Loading...
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5/*
6 * Written by Anatoly P. Pinchuk pap@namesys.botik.ru
7 * Programm System Institute
8 * Pereslavl-Zalessky Russia
9 */
10
11#include <linux/time.h>
12#include <linux/string.h>
13#include <linux/pagemap.h>
14#include <linux/bio.h>
15#include "reiserfs.h"
16#include <linux/buffer_head.h>
17#include <linux/quotaops.h>
18
19/* Does the buffer contain a disk block which is in the tree. */
20inline int B_IS_IN_TREE(const struct buffer_head *bh)
21{
22
23 RFALSE(B_LEVEL(bh) > MAX_HEIGHT,
24 "PAP-1010: block (%b) has too big level (%z)", bh, bh);
25
26 return (B_LEVEL(bh) != FREE_LEVEL);
27}
28
29/* to get item head in le form */
30inline void copy_item_head(struct item_head *to,
31 const struct item_head *from)
32{
33 memcpy(to, from, IH_SIZE);
34}
35
36/*
37 * k1 is pointer to on-disk structure which is stored in little-endian
38 * form. k2 is pointer to cpu variable. For key of items of the same
39 * object this returns 0.
40 * Returns: -1 if key1 < key2
41 * 0 if key1 == key2
42 * 1 if key1 > key2
43 */
44inline int comp_short_keys(const struct reiserfs_key *le_key,
45 const struct cpu_key *cpu_key)
46{
47 __u32 n;
48 n = le32_to_cpu(le_key->k_dir_id);
49 if (n < cpu_key->on_disk_key.k_dir_id)
50 return -1;
51 if (n > cpu_key->on_disk_key.k_dir_id)
52 return 1;
53 n = le32_to_cpu(le_key->k_objectid);
54 if (n < cpu_key->on_disk_key.k_objectid)
55 return -1;
56 if (n > cpu_key->on_disk_key.k_objectid)
57 return 1;
58 return 0;
59}
60
61/*
62 * k1 is pointer to on-disk structure which is stored in little-endian
63 * form. k2 is pointer to cpu variable.
64 * Compare keys using all 4 key fields.
65 * Returns: -1 if key1 < key2 0
66 * if key1 = key2 1 if key1 > key2
67 */
68static inline int comp_keys(const struct reiserfs_key *le_key,
69 const struct cpu_key *cpu_key)
70{
71 int retval;
72
73 retval = comp_short_keys(le_key, cpu_key);
74 if (retval)
75 return retval;
76 if (le_key_k_offset(le_key_version(le_key), le_key) <
77 cpu_key_k_offset(cpu_key))
78 return -1;
79 if (le_key_k_offset(le_key_version(le_key), le_key) >
80 cpu_key_k_offset(cpu_key))
81 return 1;
82
83 if (cpu_key->key_length == 3)
84 return 0;
85
86 /* this part is needed only when tail conversion is in progress */
87 if (le_key_k_type(le_key_version(le_key), le_key) <
88 cpu_key_k_type(cpu_key))
89 return -1;
90
91 if (le_key_k_type(le_key_version(le_key), le_key) >
92 cpu_key_k_type(cpu_key))
93 return 1;
94
95 return 0;
96}
97
98inline int comp_short_le_keys(const struct reiserfs_key *key1,
99 const struct reiserfs_key *key2)
100{
101 __u32 *k1_u32, *k2_u32;
102 int key_length = REISERFS_SHORT_KEY_LEN;
103
104 k1_u32 = (__u32 *) key1;
105 k2_u32 = (__u32 *) key2;
106 for (; key_length--; ++k1_u32, ++k2_u32) {
107 if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32))
108 return -1;
109 if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32))
110 return 1;
111 }
112 return 0;
113}
114
115inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
116{
117 int version;
118 to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
119 to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
120
121 /* find out version of the key */
122 version = le_key_version(from);
123 to->version = version;
124 to->on_disk_key.k_offset = le_key_k_offset(version, from);
125 to->on_disk_key.k_type = le_key_k_type(version, from);
126}
127
128/*
129 * this does not say which one is bigger, it only returns 1 if keys
130 * are not equal, 0 otherwise
131 */
132inline int comp_le_keys(const struct reiserfs_key *k1,
133 const struct reiserfs_key *k2)
134{
135 return memcmp(k1, k2, sizeof(struct reiserfs_key));
136}
137
138/**************************************************************************
139 * Binary search toolkit function *
140 * Search for an item in the array by the item key *
141 * Returns: 1 if found, 0 if not found; *
142 * *pos = number of the searched element if found, else the *
143 * number of the first element that is larger than key. *
144 **************************************************************************/
145/*
146 * For those not familiar with binary search: lbound is the leftmost item
147 * that it could be, rbound the rightmost item that it could be. We examine
148 * the item halfway between lbound and rbound, and that tells us either
149 * that we can increase lbound, or decrease rbound, or that we have found it,
150 * or if lbound <= rbound that there are no possible items, and we have not
151 * found it. With each examination we cut the number of possible items it
152 * could be by one more than half rounded down, or we find it.
153 */
154static inline int bin_search(const void *key, /* Key to search for. */
155 const void *base, /* First item in the array. */
156 int num, /* Number of items in the array. */
157 /*
158 * Item size in the array. searched. Lest the
159 * reader be confused, note that this is crafted
160 * as a general function, and when it is applied
161 * specifically to the array of item headers in a
162 * node, width is actually the item header size
163 * not the item size.
164 */
165 int width,
166 int *pos /* Number of the searched for element. */
167 )
168{
169 int rbound, lbound, j;
170
171 for (j = ((rbound = num - 1) + (lbound = 0)) / 2;
172 lbound <= rbound; j = (rbound + lbound) / 2)
173 switch (comp_keys
174 ((struct reiserfs_key *)((char *)base + j * width),
175 (struct cpu_key *)key)) {
176 case -1:
177 lbound = j + 1;
178 continue;
179 case 1:
180 rbound = j - 1;
181 continue;
182 case 0:
183 *pos = j;
184 return ITEM_FOUND; /* Key found in the array. */
185 }
186
187 /*
188 * bin_search did not find given key, it returns position of key,
189 * that is minimal and greater than the given one.
190 */
191 *pos = lbound;
192 return ITEM_NOT_FOUND;
193}
194
195
196/* Minimal possible key. It is never in the tree. */
197const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
198
199/* Maximal possible key. It is never in the tree. */
200static const struct reiserfs_key MAX_KEY = {
201 cpu_to_le32(0xffffffff),
202 cpu_to_le32(0xffffffff),
203 {{cpu_to_le32(0xffffffff),
204 cpu_to_le32(0xffffffff)},}
205};
206
207/*
208 * Get delimiting key of the buffer by looking for it in the buffers in the
209 * path, starting from the bottom of the path, and going upwards. We must
210 * check the path's validity at each step. If the key is not in the path,
211 * there is no delimiting key in the tree (buffer is first or last buffer
212 * in tree), and in this case we return a special key, either MIN_KEY or
213 * MAX_KEY.
214 */
215static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path,
216 const struct super_block *sb)
217{
218 int position, path_offset = chk_path->path_length;
219 struct buffer_head *parent;
220
221 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
222 "PAP-5010: invalid offset in the path");
223
224 /* While not higher in path than first element. */
225 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
226
227 RFALSE(!buffer_uptodate
228 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
229 "PAP-5020: parent is not uptodate");
230
231 /* Parent at the path is not in the tree now. */
232 if (!B_IS_IN_TREE
233 (parent =
234 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
235 return &MAX_KEY;
236 /* Check whether position in the parent is correct. */
237 if ((position =
238 PATH_OFFSET_POSITION(chk_path,
239 path_offset)) >
240 B_NR_ITEMS(parent))
241 return &MAX_KEY;
242 /* Check whether parent at the path really points to the child. */
243 if (B_N_CHILD_NUM(parent, position) !=
244 PATH_OFFSET_PBUFFER(chk_path,
245 path_offset + 1)->b_blocknr)
246 return &MAX_KEY;
247 /*
248 * Return delimiting key if position in the parent
249 * is not equal to zero.
250 */
251 if (position)
252 return internal_key(parent, position - 1);
253 }
254 /* Return MIN_KEY if we are in the root of the buffer tree. */
255 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
256 b_blocknr == SB_ROOT_BLOCK(sb))
257 return &MIN_KEY;
258 return &MAX_KEY;
259}
260
261/* Get delimiting key of the buffer at the path and its right neighbor. */
262inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
263 const struct super_block *sb)
264{
265 int position, path_offset = chk_path->path_length;
266 struct buffer_head *parent;
267
268 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
269 "PAP-5030: invalid offset in the path");
270
271 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
272
273 RFALSE(!buffer_uptodate
274 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
275 "PAP-5040: parent is not uptodate");
276
277 /* Parent at the path is not in the tree now. */
278 if (!B_IS_IN_TREE
279 (parent =
280 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
281 return &MIN_KEY;
282 /* Check whether position in the parent is correct. */
283 if ((position =
284 PATH_OFFSET_POSITION(chk_path,
285 path_offset)) >
286 B_NR_ITEMS(parent))
287 return &MIN_KEY;
288 /*
289 * Check whether parent at the path really points
290 * to the child.
291 */
292 if (B_N_CHILD_NUM(parent, position) !=
293 PATH_OFFSET_PBUFFER(chk_path,
294 path_offset + 1)->b_blocknr)
295 return &MIN_KEY;
296
297 /*
298 * Return delimiting key if position in the parent
299 * is not the last one.
300 */
301 if (position != B_NR_ITEMS(parent))
302 return internal_key(parent, position);
303 }
304
305 /* Return MAX_KEY if we are in the root of the buffer tree. */
306 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
307 b_blocknr == SB_ROOT_BLOCK(sb))
308 return &MAX_KEY;
309 return &MIN_KEY;
310}
311
312/*
313 * Check whether a key is contained in the tree rooted from a buffer at a path.
314 * This works by looking at the left and right delimiting keys for the buffer
315 * in the last path_element in the path. These delimiting keys are stored
316 * at least one level above that buffer in the tree. If the buffer is the
317 * first or last node in the tree order then one of the delimiting keys may
318 * be absent, and in this case get_lkey and get_rkey return a special key
319 * which is MIN_KEY or MAX_KEY.
320 */
321static inline int key_in_buffer(
322 /* Path which should be checked. */
323 struct treepath *chk_path,
324 /* Key which should be checked. */
325 const struct cpu_key *key,
326 struct super_block *sb
327 )
328{
329
330 RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
331 || chk_path->path_length > MAX_HEIGHT,
332 "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
333 key, chk_path->path_length);
334 RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev,
335 "PAP-5060: device must not be NODEV");
336
337 if (comp_keys(get_lkey(chk_path, sb), key) == 1)
338 /* left delimiting key is bigger, that the key we look for */
339 return 0;
340 /* if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */
341 if (comp_keys(get_rkey(chk_path, sb), key) != 1)
342 /* key must be less than right delimitiing key */
343 return 0;
344 return 1;
345}
346
347int reiserfs_check_path(struct treepath *p)
348{
349 RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
350 "path not properly relsed");
351 return 0;
352}
353
354/*
355 * Drop the reference to each buffer in a path and restore
356 * dirty bits clean when preparing the buffer for the log.
357 * This version should only be called from fix_nodes()
358 */
359void pathrelse_and_restore(struct super_block *sb,
360 struct treepath *search_path)
361{
362 int path_offset = search_path->path_length;
363
364 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
365 "clm-4000: invalid path offset");
366
367 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
368 struct buffer_head *bh;
369 bh = PATH_OFFSET_PBUFFER(search_path, path_offset--);
370 reiserfs_restore_prepared_buffer(sb, bh);
371 brelse(bh);
372 }
373 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
374}
375
376/* Drop the reference to each buffer in a path */
377void pathrelse(struct treepath *search_path)
378{
379 int path_offset = search_path->path_length;
380
381 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
382 "PAP-5090: invalid path offset");
383
384 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
385 brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--));
386
387 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
388}
389
390static int has_valid_deh_location(struct buffer_head *bh, struct item_head *ih)
391{
392 struct reiserfs_de_head *deh;
393 int i;
394
395 deh = B_I_DEH(bh, ih);
396 for (i = 0; i < ih_entry_count(ih); i++) {
397 if (deh_location(&deh[i]) > ih_item_len(ih)) {
398 reiserfs_warning(NULL, "reiserfs-5094",
399 "directory entry location seems wrong %h",
400 &deh[i]);
401 return 0;
402 }
403 }
404
405 return 1;
406}
407
408static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
409{
410 struct block_head *blkh;
411 struct item_head *ih;
412 int used_space;
413 int prev_location;
414 int i;
415 int nr;
416
417 blkh = (struct block_head *)buf;
418 if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
419 reiserfs_warning(NULL, "reiserfs-5080",
420 "this should be caught earlier");
421 return 0;
422 }
423
424 nr = blkh_nr_item(blkh);
425 if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
426 /* item number is too big or too small */
427 reiserfs_warning(NULL, "reiserfs-5081",
428 "nr_item seems wrong: %z", bh);
429 return 0;
430 }
431 ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
432 used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
433
434 /* free space does not match to calculated amount of use space */
435 if (used_space != blocksize - blkh_free_space(blkh)) {
436 reiserfs_warning(NULL, "reiserfs-5082",
437 "free space seems wrong: %z", bh);
438 return 0;
439 }
440 /*
441 * FIXME: it is_leaf will hit performance too much - we may have
442 * return 1 here
443 */
444
445 /* check tables of item heads */
446 ih = (struct item_head *)(buf + BLKH_SIZE);
447 prev_location = blocksize;
448 for (i = 0; i < nr; i++, ih++) {
449 if (le_ih_k_type(ih) == TYPE_ANY) {
450 reiserfs_warning(NULL, "reiserfs-5083",
451 "wrong item type for item %h",
452 ih);
453 return 0;
454 }
455 if (ih_location(ih) >= blocksize
456 || ih_location(ih) < IH_SIZE * nr) {
457 reiserfs_warning(NULL, "reiserfs-5084",
458 "item location seems wrong: %h",
459 ih);
460 return 0;
461 }
462 if (ih_item_len(ih) < 1
463 || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
464 reiserfs_warning(NULL, "reiserfs-5085",
465 "item length seems wrong: %h",
466 ih);
467 return 0;
468 }
469 if (prev_location - ih_location(ih) != ih_item_len(ih)) {
470 reiserfs_warning(NULL, "reiserfs-5086",
471 "item location seems wrong "
472 "(second one): %h", ih);
473 return 0;
474 }
475 if (is_direntry_le_ih(ih)) {
476 if (ih_item_len(ih) < (ih_entry_count(ih) * IH_SIZE)) {
477 reiserfs_warning(NULL, "reiserfs-5093",
478 "item entry count seems wrong %h",
479 ih);
480 return 0;
481 }
482 return has_valid_deh_location(bh, ih);
483 }
484 prev_location = ih_location(ih);
485 }
486
487 /* one may imagine many more checks */
488 return 1;
489}
490
491/* returns 1 if buf looks like an internal node, 0 otherwise */
492static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
493{
494 struct block_head *blkh;
495 int nr;
496 int used_space;
497
498 blkh = (struct block_head *)buf;
499 nr = blkh_level(blkh);
500 if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
501 /* this level is not possible for internal nodes */
502 reiserfs_warning(NULL, "reiserfs-5087",
503 "this should be caught earlier");
504 return 0;
505 }
506
507 nr = blkh_nr_item(blkh);
508 /* for internal which is not root we might check min number of keys */
509 if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
510 reiserfs_warning(NULL, "reiserfs-5088",
511 "number of key seems wrong: %z", bh);
512 return 0;
513 }
514
515 used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
516 if (used_space != blocksize - blkh_free_space(blkh)) {
517 reiserfs_warning(NULL, "reiserfs-5089",
518 "free space seems wrong: %z", bh);
519 return 0;
520 }
521
522 /* one may imagine many more checks */
523 return 1;
524}
525
526/*
527 * make sure that bh contains formatted node of reiserfs tree of
528 * 'level'-th level
529 */
530static int is_tree_node(struct buffer_head *bh, int level)
531{
532 if (B_LEVEL(bh) != level) {
533 reiserfs_warning(NULL, "reiserfs-5090", "node level %d does "
534 "not match to the expected one %d",
535 B_LEVEL(bh), level);
536 return 0;
537 }
538 if (level == DISK_LEAF_NODE_LEVEL)
539 return is_leaf(bh->b_data, bh->b_size, bh);
540
541 return is_internal(bh->b_data, bh->b_size, bh);
542}
543
544#define SEARCH_BY_KEY_READA 16
545
546/*
547 * The function is NOT SCHEDULE-SAFE!
548 * It might unlock the write lock if we needed to wait for a block
549 * to be read. Note that in this case it won't recover the lock to avoid
550 * high contention resulting from too much lock requests, especially
551 * the caller (search_by_key) will perform other schedule-unsafe
552 * operations just after calling this function.
553 *
554 * @return depth of lock to be restored after read completes
555 */
556static int search_by_key_reada(struct super_block *s,
557 struct buffer_head **bh,
558 b_blocknr_t *b, int num)
559{
560 int i, j;
561 int depth = -1;
562
563 for (i = 0; i < num; i++) {
564 bh[i] = sb_getblk(s, b[i]);
565 }
566 /*
567 * We are going to read some blocks on which we
568 * have a reference. It's safe, though we might be
569 * reading blocks concurrently changed if we release
570 * the lock. But it's still fine because we check later
571 * if the tree changed
572 */
573 for (j = 0; j < i; j++) {
574 /*
575 * note, this needs attention if we are getting rid of the BKL
576 * you have to make sure the prepared bit isn't set on this
577 * buffer
578 */
579 if (!buffer_uptodate(bh[j])) {
580 if (depth == -1)
581 depth = reiserfs_write_unlock_nested(s);
582 bh_readahead(bh[j], REQ_RAHEAD);
583 }
584 brelse(bh[j]);
585 }
586 return depth;
587}
588
589/*
590 * This function fills up the path from the root to the leaf as it
591 * descends the tree looking for the key. It uses reiserfs_bread to
592 * try to find buffers in the cache given their block number. If it
593 * does not find them in the cache it reads them from disk. For each
594 * node search_by_key finds using reiserfs_bread it then uses
595 * bin_search to look through that node. bin_search will find the
596 * position of the block_number of the next node if it is looking
597 * through an internal node. If it is looking through a leaf node
598 * bin_search will find the position of the item which has key either
599 * equal to given key, or which is the maximal key less than the given
600 * key. search_by_key returns a path that must be checked for the
601 * correctness of the top of the path but need not be checked for the
602 * correctness of the bottom of the path
603 */
604/*
605 * search_by_key - search for key (and item) in stree
606 * @sb: superblock
607 * @key: pointer to key to search for
608 * @search_path: Allocated and initialized struct treepath; Returned filled
609 * on success.
610 * @stop_level: How far down the tree to search, Use DISK_LEAF_NODE_LEVEL to
611 * stop at leaf level.
612 *
613 * The function is NOT SCHEDULE-SAFE!
614 */
615int search_by_key(struct super_block *sb, const struct cpu_key *key,
616 struct treepath *search_path, int stop_level)
617{
618 b_blocknr_t block_number;
619 int expected_level;
620 struct buffer_head *bh;
621 struct path_element *last_element;
622 int node_level, retval;
623 int fs_gen;
624 struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
625 b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
626 int reada_count = 0;
627
628#ifdef CONFIG_REISERFS_CHECK
629 int repeat_counter = 0;
630#endif
631
632 PROC_INFO_INC(sb, search_by_key);
633
634 /*
635 * As we add each node to a path we increase its count. This means
636 * that we must be careful to release all nodes in a path before we
637 * either discard the path struct or re-use the path struct, as we
638 * do here.
639 */
640
641 pathrelse(search_path);
642
643 /*
644 * With each iteration of this loop we search through the items in the
645 * current node, and calculate the next current node(next path element)
646 * for the next iteration of this loop..
647 */
648 block_number = SB_ROOT_BLOCK(sb);
649 expected_level = -1;
650 while (1) {
651
652#ifdef CONFIG_REISERFS_CHECK
653 if (!(++repeat_counter % 50000))
654 reiserfs_warning(sb, "PAP-5100",
655 "%s: there were %d iterations of "
656 "while loop looking for key %K",
657 current->comm, repeat_counter,
658 key);
659#endif
660
661 /* prep path to have another element added to it. */
662 last_element =
663 PATH_OFFSET_PELEMENT(search_path,
664 ++search_path->path_length);
665 fs_gen = get_generation(sb);
666
667 /*
668 * Read the next tree node, and set the last element
669 * in the path to have a pointer to it.
670 */
671 if ((bh = last_element->pe_buffer =
672 sb_getblk(sb, block_number))) {
673
674 /*
675 * We'll need to drop the lock if we encounter any
676 * buffers that need to be read. If all of them are
677 * already up to date, we don't need to drop the lock.
678 */
679 int depth = -1;
680
681 if (!buffer_uptodate(bh) && reada_count > 1)
682 depth = search_by_key_reada(sb, reada_bh,
683 reada_blocks, reada_count);
684
685 if (!buffer_uptodate(bh) && depth == -1)
686 depth = reiserfs_write_unlock_nested(sb);
687
688 bh_read_nowait(bh, 0);
689 wait_on_buffer(bh);
690
691 if (depth != -1)
692 reiserfs_write_lock_nested(sb, depth);
693 if (!buffer_uptodate(bh))
694 goto io_error;
695 } else {
696io_error:
697 search_path->path_length--;
698 pathrelse(search_path);
699 return IO_ERROR;
700 }
701 reada_count = 0;
702 if (expected_level == -1)
703 expected_level = SB_TREE_HEIGHT(sb);
704 expected_level--;
705
706 /*
707 * It is possible that schedule occurred. We must check
708 * whether the key to search is still in the tree rooted
709 * from the current buffer. If not then repeat search
710 * from the root.
711 */
712 if (fs_changed(fs_gen, sb) &&
713 (!B_IS_IN_TREE(bh) ||
714 B_LEVEL(bh) != expected_level ||
715 !key_in_buffer(search_path, key, sb))) {
716 PROC_INFO_INC(sb, search_by_key_fs_changed);
717 PROC_INFO_INC(sb, search_by_key_restarted);
718 PROC_INFO_INC(sb,
719 sbk_restarted[expected_level - 1]);
720 pathrelse(search_path);
721
722 /*
723 * Get the root block number so that we can
724 * repeat the search starting from the root.
725 */
726 block_number = SB_ROOT_BLOCK(sb);
727 expected_level = -1;
728
729 /* repeat search from the root */
730 continue;
731 }
732
733 /*
734 * only check that the key is in the buffer if key is not
735 * equal to the MAX_KEY. Latter case is only possible in
736 * "finish_unfinished()" processing during mount.
737 */
738 RFALSE(comp_keys(&MAX_KEY, key) &&
739 !key_in_buffer(search_path, key, sb),
740 "PAP-5130: key is not in the buffer");
741#ifdef CONFIG_REISERFS_CHECK
742 if (REISERFS_SB(sb)->cur_tb) {
743 print_cur_tb("5140");
744 reiserfs_panic(sb, "PAP-5140",
745 "schedule occurred in do_balance!");
746 }
747#endif
748
749 /*
750 * make sure, that the node contents look like a node of
751 * certain level
752 */
753 if (!is_tree_node(bh, expected_level)) {
754 reiserfs_error(sb, "vs-5150",
755 "invalid format found in block %ld. "
756 "Fsck?", bh->b_blocknr);
757 pathrelse(search_path);
758 return IO_ERROR;
759 }
760
761 /* ok, we have acquired next formatted node in the tree */
762 node_level = B_LEVEL(bh);
763
764 PROC_INFO_BH_STAT(sb, bh, node_level - 1);
765
766 RFALSE(node_level < stop_level,
767 "vs-5152: tree level (%d) is less than stop level (%d)",
768 node_level, stop_level);
769
770 retval = bin_search(key, item_head(bh, 0),
771 B_NR_ITEMS(bh),
772 (node_level ==
773 DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
774 KEY_SIZE,
775 &last_element->pe_position);
776 if (node_level == stop_level) {
777 return retval;
778 }
779
780 /* we are not in the stop level */
781 /*
782 * item has been found, so we choose the pointer which
783 * is to the right of the found one
784 */
785 if (retval == ITEM_FOUND)
786 last_element->pe_position++;
787
788 /*
789 * if item was not found we choose the position which is to
790 * the left of the found item. This requires no code,
791 * bin_search did it already.
792 */
793
794 /*
795 * So we have chosen a position in the current node which is
796 * an internal node. Now we calculate child block number by
797 * position in the node.
798 */
799 block_number =
800 B_N_CHILD_NUM(bh, last_element->pe_position);
801
802 /*
803 * if we are going to read leaf nodes, try for read
804 * ahead as well
805 */
806 if ((search_path->reada & PATH_READA) &&
807 node_level == DISK_LEAF_NODE_LEVEL + 1) {
808 int pos = last_element->pe_position;
809 int limit = B_NR_ITEMS(bh);
810 struct reiserfs_key *le_key;
811
812 if (search_path->reada & PATH_READA_BACK)
813 limit = 0;
814 while (reada_count < SEARCH_BY_KEY_READA) {
815 if (pos == limit)
816 break;
817 reada_blocks[reada_count++] =
818 B_N_CHILD_NUM(bh, pos);
819 if (search_path->reada & PATH_READA_BACK)
820 pos--;
821 else
822 pos++;
823
824 /*
825 * check to make sure we're in the same object
826 */
827 le_key = internal_key(bh, pos);
828 if (le32_to_cpu(le_key->k_objectid) !=
829 key->on_disk_key.k_objectid) {
830 break;
831 }
832 }
833 }
834 }
835}
836
837/*
838 * Form the path to an item and position in this item which contains
839 * file byte defined by key. If there is no such item
840 * corresponding to the key, we point the path to the item with
841 * maximal key less than key, and *pos_in_item is set to one
842 * past the last entry/byte in the item. If searching for entry in a
843 * directory item, and it is not found, *pos_in_item is set to one
844 * entry more than the entry with maximal key which is less than the
845 * sought key.
846 *
847 * Note that if there is no entry in this same node which is one more,
848 * then we point to an imaginary entry. for direct items, the
849 * position is in units of bytes, for indirect items the position is
850 * in units of blocknr entries, for directory items the position is in
851 * units of directory entries.
852 */
853/* The function is NOT SCHEDULE-SAFE! */
854int search_for_position_by_key(struct super_block *sb,
855 /* Key to search (cpu variable) */
856 const struct cpu_key *p_cpu_key,
857 /* Filled up by this function. */
858 struct treepath *search_path)
859{
860 struct item_head *p_le_ih; /* pointer to on-disk structure */
861 int blk_size;
862 loff_t item_offset, offset;
863 struct reiserfs_dir_entry de;
864 int retval;
865
866 /* If searching for directory entry. */
867 if (is_direntry_cpu_key(p_cpu_key))
868 return search_by_entry_key(sb, p_cpu_key, search_path,
869 &de);
870
871 /* If not searching for directory entry. */
872
873 /* If item is found. */
874 retval = search_item(sb, p_cpu_key, search_path);
875 if (retval == IO_ERROR)
876 return retval;
877 if (retval == ITEM_FOUND) {
878
879 RFALSE(!ih_item_len
880 (item_head
881 (PATH_PLAST_BUFFER(search_path),
882 PATH_LAST_POSITION(search_path))),
883 "PAP-5165: item length equals zero");
884
885 pos_in_item(search_path) = 0;
886 return POSITION_FOUND;
887 }
888
889 RFALSE(!PATH_LAST_POSITION(search_path),
890 "PAP-5170: position equals zero");
891
892 /* Item is not found. Set path to the previous item. */
893 p_le_ih =
894 item_head(PATH_PLAST_BUFFER(search_path),
895 --PATH_LAST_POSITION(search_path));
896 blk_size = sb->s_blocksize;
897
898 if (comp_short_keys(&p_le_ih->ih_key, p_cpu_key))
899 return FILE_NOT_FOUND;
900
901 /* FIXME: quite ugly this far */
902
903 item_offset = le_ih_k_offset(p_le_ih);
904 offset = cpu_key_k_offset(p_cpu_key);
905
906 /* Needed byte is contained in the item pointed to by the path. */
907 if (item_offset <= offset &&
908 item_offset + op_bytes_number(p_le_ih, blk_size) > offset) {
909 pos_in_item(search_path) = offset - item_offset;
910 if (is_indirect_le_ih(p_le_ih)) {
911 pos_in_item(search_path) /= blk_size;
912 }
913 return POSITION_FOUND;
914 }
915
916 /*
917 * Needed byte is not contained in the item pointed to by the
918 * path. Set pos_in_item out of the item.
919 */
920 if (is_indirect_le_ih(p_le_ih))
921 pos_in_item(search_path) =
922 ih_item_len(p_le_ih) / UNFM_P_SIZE;
923 else
924 pos_in_item(search_path) = ih_item_len(p_le_ih);
925
926 return POSITION_NOT_FOUND;
927}
928
929/* Compare given item and item pointed to by the path. */
930int comp_items(const struct item_head *stored_ih, const struct treepath *path)
931{
932 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
933 struct item_head *ih;
934
935 /* Last buffer at the path is not in the tree. */
936 if (!B_IS_IN_TREE(bh))
937 return 1;
938
939 /* Last path position is invalid. */
940 if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh))
941 return 1;
942
943 /* we need only to know, whether it is the same item */
944 ih = tp_item_head(path);
945 return memcmp(stored_ih, ih, IH_SIZE);
946}
947
948/* prepare for delete or cut of direct item */
949static inline int prepare_for_direct_item(struct treepath *path,
950 struct item_head *le_ih,
951 struct inode *inode,
952 loff_t new_file_length, int *cut_size)
953{
954 loff_t round_len;
955
956 if (new_file_length == max_reiserfs_offset(inode)) {
957 /* item has to be deleted */
958 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
959 return M_DELETE;
960 }
961 /* new file gets truncated */
962 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
963 round_len = ROUND_UP(new_file_length);
964 /* this was new_file_length < le_ih ... */
965 if (round_len < le_ih_k_offset(le_ih)) {
966 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
967 return M_DELETE; /* Delete this item. */
968 }
969 /* Calculate first position and size for cutting from item. */
970 pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
971 *cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
972
973 return M_CUT; /* Cut from this item. */
974 }
975
976 /* old file: items may have any length */
977
978 if (new_file_length < le_ih_k_offset(le_ih)) {
979 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
980 return M_DELETE; /* Delete this item. */
981 }
982
983 /* Calculate first position and size for cutting from item. */
984 *cut_size = -(ih_item_len(le_ih) -
985 (pos_in_item(path) =
986 new_file_length + 1 - le_ih_k_offset(le_ih)));
987 return M_CUT; /* Cut from this item. */
988}
989
990static inline int prepare_for_direntry_item(struct treepath *path,
991 struct item_head *le_ih,
992 struct inode *inode,
993 loff_t new_file_length,
994 int *cut_size)
995{
996 if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
997 new_file_length == max_reiserfs_offset(inode)) {
998 RFALSE(ih_entry_count(le_ih) != 2,
999 "PAP-5220: incorrect empty directory item (%h)", le_ih);
1000 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
1001 /* Delete the directory item containing "." and ".." entry. */
1002 return M_DELETE;
1003 }
1004
1005 if (ih_entry_count(le_ih) == 1) {
1006 /*
1007 * Delete the directory item such as there is one record only
1008 * in this item
1009 */
1010 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
1011 return M_DELETE;
1012 }
1013
1014 /* Cut one record from the directory item. */
1015 *cut_size =
1016 -(DEH_SIZE +
1017 entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
1018 return M_CUT;
1019}
1020
1021#define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
1022
1023/*
1024 * If the path points to a directory or direct item, calculate mode
1025 * and the size cut, for balance.
1026 * If the path points to an indirect item, remove some number of its
1027 * unformatted nodes.
1028 * In case of file truncate calculate whether this item must be
1029 * deleted/truncated or last unformatted node of this item will be
1030 * converted to a direct item.
1031 * This function returns a determination of what balance mode the
1032 * calling function should employ.
1033 */
1034static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th,
1035 struct inode *inode,
1036 struct treepath *path,
1037 const struct cpu_key *item_key,
1038 /*
1039 * Number of unformatted nodes
1040 * which were removed from end
1041 * of the file.
1042 */
1043 int *removed,
1044 int *cut_size,
1045 /* MAX_KEY_OFFSET in case of delete. */
1046 unsigned long long new_file_length
1047 )
1048{
1049 struct super_block *sb = inode->i_sb;
1050 struct item_head *p_le_ih = tp_item_head(path);
1051 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
1052
1053 BUG_ON(!th->t_trans_id);
1054
1055 /* Stat_data item. */
1056 if (is_statdata_le_ih(p_le_ih)) {
1057
1058 RFALSE(new_file_length != max_reiserfs_offset(inode),
1059 "PAP-5210: mode must be M_DELETE");
1060
1061 *cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
1062 return M_DELETE;
1063 }
1064
1065 /* Directory item. */
1066 if (is_direntry_le_ih(p_le_ih))
1067 return prepare_for_direntry_item(path, p_le_ih, inode,
1068 new_file_length,
1069 cut_size);
1070
1071 /* Direct item. */
1072 if (is_direct_le_ih(p_le_ih))
1073 return prepare_for_direct_item(path, p_le_ih, inode,
1074 new_file_length, cut_size);
1075
1076 /* Case of an indirect item. */
1077 {
1078 int blk_size = sb->s_blocksize;
1079 struct item_head s_ih;
1080 int need_re_search;
1081 int delete = 0;
1082 int result = M_CUT;
1083 int pos = 0;
1084
1085 if ( new_file_length == max_reiserfs_offset (inode) ) {
1086 /*
1087 * prepare_for_delete_or_cut() is called by
1088 * reiserfs_delete_item()
1089 */
1090 new_file_length = 0;
1091 delete = 1;
1092 }
1093
1094 do {
1095 need_re_search = 0;
1096 *cut_size = 0;
1097 bh = PATH_PLAST_BUFFER(path);
1098 copy_item_head(&s_ih, tp_item_head(path));
1099 pos = I_UNFM_NUM(&s_ih);
1100
1101 while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) {
1102 __le32 *unfm;
1103 __u32 block;
1104
1105 /*
1106 * Each unformatted block deletion may involve
1107 * one additional bitmap block into the transaction,
1108 * thereby the initial journal space reservation
1109 * might not be enough.
1110 */
1111 if (!delete && (*cut_size) != 0 &&
1112 reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD)
1113 break;
1114
1115 unfm = (__le32 *)ih_item_body(bh, &s_ih) + pos - 1;
1116 block = get_block_num(unfm, 0);
1117
1118 if (block != 0) {
1119 reiserfs_prepare_for_journal(sb, bh, 1);
1120 put_block_num(unfm, 0, 0);
1121 journal_mark_dirty(th, bh);
1122 reiserfs_free_block(th, inode, block, 1);
1123 }
1124
1125 reiserfs_cond_resched(sb);
1126
1127 if (item_moved (&s_ih, path)) {
1128 need_re_search = 1;
1129 break;
1130 }
1131
1132 pos --;
1133 (*removed)++;
1134 (*cut_size) -= UNFM_P_SIZE;
1135
1136 if (pos == 0) {
1137 (*cut_size) -= IH_SIZE;
1138 result = M_DELETE;
1139 break;
1140 }
1141 }
1142 /*
1143 * a trick. If the buffer has been logged, this will
1144 * do nothing. If we've broken the loop without logging
1145 * it, it will restore the buffer
1146 */
1147 reiserfs_restore_prepared_buffer(sb, bh);
1148 } while (need_re_search &&
1149 search_for_position_by_key(sb, item_key, path) == POSITION_FOUND);
1150 pos_in_item(path) = pos * UNFM_P_SIZE;
1151
1152 if (*cut_size == 0) {
1153 /*
1154 * Nothing was cut. maybe convert last unformatted node to the
1155 * direct item?
1156 */
1157 result = M_CONVERT;
1158 }
1159 return result;
1160 }
1161}
1162
1163/* Calculate number of bytes which will be deleted or cut during balance */
1164static int calc_deleted_bytes_number(struct tree_balance *tb, char mode)
1165{
1166 int del_size;
1167 struct item_head *p_le_ih = tp_item_head(tb->tb_path);
1168
1169 if (is_statdata_le_ih(p_le_ih))
1170 return 0;
1171
1172 del_size =
1173 (mode ==
1174 M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0];
1175 if (is_direntry_le_ih(p_le_ih)) {
1176 /*
1177 * return EMPTY_DIR_SIZE; We delete emty directories only.
1178 * we can't use EMPTY_DIR_SIZE, as old format dirs have a
1179 * different empty size. ick. FIXME, is this right?
1180 */
1181 return del_size;
1182 }
1183
1184 if (is_indirect_le_ih(p_le_ih))
1185 del_size = (del_size / UNFM_P_SIZE) *
1186 (PATH_PLAST_BUFFER(tb->tb_path)->b_size);
1187 return del_size;
1188}
1189
1190static void init_tb_struct(struct reiserfs_transaction_handle *th,
1191 struct tree_balance *tb,
1192 struct super_block *sb,
1193 struct treepath *path, int size)
1194{
1195
1196 BUG_ON(!th->t_trans_id);
1197
1198 memset(tb, '\0', sizeof(struct tree_balance));
1199 tb->transaction_handle = th;
1200 tb->tb_sb = sb;
1201 tb->tb_path = path;
1202 PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
1203 PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
1204 tb->insert_size[0] = size;
1205}
1206
1207void padd_item(char *item, int total_length, int length)
1208{
1209 int i;
1210
1211 for (i = total_length; i > length;)
1212 item[--i] = 0;
1213}
1214
1215#ifdef REISERQUOTA_DEBUG
1216char key2type(struct reiserfs_key *ih)
1217{
1218 if (is_direntry_le_key(2, ih))
1219 return 'd';
1220 if (is_direct_le_key(2, ih))
1221 return 'D';
1222 if (is_indirect_le_key(2, ih))
1223 return 'i';
1224 if (is_statdata_le_key(2, ih))
1225 return 's';
1226 return 'u';
1227}
1228
1229char head2type(struct item_head *ih)
1230{
1231 if (is_direntry_le_ih(ih))
1232 return 'd';
1233 if (is_direct_le_ih(ih))
1234 return 'D';
1235 if (is_indirect_le_ih(ih))
1236 return 'i';
1237 if (is_statdata_le_ih(ih))
1238 return 's';
1239 return 'u';
1240}
1241#endif
1242
1243/*
1244 * Delete object item.
1245 * th - active transaction handle
1246 * path - path to the deleted item
1247 * item_key - key to search for the deleted item
1248 * indode - used for updating i_blocks and quotas
1249 * un_bh - NULL or unformatted node pointer
1250 */
1251int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1252 struct treepath *path, const struct cpu_key *item_key,
1253 struct inode *inode, struct buffer_head *un_bh)
1254{
1255 struct super_block *sb = inode->i_sb;
1256 struct tree_balance s_del_balance;
1257 struct item_head s_ih;
1258 struct item_head *q_ih;
1259 int quota_cut_bytes;
1260 int ret_value, del_size, removed;
1261 int depth;
1262
1263#ifdef CONFIG_REISERFS_CHECK
1264 char mode;
1265 int iter = 0;
1266#endif
1267
1268 BUG_ON(!th->t_trans_id);
1269
1270 init_tb_struct(th, &s_del_balance, sb, path,
1271 0 /*size is unknown */ );
1272
1273 while (1) {
1274 removed = 0;
1275
1276#ifdef CONFIG_REISERFS_CHECK
1277 iter++;
1278 mode =
1279#endif
1280 prepare_for_delete_or_cut(th, inode, path,
1281 item_key, &removed,
1282 &del_size,
1283 max_reiserfs_offset(inode));
1284
1285 RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
1286
1287 copy_item_head(&s_ih, tp_item_head(path));
1288 s_del_balance.insert_size[0] = del_size;
1289
1290 ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
1291 if (ret_value != REPEAT_SEARCH)
1292 break;
1293
1294 PROC_INFO_INC(sb, delete_item_restarted);
1295
1296 /* file system changed, repeat search */
1297 ret_value =
1298 search_for_position_by_key(sb, item_key, path);
1299 if (ret_value == IO_ERROR)
1300 break;
1301 if (ret_value == FILE_NOT_FOUND) {
1302 reiserfs_warning(sb, "vs-5340",
1303 "no items of the file %K found",
1304 item_key);
1305 break;
1306 }
1307 } /* while (1) */
1308
1309 if (ret_value != CARRY_ON) {
1310 unfix_nodes(&s_del_balance);
1311 return 0;
1312 }
1313
1314 /* reiserfs_delete_item returns item length when success */
1315 ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
1316 q_ih = tp_item_head(path);
1317 quota_cut_bytes = ih_item_len(q_ih);
1318
1319 /*
1320 * hack so the quota code doesn't have to guess if the file has a
1321 * tail. On tail insert, we allocate quota for 1 unformatted node.
1322 * We test the offset because the tail might have been
1323 * split into multiple items, and we only want to decrement for
1324 * the unfm node once
1325 */
1326 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) {
1327 if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) {
1328 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1329 } else {
1330 quota_cut_bytes = 0;
1331 }
1332 }
1333
1334 if (un_bh) {
1335 int off;
1336 char *data;
1337
1338 /*
1339 * We are in direct2indirect conversion, so move tail contents
1340 * to the unformatted node
1341 */
1342 /*
1343 * note, we do the copy before preparing the buffer because we
1344 * don't care about the contents of the unformatted node yet.
1345 * the only thing we really care about is the direct item's
1346 * data is in the unformatted node.
1347 *
1348 * Otherwise, we would have to call
1349 * reiserfs_prepare_for_journal on the unformatted node,
1350 * which might schedule, meaning we'd have to loop all the
1351 * way back up to the start of the while loop.
1352 *
1353 * The unformatted node must be dirtied later on. We can't be
1354 * sure here if the entire tail has been deleted yet.
1355 *
1356 * un_bh is from the page cache (all unformatted nodes are
1357 * from the page cache) and might be a highmem page. So, we
1358 * can't use un_bh->b_data.
1359 * -clm
1360 */
1361
1362 data = kmap_atomic(un_bh->b_page);
1363 off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_SIZE - 1));
1364 memcpy(data + off,
1365 ih_item_body(PATH_PLAST_BUFFER(path), &s_ih),
1366 ret_value);
1367 kunmap_atomic(data);
1368 }
1369
1370 /* Perform balancing after all resources have been collected at once. */
1371 do_balance(&s_del_balance, NULL, NULL, M_DELETE);
1372
1373#ifdef REISERQUOTA_DEBUG
1374 reiserfs_debug(sb, REISERFS_DEBUG_CODE,
1375 "reiserquota delete_item(): freeing %u, id=%u type=%c",
1376 quota_cut_bytes, inode->i_uid, head2type(&s_ih));
1377#endif
1378 depth = reiserfs_write_unlock_nested(inode->i_sb);
1379 dquot_free_space_nodirty(inode, quota_cut_bytes);
1380 reiserfs_write_lock_nested(inode->i_sb, depth);
1381
1382 /* Return deleted body length */
1383 return ret_value;
1384}
1385
1386/*
1387 * Summary Of Mechanisms For Handling Collisions Between Processes:
1388 *
1389 * deletion of the body of the object is performed by iput(), with the
1390 * result that if multiple processes are operating on a file, the
1391 * deletion of the body of the file is deferred until the last process
1392 * that has an open inode performs its iput().
1393 *
1394 * writes and truncates are protected from collisions by use of
1395 * semaphores.
1396 *
1397 * creates, linking, and mknod are protected from collisions with other
1398 * processes by making the reiserfs_add_entry() the last step in the
1399 * creation, and then rolling back all changes if there was a collision.
1400 * - Hans
1401*/
1402
1403/* this deletes item which never gets split */
1404void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1405 struct inode *inode, struct reiserfs_key *key)
1406{
1407 struct super_block *sb = th->t_super;
1408 struct tree_balance tb;
1409 INITIALIZE_PATH(path);
1410 int item_len = 0;
1411 int tb_init = 0;
1412 struct cpu_key cpu_key;
1413 int retval;
1414 int quota_cut_bytes = 0;
1415
1416 BUG_ON(!th->t_trans_id);
1417
1418 le_key2cpu_key(&cpu_key, key);
1419
1420 while (1) {
1421 retval = search_item(th->t_super, &cpu_key, &path);
1422 if (retval == IO_ERROR) {
1423 reiserfs_error(th->t_super, "vs-5350",
1424 "i/o failure occurred trying "
1425 "to delete %K", &cpu_key);
1426 break;
1427 }
1428 if (retval != ITEM_FOUND) {
1429 pathrelse(&path);
1430 /*
1431 * No need for a warning, if there is just no free
1432 * space to insert '..' item into the
1433 * newly-created subdir
1434 */
1435 if (!
1436 ((unsigned long long)
1437 GET_HASH_VALUE(le_key_k_offset
1438 (le_key_version(key), key)) == 0
1439 && (unsigned long long)
1440 GET_GENERATION_NUMBER(le_key_k_offset
1441 (le_key_version(key),
1442 key)) == 1))
1443 reiserfs_warning(th->t_super, "vs-5355",
1444 "%k not found", key);
1445 break;
1446 }
1447 if (!tb_init) {
1448 tb_init = 1;
1449 item_len = ih_item_len(tp_item_head(&path));
1450 init_tb_struct(th, &tb, th->t_super, &path,
1451 -(IH_SIZE + item_len));
1452 }
1453 quota_cut_bytes = ih_item_len(tp_item_head(&path));
1454
1455 retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
1456 if (retval == REPEAT_SEARCH) {
1457 PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
1458 continue;
1459 }
1460
1461 if (retval == CARRY_ON) {
1462 do_balance(&tb, NULL, NULL, M_DELETE);
1463 /*
1464 * Should we count quota for item? (we don't
1465 * count quotas for save-links)
1466 */
1467 if (inode) {
1468 int depth;
1469#ifdef REISERQUOTA_DEBUG
1470 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
1471 "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
1472 quota_cut_bytes, inode->i_uid,
1473 key2type(key));
1474#endif
1475 depth = reiserfs_write_unlock_nested(sb);
1476 dquot_free_space_nodirty(inode,
1477 quota_cut_bytes);
1478 reiserfs_write_lock_nested(sb, depth);
1479 }
1480 break;
1481 }
1482
1483 /* IO_ERROR, NO_DISK_SPACE, etc */
1484 reiserfs_warning(th->t_super, "vs-5360",
1485 "could not delete %K due to fix_nodes failure",
1486 &cpu_key);
1487 unfix_nodes(&tb);
1488 break;
1489 }
1490
1491 reiserfs_check_path(&path);
1492}
1493
1494int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1495 struct inode *inode)
1496{
1497 int err;
1498 inode->i_size = 0;
1499 BUG_ON(!th->t_trans_id);
1500
1501 /* for directory this deletes item containing "." and ".." */
1502 err =
1503 reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
1504 if (err)
1505 return err;
1506
1507#if defined( USE_INODE_GENERATION_COUNTER )
1508 if (!old_format_only(th->t_super)) {
1509 __le32 *inode_generation;
1510
1511 inode_generation =
1512 &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
1513 le32_add_cpu(inode_generation, 1);
1514 }
1515/* USE_INODE_GENERATION_COUNTER */
1516#endif
1517 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1518
1519 return err;
1520}
1521
1522static void unmap_buffers(struct page *page, loff_t pos)
1523{
1524 struct buffer_head *bh;
1525 struct buffer_head *head;
1526 struct buffer_head *next;
1527 unsigned long tail_index;
1528 unsigned long cur_index;
1529
1530 if (page) {
1531 if (page_has_buffers(page)) {
1532 tail_index = pos & (PAGE_SIZE - 1);
1533 cur_index = 0;
1534 head = page_buffers(page);
1535 bh = head;
1536 do {
1537 next = bh->b_this_page;
1538
1539 /*
1540 * we want to unmap the buffers that contain
1541 * the tail, and all the buffers after it
1542 * (since the tail must be at the end of the
1543 * file). We don't want to unmap file data
1544 * before the tail, since it might be dirty
1545 * and waiting to reach disk
1546 */
1547 cur_index += bh->b_size;
1548 if (cur_index > tail_index) {
1549 reiserfs_unmap_buffer(bh);
1550 }
1551 bh = next;
1552 } while (bh != head);
1553 }
1554 }
1555}
1556
1557static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
1558 struct inode *inode,
1559 struct page *page,
1560 struct treepath *path,
1561 const struct cpu_key *item_key,
1562 loff_t new_file_size, char *mode)
1563{
1564 struct super_block *sb = inode->i_sb;
1565 int block_size = sb->s_blocksize;
1566 int cut_bytes;
1567 BUG_ON(!th->t_trans_id);
1568 BUG_ON(new_file_size != inode->i_size);
1569
1570 /*
1571 * the page being sent in could be NULL if there was an i/o error
1572 * reading in the last block. The user will hit problems trying to
1573 * read the file, but for now we just skip the indirect2direct
1574 */
1575 if (atomic_read(&inode->i_count) > 1 ||
1576 !tail_has_to_be_packed(inode) ||
1577 !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) {
1578 /* leave tail in an unformatted node */
1579 *mode = M_SKIP_BALANCING;
1580 cut_bytes =
1581 block_size - (new_file_size & (block_size - 1));
1582 pathrelse(path);
1583 return cut_bytes;
1584 }
1585
1586 /* Perform the conversion to a direct_item. */
1587 return indirect2direct(th, inode, page, path, item_key,
1588 new_file_size, mode);
1589}
1590
1591/*
1592 * we did indirect_to_direct conversion. And we have inserted direct
1593 * item successesfully, but there were no disk space to cut unfm
1594 * pointer being converted. Therefore we have to delete inserted
1595 * direct item(s)
1596 */
1597static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
1598 struct inode *inode, struct treepath *path)
1599{
1600 struct cpu_key tail_key;
1601 int tail_len;
1602 int removed;
1603 BUG_ON(!th->t_trans_id);
1604
1605 make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);
1606 tail_key.key_length = 4;
1607
1608 tail_len =
1609 (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
1610 while (tail_len) {
1611 /* look for the last byte of the tail */
1612 if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
1613 POSITION_NOT_FOUND)
1614 reiserfs_panic(inode->i_sb, "vs-5615",
1615 "found invalid item");
1616 RFALSE(path->pos_in_item !=
1617 ih_item_len(tp_item_head(path)) - 1,
1618 "vs-5616: appended bytes found");
1619 PATH_LAST_POSITION(path)--;
1620
1621 removed =
1622 reiserfs_delete_item(th, path, &tail_key, inode,
1623 NULL /*unbh not needed */ );
1624 RFALSE(removed <= 0
1625 || removed > tail_len,
1626 "vs-5617: there was tail %d bytes, removed item length %d bytes",
1627 tail_len, removed);
1628 tail_len -= removed;
1629 set_cpu_key_k_offset(&tail_key,
1630 cpu_key_k_offset(&tail_key) - removed);
1631 }
1632 reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct "
1633 "conversion has been rolled back due to "
1634 "lack of disk space");
1635 mark_inode_dirty(inode);
1636}
1637
1638/* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
1639int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1640 struct treepath *path,
1641 struct cpu_key *item_key,
1642 struct inode *inode,
1643 struct page *page, loff_t new_file_size)
1644{
1645 struct super_block *sb = inode->i_sb;
1646 /*
1647 * Every function which is going to call do_balance must first
1648 * create a tree_balance structure. Then it must fill up this
1649 * structure by using the init_tb_struct and fix_nodes functions.
1650 * After that we can make tree balancing.
1651 */
1652 struct tree_balance s_cut_balance;
1653 struct item_head *p_le_ih;
1654 int cut_size = 0; /* Amount to be cut. */
1655 int ret_value = CARRY_ON;
1656 int removed = 0; /* Number of the removed unformatted nodes. */
1657 int is_inode_locked = 0;
1658 char mode; /* Mode of the balance. */
1659 int retval2 = -1;
1660 int quota_cut_bytes;
1661 loff_t tail_pos = 0;
1662 int depth;
1663
1664 BUG_ON(!th->t_trans_id);
1665
1666 init_tb_struct(th, &s_cut_balance, inode->i_sb, path,
1667 cut_size);
1668
1669 /*
1670 * Repeat this loop until we either cut the item without needing
1671 * to balance, or we fix_nodes without schedule occurring
1672 */
1673 while (1) {
1674 /*
1675 * Determine the balance mode, position of the first byte to
1676 * be cut, and size to be cut. In case of the indirect item
1677 * free unformatted nodes which are pointed to by the cut
1678 * pointers.
1679 */
1680
1681 mode =
1682 prepare_for_delete_or_cut(th, inode, path,
1683 item_key, &removed,
1684 &cut_size, new_file_size);
1685 if (mode == M_CONVERT) {
1686 /*
1687 * convert last unformatted node to direct item or
1688 * leave tail in the unformatted node
1689 */
1690 RFALSE(ret_value != CARRY_ON,
1691 "PAP-5570: can not convert twice");
1692
1693 ret_value =
1694 maybe_indirect_to_direct(th, inode, page,
1695 path, item_key,
1696 new_file_size, &mode);
1697 if (mode == M_SKIP_BALANCING)
1698 /* tail has been left in the unformatted node */
1699 return ret_value;
1700
1701 is_inode_locked = 1;
1702
1703 /*
1704 * removing of last unformatted node will
1705 * change value we have to return to truncate.
1706 * Save it
1707 */
1708 retval2 = ret_value;
1709
1710 /*
1711 * So, we have performed the first part of the
1712 * conversion:
1713 * inserting the new direct item. Now we are
1714 * removing the last unformatted node pointer.
1715 * Set key to search for it.
1716 */
1717 set_cpu_key_k_type(item_key, TYPE_INDIRECT);
1718 item_key->key_length = 4;
1719 new_file_size -=
1720 (new_file_size & (sb->s_blocksize - 1));
1721 tail_pos = new_file_size;
1722 set_cpu_key_k_offset(item_key, new_file_size + 1);
1723 if (search_for_position_by_key
1724 (sb, item_key,
1725 path) == POSITION_NOT_FOUND) {
1726 print_block(PATH_PLAST_BUFFER(path), 3,
1727 PATH_LAST_POSITION(path) - 1,
1728 PATH_LAST_POSITION(path) + 1);
1729 reiserfs_panic(sb, "PAP-5580", "item to "
1730 "convert does not exist (%K)",
1731 item_key);
1732 }
1733 continue;
1734 }
1735 if (cut_size == 0) {
1736 pathrelse(path);
1737 return 0;
1738 }
1739
1740 s_cut_balance.insert_size[0] = cut_size;
1741
1742 ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL);
1743 if (ret_value != REPEAT_SEARCH)
1744 break;
1745
1746 PROC_INFO_INC(sb, cut_from_item_restarted);
1747
1748 ret_value =
1749 search_for_position_by_key(sb, item_key, path);
1750 if (ret_value == POSITION_FOUND)
1751 continue;
1752
1753 reiserfs_warning(sb, "PAP-5610", "item %K not found",
1754 item_key);
1755 unfix_nodes(&s_cut_balance);
1756 return (ret_value == IO_ERROR) ? -EIO : -ENOENT;
1757 } /* while */
1758
1759 /* check fix_nodes results (IO_ERROR or NO_DISK_SPACE) */
1760 if (ret_value != CARRY_ON) {
1761 if (is_inode_locked) {
1762 /*
1763 * FIXME: this seems to be not needed: we are always
1764 * able to cut item
1765 */
1766 indirect_to_direct_roll_back(th, inode, path);
1767 }
1768 if (ret_value == NO_DISK_SPACE)
1769 reiserfs_warning(sb, "reiserfs-5092",
1770 "NO_DISK_SPACE");
1771 unfix_nodes(&s_cut_balance);
1772 return -EIO;
1773 }
1774
1775 /* go ahead and perform balancing */
1776
1777 RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode");
1778
1779 /* Calculate number of bytes that need to be cut from the item. */
1780 quota_cut_bytes =
1781 (mode ==
1782 M_DELETE) ? ih_item_len(tp_item_head(path)) : -s_cut_balance.
1783 insert_size[0];
1784 if (retval2 == -1)
1785 ret_value = calc_deleted_bytes_number(&s_cut_balance, mode);
1786 else
1787 ret_value = retval2;
1788
1789 /*
1790 * For direct items, we only change the quota when deleting the last
1791 * item.
1792 */
1793 p_le_ih = tp_item_head(s_cut_balance.tb_path);
1794 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) {
1795 if (mode == M_DELETE &&
1796 (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) ==
1797 1) {
1798 /* FIXME: this is to keep 3.5 happy */
1799 REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
1800 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1801 } else {
1802 quota_cut_bytes = 0;
1803 }
1804 }
1805#ifdef CONFIG_REISERFS_CHECK
1806 if (is_inode_locked) {
1807 struct item_head *le_ih =
1808 tp_item_head(s_cut_balance.tb_path);
1809 /*
1810 * we are going to complete indirect2direct conversion. Make
1811 * sure, that we exactly remove last unformatted node pointer
1812 * of the item
1813 */
1814 if (!is_indirect_le_ih(le_ih))
1815 reiserfs_panic(sb, "vs-5652",
1816 "item must be indirect %h", le_ih);
1817
1818 if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
1819 reiserfs_panic(sb, "vs-5653", "completing "
1820 "indirect2direct conversion indirect "
1821 "item %h being deleted must be of "
1822 "4 byte long", le_ih);
1823
1824 if (mode == M_CUT
1825 && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
1826 reiserfs_panic(sb, "vs-5654", "can not complete "
1827 "indirect2direct conversion of %h "
1828 "(CUT, insert_size==%d)",
1829 le_ih, s_cut_balance.insert_size[0]);
1830 }
1831 /*
1832 * it would be useful to make sure, that right neighboring
1833 * item is direct item of this file
1834 */
1835 }
1836#endif
1837
1838 do_balance(&s_cut_balance, NULL, NULL, mode);
1839 if (is_inode_locked) {
1840 /*
1841 * we've done an indirect->direct conversion. when the
1842 * data block was freed, it was removed from the list of
1843 * blocks that must be flushed before the transaction
1844 * commits, make sure to unmap and invalidate it
1845 */
1846 unmap_buffers(page, tail_pos);
1847 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
1848 }
1849#ifdef REISERQUOTA_DEBUG
1850 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1851 "reiserquota cut_from_item(): freeing %u id=%u type=%c",
1852 quota_cut_bytes, inode->i_uid, '?');
1853#endif
1854 depth = reiserfs_write_unlock_nested(sb);
1855 dquot_free_space_nodirty(inode, quota_cut_bytes);
1856 reiserfs_write_lock_nested(sb, depth);
1857 return ret_value;
1858}
1859
1860static void truncate_directory(struct reiserfs_transaction_handle *th,
1861 struct inode *inode)
1862{
1863 BUG_ON(!th->t_trans_id);
1864 if (inode->i_nlink)
1865 reiserfs_error(inode->i_sb, "vs-5655", "link count != 0");
1866
1867 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
1868 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
1869 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1870 reiserfs_update_sd(th, inode);
1871 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
1872 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
1873}
1874
1875/*
1876 * Truncate file to the new size. Note, this must be called with a
1877 * transaction already started
1878 */
1879int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1880 struct inode *inode, /* ->i_size contains new size */
1881 struct page *page, /* up to date for last block */
1882 /*
1883 * when it is called by file_release to convert
1884 * the tail - no timestamps should be updated
1885 */
1886 int update_timestamps
1887 )
1888{
1889 INITIALIZE_PATH(s_search_path); /* Path to the current object item. */
1890 struct item_head *p_le_ih; /* Pointer to an item header. */
1891
1892 /* Key to search for a previous file item. */
1893 struct cpu_key s_item_key;
1894 loff_t file_size, /* Old file size. */
1895 new_file_size; /* New file size. */
1896 int deleted; /* Number of deleted or truncated bytes. */
1897 int retval;
1898 int err = 0;
1899
1900 BUG_ON(!th->t_trans_id);
1901 if (!
1902 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
1903 || S_ISLNK(inode->i_mode)))
1904 return 0;
1905
1906 /* deletion of directory - no need to update timestamps */
1907 if (S_ISDIR(inode->i_mode)) {
1908 truncate_directory(th, inode);
1909 return 0;
1910 }
1911
1912 /* Get new file size. */
1913 new_file_size = inode->i_size;
1914
1915 /* FIXME: note, that key type is unimportant here */
1916 make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode),
1917 TYPE_DIRECT, 3);
1918
1919 retval =
1920 search_for_position_by_key(inode->i_sb, &s_item_key,
1921 &s_search_path);
1922 if (retval == IO_ERROR) {
1923 reiserfs_error(inode->i_sb, "vs-5657",
1924 "i/o failure occurred trying to truncate %K",
1925 &s_item_key);
1926 err = -EIO;
1927 goto out;
1928 }
1929 if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
1930 reiserfs_error(inode->i_sb, "PAP-5660",
1931 "wrong result %d of search for %K", retval,
1932 &s_item_key);
1933
1934 err = -EIO;
1935 goto out;
1936 }
1937
1938 s_search_path.pos_in_item--;
1939
1940 /* Get real file size (total length of all file items) */
1941 p_le_ih = tp_item_head(&s_search_path);
1942 if (is_statdata_le_ih(p_le_ih))
1943 file_size = 0;
1944 else {
1945 loff_t offset = le_ih_k_offset(p_le_ih);
1946 int bytes =
1947 op_bytes_number(p_le_ih, inode->i_sb->s_blocksize);
1948
1949 /*
1950 * this may mismatch with real file size: if last direct item
1951 * had no padding zeros and last unformatted node had no free
1952 * space, this file would have this file size
1953 */
1954 file_size = offset + bytes - 1;
1955 }
1956 /*
1957 * are we doing a full truncate or delete, if so
1958 * kick in the reada code
1959 */
1960 if (new_file_size == 0)
1961 s_search_path.reada = PATH_READA | PATH_READA_BACK;
1962
1963 if (file_size == 0 || file_size < new_file_size) {
1964 goto update_and_out;
1965 }
1966
1967 /* Update key to search for the last file item. */
1968 set_cpu_key_k_offset(&s_item_key, file_size);
1969
1970 do {
1971 /* Cut or delete file item. */
1972 deleted =
1973 reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
1974 inode, page, new_file_size);
1975 if (deleted < 0) {
1976 reiserfs_warning(inode->i_sb, "vs-5665",
1977 "reiserfs_cut_from_item failed");
1978 reiserfs_check_path(&s_search_path);
1979 return 0;
1980 }
1981
1982 RFALSE(deleted > file_size,
1983 "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
1984 deleted, file_size, &s_item_key);
1985
1986 /* Change key to search the last file item. */
1987 file_size -= deleted;
1988
1989 set_cpu_key_k_offset(&s_item_key, file_size);
1990
1991 /*
1992 * While there are bytes to truncate and previous
1993 * file item is presented in the tree.
1994 */
1995
1996 /*
1997 * This loop could take a really long time, and could log
1998 * many more blocks than a transaction can hold. So, we do
1999 * a polite journal end here, and if the transaction needs
2000 * ending, we make sure the file is consistent before ending
2001 * the current trans and starting a new one
2002 */
2003 if (journal_transaction_should_end(th, 0) ||
2004 reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
2005 pathrelse(&s_search_path);
2006
2007 if (update_timestamps) {
2008 inode->i_mtime = current_time(inode);
2009 inode->i_ctime = current_time(inode);
2010 }
2011 reiserfs_update_sd(th, inode);
2012
2013 err = journal_end(th);
2014 if (err)
2015 goto out;
2016 err = journal_begin(th, inode->i_sb,
2017 JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
2018 if (err)
2019 goto out;
2020 reiserfs_update_inode_transaction(inode);
2021 }
2022 } while (file_size > ROUND_UP(new_file_size) &&
2023 search_for_position_by_key(inode->i_sb, &s_item_key,
2024 &s_search_path) == POSITION_FOUND);
2025
2026 RFALSE(file_size > ROUND_UP(new_file_size),
2027 "PAP-5680: truncate did not finish: new_file_size %lld, current %lld, oid %d",
2028 new_file_size, file_size, s_item_key.on_disk_key.k_objectid);
2029
2030update_and_out:
2031 if (update_timestamps) {
2032 /* this is truncate, not file closing */
2033 inode->i_mtime = current_time(inode);
2034 inode->i_ctime = current_time(inode);
2035 }
2036 reiserfs_update_sd(th, inode);
2037
2038out:
2039 pathrelse(&s_search_path);
2040 return err;
2041}
2042
2043#ifdef CONFIG_REISERFS_CHECK
2044/* this makes sure, that we __append__, not overwrite or add holes */
2045static void check_research_for_paste(struct treepath *path,
2046 const struct cpu_key *key)
2047{
2048 struct item_head *found_ih = tp_item_head(path);
2049
2050 if (is_direct_le_ih(found_ih)) {
2051 if (le_ih_k_offset(found_ih) +
2052 op_bytes_number(found_ih,
2053 get_last_bh(path)->b_size) !=
2054 cpu_key_k_offset(key)
2055 || op_bytes_number(found_ih,
2056 get_last_bh(path)->b_size) !=
2057 pos_in_item(path))
2058 reiserfs_panic(NULL, "PAP-5720", "found direct item "
2059 "%h or position (%d) does not match "
2060 "to key %K", found_ih,
2061 pos_in_item(path), key);
2062 }
2063 if (is_indirect_le_ih(found_ih)) {
2064 if (le_ih_k_offset(found_ih) +
2065 op_bytes_number(found_ih,
2066 get_last_bh(path)->b_size) !=
2067 cpu_key_k_offset(key)
2068 || I_UNFM_NUM(found_ih) != pos_in_item(path)
2069 || get_ih_free_space(found_ih) != 0)
2070 reiserfs_panic(NULL, "PAP-5730", "found indirect "
2071 "item (%h) or position (%d) does not "
2072 "match to key (%K)",
2073 found_ih, pos_in_item(path), key);
2074 }
2075}
2076#endif /* config reiserfs check */
2077
2078/*
2079 * Paste bytes to the existing item.
2080 * Returns bytes number pasted into the item.
2081 */
2082int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
2083 /* Path to the pasted item. */
2084 struct treepath *search_path,
2085 /* Key to search for the needed item. */
2086 const struct cpu_key *key,
2087 /* Inode item belongs to */
2088 struct inode *inode,
2089 /* Pointer to the bytes to paste. */
2090 const char *body,
2091 /* Size of pasted bytes. */
2092 int pasted_size)
2093{
2094 struct super_block *sb = inode->i_sb;
2095 struct tree_balance s_paste_balance;
2096 int retval;
2097 int fs_gen;
2098 int depth;
2099
2100 BUG_ON(!th->t_trans_id);
2101
2102 fs_gen = get_generation(inode->i_sb);
2103
2104#ifdef REISERQUOTA_DEBUG
2105 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2106 "reiserquota paste_into_item(): allocating %u id=%u type=%c",
2107 pasted_size, inode->i_uid,
2108 key2type(&key->on_disk_key));
2109#endif
2110
2111 depth = reiserfs_write_unlock_nested(sb);
2112 retval = dquot_alloc_space_nodirty(inode, pasted_size);
2113 reiserfs_write_lock_nested(sb, depth);
2114 if (retval) {
2115 pathrelse(search_path);
2116 return retval;
2117 }
2118 init_tb_struct(th, &s_paste_balance, th->t_super, search_path,
2119 pasted_size);
2120#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2121 s_paste_balance.key = key->on_disk_key;
2122#endif
2123
2124 /* DQUOT_* can schedule, must check before the fix_nodes */
2125 if (fs_changed(fs_gen, inode->i_sb)) {
2126 goto search_again;
2127 }
2128
2129 while ((retval =
2130 fix_nodes(M_PASTE, &s_paste_balance, NULL,
2131 body)) == REPEAT_SEARCH) {
2132search_again:
2133 /* file system changed while we were in the fix_nodes */
2134 PROC_INFO_INC(th->t_super, paste_into_item_restarted);
2135 retval =
2136 search_for_position_by_key(th->t_super, key,
2137 search_path);
2138 if (retval == IO_ERROR) {
2139 retval = -EIO;
2140 goto error_out;
2141 }
2142 if (retval == POSITION_FOUND) {
2143 reiserfs_warning(inode->i_sb, "PAP-5710",
2144 "entry or pasted byte (%K) exists",
2145 key);
2146 retval = -EEXIST;
2147 goto error_out;
2148 }
2149#ifdef CONFIG_REISERFS_CHECK
2150 check_research_for_paste(search_path, key);
2151#endif
2152 }
2153
2154 /*
2155 * Perform balancing after all resources are collected by fix_nodes,
2156 * and accessing them will not risk triggering schedule.
2157 */
2158 if (retval == CARRY_ON) {
2159 do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE);
2160 return 0;
2161 }
2162 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2163error_out:
2164 /* this also releases the path */
2165 unfix_nodes(&s_paste_balance);
2166#ifdef REISERQUOTA_DEBUG
2167 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2168 "reiserquota paste_into_item(): freeing %u id=%u type=%c",
2169 pasted_size, inode->i_uid,
2170 key2type(&key->on_disk_key));
2171#endif
2172 depth = reiserfs_write_unlock_nested(sb);
2173 dquot_free_space_nodirty(inode, pasted_size);
2174 reiserfs_write_lock_nested(sb, depth);
2175 return retval;
2176}
2177
2178/*
2179 * Insert new item into the buffer at the path.
2180 * th - active transaction handle
2181 * path - path to the inserted item
2182 * ih - pointer to the item header to insert
2183 * body - pointer to the bytes to insert
2184 */
2185int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2186 struct treepath *path, const struct cpu_key *key,
2187 struct item_head *ih, struct inode *inode,
2188 const char *body)
2189{
2190 struct tree_balance s_ins_balance;
2191 int retval;
2192 int fs_gen = 0;
2193 int quota_bytes = 0;
2194
2195 BUG_ON(!th->t_trans_id);
2196
2197 if (inode) { /* Do we count quotas for item? */
2198 int depth;
2199 fs_gen = get_generation(inode->i_sb);
2200 quota_bytes = ih_item_len(ih);
2201
2202 /*
2203 * hack so the quota code doesn't have to guess
2204 * if the file has a tail, links are always tails,
2205 * so there's no guessing needed
2206 */
2207 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih))
2208 quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
2209#ifdef REISERQUOTA_DEBUG
2210 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2211 "reiserquota insert_item(): allocating %u id=%u type=%c",
2212 quota_bytes, inode->i_uid, head2type(ih));
2213#endif
2214 /*
2215 * We can't dirty inode here. It would be immediately
2216 * written but appropriate stat item isn't inserted yet...
2217 */
2218 depth = reiserfs_write_unlock_nested(inode->i_sb);
2219 retval = dquot_alloc_space_nodirty(inode, quota_bytes);
2220 reiserfs_write_lock_nested(inode->i_sb, depth);
2221 if (retval) {
2222 pathrelse(path);
2223 return retval;
2224 }
2225 }
2226 init_tb_struct(th, &s_ins_balance, th->t_super, path,
2227 IH_SIZE + ih_item_len(ih));
2228#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2229 s_ins_balance.key = key->on_disk_key;
2230#endif
2231 /*
2232 * DQUOT_* can schedule, must check to be sure calling
2233 * fix_nodes is safe
2234 */
2235 if (inode && fs_changed(fs_gen, inode->i_sb)) {
2236 goto search_again;
2237 }
2238
2239 while ((retval =
2240 fix_nodes(M_INSERT, &s_ins_balance, ih,
2241 body)) == REPEAT_SEARCH) {
2242search_again:
2243 /* file system changed while we were in the fix_nodes */
2244 PROC_INFO_INC(th->t_super, insert_item_restarted);
2245 retval = search_item(th->t_super, key, path);
2246 if (retval == IO_ERROR) {
2247 retval = -EIO;
2248 goto error_out;
2249 }
2250 if (retval == ITEM_FOUND) {
2251 reiserfs_warning(th->t_super, "PAP-5760",
2252 "key %K already exists in the tree",
2253 key);
2254 retval = -EEXIST;
2255 goto error_out;
2256 }
2257 }
2258
2259 /* make balancing after all resources will be collected at a time */
2260 if (retval == CARRY_ON) {
2261 do_balance(&s_ins_balance, ih, body, M_INSERT);
2262 return 0;
2263 }
2264
2265 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2266error_out:
2267 /* also releases the path */
2268 unfix_nodes(&s_ins_balance);
2269#ifdef REISERQUOTA_DEBUG
2270 if (inode)
2271 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
2272 "reiserquota insert_item(): freeing %u id=%u type=%c",
2273 quota_bytes, inode->i_uid, head2type(ih));
2274#endif
2275 if (inode) {
2276 int depth = reiserfs_write_unlock_nested(inode->i_sb);
2277 dquot_free_space_nodirty(inode, quota_bytes);
2278 reiserfs_write_lock_nested(inode->i_sb, depth);
2279 }
2280 return retval;
2281}
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5/*
6 * Written by Anatoly P. Pinchuk pap@namesys.botik.ru
7 * Programm System Institute
8 * Pereslavl-Zalessky Russia
9 */
10
11#include <linux/time.h>
12#include <linux/string.h>
13#include <linux/pagemap.h>
14#include "reiserfs.h"
15#include <linux/buffer_head.h>
16#include <linux/quotaops.h>
17
18/* Does the buffer contain a disk block which is in the tree. */
19inline int B_IS_IN_TREE(const struct buffer_head *bh)
20{
21
22 RFALSE(B_LEVEL(bh) > MAX_HEIGHT,
23 "PAP-1010: block (%b) has too big level (%z)", bh, bh);
24
25 return (B_LEVEL(bh) != FREE_LEVEL);
26}
27
28/* to get item head in le form */
29inline void copy_item_head(struct item_head *to,
30 const struct item_head *from)
31{
32 memcpy(to, from, IH_SIZE);
33}
34
35/*
36 * k1 is pointer to on-disk structure which is stored in little-endian
37 * form. k2 is pointer to cpu variable. For key of items of the same
38 * object this returns 0.
39 * Returns: -1 if key1 < key2
40 * 0 if key1 == key2
41 * 1 if key1 > key2
42 */
43inline int comp_short_keys(const struct reiserfs_key *le_key,
44 const struct cpu_key *cpu_key)
45{
46 __u32 n;
47 n = le32_to_cpu(le_key->k_dir_id);
48 if (n < cpu_key->on_disk_key.k_dir_id)
49 return -1;
50 if (n > cpu_key->on_disk_key.k_dir_id)
51 return 1;
52 n = le32_to_cpu(le_key->k_objectid);
53 if (n < cpu_key->on_disk_key.k_objectid)
54 return -1;
55 if (n > cpu_key->on_disk_key.k_objectid)
56 return 1;
57 return 0;
58}
59
60/*
61 * k1 is pointer to on-disk structure which is stored in little-endian
62 * form. k2 is pointer to cpu variable.
63 * Compare keys using all 4 key fields.
64 * Returns: -1 if key1 < key2 0
65 * if key1 = key2 1 if key1 > key2
66 */
67static inline int comp_keys(const struct reiserfs_key *le_key,
68 const struct cpu_key *cpu_key)
69{
70 int retval;
71
72 retval = comp_short_keys(le_key, cpu_key);
73 if (retval)
74 return retval;
75 if (le_key_k_offset(le_key_version(le_key), le_key) <
76 cpu_key_k_offset(cpu_key))
77 return -1;
78 if (le_key_k_offset(le_key_version(le_key), le_key) >
79 cpu_key_k_offset(cpu_key))
80 return 1;
81
82 if (cpu_key->key_length == 3)
83 return 0;
84
85 /* this part is needed only when tail conversion is in progress */
86 if (le_key_k_type(le_key_version(le_key), le_key) <
87 cpu_key_k_type(cpu_key))
88 return -1;
89
90 if (le_key_k_type(le_key_version(le_key), le_key) >
91 cpu_key_k_type(cpu_key))
92 return 1;
93
94 return 0;
95}
96
97inline int comp_short_le_keys(const struct reiserfs_key *key1,
98 const struct reiserfs_key *key2)
99{
100 __u32 *k1_u32, *k2_u32;
101 int key_length = REISERFS_SHORT_KEY_LEN;
102
103 k1_u32 = (__u32 *) key1;
104 k2_u32 = (__u32 *) key2;
105 for (; key_length--; ++k1_u32, ++k2_u32) {
106 if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32))
107 return -1;
108 if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32))
109 return 1;
110 }
111 return 0;
112}
113
114inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
115{
116 int version;
117 to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
118 to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
119
120 /* find out version of the key */
121 version = le_key_version(from);
122 to->version = version;
123 to->on_disk_key.k_offset = le_key_k_offset(version, from);
124 to->on_disk_key.k_type = le_key_k_type(version, from);
125}
126
127/*
128 * this does not say which one is bigger, it only returns 1 if keys
129 * are not equal, 0 otherwise
130 */
131inline int comp_le_keys(const struct reiserfs_key *k1,
132 const struct reiserfs_key *k2)
133{
134 return memcmp(k1, k2, sizeof(struct reiserfs_key));
135}
136
137/**************************************************************************
138 * Binary search toolkit function *
139 * Search for an item in the array by the item key *
140 * Returns: 1 if found, 0 if not found; *
141 * *pos = number of the searched element if found, else the *
142 * number of the first element that is larger than key. *
143 **************************************************************************/
144/*
145 * For those not familiar with binary search: lbound is the leftmost item
146 * that it could be, rbound the rightmost item that it could be. We examine
147 * the item halfway between lbound and rbound, and that tells us either
148 * that we can increase lbound, or decrease rbound, or that we have found it,
149 * or if lbound <= rbound that there are no possible items, and we have not
150 * found it. With each examination we cut the number of possible items it
151 * could be by one more than half rounded down, or we find it.
152 */
153static inline int bin_search(const void *key, /* Key to search for. */
154 const void *base, /* First item in the array. */
155 int num, /* Number of items in the array. */
156 /*
157 * Item size in the array. searched. Lest the
158 * reader be confused, note that this is crafted
159 * as a general function, and when it is applied
160 * specifically to the array of item headers in a
161 * node, width is actually the item header size
162 * not the item size.
163 */
164 int width,
165 int *pos /* Number of the searched for element. */
166 )
167{
168 int rbound, lbound, j;
169
170 for (j = ((rbound = num - 1) + (lbound = 0)) / 2;
171 lbound <= rbound; j = (rbound + lbound) / 2)
172 switch (comp_keys
173 ((struct reiserfs_key *)((char *)base + j * width),
174 (struct cpu_key *)key)) {
175 case -1:
176 lbound = j + 1;
177 continue;
178 case 1:
179 rbound = j - 1;
180 continue;
181 case 0:
182 *pos = j;
183 return ITEM_FOUND; /* Key found in the array. */
184 }
185
186 /*
187 * bin_search did not find given key, it returns position of key,
188 * that is minimal and greater than the given one.
189 */
190 *pos = lbound;
191 return ITEM_NOT_FOUND;
192}
193
194
195/* Minimal possible key. It is never in the tree. */
196const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
197
198/* Maximal possible key. It is never in the tree. */
199static const struct reiserfs_key MAX_KEY = {
200 cpu_to_le32(0xffffffff),
201 cpu_to_le32(0xffffffff),
202 {{cpu_to_le32(0xffffffff),
203 cpu_to_le32(0xffffffff)},}
204};
205
206/*
207 * Get delimiting key of the buffer by looking for it in the buffers in the
208 * path, starting from the bottom of the path, and going upwards. We must
209 * check the path's validity at each step. If the key is not in the path,
210 * there is no delimiting key in the tree (buffer is first or last buffer
211 * in tree), and in this case we return a special key, either MIN_KEY or
212 * MAX_KEY.
213 */
214static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path,
215 const struct super_block *sb)
216{
217 int position, path_offset = chk_path->path_length;
218 struct buffer_head *parent;
219
220 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
221 "PAP-5010: invalid offset in the path");
222
223 /* While not higher in path than first element. */
224 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
225
226 RFALSE(!buffer_uptodate
227 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
228 "PAP-5020: parent is not uptodate");
229
230 /* Parent at the path is not in the tree now. */
231 if (!B_IS_IN_TREE
232 (parent =
233 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
234 return &MAX_KEY;
235 /* Check whether position in the parent is correct. */
236 if ((position =
237 PATH_OFFSET_POSITION(chk_path,
238 path_offset)) >
239 B_NR_ITEMS(parent))
240 return &MAX_KEY;
241 /* Check whether parent at the path really points to the child. */
242 if (B_N_CHILD_NUM(parent, position) !=
243 PATH_OFFSET_PBUFFER(chk_path,
244 path_offset + 1)->b_blocknr)
245 return &MAX_KEY;
246 /*
247 * Return delimiting key if position in the parent
248 * is not equal to zero.
249 */
250 if (position)
251 return internal_key(parent, position - 1);
252 }
253 /* Return MIN_KEY if we are in the root of the buffer tree. */
254 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
255 b_blocknr == SB_ROOT_BLOCK(sb))
256 return &MIN_KEY;
257 return &MAX_KEY;
258}
259
260/* Get delimiting key of the buffer at the path and its right neighbor. */
261inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
262 const struct super_block *sb)
263{
264 int position, path_offset = chk_path->path_length;
265 struct buffer_head *parent;
266
267 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
268 "PAP-5030: invalid offset in the path");
269
270 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
271
272 RFALSE(!buffer_uptodate
273 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
274 "PAP-5040: parent is not uptodate");
275
276 /* Parent at the path is not in the tree now. */
277 if (!B_IS_IN_TREE
278 (parent =
279 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
280 return &MIN_KEY;
281 /* Check whether position in the parent is correct. */
282 if ((position =
283 PATH_OFFSET_POSITION(chk_path,
284 path_offset)) >
285 B_NR_ITEMS(parent))
286 return &MIN_KEY;
287 /*
288 * Check whether parent at the path really points
289 * to the child.
290 */
291 if (B_N_CHILD_NUM(parent, position) !=
292 PATH_OFFSET_PBUFFER(chk_path,
293 path_offset + 1)->b_blocknr)
294 return &MIN_KEY;
295
296 /*
297 * Return delimiting key if position in the parent
298 * is not the last one.
299 */
300 if (position != B_NR_ITEMS(parent))
301 return internal_key(parent, position);
302 }
303
304 /* Return MAX_KEY if we are in the root of the buffer tree. */
305 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
306 b_blocknr == SB_ROOT_BLOCK(sb))
307 return &MAX_KEY;
308 return &MIN_KEY;
309}
310
311/*
312 * Check whether a key is contained in the tree rooted from a buffer at a path.
313 * This works by looking at the left and right delimiting keys for the buffer
314 * in the last path_element in the path. These delimiting keys are stored
315 * at least one level above that buffer in the tree. If the buffer is the
316 * first or last node in the tree order then one of the delimiting keys may
317 * be absent, and in this case get_lkey and get_rkey return a special key
318 * which is MIN_KEY or MAX_KEY.
319 */
320static inline int key_in_buffer(
321 /* Path which should be checked. */
322 struct treepath *chk_path,
323 /* Key which should be checked. */
324 const struct cpu_key *key,
325 struct super_block *sb
326 )
327{
328
329 RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
330 || chk_path->path_length > MAX_HEIGHT,
331 "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
332 key, chk_path->path_length);
333 RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev,
334 "PAP-5060: device must not be NODEV");
335
336 if (comp_keys(get_lkey(chk_path, sb), key) == 1)
337 /* left delimiting key is bigger, that the key we look for */
338 return 0;
339 /* if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */
340 if (comp_keys(get_rkey(chk_path, sb), key) != 1)
341 /* key must be less than right delimitiing key */
342 return 0;
343 return 1;
344}
345
346int reiserfs_check_path(struct treepath *p)
347{
348 RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
349 "path not properly relsed");
350 return 0;
351}
352
353/*
354 * Drop the reference to each buffer in a path and restore
355 * dirty bits clean when preparing the buffer for the log.
356 * This version should only be called from fix_nodes()
357 */
358void pathrelse_and_restore(struct super_block *sb,
359 struct treepath *search_path)
360{
361 int path_offset = search_path->path_length;
362
363 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
364 "clm-4000: invalid path offset");
365
366 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
367 struct buffer_head *bh;
368 bh = PATH_OFFSET_PBUFFER(search_path, path_offset--);
369 reiserfs_restore_prepared_buffer(sb, bh);
370 brelse(bh);
371 }
372 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
373}
374
375/* Drop the reference to each buffer in a path */
376void pathrelse(struct treepath *search_path)
377{
378 int path_offset = search_path->path_length;
379
380 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
381 "PAP-5090: invalid path offset");
382
383 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
384 brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--));
385
386 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
387}
388
389static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
390{
391 struct block_head *blkh;
392 struct item_head *ih;
393 int used_space;
394 int prev_location;
395 int i;
396 int nr;
397
398 blkh = (struct block_head *)buf;
399 if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
400 reiserfs_warning(NULL, "reiserfs-5080",
401 "this should be caught earlier");
402 return 0;
403 }
404
405 nr = blkh_nr_item(blkh);
406 if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
407 /* item number is too big or too small */
408 reiserfs_warning(NULL, "reiserfs-5081",
409 "nr_item seems wrong: %z", bh);
410 return 0;
411 }
412 ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
413 used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
414
415 /* free space does not match to calculated amount of use space */
416 if (used_space != blocksize - blkh_free_space(blkh)) {
417 reiserfs_warning(NULL, "reiserfs-5082",
418 "free space seems wrong: %z", bh);
419 return 0;
420 }
421 /*
422 * FIXME: it is_leaf will hit performance too much - we may have
423 * return 1 here
424 */
425
426 /* check tables of item heads */
427 ih = (struct item_head *)(buf + BLKH_SIZE);
428 prev_location = blocksize;
429 for (i = 0; i < nr; i++, ih++) {
430 if (le_ih_k_type(ih) == TYPE_ANY) {
431 reiserfs_warning(NULL, "reiserfs-5083",
432 "wrong item type for item %h",
433 ih);
434 return 0;
435 }
436 if (ih_location(ih) >= blocksize
437 || ih_location(ih) < IH_SIZE * nr) {
438 reiserfs_warning(NULL, "reiserfs-5084",
439 "item location seems wrong: %h",
440 ih);
441 return 0;
442 }
443 if (ih_item_len(ih) < 1
444 || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
445 reiserfs_warning(NULL, "reiserfs-5085",
446 "item length seems wrong: %h",
447 ih);
448 return 0;
449 }
450 if (prev_location - ih_location(ih) != ih_item_len(ih)) {
451 reiserfs_warning(NULL, "reiserfs-5086",
452 "item location seems wrong "
453 "(second one): %h", ih);
454 return 0;
455 }
456 prev_location = ih_location(ih);
457 }
458
459 /* one may imagine many more checks */
460 return 1;
461}
462
463/* returns 1 if buf looks like an internal node, 0 otherwise */
464static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
465{
466 struct block_head *blkh;
467 int nr;
468 int used_space;
469
470 blkh = (struct block_head *)buf;
471 nr = blkh_level(blkh);
472 if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
473 /* this level is not possible for internal nodes */
474 reiserfs_warning(NULL, "reiserfs-5087",
475 "this should be caught earlier");
476 return 0;
477 }
478
479 nr = blkh_nr_item(blkh);
480 /* for internal which is not root we might check min number of keys */
481 if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
482 reiserfs_warning(NULL, "reiserfs-5088",
483 "number of key seems wrong: %z", bh);
484 return 0;
485 }
486
487 used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
488 if (used_space != blocksize - blkh_free_space(blkh)) {
489 reiserfs_warning(NULL, "reiserfs-5089",
490 "free space seems wrong: %z", bh);
491 return 0;
492 }
493
494 /* one may imagine many more checks */
495 return 1;
496}
497
498/*
499 * make sure that bh contains formatted node of reiserfs tree of
500 * 'level'-th level
501 */
502static int is_tree_node(struct buffer_head *bh, int level)
503{
504 if (B_LEVEL(bh) != level) {
505 reiserfs_warning(NULL, "reiserfs-5090", "node level %d does "
506 "not match to the expected one %d",
507 B_LEVEL(bh), level);
508 return 0;
509 }
510 if (level == DISK_LEAF_NODE_LEVEL)
511 return is_leaf(bh->b_data, bh->b_size, bh);
512
513 return is_internal(bh->b_data, bh->b_size, bh);
514}
515
516#define SEARCH_BY_KEY_READA 16
517
518/*
519 * The function is NOT SCHEDULE-SAFE!
520 * It might unlock the write lock if we needed to wait for a block
521 * to be read. Note that in this case it won't recover the lock to avoid
522 * high contention resulting from too much lock requests, especially
523 * the caller (search_by_key) will perform other schedule-unsafe
524 * operations just after calling this function.
525 *
526 * @return depth of lock to be restored after read completes
527 */
528static int search_by_key_reada(struct super_block *s,
529 struct buffer_head **bh,
530 b_blocknr_t *b, int num)
531{
532 int i, j;
533 int depth = -1;
534
535 for (i = 0; i < num; i++) {
536 bh[i] = sb_getblk(s, b[i]);
537 }
538 /*
539 * We are going to read some blocks on which we
540 * have a reference. It's safe, though we might be
541 * reading blocks concurrently changed if we release
542 * the lock. But it's still fine because we check later
543 * if the tree changed
544 */
545 for (j = 0; j < i; j++) {
546 /*
547 * note, this needs attention if we are getting rid of the BKL
548 * you have to make sure the prepared bit isn't set on this
549 * buffer
550 */
551 if (!buffer_uptodate(bh[j])) {
552 if (depth == -1)
553 depth = reiserfs_write_unlock_nested(s);
554 ll_rw_block(READA, 1, bh + j);
555 }
556 brelse(bh[j]);
557 }
558 return depth;
559}
560
561/*
562 * This function fills up the path from the root to the leaf as it
563 * descends the tree looking for the key. It uses reiserfs_bread to
564 * try to find buffers in the cache given their block number. If it
565 * does not find them in the cache it reads them from disk. For each
566 * node search_by_key finds using reiserfs_bread it then uses
567 * bin_search to look through that node. bin_search will find the
568 * position of the block_number of the next node if it is looking
569 * through an internal node. If it is looking through a leaf node
570 * bin_search will find the position of the item which has key either
571 * equal to given key, or which is the maximal key less than the given
572 * key. search_by_key returns a path that must be checked for the
573 * correctness of the top of the path but need not be checked for the
574 * correctness of the bottom of the path
575 */
576/*
577 * search_by_key - search for key (and item) in stree
578 * @sb: superblock
579 * @key: pointer to key to search for
580 * @search_path: Allocated and initialized struct treepath; Returned filled
581 * on success.
582 * @stop_level: How far down the tree to search, Use DISK_LEAF_NODE_LEVEL to
583 * stop at leaf level.
584 *
585 * The function is NOT SCHEDULE-SAFE!
586 */
587int search_by_key(struct super_block *sb, const struct cpu_key *key,
588 struct treepath *search_path, int stop_level)
589{
590 b_blocknr_t block_number;
591 int expected_level;
592 struct buffer_head *bh;
593 struct path_element *last_element;
594 int node_level, retval;
595 int right_neighbor_of_leaf_node;
596 int fs_gen;
597 struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
598 b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
599 int reada_count = 0;
600
601#ifdef CONFIG_REISERFS_CHECK
602 int repeat_counter = 0;
603#endif
604
605 PROC_INFO_INC(sb, search_by_key);
606
607 /*
608 * As we add each node to a path we increase its count. This means
609 * that we must be careful to release all nodes in a path before we
610 * either discard the path struct or re-use the path struct, as we
611 * do here.
612 */
613
614 pathrelse(search_path);
615
616 right_neighbor_of_leaf_node = 0;
617
618 /*
619 * With each iteration of this loop we search through the items in the
620 * current node, and calculate the next current node(next path element)
621 * for the next iteration of this loop..
622 */
623 block_number = SB_ROOT_BLOCK(sb);
624 expected_level = -1;
625 while (1) {
626
627#ifdef CONFIG_REISERFS_CHECK
628 if (!(++repeat_counter % 50000))
629 reiserfs_warning(sb, "PAP-5100",
630 "%s: there were %d iterations of "
631 "while loop looking for key %K",
632 current->comm, repeat_counter,
633 key);
634#endif
635
636 /* prep path to have another element added to it. */
637 last_element =
638 PATH_OFFSET_PELEMENT(search_path,
639 ++search_path->path_length);
640 fs_gen = get_generation(sb);
641
642 /*
643 * Read the next tree node, and set the last element
644 * in the path to have a pointer to it.
645 */
646 if ((bh = last_element->pe_buffer =
647 sb_getblk(sb, block_number))) {
648
649 /*
650 * We'll need to drop the lock if we encounter any
651 * buffers that need to be read. If all of them are
652 * already up to date, we don't need to drop the lock.
653 */
654 int depth = -1;
655
656 if (!buffer_uptodate(bh) && reada_count > 1)
657 depth = search_by_key_reada(sb, reada_bh,
658 reada_blocks, reada_count);
659
660 if (!buffer_uptodate(bh) && depth == -1)
661 depth = reiserfs_write_unlock_nested(sb);
662
663 ll_rw_block(READ, 1, &bh);
664 wait_on_buffer(bh);
665
666 if (depth != -1)
667 reiserfs_write_lock_nested(sb, depth);
668 if (!buffer_uptodate(bh))
669 goto io_error;
670 } else {
671io_error:
672 search_path->path_length--;
673 pathrelse(search_path);
674 return IO_ERROR;
675 }
676 reada_count = 0;
677 if (expected_level == -1)
678 expected_level = SB_TREE_HEIGHT(sb);
679 expected_level--;
680
681 /*
682 * It is possible that schedule occurred. We must check
683 * whether the key to search is still in the tree rooted
684 * from the current buffer. If not then repeat search
685 * from the root.
686 */
687 if (fs_changed(fs_gen, sb) &&
688 (!B_IS_IN_TREE(bh) ||
689 B_LEVEL(bh) != expected_level ||
690 !key_in_buffer(search_path, key, sb))) {
691 PROC_INFO_INC(sb, search_by_key_fs_changed);
692 PROC_INFO_INC(sb, search_by_key_restarted);
693 PROC_INFO_INC(sb,
694 sbk_restarted[expected_level - 1]);
695 pathrelse(search_path);
696
697 /*
698 * Get the root block number so that we can
699 * repeat the search starting from the root.
700 */
701 block_number = SB_ROOT_BLOCK(sb);
702 expected_level = -1;
703 right_neighbor_of_leaf_node = 0;
704
705 /* repeat search from the root */
706 continue;
707 }
708
709 /*
710 * only check that the key is in the buffer if key is not
711 * equal to the MAX_KEY. Latter case is only possible in
712 * "finish_unfinished()" processing during mount.
713 */
714 RFALSE(comp_keys(&MAX_KEY, key) &&
715 !key_in_buffer(search_path, key, sb),
716 "PAP-5130: key is not in the buffer");
717#ifdef CONFIG_REISERFS_CHECK
718 if (REISERFS_SB(sb)->cur_tb) {
719 print_cur_tb("5140");
720 reiserfs_panic(sb, "PAP-5140",
721 "schedule occurred in do_balance!");
722 }
723#endif
724
725 /*
726 * make sure, that the node contents look like a node of
727 * certain level
728 */
729 if (!is_tree_node(bh, expected_level)) {
730 reiserfs_error(sb, "vs-5150",
731 "invalid format found in block %ld. "
732 "Fsck?", bh->b_blocknr);
733 pathrelse(search_path);
734 return IO_ERROR;
735 }
736
737 /* ok, we have acquired next formatted node in the tree */
738 node_level = B_LEVEL(bh);
739
740 PROC_INFO_BH_STAT(sb, bh, node_level - 1);
741
742 RFALSE(node_level < stop_level,
743 "vs-5152: tree level (%d) is less than stop level (%d)",
744 node_level, stop_level);
745
746 retval = bin_search(key, item_head(bh, 0),
747 B_NR_ITEMS(bh),
748 (node_level ==
749 DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
750 KEY_SIZE,
751 &last_element->pe_position);
752 if (node_level == stop_level) {
753 return retval;
754 }
755
756 /* we are not in the stop level */
757 /*
758 * item has been found, so we choose the pointer which
759 * is to the right of the found one
760 */
761 if (retval == ITEM_FOUND)
762 last_element->pe_position++;
763
764 /*
765 * if item was not found we choose the position which is to
766 * the left of the found item. This requires no code,
767 * bin_search did it already.
768 */
769
770 /*
771 * So we have chosen a position in the current node which is
772 * an internal node. Now we calculate child block number by
773 * position in the node.
774 */
775 block_number =
776 B_N_CHILD_NUM(bh, last_element->pe_position);
777
778 /*
779 * if we are going to read leaf nodes, try for read
780 * ahead as well
781 */
782 if ((search_path->reada & PATH_READA) &&
783 node_level == DISK_LEAF_NODE_LEVEL + 1) {
784 int pos = last_element->pe_position;
785 int limit = B_NR_ITEMS(bh);
786 struct reiserfs_key *le_key;
787
788 if (search_path->reada & PATH_READA_BACK)
789 limit = 0;
790 while (reada_count < SEARCH_BY_KEY_READA) {
791 if (pos == limit)
792 break;
793 reada_blocks[reada_count++] =
794 B_N_CHILD_NUM(bh, pos);
795 if (search_path->reada & PATH_READA_BACK)
796 pos--;
797 else
798 pos++;
799
800 /*
801 * check to make sure we're in the same object
802 */
803 le_key = internal_key(bh, pos);
804 if (le32_to_cpu(le_key->k_objectid) !=
805 key->on_disk_key.k_objectid) {
806 break;
807 }
808 }
809 }
810 }
811}
812
813/*
814 * Form the path to an item and position in this item which contains
815 * file byte defined by key. If there is no such item
816 * corresponding to the key, we point the path to the item with
817 * maximal key less than key, and *pos_in_item is set to one
818 * past the last entry/byte in the item. If searching for entry in a
819 * directory item, and it is not found, *pos_in_item is set to one
820 * entry more than the entry with maximal key which is less than the
821 * sought key.
822 *
823 * Note that if there is no entry in this same node which is one more,
824 * then we point to an imaginary entry. for direct items, the
825 * position is in units of bytes, for indirect items the position is
826 * in units of blocknr entries, for directory items the position is in
827 * units of directory entries.
828 */
829/* The function is NOT SCHEDULE-SAFE! */
830int search_for_position_by_key(struct super_block *sb,
831 /* Key to search (cpu variable) */
832 const struct cpu_key *p_cpu_key,
833 /* Filled up by this function. */
834 struct treepath *search_path)
835{
836 struct item_head *p_le_ih; /* pointer to on-disk structure */
837 int blk_size;
838 loff_t item_offset, offset;
839 struct reiserfs_dir_entry de;
840 int retval;
841
842 /* If searching for directory entry. */
843 if (is_direntry_cpu_key(p_cpu_key))
844 return search_by_entry_key(sb, p_cpu_key, search_path,
845 &de);
846
847 /* If not searching for directory entry. */
848
849 /* If item is found. */
850 retval = search_item(sb, p_cpu_key, search_path);
851 if (retval == IO_ERROR)
852 return retval;
853 if (retval == ITEM_FOUND) {
854
855 RFALSE(!ih_item_len
856 (item_head
857 (PATH_PLAST_BUFFER(search_path),
858 PATH_LAST_POSITION(search_path))),
859 "PAP-5165: item length equals zero");
860
861 pos_in_item(search_path) = 0;
862 return POSITION_FOUND;
863 }
864
865 RFALSE(!PATH_LAST_POSITION(search_path),
866 "PAP-5170: position equals zero");
867
868 /* Item is not found. Set path to the previous item. */
869 p_le_ih =
870 item_head(PATH_PLAST_BUFFER(search_path),
871 --PATH_LAST_POSITION(search_path));
872 blk_size = sb->s_blocksize;
873
874 if (comp_short_keys(&p_le_ih->ih_key, p_cpu_key))
875 return FILE_NOT_FOUND;
876
877 /* FIXME: quite ugly this far */
878
879 item_offset = le_ih_k_offset(p_le_ih);
880 offset = cpu_key_k_offset(p_cpu_key);
881
882 /* Needed byte is contained in the item pointed to by the path. */
883 if (item_offset <= offset &&
884 item_offset + op_bytes_number(p_le_ih, blk_size) > offset) {
885 pos_in_item(search_path) = offset - item_offset;
886 if (is_indirect_le_ih(p_le_ih)) {
887 pos_in_item(search_path) /= blk_size;
888 }
889 return POSITION_FOUND;
890 }
891
892 /*
893 * Needed byte is not contained in the item pointed to by the
894 * path. Set pos_in_item out of the item.
895 */
896 if (is_indirect_le_ih(p_le_ih))
897 pos_in_item(search_path) =
898 ih_item_len(p_le_ih) / UNFM_P_SIZE;
899 else
900 pos_in_item(search_path) = ih_item_len(p_le_ih);
901
902 return POSITION_NOT_FOUND;
903}
904
905/* Compare given item and item pointed to by the path. */
906int comp_items(const struct item_head *stored_ih, const struct treepath *path)
907{
908 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
909 struct item_head *ih;
910
911 /* Last buffer at the path is not in the tree. */
912 if (!B_IS_IN_TREE(bh))
913 return 1;
914
915 /* Last path position is invalid. */
916 if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh))
917 return 1;
918
919 /* we need only to know, whether it is the same item */
920 ih = tp_item_head(path);
921 return memcmp(stored_ih, ih, IH_SIZE);
922}
923
924/* unformatted nodes are not logged anymore, ever. This is safe now */
925#define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1)
926
927/* block can not be forgotten as it is in I/O or held by someone */
928#define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh)))
929
930/* prepare for delete or cut of direct item */
931static inline int prepare_for_direct_item(struct treepath *path,
932 struct item_head *le_ih,
933 struct inode *inode,
934 loff_t new_file_length, int *cut_size)
935{
936 loff_t round_len;
937
938 if (new_file_length == max_reiserfs_offset(inode)) {
939 /* item has to be deleted */
940 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
941 return M_DELETE;
942 }
943 /* new file gets truncated */
944 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
945 round_len = ROUND_UP(new_file_length);
946 /* this was new_file_length < le_ih ... */
947 if (round_len < le_ih_k_offset(le_ih)) {
948 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
949 return M_DELETE; /* Delete this item. */
950 }
951 /* Calculate first position and size for cutting from item. */
952 pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
953 *cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
954
955 return M_CUT; /* Cut from this item. */
956 }
957
958 /* old file: items may have any length */
959
960 if (new_file_length < le_ih_k_offset(le_ih)) {
961 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
962 return M_DELETE; /* Delete this item. */
963 }
964
965 /* Calculate first position and size for cutting from item. */
966 *cut_size = -(ih_item_len(le_ih) -
967 (pos_in_item(path) =
968 new_file_length + 1 - le_ih_k_offset(le_ih)));
969 return M_CUT; /* Cut from this item. */
970}
971
972static inline int prepare_for_direntry_item(struct treepath *path,
973 struct item_head *le_ih,
974 struct inode *inode,
975 loff_t new_file_length,
976 int *cut_size)
977{
978 if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
979 new_file_length == max_reiserfs_offset(inode)) {
980 RFALSE(ih_entry_count(le_ih) != 2,
981 "PAP-5220: incorrect empty directory item (%h)", le_ih);
982 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
983 /* Delete the directory item containing "." and ".." entry. */
984 return M_DELETE;
985 }
986
987 if (ih_entry_count(le_ih) == 1) {
988 /*
989 * Delete the directory item such as there is one record only
990 * in this item
991 */
992 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
993 return M_DELETE;
994 }
995
996 /* Cut one record from the directory item. */
997 *cut_size =
998 -(DEH_SIZE +
999 entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
1000 return M_CUT;
1001}
1002
1003#define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
1004
1005/*
1006 * If the path points to a directory or direct item, calculate mode
1007 * and the size cut, for balance.
1008 * If the path points to an indirect item, remove some number of its
1009 * unformatted nodes.
1010 * In case of file truncate calculate whether this item must be
1011 * deleted/truncated or last unformatted node of this item will be
1012 * converted to a direct item.
1013 * This function returns a determination of what balance mode the
1014 * calling function should employ.
1015 */
1016static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th,
1017 struct inode *inode,
1018 struct treepath *path,
1019 const struct cpu_key *item_key,
1020 /*
1021 * Number of unformatted nodes
1022 * which were removed from end
1023 * of the file.
1024 */
1025 int *removed,
1026 int *cut_size,
1027 /* MAX_KEY_OFFSET in case of delete. */
1028 unsigned long long new_file_length
1029 )
1030{
1031 struct super_block *sb = inode->i_sb;
1032 struct item_head *p_le_ih = tp_item_head(path);
1033 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
1034
1035 BUG_ON(!th->t_trans_id);
1036
1037 /* Stat_data item. */
1038 if (is_statdata_le_ih(p_le_ih)) {
1039
1040 RFALSE(new_file_length != max_reiserfs_offset(inode),
1041 "PAP-5210: mode must be M_DELETE");
1042
1043 *cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
1044 return M_DELETE;
1045 }
1046
1047 /* Directory item. */
1048 if (is_direntry_le_ih(p_le_ih))
1049 return prepare_for_direntry_item(path, p_le_ih, inode,
1050 new_file_length,
1051 cut_size);
1052
1053 /* Direct item. */
1054 if (is_direct_le_ih(p_le_ih))
1055 return prepare_for_direct_item(path, p_le_ih, inode,
1056 new_file_length, cut_size);
1057
1058 /* Case of an indirect item. */
1059 {
1060 int blk_size = sb->s_blocksize;
1061 struct item_head s_ih;
1062 int need_re_search;
1063 int delete = 0;
1064 int result = M_CUT;
1065 int pos = 0;
1066
1067 if ( new_file_length == max_reiserfs_offset (inode) ) {
1068 /*
1069 * prepare_for_delete_or_cut() is called by
1070 * reiserfs_delete_item()
1071 */
1072 new_file_length = 0;
1073 delete = 1;
1074 }
1075
1076 do {
1077 need_re_search = 0;
1078 *cut_size = 0;
1079 bh = PATH_PLAST_BUFFER(path);
1080 copy_item_head(&s_ih, tp_item_head(path));
1081 pos = I_UNFM_NUM(&s_ih);
1082
1083 while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) {
1084 __le32 *unfm;
1085 __u32 block;
1086
1087 /*
1088 * Each unformatted block deletion may involve
1089 * one additional bitmap block into the transaction,
1090 * thereby the initial journal space reservation
1091 * might not be enough.
1092 */
1093 if (!delete && (*cut_size) != 0 &&
1094 reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD)
1095 break;
1096
1097 unfm = (__le32 *)ih_item_body(bh, &s_ih) + pos - 1;
1098 block = get_block_num(unfm, 0);
1099
1100 if (block != 0) {
1101 reiserfs_prepare_for_journal(sb, bh, 1);
1102 put_block_num(unfm, 0, 0);
1103 journal_mark_dirty(th, bh);
1104 reiserfs_free_block(th, inode, block, 1);
1105 }
1106
1107 reiserfs_cond_resched(sb);
1108
1109 if (item_moved (&s_ih, path)) {
1110 need_re_search = 1;
1111 break;
1112 }
1113
1114 pos --;
1115 (*removed)++;
1116 (*cut_size) -= UNFM_P_SIZE;
1117
1118 if (pos == 0) {
1119 (*cut_size) -= IH_SIZE;
1120 result = M_DELETE;
1121 break;
1122 }
1123 }
1124 /*
1125 * a trick. If the buffer has been logged, this will
1126 * do nothing. If we've broken the loop without logging
1127 * it, it will restore the buffer
1128 */
1129 reiserfs_restore_prepared_buffer(sb, bh);
1130 } while (need_re_search &&
1131 search_for_position_by_key(sb, item_key, path) == POSITION_FOUND);
1132 pos_in_item(path) = pos * UNFM_P_SIZE;
1133
1134 if (*cut_size == 0) {
1135 /*
1136 * Nothing was cut. maybe convert last unformatted node to the
1137 * direct item?
1138 */
1139 result = M_CONVERT;
1140 }
1141 return result;
1142 }
1143}
1144
1145/* Calculate number of bytes which will be deleted or cut during balance */
1146static int calc_deleted_bytes_number(struct tree_balance *tb, char mode)
1147{
1148 int del_size;
1149 struct item_head *p_le_ih = tp_item_head(tb->tb_path);
1150
1151 if (is_statdata_le_ih(p_le_ih))
1152 return 0;
1153
1154 del_size =
1155 (mode ==
1156 M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0];
1157 if (is_direntry_le_ih(p_le_ih)) {
1158 /*
1159 * return EMPTY_DIR_SIZE; We delete emty directories only.
1160 * we can't use EMPTY_DIR_SIZE, as old format dirs have a
1161 * different empty size. ick. FIXME, is this right?
1162 */
1163 return del_size;
1164 }
1165
1166 if (is_indirect_le_ih(p_le_ih))
1167 del_size = (del_size / UNFM_P_SIZE) *
1168 (PATH_PLAST_BUFFER(tb->tb_path)->b_size);
1169 return del_size;
1170}
1171
1172static void init_tb_struct(struct reiserfs_transaction_handle *th,
1173 struct tree_balance *tb,
1174 struct super_block *sb,
1175 struct treepath *path, int size)
1176{
1177
1178 BUG_ON(!th->t_trans_id);
1179
1180 memset(tb, '\0', sizeof(struct tree_balance));
1181 tb->transaction_handle = th;
1182 tb->tb_sb = sb;
1183 tb->tb_path = path;
1184 PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
1185 PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
1186 tb->insert_size[0] = size;
1187}
1188
1189void padd_item(char *item, int total_length, int length)
1190{
1191 int i;
1192
1193 for (i = total_length; i > length;)
1194 item[--i] = 0;
1195}
1196
1197#ifdef REISERQUOTA_DEBUG
1198char key2type(struct reiserfs_key *ih)
1199{
1200 if (is_direntry_le_key(2, ih))
1201 return 'd';
1202 if (is_direct_le_key(2, ih))
1203 return 'D';
1204 if (is_indirect_le_key(2, ih))
1205 return 'i';
1206 if (is_statdata_le_key(2, ih))
1207 return 's';
1208 return 'u';
1209}
1210
1211char head2type(struct item_head *ih)
1212{
1213 if (is_direntry_le_ih(ih))
1214 return 'd';
1215 if (is_direct_le_ih(ih))
1216 return 'D';
1217 if (is_indirect_le_ih(ih))
1218 return 'i';
1219 if (is_statdata_le_ih(ih))
1220 return 's';
1221 return 'u';
1222}
1223#endif
1224
1225/*
1226 * Delete object item.
1227 * th - active transaction handle
1228 * path - path to the deleted item
1229 * item_key - key to search for the deleted item
1230 * indode - used for updating i_blocks and quotas
1231 * un_bh - NULL or unformatted node pointer
1232 */
1233int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1234 struct treepath *path, const struct cpu_key *item_key,
1235 struct inode *inode, struct buffer_head *un_bh)
1236{
1237 struct super_block *sb = inode->i_sb;
1238 struct tree_balance s_del_balance;
1239 struct item_head s_ih;
1240 struct item_head *q_ih;
1241 int quota_cut_bytes;
1242 int ret_value, del_size, removed;
1243 int depth;
1244
1245#ifdef CONFIG_REISERFS_CHECK
1246 char mode;
1247 int iter = 0;
1248#endif
1249
1250 BUG_ON(!th->t_trans_id);
1251
1252 init_tb_struct(th, &s_del_balance, sb, path,
1253 0 /*size is unknown */ );
1254
1255 while (1) {
1256 removed = 0;
1257
1258#ifdef CONFIG_REISERFS_CHECK
1259 iter++;
1260 mode =
1261#endif
1262 prepare_for_delete_or_cut(th, inode, path,
1263 item_key, &removed,
1264 &del_size,
1265 max_reiserfs_offset(inode));
1266
1267 RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
1268
1269 copy_item_head(&s_ih, tp_item_head(path));
1270 s_del_balance.insert_size[0] = del_size;
1271
1272 ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
1273 if (ret_value != REPEAT_SEARCH)
1274 break;
1275
1276 PROC_INFO_INC(sb, delete_item_restarted);
1277
1278 /* file system changed, repeat search */
1279 ret_value =
1280 search_for_position_by_key(sb, item_key, path);
1281 if (ret_value == IO_ERROR)
1282 break;
1283 if (ret_value == FILE_NOT_FOUND) {
1284 reiserfs_warning(sb, "vs-5340",
1285 "no items of the file %K found",
1286 item_key);
1287 break;
1288 }
1289 } /* while (1) */
1290
1291 if (ret_value != CARRY_ON) {
1292 unfix_nodes(&s_del_balance);
1293 return 0;
1294 }
1295
1296 /* reiserfs_delete_item returns item length when success */
1297 ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
1298 q_ih = tp_item_head(path);
1299 quota_cut_bytes = ih_item_len(q_ih);
1300
1301 /*
1302 * hack so the quota code doesn't have to guess if the file has a
1303 * tail. On tail insert, we allocate quota for 1 unformatted node.
1304 * We test the offset because the tail might have been
1305 * split into multiple items, and we only want to decrement for
1306 * the unfm node once
1307 */
1308 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) {
1309 if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) {
1310 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1311 } else {
1312 quota_cut_bytes = 0;
1313 }
1314 }
1315
1316 if (un_bh) {
1317 int off;
1318 char *data;
1319
1320 /*
1321 * We are in direct2indirect conversion, so move tail contents
1322 * to the unformatted node
1323 */
1324 /*
1325 * note, we do the copy before preparing the buffer because we
1326 * don't care about the contents of the unformatted node yet.
1327 * the only thing we really care about is the direct item's
1328 * data is in the unformatted node.
1329 *
1330 * Otherwise, we would have to call
1331 * reiserfs_prepare_for_journal on the unformatted node,
1332 * which might schedule, meaning we'd have to loop all the
1333 * way back up to the start of the while loop.
1334 *
1335 * The unformatted node must be dirtied later on. We can't be
1336 * sure here if the entire tail has been deleted yet.
1337 *
1338 * un_bh is from the page cache (all unformatted nodes are
1339 * from the page cache) and might be a highmem page. So, we
1340 * can't use un_bh->b_data.
1341 * -clm
1342 */
1343
1344 data = kmap_atomic(un_bh->b_page);
1345 off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_SIZE - 1));
1346 memcpy(data + off,
1347 ih_item_body(PATH_PLAST_BUFFER(path), &s_ih),
1348 ret_value);
1349 kunmap_atomic(data);
1350 }
1351
1352 /* Perform balancing after all resources have been collected at once. */
1353 do_balance(&s_del_balance, NULL, NULL, M_DELETE);
1354
1355#ifdef REISERQUOTA_DEBUG
1356 reiserfs_debug(sb, REISERFS_DEBUG_CODE,
1357 "reiserquota delete_item(): freeing %u, id=%u type=%c",
1358 quota_cut_bytes, inode->i_uid, head2type(&s_ih));
1359#endif
1360 depth = reiserfs_write_unlock_nested(inode->i_sb);
1361 dquot_free_space_nodirty(inode, quota_cut_bytes);
1362 reiserfs_write_lock_nested(inode->i_sb, depth);
1363
1364 /* Return deleted body length */
1365 return ret_value;
1366}
1367
1368/*
1369 * Summary Of Mechanisms For Handling Collisions Between Processes:
1370 *
1371 * deletion of the body of the object is performed by iput(), with the
1372 * result that if multiple processes are operating on a file, the
1373 * deletion of the body of the file is deferred until the last process
1374 * that has an open inode performs its iput().
1375 *
1376 * writes and truncates are protected from collisions by use of
1377 * semaphores.
1378 *
1379 * creates, linking, and mknod are protected from collisions with other
1380 * processes by making the reiserfs_add_entry() the last step in the
1381 * creation, and then rolling back all changes if there was a collision.
1382 * - Hans
1383*/
1384
1385/* this deletes item which never gets split */
1386void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1387 struct inode *inode, struct reiserfs_key *key)
1388{
1389 struct super_block *sb = th->t_super;
1390 struct tree_balance tb;
1391 INITIALIZE_PATH(path);
1392 int item_len = 0;
1393 int tb_init = 0;
1394 struct cpu_key cpu_key;
1395 int retval;
1396 int quota_cut_bytes = 0;
1397
1398 BUG_ON(!th->t_trans_id);
1399
1400 le_key2cpu_key(&cpu_key, key);
1401
1402 while (1) {
1403 retval = search_item(th->t_super, &cpu_key, &path);
1404 if (retval == IO_ERROR) {
1405 reiserfs_error(th->t_super, "vs-5350",
1406 "i/o failure occurred trying "
1407 "to delete %K", &cpu_key);
1408 break;
1409 }
1410 if (retval != ITEM_FOUND) {
1411 pathrelse(&path);
1412 /*
1413 * No need for a warning, if there is just no free
1414 * space to insert '..' item into the
1415 * newly-created subdir
1416 */
1417 if (!
1418 ((unsigned long long)
1419 GET_HASH_VALUE(le_key_k_offset
1420 (le_key_version(key), key)) == 0
1421 && (unsigned long long)
1422 GET_GENERATION_NUMBER(le_key_k_offset
1423 (le_key_version(key),
1424 key)) == 1))
1425 reiserfs_warning(th->t_super, "vs-5355",
1426 "%k not found", key);
1427 break;
1428 }
1429 if (!tb_init) {
1430 tb_init = 1;
1431 item_len = ih_item_len(tp_item_head(&path));
1432 init_tb_struct(th, &tb, th->t_super, &path,
1433 -(IH_SIZE + item_len));
1434 }
1435 quota_cut_bytes = ih_item_len(tp_item_head(&path));
1436
1437 retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
1438 if (retval == REPEAT_SEARCH) {
1439 PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
1440 continue;
1441 }
1442
1443 if (retval == CARRY_ON) {
1444 do_balance(&tb, NULL, NULL, M_DELETE);
1445 /*
1446 * Should we count quota for item? (we don't
1447 * count quotas for save-links)
1448 */
1449 if (inode) {
1450 int depth;
1451#ifdef REISERQUOTA_DEBUG
1452 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
1453 "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
1454 quota_cut_bytes, inode->i_uid,
1455 key2type(key));
1456#endif
1457 depth = reiserfs_write_unlock_nested(sb);
1458 dquot_free_space_nodirty(inode,
1459 quota_cut_bytes);
1460 reiserfs_write_lock_nested(sb, depth);
1461 }
1462 break;
1463 }
1464
1465 /* IO_ERROR, NO_DISK_SPACE, etc */
1466 reiserfs_warning(th->t_super, "vs-5360",
1467 "could not delete %K due to fix_nodes failure",
1468 &cpu_key);
1469 unfix_nodes(&tb);
1470 break;
1471 }
1472
1473 reiserfs_check_path(&path);
1474}
1475
1476int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1477 struct inode *inode)
1478{
1479 int err;
1480 inode->i_size = 0;
1481 BUG_ON(!th->t_trans_id);
1482
1483 /* for directory this deletes item containing "." and ".." */
1484 err =
1485 reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
1486 if (err)
1487 return err;
1488
1489#if defined( USE_INODE_GENERATION_COUNTER )
1490 if (!old_format_only(th->t_super)) {
1491 __le32 *inode_generation;
1492
1493 inode_generation =
1494 &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
1495 le32_add_cpu(inode_generation, 1);
1496 }
1497/* USE_INODE_GENERATION_COUNTER */
1498#endif
1499 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1500
1501 return err;
1502}
1503
1504static void unmap_buffers(struct page *page, loff_t pos)
1505{
1506 struct buffer_head *bh;
1507 struct buffer_head *head;
1508 struct buffer_head *next;
1509 unsigned long tail_index;
1510 unsigned long cur_index;
1511
1512 if (page) {
1513 if (page_has_buffers(page)) {
1514 tail_index = pos & (PAGE_SIZE - 1);
1515 cur_index = 0;
1516 head = page_buffers(page);
1517 bh = head;
1518 do {
1519 next = bh->b_this_page;
1520
1521 /*
1522 * we want to unmap the buffers that contain
1523 * the tail, and all the buffers after it
1524 * (since the tail must be at the end of the
1525 * file). We don't want to unmap file data
1526 * before the tail, since it might be dirty
1527 * and waiting to reach disk
1528 */
1529 cur_index += bh->b_size;
1530 if (cur_index > tail_index) {
1531 reiserfs_unmap_buffer(bh);
1532 }
1533 bh = next;
1534 } while (bh != head);
1535 }
1536 }
1537}
1538
1539static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
1540 struct inode *inode,
1541 struct page *page,
1542 struct treepath *path,
1543 const struct cpu_key *item_key,
1544 loff_t new_file_size, char *mode)
1545{
1546 struct super_block *sb = inode->i_sb;
1547 int block_size = sb->s_blocksize;
1548 int cut_bytes;
1549 BUG_ON(!th->t_trans_id);
1550 BUG_ON(new_file_size != inode->i_size);
1551
1552 /*
1553 * the page being sent in could be NULL if there was an i/o error
1554 * reading in the last block. The user will hit problems trying to
1555 * read the file, but for now we just skip the indirect2direct
1556 */
1557 if (atomic_read(&inode->i_count) > 1 ||
1558 !tail_has_to_be_packed(inode) ||
1559 !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) {
1560 /* leave tail in an unformatted node */
1561 *mode = M_SKIP_BALANCING;
1562 cut_bytes =
1563 block_size - (new_file_size & (block_size - 1));
1564 pathrelse(path);
1565 return cut_bytes;
1566 }
1567
1568 /* Perform the conversion to a direct_item. */
1569 return indirect2direct(th, inode, page, path, item_key,
1570 new_file_size, mode);
1571}
1572
1573/*
1574 * we did indirect_to_direct conversion. And we have inserted direct
1575 * item successesfully, but there were no disk space to cut unfm
1576 * pointer being converted. Therefore we have to delete inserted
1577 * direct item(s)
1578 */
1579static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
1580 struct inode *inode, struct treepath *path)
1581{
1582 struct cpu_key tail_key;
1583 int tail_len;
1584 int removed;
1585 BUG_ON(!th->t_trans_id);
1586
1587 make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);
1588 tail_key.key_length = 4;
1589
1590 tail_len =
1591 (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
1592 while (tail_len) {
1593 /* look for the last byte of the tail */
1594 if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
1595 POSITION_NOT_FOUND)
1596 reiserfs_panic(inode->i_sb, "vs-5615",
1597 "found invalid item");
1598 RFALSE(path->pos_in_item !=
1599 ih_item_len(tp_item_head(path)) - 1,
1600 "vs-5616: appended bytes found");
1601 PATH_LAST_POSITION(path)--;
1602
1603 removed =
1604 reiserfs_delete_item(th, path, &tail_key, inode,
1605 NULL /*unbh not needed */ );
1606 RFALSE(removed <= 0
1607 || removed > tail_len,
1608 "vs-5617: there was tail %d bytes, removed item length %d bytes",
1609 tail_len, removed);
1610 tail_len -= removed;
1611 set_cpu_key_k_offset(&tail_key,
1612 cpu_key_k_offset(&tail_key) - removed);
1613 }
1614 reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct "
1615 "conversion has been rolled back due to "
1616 "lack of disk space");
1617 mark_inode_dirty(inode);
1618}
1619
1620/* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
1621int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1622 struct treepath *path,
1623 struct cpu_key *item_key,
1624 struct inode *inode,
1625 struct page *page, loff_t new_file_size)
1626{
1627 struct super_block *sb = inode->i_sb;
1628 /*
1629 * Every function which is going to call do_balance must first
1630 * create a tree_balance structure. Then it must fill up this
1631 * structure by using the init_tb_struct and fix_nodes functions.
1632 * After that we can make tree balancing.
1633 */
1634 struct tree_balance s_cut_balance;
1635 struct item_head *p_le_ih;
1636 int cut_size = 0; /* Amount to be cut. */
1637 int ret_value = CARRY_ON;
1638 int removed = 0; /* Number of the removed unformatted nodes. */
1639 int is_inode_locked = 0;
1640 char mode; /* Mode of the balance. */
1641 int retval2 = -1;
1642 int quota_cut_bytes;
1643 loff_t tail_pos = 0;
1644 int depth;
1645
1646 BUG_ON(!th->t_trans_id);
1647
1648 init_tb_struct(th, &s_cut_balance, inode->i_sb, path,
1649 cut_size);
1650
1651 /*
1652 * Repeat this loop until we either cut the item without needing
1653 * to balance, or we fix_nodes without schedule occurring
1654 */
1655 while (1) {
1656 /*
1657 * Determine the balance mode, position of the first byte to
1658 * be cut, and size to be cut. In case of the indirect item
1659 * free unformatted nodes which are pointed to by the cut
1660 * pointers.
1661 */
1662
1663 mode =
1664 prepare_for_delete_or_cut(th, inode, path,
1665 item_key, &removed,
1666 &cut_size, new_file_size);
1667 if (mode == M_CONVERT) {
1668 /*
1669 * convert last unformatted node to direct item or
1670 * leave tail in the unformatted node
1671 */
1672 RFALSE(ret_value != CARRY_ON,
1673 "PAP-5570: can not convert twice");
1674
1675 ret_value =
1676 maybe_indirect_to_direct(th, inode, page,
1677 path, item_key,
1678 new_file_size, &mode);
1679 if (mode == M_SKIP_BALANCING)
1680 /* tail has been left in the unformatted node */
1681 return ret_value;
1682
1683 is_inode_locked = 1;
1684
1685 /*
1686 * removing of last unformatted node will
1687 * change value we have to return to truncate.
1688 * Save it
1689 */
1690 retval2 = ret_value;
1691
1692 /*
1693 * So, we have performed the first part of the
1694 * conversion:
1695 * inserting the new direct item. Now we are
1696 * removing the last unformatted node pointer.
1697 * Set key to search for it.
1698 */
1699 set_cpu_key_k_type(item_key, TYPE_INDIRECT);
1700 item_key->key_length = 4;
1701 new_file_size -=
1702 (new_file_size & (sb->s_blocksize - 1));
1703 tail_pos = new_file_size;
1704 set_cpu_key_k_offset(item_key, new_file_size + 1);
1705 if (search_for_position_by_key
1706 (sb, item_key,
1707 path) == POSITION_NOT_FOUND) {
1708 print_block(PATH_PLAST_BUFFER(path), 3,
1709 PATH_LAST_POSITION(path) - 1,
1710 PATH_LAST_POSITION(path) + 1);
1711 reiserfs_panic(sb, "PAP-5580", "item to "
1712 "convert does not exist (%K)",
1713 item_key);
1714 }
1715 continue;
1716 }
1717 if (cut_size == 0) {
1718 pathrelse(path);
1719 return 0;
1720 }
1721
1722 s_cut_balance.insert_size[0] = cut_size;
1723
1724 ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL);
1725 if (ret_value != REPEAT_SEARCH)
1726 break;
1727
1728 PROC_INFO_INC(sb, cut_from_item_restarted);
1729
1730 ret_value =
1731 search_for_position_by_key(sb, item_key, path);
1732 if (ret_value == POSITION_FOUND)
1733 continue;
1734
1735 reiserfs_warning(sb, "PAP-5610", "item %K not found",
1736 item_key);
1737 unfix_nodes(&s_cut_balance);
1738 return (ret_value == IO_ERROR) ? -EIO : -ENOENT;
1739 } /* while */
1740
1741 /* check fix_nodes results (IO_ERROR or NO_DISK_SPACE) */
1742 if (ret_value != CARRY_ON) {
1743 if (is_inode_locked) {
1744 /*
1745 * FIXME: this seems to be not needed: we are always
1746 * able to cut item
1747 */
1748 indirect_to_direct_roll_back(th, inode, path);
1749 }
1750 if (ret_value == NO_DISK_SPACE)
1751 reiserfs_warning(sb, "reiserfs-5092",
1752 "NO_DISK_SPACE");
1753 unfix_nodes(&s_cut_balance);
1754 return -EIO;
1755 }
1756
1757 /* go ahead and perform balancing */
1758
1759 RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode");
1760
1761 /* Calculate number of bytes that need to be cut from the item. */
1762 quota_cut_bytes =
1763 (mode ==
1764 M_DELETE) ? ih_item_len(tp_item_head(path)) : -s_cut_balance.
1765 insert_size[0];
1766 if (retval2 == -1)
1767 ret_value = calc_deleted_bytes_number(&s_cut_balance, mode);
1768 else
1769 ret_value = retval2;
1770
1771 /*
1772 * For direct items, we only change the quota when deleting the last
1773 * item.
1774 */
1775 p_le_ih = tp_item_head(s_cut_balance.tb_path);
1776 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) {
1777 if (mode == M_DELETE &&
1778 (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) ==
1779 1) {
1780 /* FIXME: this is to keep 3.5 happy */
1781 REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
1782 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1783 } else {
1784 quota_cut_bytes = 0;
1785 }
1786 }
1787#ifdef CONFIG_REISERFS_CHECK
1788 if (is_inode_locked) {
1789 struct item_head *le_ih =
1790 tp_item_head(s_cut_balance.tb_path);
1791 /*
1792 * we are going to complete indirect2direct conversion. Make
1793 * sure, that we exactly remove last unformatted node pointer
1794 * of the item
1795 */
1796 if (!is_indirect_le_ih(le_ih))
1797 reiserfs_panic(sb, "vs-5652",
1798 "item must be indirect %h", le_ih);
1799
1800 if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
1801 reiserfs_panic(sb, "vs-5653", "completing "
1802 "indirect2direct conversion indirect "
1803 "item %h being deleted must be of "
1804 "4 byte long", le_ih);
1805
1806 if (mode == M_CUT
1807 && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
1808 reiserfs_panic(sb, "vs-5654", "can not complete "
1809 "indirect2direct conversion of %h "
1810 "(CUT, insert_size==%d)",
1811 le_ih, s_cut_balance.insert_size[0]);
1812 }
1813 /*
1814 * it would be useful to make sure, that right neighboring
1815 * item is direct item of this file
1816 */
1817 }
1818#endif
1819
1820 do_balance(&s_cut_balance, NULL, NULL, mode);
1821 if (is_inode_locked) {
1822 /*
1823 * we've done an indirect->direct conversion. when the
1824 * data block was freed, it was removed from the list of
1825 * blocks that must be flushed before the transaction
1826 * commits, make sure to unmap and invalidate it
1827 */
1828 unmap_buffers(page, tail_pos);
1829 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
1830 }
1831#ifdef REISERQUOTA_DEBUG
1832 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1833 "reiserquota cut_from_item(): freeing %u id=%u type=%c",
1834 quota_cut_bytes, inode->i_uid, '?');
1835#endif
1836 depth = reiserfs_write_unlock_nested(sb);
1837 dquot_free_space_nodirty(inode, quota_cut_bytes);
1838 reiserfs_write_lock_nested(sb, depth);
1839 return ret_value;
1840}
1841
1842static void truncate_directory(struct reiserfs_transaction_handle *th,
1843 struct inode *inode)
1844{
1845 BUG_ON(!th->t_trans_id);
1846 if (inode->i_nlink)
1847 reiserfs_error(inode->i_sb, "vs-5655", "link count != 0");
1848
1849 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
1850 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
1851 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1852 reiserfs_update_sd(th, inode);
1853 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
1854 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
1855}
1856
1857/*
1858 * Truncate file to the new size. Note, this must be called with a
1859 * transaction already started
1860 */
1861int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1862 struct inode *inode, /* ->i_size contains new size */
1863 struct page *page, /* up to date for last block */
1864 /*
1865 * when it is called by file_release to convert
1866 * the tail - no timestamps should be updated
1867 */
1868 int update_timestamps
1869 )
1870{
1871 INITIALIZE_PATH(s_search_path); /* Path to the current object item. */
1872 struct item_head *p_le_ih; /* Pointer to an item header. */
1873
1874 /* Key to search for a previous file item. */
1875 struct cpu_key s_item_key;
1876 loff_t file_size, /* Old file size. */
1877 new_file_size; /* New file size. */
1878 int deleted; /* Number of deleted or truncated bytes. */
1879 int retval;
1880 int err = 0;
1881
1882 BUG_ON(!th->t_trans_id);
1883 if (!
1884 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
1885 || S_ISLNK(inode->i_mode)))
1886 return 0;
1887
1888 /* deletion of directory - no need to update timestamps */
1889 if (S_ISDIR(inode->i_mode)) {
1890 truncate_directory(th, inode);
1891 return 0;
1892 }
1893
1894 /* Get new file size. */
1895 new_file_size = inode->i_size;
1896
1897 /* FIXME: note, that key type is unimportant here */
1898 make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode),
1899 TYPE_DIRECT, 3);
1900
1901 retval =
1902 search_for_position_by_key(inode->i_sb, &s_item_key,
1903 &s_search_path);
1904 if (retval == IO_ERROR) {
1905 reiserfs_error(inode->i_sb, "vs-5657",
1906 "i/o failure occurred trying to truncate %K",
1907 &s_item_key);
1908 err = -EIO;
1909 goto out;
1910 }
1911 if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
1912 reiserfs_error(inode->i_sb, "PAP-5660",
1913 "wrong result %d of search for %K", retval,
1914 &s_item_key);
1915
1916 err = -EIO;
1917 goto out;
1918 }
1919
1920 s_search_path.pos_in_item--;
1921
1922 /* Get real file size (total length of all file items) */
1923 p_le_ih = tp_item_head(&s_search_path);
1924 if (is_statdata_le_ih(p_le_ih))
1925 file_size = 0;
1926 else {
1927 loff_t offset = le_ih_k_offset(p_le_ih);
1928 int bytes =
1929 op_bytes_number(p_le_ih, inode->i_sb->s_blocksize);
1930
1931 /*
1932 * this may mismatch with real file size: if last direct item
1933 * had no padding zeros and last unformatted node had no free
1934 * space, this file would have this file size
1935 */
1936 file_size = offset + bytes - 1;
1937 }
1938 /*
1939 * are we doing a full truncate or delete, if so
1940 * kick in the reada code
1941 */
1942 if (new_file_size == 0)
1943 s_search_path.reada = PATH_READA | PATH_READA_BACK;
1944
1945 if (file_size == 0 || file_size < new_file_size) {
1946 goto update_and_out;
1947 }
1948
1949 /* Update key to search for the last file item. */
1950 set_cpu_key_k_offset(&s_item_key, file_size);
1951
1952 do {
1953 /* Cut or delete file item. */
1954 deleted =
1955 reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
1956 inode, page, new_file_size);
1957 if (deleted < 0) {
1958 reiserfs_warning(inode->i_sb, "vs-5665",
1959 "reiserfs_cut_from_item failed");
1960 reiserfs_check_path(&s_search_path);
1961 return 0;
1962 }
1963
1964 RFALSE(deleted > file_size,
1965 "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
1966 deleted, file_size, &s_item_key);
1967
1968 /* Change key to search the last file item. */
1969 file_size -= deleted;
1970
1971 set_cpu_key_k_offset(&s_item_key, file_size);
1972
1973 /*
1974 * While there are bytes to truncate and previous
1975 * file item is presented in the tree.
1976 */
1977
1978 /*
1979 * This loop could take a really long time, and could log
1980 * many more blocks than a transaction can hold. So, we do
1981 * a polite journal end here, and if the transaction needs
1982 * ending, we make sure the file is consistent before ending
1983 * the current trans and starting a new one
1984 */
1985 if (journal_transaction_should_end(th, 0) ||
1986 reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
1987 pathrelse(&s_search_path);
1988
1989 if (update_timestamps) {
1990 inode->i_mtime = CURRENT_TIME_SEC;
1991 inode->i_ctime = CURRENT_TIME_SEC;
1992 }
1993 reiserfs_update_sd(th, inode);
1994
1995 err = journal_end(th);
1996 if (err)
1997 goto out;
1998 err = journal_begin(th, inode->i_sb,
1999 JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
2000 if (err)
2001 goto out;
2002 reiserfs_update_inode_transaction(inode);
2003 }
2004 } while (file_size > ROUND_UP(new_file_size) &&
2005 search_for_position_by_key(inode->i_sb, &s_item_key,
2006 &s_search_path) == POSITION_FOUND);
2007
2008 RFALSE(file_size > ROUND_UP(new_file_size),
2009 "PAP-5680: truncate did not finish: new_file_size %lld, current %lld, oid %d",
2010 new_file_size, file_size, s_item_key.on_disk_key.k_objectid);
2011
2012update_and_out:
2013 if (update_timestamps) {
2014 /* this is truncate, not file closing */
2015 inode->i_mtime = CURRENT_TIME_SEC;
2016 inode->i_ctime = CURRENT_TIME_SEC;
2017 }
2018 reiserfs_update_sd(th, inode);
2019
2020out:
2021 pathrelse(&s_search_path);
2022 return err;
2023}
2024
2025#ifdef CONFIG_REISERFS_CHECK
2026/* this makes sure, that we __append__, not overwrite or add holes */
2027static void check_research_for_paste(struct treepath *path,
2028 const struct cpu_key *key)
2029{
2030 struct item_head *found_ih = tp_item_head(path);
2031
2032 if (is_direct_le_ih(found_ih)) {
2033 if (le_ih_k_offset(found_ih) +
2034 op_bytes_number(found_ih,
2035 get_last_bh(path)->b_size) !=
2036 cpu_key_k_offset(key)
2037 || op_bytes_number(found_ih,
2038 get_last_bh(path)->b_size) !=
2039 pos_in_item(path))
2040 reiserfs_panic(NULL, "PAP-5720", "found direct item "
2041 "%h or position (%d) does not match "
2042 "to key %K", found_ih,
2043 pos_in_item(path), key);
2044 }
2045 if (is_indirect_le_ih(found_ih)) {
2046 if (le_ih_k_offset(found_ih) +
2047 op_bytes_number(found_ih,
2048 get_last_bh(path)->b_size) !=
2049 cpu_key_k_offset(key)
2050 || I_UNFM_NUM(found_ih) != pos_in_item(path)
2051 || get_ih_free_space(found_ih) != 0)
2052 reiserfs_panic(NULL, "PAP-5730", "found indirect "
2053 "item (%h) or position (%d) does not "
2054 "match to key (%K)",
2055 found_ih, pos_in_item(path), key);
2056 }
2057}
2058#endif /* config reiserfs check */
2059
2060/*
2061 * Paste bytes to the existing item.
2062 * Returns bytes number pasted into the item.
2063 */
2064int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
2065 /* Path to the pasted item. */
2066 struct treepath *search_path,
2067 /* Key to search for the needed item. */
2068 const struct cpu_key *key,
2069 /* Inode item belongs to */
2070 struct inode *inode,
2071 /* Pointer to the bytes to paste. */
2072 const char *body,
2073 /* Size of pasted bytes. */
2074 int pasted_size)
2075{
2076 struct super_block *sb = inode->i_sb;
2077 struct tree_balance s_paste_balance;
2078 int retval;
2079 int fs_gen;
2080 int depth;
2081
2082 BUG_ON(!th->t_trans_id);
2083
2084 fs_gen = get_generation(inode->i_sb);
2085
2086#ifdef REISERQUOTA_DEBUG
2087 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2088 "reiserquota paste_into_item(): allocating %u id=%u type=%c",
2089 pasted_size, inode->i_uid,
2090 key2type(&key->on_disk_key));
2091#endif
2092
2093 depth = reiserfs_write_unlock_nested(sb);
2094 retval = dquot_alloc_space_nodirty(inode, pasted_size);
2095 reiserfs_write_lock_nested(sb, depth);
2096 if (retval) {
2097 pathrelse(search_path);
2098 return retval;
2099 }
2100 init_tb_struct(th, &s_paste_balance, th->t_super, search_path,
2101 pasted_size);
2102#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2103 s_paste_balance.key = key->on_disk_key;
2104#endif
2105
2106 /* DQUOT_* can schedule, must check before the fix_nodes */
2107 if (fs_changed(fs_gen, inode->i_sb)) {
2108 goto search_again;
2109 }
2110
2111 while ((retval =
2112 fix_nodes(M_PASTE, &s_paste_balance, NULL,
2113 body)) == REPEAT_SEARCH) {
2114search_again:
2115 /* file system changed while we were in the fix_nodes */
2116 PROC_INFO_INC(th->t_super, paste_into_item_restarted);
2117 retval =
2118 search_for_position_by_key(th->t_super, key,
2119 search_path);
2120 if (retval == IO_ERROR) {
2121 retval = -EIO;
2122 goto error_out;
2123 }
2124 if (retval == POSITION_FOUND) {
2125 reiserfs_warning(inode->i_sb, "PAP-5710",
2126 "entry or pasted byte (%K) exists",
2127 key);
2128 retval = -EEXIST;
2129 goto error_out;
2130 }
2131#ifdef CONFIG_REISERFS_CHECK
2132 check_research_for_paste(search_path, key);
2133#endif
2134 }
2135
2136 /*
2137 * Perform balancing after all resources are collected by fix_nodes,
2138 * and accessing them will not risk triggering schedule.
2139 */
2140 if (retval == CARRY_ON) {
2141 do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE);
2142 return 0;
2143 }
2144 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2145error_out:
2146 /* this also releases the path */
2147 unfix_nodes(&s_paste_balance);
2148#ifdef REISERQUOTA_DEBUG
2149 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2150 "reiserquota paste_into_item(): freeing %u id=%u type=%c",
2151 pasted_size, inode->i_uid,
2152 key2type(&key->on_disk_key));
2153#endif
2154 depth = reiserfs_write_unlock_nested(sb);
2155 dquot_free_space_nodirty(inode, pasted_size);
2156 reiserfs_write_lock_nested(sb, depth);
2157 return retval;
2158}
2159
2160/*
2161 * Insert new item into the buffer at the path.
2162 * th - active transaction handle
2163 * path - path to the inserted item
2164 * ih - pointer to the item header to insert
2165 * body - pointer to the bytes to insert
2166 */
2167int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2168 struct treepath *path, const struct cpu_key *key,
2169 struct item_head *ih, struct inode *inode,
2170 const char *body)
2171{
2172 struct tree_balance s_ins_balance;
2173 int retval;
2174 int fs_gen = 0;
2175 int quota_bytes = 0;
2176
2177 BUG_ON(!th->t_trans_id);
2178
2179 if (inode) { /* Do we count quotas for item? */
2180 int depth;
2181 fs_gen = get_generation(inode->i_sb);
2182 quota_bytes = ih_item_len(ih);
2183
2184 /*
2185 * hack so the quota code doesn't have to guess
2186 * if the file has a tail, links are always tails,
2187 * so there's no guessing needed
2188 */
2189 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih))
2190 quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
2191#ifdef REISERQUOTA_DEBUG
2192 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2193 "reiserquota insert_item(): allocating %u id=%u type=%c",
2194 quota_bytes, inode->i_uid, head2type(ih));
2195#endif
2196 /*
2197 * We can't dirty inode here. It would be immediately
2198 * written but appropriate stat item isn't inserted yet...
2199 */
2200 depth = reiserfs_write_unlock_nested(inode->i_sb);
2201 retval = dquot_alloc_space_nodirty(inode, quota_bytes);
2202 reiserfs_write_lock_nested(inode->i_sb, depth);
2203 if (retval) {
2204 pathrelse(path);
2205 return retval;
2206 }
2207 }
2208 init_tb_struct(th, &s_ins_balance, th->t_super, path,
2209 IH_SIZE + ih_item_len(ih));
2210#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2211 s_ins_balance.key = key->on_disk_key;
2212#endif
2213 /*
2214 * DQUOT_* can schedule, must check to be sure calling
2215 * fix_nodes is safe
2216 */
2217 if (inode && fs_changed(fs_gen, inode->i_sb)) {
2218 goto search_again;
2219 }
2220
2221 while ((retval =
2222 fix_nodes(M_INSERT, &s_ins_balance, ih,
2223 body)) == REPEAT_SEARCH) {
2224search_again:
2225 /* file system changed while we were in the fix_nodes */
2226 PROC_INFO_INC(th->t_super, insert_item_restarted);
2227 retval = search_item(th->t_super, key, path);
2228 if (retval == IO_ERROR) {
2229 retval = -EIO;
2230 goto error_out;
2231 }
2232 if (retval == ITEM_FOUND) {
2233 reiserfs_warning(th->t_super, "PAP-5760",
2234 "key %K already exists in the tree",
2235 key);
2236 retval = -EEXIST;
2237 goto error_out;
2238 }
2239 }
2240
2241 /* make balancing after all resources will be collected at a time */
2242 if (retval == CARRY_ON) {
2243 do_balance(&s_ins_balance, ih, body, M_INSERT);
2244 return 0;
2245 }
2246
2247 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2248error_out:
2249 /* also releases the path */
2250 unfix_nodes(&s_ins_balance);
2251#ifdef REISERQUOTA_DEBUG
2252 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
2253 "reiserquota insert_item(): freeing %u id=%u type=%c",
2254 quota_bytes, inode->i_uid, head2type(ih));
2255#endif
2256 if (inode) {
2257 int depth = reiserfs_write_unlock_nested(inode->i_sb);
2258 dquot_free_space_nodirty(inode, quota_bytes);
2259 reiserfs_write_lock_nested(inode->i_sb, depth);
2260 }
2261 return retval;
2262}