Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2015 MediaTek Inc.
   4 * Author: Hanyi Wu <hanyi.wu@mediatek.com>
   5 *         Sascha Hauer <s.hauer@pengutronix.de>
   6 *         Dawei Chien <dawei.chien@mediatek.com>
   7 *         Louis Yu <louis.yu@mediatek.com>
 
 
 
 
 
 
 
   8 */
   9
  10#include <linux/clk.h>
  11#include <linux/delay.h>
  12#include <linux/interrupt.h>
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/nvmem-consumer.h>
  16#include <linux/of.h>
  17#include <linux/of_address.h>
  18#include <linux/of_device.h>
  19#include <linux/platform_device.h>
  20#include <linux/slab.h>
  21#include <linux/io.h>
  22#include <linux/thermal.h>
  23#include <linux/reset.h>
  24#include <linux/types.h>
  25
  26#include "thermal_hwmon.h"
  27
  28/* AUXADC Registers */
 
 
  29#define AUXADC_CON1_SET_V	0x008
  30#define AUXADC_CON1_CLR_V	0x00c
  31#define AUXADC_CON2_V		0x010
  32#define AUXADC_DATA(channel)	(0x14 + (channel) * 4)
 
 
 
  33
  34#define APMIXED_SYS_TS_CON1	0x604
  35
  36/* Thermal Controller Registers */
  37#define TEMP_MONCTL0		0x000
  38#define TEMP_MONCTL1		0x004
  39#define TEMP_MONCTL2		0x008
  40#define TEMP_MONIDET0		0x014
  41#define TEMP_MONIDET1		0x018
  42#define TEMP_MSRCTL0		0x038
  43#define TEMP_MSRCTL1		0x03c
  44#define TEMP_AHBPOLL		0x040
  45#define TEMP_AHBTO		0x044
  46#define TEMP_ADCPNP0		0x048
  47#define TEMP_ADCPNP1		0x04c
  48#define TEMP_ADCPNP2		0x050
  49#define TEMP_ADCPNP3		0x0b4
  50
  51#define TEMP_ADCMUX		0x054
  52#define TEMP_ADCEN		0x060
  53#define TEMP_PNPMUXADDR		0x064
  54#define TEMP_ADCMUXADDR		0x068
  55#define TEMP_ADCENADDR		0x074
  56#define TEMP_ADCVALIDADDR	0x078
  57#define TEMP_ADCVOLTADDR	0x07c
  58#define TEMP_RDCTRL		0x080
  59#define TEMP_ADCVALIDMASK	0x084
  60#define TEMP_ADCVOLTAGESHIFT	0x088
  61#define TEMP_ADCWRITECTRL	0x08c
  62#define TEMP_MSR0		0x090
  63#define TEMP_MSR1		0x094
  64#define TEMP_MSR2		0x098
  65#define TEMP_MSR3		0x0B8
  66
  67#define TEMP_SPARE0		0x0f0
  68
  69#define TEMP_ADCPNP0_1          0x148
  70#define TEMP_ADCPNP1_1          0x14c
  71#define TEMP_ADCPNP2_1          0x150
  72#define TEMP_MSR0_1             0x190
  73#define TEMP_MSR1_1             0x194
  74#define TEMP_MSR2_1             0x198
  75#define TEMP_ADCPNP3_1          0x1b4
  76#define TEMP_MSR3_1             0x1B8
  77
  78#define PTPCORESEL		0x400
  79
  80#define TEMP_MONCTL1_PERIOD_UNIT(x)	((x) & 0x3ff)
  81
  82#define TEMP_MONCTL2_FILTER_INTERVAL(x)	(((x) & 0x3ff) << 16)
  83#define TEMP_MONCTL2_SENSOR_INTERVAL(x)	((x) & 0x3ff)
  84
  85#define TEMP_AHBPOLL_ADC_POLL_INTERVAL(x)	(x)
  86
  87#define TEMP_ADCWRITECTRL_ADC_PNP_WRITE		BIT(0)
  88#define TEMP_ADCWRITECTRL_ADC_MUX_WRITE		BIT(1)
  89
  90#define TEMP_ADCVALIDMASK_VALID_HIGH		BIT(5)
  91#define TEMP_ADCVALIDMASK_VALID_POS(bit)	(bit)
  92
  93/* MT8173 thermal sensors */
  94#define MT8173_TS1	0
  95#define MT8173_TS2	1
  96#define MT8173_TS3	2
  97#define MT8173_TS4	3
  98#define MT8173_TSABB	4
  99
 100/* AUXADC channel 11 is used for the temperature sensors */
 101#define MT8173_TEMP_AUXADC_CHANNEL	11
 102
 103/* The total number of temperature sensors in the MT8173 */
 104#define MT8173_NUM_SENSORS		5
 105
 106/* The number of banks in the MT8173 */
 107#define MT8173_NUM_ZONES		4
 108
 109/* The number of sensing points per bank */
 110#define MT8173_NUM_SENSORS_PER_ZONE	4
 111
 112/* The number of controller in the MT8173 */
 113#define MT8173_NUM_CONTROLLER		1
 114
 115/* The calibration coefficient of sensor  */
 116#define MT8173_CALIBRATION	165
 117
 118/*
 119 * Layout of the fuses providing the calibration data
 120 * These macros could be used for MT8183, MT8173, MT2701, and MT2712.
 121 * MT8183 has 6 sensors and needs 6 VTS calibration data.
 122 * MT8173 has 5 sensors and needs 5 VTS calibration data.
 123 * MT2701 has 3 sensors and needs 3 VTS calibration data.
 124 * MT2712 has 4 sensors and needs 4 VTS calibration data.
 125 */
 126#define CALIB_BUF0_VALID_V1		BIT(0)
 127#define CALIB_BUF1_ADC_GE_V1(x)		(((x) >> 22) & 0x3ff)
 128#define CALIB_BUF0_VTS_TS1_V1(x)	(((x) >> 17) & 0x1ff)
 129#define CALIB_BUF0_VTS_TS2_V1(x)	(((x) >> 8) & 0x1ff)
 130#define CALIB_BUF1_VTS_TS3_V1(x)	(((x) >> 0) & 0x1ff)
 131#define CALIB_BUF2_VTS_TS4_V1(x)	(((x) >> 23) & 0x1ff)
 132#define CALIB_BUF2_VTS_TS5_V1(x)	(((x) >> 5) & 0x1ff)
 133#define CALIB_BUF2_VTS_TSABB_V1(x)	(((x) >> 14) & 0x1ff)
 134#define CALIB_BUF0_DEGC_CALI_V1(x)	(((x) >> 1) & 0x3f)
 135#define CALIB_BUF0_O_SLOPE_V1(x)	(((x) >> 26) & 0x3f)
 136#define CALIB_BUF0_O_SLOPE_SIGN_V1(x)	(((x) >> 7) & 0x1)
 137#define CALIB_BUF1_ID_V1(x)		(((x) >> 9) & 0x1)
 138
 139/*
 140 * Layout of the fuses providing the calibration data
 141 * These macros could be used for MT7622.
 142 */
 143#define CALIB_BUF0_ADC_OE_V2(x)		(((x) >> 22) & 0x3ff)
 144#define CALIB_BUF0_ADC_GE_V2(x)		(((x) >> 12) & 0x3ff)
 145#define CALIB_BUF0_DEGC_CALI_V2(x)	(((x) >> 6) & 0x3f)
 146#define CALIB_BUF0_O_SLOPE_V2(x)	(((x) >> 0) & 0x3f)
 147#define CALIB_BUF1_VTS_TS1_V2(x)	(((x) >> 23) & 0x1ff)
 148#define CALIB_BUF1_VTS_TS2_V2(x)	(((x) >> 14) & 0x1ff)
 149#define CALIB_BUF1_VTS_TSABB_V2(x)	(((x) >> 5) & 0x1ff)
 150#define CALIB_BUF1_VALID_V2(x)		(((x) >> 4) & 0x1)
 151#define CALIB_BUF1_O_SLOPE_SIGN_V2(x)	(((x) >> 3) & 0x1)
 152
 153enum {
 154	VTS1,
 155	VTS2,
 156	VTS3,
 157	VTS4,
 158	VTS5,
 159	VTSABB,
 160	MAX_NUM_VTS,
 161};
 162
 163enum mtk_thermal_version {
 164	MTK_THERMAL_V1 = 1,
 165	MTK_THERMAL_V2,
 166};
 167
 168/* MT2701 thermal sensors */
 169#define MT2701_TS1	0
 170#define MT2701_TS2	1
 171#define MT2701_TSABB	2
 172
 173/* AUXADC channel 11 is used for the temperature sensors */
 174#define MT2701_TEMP_AUXADC_CHANNEL	11
 175
 176/* The total number of temperature sensors in the MT2701 */
 177#define MT2701_NUM_SENSORS	3
 178
 179/* The number of sensing points per bank */
 180#define MT2701_NUM_SENSORS_PER_ZONE	3
 181
 182/* The number of controller in the MT2701 */
 183#define MT2701_NUM_CONTROLLER		1
 184
 185/* The calibration coefficient of sensor  */
 186#define MT2701_CALIBRATION	165
 187
 188/* MT2712 thermal sensors */
 189#define MT2712_TS1	0
 190#define MT2712_TS2	1
 191#define MT2712_TS3	2
 192#define MT2712_TS4	3
 193
 194/* AUXADC channel 11 is used for the temperature sensors */
 195#define MT2712_TEMP_AUXADC_CHANNEL	11
 196
 197/* The total number of temperature sensors in the MT2712 */
 198#define MT2712_NUM_SENSORS	4
 199
 200/* The number of sensing points per bank */
 201#define MT2712_NUM_SENSORS_PER_ZONE	4
 202
 203/* The number of controller in the MT2712 */
 204#define MT2712_NUM_CONTROLLER		1
 205
 206/* The calibration coefficient of sensor  */
 207#define MT2712_CALIBRATION	165
 208
 209#define MT7622_TEMP_AUXADC_CHANNEL	11
 210#define MT7622_NUM_SENSORS		1
 211#define MT7622_NUM_ZONES		1
 212#define MT7622_NUM_SENSORS_PER_ZONE	1
 213#define MT7622_TS1	0
 214#define MT7622_NUM_CONTROLLER		1
 215
 216/* The maximum number of banks */
 217#define MAX_NUM_ZONES		8
 218
 219/* The calibration coefficient of sensor  */
 220#define MT7622_CALIBRATION	165
 221
 222/* MT8183 thermal sensors */
 223#define MT8183_TS1	0
 224#define MT8183_TS2	1
 225#define MT8183_TS3	2
 226#define MT8183_TS4	3
 227#define MT8183_TS5	4
 228#define MT8183_TSABB	5
 229
 230/* AUXADC channel  is used for the temperature sensors */
 231#define MT8183_TEMP_AUXADC_CHANNEL	11
 232
 233/* The total number of temperature sensors in the MT8183 */
 234#define MT8183_NUM_SENSORS	6
 235
 236/* The number of banks in the MT8183 */
 237#define MT8183_NUM_ZONES               1
 238
 239/* The number of sensing points per bank */
 240#define MT8183_NUM_SENSORS_PER_ZONE	 6
 241
 242/* The number of controller in the MT8183 */
 243#define MT8183_NUM_CONTROLLER		2
 244
 245/* The calibration coefficient of sensor  */
 246#define MT8183_CALIBRATION	153
 247
 248struct mtk_thermal;
 249
 250struct thermal_bank_cfg {
 251	unsigned int num_sensors;
 252	const int *sensors;
 253};
 254
 255struct mtk_thermal_bank {
 256	struct mtk_thermal *mt;
 257	int id;
 258};
 259
 260struct mtk_thermal_data {
 261	s32 num_banks;
 262	s32 num_sensors;
 263	s32 auxadc_channel;
 264	const int *vts_index;
 265	const int *sensor_mux_values;
 266	const int *msr;
 267	const int *adcpnp;
 268	const int cali_val;
 269	const int num_controller;
 270	const int *controller_offset;
 271	bool need_switch_bank;
 272	struct thermal_bank_cfg bank_data[MAX_NUM_ZONES];
 273	enum mtk_thermal_version version;
 274};
 275
 276struct mtk_thermal {
 277	struct device *dev;
 278	void __iomem *thermal_base;
 279
 280	struct clk *clk_peri_therm;
 281	struct clk *clk_auxadc;
 
 
 
 282	/* lock: for getting and putting banks */
 283	struct mutex lock;
 284
 285	/* Calibration values */
 286	s32 adc_ge;
 287	s32 adc_oe;
 288	s32 degc_cali;
 289	s32 o_slope;
 290	s32 o_slope_sign;
 291	s32 vts[MAX_NUM_VTS];
 292
 293	const struct mtk_thermal_data *conf;
 294	struct mtk_thermal_bank banks[MAX_NUM_ZONES];
 295};
 296
 297/* MT8183 thermal sensor data */
 298static const int mt8183_bank_data[MT8183_NUM_SENSORS] = {
 299	MT8183_TS1, MT8183_TS2, MT8183_TS3, MT8183_TS4, MT8183_TS5, MT8183_TSABB
 300};
 301
 302static const int mt8183_msr[MT8183_NUM_SENSORS_PER_ZONE] = {
 303	TEMP_MSR0_1, TEMP_MSR1_1, TEMP_MSR2_1, TEMP_MSR1, TEMP_MSR0, TEMP_MSR3_1
 304};
 305
 306static const int mt8183_adcpnp[MT8183_NUM_SENSORS_PER_ZONE] = {
 307	TEMP_ADCPNP0_1, TEMP_ADCPNP1_1, TEMP_ADCPNP2_1,
 308	TEMP_ADCPNP1, TEMP_ADCPNP0, TEMP_ADCPNP3_1
 309};
 310
 311static const int mt8183_mux_values[MT8183_NUM_SENSORS] = { 0, 1, 2, 3, 4, 0 };
 312static const int mt8183_tc_offset[MT8183_NUM_CONTROLLER] = {0x0, 0x100};
 313
 314static const int mt8183_vts_index[MT8183_NUM_SENSORS] = {
 315	VTS1, VTS2, VTS3, VTS4, VTS5, VTSABB
 316};
 317
 318/* MT8173 thermal sensor data */
 319static const int mt8173_bank_data[MT8173_NUM_ZONES][3] = {
 320	{ MT8173_TS2, MT8173_TS3 },
 321	{ MT8173_TS2, MT8173_TS4 },
 322	{ MT8173_TS1, MT8173_TS2, MT8173_TSABB },
 323	{ MT8173_TS2 },
 324};
 325
 326static const int mt8173_msr[MT8173_NUM_SENSORS_PER_ZONE] = {
 327	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
 328};
 329
 330static const int mt8173_adcpnp[MT8173_NUM_SENSORS_PER_ZONE] = {
 331	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
 332};
 333
 334static const int mt8173_mux_values[MT8173_NUM_SENSORS] = { 0, 1, 2, 3, 16 };
 335static const int mt8173_tc_offset[MT8173_NUM_CONTROLLER] = { 0x0, };
 336
 337static const int mt8173_vts_index[MT8173_NUM_SENSORS] = {
 338	VTS1, VTS2, VTS3, VTS4, VTSABB
 339};
 340
 341/* MT2701 thermal sensor data */
 342static const int mt2701_bank_data[MT2701_NUM_SENSORS] = {
 343	MT2701_TS1, MT2701_TS2, MT2701_TSABB
 344};
 345
 346static const int mt2701_msr[MT2701_NUM_SENSORS_PER_ZONE] = {
 347	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2
 348};
 349
 350static const int mt2701_adcpnp[MT2701_NUM_SENSORS_PER_ZONE] = {
 351	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2
 352};
 353
 354static const int mt2701_mux_values[MT2701_NUM_SENSORS] = { 0, 1, 16 };
 355static const int mt2701_tc_offset[MT2701_NUM_CONTROLLER] = { 0x0, };
 356
 357static const int mt2701_vts_index[MT2701_NUM_SENSORS] = {
 358	VTS1, VTS2, VTS3
 359};
 360
 361/* MT2712 thermal sensor data */
 362static const int mt2712_bank_data[MT2712_NUM_SENSORS] = {
 363	MT2712_TS1, MT2712_TS2, MT2712_TS3, MT2712_TS4
 364};
 365
 366static const int mt2712_msr[MT2712_NUM_SENSORS_PER_ZONE] = {
 367	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
 368};
 369
 370static const int mt2712_adcpnp[MT2712_NUM_SENSORS_PER_ZONE] = {
 371	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
 372};
 373
 374static const int mt2712_mux_values[MT2712_NUM_SENSORS] = { 0, 1, 2, 3 };
 375static const int mt2712_tc_offset[MT2712_NUM_CONTROLLER] = { 0x0, };
 376
 377static const int mt2712_vts_index[MT2712_NUM_SENSORS] = {
 378	VTS1, VTS2, VTS3, VTS4
 379};
 380
 381/* MT7622 thermal sensor data */
 382static const int mt7622_bank_data[MT7622_NUM_SENSORS] = { MT7622_TS1, };
 383static const int mt7622_msr[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, };
 384static const int mt7622_adcpnp[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, };
 385static const int mt7622_mux_values[MT7622_NUM_SENSORS] = { 0, };
 386static const int mt7622_vts_index[MT7622_NUM_SENSORS] = { VTS1 };
 387static const int mt7622_tc_offset[MT7622_NUM_CONTROLLER] = { 0x0, };
 388
 389/*
 390 * The MT8173 thermal controller has four banks. Each bank can read up to
 391 * four temperature sensors simultaneously. The MT8173 has a total of 5
 392 * temperature sensors. We use each bank to measure a certain area of the
 393 * SoC. Since TS2 is located centrally in the SoC it is influenced by multiple
 394 * areas, hence is used in different banks.
 395 *
 396 * The thermal core only gets the maximum temperature of all banks, so
 397 * the bank concept wouldn't be necessary here. However, the SVS (Smart
 398 * Voltage Scaling) unit makes its decisions based on the same bank
 399 * data, and this indeed needs the temperatures of the individual banks
 400 * for making better decisions.
 401 */
 402static const struct mtk_thermal_data mt8173_thermal_data = {
 403	.auxadc_channel = MT8173_TEMP_AUXADC_CHANNEL,
 404	.num_banks = MT8173_NUM_ZONES,
 405	.num_sensors = MT8173_NUM_SENSORS,
 406	.vts_index = mt8173_vts_index,
 407	.cali_val = MT8173_CALIBRATION,
 408	.num_controller = MT8173_NUM_CONTROLLER,
 409	.controller_offset = mt8173_tc_offset,
 410	.need_switch_bank = true,
 411	.bank_data = {
 412		{
 413			.num_sensors = 2,
 414			.sensors = mt8173_bank_data[0],
 415		}, {
 416			.num_sensors = 2,
 417			.sensors = mt8173_bank_data[1],
 418		}, {
 419			.num_sensors = 3,
 420			.sensors = mt8173_bank_data[2],
 421		}, {
 422			.num_sensors = 1,
 423			.sensors = mt8173_bank_data[3],
 424		},
 425	},
 426	.msr = mt8173_msr,
 427	.adcpnp = mt8173_adcpnp,
 428	.sensor_mux_values = mt8173_mux_values,
 429	.version = MTK_THERMAL_V1,
 430};
 431
 432/*
 433 * The MT2701 thermal controller has one bank, which can read up to
 434 * three temperature sensors simultaneously. The MT2701 has a total of 3
 435 * temperature sensors.
 436 *
 437 * The thermal core only gets the maximum temperature of this one bank,
 438 * so the bank concept wouldn't be necessary here. However, the SVS (Smart
 439 * Voltage Scaling) unit makes its decisions based on the same bank
 440 * data.
 441 */
 442static const struct mtk_thermal_data mt2701_thermal_data = {
 443	.auxadc_channel = MT2701_TEMP_AUXADC_CHANNEL,
 444	.num_banks = 1,
 445	.num_sensors = MT2701_NUM_SENSORS,
 446	.vts_index = mt2701_vts_index,
 447	.cali_val = MT2701_CALIBRATION,
 448	.num_controller = MT2701_NUM_CONTROLLER,
 449	.controller_offset = mt2701_tc_offset,
 450	.need_switch_bank = true,
 451	.bank_data = {
 452		{
 453			.num_sensors = 3,
 454			.sensors = mt2701_bank_data,
 455		},
 456	},
 457	.msr = mt2701_msr,
 458	.adcpnp = mt2701_adcpnp,
 459	.sensor_mux_values = mt2701_mux_values,
 460	.version = MTK_THERMAL_V1,
 461};
 462
 463/*
 464 * The MT2712 thermal controller has one bank, which can read up to
 465 * four temperature sensors simultaneously. The MT2712 has a total of 4
 466 * temperature sensors.
 467 *
 468 * The thermal core only gets the maximum temperature of this one bank,
 469 * so the bank concept wouldn't be necessary here. However, the SVS (Smart
 470 * Voltage Scaling) unit makes its decisions based on the same bank
 471 * data.
 472 */
 473static const struct mtk_thermal_data mt2712_thermal_data = {
 474	.auxadc_channel = MT2712_TEMP_AUXADC_CHANNEL,
 475	.num_banks = 1,
 476	.num_sensors = MT2712_NUM_SENSORS,
 477	.vts_index = mt2712_vts_index,
 478	.cali_val = MT2712_CALIBRATION,
 479	.num_controller = MT2712_NUM_CONTROLLER,
 480	.controller_offset = mt2712_tc_offset,
 481	.need_switch_bank = true,
 482	.bank_data = {
 483		{
 484			.num_sensors = 4,
 485			.sensors = mt2712_bank_data,
 486		},
 487	},
 488	.msr = mt2712_msr,
 489	.adcpnp = mt2712_adcpnp,
 490	.sensor_mux_values = mt2712_mux_values,
 491	.version = MTK_THERMAL_V1,
 492};
 493
 494/*
 495 * MT7622 have only one sensing point which uses AUXADC Channel 11 for raw data
 496 * access.
 497 */
 498static const struct mtk_thermal_data mt7622_thermal_data = {
 499	.auxadc_channel = MT7622_TEMP_AUXADC_CHANNEL,
 500	.num_banks = MT7622_NUM_ZONES,
 501	.num_sensors = MT7622_NUM_SENSORS,
 502	.vts_index = mt7622_vts_index,
 503	.cali_val = MT7622_CALIBRATION,
 504	.num_controller = MT7622_NUM_CONTROLLER,
 505	.controller_offset = mt7622_tc_offset,
 506	.need_switch_bank = true,
 507	.bank_data = {
 508		{
 509			.num_sensors = 1,
 510			.sensors = mt7622_bank_data,
 511		},
 512	},
 513	.msr = mt7622_msr,
 514	.adcpnp = mt7622_adcpnp,
 515	.sensor_mux_values = mt7622_mux_values,
 516	.version = MTK_THERMAL_V2,
 517};
 518
 519/*
 520 * The MT8183 thermal controller has one bank for the current SW framework.
 521 * The MT8183 has a total of 6 temperature sensors.
 522 * There are two thermal controller to control the six sensor.
 523 * The first one bind 2 sensor, and the other bind 4 sensors.
 524 * The thermal core only gets the maximum temperature of all sensor, so
 525 * the bank concept wouldn't be necessary here. However, the SVS (Smart
 526 * Voltage Scaling) unit makes its decisions based on the same bank
 527 * data, and this indeed needs the temperatures of the individual banks
 528 * for making better decisions.
 529 */
 530static const struct mtk_thermal_data mt8183_thermal_data = {
 531	.auxadc_channel = MT8183_TEMP_AUXADC_CHANNEL,
 532	.num_banks = MT8183_NUM_ZONES,
 533	.num_sensors = MT8183_NUM_SENSORS,
 534	.vts_index = mt8183_vts_index,
 535	.cali_val = MT8183_CALIBRATION,
 536	.num_controller = MT8183_NUM_CONTROLLER,
 537	.controller_offset = mt8183_tc_offset,
 538	.need_switch_bank = false,
 539	.bank_data = {
 540		{
 541			.num_sensors = 6,
 542			.sensors = mt8183_bank_data,
 543		},
 544	},
 545
 546	.msr = mt8183_msr,
 547	.adcpnp = mt8183_adcpnp,
 548	.sensor_mux_values = mt8183_mux_values,
 549	.version = MTK_THERMAL_V1,
 550};
 551
 552/**
 553 * raw_to_mcelsius - convert a raw ADC value to mcelsius
 554 * @mt:	The thermal controller
 555 * @sensno:	sensor number
 556 * @raw:	raw ADC value
 557 *
 558 * This converts the raw ADC value to mcelsius using the SoC specific
 559 * calibration constants
 560 */
 561static int raw_to_mcelsius_v1(struct mtk_thermal *mt, int sensno, s32 raw)
 562{
 563	s32 tmp;
 564
 565	raw &= 0xfff;
 566
 567	tmp = 203450520 << 3;
 568	tmp /= mt->conf->cali_val + mt->o_slope;
 569	tmp /= 10000 + mt->adc_ge;
 570	tmp *= raw - mt->vts[sensno] - 3350;
 571	tmp >>= 3;
 572
 573	return mt->degc_cali * 500 - tmp;
 574}
 575
 576static int raw_to_mcelsius_v2(struct mtk_thermal *mt, int sensno, s32 raw)
 577{
 578	s32 format_1;
 579	s32 format_2;
 580	s32 g_oe;
 581	s32 g_gain;
 582	s32 g_x_roomt;
 583	s32 tmp;
 584
 585	if (raw == 0)
 586		return 0;
 587
 588	raw &= 0xfff;
 589	g_gain = 10000 + (((mt->adc_ge - 512) * 10000) >> 12);
 590	g_oe = mt->adc_oe - 512;
 591	format_1 = mt->vts[VTS2] + 3105 - g_oe;
 592	format_2 = (mt->degc_cali * 10) >> 1;
 593	g_x_roomt = (((format_1 * 10000) >> 12) * 10000) / g_gain;
 594
 595	tmp = (((((raw - g_oe) * 10000) >> 12) * 10000) / g_gain) - g_x_roomt;
 596	tmp = tmp * 10 * 100 / 11;
 597
 598	if (mt->o_slope_sign == 0)
 599		tmp = tmp / (165 - mt->o_slope);
 600	else
 601		tmp = tmp / (165 + mt->o_slope);
 602
 603	return (format_2 - tmp) * 100;
 604}
 605
 606/**
 607 * mtk_thermal_get_bank - get bank
 608 * @bank:	The bank
 609 *
 610 * The bank registers are banked, we have to select a bank in the
 611 * PTPCORESEL register to access it.
 612 */
 613static void mtk_thermal_get_bank(struct mtk_thermal_bank *bank)
 614{
 615	struct mtk_thermal *mt = bank->mt;
 616	u32 val;
 617
 618	if (mt->conf->need_switch_bank) {
 619		mutex_lock(&mt->lock);
 620
 621		val = readl(mt->thermal_base + PTPCORESEL);
 622		val &= ~0xf;
 623		val |= bank->id;
 624		writel(val, mt->thermal_base + PTPCORESEL);
 625	}
 626}
 627
 628/**
 629 * mtk_thermal_put_bank - release bank
 630 * @bank:	The bank
 631 *
 632 * release a bank previously taken with mtk_thermal_get_bank,
 633 */
 634static void mtk_thermal_put_bank(struct mtk_thermal_bank *bank)
 635{
 636	struct mtk_thermal *mt = bank->mt;
 637
 638	if (mt->conf->need_switch_bank)
 639		mutex_unlock(&mt->lock);
 640}
 641
 642/**
 643 * mtk_thermal_bank_temperature - get the temperature of a bank
 644 * @bank:	The bank
 645 *
 646 * The temperature of a bank is considered the maximum temperature of
 647 * the sensors associated to the bank.
 648 */
 649static int mtk_thermal_bank_temperature(struct mtk_thermal_bank *bank)
 650{
 651	struct mtk_thermal *mt = bank->mt;
 652	const struct mtk_thermal_data *conf = mt->conf;
 653	int i, temp = INT_MIN, max = INT_MIN;
 654	u32 raw;
 655
 656	for (i = 0; i < conf->bank_data[bank->id].num_sensors; i++) {
 657		raw = readl(mt->thermal_base + conf->msr[i]);
 658
 659		if (mt->conf->version == MTK_THERMAL_V1) {
 660			temp = raw_to_mcelsius_v1(
 661				mt, conf->bank_data[bank->id].sensors[i], raw);
 662		} else {
 663			temp = raw_to_mcelsius_v2(
 664				mt, conf->bank_data[bank->id].sensors[i], raw);
 665		}
 666
 667		/*
 668		 * The first read of a sensor often contains very high bogus
 669		 * temperature value. Filter these out so that the system does
 670		 * not immediately shut down.
 671		 */
 672		if (temp > 200000)
 673			temp = 0;
 674
 675		if (temp > max)
 676			max = temp;
 677	}
 678
 679	return max;
 680}
 681
 682static int mtk_read_temp(struct thermal_zone_device *tz, int *temperature)
 683{
 684	struct mtk_thermal *mt = tz->devdata;
 685	int i;
 686	int tempmax = INT_MIN;
 687
 688	for (i = 0; i < mt->conf->num_banks; i++) {
 689		struct mtk_thermal_bank *bank = &mt->banks[i];
 690
 691		mtk_thermal_get_bank(bank);
 692
 693		tempmax = max(tempmax, mtk_thermal_bank_temperature(bank));
 694
 695		mtk_thermal_put_bank(bank);
 696	}
 697
 698	*temperature = tempmax;
 699
 700	return 0;
 701}
 702
 703static const struct thermal_zone_device_ops mtk_thermal_ops = {
 704	.get_temp = mtk_read_temp,
 705};
 706
 707static void mtk_thermal_init_bank(struct mtk_thermal *mt, int num,
 708				  u32 apmixed_phys_base, u32 auxadc_phys_base,
 709				  int ctrl_id)
 710{
 711	struct mtk_thermal_bank *bank = &mt->banks[num];
 712	const struct mtk_thermal_data *conf = mt->conf;
 713	int i;
 714
 715	int offset = mt->conf->controller_offset[ctrl_id];
 716	void __iomem *controller_base = mt->thermal_base + offset;
 717
 718	bank->id = num;
 719	bank->mt = mt;
 720
 721	mtk_thermal_get_bank(bank);
 722
 723	/* bus clock 66M counting unit is 12 * 15.15ns * 256 = 46.540us */
 724	writel(TEMP_MONCTL1_PERIOD_UNIT(12), controller_base + TEMP_MONCTL1);
 725
 726	/*
 727	 * filt interval is 1 * 46.540us = 46.54us,
 728	 * sen interval is 429 * 46.540us = 19.96ms
 729	 */
 730	writel(TEMP_MONCTL2_FILTER_INTERVAL(1) |
 731			TEMP_MONCTL2_SENSOR_INTERVAL(429),
 732			controller_base + TEMP_MONCTL2);
 733
 734	/* poll is set to 10u */
 735	writel(TEMP_AHBPOLL_ADC_POLL_INTERVAL(768),
 736	       controller_base + TEMP_AHBPOLL);
 737
 738	/* temperature sampling control, 1 sample */
 739	writel(0x0, controller_base + TEMP_MSRCTL0);
 740
 741	/* exceed this polling time, IRQ would be inserted */
 742	writel(0xffffffff, controller_base + TEMP_AHBTO);
 743
 744	/* number of interrupts per event, 1 is enough */
 745	writel(0x0, controller_base + TEMP_MONIDET0);
 746	writel(0x0, controller_base + TEMP_MONIDET1);
 747
 748	/*
 749	 * The MT8173 thermal controller does not have its own ADC. Instead it
 750	 * uses AHB bus accesses to control the AUXADC. To do this the thermal
 751	 * controller has to be programmed with the physical addresses of the
 752	 * AUXADC registers and with the various bit positions in the AUXADC.
 753	 * Also the thermal controller controls a mux in the APMIXEDSYS register
 754	 * space.
 755	 */
 756
 757	/*
 758	 * this value will be stored to TEMP_PNPMUXADDR (TEMP_SPARE0)
 759	 * automatically by hw
 760	 */
 761	writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCMUX);
 762
 763	/* AHB address for auxadc mux selection */
 764	writel(auxadc_phys_base + AUXADC_CON1_CLR_V,
 765	       controller_base + TEMP_ADCMUXADDR);
 766
 767	if (mt->conf->version == MTK_THERMAL_V1) {
 768		/* AHB address for pnp sensor mux selection */
 769		writel(apmixed_phys_base + APMIXED_SYS_TS_CON1,
 770		       controller_base + TEMP_PNPMUXADDR);
 771	}
 772
 773	/* AHB value for auxadc enable */
 774	writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCEN);
 775
 776	/* AHB address for auxadc enable (channel 0 immediate mode selected) */
 777	writel(auxadc_phys_base + AUXADC_CON1_SET_V,
 778	       controller_base + TEMP_ADCENADDR);
 779
 780	/* AHB address for auxadc valid bit */
 781	writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
 782	       controller_base + TEMP_ADCVALIDADDR);
 783
 784	/* AHB address for auxadc voltage output */
 785	writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
 786	       controller_base + TEMP_ADCVOLTADDR);
 787
 788	/* read valid & voltage are at the same register */
 789	writel(0x0, controller_base + TEMP_RDCTRL);
 790
 791	/* indicate where the valid bit is */
 792	writel(TEMP_ADCVALIDMASK_VALID_HIGH | TEMP_ADCVALIDMASK_VALID_POS(12),
 793	       controller_base + TEMP_ADCVALIDMASK);
 794
 795	/* no shift */
 796	writel(0x0, controller_base + TEMP_ADCVOLTAGESHIFT);
 797
 798	/* enable auxadc mux write transaction */
 799	writel(TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
 800		controller_base + TEMP_ADCWRITECTRL);
 801
 802	for (i = 0; i < conf->bank_data[num].num_sensors; i++)
 803		writel(conf->sensor_mux_values[conf->bank_data[num].sensors[i]],
 804		       mt->thermal_base + conf->adcpnp[i]);
 805
 806	writel((1 << conf->bank_data[num].num_sensors) - 1,
 807	       controller_base + TEMP_MONCTL0);
 808
 809	writel(TEMP_ADCWRITECTRL_ADC_PNP_WRITE |
 810	       TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
 811	       controller_base + TEMP_ADCWRITECTRL);
 812
 813	mtk_thermal_put_bank(bank);
 814}
 815
 816static u64 of_get_phys_base(struct device_node *np)
 817{
 818	u64 size64;
 819	const __be32 *regaddr_p;
 820
 821	regaddr_p = of_get_address(np, 0, &size64, NULL);
 822	if (!regaddr_p)
 823		return OF_BAD_ADDR;
 824
 825	return of_translate_address(np, regaddr_p);
 826}
 827
 828static int mtk_thermal_extract_efuse_v1(struct mtk_thermal *mt, u32 *buf)
 829{
 830	int i;
 831
 832	if (!(buf[0] & CALIB_BUF0_VALID_V1))
 833		return -EINVAL;
 834
 835	mt->adc_ge = CALIB_BUF1_ADC_GE_V1(buf[1]);
 836
 837	for (i = 0; i < mt->conf->num_sensors; i++) {
 838		switch (mt->conf->vts_index[i]) {
 839		case VTS1:
 840			mt->vts[VTS1] = CALIB_BUF0_VTS_TS1_V1(buf[0]);
 841			break;
 842		case VTS2:
 843			mt->vts[VTS2] = CALIB_BUF0_VTS_TS2_V1(buf[0]);
 844			break;
 845		case VTS3:
 846			mt->vts[VTS3] = CALIB_BUF1_VTS_TS3_V1(buf[1]);
 847			break;
 848		case VTS4:
 849			mt->vts[VTS4] = CALIB_BUF2_VTS_TS4_V1(buf[2]);
 850			break;
 851		case VTS5:
 852			mt->vts[VTS5] = CALIB_BUF2_VTS_TS5_V1(buf[2]);
 853			break;
 854		case VTSABB:
 855			mt->vts[VTSABB] =
 856				CALIB_BUF2_VTS_TSABB_V1(buf[2]);
 857			break;
 858		default:
 859			break;
 860		}
 861	}
 862
 863	mt->degc_cali = CALIB_BUF0_DEGC_CALI_V1(buf[0]);
 864	if (CALIB_BUF1_ID_V1(buf[1]) &
 865	    CALIB_BUF0_O_SLOPE_SIGN_V1(buf[0]))
 866		mt->o_slope = -CALIB_BUF0_O_SLOPE_V1(buf[0]);
 867	else
 868		mt->o_slope = CALIB_BUF0_O_SLOPE_V1(buf[0]);
 869
 870	return 0;
 871}
 872
 873static int mtk_thermal_extract_efuse_v2(struct mtk_thermal *mt, u32 *buf)
 874{
 875	if (!CALIB_BUF1_VALID_V2(buf[1]))
 876		return -EINVAL;
 877
 878	mt->adc_oe = CALIB_BUF0_ADC_OE_V2(buf[0]);
 879	mt->adc_ge = CALIB_BUF0_ADC_GE_V2(buf[0]);
 880	mt->degc_cali = CALIB_BUF0_DEGC_CALI_V2(buf[0]);
 881	mt->o_slope = CALIB_BUF0_O_SLOPE_V2(buf[0]);
 882	mt->vts[VTS1] = CALIB_BUF1_VTS_TS1_V2(buf[1]);
 883	mt->vts[VTS2] = CALIB_BUF1_VTS_TS2_V2(buf[1]);
 884	mt->vts[VTSABB] = CALIB_BUF1_VTS_TSABB_V2(buf[1]);
 885	mt->o_slope_sign = CALIB_BUF1_O_SLOPE_SIGN_V2(buf[1]);
 886
 887	return 0;
 888}
 889
 890static int mtk_thermal_get_calibration_data(struct device *dev,
 891					    struct mtk_thermal *mt)
 892{
 893	struct nvmem_cell *cell;
 894	u32 *buf;
 895	size_t len;
 896	int i, ret = 0;
 897
 898	/* Start with default values */
 899	mt->adc_ge = 512;
 900	for (i = 0; i < mt->conf->num_sensors; i++)
 901		mt->vts[i] = 260;
 902	mt->degc_cali = 40;
 903	mt->o_slope = 0;
 904
 905	cell = nvmem_cell_get(dev, "calibration-data");
 906	if (IS_ERR(cell)) {
 907		if (PTR_ERR(cell) == -EPROBE_DEFER)
 908			return PTR_ERR(cell);
 909		return 0;
 910	}
 911
 912	buf = (u32 *)nvmem_cell_read(cell, &len);
 913
 914	nvmem_cell_put(cell);
 915
 916	if (IS_ERR(buf))
 917		return PTR_ERR(buf);
 918
 919	if (len < 3 * sizeof(u32)) {
 920		dev_warn(dev, "invalid calibration data\n");
 921		ret = -EINVAL;
 922		goto out;
 923	}
 924
 925	if (mt->conf->version == MTK_THERMAL_V1)
 926		ret = mtk_thermal_extract_efuse_v1(mt, buf);
 927	else
 928		ret = mtk_thermal_extract_efuse_v2(mt, buf);
 929
 930	if (ret) {
 
 
 
 
 931		dev_info(dev, "Device not calibrated, using default calibration values\n");
 932		ret = 0;
 933	}
 934
 935out:
 936	kfree(buf);
 937
 938	return ret;
 939}
 940
 941static const struct of_device_id mtk_thermal_of_match[] = {
 942	{
 943		.compatible = "mediatek,mt8173-thermal",
 944		.data = (void *)&mt8173_thermal_data,
 945	},
 946	{
 947		.compatible = "mediatek,mt2701-thermal",
 948		.data = (void *)&mt2701_thermal_data,
 949	},
 950	{
 951		.compatible = "mediatek,mt2712-thermal",
 952		.data = (void *)&mt2712_thermal_data,
 953	},
 954	{
 955		.compatible = "mediatek,mt7622-thermal",
 956		.data = (void *)&mt7622_thermal_data,
 957	},
 958	{
 959		.compatible = "mediatek,mt8183-thermal",
 960		.data = (void *)&mt8183_thermal_data,
 961	}, {
 962	},
 963};
 964MODULE_DEVICE_TABLE(of, mtk_thermal_of_match);
 965
 966static void mtk_thermal_turn_on_buffer(void __iomem *apmixed_base)
 967{
 968	int tmp;
 969
 970	tmp = readl(apmixed_base + APMIXED_SYS_TS_CON1);
 971	tmp &= ~(0x37);
 972	tmp |= 0x1;
 973	writel(tmp, apmixed_base + APMIXED_SYS_TS_CON1);
 974	udelay(200);
 975}
 976
 977static void mtk_thermal_release_periodic_ts(struct mtk_thermal *mt,
 978					    void __iomem *auxadc_base)
 979{
 980	int tmp;
 981
 982	writel(0x800, auxadc_base + AUXADC_CON1_SET_V);
 983	writel(0x1, mt->thermal_base + TEMP_MONCTL0);
 984	tmp = readl(mt->thermal_base + TEMP_MSRCTL1);
 985	writel((tmp & (~0x10e)), mt->thermal_base + TEMP_MSRCTL1);
 986}
 987
 988static int mtk_thermal_probe(struct platform_device *pdev)
 989{
 990	int ret, i, ctrl_id;
 991	struct device_node *auxadc, *apmixedsys, *np = pdev->dev.of_node;
 992	struct mtk_thermal *mt;
 993	struct resource *res;
 994	u64 auxadc_phys_base, apmixed_phys_base;
 995	struct thermal_zone_device *tzdev;
 996	void __iomem *apmixed_base, *auxadc_base;
 997
 998	mt = devm_kzalloc(&pdev->dev, sizeof(*mt), GFP_KERNEL);
 999	if (!mt)
1000		return -ENOMEM;
1001
1002	mt->conf = of_device_get_match_data(&pdev->dev);
1003
1004	mt->clk_peri_therm = devm_clk_get(&pdev->dev, "therm");
1005	if (IS_ERR(mt->clk_peri_therm))
1006		return PTR_ERR(mt->clk_peri_therm);
1007
1008	mt->clk_auxadc = devm_clk_get(&pdev->dev, "auxadc");
1009	if (IS_ERR(mt->clk_auxadc))
1010		return PTR_ERR(mt->clk_auxadc);
1011
1012	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1013	mt->thermal_base = devm_ioremap_resource(&pdev->dev, res);
1014	if (IS_ERR(mt->thermal_base))
1015		return PTR_ERR(mt->thermal_base);
1016
1017	ret = mtk_thermal_get_calibration_data(&pdev->dev, mt);
1018	if (ret)
1019		return ret;
1020
1021	mutex_init(&mt->lock);
1022
1023	mt->dev = &pdev->dev;
1024
1025	auxadc = of_parse_phandle(np, "mediatek,auxadc", 0);
1026	if (!auxadc) {
1027		dev_err(&pdev->dev, "missing auxadc node\n");
1028		return -ENODEV;
1029	}
1030
1031	auxadc_base = of_iomap(auxadc, 0);
1032	auxadc_phys_base = of_get_phys_base(auxadc);
1033
1034	of_node_put(auxadc);
1035
1036	if (auxadc_phys_base == OF_BAD_ADDR) {
1037		dev_err(&pdev->dev, "Can't get auxadc phys address\n");
1038		return -EINVAL;
1039	}
1040
1041	apmixedsys = of_parse_phandle(np, "mediatek,apmixedsys", 0);
1042	if (!apmixedsys) {
1043		dev_err(&pdev->dev, "missing apmixedsys node\n");
1044		return -ENODEV;
1045	}
1046
1047	apmixed_base = of_iomap(apmixedsys, 0);
1048	apmixed_phys_base = of_get_phys_base(apmixedsys);
1049
1050	of_node_put(apmixedsys);
1051
1052	if (apmixed_phys_base == OF_BAD_ADDR) {
1053		dev_err(&pdev->dev, "Can't get auxadc phys address\n");
1054		return -EINVAL;
1055	}
1056
1057	ret = device_reset_optional(&pdev->dev);
1058	if (ret)
1059		return ret;
1060
1061	ret = clk_prepare_enable(mt->clk_auxadc);
1062	if (ret) {
1063		dev_err(&pdev->dev, "Can't enable auxadc clk: %d\n", ret);
1064		return ret;
1065	}
1066
 
 
 
 
1067	ret = clk_prepare_enable(mt->clk_peri_therm);
1068	if (ret) {
1069		dev_err(&pdev->dev, "Can't enable peri clk: %d\n", ret);
1070		goto err_disable_clk_auxadc;
1071	}
1072
1073	if (mt->conf->version == MTK_THERMAL_V2) {
1074		mtk_thermal_turn_on_buffer(apmixed_base);
1075		mtk_thermal_release_periodic_ts(mt, auxadc_base);
1076	}
1077
1078	for (ctrl_id = 0; ctrl_id < mt->conf->num_controller ; ctrl_id++)
1079		for (i = 0; i < mt->conf->num_banks; i++)
1080			mtk_thermal_init_bank(mt, i, apmixed_phys_base,
1081					      auxadc_phys_base, ctrl_id);
1082
1083	platform_set_drvdata(pdev, mt);
1084
1085	tzdev = devm_thermal_of_zone_register(&pdev->dev, 0, mt,
1086					      &mtk_thermal_ops);
1087	if (IS_ERR(tzdev)) {
1088		ret = PTR_ERR(tzdev);
1089		goto err_disable_clk_peri_therm;
1090	}
1091
1092	ret = devm_thermal_add_hwmon_sysfs(tzdev);
1093	if (ret)
1094		dev_warn(&pdev->dev, "error in thermal_add_hwmon_sysfs");
1095
1096	return 0;
1097
1098err_disable_clk_peri_therm:
1099	clk_disable_unprepare(mt->clk_peri_therm);
 
1100err_disable_clk_auxadc:
1101	clk_disable_unprepare(mt->clk_auxadc);
1102
1103	return ret;
1104}
1105
1106static int mtk_thermal_remove(struct platform_device *pdev)
1107{
1108	struct mtk_thermal *mt = platform_get_drvdata(pdev);
1109
 
 
1110	clk_disable_unprepare(mt->clk_peri_therm);
1111	clk_disable_unprepare(mt->clk_auxadc);
1112
1113	return 0;
1114}
1115
 
 
 
 
 
 
 
1116static struct platform_driver mtk_thermal_driver = {
1117	.probe = mtk_thermal_probe,
1118	.remove = mtk_thermal_remove,
1119	.driver = {
1120		.name = "mtk-thermal",
1121		.of_match_table = mtk_thermal_of_match,
1122	},
1123};
1124
1125module_platform_driver(mtk_thermal_driver);
1126
1127MODULE_AUTHOR("Michael Kao <michael.kao@mediatek.com>");
1128MODULE_AUTHOR("Louis Yu <louis.yu@mediatek.com>");
1129MODULE_AUTHOR("Dawei Chien <dawei.chien@mediatek.com>");
1130MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
1131MODULE_AUTHOR("Hanyi Wu <hanyi.wu@mediatek.com>");
1132MODULE_DESCRIPTION("Mediatek thermal driver");
1133MODULE_LICENSE("GPL v2");
v4.6
 
  1/*
  2 * Copyright (c) 2015 MediaTek Inc.
  3 * Author: Hanyi Wu <hanyi.wu@mediatek.com>
  4 *         Sascha Hauer <s.hauer@pengutronix.de>
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 14 */
 15
 16#include <linux/clk.h>
 17#include <linux/delay.h>
 18#include <linux/interrupt.h>
 19#include <linux/kernel.h>
 20#include <linux/module.h>
 21#include <linux/nvmem-consumer.h>
 22#include <linux/of.h>
 23#include <linux/of_address.h>
 
 24#include <linux/platform_device.h>
 25#include <linux/slab.h>
 26#include <linux/io.h>
 27#include <linux/thermal.h>
 28#include <linux/reset.h>
 29#include <linux/types.h>
 30
 
 
 31/* AUXADC Registers */
 32#define AUXADC_CON0_V		0x000
 33#define AUXADC_CON1_V		0x004
 34#define AUXADC_CON1_SET_V	0x008
 35#define AUXADC_CON1_CLR_V	0x00c
 36#define AUXADC_CON2_V		0x010
 37#define AUXADC_DATA(channel)	(0x14 + (channel) * 4)
 38#define AUXADC_MISC_V		0x094
 39
 40#define AUXADC_CON1_CHANNEL(x)	BIT(x)
 41
 42#define APMIXED_SYS_TS_CON1	0x604
 43
 44/* Thermal Controller Registers */
 45#define TEMP_MONCTL0		0x000
 46#define TEMP_MONCTL1		0x004
 47#define TEMP_MONCTL2		0x008
 48#define TEMP_MONIDET0		0x014
 49#define TEMP_MONIDET1		0x018
 50#define TEMP_MSRCTL0		0x038
 
 51#define TEMP_AHBPOLL		0x040
 52#define TEMP_AHBTO		0x044
 53#define TEMP_ADCPNP0		0x048
 54#define TEMP_ADCPNP1		0x04c
 55#define TEMP_ADCPNP2		0x050
 56#define TEMP_ADCPNP3		0x0b4
 57
 58#define TEMP_ADCMUX		0x054
 59#define TEMP_ADCEN		0x060
 60#define TEMP_PNPMUXADDR		0x064
 61#define TEMP_ADCMUXADDR		0x068
 62#define TEMP_ADCENADDR		0x074
 63#define TEMP_ADCVALIDADDR	0x078
 64#define TEMP_ADCVOLTADDR	0x07c
 65#define TEMP_RDCTRL		0x080
 66#define TEMP_ADCVALIDMASK	0x084
 67#define TEMP_ADCVOLTAGESHIFT	0x088
 68#define TEMP_ADCWRITECTRL	0x08c
 69#define TEMP_MSR0		0x090
 70#define TEMP_MSR1		0x094
 71#define TEMP_MSR2		0x098
 72#define TEMP_MSR3		0x0B8
 73
 74#define TEMP_SPARE0		0x0f0
 75
 
 
 
 
 
 
 
 
 
 76#define PTPCORESEL		0x400
 77
 78#define TEMP_MONCTL1_PERIOD_UNIT(x)	((x) & 0x3ff)
 79
 80#define TEMP_MONCTL2_FILTER_INTERVAL(x)	(((x) & 0x3ff) << 16)
 81#define TEMP_MONCTL2_SENSOR_INTERVAL(x)	((x) & 0x3ff)
 82
 83#define TEMP_AHBPOLL_ADC_POLL_INTERVAL(x)	(x)
 84
 85#define TEMP_ADCWRITECTRL_ADC_PNP_WRITE		BIT(0)
 86#define TEMP_ADCWRITECTRL_ADC_MUX_WRITE		BIT(1)
 87
 88#define TEMP_ADCVALIDMASK_VALID_HIGH		BIT(5)
 89#define TEMP_ADCVALIDMASK_VALID_POS(bit)	(bit)
 90
 
 91#define MT8173_TS1	0
 92#define MT8173_TS2	1
 93#define MT8173_TS3	2
 94#define MT8173_TS4	3
 95#define MT8173_TSABB	4
 96
 97/* AUXADC channel 11 is used for the temperature sensors */
 98#define MT8173_TEMP_AUXADC_CHANNEL	11
 99
100/* The total number of temperature sensors in the MT8173 */
101#define MT8173_NUM_SENSORS		5
102
103/* The number of banks in the MT8173 */
104#define MT8173_NUM_ZONES		4
105
106/* The number of sensing points per bank */
107#define MT8173_NUM_SENSORS_PER_ZONE	4
108
109/* Layout of the fuses providing the calibration data */
110#define MT8173_CALIB_BUF0_VALID		BIT(0)
111#define MT8173_CALIB_BUF1_ADC_GE(x)	(((x) >> 22) & 0x3ff)
112#define MT8173_CALIB_BUF0_VTS_TS1(x)	(((x) >> 17) & 0x1ff)
113#define MT8173_CALIB_BUF0_VTS_TS2(x)	(((x) >> 8) & 0x1ff)
114#define MT8173_CALIB_BUF1_VTS_TS3(x)	(((x) >> 0) & 0x1ff)
115#define MT8173_CALIB_BUF2_VTS_TS4(x)	(((x) >> 23) & 0x1ff)
116#define MT8173_CALIB_BUF2_VTS_TSABB(x)	(((x) >> 14) & 0x1ff)
117#define MT8173_CALIB_BUF0_DEGC_CALI(x)	(((x) >> 1) & 0x3f)
118#define MT8173_CALIB_BUF0_O_SLOPE(x)	(((x) >> 26) & 0x3f)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
120#define THERMAL_NAME    "mtk-thermal"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121
122struct mtk_thermal;
123
 
 
 
 
 
124struct mtk_thermal_bank {
125	struct mtk_thermal *mt;
126	int id;
127};
128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129struct mtk_thermal {
130	struct device *dev;
131	void __iomem *thermal_base;
132
133	struct clk *clk_peri_therm;
134	struct clk *clk_auxadc;
135
136	struct mtk_thermal_bank banks[MT8173_NUM_ZONES];
137
138	/* lock: for getting and putting banks */
139	struct mutex lock;
140
141	/* Calibration values */
142	s32 adc_ge;
 
143	s32 degc_cali;
144	s32 o_slope;
145	s32 vts[MT8173_NUM_SENSORS];
 
146
147	struct thermal_zone_device *tzd;
 
148};
149
150struct mtk_thermal_bank_cfg {
151	unsigned int num_sensors;
152	unsigned int sensors[MT8173_NUM_SENSORS_PER_ZONE];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153};
154
155static const int sensor_mux_values[MT8173_NUM_SENSORS] = { 0, 1, 2, 3, 16 };
 
 
 
 
 
 
156
157/*
158 * The MT8173 thermal controller has four banks. Each bank can read up to
159 * four temperature sensors simultaneously. The MT8173 has a total of 5
160 * temperature sensors. We use each bank to measure a certain area of the
161 * SoC. Since TS2 is located centrally in the SoC it is influenced by multiple
162 * areas, hence is used in different banks.
163 *
164 * The thermal core only gets the maximum temperature of all banks, so
165 * the bank concept wouldn't be necessary here. However, the SVS (Smart
166 * Voltage Scaling) unit makes its decisions based on the same bank
167 * data, and this indeed needs the temperatures of the individual banks
168 * for making better decisions.
169 */
170static const struct mtk_thermal_bank_cfg bank_data[] = {
171	{
172		.num_sensors = 2,
173		.sensors = { MT8173_TS2, MT8173_TS3 },
174	}, {
175		.num_sensors = 2,
176		.sensors = { MT8173_TS2, MT8173_TS4 },
177	}, {
178		.num_sensors = 3,
179		.sensors = { MT8173_TS1, MT8173_TS2, MT8173_TSABB },
180	}, {
181		.num_sensors = 1,
182		.sensors = { MT8173_TS2 },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183	},
 
 
 
 
184};
185
186struct mtk_thermal_sense_point {
187	int msr;
188	int adcpnp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189};
190
191static const struct mtk_thermal_sense_point
192		sensing_points[MT8173_NUM_SENSORS_PER_ZONE] = {
193	{
194		.msr = TEMP_MSR0,
195		.adcpnp = TEMP_ADCPNP0,
196	}, {
197		.msr = TEMP_MSR1,
198		.adcpnp = TEMP_ADCPNP1,
199	}, {
200		.msr = TEMP_MSR2,
201		.adcpnp = TEMP_ADCPNP2,
202	}, {
203		.msr = TEMP_MSR3,
204		.adcpnp = TEMP_ADCPNP3,
 
 
 
 
 
 
 
 
 
 
 
205	},
 
 
 
 
 
206};
207
208/**
209 * raw_to_mcelsius - convert a raw ADC value to mcelsius
210 * @mt:		The thermal controller
 
211 * @raw:	raw ADC value
212 *
213 * This converts the raw ADC value to mcelsius using the SoC specific
214 * calibration constants
215 */
216static int raw_to_mcelsius(struct mtk_thermal *mt, int sensno, s32 raw)
217{
218	s32 tmp;
219
220	raw &= 0xfff;
221
222	tmp = 203450520 << 3;
223	tmp /= 165 + mt->o_slope;
224	tmp /= 10000 + mt->adc_ge;
225	tmp *= raw - mt->vts[sensno] - 3350;
226	tmp >>= 3;
227
228	return mt->degc_cali * 500 - tmp;
229}
230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
231/**
232 * mtk_thermal_get_bank - get bank
233 * @bank:	The bank
234 *
235 * The bank registers are banked, we have to select a bank in the
236 * PTPCORESEL register to access it.
237 */
238static void mtk_thermal_get_bank(struct mtk_thermal_bank *bank)
239{
240	struct mtk_thermal *mt = bank->mt;
241	u32 val;
242
243	mutex_lock(&mt->lock);
 
244
245	val = readl(mt->thermal_base + PTPCORESEL);
246	val &= ~0xf;
247	val |= bank->id;
248	writel(val, mt->thermal_base + PTPCORESEL);
 
249}
250
251/**
252 * mtk_thermal_put_bank - release bank
253 * @bank:	The bank
254 *
255 * release a bank previously taken with mtk_thermal_get_bank,
256 */
257static void mtk_thermal_put_bank(struct mtk_thermal_bank *bank)
258{
259	struct mtk_thermal *mt = bank->mt;
260
261	mutex_unlock(&mt->lock);
 
262}
263
264/**
265 * mtk_thermal_bank_temperature - get the temperature of a bank
266 * @bank:	The bank
267 *
268 * The temperature of a bank is considered the maximum temperature of
269 * the sensors associated to the bank.
270 */
271static int mtk_thermal_bank_temperature(struct mtk_thermal_bank *bank)
272{
273	struct mtk_thermal *mt = bank->mt;
 
274	int i, temp = INT_MIN, max = INT_MIN;
275	u32 raw;
276
277	for (i = 0; i < bank_data[bank->id].num_sensors; i++) {
278		raw = readl(mt->thermal_base + sensing_points[i].msr);
279
280		temp = raw_to_mcelsius(mt, bank_data[bank->id].sensors[i], raw);
 
 
 
 
 
 
281
282		/*
283		 * The first read of a sensor often contains very high bogus
284		 * temperature value. Filter these out so that the system does
285		 * not immediately shut down.
286		 */
287		if (temp > 200000)
288			temp = 0;
289
290		if (temp > max)
291			max = temp;
292	}
293
294	return max;
295}
296
297static int mtk_read_temp(void *data, int *temperature)
298{
299	struct mtk_thermal *mt = data;
300	int i;
301	int tempmax = INT_MIN;
302
303	for (i = 0; i < MT8173_NUM_ZONES; i++) {
304		struct mtk_thermal_bank *bank = &mt->banks[i];
305
306		mtk_thermal_get_bank(bank);
307
308		tempmax = max(tempmax, mtk_thermal_bank_temperature(bank));
309
310		mtk_thermal_put_bank(bank);
311	}
312
313	*temperature = tempmax;
314
315	return 0;
316}
317
318static const struct thermal_zone_of_device_ops mtk_thermal_ops = {
319	.get_temp = mtk_read_temp,
320};
321
322static void mtk_thermal_init_bank(struct mtk_thermal *mt, int num,
323				  u32 apmixed_phys_base, u32 auxadc_phys_base)
 
324{
325	struct mtk_thermal_bank *bank = &mt->banks[num];
326	const struct mtk_thermal_bank_cfg *cfg = &bank_data[num];
327	int i;
328
 
 
 
329	bank->id = num;
330	bank->mt = mt;
331
332	mtk_thermal_get_bank(bank);
333
334	/* bus clock 66M counting unit is 12 * 15.15ns * 256 = 46.540us */
335	writel(TEMP_MONCTL1_PERIOD_UNIT(12), mt->thermal_base + TEMP_MONCTL1);
336
337	/*
338	 * filt interval is 1 * 46.540us = 46.54us,
339	 * sen interval is 429 * 46.540us = 19.96ms
340	 */
341	writel(TEMP_MONCTL2_FILTER_INTERVAL(1) |
342			TEMP_MONCTL2_SENSOR_INTERVAL(429),
343			mt->thermal_base + TEMP_MONCTL2);
344
345	/* poll is set to 10u */
346	writel(TEMP_AHBPOLL_ADC_POLL_INTERVAL(768),
347	       mt->thermal_base + TEMP_AHBPOLL);
348
349	/* temperature sampling control, 1 sample */
350	writel(0x0, mt->thermal_base + TEMP_MSRCTL0);
351
352	/* exceed this polling time, IRQ would be inserted */
353	writel(0xffffffff, mt->thermal_base + TEMP_AHBTO);
354
355	/* number of interrupts per event, 1 is enough */
356	writel(0x0, mt->thermal_base + TEMP_MONIDET0);
357	writel(0x0, mt->thermal_base + TEMP_MONIDET1);
358
359	/*
360	 * The MT8173 thermal controller does not have its own ADC. Instead it
361	 * uses AHB bus accesses to control the AUXADC. To do this the thermal
362	 * controller has to be programmed with the physical addresses of the
363	 * AUXADC registers and with the various bit positions in the AUXADC.
364	 * Also the thermal controller controls a mux in the APMIXEDSYS register
365	 * space.
366	 */
367
368	/*
369	 * this value will be stored to TEMP_PNPMUXADDR (TEMP_SPARE0)
370	 * automatically by hw
371	 */
372	writel(BIT(MT8173_TEMP_AUXADC_CHANNEL), mt->thermal_base + TEMP_ADCMUX);
373
374	/* AHB address for auxadc mux selection */
375	writel(auxadc_phys_base + AUXADC_CON1_CLR_V,
376	       mt->thermal_base + TEMP_ADCMUXADDR);
377
378	/* AHB address for pnp sensor mux selection */
379	writel(apmixed_phys_base + APMIXED_SYS_TS_CON1,
380	       mt->thermal_base + TEMP_PNPMUXADDR);
 
 
381
382	/* AHB value for auxadc enable */
383	writel(BIT(MT8173_TEMP_AUXADC_CHANNEL), mt->thermal_base + TEMP_ADCEN);
384
385	/* AHB address for auxadc enable (channel 0 immediate mode selected) */
386	writel(auxadc_phys_base + AUXADC_CON1_SET_V,
387	       mt->thermal_base + TEMP_ADCENADDR);
388
389	/* AHB address for auxadc valid bit */
390	writel(auxadc_phys_base + AUXADC_DATA(MT8173_TEMP_AUXADC_CHANNEL),
391	       mt->thermal_base + TEMP_ADCVALIDADDR);
392
393	/* AHB address for auxadc voltage output */
394	writel(auxadc_phys_base + AUXADC_DATA(MT8173_TEMP_AUXADC_CHANNEL),
395	       mt->thermal_base + TEMP_ADCVOLTADDR);
396
397	/* read valid & voltage are at the same register */
398	writel(0x0, mt->thermal_base + TEMP_RDCTRL);
399
400	/* indicate where the valid bit is */
401	writel(TEMP_ADCVALIDMASK_VALID_HIGH | TEMP_ADCVALIDMASK_VALID_POS(12),
402	       mt->thermal_base + TEMP_ADCVALIDMASK);
403
404	/* no shift */
405	writel(0x0, mt->thermal_base + TEMP_ADCVOLTAGESHIFT);
406
407	/* enable auxadc mux write transaction */
408	writel(TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
409	       mt->thermal_base + TEMP_ADCWRITECTRL);
410
411	for (i = 0; i < cfg->num_sensors; i++)
412		writel(sensor_mux_values[cfg->sensors[i]],
413		       mt->thermal_base + sensing_points[i].adcpnp);
414
415	writel((1 << cfg->num_sensors) - 1, mt->thermal_base + TEMP_MONCTL0);
 
416
417	writel(TEMP_ADCWRITECTRL_ADC_PNP_WRITE |
418	       TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
419	       mt->thermal_base + TEMP_ADCWRITECTRL);
420
421	mtk_thermal_put_bank(bank);
422}
423
424static u64 of_get_phys_base(struct device_node *np)
425{
426	u64 size64;
427	const __be32 *regaddr_p;
428
429	regaddr_p = of_get_address(np, 0, &size64, NULL);
430	if (!regaddr_p)
431		return OF_BAD_ADDR;
432
433	return of_translate_address(np, regaddr_p);
434}
435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436static int mtk_thermal_get_calibration_data(struct device *dev,
437					    struct mtk_thermal *mt)
438{
439	struct nvmem_cell *cell;
440	u32 *buf;
441	size_t len;
442	int i, ret = 0;
443
444	/* Start with default values */
445	mt->adc_ge = 512;
446	for (i = 0; i < MT8173_NUM_SENSORS; i++)
447		mt->vts[i] = 260;
448	mt->degc_cali = 40;
449	mt->o_slope = 0;
450
451	cell = nvmem_cell_get(dev, "calibration-data");
452	if (IS_ERR(cell)) {
453		if (PTR_ERR(cell) == -EPROBE_DEFER)
454			return PTR_ERR(cell);
455		return 0;
456	}
457
458	buf = (u32 *)nvmem_cell_read(cell, &len);
459
460	nvmem_cell_put(cell);
461
462	if (IS_ERR(buf))
463		return PTR_ERR(buf);
464
465	if (len < 3 * sizeof(u32)) {
466		dev_warn(dev, "invalid calibration data\n");
467		ret = -EINVAL;
468		goto out;
469	}
470
471	if (buf[0] & MT8173_CALIB_BUF0_VALID) {
472		mt->adc_ge = MT8173_CALIB_BUF1_ADC_GE(buf[1]);
473		mt->vts[MT8173_TS1] = MT8173_CALIB_BUF0_VTS_TS1(buf[0]);
474		mt->vts[MT8173_TS2] = MT8173_CALIB_BUF0_VTS_TS2(buf[0]);
475		mt->vts[MT8173_TS3] = MT8173_CALIB_BUF1_VTS_TS3(buf[1]);
476		mt->vts[MT8173_TS4] = MT8173_CALIB_BUF2_VTS_TS4(buf[2]);
477		mt->vts[MT8173_TSABB] = MT8173_CALIB_BUF2_VTS_TSABB(buf[2]);
478		mt->degc_cali = MT8173_CALIB_BUF0_DEGC_CALI(buf[0]);
479		mt->o_slope = MT8173_CALIB_BUF0_O_SLOPE(buf[0]);
480	} else {
481		dev_info(dev, "Device not calibrated, using default calibration values\n");
 
482	}
483
484out:
485	kfree(buf);
486
487	return ret;
488}
489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
490static int mtk_thermal_probe(struct platform_device *pdev)
491{
492	int ret, i;
493	struct device_node *auxadc, *apmixedsys, *np = pdev->dev.of_node;
494	struct mtk_thermal *mt;
495	struct resource *res;
496	u64 auxadc_phys_base, apmixed_phys_base;
 
 
497
498	mt = devm_kzalloc(&pdev->dev, sizeof(*mt), GFP_KERNEL);
499	if (!mt)
500		return -ENOMEM;
501
 
 
502	mt->clk_peri_therm = devm_clk_get(&pdev->dev, "therm");
503	if (IS_ERR(mt->clk_peri_therm))
504		return PTR_ERR(mt->clk_peri_therm);
505
506	mt->clk_auxadc = devm_clk_get(&pdev->dev, "auxadc");
507	if (IS_ERR(mt->clk_auxadc))
508		return PTR_ERR(mt->clk_auxadc);
509
510	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
511	mt->thermal_base = devm_ioremap_resource(&pdev->dev, res);
512	if (IS_ERR(mt->thermal_base))
513		return PTR_ERR(mt->thermal_base);
514
515	ret = mtk_thermal_get_calibration_data(&pdev->dev, mt);
516	if (ret)
517		return ret;
518
519	mutex_init(&mt->lock);
520
521	mt->dev = &pdev->dev;
522
523	auxadc = of_parse_phandle(np, "mediatek,auxadc", 0);
524	if (!auxadc) {
525		dev_err(&pdev->dev, "missing auxadc node\n");
526		return -ENODEV;
527	}
528
 
529	auxadc_phys_base = of_get_phys_base(auxadc);
530
531	of_node_put(auxadc);
532
533	if (auxadc_phys_base == OF_BAD_ADDR) {
534		dev_err(&pdev->dev, "Can't get auxadc phys address\n");
535		return -EINVAL;
536	}
537
538	apmixedsys = of_parse_phandle(np, "mediatek,apmixedsys", 0);
539	if (!apmixedsys) {
540		dev_err(&pdev->dev, "missing apmixedsys node\n");
541		return -ENODEV;
542	}
543
 
544	apmixed_phys_base = of_get_phys_base(apmixedsys);
545
546	of_node_put(apmixedsys);
547
548	if (apmixed_phys_base == OF_BAD_ADDR) {
549		dev_err(&pdev->dev, "Can't get auxadc phys address\n");
550		return -EINVAL;
551	}
552
 
 
 
 
553	ret = clk_prepare_enable(mt->clk_auxadc);
554	if (ret) {
555		dev_err(&pdev->dev, "Can't enable auxadc clk: %d\n", ret);
556		return ret;
557	}
558
559	ret = device_reset(&pdev->dev);
560	if (ret)
561		goto err_disable_clk_auxadc;
562
563	ret = clk_prepare_enable(mt->clk_peri_therm);
564	if (ret) {
565		dev_err(&pdev->dev, "Can't enable peri clk: %d\n", ret);
566		goto err_disable_clk_auxadc;
567	}
568
569	for (i = 0; i < MT8173_NUM_ZONES; i++)
570		mtk_thermal_init_bank(mt, i, apmixed_phys_base,
571				      auxadc_phys_base);
 
 
 
 
 
 
572
573	platform_set_drvdata(pdev, mt);
574
575	mt->tzd = thermal_zone_of_sensor_register(&pdev->dev, 0, mt,
576				&mtk_thermal_ops);
577	if (IS_ERR(mt->tzd))
578		goto err_register;
 
 
 
 
 
 
579
580	return 0;
581
582err_register:
583	clk_disable_unprepare(mt->clk_peri_therm);
584
585err_disable_clk_auxadc:
586	clk_disable_unprepare(mt->clk_auxadc);
587
588	return ret;
589}
590
591static int mtk_thermal_remove(struct platform_device *pdev)
592{
593	struct mtk_thermal *mt = platform_get_drvdata(pdev);
594
595	thermal_zone_of_sensor_unregister(&pdev->dev, mt->tzd);
596
597	clk_disable_unprepare(mt->clk_peri_therm);
598	clk_disable_unprepare(mt->clk_auxadc);
599
600	return 0;
601}
602
603static const struct of_device_id mtk_thermal_of_match[] = {
604	{
605		.compatible = "mediatek,mt8173-thermal",
606	}, {
607	},
608};
609
610static struct platform_driver mtk_thermal_driver = {
611	.probe = mtk_thermal_probe,
612	.remove = mtk_thermal_remove,
613	.driver = {
614		.name = THERMAL_NAME,
615		.of_match_table = mtk_thermal_of_match,
616	},
617};
618
619module_platform_driver(mtk_thermal_driver);
620
 
 
 
621MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
622MODULE_AUTHOR("Hanyi Wu <hanyi.wu@mediatek.com>");
623MODULE_DESCRIPTION("Mediatek thermal driver");
624MODULE_LICENSE("GPL v2");