Linux Audio

Check our new training course

Loading...
v6.2
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/*
  3 * Cryptographic API for algorithms (i.e., low-level API).
  4 *
  5 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
 
 
 
 
 
 
  6 */
  7#ifndef _CRYPTO_ALGAPI_H
  8#define _CRYPTO_ALGAPI_H
  9
 10#include <linux/align.h>
 11#include <linux/cache.h>
 12#include <linux/crypto.h>
 13#include <linux/kconfig.h>
 14#include <linux/list.h>
 15#include <linux/types.h>
 16
 17#include <asm/unaligned.h>
 18
 19/*
 20 * Maximum values for blocksize and alignmask, used to allocate
 21 * static buffers that are big enough for any combination of
 22 * algs and architectures. Ciphers have a lower maximum size.
 23 */
 24#define MAX_ALGAPI_BLOCKSIZE		160
 25#define MAX_ALGAPI_ALIGNMASK		127
 26#define MAX_CIPHER_BLOCKSIZE		16
 27#define MAX_CIPHER_ALIGNMASK		15
 28
 29#ifdef ARCH_DMA_MINALIGN
 30#define CRYPTO_DMA_ALIGN ARCH_DMA_MINALIGN
 31#else
 32#define CRYPTO_DMA_ALIGN CRYPTO_MINALIGN
 33#endif
 34
 35#define CRYPTO_DMA_PADDING ((CRYPTO_DMA_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
 36
 37struct crypto_aead;
 38struct crypto_instance;
 39struct module;
 40struct notifier_block;
 41struct rtattr;
 42struct seq_file;
 43struct sk_buff;
 44
 45struct crypto_type {
 46	unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask);
 47	unsigned int (*extsize)(struct crypto_alg *alg);
 48	int (*init)(struct crypto_tfm *tfm, u32 type, u32 mask);
 49	int (*init_tfm)(struct crypto_tfm *tfm);
 50	void (*show)(struct seq_file *m, struct crypto_alg *alg);
 51	int (*report)(struct sk_buff *skb, struct crypto_alg *alg);
 
 52	void (*free)(struct crypto_instance *inst);
 53
 54	unsigned int type;
 55	unsigned int maskclear;
 56	unsigned int maskset;
 57	unsigned int tfmsize;
 58};
 59
 60struct crypto_instance {
 61	struct crypto_alg alg;
 62
 63	struct crypto_template *tmpl;
 64
 65	union {
 66		/* Node in list of instances after registration. */
 67		struct hlist_node list;
 68		/* List of attached spawns before registration. */
 69		struct crypto_spawn *spawns;
 70	};
 71
 72	void *__ctx[] CRYPTO_MINALIGN_ATTR;
 73};
 74
 75struct crypto_template {
 76	struct list_head list;
 77	struct hlist_head instances;
 78	struct module *module;
 79
 
 
 80	int (*create)(struct crypto_template *tmpl, struct rtattr **tb);
 81
 82	char name[CRYPTO_MAX_ALG_NAME];
 83};
 84
 85struct crypto_spawn {
 86	struct list_head list;
 87	struct crypto_alg *alg;
 88	union {
 89		/* Back pointer to instance after registration.*/
 90		struct crypto_instance *inst;
 91		/* Spawn list pointer prior to registration. */
 92		struct crypto_spawn *next;
 93	};
 94	const struct crypto_type *frontend;
 95	u32 mask;
 96	bool dead;
 97	bool registered;
 98};
 99
100struct crypto_queue {
101	struct list_head list;
102	struct list_head *backlog;
103
104	unsigned int qlen;
105	unsigned int max_qlen;
106};
107
108struct scatter_walk {
109	struct scatterlist *sg;
110	unsigned int offset;
111};
112
113struct crypto_attr_alg {
114	char name[CRYPTO_MAX_ALG_NAME];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115};
116
117struct crypto_attr_type {
118	u32 type;
119	u32 mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120};
121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122void crypto_mod_put(struct crypto_alg *alg);
123
124int crypto_register_template(struct crypto_template *tmpl);
125int crypto_register_templates(struct crypto_template *tmpls, int count);
126void crypto_unregister_template(struct crypto_template *tmpl);
127void crypto_unregister_templates(struct crypto_template *tmpls, int count);
128struct crypto_template *crypto_lookup_template(const char *name);
129
130int crypto_register_instance(struct crypto_template *tmpl,
131			     struct crypto_instance *inst);
132void crypto_unregister_instance(struct crypto_instance *inst);
 
 
 
 
 
 
 
 
133
134int crypto_grab_spawn(struct crypto_spawn *spawn, struct crypto_instance *inst,
135		      const char *name, u32 type, u32 mask);
136void crypto_drop_spawn(struct crypto_spawn *spawn);
137struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type,
138				    u32 mask);
139void *crypto_spawn_tfm2(struct crypto_spawn *spawn);
140
 
 
 
 
 
 
141struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb);
142int crypto_check_attr_type(struct rtattr **tb, u32 type, u32 *mask_ret);
143const char *crypto_attr_alg_name(struct rtattr *rta);
144int crypto_inst_setname(struct crypto_instance *inst, const char *name,
145			struct crypto_alg *alg);
 
 
 
 
 
 
 
 
 
 
 
 
 
146
147void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen);
148int crypto_enqueue_request(struct crypto_queue *queue,
149			   struct crypto_async_request *request);
150void crypto_enqueue_request_head(struct crypto_queue *queue,
151				 struct crypto_async_request *request);
152struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue);
 
153static inline unsigned int crypto_queue_len(struct crypto_queue *queue)
154{
155	return queue->qlen;
156}
157
 
158void crypto_inc(u8 *a, unsigned int size);
159void __crypto_xor(u8 *dst, const u8 *src1, const u8 *src2, unsigned int size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
160
161static inline void crypto_xor(u8 *dst, const u8 *src, unsigned int size)
162{
163	if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) &&
164	    __builtin_constant_p(size) &&
165	    (size % sizeof(unsigned long)) == 0) {
166		unsigned long *d = (unsigned long *)dst;
167		unsigned long *s = (unsigned long *)src;
168		unsigned long l;
169
170		while (size > 0) {
171			l = get_unaligned(d) ^ get_unaligned(s++);
172			put_unaligned(l, d++);
173			size -= sizeof(unsigned long);
174		}
175	} else {
176		__crypto_xor(dst, dst, src, size);
177	}
178}
179
180static inline void crypto_xor_cpy(u8 *dst, const u8 *src1, const u8 *src2,
181				  unsigned int size)
182{
183	if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) &&
184	    __builtin_constant_p(size) &&
185	    (size % sizeof(unsigned long)) == 0) {
186		unsigned long *d = (unsigned long *)dst;
187		unsigned long *s1 = (unsigned long *)src1;
188		unsigned long *s2 = (unsigned long *)src2;
189		unsigned long l;
190
191		while (size > 0) {
192			l = get_unaligned(s1++) ^ get_unaligned(s2++);
193			put_unaligned(l, d++);
194			size -= sizeof(unsigned long);
195		}
196	} else {
197		__crypto_xor(dst, src1, src2, size);
198	}
199}
200
201static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
202{
203	return tfm->__crt_ctx;
204}
205
206static inline void *crypto_tfm_ctx_align(struct crypto_tfm *tfm,
207					 unsigned int align)
208{
209	if (align <= crypto_tfm_ctx_alignment())
210		align = 1;
211
212	return PTR_ALIGN(crypto_tfm_ctx(tfm), align);
 
 
 
 
 
 
213}
214
215static inline void *crypto_tfm_ctx_aligned(struct crypto_tfm *tfm)
 
 
 
 
 
216{
217	return crypto_tfm_ctx_align(tfm, crypto_tfm_alg_alignmask(tfm) + 1);
218}
219
220static inline unsigned int crypto_dma_align(void)
 
221{
222	return CRYPTO_DMA_ALIGN;
 
 
 
223}
224
225static inline unsigned int crypto_dma_padding(void)
226{
227	return (crypto_dma_align() - 1) & ~(crypto_tfm_ctx_alignment() - 1);
228}
229
230static inline void *crypto_tfm_ctx_dma(struct crypto_tfm *tfm)
 
 
 
231{
232	return crypto_tfm_ctx_align(tfm, crypto_dma_align());
 
 
233}
234
235static inline struct crypto_instance *crypto_tfm_alg_instance(
236	struct crypto_tfm *tfm)
 
 
237{
238	return container_of(tfm->__crt_alg, struct crypto_instance, alg);
 
 
 
239}
240
241static inline void *crypto_instance_ctx(struct crypto_instance *inst)
242{
243	return inst->__ctx;
 
244}
245
246static inline struct crypto_async_request *crypto_get_backlog(
247	struct crypto_queue *queue)
248{
249	return queue->backlog == &queue->list ? NULL :
250	       container_of(queue->backlog, struct crypto_async_request, list);
251}
252
253static inline u32 crypto_requires_off(struct crypto_attr_type *algt, u32 off)
 
254{
255	return (algt->type ^ off) & algt->mask & off;
256}
257
258/*
259 * When an algorithm uses another algorithm (e.g., if it's an instance of a
260 * template), these are the flags that should always be set on the "outer"
261 * algorithm if any "inner" algorithm has them set.
262 */
263#define CRYPTO_ALG_INHERITED_FLAGS	\
264	(CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK |	\
265	 CRYPTO_ALG_ALLOCATES_MEMORY)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
266
267/*
268 * Given the type and mask that specify the flags restrictions on a template
269 * instance being created, return the mask that should be passed to
270 * crypto_grab_*() (along with type=0) to honor any request the user made to
271 * have any of the CRYPTO_ALG_INHERITED_FLAGS clear.
272 */
273static inline u32 crypto_algt_inherited_mask(struct crypto_attr_type *algt)
274{
275	return crypto_requires_off(algt, CRYPTO_ALG_INHERITED_FLAGS);
276}
277
278noinline unsigned long __crypto_memneq(const void *a, const void *b, size_t size);
279
280/**
281 * crypto_memneq - Compare two areas of memory without leaking
282 *		   timing information.
283 *
284 * @a: One area of memory
285 * @b: Another area of memory
286 * @size: The size of the area.
287 *
288 * Returns 0 when data is equal, 1 otherwise.
289 */
290static inline int crypto_memneq(const void *a, const void *b, size_t size)
291{
292	return __crypto_memneq(a, b, size) != 0UL ? 1 : 0;
293}
294
295int crypto_register_notifier(struct notifier_block *nb);
296int crypto_unregister_notifier(struct notifier_block *nb);
297
298/* Crypto notification events. */
299enum {
300	CRYPTO_MSG_ALG_REQUEST,
301	CRYPTO_MSG_ALG_REGISTER,
302	CRYPTO_MSG_ALG_LOADED,
303};
304
305#endif	/* _CRYPTO_ALGAPI_H */
v4.6
 
  1/*
  2 * Cryptographic API for algorithms (i.e., low-level API).
  3 *
  4 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms of the GNU General Public License as published by the Free
  8 * Software Foundation; either version 2 of the License, or (at your option) 
  9 * any later version.
 10 *
 11 */
 12#ifndef _CRYPTO_ALGAPI_H
 13#define _CRYPTO_ALGAPI_H
 14
 
 
 15#include <linux/crypto.h>
 
 16#include <linux/list.h>
 17#include <linux/kernel.h>
 18#include <linux/kthread.h>
 19#include <linux/skbuff.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 20
 21struct crypto_aead;
 22struct crypto_instance;
 23struct module;
 
 24struct rtattr;
 25struct seq_file;
 
 26
 27struct crypto_type {
 28	unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask);
 29	unsigned int (*extsize)(struct crypto_alg *alg);
 30	int (*init)(struct crypto_tfm *tfm, u32 type, u32 mask);
 31	int (*init_tfm)(struct crypto_tfm *tfm);
 32	void (*show)(struct seq_file *m, struct crypto_alg *alg);
 33	int (*report)(struct sk_buff *skb, struct crypto_alg *alg);
 34	struct crypto_alg *(*lookup)(const char *name, u32 type, u32 mask);
 35	void (*free)(struct crypto_instance *inst);
 36
 37	unsigned int type;
 38	unsigned int maskclear;
 39	unsigned int maskset;
 40	unsigned int tfmsize;
 41};
 42
 43struct crypto_instance {
 44	struct crypto_alg alg;
 45
 46	struct crypto_template *tmpl;
 47	struct hlist_node list;
 
 
 
 
 
 
 48
 49	void *__ctx[] CRYPTO_MINALIGN_ATTR;
 50};
 51
 52struct crypto_template {
 53	struct list_head list;
 54	struct hlist_head instances;
 55	struct module *module;
 56
 57	struct crypto_instance *(*alloc)(struct rtattr **tb);
 58	void (*free)(struct crypto_instance *inst);
 59	int (*create)(struct crypto_template *tmpl, struct rtattr **tb);
 60
 61	char name[CRYPTO_MAX_ALG_NAME];
 62};
 63
 64struct crypto_spawn {
 65	struct list_head list;
 66	struct crypto_alg *alg;
 67	struct crypto_instance *inst;
 
 
 
 
 
 68	const struct crypto_type *frontend;
 69	u32 mask;
 
 
 70};
 71
 72struct crypto_queue {
 73	struct list_head list;
 74	struct list_head *backlog;
 75
 76	unsigned int qlen;
 77	unsigned int max_qlen;
 78};
 79
 80struct scatter_walk {
 81	struct scatterlist *sg;
 82	unsigned int offset;
 83};
 84
 85struct blkcipher_walk {
 86	union {
 87		struct {
 88			struct page *page;
 89			unsigned long offset;
 90		} phys;
 91
 92		struct {
 93			u8 *page;
 94			u8 *addr;
 95		} virt;
 96	} src, dst;
 97
 98	struct scatter_walk in;
 99	unsigned int nbytes;
100
101	struct scatter_walk out;
102	unsigned int total;
103
104	void *page;
105	u8 *buffer;
106	u8 *iv;
107	unsigned int ivsize;
108
109	int flags;
110	unsigned int walk_blocksize;
111	unsigned int cipher_blocksize;
112	unsigned int alignmask;
113};
114
115struct ablkcipher_walk {
116	struct {
117		struct page *page;
118		unsigned int offset;
119	} src, dst;
120
121	struct scatter_walk	in;
122	unsigned int		nbytes;
123	struct scatter_walk	out;
124	unsigned int		total;
125	struct list_head	buffers;
126	u8			*iv_buffer;
127	u8			*iv;
128	int			flags;
129	unsigned int		blocksize;
130};
131
132#define ENGINE_NAME_LEN	30
133/*
134 * struct crypto_engine - crypto hardware engine
135 * @name: the engine name
136 * @idling: the engine is entering idle state
137 * @busy: request pump is busy
138 * @running: the engine is on working
139 * @cur_req_prepared: current request is prepared
140 * @list: link with the global crypto engine list
141 * @queue_lock: spinlock to syncronise access to request queue
142 * @queue: the crypto queue of the engine
143 * @rt: whether this queue is set to run as a realtime task
144 * @prepare_crypt_hardware: a request will soon arrive from the queue
145 * so the subsystem requests the driver to prepare the hardware
146 * by issuing this call
147 * @unprepare_crypt_hardware: there are currently no more requests on the
148 * queue so the subsystem notifies the driver that it may relax the
149 * hardware by issuing this call
150 * @prepare_request: do some prepare if need before handle the current request
151 * @unprepare_request: undo any work done by prepare_message()
152 * @crypt_one_request: do encryption for current request
153 * @kworker: thread struct for request pump
154 * @kworker_task: pointer to task for request pump kworker thread
155 * @pump_requests: work struct for scheduling work to the request pump
156 * @priv_data: the engine private data
157 * @cur_req: the current request which is on processing
158 */
159struct crypto_engine {
160	char			name[ENGINE_NAME_LEN];
161	bool			idling;
162	bool			busy;
163	bool			running;
164	bool			cur_req_prepared;
165
166	struct list_head	list;
167	spinlock_t		queue_lock;
168	struct crypto_queue	queue;
169
170	bool			rt;
171
172	int (*prepare_crypt_hardware)(struct crypto_engine *engine);
173	int (*unprepare_crypt_hardware)(struct crypto_engine *engine);
174
175	int (*prepare_request)(struct crypto_engine *engine,
176			       struct ablkcipher_request *req);
177	int (*unprepare_request)(struct crypto_engine *engine,
178				 struct ablkcipher_request *req);
179	int (*crypt_one_request)(struct crypto_engine *engine,
180				 struct ablkcipher_request *req);
181
182	struct kthread_worker           kworker;
183	struct task_struct              *kworker_task;
184	struct kthread_work             pump_requests;
185
186	void				*priv_data;
187	struct ablkcipher_request	*cur_req;
188};
189
190int crypto_transfer_request(struct crypto_engine *engine,
191			    struct ablkcipher_request *req, bool need_pump);
192int crypto_transfer_request_to_engine(struct crypto_engine *engine,
193				      struct ablkcipher_request *req);
194void crypto_finalize_request(struct crypto_engine *engine,
195			     struct ablkcipher_request *req, int err);
196int crypto_engine_start(struct crypto_engine *engine);
197int crypto_engine_stop(struct crypto_engine *engine);
198struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt);
199int crypto_engine_exit(struct crypto_engine *engine);
200
201extern const struct crypto_type crypto_ablkcipher_type;
202extern const struct crypto_type crypto_blkcipher_type;
203
204void crypto_mod_put(struct crypto_alg *alg);
205
206int crypto_register_template(struct crypto_template *tmpl);
 
207void crypto_unregister_template(struct crypto_template *tmpl);
 
208struct crypto_template *crypto_lookup_template(const char *name);
209
210int crypto_register_instance(struct crypto_template *tmpl,
211			     struct crypto_instance *inst);
212int crypto_unregister_instance(struct crypto_instance *inst);
213
214int crypto_init_spawn(struct crypto_spawn *spawn, struct crypto_alg *alg,
215		      struct crypto_instance *inst, u32 mask);
216int crypto_init_spawn2(struct crypto_spawn *spawn, struct crypto_alg *alg,
217		       struct crypto_instance *inst,
218		       const struct crypto_type *frontend);
219int crypto_grab_spawn(struct crypto_spawn *spawn, const char *name,
220		      u32 type, u32 mask);
221
 
 
222void crypto_drop_spawn(struct crypto_spawn *spawn);
223struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type,
224				    u32 mask);
225void *crypto_spawn_tfm2(struct crypto_spawn *spawn);
226
227static inline void crypto_set_spawn(struct crypto_spawn *spawn,
228				    struct crypto_instance *inst)
229{
230	spawn->inst = inst;
231}
232
233struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb);
234int crypto_check_attr_type(struct rtattr **tb, u32 type);
235const char *crypto_attr_alg_name(struct rtattr *rta);
236struct crypto_alg *crypto_attr_alg2(struct rtattr *rta,
237				    const struct crypto_type *frontend,
238				    u32 type, u32 mask);
239
240static inline struct crypto_alg *crypto_attr_alg(struct rtattr *rta,
241						 u32 type, u32 mask)
242{
243	return crypto_attr_alg2(rta, NULL, type, mask);
244}
245
246int crypto_attr_u32(struct rtattr *rta, u32 *num);
247void *crypto_alloc_instance2(const char *name, struct crypto_alg *alg,
248			     unsigned int head);
249struct crypto_instance *crypto_alloc_instance(const char *name,
250					      struct crypto_alg *alg);
251
252void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen);
253int crypto_enqueue_request(struct crypto_queue *queue,
254			   struct crypto_async_request *request);
 
 
255struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue);
256int crypto_tfm_in_queue(struct crypto_queue *queue, struct crypto_tfm *tfm);
257static inline unsigned int crypto_queue_len(struct crypto_queue *queue)
258{
259	return queue->qlen;
260}
261
262/* These functions require the input/output to be aligned as u32. */
263void crypto_inc(u8 *a, unsigned int size);
264void crypto_xor(u8 *dst, const u8 *src, unsigned int size);
265
266int blkcipher_walk_done(struct blkcipher_desc *desc,
267			struct blkcipher_walk *walk, int err);
268int blkcipher_walk_virt(struct blkcipher_desc *desc,
269			struct blkcipher_walk *walk);
270int blkcipher_walk_phys(struct blkcipher_desc *desc,
271			struct blkcipher_walk *walk);
272int blkcipher_walk_virt_block(struct blkcipher_desc *desc,
273			      struct blkcipher_walk *walk,
274			      unsigned int blocksize);
275int blkcipher_aead_walk_virt_block(struct blkcipher_desc *desc,
276				   struct blkcipher_walk *walk,
277				   struct crypto_aead *tfm,
278				   unsigned int blocksize);
279
280int ablkcipher_walk_done(struct ablkcipher_request *req,
281			 struct ablkcipher_walk *walk, int err);
282int ablkcipher_walk_phys(struct ablkcipher_request *req,
283			 struct ablkcipher_walk *walk);
284void __ablkcipher_walk_complete(struct ablkcipher_walk *walk);
285
286static inline void *crypto_tfm_ctx_aligned(struct crypto_tfm *tfm)
287{
288	return PTR_ALIGN(crypto_tfm_ctx(tfm),
289			 crypto_tfm_alg_alignmask(tfm) + 1);
290}
 
 
 
291
292static inline struct crypto_instance *crypto_tfm_alg_instance(
293	struct crypto_tfm *tfm)
294{
295	return container_of(tfm->__crt_alg, struct crypto_instance, alg);
 
 
 
 
296}
297
298static inline void *crypto_instance_ctx(struct crypto_instance *inst)
 
299{
300	return inst->__ctx;
301}
 
 
 
 
 
302
303static inline struct ablkcipher_alg *crypto_ablkcipher_alg(
304	struct crypto_ablkcipher *tfm)
305{
306	return &crypto_ablkcipher_tfm(tfm)->__crt_alg->cra_ablkcipher;
 
 
 
 
307}
308
309static inline void *crypto_ablkcipher_ctx(struct crypto_ablkcipher *tfm)
310{
311	return crypto_tfm_ctx(&tfm->base);
312}
313
314static inline void *crypto_ablkcipher_ctx_aligned(struct crypto_ablkcipher *tfm)
 
315{
316	return crypto_tfm_ctx_aligned(&tfm->base);
317}
318
319static inline struct crypto_blkcipher *crypto_spawn_blkcipher(
320	struct crypto_spawn *spawn)
321{
322	u32 type = CRYPTO_ALG_TYPE_BLKCIPHER;
323	u32 mask = CRYPTO_ALG_TYPE_MASK;
324
325	return __crypto_blkcipher_cast(crypto_spawn_tfm(spawn, type, mask));
326}
327
328static inline void *crypto_blkcipher_ctx(struct crypto_blkcipher *tfm)
329{
330	return crypto_tfm_ctx(&tfm->base);
331}
332
333static inline void *crypto_blkcipher_ctx_aligned(struct crypto_blkcipher *tfm)
334{
335	return crypto_tfm_ctx_aligned(&tfm->base);
336}
337
338static inline struct crypto_cipher *crypto_spawn_cipher(
339	struct crypto_spawn *spawn)
340{
341	u32 type = CRYPTO_ALG_TYPE_CIPHER;
342	u32 mask = CRYPTO_ALG_TYPE_MASK;
343
344	return __crypto_cipher_cast(crypto_spawn_tfm(spawn, type, mask));
345}
346
347static inline struct cipher_alg *crypto_cipher_alg(struct crypto_cipher *tfm)
348{
349	return &crypto_cipher_tfm(tfm)->__crt_alg->cra_cipher;
350}
351
352static inline void blkcipher_walk_init(struct blkcipher_walk *walk,
353				       struct scatterlist *dst,
354				       struct scatterlist *src,
355				       unsigned int nbytes)
356{
357	walk->in.sg = src;
358	walk->out.sg = dst;
359	walk->total = nbytes;
360}
361
362static inline void ablkcipher_walk_init(struct ablkcipher_walk *walk,
363					struct scatterlist *dst,
364					struct scatterlist *src,
365					unsigned int nbytes)
366{
367	walk->in.sg = src;
368	walk->out.sg = dst;
369	walk->total = nbytes;
370	INIT_LIST_HEAD(&walk->buffers);
371}
372
373static inline void ablkcipher_walk_complete(struct ablkcipher_walk *walk)
374{
375	if (unlikely(!list_empty(&walk->buffers)))
376		__ablkcipher_walk_complete(walk);
377}
378
379static inline struct crypto_async_request *crypto_get_backlog(
380	struct crypto_queue *queue)
381{
382	return queue->backlog == &queue->list ? NULL :
383	       container_of(queue->backlog, struct crypto_async_request, list);
384}
385
386static inline int ablkcipher_enqueue_request(struct crypto_queue *queue,
387					     struct ablkcipher_request *request)
388{
389	return crypto_enqueue_request(queue, &request->base);
390}
391
392static inline struct ablkcipher_request *ablkcipher_dequeue_request(
393	struct crypto_queue *queue)
394{
395	return ablkcipher_request_cast(crypto_dequeue_request(queue));
396}
397
398static inline void *ablkcipher_request_ctx(struct ablkcipher_request *req)
399{
400	return req->__ctx;
401}
402
403static inline int ablkcipher_tfm_in_queue(struct crypto_queue *queue,
404					  struct crypto_ablkcipher *tfm)
405{
406	return crypto_tfm_in_queue(queue, crypto_ablkcipher_tfm(tfm));
407}
408
409static inline struct crypto_alg *crypto_get_attr_alg(struct rtattr **tb,
410						     u32 type, u32 mask)
411{
412	return crypto_attr_alg(tb[1], type, mask);
413}
414
415/*
416 * Returns CRYPTO_ALG_ASYNC if type/mask requires the use of sync algorithms.
417 * Otherwise returns zero.
 
 
418 */
419static inline int crypto_requires_sync(u32 type, u32 mask)
420{
421	return (type ^ CRYPTO_ALG_ASYNC) & mask & CRYPTO_ALG_ASYNC;
422}
423
424noinline unsigned long __crypto_memneq(const void *a, const void *b, size_t size);
425
426/**
427 * crypto_memneq - Compare two areas of memory without leaking
428 *		   timing information.
429 *
430 * @a: One area of memory
431 * @b: Another area of memory
432 * @size: The size of the area.
433 *
434 * Returns 0 when data is equal, 1 otherwise.
435 */
436static inline int crypto_memneq(const void *a, const void *b, size_t size)
437{
438	return __crypto_memneq(a, b, size) != 0UL ? 1 : 0;
439}
440
441static inline void crypto_yield(u32 flags)
442{
443	if (flags & CRYPTO_TFM_REQ_MAY_SLEEP)
444		cond_resched();
445}
 
 
 
 
446
447#endif	/* _CRYPTO_ALGAPI_H */