Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2
  3#include <linux/sched/task.h>
  4#include <linux/sched/signal.h>
  5#include <linux/freezer.h>
  6
  7#include "futex.h"
  8
  9/*
 10 * READ this before attempting to hack on futexes!
 11 *
 12 * Basic futex operation and ordering guarantees
 13 * =============================================
 14 *
 15 * The waiter reads the futex value in user space and calls
 16 * futex_wait(). This function computes the hash bucket and acquires
 17 * the hash bucket lock. After that it reads the futex user space value
 18 * again and verifies that the data has not changed. If it has not changed
 19 * it enqueues itself into the hash bucket, releases the hash bucket lock
 20 * and schedules.
 21 *
 22 * The waker side modifies the user space value of the futex and calls
 23 * futex_wake(). This function computes the hash bucket and acquires the
 24 * hash bucket lock. Then it looks for waiters on that futex in the hash
 25 * bucket and wakes them.
 26 *
 27 * In futex wake up scenarios where no tasks are blocked on a futex, taking
 28 * the hb spinlock can be avoided and simply return. In order for this
 29 * optimization to work, ordering guarantees must exist so that the waiter
 30 * being added to the list is acknowledged when the list is concurrently being
 31 * checked by the waker, avoiding scenarios like the following:
 32 *
 33 * CPU 0                               CPU 1
 34 * val = *futex;
 35 * sys_futex(WAIT, futex, val);
 36 *   futex_wait(futex, val);
 37 *   uval = *futex;
 38 *                                     *futex = newval;
 39 *                                     sys_futex(WAKE, futex);
 40 *                                       futex_wake(futex);
 41 *                                       if (queue_empty())
 42 *                                         return;
 43 *   if (uval == val)
 44 *      lock(hash_bucket(futex));
 45 *      queue();
 46 *     unlock(hash_bucket(futex));
 47 *     schedule();
 48 *
 49 * This would cause the waiter on CPU 0 to wait forever because it
 50 * missed the transition of the user space value from val to newval
 51 * and the waker did not find the waiter in the hash bucket queue.
 52 *
 53 * The correct serialization ensures that a waiter either observes
 54 * the changed user space value before blocking or is woken by a
 55 * concurrent waker:
 56 *
 57 * CPU 0                                 CPU 1
 58 * val = *futex;
 59 * sys_futex(WAIT, futex, val);
 60 *   futex_wait(futex, val);
 61 *
 62 *   waiters++; (a)
 63 *   smp_mb(); (A) <-- paired with -.
 64 *                                  |
 65 *   lock(hash_bucket(futex));      |
 66 *                                  |
 67 *   uval = *futex;                 |
 68 *                                  |        *futex = newval;
 69 *                                  |        sys_futex(WAKE, futex);
 70 *                                  |          futex_wake(futex);
 71 *                                  |
 72 *                                  `--------> smp_mb(); (B)
 73 *   if (uval == val)
 74 *     queue();
 75 *     unlock(hash_bucket(futex));
 76 *     schedule();                         if (waiters)
 77 *                                           lock(hash_bucket(futex));
 78 *   else                                    wake_waiters(futex);
 79 *     waiters--; (b)                        unlock(hash_bucket(futex));
 80 *
 81 * Where (A) orders the waiters increment and the futex value read through
 82 * atomic operations (see futex_hb_waiters_inc) and where (B) orders the write
 83 * to futex and the waiters read (see futex_hb_waiters_pending()).
 84 *
 85 * This yields the following case (where X:=waiters, Y:=futex):
 86 *
 87 *	X = Y = 0
 88 *
 89 *	w[X]=1		w[Y]=1
 90 *	MB		MB
 91 *	r[Y]=y		r[X]=x
 92 *
 93 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 94 * the guarantee that we cannot both miss the futex variable change and the
 95 * enqueue.
 96 *
 97 * Note that a new waiter is accounted for in (a) even when it is possible that
 98 * the wait call can return error, in which case we backtrack from it in (b).
 99 * Refer to the comment in futex_q_lock().
100 *
101 * Similarly, in order to account for waiters being requeued on another
102 * address we always increment the waiters for the destination bucket before
103 * acquiring the lock. It then decrements them again  after releasing it -
104 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
105 * will do the additional required waiter count housekeeping. This is done for
106 * double_lock_hb() and double_unlock_hb(), respectively.
107 */
108
109/*
110 * The hash bucket lock must be held when this is called.
111 * Afterwards, the futex_q must not be accessed. Callers
112 * must ensure to later call wake_up_q() for the actual
113 * wakeups to occur.
114 */
115void futex_wake_mark(struct wake_q_head *wake_q, struct futex_q *q)
116{
117	struct task_struct *p = q->task;
118
119	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
120		return;
121
122	get_task_struct(p);
123	__futex_unqueue(q);
124	/*
125	 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
126	 * is written, without taking any locks. This is possible in the event
127	 * of a spurious wakeup, for example. A memory barrier is required here
128	 * to prevent the following store to lock_ptr from getting ahead of the
129	 * plist_del in __futex_unqueue().
130	 */
131	smp_store_release(&q->lock_ptr, NULL);
132
133	/*
134	 * Queue the task for later wakeup for after we've released
135	 * the hb->lock.
136	 */
137	wake_q_add_safe(wake_q, p);
138}
139
140/*
141 * Wake up waiters matching bitset queued on this futex (uaddr).
142 */
143int futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
144{
145	struct futex_hash_bucket *hb;
146	struct futex_q *this, *next;
147	union futex_key key = FUTEX_KEY_INIT;
148	int ret;
149	DEFINE_WAKE_Q(wake_q);
150
151	if (!bitset)
152		return -EINVAL;
153
154	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
155	if (unlikely(ret != 0))
156		return ret;
157
158	hb = futex_hash(&key);
159
160	/* Make sure we really have tasks to wakeup */
161	if (!futex_hb_waiters_pending(hb))
162		return ret;
163
164	spin_lock(&hb->lock);
165
166	plist_for_each_entry_safe(this, next, &hb->chain, list) {
167		if (futex_match (&this->key, &key)) {
168			if (this->pi_state || this->rt_waiter) {
169				ret = -EINVAL;
170				break;
171			}
172
173			/* Check if one of the bits is set in both bitsets */
174			if (!(this->bitset & bitset))
175				continue;
176
177			futex_wake_mark(&wake_q, this);
178			if (++ret >= nr_wake)
179				break;
180		}
181	}
182
183	spin_unlock(&hb->lock);
184	wake_up_q(&wake_q);
185	return ret;
186}
187
188static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
189{
190	unsigned int op =	  (encoded_op & 0x70000000) >> 28;
191	unsigned int cmp =	  (encoded_op & 0x0f000000) >> 24;
192	int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
193	int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
194	int oldval, ret;
195
196	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
197		if (oparg < 0 || oparg > 31) {
198			char comm[sizeof(current->comm)];
199			/*
200			 * kill this print and return -EINVAL when userspace
201			 * is sane again
202			 */
203			pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
204					get_task_comm(comm, current), oparg);
205			oparg &= 31;
206		}
207		oparg = 1 << oparg;
208	}
209
210	pagefault_disable();
211	ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
212	pagefault_enable();
213	if (ret)
214		return ret;
215
216	switch (cmp) {
217	case FUTEX_OP_CMP_EQ:
218		return oldval == cmparg;
219	case FUTEX_OP_CMP_NE:
220		return oldval != cmparg;
221	case FUTEX_OP_CMP_LT:
222		return oldval < cmparg;
223	case FUTEX_OP_CMP_GE:
224		return oldval >= cmparg;
225	case FUTEX_OP_CMP_LE:
226		return oldval <= cmparg;
227	case FUTEX_OP_CMP_GT:
228		return oldval > cmparg;
229	default:
230		return -ENOSYS;
231	}
232}
233
234/*
235 * Wake up all waiters hashed on the physical page that is mapped
236 * to this virtual address:
237 */
238int futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
239		  int nr_wake, int nr_wake2, int op)
240{
241	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
242	struct futex_hash_bucket *hb1, *hb2;
243	struct futex_q *this, *next;
244	int ret, op_ret;
245	DEFINE_WAKE_Q(wake_q);
246
247retry:
248	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
249	if (unlikely(ret != 0))
250		return ret;
251	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
252	if (unlikely(ret != 0))
253		return ret;
254
255	hb1 = futex_hash(&key1);
256	hb2 = futex_hash(&key2);
257
258retry_private:
259	double_lock_hb(hb1, hb2);
260	op_ret = futex_atomic_op_inuser(op, uaddr2);
261	if (unlikely(op_ret < 0)) {
262		double_unlock_hb(hb1, hb2);
263
264		if (!IS_ENABLED(CONFIG_MMU) ||
265		    unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
266			/*
267			 * we don't get EFAULT from MMU faults if we don't have
268			 * an MMU, but we might get them from range checking
269			 */
270			ret = op_ret;
271			return ret;
272		}
273
274		if (op_ret == -EFAULT) {
275			ret = fault_in_user_writeable(uaddr2);
276			if (ret)
277				return ret;
278		}
279
280		cond_resched();
281		if (!(flags & FLAGS_SHARED))
282			goto retry_private;
283		goto retry;
284	}
285
286	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
287		if (futex_match (&this->key, &key1)) {
288			if (this->pi_state || this->rt_waiter) {
289				ret = -EINVAL;
290				goto out_unlock;
291			}
292			futex_wake_mark(&wake_q, this);
293			if (++ret >= nr_wake)
294				break;
295		}
296	}
297
298	if (op_ret > 0) {
299		op_ret = 0;
300		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
301			if (futex_match (&this->key, &key2)) {
302				if (this->pi_state || this->rt_waiter) {
303					ret = -EINVAL;
304					goto out_unlock;
305				}
306				futex_wake_mark(&wake_q, this);
307				if (++op_ret >= nr_wake2)
308					break;
309			}
310		}
311		ret += op_ret;
312	}
313
314out_unlock:
315	double_unlock_hb(hb1, hb2);
316	wake_up_q(&wake_q);
317	return ret;
318}
319
320static long futex_wait_restart(struct restart_block *restart);
321
322/**
323 * futex_wait_queue() - futex_queue() and wait for wakeup, timeout, or signal
324 * @hb:		the futex hash bucket, must be locked by the caller
325 * @q:		the futex_q to queue up on
326 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
327 */
328void futex_wait_queue(struct futex_hash_bucket *hb, struct futex_q *q,
329			    struct hrtimer_sleeper *timeout)
330{
331	/*
332	 * The task state is guaranteed to be set before another task can
333	 * wake it. set_current_state() is implemented using smp_store_mb() and
334	 * futex_queue() calls spin_unlock() upon completion, both serializing
335	 * access to the hash list and forcing another memory barrier.
336	 */
337	set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
338	futex_queue(q, hb);
339
340	/* Arm the timer */
341	if (timeout)
342		hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
343
344	/*
345	 * If we have been removed from the hash list, then another task
346	 * has tried to wake us, and we can skip the call to schedule().
347	 */
348	if (likely(!plist_node_empty(&q->list))) {
349		/*
350		 * If the timer has already expired, current will already be
351		 * flagged for rescheduling. Only call schedule if there
352		 * is no timeout, or if it has yet to expire.
353		 */
354		if (!timeout || timeout->task)
355			schedule();
356	}
357	__set_current_state(TASK_RUNNING);
358}
359
360/**
361 * unqueue_multiple - Remove various futexes from their hash bucket
362 * @v:	   The list of futexes to unqueue
363 * @count: Number of futexes in the list
364 *
365 * Helper to unqueue a list of futexes. This can't fail.
366 *
367 * Return:
368 *  - >=0 - Index of the last futex that was awoken;
369 *  - -1  - No futex was awoken
370 */
371static int unqueue_multiple(struct futex_vector *v, int count)
372{
373	int ret = -1, i;
374
375	for (i = 0; i < count; i++) {
376		if (!futex_unqueue(&v[i].q))
377			ret = i;
378	}
379
380	return ret;
381}
382
383/**
384 * futex_wait_multiple_setup - Prepare to wait and enqueue multiple futexes
385 * @vs:		The futex list to wait on
386 * @count:	The size of the list
387 * @woken:	Index of the last woken futex, if any. Used to notify the
388 *		caller that it can return this index to userspace (return parameter)
389 *
390 * Prepare multiple futexes in a single step and enqueue them. This may fail if
391 * the futex list is invalid or if any futex was already awoken. On success the
392 * task is ready to interruptible sleep.
393 *
394 * Return:
395 *  -  1 - One of the futexes was woken by another thread
396 *  -  0 - Success
397 *  - <0 - -EFAULT, -EWOULDBLOCK or -EINVAL
398 */
399static int futex_wait_multiple_setup(struct futex_vector *vs, int count, int *woken)
400{
401	struct futex_hash_bucket *hb;
402	bool retry = false;
403	int ret, i;
404	u32 uval;
405
406	/*
407	 * Enqueuing multiple futexes is tricky, because we need to enqueue
408	 * each futex on the list before dealing with the next one to avoid
409	 * deadlocking on the hash bucket. But, before enqueuing, we need to
410	 * make sure that current->state is TASK_INTERRUPTIBLE, so we don't
411	 * lose any wake events, which cannot be done before the get_futex_key
412	 * of the next key, because it calls get_user_pages, which can sleep.
413	 * Thus, we fetch the list of futexes keys in two steps, by first
414	 * pinning all the memory keys in the futex key, and only then we read
415	 * each key and queue the corresponding futex.
416	 *
417	 * Private futexes doesn't need to recalculate hash in retry, so skip
418	 * get_futex_key() when retrying.
419	 */
420retry:
421	for (i = 0; i < count; i++) {
422		if ((vs[i].w.flags & FUTEX_PRIVATE_FLAG) && retry)
423			continue;
424
425		ret = get_futex_key(u64_to_user_ptr(vs[i].w.uaddr),
426				    !(vs[i].w.flags & FUTEX_PRIVATE_FLAG),
427				    &vs[i].q.key, FUTEX_READ);
428
429		if (unlikely(ret))
430			return ret;
431	}
432
433	set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
434
435	for (i = 0; i < count; i++) {
436		u32 __user *uaddr = (u32 __user *)(unsigned long)vs[i].w.uaddr;
437		struct futex_q *q = &vs[i].q;
438		u32 val = (u32)vs[i].w.val;
439
440		hb = futex_q_lock(q);
441		ret = futex_get_value_locked(&uval, uaddr);
442
443		if (!ret && uval == val) {
444			/*
445			 * The bucket lock can't be held while dealing with the
446			 * next futex. Queue each futex at this moment so hb can
447			 * be unlocked.
448			 */
449			futex_queue(q, hb);
450			continue;
451		}
452
453		futex_q_unlock(hb);
454		__set_current_state(TASK_RUNNING);
455
456		/*
457		 * Even if something went wrong, if we find out that a futex
458		 * was woken, we don't return error and return this index to
459		 * userspace
460		 */
461		*woken = unqueue_multiple(vs, i);
462		if (*woken >= 0)
463			return 1;
464
465		if (ret) {
466			/*
467			 * If we need to handle a page fault, we need to do so
468			 * without any lock and any enqueued futex (otherwise
469			 * we could lose some wakeup). So we do it here, after
470			 * undoing all the work done so far. In success, we
471			 * retry all the work.
472			 */
473			if (get_user(uval, uaddr))
474				return -EFAULT;
475
476			retry = true;
477			goto retry;
478		}
479
480		if (uval != val)
481			return -EWOULDBLOCK;
482	}
483
484	return 0;
485}
486
487/**
488 * futex_sleep_multiple - Check sleeping conditions and sleep
489 * @vs:    List of futexes to wait for
490 * @count: Length of vs
491 * @to:    Timeout
492 *
493 * Sleep if and only if the timeout hasn't expired and no futex on the list has
494 * been woken up.
495 */
496static void futex_sleep_multiple(struct futex_vector *vs, unsigned int count,
497				 struct hrtimer_sleeper *to)
498{
499	if (to && !to->task)
500		return;
501
502	for (; count; count--, vs++) {
503		if (!READ_ONCE(vs->q.lock_ptr))
504			return;
505	}
506
507	schedule();
508}
509
510/**
511 * futex_wait_multiple - Prepare to wait on and enqueue several futexes
512 * @vs:		The list of futexes to wait on
513 * @count:	The number of objects
514 * @to:		Timeout before giving up and returning to userspace
515 *
516 * Entry point for the FUTEX_WAIT_MULTIPLE futex operation, this function
517 * sleeps on a group of futexes and returns on the first futex that is
518 * wake, or after the timeout has elapsed.
519 *
520 * Return:
521 *  - >=0 - Hint to the futex that was awoken
522 *  - <0  - On error
523 */
524int futex_wait_multiple(struct futex_vector *vs, unsigned int count,
525			struct hrtimer_sleeper *to)
526{
527	int ret, hint = 0;
528
529	if (to)
530		hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
531
532	while (1) {
533		ret = futex_wait_multiple_setup(vs, count, &hint);
534		if (ret) {
535			if (ret > 0) {
536				/* A futex was woken during setup */
537				ret = hint;
538			}
539			return ret;
540		}
541
542		futex_sleep_multiple(vs, count, to);
543
544		__set_current_state(TASK_RUNNING);
545
546		ret = unqueue_multiple(vs, count);
547		if (ret >= 0)
548			return ret;
549
550		if (to && !to->task)
551			return -ETIMEDOUT;
552		else if (signal_pending(current))
553			return -ERESTARTSYS;
554		/*
555		 * The final case is a spurious wakeup, for
556		 * which just retry.
557		 */
558	}
559}
560
561/**
562 * futex_wait_setup() - Prepare to wait on a futex
563 * @uaddr:	the futex userspace address
564 * @val:	the expected value
565 * @flags:	futex flags (FLAGS_SHARED, etc.)
566 * @q:		the associated futex_q
567 * @hb:		storage for hash_bucket pointer to be returned to caller
568 *
569 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
570 * compare it with the expected value.  Handle atomic faults internally.
571 * Return with the hb lock held on success, and unlocked on failure.
572 *
573 * Return:
574 *  -  0 - uaddr contains val and hb has been locked;
575 *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
576 */
577int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
578		     struct futex_q *q, struct futex_hash_bucket **hb)
579{
580	u32 uval;
581	int ret;
582
583	/*
584	 * Access the page AFTER the hash-bucket is locked.
585	 * Order is important:
586	 *
587	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
588	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
589	 *
590	 * The basic logical guarantee of a futex is that it blocks ONLY
591	 * if cond(var) is known to be true at the time of blocking, for
592	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
593	 * would open a race condition where we could block indefinitely with
594	 * cond(var) false, which would violate the guarantee.
595	 *
596	 * On the other hand, we insert q and release the hash-bucket only
597	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
598	 * absorb a wakeup if *uaddr does not match the desired values
599	 * while the syscall executes.
600	 */
601retry:
602	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
603	if (unlikely(ret != 0))
604		return ret;
605
606retry_private:
607	*hb = futex_q_lock(q);
608
609	ret = futex_get_value_locked(&uval, uaddr);
610
611	if (ret) {
612		futex_q_unlock(*hb);
613
614		ret = get_user(uval, uaddr);
615		if (ret)
616			return ret;
617
618		if (!(flags & FLAGS_SHARED))
619			goto retry_private;
620
621		goto retry;
622	}
623
624	if (uval != val) {
625		futex_q_unlock(*hb);
626		ret = -EWOULDBLOCK;
627	}
628
629	return ret;
630}
631
632int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, ktime_t *abs_time, u32 bitset)
633{
634	struct hrtimer_sleeper timeout, *to;
635	struct restart_block *restart;
636	struct futex_hash_bucket *hb;
637	struct futex_q q = futex_q_init;
638	int ret;
639
640	if (!bitset)
641		return -EINVAL;
642	q.bitset = bitset;
643
644	to = futex_setup_timer(abs_time, &timeout, flags,
645			       current->timer_slack_ns);
646retry:
647	/*
648	 * Prepare to wait on uaddr. On success, it holds hb->lock and q
649	 * is initialized.
650	 */
651	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
652	if (ret)
653		goto out;
654
655	/* futex_queue and wait for wakeup, timeout, or a signal. */
656	futex_wait_queue(hb, &q, to);
657
658	/* If we were woken (and unqueued), we succeeded, whatever. */
659	ret = 0;
660	if (!futex_unqueue(&q))
661		goto out;
662	ret = -ETIMEDOUT;
663	if (to && !to->task)
664		goto out;
665
666	/*
667	 * We expect signal_pending(current), but we might be the
668	 * victim of a spurious wakeup as well.
669	 */
670	if (!signal_pending(current))
671		goto retry;
672
673	ret = -ERESTARTSYS;
674	if (!abs_time)
675		goto out;
676
677	restart = &current->restart_block;
678	restart->futex.uaddr = uaddr;
679	restart->futex.val = val;
680	restart->futex.time = *abs_time;
681	restart->futex.bitset = bitset;
682	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
683
684	ret = set_restart_fn(restart, futex_wait_restart);
685
686out:
687	if (to) {
688		hrtimer_cancel(&to->timer);
689		destroy_hrtimer_on_stack(&to->timer);
690	}
691	return ret;
692}
693
694static long futex_wait_restart(struct restart_block *restart)
695{
696	u32 __user *uaddr = restart->futex.uaddr;
697	ktime_t t, *tp = NULL;
698
699	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
700		t = restart->futex.time;
701		tp = &t;
702	}
703	restart->fn = do_no_restart_syscall;
704
705	return (long)futex_wait(uaddr, restart->futex.flags,
706				restart->futex.val, tp, restart->futex.bitset);
707}
708