier struct to register
2476 */
2477void preempt_notifier_register(struct preempt_notifier *notifier)
2478{
2479	if (!static_key_false(&preempt_notifier_key))
2480		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2481
2482	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2483}
2484EXPORT_SYMBOL_GPL(preempt_notifier_register);
2485
2486/**
2487 * preempt_notifier_unregister - no longer interested in preemption notifications
2488 * @notifier: notifier struct to unregister
2489 *
2490 * This is *not* safe to call from within a preemption notifier.
2491 */
2492void preempt_notifier_unregister(struct preempt_notifier *notifier)
2493{
2494	hlist_del(&notifier->link);
2495}
2496EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2497
2498static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2499{
2500	struct preempt_notifier *notifier;
2501
2502	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2503		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2504}
2505
2506static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2507{
2508	if (static_key_false(&preempt_notifier_key))
2509		__fire_sched_in_preempt_notifiers(curr);
2510}
2511
2512static void
2513__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2514				   struct task_struct *next)
2515{
2516	struct preempt_notifier *notifier;
2517
2518	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2519		notifier->ops->sched_out(notifier, next);
2520}
2521
2522static __always_inline void
2523fire_sched_out_preempt_notifiers(struct task_struct *curr,
2524				 struct task_struct *next)
2525{
2526	if (static_key_false(&preempt_notifier_key))
2527		__fire_sched_out_preempt_notifiers(curr, next);
2528}
2529
2530#else /* !CONFIG_PREEMPT_NOTIFIERS */
2531
2532static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2533{
2534}
2535
2536static inline void
2537fire_sched_out_preempt_notifiers(struct task_struct *curr,
2538				 struct task_struct *next)
2539{
2540}
2541
2542#endif /* CONFIG_PREEMPT_NOTIFIERS */
2543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2544/**
2545 * prepare_task_switch - prepare to switch tasks
2546 * @rq: the runqueue preparing to switch
2547 * @prev: the current task that is being switched out
2548 * @next: the task we are going to switch to.
2549 *
2550 * This is called with the rq lock held and interrupts off. It must
2551 * be paired with a subsequent finish_task_switch after the context
2552 * switch.
2553 *
2554 * prepare_task_switch sets up locking and calls architecture specific
2555 * hooks.
2556 */
2557static inline void
2558prepare_task_switch(struct rq *rq, struct task_struct *prev,
2559		    struct task_struct *next)
2560{
 
2561	sched_info_switch(rq, prev, next);
2562	perf_event_task_sched_out(prev, next);
 
2563	fire_sched_out_preempt_notifiers(prev, next);
2564	prepare_lock_switch(rq, next);
 
2565	prepare_arch_switch(next);
2566}
2567
2568/**
2569 * finish_task_switch - clean up after a task-switch
2570 * @prev: the thread we just switched away from.
2571 *
2572 * finish_task_switch must be called after the context switch, paired
2573 * with a prepare_task_switch call before the context switch.
2574 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2575 * and do any other architecture-specific cleanup actions.
2576 *
2577 * Note that we may have delayed dropping an mm in context_switch(). If
2578 * so, we finish that here outside of the runqueue lock. (Doing it
2579 * with the lock held can cause deadlocks; see schedule() for
2580 * details.)
2581 *
2582 * The context switch have flipped the stack from under us and restored the
2583 * local variables which were saved when this task called schedule() in the
2584 * past. prev == current is still correct but we need to recalculate this_rq
2585 * because prev may have moved to another CPU.
2586 */
2587static struct rq *finish_task_switch(struct task_struct *prev)
2588	__releases(rq->lock)
2589{
2590	struct rq *rq = this_rq();
2591	struct mm_struct *mm = rq->prev_mm;
2592	long prev_state;
2593
2594	/*
2595	 * The previous task will have left us with a preempt_count of 2
2596	 * because it left us after:
2597	 *
2598	 *	schedule()
2599	 *	  preempt_disable();			// 1
2600	 *	  __schedule()
2601	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2602	 *
2603	 * Also, see FORK_PREEMPT_COUNT.
2604	 */
2605	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2606		      "corrupted preempt_count: %s/%d/0x%x\n",
2607		      current->comm, current->pid, preempt_count()))
2608		preempt_count_set(FORK_PREEMPT_COUNT);
2609
2610	rq->prev_mm = NULL;
2611
2612	/*
2613	 * A task struct has one reference for the use as "current".
2614	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2615	 * schedule one last time. The schedule call will never return, and
2616	 * the scheduled task must drop that reference.
2617	 *
2618	 * We must observe prev->state before clearing prev->on_cpu (in
2619	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2620	 * running on another CPU and we could rave with its RUNNING -> DEAD
2621	 * transition, resulting in a double drop.
2622	 */
2623	prev_state = prev->state;
2624	vtime_task_switch(prev);
2625	perf_event_task_sched_in(prev, current);
2626	finish_lock_switch(rq, prev);
 
 
2627	finish_arch_post_lock_switch();
 
 
 
 
 
 
 
 
 
2628
2629	fire_sched_in_preempt_notifiers(current);
2630	if (mm)
2631		mmdrop(mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2632	if (unlikely(prev_state == TASK_DEAD)) {
2633		if (prev->sched_class->task_dead)
2634			prev->sched_class->task_dead(prev);
2635
2636		/*
2637		 * Remove function-return probe instances associated with this
2638		 * task and put them back on the free list.
2639		 */
2640		kprobe_flush_task(prev);
2641		put_task_struct(prev);
2642	}
2643
2644	tick_nohz_task_switch();
2645	return rq;
2646}
2647
2648#ifdef CONFIG_SMP
2649
2650/* rq->lock is NOT held, but preemption is disabled */
2651static void __balance_callback(struct rq *rq)
2652{
2653	struct callback_head *head, *next;
2654	void (*func)(struct rq *rq);
2655	unsigned long flags;
2656
2657	raw_spin_lock_irqsave(&rq->lock, flags);
2658	head = rq->balance_callback;
2659	rq->balance_callback = NULL;
2660	while (head) {
2661		func = (void (*)(struct rq *))head->func;
2662		next = head->next;
2663		head->next = NULL;
2664		head = next;
2665
2666		func(rq);
2667	}
2668	raw_spin_unlock_irqrestore(&rq->lock, flags);
2669}
2670
2671static inline void balance_callback(struct rq *rq)
2672{
2673	if (unlikely(rq->balance_callback))
2674		__balance_callback(rq);
2675}
2676
2677#else
2678
2679static inline void balance_callback(struct rq *rq)
2680{
2681}
2682
2683#endif
2684
2685/**
2686 * schedule_tail - first thing a freshly forked thread must call.
2687 * @prev: the thread we just switched away from.
2688 */
2689asmlinkage __visible void schedule_tail(struct task_struct *prev)
2690	__releases(rq->lock)
2691{
2692	struct rq *rq;
2693
2694	/*
2695	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2696	 * finish_task_switch() for details.
2697	 *
2698	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2699	 * and the preempt_enable() will end up enabling preemption (on
2700	 * PREEMPT_COUNT kernels).
2701	 */
2702
2703	rq = finish_task_switch(prev);
2704	balance_callback(rq);
2705	preempt_enable();
2706
2707	if (current->set_child_tid)
2708		put_user(task_pid_vnr(current), current->set_child_tid);
 
 
2709}
2710
2711/*
2712 * context_switch - switch to the new MM and the new thread's register state.
2713 */
2714static __always_inline struct rq *
2715context_switch(struct rq *rq, struct task_struct *prev,
2716	       struct task_struct *next)
2717{
2718	struct mm_struct *mm, *oldmm;
2719
2720	prepare_task_switch(rq, prev, next);
2721
2722	mm = next->mm;
2723	oldmm = prev->active_mm;
2724	/*
2725	 * For paravirt, this is coupled with an exit in switch_to to
2726	 * combine the page table reload and the switch backend into
2727	 * one hypercall.
2728	 */
2729	arch_start_context_switch(prev);
2730
2731	if (!mm) {
2732		next->active_mm = oldmm;
2733		atomic_inc(&oldmm->mm_count);
2734		enter_lazy_tlb(oldmm, next);
2735	} else
2736		switch_mm(oldmm, mm, next);
2737
2738	if (!prev->mm) {
2739		prev->active_mm = NULL;
2740		rq->prev_mm = oldmm;
2741	}
2742	/*
2743	 * Since the runqueue lock will be released by the next
2744	 * task (which is an invalid locking op but in the case
2745	 * of the scheduler it's an obvious special-case), so we
2746	 * do an early lockdep release here:
 
2747	 */
2748	lockdep_unpin_lock(&rq->lock);
2749	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2750
2751	/* Here we just switch the register state and the stack. */
2752	switch_to(prev, next, prev);
2753	barrier();
2754
2755	return finish_task_switch(prev);
2756}
2757
2758/*
2759 * nr_running and nr_context_switches:
2760 *
2761 * externally visible scheduler statistics: current number of runnable
2762 * threads, total number of context switches performed since bootup.
2763 */
2764unsigned long nr_running(void)
2765{
2766	unsigned long i, sum = 0;
2767
2768	for_each_online_cpu(i)
2769		sum += cpu_rq(i)->nr_running;
2770
2771	return sum;
2772}
2773
2774/*
2775 * Check if only the current task is running on the cpu.
2776 *
2777 * Caution: this function does not check that the caller has disabled
2778 * preemption, thus the result might have a time-of-check-to-time-of-use
2779 * race.  The caller is responsible to use it correctly, for example:
2780 *
2781 * - from a non-preemptable section (of course)
2782 *
2783 * - from a thread that is bound to a single CPU
2784 *
2785 * - in a loop with very short iterations (e.g. a polling loop)
2786 */
2787bool single_task_running(void)
2788{
2789	return raw_rq()->nr_running == 1;
2790}
2791EXPORT_SYMBOL(single_task_running);
2792
2793unsigned long long nr_context_switches(void)
2794{
2795	int i;
2796	unsigned long long sum = 0;
2797
2798	for_each_possible_cpu(i)
2799		sum += cpu_rq(i)->nr_switches;
2800
2801	return sum;
2802}
2803
2804unsigned long nr_iowait(void)
 
 
 
 
 
 
 
2805{
2806	unsigned long i, sum = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2807
2808	for_each_possible_cpu(i)
2809		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2810
2811	return sum;
2812}
2813
2814unsigned long nr_iowait_cpu(int cpu)
2815{
2816	struct rq *this = cpu_rq(cpu);
2817	return atomic_read(&this->nr_iowait);
2818}
2819
2820void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2821{
2822	struct rq *rq = this_rq();
2823	*nr_waiters = atomic_read(&rq->nr_iowait);
2824	*load = rq->load.weight;
2825}
2826
2827#ifdef CONFIG_SMP
2828
2829/*
2830 * sched_exec - execve() is a valuable balancing opportunity, because at
2831 * this point the task has the smallest effective memory and cache footprint.
2832 */
2833void sched_exec(void)
2834{
2835	struct task_struct *p = current;
2836	unsigned long flags;
2837	int dest_cpu;
2838
2839	raw_spin_lock_irqsave(&p->pi_lock, flags);
2840	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2841	if (dest_cpu == smp_processor_id())
2842		goto unlock;
2843
2844	if (likely(cpu_active(dest_cpu))) {
2845		struct migration_arg arg = { p, dest_cpu };
2846
2847		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2848		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2849		return;
2850	}
2851unlock:
2852	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2853}
2854
2855#endif
2856
2857DEFINE_PER_CPU(struct kernel_stat, kstat);
2858DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2859
2860EXPORT_PER_CPU_SYMBOL(kstat);
2861EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2862
2863/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2864 * Return accounted runtime for the task.
2865 * In case the task is currently running, return the runtime plus current's
2866 * pending runtime that have not been accounted yet.
2867 */
2868unsigned long long task_sched_runtime(struct task_struct *p)
2869{
2870	unsigned long flags;
2871	struct rq *rq;
2872	u64 ns;
2873
2874#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2875	/*
2876	 * 64-bit doesn't need locks to atomically read a 64bit value.
2877	 * So we have a optimization chance when the task's delta_exec is 0.
2878	 * Reading ->on_cpu is racy, but this is ok.
2879	 *
2880	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2881	 * If we race with it entering cpu, unaccounted time is 0. This is
2882	 * indistinguishable from the read occurring a few cycles earlier.
2883	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2884	 * been accounted, so we're correct here as well.
2885	 */
2886	if (!p->on_cpu || !task_on_rq_queued(p))
2887		return p->se.sum_exec_runtime;
2888#endif
2889
2890	rq = task_rq_lock(p, &flags);
2891	/*
2892	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2893	 * project cycles that may never be accounted to this
2894	 * thread, breaking clock_gettime().
2895	 */
2896	if (task_current(rq, p) && task_on_rq_queued(p)) {
 
2897		update_rq_clock(rq);
2898		p->sched_class->update_curr(rq);
2899	}
2900	ns = p->se.sum_exec_runtime;
2901	task_rq_unlock(rq, p, &flags);
2902
2903	return ns;
2904}
2905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2906/*
2907 * This function gets called by the timer code, with HZ frequency.
2908 * We call it with interrupts disabled.
2909 */
2910void scheduler_tick(void)
2911{
2912	int cpu = smp_processor_id();
2913	struct rq *rq = cpu_rq(cpu);
2914	struct task_struct *curr = rq->curr;
 
 
 
 
 
 
2915
2916	sched_clock_tick();
2917
2918	raw_spin_lock(&rq->lock);
 
2919	update_rq_clock(rq);
 
 
2920	curr->sched_class->task_tick(rq, curr, 0);
2921	update_cpu_load_active(rq);
 
2922	calc_global_load_tick(rq);
2923	raw_spin_unlock(&rq->lock);
 
 
 
 
 
2924
2925	perf_event_task_tick();
2926
2927#ifdef CONFIG_SMP
2928	rq->idle_balance = idle_cpu(cpu);
2929	trigger_load_balance(rq);
2930#endif
2931	rq_last_tick_reset(rq);
2932}
2933
2934#ifdef CONFIG_NO_HZ_FULL
2935/**
2936 * scheduler_tick_max_deferment
 
 
 
 
 
 
 
 
 
 
 
 
2937 *
2938 * Keep at least one tick per second when a single
2939 * active task is running because the scheduler doesn't
2940 * yet completely support full dynticks environment.
 
 
 
 
 
 
 
 
 
 
2941 *
2942 * This makes sure that uptime, CFS vruntime, load
2943 * balancing, etc... continue to move forward, even
2944 * with a very low granularity.
2945 *
2946 * Return: Maximum deferment in nanoseconds.
 
2947 */
2948u64 scheduler_tick_max_deferment(void)
 
 
 
2949{
2950	struct rq *rq = this_rq();
2951	unsigned long next, now = READ_ONCE(jiffies);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2952
2953	next = rq->last_sched_tick + HZ;
2954
2955	if (time_before_eq(next, now))
2956		return 0;
 
 
 
 
 
2957
2958	return jiffies_to_nsecs(next - now);
 
 
 
 
2959}
 
 
 
 
2960#endif
2961
2962#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2963				defined(CONFIG_PREEMPT_TRACER))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2964
2965void preempt_count_add(int val)
2966{
2967#ifdef CONFIG_DEBUG_PREEMPT
2968	/*
2969	 * Underflow?
2970	 */
2971	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2972		return;
2973#endif
2974	__preempt_count_add(val);
2975#ifdef CONFIG_DEBUG_PREEMPT
2976	/*
2977	 * Spinlock count overflowing soon?
2978	 */
2979	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2980				PREEMPT_MASK - 10);
2981#endif
2982	if (preempt_count() == val) {
2983		unsigned long ip = get_lock_parent_ip();
2984#ifdef CONFIG_DEBUG_PREEMPT
2985		current->preempt_disable_ip = ip;
2986#endif
2987		trace_preempt_off(CALLER_ADDR0, ip);
2988	}
2989}
2990EXPORT_SYMBOL(preempt_count_add);
2991NOKPROBE_SYMBOL(preempt_count_add);
2992
 
 
 
 
 
 
 
 
 
 
2993void preempt_count_sub(int val)
2994{
2995#ifdef CONFIG_DEBUG_PREEMPT
2996	/*
2997	 * Underflow?
2998	 */
2999	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3000		return;
3001	/*
3002	 * Is the spinlock portion underflowing?
3003	 */
3004	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3005			!(preempt_count() & PREEMPT_MASK)))
3006		return;
3007#endif
3008
3009	if (preempt_count() == val)
3010		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3011	__preempt_count_sub(val);
3012}
3013EXPORT_SYMBOL(preempt_count_sub);
3014NOKPROBE_SYMBOL(preempt_count_sub);
3015
 
 
 
3016#endif
3017
 
 
 
 
 
 
 
 
 
3018/*
3019 * Print scheduling while atomic bug:
3020 */
3021static noinline void __schedule_bug(struct task_struct *prev)
3022{
 
 
 
3023	if (oops_in_progress)
3024		return;
3025
3026	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3027		prev->comm, prev->pid, preempt_count());
3028
3029	debug_show_held_locks(prev);
3030	print_modules();
3031	if (irqs_disabled())
3032		print_irqtrace_events(prev);
3033#ifdef CONFIG_DEBUG_PREEMPT
3034	if (in_atomic_preempt_off()) {
3035		pr_err("Preemption disabled at:");
3036		print_ip_sym(current->preempt_disable_ip);
3037		pr_cont("\n");
3038	}
3039#endif
 
3040	dump_stack();
3041	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3042}
3043
3044/*
3045 * Various schedule()-time debugging checks and statistics:
3046 */
3047static inline void schedule_debug(struct task_struct *prev)
3048{
3049#ifdef CONFIG_SCHED_STACK_END_CHECK
3050	BUG_ON(task_stack_end_corrupted(prev));
 
 
 
 
 
 
 
 
 
 
 
 
 
3051#endif
3052
3053	if (unlikely(in_atomic_preempt_off())) {
3054		__schedule_bug(prev);
3055		preempt_count_set(PREEMPT_DISABLED);
3056	}
3057	rcu_sleep_check();
 
3058
3059	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3060
3061	schedstat_inc(this_rq(), sched_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3062}
3063
3064/*
3065 * Pick up the highest-prio task:
3066 */
3067static inline struct task_struct *
3068pick_next_task(struct rq *rq, struct task_struct *prev)
3069{
3070	const struct sched_class *class = &fair_sched_class;
3071	struct task_struct *p;
3072
3073	/*
3074	 * Optimization: we know that if all tasks are in
3075	 * the fair class we can call that function directly:
 
 
3076	 */
3077	if (likely(prev->sched_class == class &&
3078		   rq->nr_running == rq->cfs.h_nr_running)) {
3079		p = fair_sched_class.pick_next_task(rq, prev);
 
3080		if (unlikely(p == RETRY_TASK))
3081			goto again;
3082
3083		/* assumes fair_sched_class->next == idle_sched_class */
3084		if (unlikely(!p))
3085			p = idle_sched_class.pick_next_task(rq, prev);
 
 
3086
3087		return p;
3088	}
3089
3090again:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3091	for_each_class(class) {
3092		p = class->pick_next_task(rq, prev);
3093		if (p) {
3094			if (unlikely(p == RETRY_TASK))
3095				goto again;
3096			return p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3097		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3098	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3099
3100	BUG(); /* the idle class will always have a runnable task */
3101}
3102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3103/*
3104 * __schedule() is the main scheduler function.
3105 *
3106 * The main means of driving the scheduler and thus entering this function are:
3107 *
3108 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3109 *
3110 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3111 *      paths. For example, see arch/x86/entry_64.S.
3112 *
3113 *      To drive preemption between tasks, the scheduler sets the flag in timer
3114 *      interrupt handler scheduler_tick().
3115 *
3116 *   3. Wakeups don't really cause entry into schedule(). They add a
3117 *      task to the run-queue and that's it.
3118 *
3119 *      Now, if the new task added to the run-queue preempts the current
3120 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3121 *      called on the nearest possible occasion:
3122 *
3123 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3124 *
3125 *         - in syscall or exception context, at the next outmost
3126 *           preempt_enable(). (this might be as soon as the wake_up()'s
3127 *           spin_unlock()!)
3128 *
3129 *         - in IRQ context, return from interrupt-handler to
3130 *           preemptible context
3131 *
3132 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3133 *         then at the next:
3134 *
3135 *          - cond_resched() call
3136 *          - explicit schedule() call
3137 *          - return from syscall or exception to user-space
3138 *          - return from interrupt-handler to user-space
3139 *
3140 * WARNING: must be called with preemption disabled!
3141 */
3142static void __sched notrace __schedule(bool preempt)
3143{
3144	struct task_struct *prev, *next;
3145	unsigned long *switch_count;
 
 
3146	struct rq *rq;
3147	int cpu;
3148
3149	cpu = smp_processor_id();
3150	rq = cpu_rq(cpu);
3151	prev = rq->curr;
3152
3153	/*
3154	 * do_exit() calls schedule() with preemption disabled as an exception;
3155	 * however we must fix that up, otherwise the next task will see an
3156	 * inconsistent (higher) preempt count.
3157	 *
3158	 * It also avoids the below schedule_debug() test from complaining
3159	 * about this.
3160	 */
3161	if (unlikely(prev->state == TASK_DEAD))
3162		preempt_enable_no_resched_notrace();
3163
3164	schedule_debug(prev);
3165
3166	if (sched_feat(HRTICK))
3167		hrtick_clear(rq);
3168
3169	local_irq_disable();
3170	rcu_note_context_switch();
3171
3172	/*
3173	 * Make sure that signal_pending_state()->signal_pending() below
3174	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3175	 * done by the caller to avoid the race with signal_wake_up().
 
 
 
 
 
 
 
 
 
 
3176	 */
3177	smp_mb__before_spinlock();
3178	raw_spin_lock(&rq->lock);
3179	lockdep_pin_lock(&rq->lock);
3180
3181	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
 
 
3182
3183	switch_count = &prev->nivcsw;
3184	if (!preempt && prev->state) {
3185		if (unlikely(signal_pending_state(prev->state, prev))) {
3186			prev->state = TASK_RUNNING;
 
 
 
 
 
 
3187		} else {
3188			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3189			prev->on_rq = 0;
 
 
 
 
 
3190
3191			/*
3192			 * If a worker went to sleep, notify and ask workqueue
3193			 * whether it wants to wake up a task to maintain
3194			 * concurrency.
 
 
 
 
 
 
3195			 */
3196			if (prev->flags & PF_WQ_WORKER) {
3197				struct task_struct *to_wakeup;
3198
3199				to_wakeup = wq_worker_sleeping(prev);
3200				if (to_wakeup)
3201					try_to_wake_up_local(to_wakeup);
3202			}
3203		}
3204		switch_count = &prev->nvcsw;
3205	}
3206
3207	if (task_on_rq_queued(prev))
3208		update_rq_clock(rq);
3209
3210	next = pick_next_task(rq, prev);
3211	clear_tsk_need_resched(prev);
3212	clear_preempt_need_resched();
3213	rq->clock_skip_update = 0;
 
 
3214
3215	if (likely(prev != next)) {
3216		rq->nr_switches++;
3217		rq->curr = next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3218		++*switch_count;
3219
3220		trace_sched_switch(preempt, prev, next);
3221		rq = context_switch(rq, prev, next); /* unlocks the rq */
 
 
 
 
 
3222	} else {
3223		lockdep_unpin_lock(&rq->lock);
3224		raw_spin_unlock_irq(&rq->lock);
 
 
 
3225	}
 
 
 
 
 
 
3226
3227	balance_callback(rq);
 
 
 
 
 
 
 
 
3228}
3229STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3230
3231static inline void sched_submit_work(struct task_struct *tsk)
3232{
3233	if (!tsk->state || tsk_is_pi_blocked(tsk))
 
 
3234		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3235	/*
3236	 * If we are going to sleep and we have plugged IO queued,
3237	 * make sure to submit it to avoid deadlocks.
3238	 */
3239	if (blk_needs_flush_plug(tsk))
3240		blk_schedule_flush_plug(tsk);
 
 
 
 
 
 
 
 
 
3241}
3242
3243asmlinkage __visible void __sched schedule(void)
3244{
3245	struct task_struct *tsk = current;
3246
3247	sched_submit_work(tsk);
3248	do {
3249		preempt_disable();
3250		__schedule(false);
3251		sched_preempt_enable_no_resched();
3252	} while (need_resched());
 
3253}
3254EXPORT_SYMBOL(schedule);
3255
3256#ifdef CONFIG_CONTEXT_TRACKING
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3257asmlinkage __visible void __sched schedule_user(void)
3258{
3259	/*
3260	 * If we come here after a random call to set_need_resched(),
3261	 * or we have been woken up remotely but the IPI has not yet arrived,
3262	 * we haven't yet exited the RCU idle mode. Do it here manually until
3263	 * we find a better solution.
3264	 *
3265	 * NB: There are buggy callers of this function.  Ideally we
3266	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3267	 * too frequently to make sense yet.
3268	 */
3269	enum ctx_state prev_state = exception_enter();
3270	schedule();
3271	exception_exit(prev_state);
3272}
3273#endif
3274
3275/**
3276 * schedule_preempt_disabled - called with preemption disabled
3277 *
3278 * Returns with preemption disabled. Note: preempt_count must be 1
3279 */
3280void __sched schedule_preempt_disabled(void)
3281{
3282	sched_preempt_enable_no_resched();
3283	schedule();
3284	preempt_disable();
3285}
3286
 
 
 
 
 
 
 
 
 
 
 
 
3287static void __sched notrace preempt_schedule_common(void)
3288{
3289	do {
 
 
 
 
 
 
 
 
 
 
 
 
 
3290		preempt_disable_notrace();
3291		__schedule(true);
 
 
3292		preempt_enable_no_resched_notrace();
3293
3294		/*
3295		 * Check again in case we missed a preemption opportunity
3296		 * between schedule and now.
3297		 */
3298	} while (need_resched());
3299}
3300
3301#ifdef CONFIG_PREEMPT
3302/*
3303 * this is the entry point to schedule() from in-kernel preemption
3304 * off of preempt_enable. Kernel preemptions off return from interrupt
3305 * occur there and call schedule directly.
3306 */
3307asmlinkage __visible void __sched notrace preempt_schedule(void)
3308{
3309	/*
3310	 * If there is a non-zero preempt_count or interrupts are disabled,
3311	 * we do not want to preempt the current task. Just return..
3312	 */
3313	if (likely(!preemptible()))
3314		return;
3315
3316	preempt_schedule_common();
3317}
3318NOKPROBE_SYMBOL(preempt_schedule);
3319EXPORT_SYMBOL(preempt_schedule);
3320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3321/**
3322 * preempt_schedule_notrace - preempt_schedule called by tracing
3323 *
3324 * The tracing infrastructure uses preempt_enable_notrace to prevent
3325 * recursion and tracing preempt enabling caused by the tracing
3326 * infrastructure itself. But as tracing can happen in areas coming
3327 * from userspace or just about to enter userspace, a preempt enable
3328 * can occur before user_exit() is called. This will cause the scheduler
3329 * to be called when the system is still in usermode.
3330 *
3331 * To prevent this, the preempt_enable_notrace will use this function
3332 * instead of preempt_schedule() to exit user context if needed before
3333 * calling the scheduler.
3334 */
3335asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3336{
3337	enum ctx_state prev_ctx;
3338
3339	if (likely(!preemptible()))
3340		return;
3341
3342	do {
 
 
 
 
 
 
 
 
 
 
 
 
 
3343		preempt_disable_notrace();
 
3344		/*
3345		 * Needs preempt disabled in case user_exit() is traced
3346		 * and the tracer calls preempt_enable_notrace() causing
3347		 * an infinite recursion.
3348		 */
3349		prev_ctx = exception_enter();
3350		__schedule(true);
3351		exception_exit(prev_ctx);
3352
 
3353		preempt_enable_no_resched_notrace();
3354	} while (need_resched());
3355}
3356EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3357
3358#endif /* CONFIG_PREEMPT */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3359
3360/*
3361 * this is the entry point to schedule() from kernel preemption
3362 * off of irq context.
3363 * Note, that this is called and return with irqs disabled. This will
3364 * protect us against recursive calling from irq.
3365 */
3366asmlinkage __visible void __sched preempt_schedule_irq(void)
3367{
3368	enum ctx_state prev_state;
3369
3370	/* Catch callers which need to be fixed */
3371	BUG_ON(preempt_count() || !irqs_disabled());
3372
3373	prev_state = exception_enter();
3374
3375	do {
3376		preempt_disable();
3377		local_irq_enable();
3378		__schedule(true);
3379		local_irq_disable();
3380		sched_preempt_enable_no_resched();
3381	} while (need_resched());
3382
3383	exception_exit(prev_state);
3384}
3385
3386int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3387			  void *key)
3388{
 
3389	return try_to_wake_up(curr->private, mode, wake_flags);
3390}
3391EXPORT_SYMBOL(default_wake_function);
3392
 
 
 
 
 
 
 
 
 
 
 
 
3393#ifdef CONFIG_RT_MUTEXES
3394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3395/*
3396 * rt_mutex_setprio - set the current priority of a task
3397 * @p: task
3398 * @prio: prio value (kernel-internal form)
3399 *
3400 * This function changes the 'effective' priority of a task. It does
3401 * not touch ->normal_prio like __setscheduler().
3402 *
3403 * Used by the rt_mutex code to implement priority inheritance
3404 * logic. Call site only calls if the priority of the task changed.
3405 */
3406void rt_mutex_setprio(struct task_struct *p, int prio)
3407{
3408	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
 
 
 
3409	struct rq *rq;
3410	const struct sched_class *prev_class;
3411
3412	BUG_ON(prio > MAX_PRIO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3413
3414	rq = __task_rq_lock(p);
 
 
 
 
3415
3416	/*
3417	 * Idle task boosting is a nono in general. There is one
3418	 * exception, when PREEMPT_RT and NOHZ is active:
3419	 *
3420	 * The idle task calls get_next_timer_interrupt() and holds
3421	 * the timer wheel base->lock on the CPU and another CPU wants
3422	 * to access the timer (probably to cancel it). We can safely
3423	 * ignore the boosting request, as the idle CPU runs this code
3424	 * with interrupts disabled and will complete the lock
3425	 * protected section without being interrupted. So there is no
3426	 * real need to boost.
3427	 */
3428	if (unlikely(p == rq->idle)) {
3429		WARN_ON(p != rq->curr);
3430		WARN_ON(p->pi_blocked_on);
3431		goto out_unlock;
3432	}
3433
3434	trace_sched_pi_setprio(p, prio);
3435	oldprio = p->prio;
3436
3437	if (oldprio == prio)
3438		queue_flag &= ~DEQUEUE_MOVE;
3439
3440	prev_class = p->sched_class;
3441	queued = task_on_rq_queued(p);
3442	running = task_current(rq, p);
3443	if (queued)
3444		dequeue_task(rq, p, queue_flag);
3445	if (running)
3446		put_prev_task(rq, p);
3447
3448	/*
3449	 * Boosting condition are:
3450	 * 1. -rt task is running and holds mutex A
3451	 *      --> -dl task blocks on mutex A
3452	 *
3453	 * 2. -dl task is running and holds mutex A
3454	 *      --> -dl task blocks on mutex A and could preempt the
3455	 *          running task
3456	 */
3457	if (dl_prio(prio)) {
3458		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3459		if (!dl_prio(p->normal_prio) ||
3460		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3461			p->dl.dl_boosted = 1;
 
3462			queue_flag |= ENQUEUE_REPLENISH;
3463		} else
3464			p->dl.dl_boosted = 0;
3465		p->sched_class = &dl_sched_class;
3466	} else if (rt_prio(prio)) {
3467		if (dl_prio(oldprio))
3468			p->dl.dl_boosted = 0;
3469		if (oldprio < prio)
3470			queue_flag |= ENQUEUE_HEAD;
3471		p->sched_class = &rt_sched_class;
3472	} else {
3473		if (dl_prio(oldprio))
3474			p->dl.dl_boosted = 0;
3475		if (rt_prio(oldprio))
3476			p->rt.timeout = 0;
3477		p->sched_class = &fair_sched_class;
3478	}
3479
3480	p->prio = prio;
3481
3482	if (running)
3483		p->sched_class->set_curr_task(rq);
3484	if (queued)
3485		enqueue_task(rq, p, queue_flag);
 
 
3486
3487	check_class_changed(rq, p, prev_class, oldprio);
3488out_unlock:
3489	preempt_disable(); /* avoid rq from going away on us */
3490	__task_rq_unlock(rq);
 
 
 
 
3491
3492	balance_callback(rq);
3493	preempt_enable();
3494}
 
 
 
 
 
3495#endif
3496
3497void set_user_nice(struct task_struct *p, long nice)
3498{
3499	int old_prio, delta, queued;
3500	unsigned long flags;
 
3501	struct rq *rq;
3502
3503	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3504		return;
3505	/*
3506	 * We have to be careful, if called from sys_setpriority(),
3507	 * the task might be in the middle of scheduling on another CPU.
3508	 */
3509	rq = task_rq_lock(p, &flags);
 
 
3510	/*
3511	 * The RT priorities are set via sched_setscheduler(), but we still
3512	 * allow the 'normal' nice value to be set - but as expected
3513	 * it wont have any effect on scheduling until the task is
3514	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3515	 */
3516	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3517		p->static_prio = NICE_TO_PRIO(nice);
3518		goto out_unlock;
3519	}
3520	queued = task_on_rq_queued(p);
 
3521	if (queued)
3522		dequeue_task(rq, p, DEQUEUE_SAVE);
 
 
3523
3524	p->static_prio = NICE_TO_PRIO(nice);
3525	set_load_weight(p);
3526	old_prio = p->prio;
3527	p->prio = effective_prio(p);
3528	delta = p->prio - old_prio;
3529
3530	if (queued) {
3531		enqueue_task(rq, p, ENQUEUE_RESTORE);
3532		/*
3533		 * If the task increased its priority or is running and
3534		 * lowered its priority, then reschedule its CPU:
3535		 */
3536		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3537			resched_curr(rq);
3538	}
 
 
3539out_unlock:
3540	task_rq_unlock(rq, p, &flags);
3541}
3542EXPORT_SYMBOL(set_user_nice);
3543
3544/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3545 * can_nice - check if a task can reduce its nice value
3546 * @p: task
3547 * @nice: nice value
3548 */
3549int can_nice(const struct task_struct *p, const int nice)
3550{
3551	/* convert nice value [19,-20] to rlimit style value [1,40] */
3552	int nice_rlim = nice_to_rlimit(nice);
3553
3554	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3555		capable(CAP_SYS_NICE));
3556}
3557
3558#ifdef __ARCH_WANT_SYS_NICE
3559
3560/*
3561 * sys_nice - change the priority of the current process.
3562 * @increment: priority increment
3563 *
3564 * sys_setpriority is a more generic, but much slower function that
3565 * does similar things.
3566 */
3567SYSCALL_DEFINE1(nice, int, increment)
3568{
3569	long nice, retval;
3570
3571	/*
3572	 * Setpriority might change our priority at the same moment.
3573	 * We don't have to worry. Conceptually one call occurs first
3574	 * and we have a single winner.
3575	 */
3576	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3577	nice = task_nice(current) + increment;
3578
3579	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3580	if (increment < 0 && !can_nice(current, nice))
3581		return -EPERM;
3582
3583	retval = security_task_setnice(current, nice);
3584	if (retval)
3585		return retval;
3586
3587	set_user_nice(current, nice);
3588	return 0;
3589}
3590
3591#endif
3592
3593/**
3594 * task_prio - return the priority value of a given task.
3595 * @p: the task in question.
3596 *
3597 * Return: The priority value as seen by users in /proc.
3598 * RT tasks are offset by -200. Normal tasks are centered
3599 * around 0, value goes from -16 to +15.
 
 
 
 
3600 */
3601int task_prio(const struct task_struct *p)
3602{
3603	return p->prio - MAX_RT_PRIO;
3604}
3605
3606/**
3607 * idle_cpu - is a given cpu idle currently?
3608 * @cpu: the processor in question.
3609 *
3610 * Return: 1 if the CPU is currently idle. 0 otherwise.
3611 */
3612int idle_cpu(int cpu)
3613{
3614	struct rq *rq = cpu_rq(cpu);
3615
3616	if (rq->curr != rq->idle)
3617		return 0;
3618
3619	if (rq->nr_running)
3620		return 0;
3621
3622#ifdef CONFIG_SMP
3623	if (!llist_empty(&rq->wake_list))
3624		return 0;
3625#endif
3626
3627	return 1;
3628}
3629
3630/**
3631 * idle_task - return the idle task for a given cpu.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3632 * @cpu: the processor in question.
3633 *
3634 * Return: The idle task for the cpu @cpu.
3635 */
3636struct task_struct *idle_task(int cpu)
3637{
3638	return cpu_rq(cpu)->idle;
3639}
3640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3641/**
3642 * find_process_by_pid - find a process with a matching PID value.
3643 * @pid: the pid in question.
3644 *
3645 * The task of @pid, if found. %NULL otherwise.
3646 */
3647static struct task_struct *find_process_by_pid(pid_t pid)
3648{
3649	return pid ? find_task_by_vpid(pid) : current;
3650}
3651
3652/*
3653 * This function initializes the sched_dl_entity of a newly becoming
3654 * SCHED_DEADLINE task.
3655 *
3656 * Only the static values are considered here, the actual runtime and the
3657 * absolute deadline will be properly calculated when the task is enqueued
3658 * for the first time with its new policy.
3659 */
3660static void
3661__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3662{
3663	struct sched_dl_entity *dl_se = &p->dl;
3664
3665	dl_se->dl_runtime = attr->sched_runtime;
3666	dl_se->dl_deadline = attr->sched_deadline;
3667	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3668	dl_se->flags = attr->sched_flags;
3669	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3670
3671	/*
3672	 * Changing the parameters of a task is 'tricky' and we're not doing
3673	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3674	 *
3675	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3676	 * point. This would include retaining the task_struct until that time
3677	 * and change dl_overflow() to not immediately decrement the current
3678	 * amount.
3679	 *
3680	 * Instead we retain the current runtime/deadline and let the new
3681	 * parameters take effect after the current reservation period lapses.
3682	 * This is safe (albeit pessimistic) because the 0-lag point is always
3683	 * before the current scheduling deadline.
3684	 *
3685	 * We can still have temporary overloads because we do not delay the
3686	 * change in bandwidth until that time; so admission control is
3687	 * not on the safe side. It does however guarantee tasks will never
3688	 * consume more than promised.
3689	 */
3690}
3691
3692/*
3693 * sched_setparam() passes in -1 for its policy, to let the functions
3694 * it calls know not to change it.
3695 */
3696#define SETPARAM_POLICY	-1
3697
3698static void __setscheduler_params(struct task_struct *p,
3699		const struct sched_attr *attr)
3700{
3701	int policy = attr->sched_policy;
3702
3703	if (policy == SETPARAM_POLICY)
3704		policy = p->policy;
3705
3706	p->policy = policy;
3707
3708	if (dl_policy(policy))
3709		__setparam_dl(p, attr);
3710	else if (fair_policy(policy))
3711		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3712
3713	/*
3714	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3715	 * !rt_policy. Always setting this ensures that things like
3716	 * getparam()/getattr() don't report silly values for !rt tasks.
3717	 */
3718	p->rt_priority = attr->sched_priority;
3719	p->normal_prio = normal_prio(p);
3720	set_load_weight(p);
3721}
3722
3723/* Actually do priority change: must hold pi & rq lock. */
3724static void __setscheduler(struct rq *rq, struct task_struct *p,
3725			   const struct sched_attr *attr, bool keep_boost)
 
3726{
3727	__setscheduler_params(p, attr);
 
3728
3729	/*
3730	 * Keep a potential priority boosting if called from
3731	 * sched_setscheduler().
3732	 */
3733	if (keep_boost)
3734		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3735	else
3736		p->prio = normal_prio(p);
3737
3738	if (dl_prio(p->prio))
3739		p->sched_class = &dl_sched_class;
3740	else if (rt_prio(p->prio))
3741		p->sched_class = &rt_sched_class;
3742	else
3743		p->sched_class = &fair_sched_class;
3744}
3745
3746static void
3747__getparam_dl(struct task_struct *p, struct sched_attr *attr)
 
 
 
 
 
 
3748{
3749	struct sched_dl_entity *dl_se = &p->dl;
 
 
 
 
 
 
 
3750
3751	attr->sched_priority = p->rt_priority;
3752	attr->sched_runtime = dl_se->dl_runtime;
3753	attr->sched_deadline = dl_se->dl_deadline;
3754	attr->sched_period = dl_se->dl_period;
3755	attr->sched_flags = dl_se->flags;
3756}
3757
3758/*
3759 * This function validates the new parameters of a -deadline task.
3760 * We ask for the deadline not being zero, and greater or equal
3761 * than the runtime, as well as the period of being zero or
3762 * greater than deadline. Furthermore, we have to be sure that
3763 * user parameters are above the internal resolution of 1us (we
3764 * check sched_runtime only since it is always the smaller one) and
3765 * below 2^63 ns (we have to check both sched_deadline and
3766 * sched_period, as the latter can be zero).
3767 */
3768static bool
3769__checkparam_dl(const struct sched_attr *attr)
3770{
3771	/* deadline != 0 */
3772	if (attr->sched_deadline == 0)
3773		return false;
3774
3775	/*
3776	 * Since we truncate DL_SCALE bits, make sure we're at least
3777	 * that big.
 
 
3778	 */
3779	if (attr->sched_runtime < (1ULL << DL_SCALE))
3780		return false;
3781
3782	/*
3783	 * Since we use the MSB for wrap-around and sign issues, make
3784	 * sure it's not set (mind that period can be equal to zero).
3785	 */
3786	if (attr->sched_deadline & (1ULL << 63) ||
3787	    attr->sched_period & (1ULL << 63))
3788		return false;
 
3789
3790	/* runtime <= deadline <= period (if period != 0) */
3791	if ((attr->sched_period != 0 &&
3792	     attr->sched_period < attr->sched_deadline) ||
3793	    attr->sched_deadline < attr->sched_runtime)
3794		return false;
3795
3796	return true;
3797}
 
3798
3799/*
3800 * check the target process has a UID that matches the current process's
3801 */
3802static bool check_same_owner(struct task_struct *p)
3803{
3804	const struct cred *cred = current_cred(), *pcred;
3805	bool match;
3806
3807	rcu_read_lock();
3808	pcred = __task_cred(p);
3809	match = (uid_eq(cred->euid, pcred->euid) ||
3810		 uid_eq(cred->euid, pcred->uid));
3811	rcu_read_unlock();
3812	return match;
3813}
3814
3815static bool dl_param_changed(struct task_struct *p,
3816		const struct sched_attr *attr)
3817{
3818	struct sched_dl_entity *dl_se = &p->dl;
3819
3820	if (dl_se->dl_runtime != attr->sched_runtime ||
3821		dl_se->dl_deadline != attr->sched_deadline ||
3822		dl_se->dl_period != attr->sched_period ||
3823		dl_se->flags != attr->sched_flags)
3824		return true;
3825
3826	return false;
3827}
3828
3829static int __sched_setscheduler(struct task_struct *p,
3830				const struct sched_attr *attr,
3831				bool user, bool pi)
3832{
3833	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3834		      MAX_RT_PRIO - 1 - attr->sched_priority;
3835	int retval, oldprio, oldpolicy = -1, queued, running;
3836	int new_effective_prio, policy = attr->sched_policy;
3837	unsigned long flags;
3838	const struct sched_class *prev_class;
 
 
 
 
3839	struct rq *rq;
3840	int reset_on_fork;
3841	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
3842
3843	/* may grab non-irq protected spin_locks */
3844	BUG_ON(in_interrupt());
3845recheck:
3846	/* double check policy once rq lock held */
3847	if (policy < 0) {
3848		reset_on_fork = p->sched_reset_on_fork;
3849		policy = oldpolicy = p->policy;
3850	} else {
3851		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3852
3853		if (!valid_policy(policy))
3854			return -EINVAL;
3855	}
3856
3857	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3858		return -EINVAL;
3859
3860	/*
3861	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3862	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3863	 * SCHED_BATCH and SCHED_IDLE is 0.
3864	 */
3865	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3866	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3867		return -EINVAL;
3868	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3869	    (rt_policy(policy) != (attr->sched_priority != 0)))
3870		return -EINVAL;
3871
3872	/*
3873	 * Allow unprivileged RT tasks to decrease priority:
3874	 */
3875	if (user && !capable(CAP_SYS_NICE)) {
3876		if (fair_policy(policy)) {
3877			if (attr->sched_nice < task_nice(p) &&
3878			    !can_nice(p, attr->sched_nice))
3879				return -EPERM;
3880		}
3881
3882		if (rt_policy(policy)) {
3883			unsigned long rlim_rtprio =
3884					task_rlimit(p, RLIMIT_RTPRIO);
3885
3886			/* can't set/change the rt policy */
3887			if (policy != p->policy && !rlim_rtprio)
3888				return -EPERM;
3889
3890			/* can't increase priority */
3891			if (attr->sched_priority > p->rt_priority &&
3892			    attr->sched_priority > rlim_rtprio)
3893				return -EPERM;
3894		}
3895
3896		 /*
3897		  * Can't set/change SCHED_DEADLINE policy at all for now
3898		  * (safest behavior); in the future we would like to allow
3899		  * unprivileged DL tasks to increase their relative deadline
3900		  * or reduce their runtime (both ways reducing utilization)
3901		  */
3902		if (dl_policy(policy))
3903			return -EPERM;
3904
3905		/*
3906		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3907		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3908		 */
3909		if (idle_policy(p->policy) && !idle_policy(policy)) {
3910			if (!can_nice(p, task_nice(p)))
3911				return -EPERM;
3912		}
3913
3914		/* can't change other user's priorities */
3915		if (!check_same_owner(p))
3916			return -EPERM;
3917
3918		/* Normal users shall not reset the sched_reset_on_fork flag */
3919		if (p->sched_reset_on_fork && !reset_on_fork)
3920			return -EPERM;
3921	}
3922
3923	if (user) {
3924		retval = security_task_setscheduler(p);
 
3925		if (retval)
3926			return retval;
3927	}
3928
 
 
 
3929	/*
3930	 * make sure no PI-waiters arrive (or leave) while we are
3931	 * changing the priority of the task:
3932	 *
3933	 * To be able to change p->policy safely, the appropriate
3934	 * runqueue lock must be held.
3935	 */
3936	rq = task_rq_lock(p, &flags);
 
3937
3938	/*
3939	 * Changing the policy of the stop threads its a very bad idea
3940	 */
3941	if (p == rq->stop) {
3942		task_rq_unlock(rq, p, &flags);
3943		return -EINVAL;
3944	}
3945
3946	/*
3947	 * If not changing anything there's no need to proceed further,
3948	 * but store a possible modification of reset_on_fork.
3949	 */
3950	if (unlikely(policy == p->policy)) {
3951		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3952			goto change;
3953		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3954			goto change;
3955		if (dl_policy(policy) && dl_param_changed(p, attr))
3956			goto change;
 
 
3957
3958		p->sched_reset_on_fork = reset_on_fork;
3959		task_rq_unlock(rq, p, &flags);
3960		return 0;
3961	}
3962change:
3963
3964	if (user) {
3965#ifdef CONFIG_RT_GROUP_SCHED
3966		/*
3967		 * Do not allow realtime tasks into groups that have no runtime
3968		 * assigned.
3969		 */
3970		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3971				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3972				!task_group_is_autogroup(task_group(p))) {
3973			task_rq_unlock(rq, p, &flags);
3974			return -EPERM;
3975		}
3976#endif
3977#ifdef CONFIG_SMP
3978		if (dl_bandwidth_enabled() && dl_policy(policy)) {
 
3979			cpumask_t *span = rq->rd->span;
3980
3981			/*
3982			 * Don't allow tasks with an affinity mask smaller than
3983			 * the entire root_domain to become SCHED_DEADLINE. We
3984			 * will also fail if there's no bandwidth available.
3985			 */
3986			if (!cpumask_subset(span, &p->cpus_allowed) ||
3987			    rq->rd->dl_bw.bw == 0) {
3988				task_rq_unlock(rq, p, &flags);
3989				return -EPERM;
3990			}
3991		}
3992#endif
3993	}
3994
3995	/* recheck policy now with rq lock held */
3996	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3997		policy = oldpolicy = -1;
3998		task_rq_unlock(rq, p, &flags);
 
 
3999		goto recheck;
4000	}
4001
4002	/*
4003	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4004	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4005	 * is available.
4006	 */
4007	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4008		task_rq_unlock(rq, p, &flags);
4009		return -EBUSY;
4010	}
4011
4012	p->sched_reset_on_fork = reset_on_fork;
4013	oldprio = p->prio;
4014
 
4015	if (pi) {
4016		/*
4017		 * Take priority boosted tasks into account. If the new
4018		 * effective priority is unchanged, we just store the new
4019		 * normal parameters and do not touch the scheduler class and
4020		 * the runqueue. This will be done when the task deboost
4021		 * itself.
4022		 */
4023		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4024		if (new_effective_prio == oldprio)
4025			queue_flags &= ~DEQUEUE_MOVE;
4026	}
4027
4028	queued = task_on_rq_queued(p);
4029	running = task_current(rq, p);
4030	if (queued)
4031		dequeue_task(rq, p, queue_flags);
4032	if (running)
4033		put_prev_task(rq, p);
4034
4035	prev_class = p->sched_class;
4036	__setscheduler(rq, p, attr, pi);
4037
4038	if (running)
4039		p->sched_class->set_curr_task(rq);
 
 
 
 
4040	if (queued) {
4041		/*
4042		 * We enqueue to tail when the priority of a task is
4043		 * increased (user space view).
4044		 */
4045		if (oldprio < p->prio)
4046			queue_flags |= ENQUEUE_HEAD;
4047
4048		enqueue_task(rq, p, queue_flags);
4049	}
 
 
4050
4051	check_class_changed(rq, p, prev_class, oldprio);
4052	preempt_disable(); /* avoid rq from going away on us */
4053	task_rq_unlock(rq, p, &flags);
4054
4055	if (pi)
 
 
 
 
 
 
4056		rt_mutex_adjust_pi(p);
 
4057
4058	/*
4059	 * Run balance callbacks after we've adjusted the PI chain.
4060	 */
4061	balance_callback(rq);
4062	preempt_enable();
4063
4064	return 0;
 
 
 
 
 
 
4065}
4066
4067static int _sched_setscheduler(struct task_struct *p, int policy,
4068			       const struct sched_param *param, bool check)
4069{
4070	struct sched_attr attr = {
4071		.sched_policy   = policy,
4072		.sched_priority = param->sched_priority,
4073		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4074	};
4075
4076	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4077	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4078		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4079		policy &= ~SCHED_RESET_ON_FORK;
4080		attr.sched_policy = policy;
4081	}
4082
4083	return __sched_setscheduler(p, &attr, check, true);
4084}
4085/**
4086 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4087 * @p: the task in question.
4088 * @policy: new policy.
4089 * @param: structure containing the new RT priority.
4090 *
 
 
4091 * Return: 0 on success. An error code otherwise.
4092 *
4093 * NOTE that the task may be already dead.
4094 */
4095int sched_setscheduler(struct task_struct *p, int policy,
4096		       const struct sched_param *param)
4097{
4098	return _sched_setscheduler(p, policy, param, true);
4099}
4100EXPORT_SYMBOL_GPL(sched_setscheduler);
4101
4102int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4103{
4104	return __sched_setscheduler(p, attr, true, true);
4105}
4106EXPORT_SYMBOL_GPL(sched_setattr);
 
 
 
 
 
4107
4108/**
4109 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4110 * @p: the task in question.
4111 * @policy: new policy.
4112 * @param: structure containing the new RT priority.
4113 *
4114 * Just like sched_setscheduler, only don't bother checking if the
4115 * current context has permission.  For example, this is needed in
4116 * stop_machine(): we create temporary high priority worker threads,
4117 * but our caller might not have that capability.
4118 *
4119 * Return: 0 on success. An error code otherwise.
4120 */
4121int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4122			       const struct sched_param *param)
4123{
4124	return _sched_setscheduler(p, policy, param, false);
4125}
4126EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4127
4128static int
4129do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4130{
4131	struct sched_param lparam;
4132	struct task_struct *p;
4133	int retval;
4134
4135	if (!param || pid < 0)
4136		return -EINVAL;
4137	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4138		return -EFAULT;
4139
4140	rcu_read_lock();
4141	retval = -ESRCH;
4142	p = find_process_by_pid(pid);
4143	if (p != NULL)
 
 
 
 
4144		retval = sched_setscheduler(p, policy, &lparam);
4145	rcu_read_unlock();
 
4146
4147	return retval;
4148}
4149
4150/*
4151 * Mimics kernel/events/core.c perf_copy_attr().
4152 */
4153static int sched_copy_attr(struct sched_attr __user *uattr,
4154			   struct sched_attr *attr)
4155{
4156	u32 size;
4157	int ret;
4158
4159	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4160		return -EFAULT;
4161
4162	/*
4163	 * zero the full structure, so that a short copy will be nice.
4164	 */
4165	memset(attr, 0, sizeof(*attr));
4166
4167	ret = get_user(size, &uattr->size);
4168	if (ret)
4169		return ret;
4170
4171	if (size > PAGE_SIZE)	/* silly large */
4172		goto err_size;
4173
4174	if (!size)		/* abi compat */
4175		size = SCHED_ATTR_SIZE_VER0;
4176
4177	if (size < SCHED_ATTR_SIZE_VER0)
4178		goto err_size;
4179
4180	/*
4181	 * If we're handed a bigger struct than we know of,
4182	 * ensure all the unknown bits are 0 - i.e. new
4183	 * user-space does not rely on any kernel feature
4184	 * extensions we dont know about yet.
4185	 */
4186	if (size > sizeof(*attr)) {
4187		unsigned char __user *addr;
4188		unsigned char __user *end;
4189		unsigned char val;
4190
4191		addr = (void __user *)uattr + sizeof(*attr);
4192		end  = (void __user *)uattr + size;
4193
4194		for (; addr < end; addr++) {
4195			ret = get_user(val, addr);
4196			if (ret)
4197				return ret;
4198			if (val)
4199				goto err_size;
4200		}
4201		size = sizeof(*attr);
4202	}
4203
4204	ret = copy_from_user(attr, uattr, size);
4205	if (ret)
4206		return -EFAULT;
4207
4208	/*
4209	 * XXX: do we want to be lenient like existing syscalls; or do we want
4210	 * to be strict and return an error on out-of-bounds values?
4211	 */
4212	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4213
4214	return 0;
4215
4216err_size:
4217	put_user(sizeof(*attr), &uattr->size);
4218	return -E2BIG;
4219}
4220
 
 
 
 
 
 
 
 
 
 
4221/**
4222 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4223 * @pid: the pid in question.
4224 * @policy: new policy.
4225 * @param: structure containing the new RT priority.
4226 *
4227 * Return: 0 on success. An error code otherwise.
4228 */
4229SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4230		struct sched_param __user *, param)
4231{
4232	/* negative values for policy are not valid */
4233	if (policy < 0)
4234		return -EINVAL;
4235
4236	return do_sched_setscheduler(pid, policy, param);
4237}
4238
4239/**
4240 * sys_sched_setparam - set/change the RT priority of a thread
4241 * @pid: the pid in question.
4242 * @param: structure containing the new RT priority.
4243 *
4244 * Return: 0 on success. An error code otherwise.
4245 */
4246SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4247{
4248	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4249}
4250
4251/**
4252 * sys_sched_setattr - same as above, but with extended sched_attr
4253 * @pid: the pid in question.
4254 * @uattr: structure containing the extended parameters.
4255 * @flags: for future extension.
4256 */
4257SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4258			       unsigned int, flags)
4259{
4260	struct sched_attr attr;
4261	struct task_struct *p;
4262	int retval;
4263
4264	if (!uattr || pid < 0 || flags)
4265		return -EINVAL;
4266
4267	retval = sched_copy_attr(uattr, &attr);
4268	if (retval)
4269		return retval;
4270
4271	if ((int)attr.sched_policy < 0)
4272		return -EINVAL;
 
 
4273
4274	rcu_read_lock();
4275	retval = -ESRCH;
4276	p = find_process_by_pid(pid);
4277	if (p != NULL)
 
 
 
 
 
 
4278		retval = sched_setattr(p, &attr);
4279	rcu_read_unlock();
 
4280
4281	return retval;
4282}
4283
4284/**
4285 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4286 * @pid: the pid in question.
4287 *
4288 * Return: On success, the policy of the thread. Otherwise, a negative error
4289 * code.
4290 */
4291SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4292{
4293	struct task_struct *p;
4294	int retval;
4295
4296	if (pid < 0)
4297		return -EINVAL;
4298
4299	retval = -ESRCH;
4300	rcu_read_lock();
4301	p = find_process_by_pid(pid);
4302	if (p) {
4303		retval = security_task_getscheduler(p);
4304		if (!retval)
4305			retval = p->policy
4306				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4307	}
4308	rcu_read_unlock();
4309	return retval;
4310}
4311
4312/**
4313 * sys_sched_getparam - get the RT priority of a thread
4314 * @pid: the pid in question.
4315 * @param: structure containing the RT priority.
4316 *
4317 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4318 * code.
4319 */
4320SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4321{
4322	struct sched_param lp = { .sched_priority = 0 };
4323	struct task_struct *p;
4324	int retval;
4325
4326	if (!param || pid < 0)
4327		return -EINVAL;
4328
4329	rcu_read_lock();
4330	p = find_process_by_pid(pid);
4331	retval = -ESRCH;
4332	if (!p)
4333		goto out_unlock;
4334
4335	retval = security_task_getscheduler(p);
4336	if (retval)
4337		goto out_unlock;
4338
4339	if (task_has_rt_policy(p))
4340		lp.sched_priority = p->rt_priority;
4341	rcu_read_unlock();
4342
4343	/*
4344	 * This one might sleep, we cannot do it with a spinlock held ...
4345	 */
4346	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4347
4348	return retval;
4349
4350out_unlock:
4351	rcu_read_unlock();
4352	return retval;
4353}
4354
4355static int sched_read_attr(struct sched_attr __user *uattr,
4356			   struct sched_attr *attr,
4357			   unsigned int usize)
 
 
 
 
 
 
 
 
 
4358{
4359	int ret;
4360
4361	if (!access_ok(VERIFY_WRITE, uattr, usize))
4362		return -EFAULT;
4363
4364	/*
4365	 * If we're handed a smaller struct than we know of,
4366	 * ensure all the unknown bits are 0 - i.e. old
4367	 * user-space does not get uncomplete information.
 
 
 
 
 
 
 
 
4368	 */
4369	if (usize < sizeof(*attr)) {
4370		unsigned char *addr;
4371		unsigned char *end;
4372
4373		addr = (void *)attr + usize;
4374		end  = (void *)attr + sizeof(*attr);
4375
4376		for (; addr < end; addr++) {
4377			if (*addr)
4378				return -EFBIG;
4379		}
4380
4381		attr->size = usize;
4382	}
4383
4384	ret = copy_to_user(uattr, attr, attr->size);
4385	if (ret)
4386		return -EFAULT;
4387
4388	return 0;
4389}
4390
4391/**
4392 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4393 * @pid: the pid in question.
4394 * @uattr: structure containing the extended parameters.
4395 * @size: sizeof(attr) for fwd/bwd comp.
4396 * @flags: for future extension.
4397 */
4398SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4399		unsigned int, size, unsigned int, flags)
4400{
4401	struct sched_attr attr = {
4402		.size = sizeof(struct sched_attr),
4403	};
4404	struct task_struct *p;
4405	int retval;
4406
4407	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4408	    size < SCHED_ATTR_SIZE_VER0 || flags)
4409		return -EINVAL;
4410
4411	rcu_read_lock();
4412	p = find_process_by_pid(pid);
4413	retval = -ESRCH;
4414	if (!p)
4415		goto out_unlock;
4416
4417	retval = security_task_getscheduler(p);
4418	if (retval)
4419		goto out_unlock;
4420
4421	attr.sched_policy = p->policy;
4422	if (p->sched_reset_on_fork)
4423		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4424	if (task_has_dl_policy(p))
4425		__getparam_dl(p, &attr);
4426	else if (task_has_rt_policy(p))
4427		attr.sched_priority = p->rt_priority;
4428	else
4429		attr.sched_nice = task_nice(p);
 
 
 
 
 
 
4430
4431	rcu_read_unlock();
4432
4433	retval = sched_read_attr(uattr, &attr, size);
4434	return retval;
4435
4436out_unlock:
4437	rcu_read_unlock();
4438	return retval;
4439}
4440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4441long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4442{
4443	cpumask_var_t cpus_allowed, new_mask;
 
4444	struct task_struct *p;
4445	int retval;
4446
4447	rcu_read_lock();
4448
4449	p = find_process_by_pid(pid);
4450	if (!p) {
4451		rcu_read_unlock();
4452		return -ESRCH;
4453	}
4454
4455	/* Prevent p going away */
4456	get_task_struct(p);
4457	rcu_read_unlock();
4458
4459	if (p->flags & PF_NO_SETAFFINITY) {
4460		retval = -EINVAL;
4461		goto out_put_task;
4462	}
4463	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4464		retval = -ENOMEM;
4465		goto out_put_task;
4466	}
4467	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4468		retval = -ENOMEM;
4469		goto out_free_cpus_allowed;
4470	}
4471	retval = -EPERM;
4472	if (!check_same_owner(p)) {
4473		rcu_read_lock();
4474		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4475			rcu_read_unlock();
4476			goto out_free_new_mask;
 
4477		}
4478		rcu_read_unlock();
4479	}
4480
4481	retval = security_task_setscheduler(p);
4482	if (retval)
4483		goto out_free_new_mask;
4484
4485
4486	cpuset_cpus_allowed(p, cpus_allowed);
4487	cpumask_and(new_mask, in_mask, cpus_allowed);
4488
4489	/*
4490	 * Since bandwidth control happens on root_domain basis,
4491	 * if admission test is enabled, we only admit -deadline
4492	 * tasks allowed to run on all the CPUs in the task's
4493	 * root_domain.
4494	 */
4495#ifdef CONFIG_SMP
4496	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4497		rcu_read_lock();
4498		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4499			retval = -EBUSY;
4500			rcu_read_unlock();
4501			goto out_free_new_mask;
4502		}
4503		rcu_read_unlock();
4504	}
4505#endif
4506again:
4507	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4508
4509	if (!retval) {
4510		cpuset_cpus_allowed(p, cpus_allowed);
4511		if (!cpumask_subset(new_mask, cpus_allowed)) {
4512			/*
4513			 * We must have raced with a concurrent cpuset
4514			 * update. Just reset the cpus_allowed to the
4515			 * cpuset's cpus_allowed
4516			 */
4517			cpumask_copy(new_mask, cpus_allowed);
4518			goto again;
4519		}
4520	}
4521out_free_new_mask:
4522	free_cpumask_var(new_mask);
4523out_free_cpus_allowed:
4524	free_cpumask_var(cpus_allowed);
4525out_put_task:
4526	put_task_struct(p);
4527	return retval;
4528}
4529
4530static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4531			     struct cpumask *new_mask)
4532{
4533	if (len < cpumask_size())
4534		cpumask_clear(new_mask);
4535	else if (len > cpumask_size())
4536		len = cpumask_size();
4537
4538	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4539}
4540
4541/**
4542 * sys_sched_setaffinity - set the cpu affinity of a process
4543 * @pid: pid of the process
4544 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4545 * @user_mask_ptr: user-space pointer to the new cpu mask
4546 *
4547 * Return: 0 on success. An error code otherwise.
4548 */
4549SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4550		unsigned long __user *, user_mask_ptr)
4551{
4552	cpumask_var_t new_mask;
4553	int retval;
4554
4555	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4556		return -ENOMEM;
4557
4558	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4559	if (retval == 0)
4560		retval = sched_setaffinity(pid, new_mask);
4561	free_cpumask_var(new_mask);
4562	return retval;
4563}
4564
4565long sched_getaffinity(pid_t pid, struct cpumask *mask)
4566{
4567	struct task_struct *p;
4568	unsigned long flags;
4569	int retval;
4570
4571	rcu_read_lock();
4572
4573	retval = -ESRCH;
4574	p = find_process_by_pid(pid);
4575	if (!p)
4576		goto out_unlock;
4577
4578	retval = security_task_getscheduler(p);
4579	if (retval)
4580		goto out_unlock;
4581
4582	raw_spin_lock_irqsave(&p->pi_lock, flags);
4583	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4584	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4585
4586out_unlock:
4587	rcu_read_unlock();
4588
4589	return retval;
4590}
4591
4592/**
4593 * sys_sched_getaffinity - get the cpu affinity of a process
4594 * @pid: pid of the process
4595 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4596 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4597 *
4598 * Return: 0 on success. An error code otherwise.
 
4599 */
4600SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4601		unsigned long __user *, user_mask_ptr)
4602{
4603	int ret;
4604	cpumask_var_t mask;
4605
4606	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4607		return -EINVAL;
4608	if (len & (sizeof(unsigned long)-1))
4609		return -EINVAL;
4610
4611	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4612		return -ENOMEM;
4613
4614	ret = sched_getaffinity(pid, mask);
4615	if (ret == 0) {
4616		size_t retlen = min_t(size_t, len, cpumask_size());
4617
4618		if (copy_to_user(user_mask_ptr, mask, retlen))
4619			ret = -EFAULT;
4620		else
4621			ret = retlen;
4622	}
4623	free_cpumask_var(mask);
4624
4625	return ret;
4626}
4627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4628/**
4629 * sys_sched_yield - yield the current processor to other threads.
4630 *
4631 * This function yields the current CPU to other tasks. If there are no
4632 * other threads running on this CPU then this function will return.
4633 *
4634 * Return: 0.
4635 */
4636SYSCALL_DEFINE0(sched_yield)
4637{
4638	struct rq *rq = this_rq_lock();
4639
4640	schedstat_inc(rq, yld_count);
4641	current->sched_class->yield_task(rq);
4642
4643	/*
4644	 * Since we are going to call schedule() anyway, there's
4645	 * no need to preempt or enable interrupts:
4646	 */
4647	__release(rq->lock);
4648	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4649	do_raw_spin_unlock(&rq->lock);
4650	sched_preempt_enable_no_resched();
4651
4652	schedule();
4653
4654	return 0;
4655}
4656
4657int __sched _cond_resched(void)
 
4658{
4659	if (should_resched(0)) {
4660		preempt_schedule_common();
4661		return 1;
4662	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4663	return 0;
4664}
4665EXPORT_SYMBOL(_cond_resched);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4666
4667/*
4668 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4669 * call schedule, and on return reacquire the lock.
4670 *
4671 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4672 * operations here to prevent schedule() from being called twice (once via
4673 * spin_unlock(), once by hand).
4674 */
4675int __cond_resched_lock(spinlock_t *lock)
4676{
4677	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4678	int ret = 0;
4679
4680	lockdep_assert_held(lock);
4681
4682	if (spin_needbreak(lock) || resched) {
4683		spin_unlock(lock);
4684		if (resched)
4685			preempt_schedule_common();
4686		else
4687			cpu_relax();
4688		ret = 1;
4689		spin_lock(lock);
4690	}
4691	return ret;
4692}
4693EXPORT_SYMBOL(__cond_resched_lock);
4694
4695int __sched __cond_resched_softirq(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4696{
4697	BUG_ON(!in_softirq());
 
 
 
 
 
 
 
 
 
4698
4699	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4700		local_bh_enable();
4701		preempt_schedule_common();
4702		local_bh_disable();
4703		return 1;
 
 
 
 
 
 
 
 
4704	}
4705	return 0;
4706}
4707EXPORT_SYMBOL(__cond_resched_softirq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4708
4709/**
4710 * yield - yield the current processor to other threads.
4711 *
4712 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4713 *
4714 * The scheduler is at all times free to pick the calling task as the most
4715 * eligible task to run, if removing the yield() call from your code breaks
4716 * it, its already broken.
4717 *
4718 * Typical broken usage is:
4719 *
4720 * while (!event)
4721 * 	yield();
4722 *
4723 * where one assumes that yield() will let 'the other' process run that will
4724 * make event true. If the current task is a SCHED_FIFO task that will never
4725 * happen. Never use yield() as a progress guarantee!!
4726 *
4727 * If you want to use yield() to wait for something, use wait_event().
4728 * If you want to use yield() to be 'nice' for others, use cond_resched().
4729 * If you still want to use yield(), do not!
4730 */
4731void __sched yield(void)
4732{
4733	set_current_state(TASK_RUNNING);
4734	sys_sched_yield();
4735}
4736EXPORT_SYMBOL(yield);
4737
4738/**
4739 * yield_to - yield the current processor to another thread in
4740 * your thread group, or accelerate that thread toward the
4741 * processor it's on.
4742 * @p: target task
4743 * @preempt: whether task preemption is allowed or not
4744 *
4745 * It's the caller's job to ensure that the target task struct
4746 * can't go away on us before we can do any checks.
4747 *
4748 * Return:
4749 *	true (>0) if we indeed boosted the target task.
4750 *	false (0) if we failed to boost the target.
4751 *	-ESRCH if there's no task to yield to.
4752 */
4753int __sched yield_to(struct task_struct *p, bool preempt)
4754{
4755	struct task_struct *curr = current;
4756	struct rq *rq, *p_rq;
4757	unsigned long flags;
4758	int yielded = 0;
4759
4760	local_irq_save(flags);
4761	rq = this_rq();
4762
4763again:
4764	p_rq = task_rq(p);
4765	/*
4766	 * If we're the only runnable task on the rq and target rq also
4767	 * has only one task, there's absolutely no point in yielding.
4768	 */
4769	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4770		yielded = -ESRCH;
4771		goto out_irq;
4772	}
4773
4774	double_rq_lock(rq, p_rq);
4775	if (task_rq(p) != p_rq) {
4776		double_rq_unlock(rq, p_rq);
4777		goto again;
4778	}
4779
4780	if (!curr->sched_class->yield_to_task)
4781		goto out_unlock;
4782
4783	if (curr->sched_class != p->sched_class)
4784		goto out_unlock;
4785
4786	if (task_running(p_rq, p) || p->state)
4787		goto out_unlock;
4788
4789	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4790	if (yielded) {
4791		schedstat_inc(rq, yld_count);
4792		/*
4793		 * Make p's CPU reschedule; pick_next_entity takes care of
4794		 * fairness.
4795		 */
4796		if (preempt && rq != p_rq)
4797			resched_curr(p_rq);
4798	}
4799
4800out_unlock:
4801	double_rq_unlock(rq, p_rq);
4802out_irq:
4803	local_irq_restore(flags);
4804
4805	if (yielded > 0)
4806		schedule();
4807
4808	return yielded;
4809}
4810EXPORT_SYMBOL_GPL(yield_to);
4811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4812/*
4813 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4814 * that process accounting knows that this is a task in IO wait state.
4815 */
4816long __sched io_schedule_timeout(long timeout)
4817{
4818	int old_iowait = current->in_iowait;
4819	struct rq *rq;
4820	long ret;
4821
4822	current->in_iowait = 1;
4823	blk_schedule_flush_plug(current);
4824
4825	delayacct_blkio_start();
4826	rq = raw_rq();
4827	atomic_inc(&rq->nr_iowait);
4828	ret = schedule_timeout(timeout);
4829	current->in_iowait = old_iowait;
4830	atomic_dec(&rq->nr_iowait);
4831	delayacct_blkio_end();
4832
4833	return ret;
4834}
4835EXPORT_SYMBOL(io_schedule_timeout);
4836
 
 
 
 
 
 
 
 
 
 
4837/**
4838 * sys_sched_get_priority_max - return maximum RT priority.
4839 * @policy: scheduling class.
4840 *
4841 * Return: On success, this syscall returns the maximum
4842 * rt_priority that can be used by a given scheduling class.
4843 * On failure, a negative error code is returned.
4844 */
4845SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4846{
4847	int ret = -EINVAL;
4848
4849	switch (policy) {
4850	case SCHED_FIFO:
4851	case SCHED_RR:
4852		ret = MAX_USER_RT_PRIO-1;
4853		break;
4854	case SCHED_DEADLINE:
4855	case SCHED_NORMAL:
4856	case SCHED_BATCH:
4857	case SCHED_IDLE:
4858		ret = 0;
4859		break;
4860	}
4861	return ret;
4862}
4863
4864/**
4865 * sys_sched_get_priority_min - return minimum RT priority.
4866 * @policy: scheduling class.
4867 *
4868 * Return: On success, this syscall returns the minimum
4869 * rt_priority that can be used by a given scheduling class.
4870 * On failure, a negative error code is returned.
4871 */
4872SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4873{
4874	int ret = -EINVAL;
4875
4876	switch (policy) {
4877	case SCHED_FIFO:
4878	case SCHED_RR:
4879		ret = 1;
4880		break;
4881	case SCHED_DEADLINE:
4882	case SCHED_NORMAL:
4883	case SCHED_BATCH:
4884	case SCHED_IDLE:
4885		ret = 0;
4886	}
4887	return ret;
4888}
4889
4890/**
4891 * sys_sched_rr_get_interval - return the default timeslice of a process.
4892 * @pid: pid of the process.
4893 * @interval: userspace pointer to the timeslice value.
4894 *
4895 * this syscall writes the default timeslice value of a given process
4896 * into the user-space timespec buffer. A value of '0' means infinity.
4897 *
4898 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4899 * an error code.
4900 */
4901SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4902		struct timespec __user *, interval)
4903{
4904	struct task_struct *p;
4905	unsigned int time_slice;
4906	unsigned long flags;
4907	struct rq *rq;
4908	int retval;
4909	struct timespec t;
4910
4911	if (pid < 0)
4912		return -EINVAL;
4913
4914	retval = -ESRCH;
4915	rcu_read_lock();
4916	p = find_process_by_pid(pid);
4917	if (!p)
4918		goto out_unlock;
4919
4920	retval = security_task_getscheduler(p);
4921	if (retval)
4922		goto out_unlock;
4923
4924	rq = task_rq_lock(p, &flags);
4925	time_slice = 0;
4926	if (p->sched_class->get_rr_interval)
4927		time_slice = p->sched_class->get_rr_interval(rq, p);
4928	task_rq_unlock(rq, p, &flags);
4929
4930	rcu_read_unlock();
4931	jiffies_to_timespec(time_slice, &t);
4932	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4933	return retval;
4934
4935out_unlock:
4936	rcu_read_unlock();
4937	return retval;
4938}
4939
4940static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4941
4942void sched_show_task(struct task_struct *p)
4943{
4944	unsigned long free = 0;
4945	int ppid;
4946	unsigned long state = p->state;
4947
4948	if (state)
4949		state = __ffs(state) + 1;
4950	printk(KERN_INFO "%-15.15s %c", p->comm,
4951		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4952#if BITS_PER_LONG == 32
4953	if (state == TASK_RUNNING)
4954		printk(KERN_CONT " running  ");
4955	else
4956		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4957#else
4958	if (state == TASK_RUNNING)
4959		printk(KERN_CONT "  running task    ");
4960	else
4961		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4962#endif
4963#ifdef CONFIG_DEBUG_STACK_USAGE
4964	free = stack_not_used(p);
4965#endif
4966	ppid = 0;
4967	rcu_read_lock();
4968	if (pid_alive(p))
4969		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4970	rcu_read_unlock();
4971	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4972		task_pid_nr(p), ppid,
4973		(unsigned long)task_thread_info(p)->flags);
4974
4975	print_worker_info(KERN_INFO, p);
4976	show_stack(p, NULL);
 
 
4977}
 
4978
4979void show_state_filter(unsigned long state_filter)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4980{
4981	struct task_struct *g, *p;
4982
4983#if BITS_PER_LONG == 32
4984	printk(KERN_INFO
4985		"  task                PC stack   pid father\n");
4986#else
4987	printk(KERN_INFO
4988		"  task                        PC stack   pid father\n");
4989#endif
4990	rcu_read_lock();
4991	for_each_process_thread(g, p) {
4992		/*
4993		 * reset the NMI-timeout, listing all files on a slow
4994		 * console might take a lot of time:
 
 
 
4995		 */
4996		touch_nmi_watchdog();
4997		if (!state_filter || (p->state & state_filter))
 
4998			sched_show_task(p);
4999	}
5000
5001	touch_all_softlockup_watchdogs();
5002
5003#ifdef CONFIG_SCHED_DEBUG
5004	sysrq_sched_debug_show();
 
5005#endif
5006	rcu_read_unlock();
5007	/*
5008	 * Only show locks if all tasks are dumped:
5009	 */
5010	if (!state_filter)
5011		debug_show_all_locks();
5012}
5013
5014void init_idle_bootup_task(struct task_struct *idle)
5015{
5016	idle->sched_class = &idle_sched_class;
5017}
5018
5019/**
5020 * init_idle - set up an idle thread for a given CPU
5021 * @idle: task in question
5022 * @cpu: cpu the idle task belongs to
5023 *
5024 * NOTE: this function does not set the idle thread's NEED_RESCHED
5025 * flag, to make booting more robust.
5026 */
5027void init_idle(struct task_struct *idle, int cpu)
5028{
 
 
 
 
 
 
5029	struct rq *rq = cpu_rq(cpu);
5030	unsigned long flags;
5031
 
 
5032	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5033	raw_spin_lock(&rq->lock);
5034
5035	__sched_fork(0, idle);
5036	idle->state = TASK_RUNNING;
5037	idle->se.exec_start = sched_clock();
5038
5039	kasan_unpoison_task_stack(idle);
 
 
 
 
5040
5041#ifdef CONFIG_SMP
5042	/*
5043	 * Its possible that init_idle() gets called multiple times on a task,
5044	 * in that case do_set_cpus_allowed() will not do the right thing.
5045	 *
5046	 * And since this is boot we can forgo the serialization.
5047	 */
5048	set_cpus_allowed_common(idle, cpumask_of(cpu));
5049#endif
5050	/*
5051	 * We're having a chicken and egg problem, even though we are
5052	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5053	 * lockdep check in task_group() will fail.
5054	 *
5055	 * Similar case to sched_fork(). / Alternatively we could
5056	 * use task_rq_lock() here and obtain the other rq->lock.
5057	 *
5058	 * Silence PROVE_RCU
5059	 */
5060	rcu_read_lock();
5061	__set_task_cpu(idle, cpu);
5062	rcu_read_unlock();
5063
5064	rq->curr = rq->idle = idle;
 
5065	idle->on_rq = TASK_ON_RQ_QUEUED;
5066#ifdef CONFIG_SMP
5067	idle->on_cpu = 1;
5068#endif
5069	raw_spin_unlock(&rq->lock);
5070	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5071
5072	/* Set the preempt count _outside_ the spinlocks! */
5073	init_idle_preempt_count(idle, cpu);
5074
5075	/*
5076	 * The idle tasks have their own, simple scheduling class:
5077	 */
5078	idle->sched_class = &idle_sched_class;
5079	ftrace_graph_init_idle_task(idle, cpu);
5080	vtime_init_idle(idle, cpu);
5081#ifdef CONFIG_SMP
5082	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5083#endif
5084}
5085
 
 
5086int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5087			      const struct cpumask *trial)
5088{
5089	int ret = 1, trial_cpus;
5090	struct dl_bw *cur_dl_b;
5091	unsigned long flags;
5092
5093	if (!cpumask_weight(cur))
5094		return ret;
5095
5096	rcu_read_lock_sched();
5097	cur_dl_b = dl_bw_of(cpumask_any(cur));
5098	trial_cpus = cpumask_weight(trial);
5099
5100	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5101	if (cur_dl_b->bw != -1 &&
5102	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5103		ret = 0;
5104	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5105	rcu_read_unlock_sched();
5106
5107	return ret;
5108}
5109
5110int task_can_attach(struct task_struct *p,
5111		    const struct cpumask *cs_cpus_allowed)
5112{
5113	int ret = 0;
5114
5115	/*
5116	 * Kthreads which disallow setaffinity shouldn't be moved
5117	 * to a new cpuset; we don't want to change their cpu
5118	 * affinity and isolating such threads by their set of
5119	 * allowed nodes is unnecessary.  Thus, cpusets are not
5120	 * applicable for such threads.  This prevents checking for
5121	 * success of set_cpus_allowed_ptr() on all attached tasks
5122	 * before cpus_allowed may be changed.
5123	 */
5124	if (p->flags & PF_NO_SETAFFINITY) {
5125		ret = -EINVAL;
5126		goto out;
5127	}
5128
5129#ifdef CONFIG_SMP
5130	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5131					      cs_cpus_allowed)) {
5132		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5133							cs_cpus_allowed);
5134		struct dl_bw *dl_b;
5135		bool overflow;
5136		int cpus;
5137		unsigned long flags;
5138
5139		rcu_read_lock_sched();
5140		dl_b = dl_bw_of(dest_cpu);
5141		raw_spin_lock_irqsave(&dl_b->lock, flags);
5142		cpus = dl_bw_cpus(dest_cpu);
5143		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5144		if (overflow)
5145			ret = -EBUSY;
5146		else {
5147			/*
5148			 * We reserve space for this task in the destination
5149			 * root_domain, as we can't fail after this point.
5150			 * We will free resources in the source root_domain
5151			 * later on (see set_cpus_allowed_dl()).
5152			 */
5153			__dl_add(dl_b, p->dl.dl_bw);
5154		}
5155		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5156		rcu_read_unlock_sched();
5157
 
 
 
5158	}
5159#endif
5160out:
5161	return ret;
5162}
5163
5164#ifdef CONFIG_SMP
5165
5166#ifdef CONFIG_NUMA_BALANCING
5167/* Migrate current task p to target_cpu */
5168int migrate_task_to(struct task_struct *p, int target_cpu)
5169{
5170	struct migration_arg arg = { p, target_cpu };
5171	int curr_cpu = task_cpu(p);
5172
5173	if (curr_cpu == target_cpu)
5174		return 0;
5175
5176	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5177		return -EINVAL;
5178
5179	/* TODO: This is not properly updating schedstats */
5180
5181	trace_sched_move_numa(p, curr_cpu, target_cpu);
5182	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5183}
5184
5185/*
5186 * Requeue a task on a given node and accurately track the number of NUMA
5187 * tasks on the runqueues
5188 */
5189void sched_setnuma(struct task_struct *p, int nid)
5190{
 
 
5191	struct rq *rq;
5192	unsigned long flags;
5193	bool queued, running;
5194
5195	rq = task_rq_lock(p, &flags);
5196	queued = task_on_rq_queued(p);
5197	running = task_current(rq, p);
5198
5199	if (queued)
5200		dequeue_task(rq, p, DEQUEUE_SAVE);
5201	if (running)
5202		put_prev_task(rq, p);
5203
5204	p->numa_preferred_nid = nid;
5205
 
 
5206	if (running)
5207		p->sched_class->set_curr_task(rq);
5208	if (queued)
5209		enqueue_task(rq, p, ENQUEUE_RESTORE);
5210	task_rq_unlock(rq, p, &flags);
5211}
5212#endif /* CONFIG_NUMA_BALANCING */
5213
5214#ifdef CONFIG_HOTPLUG_CPU
5215/*
5216 * Ensures that the idle task is using init_mm right before its cpu goes
5217 * offline.
5218 */
5219void idle_task_exit(void)
5220{
5221	struct mm_struct *mm = current->active_mm;
5222
5223	BUG_ON(cpu_online(smp_processor_id()));
 
5224
5225	if (mm != &init_mm) {
5226		switch_mm(mm, &init_mm, current);
5227		finish_arch_post_lock_switch();
5228	}
5229	mmdrop(mm);
 
5230}
5231
5232/*
5233 * Since this CPU is going 'away' for a while, fold any nr_active delta
5234 * we might have. Assumes we're called after migrate_tasks() so that the
5235 * nr_active count is stable.
5236 *
5237 * Also see the comment "Global load-average calculations".
5238 */
5239static void calc_load_migrate(struct rq *rq)
5240{
5241	long delta = calc_load_fold_active(rq);
5242	if (delta)
5243		atomic_long_add(delta, &calc_load_tasks);
5244}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5245
5246static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5247{
5248}
5249
5250static const struct sched_class fake_sched_class = {
5251	.put_prev_task = put_prev_task_fake,
5252};
5253
5254static struct task_struct fake_task = {
5255	/*
5256	 * Avoid pull_{rt,dl}_task()
5257	 */
5258	.prio = MAX_PRIO + 1,
5259	.sched_class = &fake_sched_class,
5260};
5261
5262/*
5263 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5264 * try_to_wake_up()->select_task_rq().
5265 *
5266 * Called with rq->lock held even though we'er in stop_machine() and
5267 * there's no concurrency possible, we hold the required locks anyway
5268 * because of lock validation efforts.
5269 */
5270static void migrate_tasks(struct rq *dead_rq)
5271{
5272	struct rq *rq = dead_rq;
5273	struct task_struct *next, *stop = rq->stop;
5274	int dest_cpu;
5275
5276	/*
5277	 * Fudge the rq selection such that the below task selection loop
5278	 * doesn't get stuck on the currently eligible stop task.
5279	 *
5280	 * We're currently inside stop_machine() and the rq is either stuck
5281	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5282	 * either way we should never end up calling schedule() until we're
5283	 * done here.
5284	 */
5285	rq->stop = NULL;
5286
5287	/*
5288	 * put_prev_task() and pick_next_task() sched
5289	 * class method both need to have an up-to-date
5290	 * value of rq->clock[_task]
5291	 */
5292	update_rq_clock(rq);
 
5293
5294	for (;;) {
5295		/*
5296		 * There's this thread running, bail when that's the only
5297		 * remaining thread.
5298		 */
5299		if (rq->nr_running == 1)
5300			break;
5301
5302		/*
5303		 * pick_next_task assumes pinned rq->lock.
5304		 */
5305		lockdep_pin_lock(&rq->lock);
5306		next = pick_next_task(rq, &fake_task);
5307		BUG_ON(!next);
5308		next->sched_class->put_prev_task(rq, next);
5309
5310		/*
5311		 * Rules for changing task_struct::cpus_allowed are holding
5312		 * both pi_lock and rq->lock, such that holding either
5313		 * stabilizes the mask.
5314		 *
5315		 * Drop rq->lock is not quite as disastrous as it usually is
5316		 * because !cpu_active at this point, which means load-balance
5317		 * will not interfere. Also, stop-machine.
5318		 */
5319		lockdep_unpin_lock(&rq->lock);
5320		raw_spin_unlock(&rq->lock);
5321		raw_spin_lock(&next->pi_lock);
5322		raw_spin_lock(&rq->lock);
5323
5324		/*
5325		 * Since we're inside stop-machine, _nothing_ should have
5326		 * changed the task, WARN if weird stuff happened, because in
5327		 * that case the above rq->lock drop is a fail too.
5328		 */
5329		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5330			raw_spin_unlock(&next->pi_lock);
5331			continue;
5332		}
5333
5334		/* Find suitable destination for @next, with force if needed. */
5335		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5336
5337		rq = __migrate_task(rq, next, dest_cpu);
5338		if (rq != dead_rq) {
5339			raw_spin_unlock(&rq->lock);
5340			rq = dead_rq;
5341			raw_spin_lock(&rq->lock);
5342		}
5343		raw_spin_unlock(&next->pi_lock);
5344	}
5345
5346	rq->stop = stop;
 
 
 
 
 
 
 
 
 
 
 
 
 
5347}
5348#endif /* CONFIG_HOTPLUG_CPU */
5349
5350static void set_rq_online(struct rq *rq)
5351{
5352	if (!rq->online) {
5353		const struct sched_class *class;
5354
5355		cpumask_set_cpu(rq->cpu, rq->rd->online);
5356		rq->online = 1;
5357
5358		for_each_class(class) {
5359			if (class->rq_online)
5360				class->rq_online(rq);
5361		}
5362	}
5363}
5364
5365static void set_rq_offline(struct rq *rq)
5366{
5367	if (rq->online) {
5368		const struct sched_class *class;
5369
5370		for_each_class(class) {
5371			if (class->rq_offline)
5372				class->rq_offline(rq);
5373		}
5374
5375		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5376		rq->online = 0;
5377	}
 
5378}
5379
5380/*
5381 * migration_call - callback that gets triggered when a CPU is added.
5382 * Here we can start up the necessary migration thread for the new CPU.
 
 
5383 */
5384static int
5385migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5386{
5387	int cpu = (long)hcpu;
5388	unsigned long flags;
5389	struct rq *rq = cpu_rq(cpu);
5390
5391	switch (action & ~CPU_TASKS_FROZEN) {
5392
5393	case CPU_UP_PREPARE:
5394		rq->calc_load_update = calc_load_update;
5395		account_reset_rq(rq);
5396		break;
5397
5398	case CPU_ONLINE:
5399		/* Update our root-domain */
5400		raw_spin_lock_irqsave(&rq->lock, flags);
5401		if (rq->rd) {
5402			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5403
5404			set_rq_online(rq);
5405		}
5406		raw_spin_unlock_irqrestore(&rq->lock, flags);
5407		break;
5408
5409#ifdef CONFIG_HOTPLUG_CPU
5410	case CPU_DYING:
5411		sched_ttwu_pending();
5412		/* Update our root-domain */
5413		raw_spin_lock_irqsave(&rq->lock, flags);
5414		if (rq->rd) {
5415			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5416			set_rq_offline(rq);
5417		}
5418		migrate_tasks(rq);
5419		BUG_ON(rq->nr_running != 1); /* the migration thread */
5420		raw_spin_unlock_irqrestore(&rq->lock, flags);
5421		break;
5422
5423	case CPU_DEAD:
5424		calc_load_migrate(rq);
5425		break;
5426#endif
5427	}
5428
5429	update_max_interval();
5430
5431	return NOTIFY_OK;
5432}
5433
5434/*
5435 * Register at high priority so that task migration (migrate_all_tasks)
5436 * happens before everything else.  This has to be lower priority than
5437 * the notifier in the perf_event subsystem, though.
5438 */
5439static struct notifier_block migration_notifier = {
5440	.notifier_call = migration_call,
5441	.priority = CPU_PRI_MIGRATION,
5442};
5443
5444static void set_cpu_rq_start_time(void)
5445{
5446	int cpu = smp_processor_id();
5447	struct rq *rq = cpu_rq(cpu);
5448	rq->age_stamp = sched_clock_cpu(cpu);
5449}
5450
5451static int sched_cpu_active(struct notifier_block *nfb,
5452				      unsigned long action, void *hcpu)
5453{
5454	int cpu = (long)hcpu;
5455
5456	switch (action & ~CPU_TASKS_FROZEN) {
5457	case CPU_STARTING:
5458		set_cpu_rq_start_time();
5459		return NOTIFY_OK;
5460
5461	case CPU_DOWN_FAILED:
5462		set_cpu_active(cpu, true);
5463		return NOTIFY_OK;
5464
5465	default:
5466		return NOTIFY_DONE;
5467	}
5468}
5469
5470static int sched_cpu_inactive(struct notifier_block *nfb,
5471					unsigned long action, void *hcpu)
5472{
5473	switch (action & ~CPU_TASKS_FROZEN) {
5474	case CPU_DOWN_PREPARE:
5475		set_cpu_active((long)hcpu, false);
5476		return NOTIFY_OK;
5477	default:
5478		return NOTIFY_DONE;
5479	}
5480}
5481
5482static int __init migration_init(void)
5483{
5484	void *cpu = (void *)(long)smp_processor_id();
5485	int err;
5486
5487	/* Initialize migration for the boot CPU */
5488	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5489	BUG_ON(err == NOTIFY_BAD);
5490	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5491	register_cpu_notifier(&migration_notifier);
5492
5493	/* Register cpu active notifiers */
5494	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5495	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5496
5497	return 0;
5498}
5499early_initcall(migration_init);
5500
5501static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5502
5503#ifdef CONFIG_SCHED_DEBUG
5504
5505static __read_mostly int sched_debug_enabled;
5506
5507static int __init sched_debug_setup(char *str)
5508{
5509	sched_debug_enabled = 1;
 
5510
5511	return 0;
5512}
5513early_param("sched_debug", sched_debug_setup);
5514
5515static inline bool sched_debug(void)
5516{
5517	return sched_debug_enabled;
5518}
5519
5520static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5521				  struct cpumask *groupmask)
5522{
5523	struct sched_group *group = sd->groups;
5524
5525	cpumask_clear(groupmask);
5526
5527	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5528
5529	if (!(sd->flags & SD_LOAD_BALANCE)) {
5530		printk("does not load-balance\n");
5531		if (sd->parent)
5532			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5533					" has parent");
5534		return -1;
5535	}
5536
5537	printk(KERN_CONT "span %*pbl level %s\n",
5538	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5539
5540	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5541		printk(KERN_ERR "ERROR: domain->span does not contain "
5542				"CPU%d\n", cpu);
5543	}
5544	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5545		printk(KERN_ERR "ERROR: domain->groups does not contain"
5546				" CPU%d\n", cpu);
5547	}
5548
5549	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5550	do {
5551		if (!group) {
5552			printk("\n");
5553			printk(KERN_ERR "ERROR: group is NULL\n");
5554			break;
5555		}
5556
5557		if (!cpumask_weight(sched_group_cpus(group))) {
5558			printk(KERN_CONT "\n");
5559			printk(KERN_ERR "ERROR: empty group\n");
5560			break;
5561		}
5562
5563		if (!(sd->flags & SD_OVERLAP) &&
5564		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5565			printk(KERN_CONT "\n");
5566			printk(KERN_ERR "ERROR: repeated CPUs\n");
5567			break;
5568		}
5569
5570		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5571
5572		printk(KERN_CONT " %*pbl",
5573		       cpumask_pr_args(sched_group_cpus(group)));
5574		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5575			printk(KERN_CONT " (cpu_capacity = %d)",
5576				group->sgc->capacity);
5577		}
5578
5579		group = group->next;
5580	} while (group != sd->groups);
5581	printk(KERN_CONT "\n");
5582
5583	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5584		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5585
5586	if (sd->parent &&
5587	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5588		printk(KERN_ERR "ERROR: parent span is not a superset "
5589			"of domain->span\n");
5590	return 0;
5591}
5592
5593static void sched_domain_debug(struct sched_domain *sd, int cpu)
5594{
5595	int level = 0;
5596
5597	if (!sched_debug_enabled)
5598		return;
5599
5600	if (!sd) {
5601		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5602		return;
5603	}
5604
5605	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5606
5607	for (;;) {
5608		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5609			break;
5610		level++;
5611		sd = sd->parent;
5612		if (!sd)
5613			break;
5614	}
5615}
5616#else /* !CONFIG_SCHED_DEBUG */
5617# define sched_domain_debug(sd, cpu) do { } while (0)
5618static inline bool sched_debug(void)
5619{
5620	return false;
5621}
5622#endif /* CONFIG_SCHED_DEBUG */
5623
5624static int sd_degenerate(struct sched_domain *sd)
5625{
5626	if (cpumask_weight(sched_domain_span(sd)) == 1)
5627		return 1;
5628
5629	/* Following flags need at least 2 groups */
5630	if (sd->flags & (SD_LOAD_BALANCE |
5631			 SD_BALANCE_NEWIDLE |
5632			 SD_BALANCE_FORK |
5633			 SD_BALANCE_EXEC |
5634			 SD_SHARE_CPUCAPACITY |
5635			 SD_SHARE_PKG_RESOURCES |
5636			 SD_SHARE_POWERDOMAIN)) {
5637		if (sd->groups != sd->groups->next)
5638			return 0;
5639	}
5640
5641	/* Following flags don't use groups */
5642	if (sd->flags & (SD_WAKE_AFFINE))
5643		return 0;
5644
5645	return 1;
5646}
5647
5648static int
5649sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5650{
5651	unsigned long cflags = sd->flags, pflags = parent->flags;
5652
5653	if (sd_degenerate(parent))
5654		return 1;
5655
5656	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5657		return 0;
5658
5659	/* Flags needing groups don't count if only 1 group in parent */
5660	if (parent->groups == parent->groups->next) {
5661		pflags &= ~(SD_LOAD_BALANCE |
5662				SD_BALANCE_NEWIDLE |
5663				SD_BALANCE_FORK |
5664				SD_BALANCE_EXEC |
5665				SD_SHARE_CPUCAPACITY |
5666				SD_SHARE_PKG_RESOURCES |
5667				SD_PREFER_SIBLING |
5668				SD_SHARE_POWERDOMAIN);
5669		if (nr_node_ids == 1)
5670			pflags &= ~SD_SERIALIZE;
5671	}
5672	if (~cflags & pflags)
5673		return 0;
5674
5675	return 1;
5676}
5677
5678static void free_rootdomain(struct rcu_head *rcu)
5679{
5680	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5681
5682	cpupri_cleanup(&rd->cpupri);
5683	cpudl_cleanup(&rd->cpudl);
5684	free_cpumask_var(rd->dlo_mask);
5685	free_cpumask_var(rd->rto_mask);
5686	free_cpumask_var(rd->online);
5687	free_cpumask_var(rd->span);
5688	kfree(rd);
5689}
5690
5691static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5692{
5693	struct root_domain *old_rd = NULL;
5694	unsigned long flags;
5695
5696	raw_spin_lock_irqsave(&rq->lock, flags);
5697
5698	if (rq->rd) {
5699		old_rd = rq->rd;
5700
5701		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5702			set_rq_offline(rq);
5703
5704		cpumask_clear_cpu(rq->cpu, old_rd->span);
5705
5706		/*
5707		 * If we dont want to free the old_rd yet then
5708		 * set old_rd to NULL to skip the freeing later
5709		 * in this function:
5710		 */
5711		if (!atomic_dec_and_test(&old_rd->refcount))
5712			old_rd = NULL;
5713	}
5714
5715	atomic_inc(&rd->refcount);
5716	rq->rd = rd;
5717
5718	cpumask_set_cpu(rq->cpu, rd->span);
5719	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5720		set_rq_online(rq);
5721
5722	raw_spin_unlock_irqrestore(&rq->lock, flags);
5723
5724	if (old_rd)
5725		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5726}
5727
5728static int init_rootdomain(struct root_domain *rd)
5729{
5730	memset(rd, 0, sizeof(*rd));
5731
5732	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5733		goto out;
5734	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5735		goto free_span;
5736	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5737		goto free_online;
5738	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5739		goto free_dlo_mask;
5740
5741	init_dl_bw(&rd->dl_bw);
5742	if (cpudl_init(&rd->cpudl) != 0)
5743		goto free_dlo_mask;
5744
5745	if (cpupri_init(&rd->cpupri) != 0)
5746		goto free_rto_mask;
5747	return 0;
5748
5749free_rto_mask:
5750	free_cpumask_var(rd->rto_mask);
5751free_dlo_mask:
5752	free_cpumask_var(rd->dlo_mask);
5753free_online:
5754	free_cpumask_var(rd->online);
5755free_span:
5756	free_cpumask_var(rd->span);
5757out:
5758	return -ENOMEM;
5759}
5760
5761/*
5762 * By default the system creates a single root-domain with all cpus as
5763 * members (mimicking the global state we have today).
5764 */
5765struct root_domain def_root_domain;
5766
5767static void init_defrootdomain(void)
5768{
5769	init_rootdomain(&def_root_domain);
5770
5771	atomic_set(&def_root_domain.refcount, 1);
5772}
5773
5774static struct root_domain *alloc_rootdomain(void)
5775{
5776	struct root_domain *rd;
5777
5778	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5779	if (!rd)
5780		return NULL;
5781
5782	if (init_rootdomain(rd) != 0) {
5783		kfree(rd);
5784		return NULL;
5785	}
5786
5787	return rd;
5788}
5789
5790static void free_sched_groups(struct sched_group *sg, int free_sgc)
5791{
5792	struct sched_group *tmp, *first;
5793
5794	if (!sg)
5795		return;
5796
5797	first = sg;
5798	do {
5799		tmp = sg->next;
5800
5801		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5802			kfree(sg->sgc);
5803
5804		kfree(sg);
5805		sg = tmp;
5806	} while (sg != first);
5807}
5808
5809static void free_sched_domain(struct rcu_head *rcu)
5810{
5811	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5812
5813	/*
5814	 * If its an overlapping domain it has private groups, iterate and
5815	 * nuke them all.
5816	 */
5817	if (sd->flags & SD_OVERLAP) {
5818		free_sched_groups(sd->groups, 1);
5819	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5820		kfree(sd->groups->sgc);
5821		kfree(sd->groups);
5822	}
5823	kfree(sd);
5824}
5825
5826static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5827{
5828	call_rcu(&sd->rcu, free_sched_domain);
5829}
5830
5831static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5832{
5833	for (; sd; sd = sd->parent)
5834		destroy_sched_domain(sd, cpu);
5835}
5836
5837/*
5838 * Keep a special pointer to the highest sched_domain that has
5839 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5840 * allows us to avoid some pointer chasing select_idle_sibling().
5841 *
5842 * Also keep a unique ID per domain (we use the first cpu number in
5843 * the cpumask of the domain), this allows us to quickly tell if
5844 * two cpus are in the same cache domain, see cpus_share_cache().
5845 */
5846DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5847DEFINE_PER_CPU(int, sd_llc_size);
5848DEFINE_PER_CPU(int, sd_llc_id);
5849DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5850DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5851DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5852
5853static void update_top_cache_domain(int cpu)
5854{
5855	struct sched_domain *sd;
5856	struct sched_domain *busy_sd = NULL;
5857	int id = cpu;
5858	int size = 1;
5859
5860	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5861	if (sd) {
5862		id = cpumask_first(sched_domain_span(sd));
5863		size = cpumask_weight(sched_domain_span(sd));
5864		busy_sd = sd->parent; /* sd_busy */
5865	}
5866	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5867
5868	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5869	per_cpu(sd_llc_size, cpu) = size;
5870	per_cpu(sd_llc_id, cpu) = id;
5871
5872	sd = lowest_flag_domain(cpu, SD_NUMA);
5873	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5874
5875	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5876	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5877}
5878
5879/*
5880 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5881 * hold the hotplug lock.
5882 */
5883static void
5884cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5885{
5886	struct rq *rq = cpu_rq(cpu);
5887	struct sched_domain *tmp;
5888
5889	/* Remove the sched domains which do not contribute to scheduling. */
5890	for (tmp = sd; tmp; ) {
5891		struct sched_domain *parent = tmp->parent;
5892		if (!parent)
5893			break;
5894
5895		if (sd_parent_degenerate(tmp, parent)) {
5896			tmp->parent = parent->parent;
5897			if (parent->parent)
5898				parent->parent->child = tmp;
5899			/*
5900			 * Transfer SD_PREFER_SIBLING down in case of a
5901			 * degenerate parent; the spans match for this
5902			 * so the property transfers.
5903			 */
5904			if (parent->flags & SD_PREFER_SIBLING)
5905				tmp->flags |= SD_PREFER_SIBLING;
5906			destroy_sched_domain(parent, cpu);
5907		} else
5908			tmp = tmp->parent;
5909	}
5910
5911	if (sd && sd_degenerate(sd)) {
5912		tmp = sd;
5913		sd = sd->parent;
5914		destroy_sched_domain(tmp, cpu);
5915		if (sd)
5916			sd->child = NULL;
5917	}
5918
5919	sched_domain_debug(sd, cpu);
5920
5921	rq_attach_root(rq, rd);
5922	tmp = rq->sd;
5923	rcu_assign_pointer(rq->sd, sd);
5924	destroy_sched_domains(tmp, cpu);
5925
5926	update_top_cache_domain(cpu);
5927}
5928
5929/* Setup the mask of cpus configured for isolated domains */
5930static int __init isolated_cpu_setup(char *str)
5931{
5932	int ret;
5933
5934	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5935	ret = cpulist_parse(str, cpu_isolated_map);
5936	if (ret) {
5937		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5938		return 0;
5939	}
5940	return 1;
5941}
5942__setup("isolcpus=", isolated_cpu_setup);
5943
5944struct s_data {
5945	struct sched_domain ** __percpu sd;
5946	struct root_domain	*rd;
5947};
5948
5949enum s_alloc {
5950	sa_rootdomain,
5951	sa_sd,
5952	sa_sd_storage,
5953	sa_none,
5954};
5955
5956/*
5957 * Build an iteration mask that can exclude certain CPUs from the upwards
5958 * domain traversal.
5959 *
5960 * Asymmetric node setups can result in situations where the domain tree is of
5961 * unequal depth, make sure to skip domains that already cover the entire
5962 * range.
5963 *
5964 * In that case build_sched_domains() will have terminated the iteration early
5965 * and our sibling sd spans will be empty. Domains should always include the
5966 * cpu they're built on, so check that.
5967 *
5968 */
5969static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5970{
5971	const struct cpumask *span = sched_domain_span(sd);
5972	struct sd_data *sdd = sd->private;
5973	struct sched_domain *sibling;
5974	int i;
5975
5976	for_each_cpu(i, span) {
5977		sibling = *per_cpu_ptr(sdd->sd, i);
5978		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5979			continue;
5980
5981		cpumask_set_cpu(i, sched_group_mask(sg));
5982	}
5983}
5984
5985/*
5986 * Return the canonical balance cpu for this group, this is the first cpu
5987 * of this group that's also in the iteration mask.
5988 */
5989int group_balance_cpu(struct sched_group *sg)
5990{
5991	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5992}
5993
5994static int
5995build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5996{
5997	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5998	const struct cpumask *span = sched_domain_span(sd);
5999	struct cpumask *covered = sched_domains_tmpmask;
6000	struct sd_data *sdd = sd->private;
6001	struct sched_domain *sibling;
6002	int i;
6003
6004	cpumask_clear(covered);
6005
6006	for_each_cpu(i, span) {
6007		struct cpumask *sg_span;
6008
6009		if (cpumask_test_cpu(i, covered))
6010			continue;
6011
6012		sibling = *per_cpu_ptr(sdd->sd, i);
6013
6014		/* See the comment near build_group_mask(). */
6015		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6016			continue;
6017
6018		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6019				GFP_KERNEL, cpu_to_node(cpu));
6020
6021		if (!sg)
6022			goto fail;
6023
6024		sg_span = sched_group_cpus(sg);
6025		if (sibling->child)
6026			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6027		else
6028			cpumask_set_cpu(i, sg_span);
6029
6030		cpumask_or(covered, covered, sg_span);
6031
6032		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6033		if (atomic_inc_return(&sg->sgc->ref) == 1)
6034			build_group_mask(sd, sg);
6035
6036		/*
6037		 * Initialize sgc->capacity such that even if we mess up the
6038		 * domains and no possible iteration will get us here, we won't
6039		 * die on a /0 trap.
 
6040		 */
6041		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6042
 
6043		/*
6044		 * Make sure the first group of this domain contains the
6045		 * canonical balance cpu. Otherwise the sched_domain iteration
6046		 * breaks. See update_sg_lb_stats().
6047		 */
6048		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6049		    group_balance_cpu(sg) == cpu)
6050			groups = sg;
6051
6052		if (!first)
6053			first = sg;
6054		if (last)
6055			last->next = sg;
6056		last = sg;
6057		last->next = first;
6058	}
6059	sd->groups = groups;
6060
6061	return 0;
6062
6063fail:
6064	free_sched_groups(first, 0);
6065
6066	return -ENOMEM;
6067}
6068
6069static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6070{
6071	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6072	struct sched_domain *child = sd->child;
6073
6074	if (child)
6075		cpu = cpumask_first(sched_domain_span(child));
6076
6077	if (sg) {
6078		*sg = *per_cpu_ptr(sdd->sg, cpu);
6079		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6080		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6081	}
6082
6083	return cpu;
6084}
6085
6086/*
6087 * build_sched_groups will build a circular linked list of the groups
6088 * covered by the given span, and will set each group's ->cpumask correctly,
6089 * and ->cpu_capacity to 0.
6090 *
6091 * Assumes the sched_domain tree is fully constructed
6092 */
6093static int
6094build_sched_groups(struct sched_domain *sd, int cpu)
6095{
6096	struct sched_group *first = NULL, *last = NULL;
6097	struct sd_data *sdd = sd->private;
6098	const struct cpumask *span = sched_domain_span(sd);
6099	struct cpumask *covered;
6100	int i;
6101
6102	get_group(cpu, sdd, &sd->groups);
6103	atomic_inc(&sd->groups->ref);
6104
6105	if (cpu != cpumask_first(span))
6106		return 0;
6107
6108	lockdep_assert_held(&sched_domains_mutex);
6109	covered = sched_domains_tmpmask;
6110
6111	cpumask_clear(covered);
6112
6113	for_each_cpu(i, span) {
6114		struct sched_group *sg;
6115		int group, j;
6116
6117		if (cpumask_test_cpu(i, covered))
6118			continue;
6119
6120		group = get_group(i, sdd, &sg);
6121		cpumask_setall(sched_group_mask(sg));
6122
6123		for_each_cpu(j, span) {
6124			if (get_group(j, sdd, NULL) != group)
6125				continue;
6126
6127			cpumask_set_cpu(j, covered);
6128			cpumask_set_cpu(j, sched_group_cpus(sg));
6129		}
6130
6131		if (!first)
6132			first = sg;
6133		if (last)
6134			last->next = sg;
6135		last = sg;
6136	}
6137	last->next = first;
6138
6139	return 0;
6140}
6141
6142/*
6143 * Initialize sched groups cpu_capacity.
6144 *
6145 * cpu_capacity indicates the capacity of sched group, which is used while
6146 * distributing the load between different sched groups in a sched domain.
6147 * Typically cpu_capacity for all the groups in a sched domain will be same
6148 * unless there are asymmetries in the topology. If there are asymmetries,
6149 * group having more cpu_capacity will pickup more load compared to the
6150 * group having less cpu_capacity.
6151 */
6152static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6153{
6154	struct sched_group *sg = sd->groups;
6155
6156	WARN_ON(!sg);
6157
6158	do {
6159		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6160		sg = sg->next;
6161	} while (sg != sd->groups);
6162
6163	if (cpu != group_balance_cpu(sg))
6164		return;
6165
6166	update_group_capacity(sd, cpu);
6167	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6168}
6169
6170/*
6171 * Initializers for schedule domains
6172 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6173 */
6174
6175static int default_relax_domain_level = -1;
6176int sched_domain_level_max;
6177
6178static int __init setup_relax_domain_level(char *str)
6179{
6180	if (kstrtoint(str, 0, &default_relax_domain_level))
6181		pr_warn("Unable to set relax_domain_level\n");
6182
6183	return 1;
6184}
6185__setup("relax_domain_level=", setup_relax_domain_level);
6186
6187static void set_domain_attribute(struct sched_domain *sd,
6188				 struct sched_domain_attr *attr)
6189{
6190	int request;
6191
6192	if (!attr || attr->relax_domain_level < 0) {
6193		if (default_relax_domain_level < 0)
6194			return;
6195		else
6196			request = default_relax_domain_level;
6197	} else
6198		request = attr->relax_domain_level;
6199	if (request < sd->level) {
6200		/* turn off idle balance on this domain */
6201		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6202	} else {
6203		/* turn on idle balance on this domain */
6204		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6205	}
6206}
6207
6208static void __sdt_free(const struct cpumask *cpu_map);
6209static int __sdt_alloc(const struct cpumask *cpu_map);
6210
6211static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6212				 const struct cpumask *cpu_map)
6213{
6214	switch (what) {
6215	case sa_rootdomain:
6216		if (!atomic_read(&d->rd->refcount))
6217			free_rootdomain(&d->rd->rcu); /* fall through */
6218	case sa_sd:
6219		free_percpu(d->sd); /* fall through */
6220	case sa_sd_storage:
6221		__sdt_free(cpu_map); /* fall through */
6222	case sa_none:
6223		break;
6224	}
6225}
6226
6227static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6228						   const struct cpumask *cpu_map)
6229{
6230	memset(d, 0, sizeof(*d));
6231
6232	if (__sdt_alloc(cpu_map))
6233		return sa_sd_storage;
6234	d->sd = alloc_percpu(struct sched_domain *);
6235	if (!d->sd)
6236		return sa_sd_storage;
6237	d->rd = alloc_rootdomain();
6238	if (!d->rd)
6239		return sa_sd;
6240	return sa_rootdomain;
6241}
6242
6243/*
6244 * NULL the sd_data elements we've used to build the sched_domain and
6245 * sched_group structure so that the subsequent __free_domain_allocs()
6246 * will not free the data we're using.
6247 */
6248static void claim_allocations(int cpu, struct sched_domain *sd)
6249{
6250	struct sd_data *sdd = sd->private;
6251
6252	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6253	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6254
6255	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6256		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6257
6258	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6259		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6260}
6261
6262#ifdef CONFIG_NUMA
6263static int sched_domains_numa_levels;
6264enum numa_topology_type sched_numa_topology_type;
6265static int *sched_domains_numa_distance;
6266int sched_max_numa_distance;
6267static struct cpumask ***sched_domains_numa_masks;
6268static int sched_domains_curr_level;
6269#endif
6270
6271/*
6272 * SD_flags allowed in topology descriptions.
6273 *
6274 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6275 * SD_SHARE_PKG_RESOURCES - describes shared caches
6276 * SD_NUMA                - describes NUMA topologies
6277 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6278 *
6279 * Odd one out:
6280 * SD_ASYM_PACKING        - describes SMT quirks
6281 */
6282#define TOPOLOGY_SD_FLAGS		\
6283	(SD_SHARE_CPUCAPACITY |		\
6284	 SD_SHARE_PKG_RESOURCES |	\
6285	 SD_NUMA |			\
6286	 SD_ASYM_PACKING |		\
6287	 SD_SHARE_POWERDOMAIN)
6288
6289static struct sched_domain *
6290sd_init(struct sched_domain_topology_level *tl, int cpu)
6291{
6292	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6293	int sd_weight, sd_flags = 0;
6294
6295#ifdef CONFIG_NUMA
6296	/*
6297	 * Ugly hack to pass state to sd_numa_mask()...
 
6298	 */
6299	sched_domains_curr_level = tl->numa_level;
6300#endif
6301
6302	sd_weight = cpumask_weight(tl->mask(cpu));
6303
6304	if (tl->sd_flags)
6305		sd_flags = (*tl->sd_flags)();
6306	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6307			"wrong sd_flags in topology description\n"))
6308		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6309
6310	*sd = (struct sched_domain){
6311		.min_interval		= sd_weight,
6312		.max_interval		= 2*sd_weight,
6313		.busy_factor		= 32,
6314		.imbalance_pct		= 125,
6315
6316		.cache_nice_tries	= 0,
6317		.busy_idx		= 0,
6318		.idle_idx		= 0,
6319		.newidle_idx		= 0,
6320		.wake_idx		= 0,
6321		.forkexec_idx		= 0,
6322
6323		.flags			= 1*SD_LOAD_BALANCE
6324					| 1*SD_BALANCE_NEWIDLE
6325					| 1*SD_BALANCE_EXEC
6326					| 1*SD_BALANCE_FORK
6327					| 0*SD_BALANCE_WAKE
6328					| 1*SD_WAKE_AFFINE
6329					| 0*SD_SHARE_CPUCAPACITY
6330					| 0*SD_SHARE_PKG_RESOURCES
6331					| 0*SD_SERIALIZE
6332					| 0*SD_PREFER_SIBLING
6333					| 0*SD_NUMA
6334					| sd_flags
6335					,
6336
6337		.last_balance		= jiffies,
6338		.balance_interval	= sd_weight,
6339		.smt_gain		= 0,
6340		.max_newidle_lb_cost	= 0,
6341		.next_decay_max_lb_cost	= jiffies,
6342#ifdef CONFIG_SCHED_DEBUG
6343		.name			= tl->name,
6344#endif
6345	};
6346
 
6347	/*
6348	 * Convert topological properties into behaviour.
6349	 */
6350
6351	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6352		sd->flags |= SD_PREFER_SIBLING;
6353		sd->imbalance_pct = 110;
6354		sd->smt_gain = 1178; /* ~15% */
6355
6356	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6357		sd->imbalance_pct = 117;
6358		sd->cache_nice_tries = 1;
6359		sd->busy_idx = 2;
6360
6361#ifdef CONFIG_NUMA
6362	} else if (sd->flags & SD_NUMA) {
6363		sd->cache_nice_tries = 2;
6364		sd->busy_idx = 3;
6365		sd->idle_idx = 2;
6366
6367		sd->flags |= SD_SERIALIZE;
6368		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6369			sd->flags &= ~(SD_BALANCE_EXEC |
6370				       SD_BALANCE_FORK |
6371				       SD_WAKE_AFFINE);
6372		}
6373
6374#endif
6375	} else {
6376		sd->flags |= SD_PREFER_SIBLING;
6377		sd->cache_nice_tries = 1;
6378		sd->busy_idx = 2;
6379		sd->idle_idx = 1;
6380	}
6381
6382	sd->private = &tl->data;
6383
6384	return sd;
6385}
6386
6387/*
6388 * Topology list, bottom-up.
6389 */
6390static struct sched_domain_topology_level default_topology[] = {
6391#ifdef CONFIG_SCHED_SMT
6392	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6393#endif
6394#ifdef CONFIG_SCHED_MC
6395	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6396#endif
6397	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6398	{ NULL, },
6399};
6400
6401static struct sched_domain_topology_level *sched_domain_topology =
6402	default_topology;
6403
6404#define for_each_sd_topology(tl)			\
6405	for (tl = sched_domain_topology; tl->mask; tl++)
6406
6407void set_sched_topology(struct sched_domain_topology_level *tl)
6408{
6409	sched_domain_topology = tl;
6410}
6411
6412#ifdef CONFIG_NUMA
6413
6414static const struct cpumask *sd_numa_mask(int cpu)
6415{
6416	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6417}
6418
6419static void sched_numa_warn(const char *str)
6420{
6421	static int done = false;
6422	int i,j;
6423
6424	if (done)
6425		return;
6426
6427	done = true;
6428
6429	printk(KERN_WARNING "ERROR: %s\n\n", str);
6430
6431	for (i = 0; i < nr_node_ids; i++) {
6432		printk(KERN_WARNING "  ");
6433		for (j = 0; j < nr_node_ids; j++)
6434			printk(KERN_CONT "%02d ", node_distance(i,j));
6435		printk(KERN_CONT "\n");
6436	}
6437	printk(KERN_WARNING "\n");
6438}
6439
6440bool find_numa_distance(int distance)
6441{
6442	int i;
6443
6444	if (distance == node_distance(0, 0))
6445		return true;
6446
6447	for (i = 0; i < sched_domains_numa_levels; i++) {
6448		if (sched_domains_numa_distance[i] == distance)
6449			return true;
 
 
 
6450	}
 
6451
6452	return false;
6453}
6454
6455/*
6456 * A system can have three types of NUMA topology:
6457 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6458 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6459 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6460 *
6461 * The difference between a glueless mesh topology and a backplane
6462 * topology lies in whether communication between not directly
6463 * connected nodes goes through intermediary nodes (where programs
6464 * could run), or through backplane controllers. This affects
6465 * placement of programs.
6466 *
6467 * The type of topology can be discerned with the following tests:
6468 * - If the maximum distance between any nodes is 1 hop, the system
6469 *   is directly connected.
6470 * - If for two nodes A and B, located N > 1 hops away from each other,
6471 *   there is an intermediary node C, which is < N hops away from both
6472 *   nodes A and B, the system is a glueless mesh.
6473 */
6474static void init_numa_topology_type(void)
6475{
6476	int a, b, c, n;
6477
6478	n = sched_max_numa_distance;
6479
6480	if (sched_domains_numa_levels <= 1) {
6481		sched_numa_topology_type = NUMA_DIRECT;
6482		return;
6483	}
6484
6485	for_each_online_node(a) {
6486		for_each_online_node(b) {
6487			/* Find two nodes furthest removed from each other. */
6488			if (node_distance(a, b) < n)
6489				continue;
6490
6491			/* Is there an intermediary node between a and b? */
6492			for_each_online_node(c) {
6493				if (node_distance(a, c) < n &&
6494				    node_distance(b, c) < n) {
6495					sched_numa_topology_type =
6496							NUMA_GLUELESS_MESH;
6497					return;
6498				}
6499			}
6500
6501			sched_numa_topology_type = NUMA_BACKPLANE;
6502			return;
6503		}
6504	}
6505}
6506
6507static void sched_init_numa(void)
6508{
6509	int next_distance, curr_distance = node_distance(0, 0);
6510	struct sched_domain_topology_level *tl;
6511	int level = 0;
6512	int i, j, k;
6513
6514	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6515	if (!sched_domains_numa_distance)
6516		return;
6517
6518	/*
6519	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6520	 * unique distances in the node_distance() table.
6521	 *
6522	 * Assumes node_distance(0,j) includes all distances in
6523	 * node_distance(i,j) in order to avoid cubic time.
6524	 */
6525	next_distance = curr_distance;
6526	for (i = 0; i < nr_node_ids; i++) {
6527		for (j = 0; j < nr_node_ids; j++) {
6528			for (k = 0; k < nr_node_ids; k++) {
6529				int distance = node_distance(i, k);
6530
6531				if (distance > curr_distance &&
6532				    (distance < next_distance ||
6533				     next_distance == curr_distance))
6534					next_distance = distance;
6535
6536				/*
6537				 * While not a strong assumption it would be nice to know
6538				 * about cases where if node A is connected to B, B is not
6539				 * equally connected to A.
6540				 */
6541				if (sched_debug() && node_distance(k, i) != distance)
6542					sched_numa_warn("Node-distance not symmetric");
6543
6544				if (sched_debug() && i && !find_numa_distance(distance))
6545					sched_numa_warn("Node-0 not representative");
6546			}
6547			if (next_distance != curr_distance) {
6548				sched_domains_numa_distance[level++] = next_distance;
6549				sched_domains_numa_levels = level;
6550				curr_distance = next_distance;
6551			} else break;
6552		}
6553
6554		/*
6555		 * In case of sched_debug() we verify the above assumption.
6556		 */
6557		if (!sched_debug())
6558			break;
6559	}
6560
6561	if (!level)
6562		return;
6563
6564	/*
6565	 * 'level' contains the number of unique distances, excluding the
6566	 * identity distance node_distance(i,i).
6567	 *
6568	 * The sched_domains_numa_distance[] array includes the actual distance
6569	 * numbers.
6570	 */
 
6571
6572	/*
6573	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6574	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6575	 * the array will contain less then 'level' members. This could be
6576	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6577	 * in other functions.
 
6578	 *
6579	 * We reset it to 'level' at the end of this function.
6580	 */
6581	sched_domains_numa_levels = 0;
6582
6583	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6584	if (!sched_domains_numa_masks)
6585		return;
6586
6587	/*
6588	 * Now for each level, construct a mask per node which contains all
6589	 * cpus of nodes that are that many hops away from us.
6590	 */
6591	for (i = 0; i < level; i++) {
6592		sched_domains_numa_masks[i] =
6593			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6594		if (!sched_domains_numa_masks[i])
6595			return;
6596
6597		for (j = 0; j < nr_node_ids; j++) {
6598			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6599			if (!mask)
6600				return;
6601
6602			sched_domains_numa_masks[i][j] = mask;
6603
6604			for_each_node(k) {
6605				if (node_distance(j, k) > sched_domains_numa_distance[i])
6606					continue;
6607
6608				cpumask_or(mask, mask, cpumask_of_node(k));
6609			}
6610		}
6611	}
 
6612
6613	/* Compute default topology size */
6614	for (i = 0; sched_domain_topology[i].mask; i++);
6615
6616	tl = kzalloc((i + level + 1) *
6617			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6618	if (!tl)
6619		return;
6620
6621	/*
6622	 * Copy the default topology bits..
6623	 */
6624	for (i = 0; sched_domain_topology[i].mask; i++)
6625		tl[i] = sched_domain_topology[i];
6626
6627	/*
6628	 * .. and append 'j' levels of NUMA goodness.
6629	 */
6630	for (j = 0; j < level; i++, j++) {
6631		tl[i] = (struct sched_domain_topology_level){
6632			.mask = sd_numa_mask,
6633			.sd_flags = cpu_numa_flags,
6634			.flags = SDTL_OVERLAP,
6635			.numa_level = j,
6636			SD_INIT_NAME(NUMA)
6637		};
6638	}
6639
6640	sched_domain_topology = tl;
 
6641
6642	sched_domains_numa_levels = level;
6643	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6644
6645	init_numa_topology_type();
6646}
6647
6648static void sched_domains_numa_masks_set(int cpu)
6649{
6650	int i, j;
6651	int node = cpu_to_node(cpu);
6652
6653	for (i = 0; i < sched_domains_numa_levels; i++) {
6654		for (j = 0; j < nr_node_ids; j++) {
6655			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6656				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6657		}
6658	}
 
 
6659}
6660
6661static void sched_domains_numa_masks_clear(int cpu)
6662{
6663	int i, j;
6664	for (i = 0; i < sched_domains_numa_levels; i++) {
6665		for (j = 0; j < nr_node_ids; j++)
6666			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6667	}
6668}
6669
6670/*
6671 * Update sched_domains_numa_masks[level][node] array when new cpus
6672 * are onlined.
6673 */
6674static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6675					   unsigned long action,
6676					   void *hcpu)
6677{
6678	int cpu = (long)hcpu;
6679
6680	switch (action & ~CPU_TASKS_FROZEN) {
6681	case CPU_ONLINE:
6682		sched_domains_numa_masks_set(cpu);
6683		break;
6684
6685	case CPU_DEAD:
6686		sched_domains_numa_masks_clear(cpu);
6687		break;
6688
6689	default:
6690		return NOTIFY_DONE;
6691	}
6692
6693	return NOTIFY_OK;
6694}
6695#else
6696static inline void sched_init_numa(void)
6697{
6698}
6699
6700static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6701					   unsigned long action,
6702					   void *hcpu)
6703{
 
 
 
6704	return 0;
6705}
6706#endif /* CONFIG_NUMA */
6707
6708static int __sdt_alloc(const struct cpumask *cpu_map)
6709{
6710	struct sched_domain_topology_level *tl;
6711	int j;
6712
6713	for_each_sd_topology(tl) {
6714		struct sd_data *sdd = &tl->data;
6715
6716		sdd->sd = alloc_percpu(struct sched_domain *);
6717		if (!sdd->sd)
6718			return -ENOMEM;
6719
6720		sdd->sg = alloc_percpu(struct sched_group *);
6721		if (!sdd->sg)
6722			return -ENOMEM;
6723
6724		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6725		if (!sdd->sgc)
6726			return -ENOMEM;
6727
6728		for_each_cpu(j, cpu_map) {
6729			struct sched_domain *sd;
6730			struct sched_group *sg;
6731			struct sched_group_capacity *sgc;
6732
6733			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6734					GFP_KERNEL, cpu_to_node(j));
6735			if (!sd)
6736				return -ENOMEM;
6737
6738			*per_cpu_ptr(sdd->sd, j) = sd;
6739
6740			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6741					GFP_KERNEL, cpu_to_node(j));
6742			if (!sg)
6743				return -ENOMEM;
6744
6745			sg->next = sg;
6746
6747			*per_cpu_ptr(sdd->sg, j) = sg;
6748
6749			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6750					GFP_KERNEL, cpu_to_node(j));
6751			if (!sgc)
6752				return -ENOMEM;
6753
6754			*per_cpu_ptr(sdd->sgc, j) = sgc;
6755		}
6756	}
6757
6758	return 0;
6759}
6760
6761static void __sdt_free(const struct cpumask *cpu_map)
6762{
6763	struct sched_domain_topology_level *tl;
6764	int j;
6765
6766	for_each_sd_topology(tl) {
6767		struct sd_data *sdd = &tl->data;
6768
6769		for_each_cpu(j, cpu_map) {
6770			struct sched_domain *sd;
6771
6772			if (sdd->sd) {
6773				sd = *per_cpu_ptr(sdd->sd, j);
6774				if (sd && (sd->flags & SD_OVERLAP))
6775					free_sched_groups(sd->groups, 0);
6776				kfree(*per_cpu_ptr(sdd->sd, j));
6777			}
6778
6779			if (sdd->sg)
6780				kfree(*per_cpu_ptr(sdd->sg, j));
6781			if (sdd->sgc)
6782				kfree(*per_cpu_ptr(sdd->sgc, j));
6783		}
6784		free_percpu(sdd->sd);
6785		sdd->sd = NULL;
6786		free_percpu(sdd->sg);
6787		sdd->sg = NULL;
6788		free_percpu(sdd->sgc);
6789		sdd->sgc = NULL;
6790	}
6791}
6792
6793struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6794		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6795		struct sched_domain *child, int cpu)
6796{
6797	struct sched_domain *sd = sd_init(tl, cpu);
6798	if (!sd)
6799		return child;
6800
6801	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6802	if (child) {
6803		sd->level = child->level + 1;
6804		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6805		child->parent = sd;
6806		sd->child = child;
6807
6808		if (!cpumask_subset(sched_domain_span(child),
6809				    sched_domain_span(sd))) {
6810			pr_err("BUG: arch topology borken\n");
6811#ifdef CONFIG_SCHED_DEBUG
6812			pr_err("     the %s domain not a subset of the %s domain\n",
6813					child->name, sd->name);
6814#endif
6815			/* Fixup, ensure @sd has at least @child cpus. */
6816			cpumask_or(sched_domain_span(sd),
6817				   sched_domain_span(sd),
6818				   sched_domain_span(child));
6819		}
6820
6821	}
6822	set_domain_attribute(sd, attr);
6823
6824	return sd;
6825}
6826
6827/*
6828 * Build sched domains for a given set of cpus and attach the sched domains
6829 * to the individual cpus
 
 
 
 
 
 
 
6830 */
6831static int build_sched_domains(const struct cpumask *cpu_map,
6832			       struct sched_domain_attr *attr)
6833{
6834	enum s_alloc alloc_state;
6835	struct sched_domain *sd;
6836	struct s_data d;
6837	int i, ret = -ENOMEM;
6838
6839	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6840	if (alloc_state != sa_rootdomain)
6841		goto error;
6842
6843	/* Set up domains for cpus specified by the cpu_map. */
6844	for_each_cpu(i, cpu_map) {
6845		struct sched_domain_topology_level *tl;
6846
6847		sd = NULL;
6848		for_each_sd_topology(tl) {
6849			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6850			if (tl == sched_domain_topology)
6851				*per_cpu_ptr(d.sd, i) = sd;
6852			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6853				sd->flags |= SD_OVERLAP;
6854			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6855				break;
6856		}
6857	}
6858
6859	/* Build the groups for the domains */
6860	for_each_cpu(i, cpu_map) {
6861		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6862			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6863			if (sd->flags & SD_OVERLAP) {
6864				if (build_overlap_sched_groups(sd, i))
6865					goto error;
6866			} else {
6867				if (build_sched_groups(sd, i))
6868					goto error;
6869			}
6870		}
6871	}
6872
6873	/* Calculate CPU capacity for physical packages and nodes */
6874	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6875		if (!cpumask_test_cpu(i, cpu_map))
6876			continue;
6877
6878		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6879			claim_allocations(i, sd);
6880			init_sched_groups_capacity(i, sd);
6881		}
6882	}
6883
6884	/* Attach the domains */
6885	rcu_read_lock();
6886	for_each_cpu(i, cpu_map) {
6887		sd = *per_cpu_ptr(d.sd, i);
6888		cpu_attach_domain(sd, d.rd, i);
6889	}
6890	rcu_read_unlock();
6891
6892	ret = 0;
6893error:
6894	__free_domain_allocs(&d, alloc_state, cpu_map);
6895	return ret;
6896}
6897
6898static cpumask_var_t *doms_cur;	/* current sched domains */
6899static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6900static struct sched_domain_attr *dattr_cur;
6901				/* attribues of custom domains in 'doms_cur' */
6902
6903/*
6904 * Special case: If a kmalloc of a doms_cur partition (array of
6905 * cpumask) fails, then fallback to a single sched domain,
6906 * as determined by the single cpumask fallback_doms.
6907 */
6908static cpumask_var_t fallback_doms;
6909
6910/*
6911 * arch_update_cpu_topology lets virtualized architectures update the
6912 * cpu core maps. It is supposed to return 1 if the topology changed
6913 * or 0 if it stayed the same.
6914 */
6915int __weak arch_update_cpu_topology(void)
6916{
 
6917	return 0;
6918}
6919
6920cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6921{
6922	int i;
6923	cpumask_var_t *doms;
6924
6925	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6926	if (!doms)
6927		return NULL;
6928	for (i = 0; i < ndoms; i++) {
6929		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6930			free_sched_domains(doms, i);
6931			return NULL;
6932		}
6933	}
6934	return doms;
6935}
6936
6937void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6938{
6939	unsigned int i;
6940	for (i = 0; i < ndoms; i++)
6941		free_cpumask_var(doms[i]);
6942	kfree(doms);
6943}
6944
6945/*
6946 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6947 * For now this just excludes isolated cpus, but could be used to
6948 * exclude other special cases in the future.
 
 
 
 
6949 */
6950static int init_sched_domains(const struct cpumask *cpu_map)
6951{
6952	int err;
6953
6954	arch_update_cpu_topology();
6955	ndoms_cur = 1;
6956	doms_cur = alloc_sched_domains(ndoms_cur);
6957	if (!doms_cur)
6958		doms_cur = &fallback_doms;
6959	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6960	err = build_sched_domains(doms_cur[0], NULL);
6961	register_sched_domain_sysctl();
6962
6963	return err;
6964}
6965
6966/*
6967 * Detach sched domains from a group of cpus specified in cpu_map
6968 * These cpus will now be attached to the NULL domain
6969 */
6970static void detach_destroy_domains(const struct cpumask *cpu_map)
6971{
6972	int i;
 
6973
6974	rcu_read_lock();
6975	for_each_cpu(i, cpu_map)
6976		cpu_attach_domain(NULL, &def_root_domain, i);
6977	rcu_read_unlock();
6978}
6979
6980/* handle null as "default" */
6981static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6982			struct sched_domain_attr *new, int idx_new)
6983{
6984	struct sched_domain_attr tmp;
6985
6986	/* fast path */
6987	if (!new && !cur)
6988		return 1;
6989
6990	tmp = SD_ATTR_INIT;
6991	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6992			new ? (new + idx_new) : &tmp,
6993			sizeof(struct sched_domain_attr));
6994}
6995
6996/*
6997 * Partition sched domains as specified by the 'ndoms_new'
6998 * cpumasks in the array doms_new[] of cpumasks. This compares
6999 * doms_new[] to the current sched domain partitioning, doms_cur[].
7000 * It destroys each deleted domain and builds each new domain.
7001 *
7002 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7003 * The masks don't intersect (don't overlap.) We should setup one
7004 * sched domain for each mask. CPUs not in any of the cpumasks will
7005 * not be load balanced. If the same cpumask appears both in the
7006 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7007 * it as it is.
7008 *
7009 * The passed in 'doms_new' should be allocated using
7010 * alloc_sched_domains.  This routine takes ownership of it and will
7011 * free_sched_domains it when done with it. If the caller failed the
7012 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7013 * and partition_sched_domains() will fallback to the single partition
7014 * 'fallback_doms', it also forces the domains to be rebuilt.
7015 *
7016 * If doms_new == NULL it will be replaced with cpu_online_mask.
7017 * ndoms_new == 0 is a special case for destroying existing domains,
7018 * and it will not create the default domain.
7019 *
7020 * Call with hotplug lock held
7021 */
7022void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7023			     struct sched_domain_attr *dattr_new)
7024{
7025	int i, j, n;
7026	int new_topology;
7027
7028	mutex_lock(&sched_domains_mutex);
7029
7030	/* always unregister in case we don't destroy any domains */
7031	unregister_sched_domain_sysctl();
7032
7033	/* Let architecture update cpu core mappings. */
7034	new_topology = arch_update_cpu_topology();
7035
7036	n = doms_new ? ndoms_new : 0;
7037
7038	/* Destroy deleted domains */
7039	for (i = 0; i < ndoms_cur; i++) {
7040		for (j = 0; j < n && !new_topology; j++) {
7041			if (cpumask_equal(doms_cur[i], doms_new[j])
7042			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7043				goto match1;
7044		}
7045		/* no match - a current sched domain not in new doms_new[] */
7046		detach_destroy_domains(doms_cur[i]);
7047match1:
7048		;
7049	}
7050
7051	n = ndoms_cur;
7052	if (doms_new == NULL) {
7053		n = 0;
7054		doms_new = &fallback_doms;
7055		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7056		WARN_ON_ONCE(dattr_new);
7057	}
7058
7059	/* Build new domains */
7060	for (i = 0; i < ndoms_new; i++) {
7061		for (j = 0; j < n && !new_topology; j++) {
7062			if (cpumask_equal(doms_new[i], doms_cur[j])
7063			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7064				goto match2;
7065		}
7066		/* no match - add a new doms_new */
7067		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7068match2:
7069		;
7070	}
7071
7072	/* Remember the new sched domains */
7073	if (doms_cur != &fallback_doms)
7074		free_sched_domains(doms_cur, ndoms_cur);
7075	kfree(dattr_cur);	/* kfree(NULL) is safe */
7076	doms_cur = doms_new;
7077	dattr_cur = dattr_new;
7078	ndoms_cur = ndoms_new;
7079
7080	register_sched_domain_sysctl();
7081
7082	mutex_unlock(&sched_domains_mutex);
7083}
7084
7085static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7086
7087/*
7088 * Update cpusets according to cpu_active mask.  If cpusets are
7089 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7090 * around partition_sched_domains().
7091 *
7092 * If we come here as part of a suspend/resume, don't touch cpusets because we
7093 * want to restore it back to its original state upon resume anyway.
7094 */
7095static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7096			     void *hcpu)
7097{
7098	switch (action) {
7099	case CPU_ONLINE_FROZEN:
7100	case CPU_DOWN_FAILED_FROZEN:
7101
7102		/*
7103		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7104		 * resume sequence. As long as this is not the last online
7105		 * operation in the resume sequence, just build a single sched
7106		 * domain, ignoring cpusets.
7107		 */
7108		num_cpus_frozen--;
7109		if (likely(num_cpus_frozen)) {
7110			partition_sched_domains(1, NULL, NULL);
7111			break;
7112		}
7113
7114		/*
7115		 * This is the last CPU online operation. So fall through and
7116		 * restore the original sched domains by considering the
7117		 * cpuset configurations.
7118		 */
7119
7120	case CPU_ONLINE:
7121		cpuset_update_active_cpus(true);
7122		break;
7123	default:
7124		return NOTIFY_DONE;
7125	}
7126	return NOTIFY_OK;
7127}
7128
7129static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7130			       void *hcpu)
7131{
7132	unsigned long flags;
7133	long cpu = (long)hcpu;
7134	struct dl_bw *dl_b;
7135	bool overflow;
7136	int cpus;
7137
7138	switch (action) {
7139	case CPU_DOWN_PREPARE:
7140		rcu_read_lock_sched();
7141		dl_b = dl_bw_of(cpu);
7142
7143		raw_spin_lock_irqsave(&dl_b->lock, flags);
7144		cpus = dl_bw_cpus(cpu);
7145		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7146		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7147
7148		rcu_read_unlock_sched();
7149
7150		if (overflow)
7151			return notifier_from_errno(-EBUSY);
7152		cpuset_update_active_cpus(false);
7153		break;
7154	case CPU_DOWN_PREPARE_FROZEN:
7155		num_cpus_frozen++;
7156		partition_sched_domains(1, NULL, NULL);
7157		break;
7158	default:
7159		return NOTIFY_DONE;
7160	}
7161	return NOTIFY_OK;
7162}
 
7163
7164void __init sched_init_smp(void)
7165{
7166	cpumask_var_t non_isolated_cpus;
7167
7168	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7169	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7170
7171	sched_init_numa();
7172
7173	/*
7174	 * There's no userspace yet to cause hotplug operations; hence all the
7175	 * cpu masks are stable and all blatant races in the below code cannot
7176	 * happen.
7177	 */
7178	mutex_lock(&sched_domains_mutex);
7179	init_sched_domains(cpu_active_mask);
7180	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7181	if (cpumask_empty(non_isolated_cpus))
7182		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7183	mutex_unlock(&sched_domains_mutex);
7184
7185	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7186	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7187	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7188
7189	init_hrtick();
7190
7191	/* Move init over to a non-isolated CPU */
7192	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7193		BUG();
 
7194	sched_init_granularity();
7195	free_cpumask_var(non_isolated_cpus);
7196
7197	init_sched_rt_class();
7198	init_sched_dl_class();
 
 
 
 
 
 
 
 
7199}
 
 
7200#else
7201void __init sched_init_smp(void)
7202{
7203	sched_init_granularity();
7204}
7205#endif /* CONFIG_SMP */
7206
7207int in_sched_functions(unsigned long addr)
7208{
7209	return in_lock_functions(addr) ||
7210		(addr >= (unsigned long)__sched_text_start
7211		&& addr < (unsigned long)__sched_text_end);
7212}
7213
7214#ifdef CONFIG_CGROUP_SCHED
7215/*
7216 * Default task group.
7217 * Every task in system belongs to this group at bootup.
7218 */
7219struct task_group root_task_group;
7220LIST_HEAD(task_groups);
7221
7222/* Cacheline aligned slab cache for task_group */
7223static struct kmem_cache *task_group_cache __read_mostly;
7224#endif
7225
7226DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7227
7228void __init sched_init(void)
7229{
7230	int i, j;
7231	unsigned long alloc_size = 0, ptr;
 
 
 
 
 
 
 
 
 
 
7232
7233#ifdef CONFIG_FAIR_GROUP_SCHED
7234	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7235#endif
7236#ifdef CONFIG_RT_GROUP_SCHED
7237	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7238#endif
7239	if (alloc_size) {
7240		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7241
7242#ifdef CONFIG_FAIR_GROUP_SCHED
7243		root_task_group.se = (struct sched_entity **)ptr;
7244		ptr += nr_cpu_ids * sizeof(void **);
7245
7246		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7247		ptr += nr_cpu_ids * sizeof(void **);
7248
 
 
7249#endif /* CONFIG_FAIR_GROUP_SCHED */
7250#ifdef CONFIG_RT_GROUP_SCHED
7251		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7252		ptr += nr_cpu_ids * sizeof(void **);
7253
7254		root_task_group.rt_rq = (struct rt_rq **)ptr;
7255		ptr += nr_cpu_ids * sizeof(void **);
7256
7257#endif /* CONFIG_RT_GROUP_SCHED */
7258	}
7259#ifdef CONFIG_CPUMASK_OFFSTACK
7260	for_each_possible_cpu(i) {
7261		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7262			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7263	}
7264#endif /* CONFIG_CPUMASK_OFFSTACK */
7265
7266	init_rt_bandwidth(&def_rt_bandwidth,
7267			global_rt_period(), global_rt_runtime());
7268	init_dl_bandwidth(&def_dl_bandwidth,
7269			global_rt_period(), global_rt_runtime());
7270
7271#ifdef CONFIG_SMP
7272	init_defrootdomain();
7273#endif
7274
7275#ifdef CONFIG_RT_GROUP_SCHED
7276	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7277			global_rt_period(), global_rt_runtime());
7278#endif /* CONFIG_RT_GROUP_SCHED */
7279
7280#ifdef CONFIG_CGROUP_SCHED
7281	task_group_cache = KMEM_CACHE(task_group, 0);
7282
7283	list_add(&root_task_group.list, &task_groups);
7284	INIT_LIST_HEAD(&root_task_group.children);
7285	INIT_LIST_HEAD(&root_task_group.siblings);
7286	autogroup_init(&init_task);
7287#endif /* CONFIG_CGROUP_SCHED */
7288
7289	for_each_possible_cpu(i) {
7290		struct rq *rq;
7291
7292		rq = cpu_rq(i);
7293		raw_spin_lock_init(&rq->lock);
7294		rq->nr_running = 0;
7295		rq->calc_load_active = 0;
7296		rq->calc_load_update = jiffies + LOAD_FREQ;
7297		init_cfs_rq(&rq->cfs);
7298		init_rt_rq(&rq->rt);
7299		init_dl_rq(&rq->dl);
7300#ifdef CONFIG_FAIR_GROUP_SCHED
7301		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7302		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
 
7303		/*
7304		 * How much cpu bandwidth does root_task_group get?
7305		 *
7306		 * In case of task-groups formed thr' the cgroup filesystem, it
7307		 * gets 100% of the cpu resources in the system. This overall
7308		 * system cpu resource is divided among the tasks of
7309		 * root_task_group and its child task-groups in a fair manner,
7310		 * based on each entity's (task or task-group's) weight
7311		 * (se->load.weight).
7312		 *
7313		 * In other words, if root_task_group has 10 tasks of weight
7314		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7315		 * then A0's share of the cpu resource is:
7316		 *
7317		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7318		 *
7319		 * We achieve this by letting root_task_group's tasks sit
7320		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7321		 */
7322		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7323		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7324#endif /* CONFIG_FAIR_GROUP_SCHED */
7325
7326		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7327#ifdef CONFIG_RT_GROUP_SCHED
7328		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7329#endif
7330
7331		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7332			rq->cpu_load[j] = 0;
7333
7334		rq->last_load_update_tick = jiffies;
7335
7336#ifdef CONFIG_SMP
7337		rq->sd = NULL;
7338		rq->rd = NULL;
7339		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7340		rq->balance_callback = NULL;
7341		rq->active_balance = 0;
7342		rq->next_balance = jiffies;
7343		rq->push_cpu = 0;
7344		rq->cpu = i;
7345		rq->online = 0;
7346		rq->idle_stamp = 0;
7347		rq->avg_idle = 2*sysctl_sched_migration_cost;
 
 
7348		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7349
7350		INIT_LIST_HEAD(&rq->cfs_tasks);
7351
7352		rq_attach_root(rq, &def_root_domain);
7353#ifdef CONFIG_NO_HZ_COMMON
7354		rq->nohz_flags = 0;
 
 
 
7355#endif
7356#ifdef CONFIG_NO_HZ_FULL
7357		rq->last_sched_tick = 0;
7358#endif
7359#endif
7360		init_rq_hrtick(rq);
7361		atomic_set(&rq->nr_iowait, 0);
7362	}
7363
7364	set_load_weight(&init_task);
 
 
 
 
 
 
 
7365
7366#ifdef CONFIG_PREEMPT_NOTIFIERS
7367	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7368#endif
 
 
 
 
7369
7370	/*
7371	 * The boot idle thread does lazy MMU switching as well:
7372	 */
7373	atomic_inc(&init_mm.mm_count);
7374	enter_lazy_tlb(&init_mm, current);
7375
7376	/*
7377	 * During early bootup we pretend to be a normal task:
 
 
 
7378	 */
7379	current->sched_class = &fair_sched_class;
7380
7381	/*
7382	 * Make us the idle thread. Technically, schedule() should not be
7383	 * called from this thread, however somewhere below it might be,
7384	 * but because we are the idle thread, we just pick up running again
7385	 * when this runqueue becomes "idle".
7386	 */
7387	init_idle(current, smp_processor_id());
7388
7389	calc_load_update = jiffies + LOAD_FREQ;
7390
7391#ifdef CONFIG_SMP
7392	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7393	/* May be allocated at isolcpus cmdline parse time */
7394	if (cpu_isolated_map == NULL)
7395		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7396	idle_thread_set_boot_cpu();
7397	set_cpu_rq_start_time();
7398#endif
7399	init_sched_fair_class();
7400
 
 
 
 
 
 
7401	scheduler_running = 1;
7402}
7403
7404#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7405static inline int preempt_count_equals(int preempt_offset)
7406{
7407	int nested = preempt_count() + rcu_preempt_depth();
7408
7409	return (nested == preempt_offset);
7410}
7411
7412void __might_sleep(const char *file, int line, int preempt_offset)
7413{
 
7414	/*
7415	 * Blocking primitives will set (and therefore destroy) current->state,
7416	 * since we will exit with TASK_RUNNING make sure we enter with it,
7417	 * otherwise we will destroy state.
7418	 */
7419	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7420			"do not call blocking ops when !TASK_RUNNING; "
7421			"state=%lx set at [<%p>] %pS\n",
7422			current->state,
7423			(void *)current->task_state_change,
7424			(void *)current->task_state_change);
7425
7426	___might_sleep(file, line, preempt_offset);
7427}
7428EXPORT_SYMBOL(__might_sleep);
7429
7430void ___might_sleep(const char *file, int line, int preempt_offset)
 
 
 
 
 
 
 
 
 
 
 
 
7431{
7432	static unsigned long prev_jiffy;	/* ratelimiting */
 
 
 
 
 
 
 
 
 
 
 
 
7433
7434	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7435	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7436	     !is_idle_task(current)) ||
7437	    system_state != SYSTEM_RUNNING || oops_in_progress)
 
 
 
7438		return;
 
7439	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7440		return;
7441	prev_jiffy = jiffies;
7442
7443	printk(KERN_ERR
7444		"BUG: sleeping function called from invalid context at %s:%d\n",
7445			file, line);
7446	printk(KERN_ERR
7447		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7448			in_atomic(), irqs_disabled(),
7449			current->pid, current->comm);
 
 
 
 
 
 
 
 
7450
7451	if (task_stack_end_corrupted(current))
7452		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7453
7454	debug_show_held_locks(current);
7455	if (irqs_disabled())
7456		print_irqtrace_events(current);
7457#ifdef CONFIG_DEBUG_PREEMPT
7458	if (!preempt_count_equals(preempt_offset)) {
7459		pr_err("Preemption disabled at:");
7460		print_ip_sym(current->preempt_disable_ip);
7461		pr_cont("\n");
7462	}
7463#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7464	dump_stack();
 
7465}
7466EXPORT_SYMBOL(___might_sleep);
 
7467#endif
7468
7469#ifdef CONFIG_MAGIC_SYSRQ
7470void normalize_rt_tasks(void)
7471{
7472	struct task_struct *g, *p;
7473	struct sched_attr attr = {
7474		.sched_policy = SCHED_NORMAL,
7475	};
7476
7477	read_lock(&tasklist_lock);
7478	for_each_process_thread(g, p) {
7479		/*
7480		 * Only normalize user tasks:
7481		 */
7482		if (p->flags & PF_KTHREAD)
7483			continue;
7484
7485		p->se.exec_start		= 0;
7486#ifdef CONFIG_SCHEDSTATS
7487		p->se.statistics.wait_start	= 0;
7488		p->se.statistics.sleep_start	= 0;
7489		p->se.statistics.block_start	= 0;
7490#endif
7491
7492		if (!dl_task(p) && !rt_task(p)) {
7493			/*
7494			 * Renice negative nice level userspace
7495			 * tasks back to 0:
7496			 */
7497			if (task_nice(p) < 0)
7498				set_user_nice(p, 0);
7499			continue;
7500		}
7501
7502		__sched_setscheduler(p, &attr, false, false);
7503	}
7504	read_unlock(&tasklist_lock);
7505}
7506
7507#endif /* CONFIG_MAGIC_SYSRQ */
7508
7509#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7510/*
7511 * These functions are only useful for the IA64 MCA handling, or kdb.
7512 *
7513 * They can only be called when the whole system has been
7514 * stopped - every CPU needs to be quiescent, and no scheduling
7515 * activity can take place. Using them for anything else would
7516 * be a serious bug, and as a result, they aren't even visible
7517 * under any other configuration.
7518 */
7519
7520/**
7521 * curr_task - return the current task for a given cpu.
7522 * @cpu: the processor in question.
7523 *
7524 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7525 *
7526 * Return: The current task for @cpu.
7527 */
7528struct task_struct *curr_task(int cpu)
7529{
7530	return cpu_curr(cpu);
7531}
7532
7533#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7534
7535#ifdef CONFIG_IA64
7536/**
7537 * set_curr_task - set the current task for a given cpu.
7538 * @cpu: the processor in question.
7539 * @p: the task pointer to set.
7540 *
7541 * Description: This function must only be used when non-maskable interrupts
7542 * are serviced on a separate stack. It allows the architecture to switch the
7543 * notion of the current task on a cpu in a non-blocking manner. This function
7544 * must be called with all CPU's synchronized, and interrupts disabled, the
7545 * and caller must save the original value of the current task (see
7546 * curr_task() above) and restore that value before reenabling interrupts and
7547 * re-starting the system.
7548 *
7549 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7550 */
7551void set_curr_task(int cpu, struct task_struct *p)
7552{
7553	cpu_curr(cpu) = p;
7554}
7555
7556#endif
7557
7558#ifdef CONFIG_CGROUP_SCHED
7559/* task_group_lock serializes the addition/removal of task groups */
7560static DEFINE_SPINLOCK(task_group_lock);
7561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7562static void sched_free_group(struct task_group *tg)
7563{
7564	free_fair_sched_group(tg);
7565	free_rt_sched_group(tg);
7566	autogroup_free(tg);
7567	kmem_cache_free(task_group_cache, tg);
7568}
7569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7570/* allocate runqueue etc for a new task group */
7571struct task_group *sched_create_group(struct task_group *parent)
7572{
7573	struct task_group *tg;
7574
7575	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7576	if (!tg)
7577		return ERR_PTR(-ENOMEM);
7578
7579	if (!alloc_fair_sched_group(tg, parent))
7580		goto err;
7581
7582	if (!alloc_rt_sched_group(tg, parent))
7583		goto err;
7584
 
 
7585	return tg;
7586
7587err:
7588	sched_free_group(tg);
7589	return ERR_PTR(-ENOMEM);
7590}
7591
7592void sched_online_group(struct task_group *tg, struct task_group *parent)
7593{
7594	unsigned long flags;
7595
7596	spin_lock_irqsave(&task_group_lock, flags);
7597	list_add_rcu(&tg->list, &task_groups);
7598
7599	WARN_ON(!parent); /* root should already exist */
 
7600
7601	tg->parent = parent;
7602	INIT_LIST_HEAD(&tg->children);
7603	list_add_rcu(&tg->siblings, &parent->children);
7604	spin_unlock_irqrestore(&task_group_lock, flags);
 
 
7605}
7606
7607/* rcu callback to free various structures associated with a task group */
7608static void sched_free_group_rcu(struct rcu_head *rhp)
7609{
7610	/* now it should be safe to free those cfs_rqs */
7611	sched_free_group(container_of(rhp, struct task_group, rcu));
7612}
7613
7614void sched_destroy_group(struct task_group *tg)
7615{
7616	/* wait for possible concurrent references to cfs_rqs complete */
7617	call_rcu(&tg->rcu, sched_free_group_rcu);
7618}
7619
7620void sched_offline_group(struct task_group *tg)
7621{
7622	unsigned long flags;
7623
7624	/* end participation in shares distribution */
7625	unregister_fair_sched_group(tg);
7626
 
 
 
 
 
 
 
 
 
 
7627	spin_lock_irqsave(&task_group_lock, flags);
7628	list_del_rcu(&tg->list);
7629	list_del_rcu(&tg->siblings);
7630	spin_unlock_irqrestore(&task_group_lock, flags);
7631}
7632
7633/* change task's runqueue when it moves between groups.
7634 *	The caller of this function should have put the task in its new group
7635 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7636 *	reflect its new group.
7637 */
7638void sched_move_task(struct task_struct *tsk)
7639{
7640	struct task_group *tg;
7641	int queued, running;
7642	unsigned long flags;
7643	struct rq *rq;
7644
7645	rq = task_rq_lock(tsk, &flags);
7646
7647	running = task_current(rq, tsk);
7648	queued = task_on_rq_queued(tsk);
7649
7650	if (queued)
7651		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7652	if (unlikely(running))
7653		put_prev_task(rq, tsk);
7654
7655	/*
7656	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7657	 * which is pointless here. Thus, we pass "true" to task_css_check()
7658	 * to prevent lockdep warnings.
7659	 */
7660	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7661			  struct task_group, css);
7662	tg = autogroup_task_group(tsk, tg);
7663	tsk->sched_task_group = tg;
7664
7665#ifdef CONFIG_FAIR_GROUP_SCHED
7666	if (tsk->sched_class->task_move_group)
7667		tsk->sched_class->task_move_group(tsk);
7668	else
7669#endif
7670		set_task_rq(tsk, task_cpu(tsk));
7671
7672	if (unlikely(running))
7673		tsk->sched_class->set_curr_task(rq);
7674	if (queued)
7675		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7676
7677	task_rq_unlock(rq, tsk, &flags);
7678}
7679#endif /* CONFIG_CGROUP_SCHED */
7680
7681#ifdef CONFIG_RT_GROUP_SCHED
7682/*
7683 * Ensure that the real time constraints are schedulable.
 
 
 
 
7684 */
7685static DEFINE_MUTEX(rt_constraints_mutex);
7686
7687/* Must be called with tasklist_lock held */
7688static inline int tg_has_rt_tasks(struct task_group *tg)
7689{
7690	struct task_struct *g, *p;
 
 
 
7691
7692	/*
7693	 * Autogroups do not have RT tasks; see autogroup_create().
7694	 */
7695	if (task_group_is_autogroup(tg))
7696		return 0;
7697
7698	for_each_process_thread(g, p) {
7699		if (rt_task(p) && task_group(p) == tg)
7700			return 1;
7701	}
7702
7703	return 0;
7704}
 
 
7705
7706struct rt_schedulable_data {
7707	struct task_group *tg;
7708	u64 rt_period;
7709	u64 rt_runtime;
7710};
7711
7712static int tg_rt_schedulable(struct task_group *tg, void *data)
7713{
7714	struct rt_schedulable_data *d = data;
7715	struct task_group *child;
7716	unsigned long total, sum = 0;
7717	u64 period, runtime;
7718
7719	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7720	runtime = tg->rt_bandwidth.rt_runtime;
7721
7722	if (tg == d->tg) {
7723		period = d->rt_period;
7724		runtime = d->rt_runtime;
7725	}
7726
7727	/*
7728	 * Cannot have more runtime than the period.
7729	 */
7730	if (runtime > period && runtime != RUNTIME_INF)
7731		return -EINVAL;
7732
7733	/*
7734	 * Ensure we don't starve existing RT tasks.
7735	 */
7736	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7737		return -EBUSY;
7738
7739	total = to_ratio(period, runtime);
7740
7741	/*
7742	 * Nobody can have more than the global setting allows.
7743	 */
7744	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7745		return -EINVAL;
7746
7747	/*
7748	 * The sum of our children's runtime should not exceed our own.
7749	 */
7750	list_for_each_entry_rcu(child, &tg->children, siblings) {
7751		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7752		runtime = child->rt_bandwidth.rt_runtime;
7753
7754		if (child == d->tg) {
7755			period = d->rt_period;
7756			runtime = d->rt_runtime;
7757		}
7758
7759		sum += to_ratio(period, runtime);
7760	}
7761
7762	if (sum > total)
7763		return -EINVAL;
7764
7765	return 0;
7766}
7767
7768static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7769{
7770	int ret;
7771
7772	struct rt_schedulable_data data = {
7773		.tg = tg,
7774		.rt_period = period,
7775		.rt_runtime = runtime,
7776	};
7777
7778	rcu_read_lock();
7779	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7780	rcu_read_unlock();
7781
7782	return ret;
7783}
7784
7785static int tg_set_rt_bandwidth(struct task_group *tg,
7786		u64 rt_period, u64 rt_runtime)
7787{
7788	int i, err = 0;
 
7789
7790	/*
7791	 * Disallowing the root group RT runtime is BAD, it would disallow the
7792	 * kernel creating (and or operating) RT threads.
7793	 */
7794	if (tg == &root_task_group && rt_runtime == 0)
7795		return -EINVAL;
7796
7797	/* No period doesn't make any sense. */
7798	if (rt_period == 0)
7799		return -EINVAL;
7800
7801	mutex_lock(&rt_constraints_mutex);
7802	read_lock(&tasklist_lock);
7803	err = __rt_schedulable(tg, rt_period, rt_runtime);
7804	if (err)
7805		goto unlock;
7806
7807	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7808	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7809	tg->rt_bandwidth.rt_runtime = rt_runtime;
7810
7811	for_each_possible_cpu(i) {
7812		struct rt_rq *rt_rq = tg->rt_rq[i];
7813
7814		raw_spin_lock(&rt_rq->rt_runtime_lock);
7815		rt_rq->rt_runtime = rt_runtime;
7816		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7817	}
7818	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7819unlock:
7820	read_unlock(&tasklist_lock);
7821	mutex_unlock(&rt_constraints_mutex);
7822
7823	return err;
7824}
7825
7826static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
 
7827{
7828	u64 rt_runtime, rt_period;
 
7829
7830	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7831	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7832	if (rt_runtime_us < 0)
7833		rt_runtime = RUNTIME_INF;
7834
7835	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7836}
 
 
 
 
 
 
7837
7838static long sched_group_rt_runtime(struct task_group *tg)
7839{
7840	u64 rt_runtime_us;
7841
7842	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7843		return -1;
7844
7845	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7846	do_div(rt_runtime_us, NSEC_PER_USEC);
7847	return rt_runtime_us;
7848}
7849
7850static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7851{
7852	u64 rt_runtime, rt_period;
7853
7854	rt_period = rt_period_us * NSEC_PER_USEC;
7855	rt_runtime = tg->rt_bandwidth.rt_runtime;
7856
7857	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7858}
7859
7860static long sched_group_rt_period(struct task_group *tg)
7861{
7862	u64 rt_period_us;
7863
7864	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7865	do_div(rt_period_us, NSEC_PER_USEC);
7866	return rt_period_us;
 
7867}
7868#endif /* CONFIG_RT_GROUP_SCHED */
7869
7870#ifdef CONFIG_RT_GROUP_SCHED
7871static int sched_rt_global_constraints(void)
7872{
7873	int ret = 0;
 
7874
7875	mutex_lock(&rt_constraints_mutex);
7876	read_lock(&tasklist_lock);
7877	ret = __rt_schedulable(NULL, 0, 0);
7878	read_unlock(&tasklist_lock);
7879	mutex_unlock(&rt_constraints_mutex);
7880
7881	return ret;
7882}
 
7883
7884static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7885{
7886	/* Don't accept realtime tasks when there is no way for them to run */
7887	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7888		return 0;
7889
7890	return 1;
 
7891}
7892
7893#else /* !CONFIG_RT_GROUP_SCHED */
7894static int sched_rt_global_constraints(void)
7895{
7896	unsigned long flags;
7897	int i, ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7898
7899	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7900	for_each_possible_cpu(i) {
7901		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
 
 
 
 
 
 
 
 
 
 
 
7902
7903		raw_spin_lock(&rt_rq->rt_runtime_lock);
7904		rt_rq->rt_runtime = global_rt_runtime();
7905		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7906	}
7907	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7908
7909	return ret;
7910}
7911#endif /* CONFIG_RT_GROUP_SCHED */
7912
7913static int sched_dl_global_validate(void)
7914{
7915	u64 runtime = global_rt_runtime();
7916	u64 period = global_rt_period();
7917	u64 new_bw = to_ratio(period, runtime);
7918	struct dl_bw *dl_b;
7919	int cpu, ret = 0;
7920	unsigned long flags;
7921
7922	/*
7923	 * Here we want to check the bandwidth not being set to some
7924	 * value smaller than the currently allocated bandwidth in
7925	 * any of the root_domains.
7926	 *
7927	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7928	 * cycling on root_domains... Discussion on different/better
7929	 * solutions is welcome!
7930	 */
7931	for_each_possible_cpu(cpu) {
7932		rcu_read_lock_sched();
7933		dl_b = dl_bw_of(cpu);
7934
7935		raw_spin_lock_irqsave(&dl_b->lock, flags);
7936		if (new_bw < dl_b->total_bw)
7937			ret = -EBUSY;
7938		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7939
7940		rcu_read_unlock_sched();
7941
7942		if (ret)
7943			break;
7944	}
7945
7946	return ret;
7947}
7948
7949static void sched_dl_do_global(void)
7950{
7951	u64 new_bw = -1;
7952	struct dl_bw *dl_b;
7953	int cpu;
7954	unsigned long flags;
 
7955
7956	def_dl_bandwidth.dl_period = global_rt_period();
7957	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7958
7959	if (global_rt_runtime() != RUNTIME_INF)
7960		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
 
 
 
 
 
7961
7962	/*
7963	 * FIXME: As above...
7964	 */
7965	for_each_possible_cpu(cpu) {
7966		rcu_read_lock_sched();
7967		dl_b = dl_bw_of(cpu);
7968
7969		raw_spin_lock_irqsave(&dl_b->lock, flags);
7970		dl_b->bw = new_bw;
7971		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7972
7973		rcu_read_unlock_sched();
7974	}
7975}
7976
7977static int sched_rt_global_validate(void)
7978{
7979	if (sysctl_sched_rt_period <= 0)
7980		return -EINVAL;
7981
7982	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7983		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7984		return -EINVAL;
7985
7986	return 0;
7987}
7988
7989static void sched_rt_do_global(void)
 
 
7990{
7991	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7992	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7993}
7994
7995int sched_rt_handler(struct ctl_table *table, int write,
7996		void __user *buffer, size_t *lenp,
7997		loff_t *ppos)
7998{
7999	int old_period, old_runtime;
8000	static DEFINE_MUTEX(mutex);
8001	int ret;
8002
8003	mutex_lock(&mutex);
8004	old_period = sysctl_sched_rt_period;
8005	old_runtime = sysctl_sched_rt_runtime;
8006
8007	ret = proc_dointvec(table, write, buffer, lenp, ppos);
 
8008
8009	if (!ret && write) {
8010		ret = sched_rt_global_validate();
8011		if (ret)
8012			goto undo;
8013
8014		ret = sched_dl_global_validate();
8015		if (ret)
8016			goto undo;
 
 
8017
8018		ret = sched_rt_global_constraints();
8019		if (ret)
8020			goto undo;
8021
8022		sched_rt_do_global();
8023		sched_dl_do_global();
8024	}
8025	if (0) {
8026undo:
8027		sysctl_sched_rt_period = old_period;
8028		sysctl_sched_rt_runtime = old_runtime;
8029	}
8030	mutex_unlock(&mutex);
8031
8032	return ret;
8033}
8034
8035int sched_rr_handler(struct ctl_table *table, int write,
8036		void __user *buffer, size_t *lenp,
8037		loff_t *ppos)
8038{
8039	int ret;
8040	static DEFINE_MUTEX(mutex);
8041
8042	mutex_lock(&mutex);
8043	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8044	/* make sure that internally we keep jiffies */
8045	/* also, writing zero resets timeslice to default */
8046	if (!ret && write) {
8047		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8048			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8049	}
8050	mutex_unlock(&mutex);
8051	return ret;
8052}
8053
8054#ifdef CONFIG_CGROUP_SCHED
8055
8056static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8057{
8058	return css ? container_of(css, struct task_group, css) : NULL;
8059}
8060
8061static struct cgroup_subsys_state *
8062cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8063{
8064	struct task_group *parent = css_tg(parent_css);
8065	struct task_group *tg;
 
 
 
8066
8067	if (!parent) {
8068		/* This is early initialization for the top cgroup */
8069		return &root_task_group.css;
 
 
 
 
 
8070	}
8071
8072	tg = sched_create_group(parent);
8073	if (IS_ERR(tg))
8074		return ERR_PTR(-ENOMEM);
8075
8076	sched_online_group(tg, parent);
8077
8078	return &tg->css;
8079}
8080
8081static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8082{
8083	struct task_group *tg = css_tg(css);
8084
8085	sched_offline_group(tg);
8086}
8087
8088static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8089{
8090	struct task_group *tg = css_tg(css);
8091
8092	/*
8093	 * Relies on the RCU grace period between css_released() and this.
8094	 */
8095	sched_free_group(tg);
8096}
8097
8098static void cpu_cgroup_fork(struct task_struct *task)
8099{
8100	sched_move_task(task);
8101}
8102
8103static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8104{
8105	struct task_struct *task;
8106	struct cgroup_subsys_state *css;
8107
8108	cgroup_taskset_for_each(task, css, tset) {
8109#ifdef CONFIG_RT_GROUP_SCHED
8110		if (!sched_rt_can_attach(css_tg(css), task))
8111			return -EINVAL;
8112#else
8113		/* We don't support RT-tasks being in separate groups */
8114		if (task->sched_class != &fair_sched_class)
8115			return -EINVAL;
8116#endif
8117	}
8118	return 0;
8119}
8120
8121static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8122{
8123	struct task_struct *task;
8124	struct cgroup_subsys_state *css;
8125
8126	cgroup_taskset_for_each(task, css, tset)
8127		sched_move_task(task);
8128}
8129
8130#ifdef CONFIG_FAIR_GROUP_SCHED
8131static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8132				struct cftype *cftype, u64 shareval)
8133{
 
 
8134	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8135}
8136
8137static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8138			       struct cftype *cft)
8139{
8140	struct task_group *tg = css_tg(css);
8141
8142	return (u64) scale_load_down(tg->shares);
8143}
8144
8145#ifdef CONFIG_CFS_BANDWIDTH
8146static DEFINE_MUTEX(cfs_constraints_mutex);
8147
8148const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8149const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
 
 
8150
8151static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8152
8153static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
 
8154{
8155	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8156	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8157
8158	if (tg == &root_task_group)
8159		return -EINVAL;
8160
8161	/*
8162	 * Ensure we have at some amount of bandwidth every period.  This is
8163	 * to prevent reaching a state of large arrears when throttled via
8164	 * entity_tick() resulting in prolonged exit starvation.
8165	 */
8166	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8167		return -EINVAL;
8168
8169	/*
8170	 * Likewise, bound things on the otherside by preventing insane quota
8171	 * periods.  This also allows us to normalize in computing quota
8172	 * feasibility.
8173	 */
8174	if (period > max_cfs_quota_period)
8175		return -EINVAL;
8176
8177	/*
 
 
 
 
 
 
 
 
 
 
8178	 * Prevent race between setting of cfs_rq->runtime_enabled and
8179	 * unthrottle_offline_cfs_rqs().
8180	 */
8181	get_online_cpus();
8182	mutex_lock(&cfs_constraints_mutex);
8183	ret = __cfs_schedulable(tg, period, quota);
8184	if (ret)
8185		goto out_unlock;
8186
8187	runtime_enabled = quota != RUNTIME_INF;
8188	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8189	/*
8190	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8191	 * before making related changes, and on->off must occur afterwards
8192	 */
8193	if (runtime_enabled && !runtime_was_enabled)
8194		cfs_bandwidth_usage_inc();
8195	raw_spin_lock_irq(&cfs_b->lock);
8196	cfs_b->period = ns_to_ktime(period);
8197	cfs_b->quota = quota;
 
8198
8199	__refill_cfs_bandwidth_runtime(cfs_b);
8200	/* restart the period timer (if active) to handle new period expiry */
 
8201	if (runtime_enabled)
8202		start_cfs_bandwidth(cfs_b);
 
8203	raw_spin_unlock_irq(&cfs_b->lock);
8204
8205	for_each_online_cpu(i) {
8206		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8207		struct rq *rq = cfs_rq->rq;
 
8208
8209		raw_spin_lock_irq(&rq->lock);
8210		cfs_rq->runtime_enabled = runtime_enabled;
8211		cfs_rq->runtime_remaining = 0;
8212
8213		if (cfs_rq->throttled)
8214			unthrottle_cfs_rq(cfs_rq);
8215		raw_spin_unlock_irq(&rq->lock);
8216	}
8217	if (runtime_was_enabled && !runtime_enabled)
8218		cfs_bandwidth_usage_dec();
8219out_unlock:
8220	mutex_unlock(&cfs_constraints_mutex);
8221	put_online_cpus();
8222
8223	return ret;
8224}
8225
8226int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8227{
8228	u64 quota, period;
8229
8230	period = ktime_to_ns(tg->cfs_bandwidth.period);
 
8231	if (cfs_quota_us < 0)
8232		quota = RUNTIME_INF;
 
 
8233	else
8234		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8235
8236	return tg_set_cfs_bandwidth(tg, period, quota);
8237}
8238
8239long tg_get_cfs_quota(struct task_group *tg)
8240{
8241	u64 quota_us;
8242
8243	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8244		return -1;
8245
8246	quota_us = tg->cfs_bandwidth.quota;
8247	do_div(quota_us, NSEC_PER_USEC);
8248
8249	return quota_us;
8250}
8251
8252int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8253{
8254	u64 quota, period;
 
 
 
8255
8256	period = (u64)cfs_period_us * NSEC_PER_USEC;
8257	quota = tg->cfs_bandwidth.quota;
 
8258
8259	return tg_set_cfs_bandwidth(tg, period, quota);
8260}
8261
8262long tg_get_cfs_period(struct task_group *tg)
8263{
8264	u64 cfs_period_us;
8265
8266	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8267	do_div(cfs_period_us, NSEC_PER_USEC);
8268
8269	return cfs_period_us;
8270}
8271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8272static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8273				  struct cftype *cft)
8274{
8275	return tg_get_cfs_quota(css_tg(css));
8276}
8277
8278static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8279				   struct cftype *cftype, s64 cfs_quota_us)
8280{
8281	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8282}
8283
8284static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8285				   struct cftype *cft)
8286{
8287	return tg_get_cfs_period(css_tg(css));
8288}
8289
8290static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8291				    struct cftype *cftype, u64 cfs_period_us)
8292{
8293	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8294}
8295
 
 
 
 
 
 
 
 
 
 
 
 
8296struct cfs_schedulable_data {
8297	struct task_group *tg;
8298	u64 period, quota;
8299};
8300
8301/*
8302 * normalize group quota/period to be quota/max_period
8303 * note: units are usecs
8304 */
8305static u64 normalize_cfs_quota(struct task_group *tg,
8306			       struct cfs_schedulable_data *d)
8307{
8308	u64 quota, period;
8309
8310	if (tg == d->tg) {
8311		period = d->period;
8312		quota = d->quota;
8313	} else {
8314		period = tg_get_cfs_period(tg);
8315		quota = tg_get_cfs_quota(tg);
8316	}
8317
8318	/* note: these should typically be equivalent */
8319	if (quota == RUNTIME_INF || quota == -1)
8320		return RUNTIME_INF;
8321
8322	return to_ratio(period, quota);
8323}
8324
8325static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8326{
8327	struct cfs_schedulable_data *d = data;
8328	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8329	s64 quota = 0, parent_quota = -1;
8330
8331	if (!tg->parent) {
8332		quota = RUNTIME_INF;
8333	} else {
8334		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8335
8336		quota = normalize_cfs_quota(tg, d);
8337		parent_quota = parent_b->hierarchical_quota;
8338
8339		/*
8340		 * ensure max(child_quota) <= parent_quota, inherit when no
8341		 * limit is set
 
8342		 */
8343		if (quota == RUNTIME_INF)
8344			quota = parent_quota;
8345		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8346			return -EINVAL;
 
 
 
 
8347	}
8348	cfs_b->hierarchical_quota = quota;
8349
8350	return 0;
8351}
8352
8353static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8354{
8355	int ret;
8356	struct cfs_schedulable_data data = {
8357		.tg = tg,
8358		.period = period,
8359		.quota = quota,
8360	};
8361
8362	if (quota != RUNTIME_INF) {
8363		do_div(data.period, NSEC_PER_USEC);
8364		do_div(data.quota, NSEC_PER_USEC);
8365	}
8366
8367	rcu_read_lock();
8368	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8369	rcu_read_unlock();
8370
8371	return ret;
8372}
8373
8374static int cpu_stats_show(struct seq_file *sf, void *v)
8375{
8376	struct task_group *tg = css_tg(seq_css(sf));
8377	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8378
8379	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8380	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8381	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8383	return 0;
8384}
8385#endif /* CONFIG_CFS_BANDWIDTH */
8386#endif /* CONFIG_FAIR_GROUP_SCHED */
8387
8388#ifdef CONFIG_RT_GROUP_SCHED
8389static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8390				struct cftype *cft, s64 val)
8391{
8392	return sched_group_set_rt_runtime(css_tg(css), val);
8393}
8394
8395static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8396			       struct cftype *cft)
8397{
8398	return sched_group_rt_runtime(css_tg(css));
8399}
8400
8401static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8402				    struct cftype *cftype, u64 rt_period_us)
8403{
8404	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8405}
8406
8407static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8408				   struct cftype *cft)
8409{
8410	return sched_group_rt_period(css_tg(css));
8411}
8412#endif /* CONFIG_RT_GROUP_SCHED */
8413
8414static struct cftype cpu_files[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8415#ifdef CONFIG_FAIR_GROUP_SCHED
8416	{
8417		.name = "shares",
8418		.read_u64 = cpu_shares_read_u64,
8419		.write_u64 = cpu_shares_write_u64,
8420	},
 
 
 
 
 
8421#endif
8422#ifdef CONFIG_CFS_BANDWIDTH
8423	{
8424		.name = "cfs_quota_us",
8425		.read_s64 = cpu_cfs_quota_read_s64,
8426		.write_s64 = cpu_cfs_quota_write_s64,
8427	},
8428	{
8429		.name = "cfs_period_us",
8430		.read_u64 = cpu_cfs_period_read_u64,
8431		.write_u64 = cpu_cfs_period_write_u64,
8432	},
8433	{
 
 
 
 
 
8434		.name = "stat",
8435		.seq_show = cpu_stats_show,
8436	},
8437#endif
8438#ifdef CONFIG_RT_GROUP_SCHED
8439	{
8440		.name = "rt_runtime_us",
8441		.read_s64 = cpu_rt_runtime_read,
8442		.write_s64 = cpu_rt_runtime_write,
8443	},
8444	{
8445		.name = "rt_period_us",
8446		.read_u64 = cpu_rt_period_read_uint,
8447		.write_u64 = cpu_rt_period_write_uint,
8448	},
8449#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8450	{ }	/* terminate */
8451};
8452
8453struct cgroup_subsys cpu_cgrp_subsys = {
8454	.css_alloc	= cpu_cgroup_css_alloc,
 
8455	.css_released	= cpu_cgroup_css_released,
8456	.css_free	= cpu_cgroup_css_free,
8457	.fork		= cpu_cgroup_fork,
 
8458	.can_attach	= cpu_cgroup_can_attach,
 
8459	.attach		= cpu_cgroup_attach,
8460	.legacy_cftypes	= cpu_files,
 
8461	.early_init	= true,
 
8462};
8463
8464#endif	/* CONFIG_CGROUP_SCHED */
8465
8466void dump_cpu_task(int cpu)
8467{
 
 
 
 
 
 
 
 
 
 
 
 
 
8468	pr_info("Task dump for CPU %d:\n", cpu);
8469	sched_show_task(cpu_curr(cpu));
8470}
8471
8472/*
8473 * Nice levels are multiplicative, with a gentle 10% change for every
8474 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8475 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8476 * that remained on nice 0.
8477 *
8478 * The "10% effect" is relative and cumulative: from _any_ nice level,
8479 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8480 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8481 * If a task goes up by ~10% and another task goes down by ~10% then
8482 * the relative distance between them is ~25%.)
8483 */
8484const int sched_prio_to_weight[40] = {
8485 /* -20 */     88761,     71755,     56483,     46273,     36291,
8486 /* -15 */     29154,     23254,     18705,     14949,     11916,
8487 /* -10 */      9548,      7620,      6100,      4904,      3906,
8488 /*  -5 */      3121,      2501,      1991,      1586,      1277,
8489 /*   0 */      1024,       820,       655,       526,       423,
8490 /*   5 */       335,       272,       215,       172,       137,
8491 /*  10 */       110,        87,        70,        56,        45,
8492 /*  15 */        36,        29,        23,        18,        15,
8493};
8494
8495/*
8496 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8497 *
8498 * In cases where the weight does not change often, we can use the
8499 * precalculated inverse to speed up arithmetics by turning divisions
8500 * into multiplications:
8501 */
8502const u32 sched_prio_to_wmult[40] = {
8503 /* -20 */     48388,     59856,     76040,     92818,    118348,
8504 /* -15 */    147320,    184698,    229616,    287308,    360437,
8505 /* -10 */    449829,    563644,    704093,    875809,   1099582,
8506 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8507 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8508 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8509 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8510 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8511};