Linux Audio

Check our new training course

Loading...
v6.2
  1/* SPDX-License-Identifier: MIT */
  2/******************************************************************************
  3 * blkif.h
  4 *
  5 * Unified block-device I/O interface for Xen guest OSes.
  6 *
  7 * Copyright (c) 2003-2004, Keir Fraser
  8 */
  9
 10#ifndef __XEN_PUBLIC_IO_BLKIF_H__
 11#define __XEN_PUBLIC_IO_BLKIF_H__
 12
 13#include <xen/interface/io/ring.h>
 14#include <xen/interface/grant_table.h>
 15
 16/*
 17 * Front->back notifications: When enqueuing a new request, sending a
 18 * notification can be made conditional on req_event (i.e., the generic
 19 * hold-off mechanism provided by the ring macros). Backends must set
 20 * req_event appropriately (e.g., using RING_FINAL_CHECK_FOR_REQUESTS()).
 21 *
 22 * Back->front notifications: When enqueuing a new response, sending a
 23 * notification can be made conditional on rsp_event (i.e., the generic
 24 * hold-off mechanism provided by the ring macros). Frontends must set
 25 * rsp_event appropriately (e.g., using RING_FINAL_CHECK_FOR_RESPONSES()).
 26 */
 27
 28typedef uint16_t blkif_vdev_t;
 29typedef uint64_t blkif_sector_t;
 30
 31/*
 32 * Multiple hardware queues/rings:
 33 * If supported, the backend will write the key "multi-queue-max-queues" to
 34 * the directory for that vbd, and set its value to the maximum supported
 35 * number of queues.
 36 * Frontends that are aware of this feature and wish to use it can write the
 37 * key "multi-queue-num-queues" with the number they wish to use, which must be
 38 * greater than zero, and no more than the value reported by the backend in
 39 * "multi-queue-max-queues".
 40 *
 41 * For frontends requesting just one queue, the usual event-channel and
 42 * ring-ref keys are written as before, simplifying the backend processing
 43 * to avoid distinguishing between a frontend that doesn't understand the
 44 * multi-queue feature, and one that does, but requested only one queue.
 45 *
 46 * Frontends requesting two or more queues must not write the toplevel
 47 * event-channel and ring-ref keys, instead writing those keys under sub-keys
 48 * having the name "queue-N" where N is the integer ID of the queue/ring for
 49 * which those keys belong. Queues are indexed from zero.
 50 * For example, a frontend with two queues must write the following set of
 51 * queue-related keys:
 52 *
 53 * /local/domain/1/device/vbd/0/multi-queue-num-queues = "2"
 54 * /local/domain/1/device/vbd/0/queue-0 = ""
 55 * /local/domain/1/device/vbd/0/queue-0/ring-ref = "<ring-ref#0>"
 56 * /local/domain/1/device/vbd/0/queue-0/event-channel = "<evtchn#0>"
 57 * /local/domain/1/device/vbd/0/queue-1 = ""
 58 * /local/domain/1/device/vbd/0/queue-1/ring-ref = "<ring-ref#1>"
 59 * /local/domain/1/device/vbd/0/queue-1/event-channel = "<evtchn#1>"
 60 *
 61 * It is also possible to use multiple queues/rings together with
 62 * feature multi-page ring buffer.
 63 * For example, a frontend requests two queues/rings and the size of each ring
 64 * buffer is two pages must write the following set of related keys:
 65 *
 66 * /local/domain/1/device/vbd/0/multi-queue-num-queues = "2"
 67 * /local/domain/1/device/vbd/0/ring-page-order = "1"
 68 * /local/domain/1/device/vbd/0/queue-0 = ""
 69 * /local/domain/1/device/vbd/0/queue-0/ring-ref0 = "<ring-ref#0>"
 70 * /local/domain/1/device/vbd/0/queue-0/ring-ref1 = "<ring-ref#1>"
 71 * /local/domain/1/device/vbd/0/queue-0/event-channel = "<evtchn#0>"
 72 * /local/domain/1/device/vbd/0/queue-1 = ""
 73 * /local/domain/1/device/vbd/0/queue-1/ring-ref0 = "<ring-ref#2>"
 74 * /local/domain/1/device/vbd/0/queue-1/ring-ref1 = "<ring-ref#3>"
 75 * /local/domain/1/device/vbd/0/queue-1/event-channel = "<evtchn#1>"
 76 *
 77 */
 78
 79/*
 80 * REQUEST CODES.
 81 */
 82#define BLKIF_OP_READ              0
 83#define BLKIF_OP_WRITE             1
 84/*
 85 * Recognised only if "feature-barrier" is present in backend xenbus info.
 86 * The "feature_barrier" node contains a boolean indicating whether barrier
 87 * requests are likely to succeed or fail. Either way, a barrier request
 88 * may fail at any time with BLKIF_RSP_EOPNOTSUPP if it is unsupported by
 89 * the underlying block-device hardware. The boolean simply indicates whether
 90 * or not it is worthwhile for the frontend to attempt barrier requests.
 91 * If a backend does not recognise BLKIF_OP_WRITE_BARRIER, it should *not*
 92 * create the "feature-barrier" node!
 93 */
 94#define BLKIF_OP_WRITE_BARRIER     2
 95
 96/*
 97 * Recognised if "feature-flush-cache" is present in backend xenbus
 98 * info.  A flush will ask the underlying storage hardware to flush its
 99 * non-volatile caches as appropriate.  The "feature-flush-cache" node
100 * contains a boolean indicating whether flush requests are likely to
101 * succeed or fail. Either way, a flush request may fail at any time
102 * with BLKIF_RSP_EOPNOTSUPP if it is unsupported by the underlying
103 * block-device hardware. The boolean simply indicates whether or not it
104 * is worthwhile for the frontend to attempt flushes.  If a backend does
105 * not recognise BLKIF_OP_WRITE_FLUSH_CACHE, it should *not* create the
106 * "feature-flush-cache" node!
107 */
108#define BLKIF_OP_FLUSH_DISKCACHE   3
109
110/*
111 * Recognised only if "feature-discard" is present in backend xenbus info.
112 * The "feature-discard" node contains a boolean indicating whether trim
113 * (ATA) or unmap (SCSI) - conviently called discard requests are likely
114 * to succeed or fail. Either way, a discard request
115 * may fail at any time with BLKIF_RSP_EOPNOTSUPP if it is unsupported by
116 * the underlying block-device hardware. The boolean simply indicates whether
117 * or not it is worthwhile for the frontend to attempt discard requests.
118 * If a backend does not recognise BLKIF_OP_DISCARD, it should *not*
119 * create the "feature-discard" node!
120 *
121 * Discard operation is a request for the underlying block device to mark
122 * extents to be erased. However, discard does not guarantee that the blocks
123 * will be erased from the device - it is just a hint to the device
124 * controller that these blocks are no longer in use. What the device
125 * controller does with that information is left to the controller.
126 * Discard operations are passed with sector_number as the
127 * sector index to begin discard operations at and nr_sectors as the number of
128 * sectors to be discarded. The specified sectors should be discarded if the
129 * underlying block device supports trim (ATA) or unmap (SCSI) operations,
130 * or a BLKIF_RSP_EOPNOTSUPP  should be returned.
131 * More information about trim/unmap operations at:
132 * http://t13.org/Documents/UploadedDocuments/docs2008/
133 *     e07154r6-Data_Set_Management_Proposal_for_ATA-ACS2.doc
134 * http://www.seagate.com/staticfiles/support/disc/manuals/
135 *     Interface%20manuals/100293068c.pdf
136 * The backend can optionally provide three extra XenBus attributes to
137 * further optimize the discard functionality:
138 * 'discard-alignment' - Devices that support discard functionality may
139 * internally allocate space in units that are bigger than the exported
140 * logical block size. The discard-alignment parameter indicates how many bytes
141 * the beginning of the partition is offset from the internal allocation unit's
142 * natural alignment.
143 * 'discard-granularity'  - Devices that support discard functionality may
144 * internally allocate space using units that are bigger than the logical block
145 * size. The discard-granularity parameter indicates the size of the internal
146 * allocation unit in bytes if reported by the device. Otherwise the
147 * discard-granularity will be set to match the device's physical block size.
148 * 'discard-secure' - All copies of the discarded sectors (potentially created
149 * by garbage collection) must also be erased.  To use this feature, the flag
150 * BLKIF_DISCARD_SECURE must be set in the blkif_request_trim.
151 */
152#define BLKIF_OP_DISCARD           5
153
154/*
155 * Recognized if "feature-max-indirect-segments" in present in the backend
156 * xenbus info. The "feature-max-indirect-segments" node contains the maximum
157 * number of segments allowed by the backend per request. If the node is
158 * present, the frontend might use blkif_request_indirect structs in order to
159 * issue requests with more than BLKIF_MAX_SEGMENTS_PER_REQUEST (11). The
160 * maximum number of indirect segments is fixed by the backend, but the
161 * frontend can issue requests with any number of indirect segments as long as
162 * it's less than the number provided by the backend. The indirect_grefs field
163 * in blkif_request_indirect should be filled by the frontend with the
164 * grant references of the pages that are holding the indirect segments.
165 * These pages are filled with an array of blkif_request_segment that hold the
166 * information about the segments. The number of indirect pages to use is
167 * determined by the number of segments an indirect request contains. Every
168 * indirect page can contain a maximum of
169 * (PAGE_SIZE / sizeof(struct blkif_request_segment)) segments, so to
170 * calculate the number of indirect pages to use we have to do
171 * ceil(indirect_segments / (PAGE_SIZE / sizeof(struct blkif_request_segment))).
172 *
173 * If a backend does not recognize BLKIF_OP_INDIRECT, it should *not*
174 * create the "feature-max-indirect-segments" node!
175 */
176#define BLKIF_OP_INDIRECT          6
177
178/*
179 * Maximum scatter/gather segments per request.
180 * This is carefully chosen so that sizeof(struct blkif_ring) <= PAGE_SIZE.
181 * NB. This could be 12 if the ring indexes weren't stored in the same page.
182 */
183#define BLKIF_MAX_SEGMENTS_PER_REQUEST 11
184
185#define BLKIF_MAX_INDIRECT_PAGES_PER_REQUEST 8
186
187struct blkif_request_segment {
188		grant_ref_t gref;        /* reference to I/O buffer frame        */
189		/* @first_sect: first sector in frame to transfer (inclusive).   */
190		/* @last_sect: last sector in frame to transfer (inclusive).     */
191		uint8_t     first_sect, last_sect;
192};
193
194struct blkif_request_rw {
195	uint8_t        nr_segments;  /* number of segments                   */
196	blkif_vdev_t   handle;       /* only for read/write requests         */
197#ifndef CONFIG_X86_32
198	uint32_t       _pad1;	     /* offsetof(blkif_request,u.rw.id) == 8 */
199#endif
200	uint64_t       id;           /* private guest value, echoed in resp  */
201	blkif_sector_t sector_number;/* start sector idx on disk (r/w only)  */
202	struct blkif_request_segment seg[BLKIF_MAX_SEGMENTS_PER_REQUEST];
203} __attribute__((__packed__));
204
205struct blkif_request_discard {
206	uint8_t        flag;         /* BLKIF_DISCARD_SECURE or zero.        */
207#define BLKIF_DISCARD_SECURE (1<<0)  /* ignored if discard-secure=0          */
208	blkif_vdev_t   _pad1;        /* only for read/write requests         */
209#ifndef CONFIG_X86_32
210	uint32_t       _pad2;        /* offsetof(blkif_req..,u.discard.id)==8*/
211#endif
212	uint64_t       id;           /* private guest value, echoed in resp  */
213	blkif_sector_t sector_number;
214	uint64_t       nr_sectors;
215	uint8_t        _pad3;
216} __attribute__((__packed__));
217
218struct blkif_request_other {
219	uint8_t      _pad1;
220	blkif_vdev_t _pad2;        /* only for read/write requests         */
221#ifndef CONFIG_X86_32
222	uint32_t     _pad3;        /* offsetof(blkif_req..,u.other.id)==8*/
223#endif
224	uint64_t     id;           /* private guest value, echoed in resp  */
225} __attribute__((__packed__));
226
227struct blkif_request_indirect {
228	uint8_t        indirect_op;
229	uint16_t       nr_segments;
230#ifndef CONFIG_X86_32
231	uint32_t       _pad1;        /* offsetof(blkif_...,u.indirect.id) == 8 */
232#endif
233	uint64_t       id;
234	blkif_sector_t sector_number;
235	blkif_vdev_t   handle;
236	uint16_t       _pad2;
237	grant_ref_t    indirect_grefs[BLKIF_MAX_INDIRECT_PAGES_PER_REQUEST];
238#ifndef CONFIG_X86_32
239	uint32_t      _pad3;         /* make it 64 byte aligned */
240#else
241	uint64_t      _pad3;         /* make it 64 byte aligned */
242#endif
243} __attribute__((__packed__));
244
245struct blkif_request {
246	uint8_t        operation;    /* BLKIF_OP_???                         */
247	union {
248		struct blkif_request_rw rw;
249		struct blkif_request_discard discard;
250		struct blkif_request_other other;
251		struct blkif_request_indirect indirect;
252	} u;
253} __attribute__((__packed__));
254
255struct blkif_response {
256	uint64_t        id;              /* copied from request */
257	uint8_t         operation;       /* copied from request */
258	int16_t         status;          /* BLKIF_RSP_???       */
259};
260
261/*
262 * STATUS RETURN CODES.
263 */
264 /* Operation not supported (only happens on barrier writes). */
265#define BLKIF_RSP_EOPNOTSUPP  -2
266 /* Operation failed for some unspecified reason (-EIO). */
267#define BLKIF_RSP_ERROR       -1
268 /* Operation completed successfully. */
269#define BLKIF_RSP_OKAY         0
270
271/*
272 * Generate blkif ring structures and types.
273 */
274
275DEFINE_RING_TYPES(blkif, struct blkif_request, struct blkif_response);
276
277#define VDISK_CDROM        0x1
278#define VDISK_REMOVABLE    0x2
279#define VDISK_READONLY     0x4
280
281/* Xen-defined major numbers for virtual disks, they look strangely
282 * familiar */
283#define XEN_IDE0_MAJOR	3
284#define XEN_IDE1_MAJOR	22
285#define XEN_SCSI_DISK0_MAJOR	8
286#define XEN_SCSI_DISK1_MAJOR	65
287#define XEN_SCSI_DISK2_MAJOR	66
288#define XEN_SCSI_DISK3_MAJOR	67
289#define XEN_SCSI_DISK4_MAJOR	68
290#define XEN_SCSI_DISK5_MAJOR	69
291#define XEN_SCSI_DISK6_MAJOR	70
292#define XEN_SCSI_DISK7_MAJOR	71
293#define XEN_SCSI_DISK8_MAJOR	128
294#define XEN_SCSI_DISK9_MAJOR	129
295#define XEN_SCSI_DISK10_MAJOR	130
296#define XEN_SCSI_DISK11_MAJOR	131
297#define XEN_SCSI_DISK12_MAJOR	132
298#define XEN_SCSI_DISK13_MAJOR	133
299#define XEN_SCSI_DISK14_MAJOR	134
300#define XEN_SCSI_DISK15_MAJOR	135
301
302#endif /* __XEN_PUBLIC_IO_BLKIF_H__ */
v4.6
 
  1/******************************************************************************
  2 * blkif.h
  3 *
  4 * Unified block-device I/O interface for Xen guest OSes.
  5 *
  6 * Copyright (c) 2003-2004, Keir Fraser
  7 */
  8
  9#ifndef __XEN_PUBLIC_IO_BLKIF_H__
 10#define __XEN_PUBLIC_IO_BLKIF_H__
 11
 12#include <xen/interface/io/ring.h>
 13#include <xen/interface/grant_table.h>
 14
 15/*
 16 * Front->back notifications: When enqueuing a new request, sending a
 17 * notification can be made conditional on req_event (i.e., the generic
 18 * hold-off mechanism provided by the ring macros). Backends must set
 19 * req_event appropriately (e.g., using RING_FINAL_CHECK_FOR_REQUESTS()).
 20 *
 21 * Back->front notifications: When enqueuing a new response, sending a
 22 * notification can be made conditional on rsp_event (i.e., the generic
 23 * hold-off mechanism provided by the ring macros). Frontends must set
 24 * rsp_event appropriately (e.g., using RING_FINAL_CHECK_FOR_RESPONSES()).
 25 */
 26
 27typedef uint16_t blkif_vdev_t;
 28typedef uint64_t blkif_sector_t;
 29
 30/*
 31 * Multiple hardware queues/rings:
 32 * If supported, the backend will write the key "multi-queue-max-queues" to
 33 * the directory for that vbd, and set its value to the maximum supported
 34 * number of queues.
 35 * Frontends that are aware of this feature and wish to use it can write the
 36 * key "multi-queue-num-queues" with the number they wish to use, which must be
 37 * greater than zero, and no more than the value reported by the backend in
 38 * "multi-queue-max-queues".
 39 *
 40 * For frontends requesting just one queue, the usual event-channel and
 41 * ring-ref keys are written as before, simplifying the backend processing
 42 * to avoid distinguishing between a frontend that doesn't understand the
 43 * multi-queue feature, and one that does, but requested only one queue.
 44 *
 45 * Frontends requesting two or more queues must not write the toplevel
 46 * event-channel and ring-ref keys, instead writing those keys under sub-keys
 47 * having the name "queue-N" where N is the integer ID of the queue/ring for
 48 * which those keys belong. Queues are indexed from zero.
 49 * For example, a frontend with two queues must write the following set of
 50 * queue-related keys:
 51 *
 52 * /local/domain/1/device/vbd/0/multi-queue-num-queues = "2"
 53 * /local/domain/1/device/vbd/0/queue-0 = ""
 54 * /local/domain/1/device/vbd/0/queue-0/ring-ref = "<ring-ref#0>"
 55 * /local/domain/1/device/vbd/0/queue-0/event-channel = "<evtchn#0>"
 56 * /local/domain/1/device/vbd/0/queue-1 = ""
 57 * /local/domain/1/device/vbd/0/queue-1/ring-ref = "<ring-ref#1>"
 58 * /local/domain/1/device/vbd/0/queue-1/event-channel = "<evtchn#1>"
 59 *
 60 * It is also possible to use multiple queues/rings together with
 61 * feature multi-page ring buffer.
 62 * For example, a frontend requests two queues/rings and the size of each ring
 63 * buffer is two pages must write the following set of related keys:
 64 *
 65 * /local/domain/1/device/vbd/0/multi-queue-num-queues = "2"
 66 * /local/domain/1/device/vbd/0/ring-page-order = "1"
 67 * /local/domain/1/device/vbd/0/queue-0 = ""
 68 * /local/domain/1/device/vbd/0/queue-0/ring-ref0 = "<ring-ref#0>"
 69 * /local/domain/1/device/vbd/0/queue-0/ring-ref1 = "<ring-ref#1>"
 70 * /local/domain/1/device/vbd/0/queue-0/event-channel = "<evtchn#0>"
 71 * /local/domain/1/device/vbd/0/queue-1 = ""
 72 * /local/domain/1/device/vbd/0/queue-1/ring-ref0 = "<ring-ref#2>"
 73 * /local/domain/1/device/vbd/0/queue-1/ring-ref1 = "<ring-ref#3>"
 74 * /local/domain/1/device/vbd/0/queue-1/event-channel = "<evtchn#1>"
 75 *
 76 */
 77
 78/*
 79 * REQUEST CODES.
 80 */
 81#define BLKIF_OP_READ              0
 82#define BLKIF_OP_WRITE             1
 83/*
 84 * Recognised only if "feature-barrier" is present in backend xenbus info.
 85 * The "feature_barrier" node contains a boolean indicating whether barrier
 86 * requests are likely to succeed or fail. Either way, a barrier request
 87 * may fail at any time with BLKIF_RSP_EOPNOTSUPP if it is unsupported by
 88 * the underlying block-device hardware. The boolean simply indicates whether
 89 * or not it is worthwhile for the frontend to attempt barrier requests.
 90 * If a backend does not recognise BLKIF_OP_WRITE_BARRIER, it should *not*
 91 * create the "feature-barrier" node!
 92 */
 93#define BLKIF_OP_WRITE_BARRIER     2
 94
 95/*
 96 * Recognised if "feature-flush-cache" is present in backend xenbus
 97 * info.  A flush will ask the underlying storage hardware to flush its
 98 * non-volatile caches as appropriate.  The "feature-flush-cache" node
 99 * contains a boolean indicating whether flush requests are likely to
100 * succeed or fail. Either way, a flush request may fail at any time
101 * with BLKIF_RSP_EOPNOTSUPP if it is unsupported by the underlying
102 * block-device hardware. The boolean simply indicates whether or not it
103 * is worthwhile for the frontend to attempt flushes.  If a backend does
104 * not recognise BLKIF_OP_WRITE_FLUSH_CACHE, it should *not* create the
105 * "feature-flush-cache" node!
106 */
107#define BLKIF_OP_FLUSH_DISKCACHE   3
108
109/*
110 * Recognised only if "feature-discard" is present in backend xenbus info.
111 * The "feature-discard" node contains a boolean indicating whether trim
112 * (ATA) or unmap (SCSI) - conviently called discard requests are likely
113 * to succeed or fail. Either way, a discard request
114 * may fail at any time with BLKIF_RSP_EOPNOTSUPP if it is unsupported by
115 * the underlying block-device hardware. The boolean simply indicates whether
116 * or not it is worthwhile for the frontend to attempt discard requests.
117 * If a backend does not recognise BLKIF_OP_DISCARD, it should *not*
118 * create the "feature-discard" node!
119 *
120 * Discard operation is a request for the underlying block device to mark
121 * extents to be erased. However, discard does not guarantee that the blocks
122 * will be erased from the device - it is just a hint to the device
123 * controller that these blocks are no longer in use. What the device
124 * controller does with that information is left to the controller.
125 * Discard operations are passed with sector_number as the
126 * sector index to begin discard operations at and nr_sectors as the number of
127 * sectors to be discarded. The specified sectors should be discarded if the
128 * underlying block device supports trim (ATA) or unmap (SCSI) operations,
129 * or a BLKIF_RSP_EOPNOTSUPP  should be returned.
130 * More information about trim/unmap operations at:
131 * http://t13.org/Documents/UploadedDocuments/docs2008/
132 *     e07154r6-Data_Set_Management_Proposal_for_ATA-ACS2.doc
133 * http://www.seagate.com/staticfiles/support/disc/manuals/
134 *     Interface%20manuals/100293068c.pdf
135 * The backend can optionally provide three extra XenBus attributes to
136 * further optimize the discard functionality:
137 * 'discard-alignment' - Devices that support discard functionality may
138 * internally allocate space in units that are bigger than the exported
139 * logical block size. The discard-alignment parameter indicates how many bytes
140 * the beginning of the partition is offset from the internal allocation unit's
141 * natural alignment.
142 * 'discard-granularity'  - Devices that support discard functionality may
143 * internally allocate space using units that are bigger than the logical block
144 * size. The discard-granularity parameter indicates the size of the internal
145 * allocation unit in bytes if reported by the device. Otherwise the
146 * discard-granularity will be set to match the device's physical block size.
147 * 'discard-secure' - All copies of the discarded sectors (potentially created
148 * by garbage collection) must also be erased.  To use this feature, the flag
149 * BLKIF_DISCARD_SECURE must be set in the blkif_request_trim.
150 */
151#define BLKIF_OP_DISCARD           5
152
153/*
154 * Recognized if "feature-max-indirect-segments" in present in the backend
155 * xenbus info. The "feature-max-indirect-segments" node contains the maximum
156 * number of segments allowed by the backend per request. If the node is
157 * present, the frontend might use blkif_request_indirect structs in order to
158 * issue requests with more than BLKIF_MAX_SEGMENTS_PER_REQUEST (11). The
159 * maximum number of indirect segments is fixed by the backend, but the
160 * frontend can issue requests with any number of indirect segments as long as
161 * it's less than the number provided by the backend. The indirect_grefs field
162 * in blkif_request_indirect should be filled by the frontend with the
163 * grant references of the pages that are holding the indirect segments.
164 * These pages are filled with an array of blkif_request_segment that hold the
165 * information about the segments. The number of indirect pages to use is
166 * determined by the number of segments an indirect request contains. Every
167 * indirect page can contain a maximum of
168 * (PAGE_SIZE / sizeof(struct blkif_request_segment)) segments, so to
169 * calculate the number of indirect pages to use we have to do
170 * ceil(indirect_segments / (PAGE_SIZE / sizeof(struct blkif_request_segment))).
171 *
172 * If a backend does not recognize BLKIF_OP_INDIRECT, it should *not*
173 * create the "feature-max-indirect-segments" node!
174 */
175#define BLKIF_OP_INDIRECT          6
176
177/*
178 * Maximum scatter/gather segments per request.
179 * This is carefully chosen so that sizeof(struct blkif_ring) <= PAGE_SIZE.
180 * NB. This could be 12 if the ring indexes weren't stored in the same page.
181 */
182#define BLKIF_MAX_SEGMENTS_PER_REQUEST 11
183
184#define BLKIF_MAX_INDIRECT_PAGES_PER_REQUEST 8
185
186struct blkif_request_segment {
187		grant_ref_t gref;        /* reference to I/O buffer frame        */
188		/* @first_sect: first sector in frame to transfer (inclusive).   */
189		/* @last_sect: last sector in frame to transfer (inclusive).     */
190		uint8_t     first_sect, last_sect;
191};
192
193struct blkif_request_rw {
194	uint8_t        nr_segments;  /* number of segments                   */
195	blkif_vdev_t   handle;       /* only for read/write requests         */
196#ifndef CONFIG_X86_32
197	uint32_t       _pad1;	     /* offsetof(blkif_request,u.rw.id) == 8 */
198#endif
199	uint64_t       id;           /* private guest value, echoed in resp  */
200	blkif_sector_t sector_number;/* start sector idx on disk (r/w only)  */
201	struct blkif_request_segment seg[BLKIF_MAX_SEGMENTS_PER_REQUEST];
202} __attribute__((__packed__));
203
204struct blkif_request_discard {
205	uint8_t        flag;         /* BLKIF_DISCARD_SECURE or zero.        */
206#define BLKIF_DISCARD_SECURE (1<<0)  /* ignored if discard-secure=0          */
207	blkif_vdev_t   _pad1;        /* only for read/write requests         */
208#ifndef CONFIG_X86_32
209	uint32_t       _pad2;        /* offsetof(blkif_req..,u.discard.id)==8*/
210#endif
211	uint64_t       id;           /* private guest value, echoed in resp  */
212	blkif_sector_t sector_number;
213	uint64_t       nr_sectors;
214	uint8_t        _pad3;
215} __attribute__((__packed__));
216
217struct blkif_request_other {
218	uint8_t      _pad1;
219	blkif_vdev_t _pad2;        /* only for read/write requests         */
220#ifndef CONFIG_X86_32
221	uint32_t     _pad3;        /* offsetof(blkif_req..,u.other.id)==8*/
222#endif
223	uint64_t     id;           /* private guest value, echoed in resp  */
224} __attribute__((__packed__));
225
226struct blkif_request_indirect {
227	uint8_t        indirect_op;
228	uint16_t       nr_segments;
229#ifndef CONFIG_X86_32
230	uint32_t       _pad1;        /* offsetof(blkif_...,u.indirect.id) == 8 */
231#endif
232	uint64_t       id;
233	blkif_sector_t sector_number;
234	blkif_vdev_t   handle;
235	uint16_t       _pad2;
236	grant_ref_t    indirect_grefs[BLKIF_MAX_INDIRECT_PAGES_PER_REQUEST];
237#ifndef CONFIG_X86_32
238	uint32_t      _pad3;         /* make it 64 byte aligned */
239#else
240	uint64_t      _pad3;         /* make it 64 byte aligned */
241#endif
242} __attribute__((__packed__));
243
244struct blkif_request {
245	uint8_t        operation;    /* BLKIF_OP_???                         */
246	union {
247		struct blkif_request_rw rw;
248		struct blkif_request_discard discard;
249		struct blkif_request_other other;
250		struct blkif_request_indirect indirect;
251	} u;
252} __attribute__((__packed__));
253
254struct blkif_response {
255	uint64_t        id;              /* copied from request */
256	uint8_t         operation;       /* copied from request */
257	int16_t         status;          /* BLKIF_RSP_???       */
258};
259
260/*
261 * STATUS RETURN CODES.
262 */
263 /* Operation not supported (only happens on barrier writes). */
264#define BLKIF_RSP_EOPNOTSUPP  -2
265 /* Operation failed for some unspecified reason (-EIO). */
266#define BLKIF_RSP_ERROR       -1
267 /* Operation completed successfully. */
268#define BLKIF_RSP_OKAY         0
269
270/*
271 * Generate blkif ring structures and types.
272 */
273
274DEFINE_RING_TYPES(blkif, struct blkif_request, struct blkif_response);
275
276#define VDISK_CDROM        0x1
277#define VDISK_REMOVABLE    0x2
278#define VDISK_READONLY     0x4
279
280/* Xen-defined major numbers for virtual disks, they look strangely
281 * familiar */
282#define XEN_IDE0_MAJOR	3
283#define XEN_IDE1_MAJOR	22
284#define XEN_SCSI_DISK0_MAJOR	8
285#define XEN_SCSI_DISK1_MAJOR	65
286#define XEN_SCSI_DISK2_MAJOR	66
287#define XEN_SCSI_DISK3_MAJOR	67
288#define XEN_SCSI_DISK4_MAJOR	68
289#define XEN_SCSI_DISK5_MAJOR	69
290#define XEN_SCSI_DISK6_MAJOR	70
291#define XEN_SCSI_DISK7_MAJOR	71
292#define XEN_SCSI_DISK8_MAJOR	128
293#define XEN_SCSI_DISK9_MAJOR	129
294#define XEN_SCSI_DISK10_MAJOR	130
295#define XEN_SCSI_DISK11_MAJOR	131
296#define XEN_SCSI_DISK12_MAJOR	132
297#define XEN_SCSI_DISK13_MAJOR	133
298#define XEN_SCSI_DISK14_MAJOR	134
299#define XEN_SCSI_DISK15_MAJOR	135
300
301#endif /* __XEN_PUBLIC_IO_BLKIF_H__ */