Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: ISC
   2/*
   3 * Copyright (c) 2005-2011 Atheros Communications Inc.
   4 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/pci.h>
   8#include <linux/module.h>
   9#include <linux/interrupt.h>
  10#include <linux/spinlock.h>
  11#include <linux/bitops.h>
  12
  13#include "core.h"
  14#include "debug.h"
  15#include "coredump.h"
  16
  17#include "targaddrs.h"
  18#include "bmi.h"
  19
  20#include "hif.h"
  21#include "htc.h"
  22
  23#include "ce.h"
  24#include "pci.h"
  25
 
 
 
 
 
 
  26enum ath10k_pci_reset_mode {
  27	ATH10K_PCI_RESET_AUTO = 0,
  28	ATH10K_PCI_RESET_WARM_ONLY = 1,
  29};
  30
  31static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
  32static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
  33
  34module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
  35MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
  36
  37module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
  38MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
  39
  40/* how long wait to wait for target to initialise, in ms */
  41#define ATH10K_PCI_TARGET_WAIT 3000
  42#define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
  43
  44/* Maximum number of bytes that can be handled atomically by
  45 * diag read and write.
  46 */
  47#define ATH10K_DIAG_TRANSFER_LIMIT	0x5000
  48
  49#define QCA99X0_PCIE_BAR0_START_REG    0x81030
  50#define QCA99X0_CPU_MEM_ADDR_REG       0x4d00c
  51#define QCA99X0_CPU_MEM_DATA_REG       0x4d010
  52
  53static const struct pci_device_id ath10k_pci_id_table[] = {
  54	/* PCI-E QCA988X V2 (Ubiquiti branded) */
  55	{ PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },
  56
  57	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
  58	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
  59	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
  60	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
  61	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
  62	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
  63	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
  64	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
  65	{0}
  66};
  67
  68static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
  69	/* QCA988X pre 2.0 chips are not supported because they need some nasty
  70	 * hacks. ath10k doesn't have them and these devices crash horribly
  71	 * because of that.
  72	 */
  73	{ QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
  74	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
  75
  76	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
  77	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
  78	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
  79	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
  80	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
  81
  82	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
  83	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
  84	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
  85	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
  86	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
  87
  88	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
  89
  90	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
  91
  92	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
  93
  94	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
  95	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
  96
  97	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
  98};
  99
 100static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
 101static int ath10k_pci_cold_reset(struct ath10k *ar);
 102static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
 103static int ath10k_pci_init_irq(struct ath10k *ar);
 104static int ath10k_pci_deinit_irq(struct ath10k *ar);
 105static int ath10k_pci_request_irq(struct ath10k *ar);
 106static void ath10k_pci_free_irq(struct ath10k *ar);
 107static int ath10k_pci_bmi_wait(struct ath10k *ar,
 108			       struct ath10k_ce_pipe *tx_pipe,
 109			       struct ath10k_ce_pipe *rx_pipe,
 110			       struct bmi_xfer *xfer);
 111static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
 112static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
 113static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
 114static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
 115static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
 116static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
 117static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
 118
 119static const struct ce_attr pci_host_ce_config_wlan[] = {
 120	/* CE0: host->target HTC control and raw streams */
 121	{
 122		.flags = CE_ATTR_FLAGS,
 123		.src_nentries = 16,
 124		.src_sz_max = 256,
 125		.dest_nentries = 0,
 126		.send_cb = ath10k_pci_htc_tx_cb,
 127	},
 128
 129	/* CE1: target->host HTT + HTC control */
 130	{
 131		.flags = CE_ATTR_FLAGS,
 132		.src_nentries = 0,
 133		.src_sz_max = 2048,
 134		.dest_nentries = 512,
 135		.recv_cb = ath10k_pci_htt_htc_rx_cb,
 136	},
 137
 138	/* CE2: target->host WMI */
 139	{
 140		.flags = CE_ATTR_FLAGS,
 141		.src_nentries = 0,
 142		.src_sz_max = 2048,
 143		.dest_nentries = 128,
 144		.recv_cb = ath10k_pci_htc_rx_cb,
 145	},
 146
 147	/* CE3: host->target WMI */
 148	{
 149		.flags = CE_ATTR_FLAGS,
 150		.src_nentries = 32,
 151		.src_sz_max = 2048,
 152		.dest_nentries = 0,
 153		.send_cb = ath10k_pci_htc_tx_cb,
 154	},
 155
 156	/* CE4: host->target HTT */
 157	{
 158		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
 159		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
 160		.src_sz_max = 256,
 161		.dest_nentries = 0,
 162		.send_cb = ath10k_pci_htt_tx_cb,
 163	},
 164
 165	/* CE5: target->host HTT (HIF->HTT) */
 166	{
 167		.flags = CE_ATTR_FLAGS,
 168		.src_nentries = 0,
 169		.src_sz_max = 512,
 170		.dest_nentries = 512,
 171		.recv_cb = ath10k_pci_htt_rx_cb,
 172	},
 173
 174	/* CE6: target autonomous hif_memcpy */
 175	{
 176		.flags = CE_ATTR_FLAGS,
 177		.src_nentries = 0,
 178		.src_sz_max = 0,
 179		.dest_nentries = 0,
 180	},
 181
 182	/* CE7: ce_diag, the Diagnostic Window */
 183	{
 184		.flags = CE_ATTR_FLAGS | CE_ATTR_POLL,
 185		.src_nentries = 2,
 186		.src_sz_max = DIAG_TRANSFER_LIMIT,
 187		.dest_nentries = 2,
 188	},
 189
 190	/* CE8: target->host pktlog */
 191	{
 192		.flags = CE_ATTR_FLAGS,
 193		.src_nentries = 0,
 194		.src_sz_max = 2048,
 195		.dest_nentries = 128,
 196		.recv_cb = ath10k_pci_pktlog_rx_cb,
 197	},
 198
 199	/* CE9 target autonomous qcache memcpy */
 200	{
 201		.flags = CE_ATTR_FLAGS,
 202		.src_nentries = 0,
 203		.src_sz_max = 0,
 204		.dest_nentries = 0,
 205	},
 206
 207	/* CE10: target autonomous hif memcpy */
 208	{
 209		.flags = CE_ATTR_FLAGS,
 210		.src_nentries = 0,
 211		.src_sz_max = 0,
 212		.dest_nentries = 0,
 213	},
 214
 215	/* CE11: target autonomous hif memcpy */
 216	{
 217		.flags = CE_ATTR_FLAGS,
 218		.src_nentries = 0,
 219		.src_sz_max = 0,
 220		.dest_nentries = 0,
 221	},
 222};
 223
 224/* Target firmware's Copy Engine configuration. */
 225static const struct ce_pipe_config pci_target_ce_config_wlan[] = {
 226	/* CE0: host->target HTC control and raw streams */
 227	{
 228		.pipenum = __cpu_to_le32(0),
 229		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
 230		.nentries = __cpu_to_le32(32),
 231		.nbytes_max = __cpu_to_le32(256),
 232		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 233		.reserved = __cpu_to_le32(0),
 234	},
 235
 236	/* CE1: target->host HTT + HTC control */
 237	{
 238		.pipenum = __cpu_to_le32(1),
 239		.pipedir = __cpu_to_le32(PIPEDIR_IN),
 240		.nentries = __cpu_to_le32(32),
 241		.nbytes_max = __cpu_to_le32(2048),
 242		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 243		.reserved = __cpu_to_le32(0),
 244	},
 245
 246	/* CE2: target->host WMI */
 247	{
 248		.pipenum = __cpu_to_le32(2),
 249		.pipedir = __cpu_to_le32(PIPEDIR_IN),
 250		.nentries = __cpu_to_le32(64),
 251		.nbytes_max = __cpu_to_le32(2048),
 252		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 253		.reserved = __cpu_to_le32(0),
 254	},
 255
 256	/* CE3: host->target WMI */
 257	{
 258		.pipenum = __cpu_to_le32(3),
 259		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
 260		.nentries = __cpu_to_le32(32),
 261		.nbytes_max = __cpu_to_le32(2048),
 262		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 263		.reserved = __cpu_to_le32(0),
 264	},
 265
 266	/* CE4: host->target HTT */
 267	{
 268		.pipenum = __cpu_to_le32(4),
 269		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
 270		.nentries = __cpu_to_le32(256),
 271		.nbytes_max = __cpu_to_le32(256),
 272		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 273		.reserved = __cpu_to_le32(0),
 274	},
 275
 276	/* NB: 50% of src nentries, since tx has 2 frags */
 277
 278	/* CE5: target->host HTT (HIF->HTT) */
 279	{
 280		.pipenum = __cpu_to_le32(5),
 281		.pipedir = __cpu_to_le32(PIPEDIR_IN),
 282		.nentries = __cpu_to_le32(32),
 283		.nbytes_max = __cpu_to_le32(512),
 284		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 285		.reserved = __cpu_to_le32(0),
 286	},
 287
 288	/* CE6: Reserved for target autonomous hif_memcpy */
 289	{
 290		.pipenum = __cpu_to_le32(6),
 291		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
 292		.nentries = __cpu_to_le32(32),
 293		.nbytes_max = __cpu_to_le32(4096),
 294		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 295		.reserved = __cpu_to_le32(0),
 296	},
 297
 298	/* CE7 used only by Host */
 299	{
 300		.pipenum = __cpu_to_le32(7),
 301		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
 302		.nentries = __cpu_to_le32(0),
 303		.nbytes_max = __cpu_to_le32(0),
 304		.flags = __cpu_to_le32(0),
 305		.reserved = __cpu_to_le32(0),
 306	},
 307
 308	/* CE8 target->host packtlog */
 309	{
 310		.pipenum = __cpu_to_le32(8),
 311		.pipedir = __cpu_to_le32(PIPEDIR_IN),
 312		.nentries = __cpu_to_le32(64),
 313		.nbytes_max = __cpu_to_le32(2048),
 314		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
 315		.reserved = __cpu_to_le32(0),
 316	},
 317
 318	/* CE9 target autonomous qcache memcpy */
 319	{
 320		.pipenum = __cpu_to_le32(9),
 321		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
 322		.nentries = __cpu_to_le32(32),
 323		.nbytes_max = __cpu_to_le32(2048),
 324		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
 325		.reserved = __cpu_to_le32(0),
 326	},
 327
 328	/* It not necessary to send target wlan configuration for CE10 & CE11
 329	 * as these CEs are not actively used in target.
 330	 */
 331};
 332
 333/*
 334 * Map from service/endpoint to Copy Engine.
 335 * This table is derived from the CE_PCI TABLE, above.
 336 * It is passed to the Target at startup for use by firmware.
 337 */
 338static const struct ce_service_to_pipe pci_target_service_to_ce_map_wlan[] = {
 339	{
 340		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
 341		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 342		__cpu_to_le32(3),
 343	},
 344	{
 345		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
 346		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 347		__cpu_to_le32(2),
 348	},
 349	{
 350		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
 351		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 352		__cpu_to_le32(3),
 353	},
 354	{
 355		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
 356		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 357		__cpu_to_le32(2),
 358	},
 359	{
 360		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
 361		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 362		__cpu_to_le32(3),
 363	},
 364	{
 365		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
 366		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 367		__cpu_to_le32(2),
 368	},
 369	{
 370		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
 371		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 372		__cpu_to_le32(3),
 373	},
 374	{
 375		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
 376		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 377		__cpu_to_le32(2),
 378	},
 379	{
 380		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
 381		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 382		__cpu_to_le32(3),
 383	},
 384	{
 385		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
 386		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 387		__cpu_to_le32(2),
 388	},
 389	{
 390		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
 391		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 392		__cpu_to_le32(0),
 393	},
 394	{
 395		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
 396		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 397		__cpu_to_le32(1),
 398	},
 399	{ /* not used */
 400		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
 401		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 402		__cpu_to_le32(0),
 403	},
 404	{ /* not used */
 405		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
 406		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 407		__cpu_to_le32(1),
 408	},
 409	{
 410		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
 411		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 412		__cpu_to_le32(4),
 413	},
 414	{
 415		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
 416		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 417		__cpu_to_le32(5),
 418	},
 419
 420	/* (Additions here) */
 421
 422	{ /* must be last */
 423		__cpu_to_le32(0),
 424		__cpu_to_le32(0),
 425		__cpu_to_le32(0),
 426	},
 427};
 428
 429static bool ath10k_pci_is_awake(struct ath10k *ar)
 430{
 431	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 432	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 433			   RTC_STATE_ADDRESS);
 434
 435	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
 436}
 437
 438static void __ath10k_pci_wake(struct ath10k *ar)
 439{
 440	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 441
 442	lockdep_assert_held(&ar_pci->ps_lock);
 443
 444	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
 445		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 446
 447	iowrite32(PCIE_SOC_WAKE_V_MASK,
 448		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 449		  PCIE_SOC_WAKE_ADDRESS);
 450}
 451
 452static void __ath10k_pci_sleep(struct ath10k *ar)
 453{
 454	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 455
 456	lockdep_assert_held(&ar_pci->ps_lock);
 457
 458	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
 459		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 460
 461	iowrite32(PCIE_SOC_WAKE_RESET,
 462		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 463		  PCIE_SOC_WAKE_ADDRESS);
 464	ar_pci->ps_awake = false;
 465}
 466
 467static int ath10k_pci_wake_wait(struct ath10k *ar)
 468{
 469	int tot_delay = 0;
 470	int curr_delay = 5;
 471
 472	while (tot_delay < PCIE_WAKE_TIMEOUT) {
 473		if (ath10k_pci_is_awake(ar)) {
 474			if (tot_delay > PCIE_WAKE_LATE_US)
 475				ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
 476					    tot_delay / 1000);
 477			return 0;
 478		}
 479
 480		udelay(curr_delay);
 481		tot_delay += curr_delay;
 482
 483		if (curr_delay < 50)
 484			curr_delay += 5;
 485	}
 486
 487	return -ETIMEDOUT;
 488}
 489
 490static int ath10k_pci_force_wake(struct ath10k *ar)
 491{
 492	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 493	unsigned long flags;
 494	int ret = 0;
 495
 496	if (ar_pci->pci_ps)
 497		return ret;
 498
 499	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 500
 501	if (!ar_pci->ps_awake) {
 502		iowrite32(PCIE_SOC_WAKE_V_MASK,
 503			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 504			  PCIE_SOC_WAKE_ADDRESS);
 505
 506		ret = ath10k_pci_wake_wait(ar);
 507		if (ret == 0)
 508			ar_pci->ps_awake = true;
 509	}
 510
 511	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 512
 513	return ret;
 514}
 515
 516static void ath10k_pci_force_sleep(struct ath10k *ar)
 517{
 518	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 519	unsigned long flags;
 520
 521	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 522
 523	iowrite32(PCIE_SOC_WAKE_RESET,
 524		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 525		  PCIE_SOC_WAKE_ADDRESS);
 526	ar_pci->ps_awake = false;
 527
 528	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 529}
 530
 531static int ath10k_pci_wake(struct ath10k *ar)
 532{
 533	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 534	unsigned long flags;
 535	int ret = 0;
 536
 537	if (ar_pci->pci_ps == 0)
 538		return ret;
 539
 540	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 541
 542	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
 543		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 544
 545	/* This function can be called very frequently. To avoid excessive
 546	 * CPU stalls for MMIO reads use a cache var to hold the device state.
 547	 */
 548	if (!ar_pci->ps_awake) {
 549		__ath10k_pci_wake(ar);
 550
 551		ret = ath10k_pci_wake_wait(ar);
 552		if (ret == 0)
 553			ar_pci->ps_awake = true;
 554	}
 555
 556	if (ret == 0) {
 557		ar_pci->ps_wake_refcount++;
 558		WARN_ON(ar_pci->ps_wake_refcount == 0);
 559	}
 560
 561	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 562
 563	return ret;
 564}
 565
 566static void ath10k_pci_sleep(struct ath10k *ar)
 567{
 568	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 569	unsigned long flags;
 570
 571	if (ar_pci->pci_ps == 0)
 572		return;
 573
 574	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 575
 576	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
 577		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 578
 579	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
 580		goto skip;
 581
 582	ar_pci->ps_wake_refcount--;
 583
 584	mod_timer(&ar_pci->ps_timer, jiffies +
 585		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
 586
 587skip:
 588	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 589}
 590
 591static void ath10k_pci_ps_timer(struct timer_list *t)
 592{
 593	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
 594	struct ath10k *ar = ar_pci->ar;
 595	unsigned long flags;
 596
 597	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 598
 599	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
 600		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 601
 602	if (ar_pci->ps_wake_refcount > 0)
 603		goto skip;
 604
 605	__ath10k_pci_sleep(ar);
 606
 607skip:
 608	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 609}
 610
 611static void ath10k_pci_sleep_sync(struct ath10k *ar)
 612{
 613	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 614	unsigned long flags;
 615
 616	if (ar_pci->pci_ps == 0) {
 617		ath10k_pci_force_sleep(ar);
 618		return;
 619	}
 620
 621	del_timer_sync(&ar_pci->ps_timer);
 622
 623	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 624	WARN_ON(ar_pci->ps_wake_refcount > 0);
 625	__ath10k_pci_sleep(ar);
 626	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 627}
 628
 629static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
 630{
 631	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 632	int ret;
 633
 634	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
 635		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
 636			    offset, offset + sizeof(value), ar_pci->mem_len);
 637		return;
 638	}
 639
 640	ret = ath10k_pci_wake(ar);
 641	if (ret) {
 642		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
 643			    value, offset, ret);
 644		return;
 645	}
 646
 647	iowrite32(value, ar_pci->mem + offset);
 648	ath10k_pci_sleep(ar);
 649}
 650
 651static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
 652{
 653	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 654	u32 val;
 655	int ret;
 656
 657	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
 658		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
 659			    offset, offset + sizeof(val), ar_pci->mem_len);
 660		return 0;
 661	}
 662
 663	ret = ath10k_pci_wake(ar);
 664	if (ret) {
 665		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
 666			    offset, ret);
 667		return 0xffffffff;
 668	}
 669
 670	val = ioread32(ar_pci->mem + offset);
 671	ath10k_pci_sleep(ar);
 672
 673	return val;
 674}
 675
 676inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
 677{
 678	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 679
 680	ce->bus_ops->write32(ar, offset, value);
 681}
 682
 683inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
 684{
 685	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 686
 687	return ce->bus_ops->read32(ar, offset);
 688}
 689
 690u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
 691{
 692	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
 693}
 694
 695void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
 696{
 697	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
 698}
 699
 700u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
 701{
 702	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
 703}
 704
 705void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
 706{
 707	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
 708}
 709
 710bool ath10k_pci_irq_pending(struct ath10k *ar)
 711{
 712	u32 cause;
 713
 714	/* Check if the shared legacy irq is for us */
 715	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
 716				  PCIE_INTR_CAUSE_ADDRESS);
 717	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
 718		return true;
 719
 720	return false;
 721}
 722
 723void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
 724{
 725	/* IMPORTANT: INTR_CLR register has to be set after
 726	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
 727	 * really cleared.
 728	 */
 729	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
 730			   0);
 731	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
 732			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
 733
 734	/* IMPORTANT: this extra read transaction is required to
 735	 * flush the posted write buffer.
 736	 */
 737	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
 738				PCIE_INTR_ENABLE_ADDRESS);
 739}
 740
 741void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
 742{
 743	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
 744			   PCIE_INTR_ENABLE_ADDRESS,
 745			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
 746
 747	/* IMPORTANT: this extra read transaction is required to
 748	 * flush the posted write buffer.
 749	 */
 750	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
 751				PCIE_INTR_ENABLE_ADDRESS);
 752}
 753
 754static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
 755{
 756	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 757
 758	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
 
 
 
 759		return "msi";
 760
 761	return "legacy";
 762}
 763
 764static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
 765{
 766	struct ath10k *ar = pipe->hif_ce_state;
 767	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 768	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
 769	struct sk_buff *skb;
 770	dma_addr_t paddr;
 771	int ret;
 772
 773	skb = dev_alloc_skb(pipe->buf_sz);
 774	if (!skb)
 775		return -ENOMEM;
 776
 777	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
 778
 779	paddr = dma_map_single(ar->dev, skb->data,
 780			       skb->len + skb_tailroom(skb),
 781			       DMA_FROM_DEVICE);
 782	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
 783		ath10k_warn(ar, "failed to dma map pci rx buf\n");
 784		dev_kfree_skb_any(skb);
 785		return -EIO;
 786	}
 787
 788	ATH10K_SKB_RXCB(skb)->paddr = paddr;
 789
 790	spin_lock_bh(&ce->ce_lock);
 791	ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
 792	spin_unlock_bh(&ce->ce_lock);
 793	if (ret) {
 794		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
 795				 DMA_FROM_DEVICE);
 796		dev_kfree_skb_any(skb);
 797		return ret;
 798	}
 799
 800	return 0;
 801}
 802
 803static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
 804{
 805	struct ath10k *ar = pipe->hif_ce_state;
 806	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 807	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 808	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
 809	int ret, num;
 810
 811	if (pipe->buf_sz == 0)
 812		return;
 813
 814	if (!ce_pipe->dest_ring)
 815		return;
 816
 817	spin_lock_bh(&ce->ce_lock);
 818	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
 819	spin_unlock_bh(&ce->ce_lock);
 820
 821	while (num >= 0) {
 822		ret = __ath10k_pci_rx_post_buf(pipe);
 823		if (ret) {
 824			if (ret == -ENOSPC)
 825				break;
 826			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
 827			mod_timer(&ar_pci->rx_post_retry, jiffies +
 828				  ATH10K_PCI_RX_POST_RETRY_MS);
 829			break;
 830		}
 831		num--;
 832	}
 833}
 834
 835void ath10k_pci_rx_post(struct ath10k *ar)
 836{
 837	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 838	int i;
 839
 840	for (i = 0; i < CE_COUNT; i++)
 841		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
 842}
 843
 844void ath10k_pci_rx_replenish_retry(struct timer_list *t)
 845{
 846	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
 847	struct ath10k *ar = ar_pci->ar;
 848
 849	ath10k_pci_rx_post(ar);
 850}
 851
 852static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
 853{
 854	u32 val = 0, region = addr & 0xfffff;
 855
 856	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
 857				 & 0x7ff) << 21;
 858	val |= 0x100000 | region;
 859	return val;
 860}
 861
 862/* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr.
 863 * Support to access target space below 1M for qca6174 and qca9377.
 864 * If target space is below 1M, the bit[20] of converted CE addr is 0.
 865 * Otherwise bit[20] of converted CE addr is 1.
 866 */
 867static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
 868{
 869	u32 val = 0, region = addr & 0xfffff;
 870
 871	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
 872				 & 0x7ff) << 21;
 873	val |= ((addr >= 0x100000) ? 0x100000 : 0) | region;
 874	return val;
 875}
 876
 877static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
 878{
 879	u32 val = 0, region = addr & 0xfffff;
 880
 881	val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
 882	val |= 0x100000 | region;
 883	return val;
 884}
 885
 886static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
 887{
 888	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 889
 890	if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
 891		return -ENOTSUPP;
 
 
 
 
 
 
 
 
 
 
 
 892
 893	return ar_pci->targ_cpu_to_ce_addr(ar, addr);
 
 894}
 895
 896/*
 897 * Diagnostic read/write access is provided for startup/config/debug usage.
 898 * Caller must guarantee proper alignment, when applicable, and single user
 899 * at any moment.
 900 */
 901static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
 902				    int nbytes)
 903{
 904	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 905	int ret = 0;
 906	u32 *buf;
 907	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
 
 
 908	struct ath10k_ce_pipe *ce_diag;
 909	/* Host buffer address in CE space */
 910	u32 ce_data;
 911	dma_addr_t ce_data_base = 0;
 912	void *data_buf;
 913	int i;
 914
 915	mutex_lock(&ar_pci->ce_diag_mutex);
 
 916	ce_diag = ar_pci->ce_diag;
 917
 918	/*
 919	 * Allocate a temporary bounce buffer to hold caller's data
 920	 * to be DMA'ed from Target. This guarantees
 921	 *   1) 4-byte alignment
 922	 *   2) Buffer in DMA-able space
 923	 */
 924	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
 
 
 
 
 925
 926	data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
 927				      GFP_ATOMIC);
 928	if (!data_buf) {
 929		ret = -ENOMEM;
 930		goto done;
 931	}
 
 932
 933	/* The address supplied by the caller is in the
 934	 * Target CPU virtual address space.
 935	 *
 936	 * In order to use this address with the diagnostic CE,
 937	 * convert it from Target CPU virtual address space
 938	 * to CE address space
 939	 */
 940	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
 941
 942	remaining_bytes = nbytes;
 943	ce_data = ce_data_base;
 944	while (remaining_bytes) {
 945		nbytes = min_t(unsigned int, remaining_bytes,
 946			       DIAG_TRANSFER_LIMIT);
 947
 948		ret = ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
 949		if (ret != 0)
 950			goto done;
 951
 952		/* Request CE to send from Target(!) address to Host buffer */
 953		ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, 0);
 
 
 
 
 
 
 
 
 
 
 
 954		if (ret)
 955			goto done;
 956
 957		i = 0;
 958		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
 959			udelay(DIAG_ACCESS_CE_WAIT_US);
 960			i += DIAG_ACCESS_CE_WAIT_US;
 961
 962			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
 963				ret = -EBUSY;
 964				goto done;
 965			}
 966		}
 967
 968		i = 0;
 969		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
 970						     &completed_nbytes) != 0) {
 971			udelay(DIAG_ACCESS_CE_WAIT_US);
 972			i += DIAG_ACCESS_CE_WAIT_US;
 973
 974			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
 975				ret = -EBUSY;
 976				goto done;
 977			}
 978		}
 979
 980		if (nbytes != completed_nbytes) {
 981			ret = -EIO;
 982			goto done;
 983		}
 984
 985		if (*buf != ce_data) {
 986			ret = -EIO;
 987			goto done;
 988		}
 989
 990		remaining_bytes -= nbytes;
 991		memcpy(data, data_buf, nbytes);
 992
 993		address += nbytes;
 994		data += nbytes;
 995	}
 996
 997done:
 
 
 
 
 
 998
 999	if (data_buf)
1000		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1001				  ce_data_base);
1002
1003	mutex_unlock(&ar_pci->ce_diag_mutex);
1004
1005	return ret;
1006}
1007
1008static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
1009{
1010	__le32 val = 0;
1011	int ret;
1012
1013	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1014	*value = __le32_to_cpu(val);
1015
1016	return ret;
1017}
1018
1019static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1020				     u32 src, u32 len)
1021{
1022	u32 host_addr, addr;
1023	int ret;
1024
1025	host_addr = host_interest_item_address(src);
1026
1027	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1028	if (ret != 0) {
1029		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1030			    src, ret);
1031		return ret;
1032	}
1033
1034	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1035	if (ret != 0) {
1036		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1037			    addr, len, ret);
1038		return ret;
1039	}
1040
1041	return 0;
1042}
1043
1044#define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1045	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1046
1047int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1048			      const void *data, int nbytes)
1049{
1050	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1051	int ret = 0;
1052	u32 *buf;
1053	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
 
 
1054	struct ath10k_ce_pipe *ce_diag;
1055	void *data_buf;
 
1056	dma_addr_t ce_data_base = 0;
1057	int i;
1058
1059	mutex_lock(&ar_pci->ce_diag_mutex);
 
1060	ce_diag = ar_pci->ce_diag;
1061
1062	/*
1063	 * Allocate a temporary bounce buffer to hold caller's data
1064	 * to be DMA'ed to Target. This guarantees
1065	 *   1) 4-byte alignment
1066	 *   2) Buffer in DMA-able space
1067	 */
1068	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
1069
1070	data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
1071				      GFP_ATOMIC);
 
1072	if (!data_buf) {
1073		ret = -ENOMEM;
1074		goto done;
1075	}
1076
 
 
 
1077	/*
1078	 * The address supplied by the caller is in the
1079	 * Target CPU virtual address space.
1080	 *
1081	 * In order to use this address with the diagnostic CE,
1082	 * convert it from
1083	 *    Target CPU virtual address space
1084	 * to
1085	 *    CE address space
1086	 */
1087	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1088
1089	remaining_bytes = nbytes;
 
1090	while (remaining_bytes) {
1091		/* FIXME: check cast */
1092		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1093
1094		/* Copy caller's data to allocated DMA buf */
1095		memcpy(data_buf, data, nbytes);
1096
1097		/* Set up to receive directly into Target(!) address */
1098		ret = ath10k_ce_rx_post_buf(ce_diag, &address, address);
1099		if (ret != 0)
1100			goto done;
1101
1102		/*
1103		 * Request CE to send caller-supplied data that
1104		 * was copied to bounce buffer to Target(!) address.
1105		 */
1106		ret = ath10k_ce_send(ce_diag, NULL, ce_data_base, nbytes, 0, 0);
 
1107		if (ret != 0)
1108			goto done;
1109
1110		i = 0;
1111		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
1112			udelay(DIAG_ACCESS_CE_WAIT_US);
1113			i += DIAG_ACCESS_CE_WAIT_US;
1114
1115			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1116				ret = -EBUSY;
1117				goto done;
1118			}
1119		}
1120
1121		i = 0;
1122		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
1123						     &completed_nbytes) != 0) {
1124			udelay(DIAG_ACCESS_CE_WAIT_US);
1125			i += DIAG_ACCESS_CE_WAIT_US;
1126
1127			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1128				ret = -EBUSY;
1129				goto done;
1130			}
1131		}
1132
1133		if (nbytes != completed_nbytes) {
1134			ret = -EIO;
1135			goto done;
1136		}
1137
1138		if (*buf != address) {
1139			ret = -EIO;
1140			goto done;
1141		}
1142
1143		remaining_bytes -= nbytes;
1144		address += nbytes;
1145		data += nbytes;
1146	}
1147
1148done:
1149	if (data_buf) {
1150		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1151				  ce_data_base);
1152	}
1153
1154	if (ret != 0)
1155		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1156			    address, ret);
1157
1158	mutex_unlock(&ar_pci->ce_diag_mutex);
1159
1160	return ret;
1161}
1162
1163static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1164{
1165	__le32 val = __cpu_to_le32(value);
1166
1167	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1168}
1169
1170/* Called by lower (CE) layer when a send to Target completes. */
1171static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1172{
1173	struct ath10k *ar = ce_state->ar;
1174	struct sk_buff_head list;
1175	struct sk_buff *skb;
1176
1177	__skb_queue_head_init(&list);
1178	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1179		/* no need to call tx completion for NULL pointers */
1180		if (skb == NULL)
1181			continue;
1182
1183		__skb_queue_tail(&list, skb);
1184	}
1185
1186	while ((skb = __skb_dequeue(&list)))
1187		ath10k_htc_tx_completion_handler(ar, skb);
1188}
1189
1190static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1191				     void (*callback)(struct ath10k *ar,
1192						      struct sk_buff *skb))
1193{
1194	struct ath10k *ar = ce_state->ar;
1195	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1196	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1197	struct sk_buff *skb;
1198	struct sk_buff_head list;
1199	void *transfer_context;
 
1200	unsigned int nbytes, max_nbytes;
 
 
1201
1202	__skb_queue_head_init(&list);
1203	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1204					     &nbytes) == 0) {
 
1205		skb = transfer_context;
1206		max_nbytes = skb->len + skb_tailroom(skb);
1207		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1208				 max_nbytes, DMA_FROM_DEVICE);
1209
1210		if (unlikely(max_nbytes < nbytes)) {
1211			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1212				    nbytes, max_nbytes);
1213			dev_kfree_skb_any(skb);
1214			continue;
1215		}
1216
1217		skb_put(skb, nbytes);
1218		__skb_queue_tail(&list, skb);
1219	}
1220
1221	while ((skb = __skb_dequeue(&list))) {
1222		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1223			   ce_state->id, skb->len);
1224		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1225				skb->data, skb->len);
1226
1227		callback(ar, skb);
1228	}
1229
1230	ath10k_pci_rx_post_pipe(pipe_info);
1231}
1232
1233static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1234					 void (*callback)(struct ath10k *ar,
1235							  struct sk_buff *skb))
1236{
1237	struct ath10k *ar = ce_state->ar;
1238	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1239	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1240	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1241	struct sk_buff *skb;
1242	struct sk_buff_head list;
1243	void *transfer_context;
1244	unsigned int nbytes, max_nbytes, nentries;
1245	int orig_len;
1246
1247	/* No need to acquire ce_lock for CE5, since this is the only place CE5
1248	 * is processed other than init and deinit. Before releasing CE5
1249	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1250	 */
1251	__skb_queue_head_init(&list);
1252	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1253						    &nbytes) == 0) {
1254		skb = transfer_context;
1255		max_nbytes = skb->len + skb_tailroom(skb);
1256
1257		if (unlikely(max_nbytes < nbytes)) {
1258			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1259				    nbytes, max_nbytes);
1260			continue;
1261		}
1262
1263		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1264					max_nbytes, DMA_FROM_DEVICE);
1265		skb_put(skb, nbytes);
1266		__skb_queue_tail(&list, skb);
1267	}
1268
1269	nentries = skb_queue_len(&list);
1270	while ((skb = __skb_dequeue(&list))) {
1271		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1272			   ce_state->id, skb->len);
1273		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1274				skb->data, skb->len);
1275
1276		orig_len = skb->len;
1277		callback(ar, skb);
1278		skb_push(skb, orig_len - skb->len);
1279		skb_reset_tail_pointer(skb);
1280		skb_trim(skb, 0);
1281
1282		/*let device gain the buffer again*/
1283		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1284					   skb->len + skb_tailroom(skb),
1285					   DMA_FROM_DEVICE);
1286	}
1287	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1288}
1289
1290/* Called by lower (CE) layer when data is received from the Target. */
1291static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1292{
1293	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1294}
1295
1296static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1297{
1298	/* CE4 polling needs to be done whenever CE pipe which transports
1299	 * HTT Rx (target->host) is processed.
1300	 */
1301	ath10k_ce_per_engine_service(ce_state->ar, 4);
1302
1303	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1304}
1305
1306/* Called by lower (CE) layer when data is received from the Target.
1307 * Only 10.4 firmware uses separate CE to transfer pktlog data.
1308 */
1309static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1310{
1311	ath10k_pci_process_rx_cb(ce_state,
1312				 ath10k_htt_rx_pktlog_completion_handler);
1313}
1314
1315/* Called by lower (CE) layer when a send to HTT Target completes. */
1316static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1317{
1318	struct ath10k *ar = ce_state->ar;
1319	struct sk_buff *skb;
1320
1321	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1322		/* no need to call tx completion for NULL pointers */
1323		if (!skb)
1324			continue;
1325
1326		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1327				 skb->len, DMA_TO_DEVICE);
1328		ath10k_htt_hif_tx_complete(ar, skb);
1329	}
1330}
1331
1332static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1333{
1334	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1335	ath10k_htt_t2h_msg_handler(ar, skb);
1336}
1337
1338/* Called by lower (CE) layer when HTT data is received from the Target. */
1339static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1340{
1341	/* CE4 polling needs to be done whenever CE pipe which transports
1342	 * HTT Rx (target->host) is processed.
1343	 */
1344	ath10k_ce_per_engine_service(ce_state->ar, 4);
1345
1346	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1347}
1348
1349int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1350			 struct ath10k_hif_sg_item *items, int n_items)
1351{
1352	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1353	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1354	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1355	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1356	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1357	unsigned int nentries_mask;
1358	unsigned int sw_index;
1359	unsigned int write_index;
1360	int err, i = 0;
1361
1362	spin_lock_bh(&ce->ce_lock);
1363
1364	nentries_mask = src_ring->nentries_mask;
1365	sw_index = src_ring->sw_index;
1366	write_index = src_ring->write_index;
1367
1368	if (unlikely(CE_RING_DELTA(nentries_mask,
1369				   write_index, sw_index - 1) < n_items)) {
1370		err = -ENOBUFS;
1371		goto err;
1372	}
1373
1374	for (i = 0; i < n_items - 1; i++) {
1375		ath10k_dbg(ar, ATH10K_DBG_PCI,
1376			   "pci tx item %d paddr %pad len %d n_items %d\n",
1377			   i, &items[i].paddr, items[i].len, n_items);
1378		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1379				items[i].vaddr, items[i].len);
1380
1381		err = ath10k_ce_send_nolock(ce_pipe,
1382					    items[i].transfer_context,
1383					    items[i].paddr,
1384					    items[i].len,
1385					    items[i].transfer_id,
1386					    CE_SEND_FLAG_GATHER);
1387		if (err)
1388			goto err;
1389	}
1390
1391	/* `i` is equal to `n_items -1` after for() */
1392
1393	ath10k_dbg(ar, ATH10K_DBG_PCI,
1394		   "pci tx item %d paddr %pad len %d n_items %d\n",
1395		   i, &items[i].paddr, items[i].len, n_items);
1396	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1397			items[i].vaddr, items[i].len);
1398
1399	err = ath10k_ce_send_nolock(ce_pipe,
1400				    items[i].transfer_context,
1401				    items[i].paddr,
1402				    items[i].len,
1403				    items[i].transfer_id,
1404				    0);
1405	if (err)
1406		goto err;
1407
1408	spin_unlock_bh(&ce->ce_lock);
1409	return 0;
1410
1411err:
1412	for (; i > 0; i--)
1413		__ath10k_ce_send_revert(ce_pipe);
1414
1415	spin_unlock_bh(&ce->ce_lock);
1416	return err;
1417}
1418
1419int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1420			     size_t buf_len)
1421{
1422	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1423}
1424
1425u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1426{
1427	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1428
1429	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1430
1431	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1432}
1433
1434static void ath10k_pci_dump_registers(struct ath10k *ar,
1435				      struct ath10k_fw_crash_data *crash_data)
1436{
1437	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1438	int i, ret;
1439
1440	lockdep_assert_held(&ar->dump_mutex);
1441
1442	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1443				      hi_failure_state,
1444				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1445	if (ret) {
1446		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1447		return;
1448	}
1449
1450	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1451
1452	ath10k_err(ar, "firmware register dump:\n");
1453	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1454		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1455			   i,
1456			   __le32_to_cpu(reg_dump_values[i]),
1457			   __le32_to_cpu(reg_dump_values[i + 1]),
1458			   __le32_to_cpu(reg_dump_values[i + 2]),
1459			   __le32_to_cpu(reg_dump_values[i + 3]));
1460
1461	if (!crash_data)
1462		return;
1463
1464	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1465		crash_data->registers[i] = reg_dump_values[i];
1466}
1467
1468static int ath10k_pci_dump_memory_section(struct ath10k *ar,
1469					  const struct ath10k_mem_region *mem_region,
1470					  u8 *buf, size_t buf_len)
1471{
1472	const struct ath10k_mem_section *cur_section, *next_section;
1473	unsigned int count, section_size, skip_size;
1474	int ret, i, j;
1475
1476	if (!mem_region || !buf)
1477		return 0;
1478
1479	cur_section = &mem_region->section_table.sections[0];
1480
1481	if (mem_region->start > cur_section->start) {
1482		ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
1483			    mem_region->start, cur_section->start);
1484		return 0;
1485	}
1486
1487	skip_size = cur_section->start - mem_region->start;
1488
1489	/* fill the gap between the first register section and register
1490	 * start address
1491	 */
1492	for (i = 0; i < skip_size; i++) {
1493		*buf = ATH10K_MAGIC_NOT_COPIED;
1494		buf++;
1495	}
1496
1497	count = 0;
1498
1499	for (i = 0; cur_section != NULL; i++) {
1500		section_size = cur_section->end - cur_section->start;
1501
1502		if (section_size <= 0) {
1503			ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
1504				    cur_section->start,
1505				    cur_section->end);
1506			break;
1507		}
1508
1509		if ((i + 1) == mem_region->section_table.size) {
1510			/* last section */
1511			next_section = NULL;
1512			skip_size = 0;
1513		} else {
1514			next_section = cur_section + 1;
1515
1516			if (cur_section->end > next_section->start) {
1517				ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
1518					    next_section->start,
1519					    cur_section->end);
1520				break;
1521			}
1522
1523			skip_size = next_section->start - cur_section->end;
1524		}
1525
1526		if (buf_len < (skip_size + section_size)) {
1527			ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
1528			break;
1529		}
1530
1531		buf_len -= skip_size + section_size;
1532
1533		/* read section to dest memory */
1534		ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
1535					       buf, section_size);
1536		if (ret) {
1537			ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
1538				    cur_section->start, ret);
1539			break;
1540		}
1541
1542		buf += section_size;
1543		count += section_size;
1544
1545		/* fill in the gap between this section and the next */
1546		for (j = 0; j < skip_size; j++) {
1547			*buf = ATH10K_MAGIC_NOT_COPIED;
1548			buf++;
1549		}
1550
1551		count += skip_size;
1552
1553		if (!next_section)
1554			/* this was the last section */
1555			break;
1556
1557		cur_section = next_section;
1558	}
1559
1560	return count;
1561}
1562
1563static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
1564{
1565	u32 val;
1566
1567	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1568			   FW_RAM_CONFIG_ADDRESS, config);
1569
1570	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1571				FW_RAM_CONFIG_ADDRESS);
1572	if (val != config) {
1573		ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
1574			    val, config);
1575		return -EIO;
1576	}
1577
1578	return 0;
1579}
1580
1581/* Always returns the length */
1582static int ath10k_pci_dump_memory_sram(struct ath10k *ar,
1583				       const struct ath10k_mem_region *region,
1584				       u8 *buf)
1585{
1586	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1587	u32 base_addr, i;
1588
1589	base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG);
1590	base_addr += region->start;
1591
1592	for (i = 0; i < region->len; i += 4) {
1593		iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG);
1594		*(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG);
1595	}
1596
1597	return region->len;
1598}
1599
1600/* if an error happened returns < 0, otherwise the length */
1601static int ath10k_pci_dump_memory_reg(struct ath10k *ar,
1602				      const struct ath10k_mem_region *region,
1603				      u8 *buf)
1604{
1605	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1606	u32 i;
1607	int ret;
1608
1609	mutex_lock(&ar->conf_mutex);
1610	if (ar->state != ATH10K_STATE_ON) {
1611		ath10k_warn(ar, "Skipping pci_dump_memory_reg invalid state\n");
1612		ret = -EIO;
1613		goto done;
1614	}
1615
1616	for (i = 0; i < region->len; i += 4)
1617		*(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i);
1618
1619	ret = region->len;
1620done:
1621	mutex_unlock(&ar->conf_mutex);
1622	return ret;
1623}
1624
1625/* if an error happened returns < 0, otherwise the length */
1626static int ath10k_pci_dump_memory_generic(struct ath10k *ar,
1627					  const struct ath10k_mem_region *current_region,
1628					  u8 *buf)
1629{
1630	int ret;
1631
1632	if (current_region->section_table.size > 0)
1633		/* Copy each section individually. */
1634		return ath10k_pci_dump_memory_section(ar,
1635						      current_region,
1636						      buf,
1637						      current_region->len);
1638
1639	/* No individiual memory sections defined so we can
1640	 * copy the entire memory region.
1641	 */
1642	ret = ath10k_pci_diag_read_mem(ar,
1643				       current_region->start,
1644				       buf,
1645				       current_region->len);
1646	if (ret) {
1647		ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
1648			    current_region->name, ret);
1649		return ret;
1650	}
1651
1652	return current_region->len;
1653}
1654
1655static void ath10k_pci_dump_memory(struct ath10k *ar,
1656				   struct ath10k_fw_crash_data *crash_data)
1657{
1658	const struct ath10k_hw_mem_layout *mem_layout;
1659	const struct ath10k_mem_region *current_region;
1660	struct ath10k_dump_ram_data_hdr *hdr;
1661	u32 count, shift;
1662	size_t buf_len;
1663	int ret, i;
1664	u8 *buf;
1665
1666	lockdep_assert_held(&ar->dump_mutex);
1667
1668	if (!crash_data)
1669		return;
1670
1671	mem_layout = ath10k_coredump_get_mem_layout(ar);
1672	if (!mem_layout)
1673		return;
1674
1675	current_region = &mem_layout->region_table.regions[0];
1676
1677	buf = crash_data->ramdump_buf;
1678	buf_len = crash_data->ramdump_buf_len;
1679
1680	memset(buf, 0, buf_len);
1681
1682	for (i = 0; i < mem_layout->region_table.size; i++) {
1683		count = 0;
1684
1685		if (current_region->len > buf_len) {
1686			ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
1687				    current_region->name,
1688				    current_region->len,
1689				    buf_len);
1690			break;
1691		}
1692
1693		/* To get IRAM dump, the host driver needs to switch target
1694		 * ram config from DRAM to IRAM.
1695		 */
1696		if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
1697		    current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
1698			shift = current_region->start >> 20;
1699
1700			ret = ath10k_pci_set_ram_config(ar, shift);
1701			if (ret) {
1702				ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
1703					    current_region->name, ret);
1704				break;
1705			}
1706		}
1707
1708		/* Reserve space for the header. */
1709		hdr = (void *)buf;
1710		buf += sizeof(*hdr);
1711		buf_len -= sizeof(*hdr);
1712
1713		switch (current_region->type) {
1714		case ATH10K_MEM_REGION_TYPE_IOSRAM:
1715			count = ath10k_pci_dump_memory_sram(ar, current_region, buf);
1716			break;
1717		case ATH10K_MEM_REGION_TYPE_IOREG:
1718			ret = ath10k_pci_dump_memory_reg(ar, current_region, buf);
1719			if (ret < 0)
1720				break;
1721
1722			count = ret;
1723			break;
1724		default:
1725			ret = ath10k_pci_dump_memory_generic(ar, current_region, buf);
1726			if (ret < 0)
1727				break;
1728
1729			count = ret;
1730			break;
1731		}
1732
1733		hdr->region_type = cpu_to_le32(current_region->type);
1734		hdr->start = cpu_to_le32(current_region->start);
1735		hdr->length = cpu_to_le32(count);
1736
1737		if (count == 0)
1738			/* Note: the header remains, just with zero length. */
1739			break;
1740
1741		buf += count;
1742		buf_len -= count;
1743
1744		current_region++;
1745	}
1746}
1747
1748static void ath10k_pci_fw_dump_work(struct work_struct *work)
1749{
1750	struct ath10k_pci *ar_pci = container_of(work, struct ath10k_pci,
1751						 dump_work);
1752	struct ath10k_fw_crash_data *crash_data;
1753	struct ath10k *ar = ar_pci->ar;
1754	char guid[UUID_STRING_LEN + 1];
1755
1756	mutex_lock(&ar->dump_mutex);
1757
1758	spin_lock_bh(&ar->data_lock);
 
1759	ar->stats.fw_crash_counter++;
1760	spin_unlock_bh(&ar->data_lock);
1761
1762	crash_data = ath10k_coredump_new(ar);
1763
1764	if (crash_data)
1765		scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1766	else
1767		scnprintf(guid, sizeof(guid), "n/a");
1768
1769	ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1770	ath10k_print_driver_info(ar);
1771	ath10k_pci_dump_registers(ar, crash_data);
1772	ath10k_ce_dump_registers(ar, crash_data);
1773	ath10k_pci_dump_memory(ar, crash_data);
1774
1775	mutex_unlock(&ar->dump_mutex);
1776
1777	ath10k_core_start_recovery(ar);
1778}
1779
1780static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1781{
1782	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1783
1784	queue_work(ar->workqueue, &ar_pci->dump_work);
1785}
1786
1787void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1788					int force)
1789{
1790	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1791
1792	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1793
1794	if (!force) {
1795		int resources;
1796		/*
1797		 * Decide whether to actually poll for completions, or just
1798		 * wait for a later chance.
1799		 * If there seem to be plenty of resources left, then just wait
1800		 * since checking involves reading a CE register, which is a
1801		 * relatively expensive operation.
1802		 */
1803		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1804
1805		/*
1806		 * If at least 50% of the total resources are still available,
1807		 * don't bother checking again yet.
1808		 */
1809		if (resources > (ar_pci->attr[pipe].src_nentries >> 1))
1810			return;
1811	}
1812	ath10k_ce_per_engine_service(ar, pipe);
1813}
1814
1815static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1816{
1817	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 
 
 
 
 
 
 
1818
1819	del_timer_sync(&ar_pci->rx_post_retry);
1820}
1821
1822int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1823				       u8 *ul_pipe, u8 *dl_pipe)
1824{
1825	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1826	const struct ce_service_to_pipe *entry;
1827	bool ul_set = false, dl_set = false;
1828	int i;
1829
1830	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1831
1832	for (i = 0; i < ARRAY_SIZE(pci_target_service_to_ce_map_wlan); i++) {
1833		entry = &ar_pci->serv_to_pipe[i];
1834
1835		if (__le32_to_cpu(entry->service_id) != service_id)
1836			continue;
1837
1838		switch (__le32_to_cpu(entry->pipedir)) {
1839		case PIPEDIR_NONE:
1840			break;
1841		case PIPEDIR_IN:
1842			WARN_ON(dl_set);
1843			*dl_pipe = __le32_to_cpu(entry->pipenum);
1844			dl_set = true;
1845			break;
1846		case PIPEDIR_OUT:
1847			WARN_ON(ul_set);
1848			*ul_pipe = __le32_to_cpu(entry->pipenum);
1849			ul_set = true;
1850			break;
1851		case PIPEDIR_INOUT:
1852			WARN_ON(dl_set);
1853			WARN_ON(ul_set);
1854			*dl_pipe = __le32_to_cpu(entry->pipenum);
1855			*ul_pipe = __le32_to_cpu(entry->pipenum);
1856			dl_set = true;
1857			ul_set = true;
1858			break;
1859		}
1860	}
1861
1862	if (!ul_set || !dl_set)
1863		return -ENOENT;
1864
1865	return 0;
1866}
1867
1868void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1869				     u8 *ul_pipe, u8 *dl_pipe)
1870{
1871	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1872
1873	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1874						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1875						 ul_pipe, dl_pipe);
1876}
1877
1878void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1879{
1880	u32 val;
1881
1882	switch (ar->hw_rev) {
1883	case ATH10K_HW_QCA988X:
1884	case ATH10K_HW_QCA9887:
1885	case ATH10K_HW_QCA6174:
1886	case ATH10K_HW_QCA9377:
1887		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1888					CORE_CTRL_ADDRESS);
1889		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1890		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1891				   CORE_CTRL_ADDRESS, val);
1892		break;
1893	case ATH10K_HW_QCA99X0:
1894	case ATH10K_HW_QCA9984:
1895	case ATH10K_HW_QCA9888:
1896	case ATH10K_HW_QCA4019:
1897		/* TODO: Find appropriate register configuration for QCA99X0
1898		 *  to mask irq/MSI.
1899		 */
1900		break;
1901	case ATH10K_HW_WCN3990:
1902		break;
1903	}
1904}
1905
1906static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1907{
1908	u32 val;
1909
1910	switch (ar->hw_rev) {
1911	case ATH10K_HW_QCA988X:
1912	case ATH10K_HW_QCA9887:
1913	case ATH10K_HW_QCA6174:
1914	case ATH10K_HW_QCA9377:
1915		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1916					CORE_CTRL_ADDRESS);
1917		val |= CORE_CTRL_PCIE_REG_31_MASK;
1918		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1919				   CORE_CTRL_ADDRESS, val);
1920		break;
1921	case ATH10K_HW_QCA99X0:
1922	case ATH10K_HW_QCA9984:
1923	case ATH10K_HW_QCA9888:
1924	case ATH10K_HW_QCA4019:
1925		/* TODO: Find appropriate register configuration for QCA99X0
1926		 *  to unmask irq/MSI.
1927		 */
1928		break;
1929	case ATH10K_HW_WCN3990:
1930		break;
1931	}
1932}
1933
1934static void ath10k_pci_irq_disable(struct ath10k *ar)
1935{
1936	ath10k_ce_disable_interrupts(ar);
1937	ath10k_pci_disable_and_clear_legacy_irq(ar);
1938	ath10k_pci_irq_msi_fw_mask(ar);
1939}
1940
1941static void ath10k_pci_irq_sync(struct ath10k *ar)
1942{
1943	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 
1944
1945	synchronize_irq(ar_pci->pdev->irq);
 
1946}
1947
1948static void ath10k_pci_irq_enable(struct ath10k *ar)
1949{
1950	ath10k_ce_enable_interrupts(ar);
1951	ath10k_pci_enable_legacy_irq(ar);
1952	ath10k_pci_irq_msi_fw_unmask(ar);
1953}
1954
1955static int ath10k_pci_hif_start(struct ath10k *ar)
1956{
1957	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1958
1959	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1960
1961	ath10k_core_napi_enable(ar);
1962
1963	ath10k_pci_irq_enable(ar);
1964	ath10k_pci_rx_post(ar);
1965
1966	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1967				   ar_pci->link_ctl);
1968
1969	return 0;
1970}
1971
1972static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1973{
1974	struct ath10k *ar;
1975	struct ath10k_ce_pipe *ce_pipe;
1976	struct ath10k_ce_ring *ce_ring;
1977	struct sk_buff *skb;
1978	int i;
1979
1980	ar = pci_pipe->hif_ce_state;
1981	ce_pipe = pci_pipe->ce_hdl;
1982	ce_ring = ce_pipe->dest_ring;
1983
1984	if (!ce_ring)
1985		return;
1986
1987	if (!pci_pipe->buf_sz)
1988		return;
1989
1990	for (i = 0; i < ce_ring->nentries; i++) {
1991		skb = ce_ring->per_transfer_context[i];
1992		if (!skb)
1993			continue;
1994
1995		ce_ring->per_transfer_context[i] = NULL;
1996
1997		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1998				 skb->len + skb_tailroom(skb),
1999				 DMA_FROM_DEVICE);
2000		dev_kfree_skb_any(skb);
2001	}
2002}
2003
2004static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
2005{
2006	struct ath10k *ar;
 
2007	struct ath10k_ce_pipe *ce_pipe;
2008	struct ath10k_ce_ring *ce_ring;
2009	struct sk_buff *skb;
2010	int i;
2011
2012	ar = pci_pipe->hif_ce_state;
 
2013	ce_pipe = pci_pipe->ce_hdl;
2014	ce_ring = ce_pipe->src_ring;
2015
2016	if (!ce_ring)
2017		return;
2018
2019	if (!pci_pipe->buf_sz)
2020		return;
2021
2022	for (i = 0; i < ce_ring->nentries; i++) {
2023		skb = ce_ring->per_transfer_context[i];
2024		if (!skb)
2025			continue;
2026
2027		ce_ring->per_transfer_context[i] = NULL;
2028
2029		ath10k_htc_tx_completion_handler(ar, skb);
2030	}
2031}
2032
2033/*
2034 * Cleanup residual buffers for device shutdown:
2035 *    buffers that were enqueued for receive
2036 *    buffers that were to be sent
2037 * Note: Buffers that had completed but which were
2038 * not yet processed are on a completion queue. They
2039 * are handled when the completion thread shuts down.
2040 */
2041static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
2042{
2043	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2044	int pipe_num;
2045
2046	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
2047		struct ath10k_pci_pipe *pipe_info;
2048
2049		pipe_info = &ar_pci->pipe_info[pipe_num];
2050		ath10k_pci_rx_pipe_cleanup(pipe_info);
2051		ath10k_pci_tx_pipe_cleanup(pipe_info);
2052	}
2053}
2054
2055void ath10k_pci_ce_deinit(struct ath10k *ar)
2056{
2057	int i;
2058
2059	for (i = 0; i < CE_COUNT; i++)
2060		ath10k_ce_deinit_pipe(ar, i);
2061}
2062
2063void ath10k_pci_flush(struct ath10k *ar)
2064{
2065	ath10k_pci_rx_retry_sync(ar);
2066	ath10k_pci_buffer_cleanup(ar);
2067}
2068
2069static void ath10k_pci_hif_stop(struct ath10k *ar)
2070{
2071	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2072	unsigned long flags;
2073
2074	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
2075
2076	ath10k_pci_irq_disable(ar);
2077	ath10k_pci_irq_sync(ar);
2078
2079	ath10k_core_napi_sync_disable(ar);
2080
2081	cancel_work_sync(&ar_pci->dump_work);
2082
2083	/* Most likely the device has HTT Rx ring configured. The only way to
2084	 * prevent the device from accessing (and possible corrupting) host
2085	 * memory is to reset the chip now.
2086	 *
2087	 * There's also no known way of masking MSI interrupts on the device.
2088	 * For ranged MSI the CE-related interrupts can be masked. However
2089	 * regardless how many MSI interrupts are assigned the first one
2090	 * is always used for firmware indications (crashes) and cannot be
2091	 * masked. To prevent the device from asserting the interrupt reset it
2092	 * before proceeding with cleanup.
2093	 */
2094	ath10k_pci_safe_chip_reset(ar);
2095
 
 
2096	ath10k_pci_flush(ar);
2097
2098	spin_lock_irqsave(&ar_pci->ps_lock, flags);
2099	WARN_ON(ar_pci->ps_wake_refcount > 0);
2100	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
2101}
2102
2103int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
2104				    void *req, u32 req_len,
2105				    void *resp, u32 *resp_len)
2106{
2107	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2108	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
2109	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
2110	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
2111	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
2112	dma_addr_t req_paddr = 0;
2113	dma_addr_t resp_paddr = 0;
2114	struct bmi_xfer xfer = {};
2115	void *treq, *tresp = NULL;
2116	int ret = 0;
2117
2118	might_sleep();
2119
2120	if (resp && !resp_len)
2121		return -EINVAL;
2122
2123	if (resp && resp_len && *resp_len == 0)
2124		return -EINVAL;
2125
2126	treq = kmemdup(req, req_len, GFP_KERNEL);
2127	if (!treq)
2128		return -ENOMEM;
2129
2130	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
2131	ret = dma_mapping_error(ar->dev, req_paddr);
2132	if (ret) {
2133		ret = -EIO;
2134		goto err_dma;
2135	}
2136
2137	if (resp && resp_len) {
2138		tresp = kzalloc(*resp_len, GFP_KERNEL);
2139		if (!tresp) {
2140			ret = -ENOMEM;
2141			goto err_req;
2142		}
2143
2144		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
2145					    DMA_FROM_DEVICE);
2146		ret = dma_mapping_error(ar->dev, resp_paddr);
2147		if (ret) {
2148			ret = -EIO;
2149			goto err_req;
2150		}
2151
2152		xfer.wait_for_resp = true;
2153		xfer.resp_len = 0;
2154
2155		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
2156	}
2157
2158	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
2159	if (ret)
2160		goto err_resp;
2161
2162	ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
2163	if (ret) {
2164		dma_addr_t unused_buffer;
2165		unsigned int unused_nbytes;
2166		unsigned int unused_id;
2167
2168		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
2169					   &unused_nbytes, &unused_id);
2170	} else {
2171		/* non-zero means we did not time out */
2172		ret = 0;
2173	}
2174
2175err_resp:
2176	if (resp) {
2177		dma_addr_t unused_buffer;
2178
2179		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
2180		dma_unmap_single(ar->dev, resp_paddr,
2181				 *resp_len, DMA_FROM_DEVICE);
2182	}
2183err_req:
2184	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
2185
2186	if (ret == 0 && resp_len) {
2187		*resp_len = min(*resp_len, xfer.resp_len);
2188		memcpy(resp, tresp, *resp_len);
2189	}
2190err_dma:
2191	kfree(treq);
2192	kfree(tresp);
2193
2194	return ret;
2195}
2196
2197static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
2198{
2199	struct bmi_xfer *xfer;
2200
2201	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
2202		return;
2203
2204	xfer->tx_done = true;
2205}
2206
2207static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
2208{
2209	struct ath10k *ar = ce_state->ar;
2210	struct bmi_xfer *xfer;
 
2211	unsigned int nbytes;
 
 
2212
2213	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
2214					  &nbytes))
2215		return;
2216
2217	if (WARN_ON_ONCE(!xfer))
2218		return;
2219
2220	if (!xfer->wait_for_resp) {
2221		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
2222		return;
2223	}
2224
2225	xfer->resp_len = nbytes;
2226	xfer->rx_done = true;
2227}
2228
2229static int ath10k_pci_bmi_wait(struct ath10k *ar,
2230			       struct ath10k_ce_pipe *tx_pipe,
2231			       struct ath10k_ce_pipe *rx_pipe,
2232			       struct bmi_xfer *xfer)
2233{
2234	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
2235	unsigned long started = jiffies;
2236	unsigned long dur;
2237	int ret;
2238
2239	while (time_before_eq(jiffies, timeout)) {
2240		ath10k_pci_bmi_send_done(tx_pipe);
2241		ath10k_pci_bmi_recv_data(rx_pipe);
2242
2243		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
2244			ret = 0;
2245			goto out;
2246		}
2247
2248		schedule();
2249	}
2250
2251	ret = -ETIMEDOUT;
2252
2253out:
2254	dur = jiffies - started;
2255	if (dur > HZ)
2256		ath10k_dbg(ar, ATH10K_DBG_BMI,
2257			   "bmi cmd took %lu jiffies hz %d ret %d\n",
2258			   dur, HZ, ret);
2259	return ret;
2260}
2261
2262/*
2263 * Send an interrupt to the device to wake up the Target CPU
2264 * so it has an opportunity to notice any changed state.
2265 */
2266static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
2267{
2268	u32 addr, val;
2269
2270	addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
2271	val = ath10k_pci_read32(ar, addr);
2272	val |= CORE_CTRL_CPU_INTR_MASK;
2273	ath10k_pci_write32(ar, addr, val);
2274
2275	return 0;
2276}
2277
2278static int ath10k_pci_get_num_banks(struct ath10k *ar)
2279{
2280	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2281
2282	switch (ar_pci->pdev->device) {
2283	case QCA988X_2_0_DEVICE_ID_UBNT:
2284	case QCA988X_2_0_DEVICE_ID:
2285	case QCA99X0_2_0_DEVICE_ID:
2286	case QCA9888_2_0_DEVICE_ID:
2287	case QCA9984_1_0_DEVICE_ID:
2288	case QCA9887_1_0_DEVICE_ID:
2289		return 1;
2290	case QCA6164_2_1_DEVICE_ID:
2291	case QCA6174_2_1_DEVICE_ID:
2292		switch (MS(ar->bus_param.chip_id, SOC_CHIP_ID_REV)) {
2293		case QCA6174_HW_1_0_CHIP_ID_REV:
2294		case QCA6174_HW_1_1_CHIP_ID_REV:
2295		case QCA6174_HW_2_1_CHIP_ID_REV:
2296		case QCA6174_HW_2_2_CHIP_ID_REV:
2297			return 3;
2298		case QCA6174_HW_1_3_CHIP_ID_REV:
2299			return 2;
2300		case QCA6174_HW_3_0_CHIP_ID_REV:
2301		case QCA6174_HW_3_1_CHIP_ID_REV:
2302		case QCA6174_HW_3_2_CHIP_ID_REV:
2303			return 9;
2304		}
2305		break;
2306	case QCA9377_1_0_DEVICE_ID:
2307		return 9;
2308	}
2309
2310	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2311	return 1;
2312}
2313
2314static int ath10k_bus_get_num_banks(struct ath10k *ar)
2315{
2316	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2317
2318	return ce->bus_ops->get_num_banks(ar);
2319}
2320
2321int ath10k_pci_init_config(struct ath10k *ar)
2322{
2323	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2324	u32 interconnect_targ_addr;
2325	u32 pcie_state_targ_addr = 0;
2326	u32 pipe_cfg_targ_addr = 0;
2327	u32 svc_to_pipe_map = 0;
2328	u32 pcie_config_flags = 0;
2329	u32 ealloc_value;
2330	u32 ealloc_targ_addr;
2331	u32 flag2_value;
2332	u32 flag2_targ_addr;
2333	int ret = 0;
2334
2335	/* Download to Target the CE Config and the service-to-CE map */
2336	interconnect_targ_addr =
2337		host_interest_item_address(HI_ITEM(hi_interconnect_state));
2338
2339	/* Supply Target-side CE configuration */
2340	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2341				     &pcie_state_targ_addr);
2342	if (ret != 0) {
2343		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2344		return ret;
2345	}
2346
2347	if (pcie_state_targ_addr == 0) {
2348		ret = -EIO;
2349		ath10k_err(ar, "Invalid pcie state addr\n");
2350		return ret;
2351	}
2352
2353	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2354					  offsetof(struct pcie_state,
2355						   pipe_cfg_addr)),
2356				     &pipe_cfg_targ_addr);
2357	if (ret != 0) {
2358		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2359		return ret;
2360	}
2361
2362	if (pipe_cfg_targ_addr == 0) {
2363		ret = -EIO;
2364		ath10k_err(ar, "Invalid pipe cfg addr\n");
2365		return ret;
2366	}
2367
2368	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2369					ar_pci->pipe_config,
2370					sizeof(struct ce_pipe_config) *
2371					NUM_TARGET_CE_CONFIG_WLAN);
2372
2373	if (ret != 0) {
2374		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2375		return ret;
2376	}
2377
2378	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2379					  offsetof(struct pcie_state,
2380						   svc_to_pipe_map)),
2381				     &svc_to_pipe_map);
2382	if (ret != 0) {
2383		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2384		return ret;
2385	}
2386
2387	if (svc_to_pipe_map == 0) {
2388		ret = -EIO;
2389		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2390		return ret;
2391	}
2392
2393	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2394					ar_pci->serv_to_pipe,
2395					sizeof(pci_target_service_to_ce_map_wlan));
2396	if (ret != 0) {
2397		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2398		return ret;
2399	}
2400
2401	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2402					  offsetof(struct pcie_state,
2403						   config_flags)),
2404				     &pcie_config_flags);
2405	if (ret != 0) {
2406		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2407		return ret;
2408	}
2409
2410	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2411
2412	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2413					   offsetof(struct pcie_state,
2414						    config_flags)),
2415				      pcie_config_flags);
2416	if (ret != 0) {
2417		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2418		return ret;
2419	}
2420
2421	/* configure early allocation */
2422	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2423
2424	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2425	if (ret != 0) {
2426		ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2427		return ret;
2428	}
2429
2430	/* first bank is switched to IRAM */
2431	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2432			 HI_EARLY_ALLOC_MAGIC_MASK);
2433	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2434			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2435			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2436
2437	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2438	if (ret != 0) {
2439		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2440		return ret;
2441	}
2442
2443	/* Tell Target to proceed with initialization */
2444	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2445
2446	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2447	if (ret != 0) {
2448		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2449		return ret;
2450	}
2451
2452	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2453
2454	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2455	if (ret != 0) {
2456		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2457		return ret;
2458	}
2459
2460	return 0;
2461}
2462
2463static void ath10k_pci_override_ce_config(struct ath10k *ar)
2464{
2465	struct ce_attr *attr;
2466	struct ce_pipe_config *config;
2467	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2468
2469	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2470	 * since it is currently used for other feature.
2471	 */
2472
2473	/* Override Host's Copy Engine 5 configuration */
2474	attr = &ar_pci->attr[5];
2475	attr->src_sz_max = 0;
2476	attr->dest_nentries = 0;
2477
2478	/* Override Target firmware's Copy Engine configuration */
2479	config = &ar_pci->pipe_config[5];
2480	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2481	config->nbytes_max = __cpu_to_le32(2048);
2482
2483	/* Map from service/endpoint to Copy Engine */
2484	ar_pci->serv_to_pipe[15].pipenum = __cpu_to_le32(1);
2485}
2486
2487int ath10k_pci_alloc_pipes(struct ath10k *ar)
2488{
2489	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2490	struct ath10k_pci_pipe *pipe;
2491	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2492	int i, ret;
2493
2494	for (i = 0; i < CE_COUNT; i++) {
2495		pipe = &ar_pci->pipe_info[i];
2496		pipe->ce_hdl = &ce->ce_states[i];
2497		pipe->pipe_num = i;
2498		pipe->hif_ce_state = ar;
2499
2500		ret = ath10k_ce_alloc_pipe(ar, i, &ar_pci->attr[i]);
2501		if (ret) {
2502			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2503				   i, ret);
2504			return ret;
2505		}
2506
2507		/* Last CE is Diagnostic Window */
2508		if (i == CE_DIAG_PIPE) {
2509			ar_pci->ce_diag = pipe->ce_hdl;
2510			continue;
2511		}
2512
2513		pipe->buf_sz = (size_t)(ar_pci->attr[i].src_sz_max);
2514	}
2515
2516	return 0;
2517}
2518
2519void ath10k_pci_free_pipes(struct ath10k *ar)
2520{
2521	int i;
2522
2523	for (i = 0; i < CE_COUNT; i++)
2524		ath10k_ce_free_pipe(ar, i);
2525}
2526
2527int ath10k_pci_init_pipes(struct ath10k *ar)
2528{
2529	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2530	int i, ret;
2531
2532	for (i = 0; i < CE_COUNT; i++) {
2533		ret = ath10k_ce_init_pipe(ar, i, &ar_pci->attr[i]);
2534		if (ret) {
2535			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2536				   i, ret);
2537			return ret;
2538		}
2539	}
2540
2541	return 0;
2542}
2543
2544static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2545{
2546	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2547	       FW_IND_EVENT_PENDING;
2548}
2549
2550static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2551{
2552	u32 val;
2553
2554	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2555	val &= ~FW_IND_EVENT_PENDING;
2556	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2557}
2558
2559static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2560{
2561	u32 val;
2562
2563	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2564	return (val == 0xffffffff);
2565}
2566
2567/* this function effectively clears target memory controller assert line */
2568static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2569{
2570	u32 val;
2571
2572	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2573	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2574			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2575	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2576
2577	msleep(10);
2578
2579	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2580	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2581			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2582	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2583
2584	msleep(10);
2585}
2586
2587static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2588{
2589	u32 val;
2590
2591	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2592
2593	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2594	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2595			       val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
 
2596}
2597
2598static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2599{
2600	u32 val;
2601
2602	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
 
2603
2604	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2605			       val | SOC_RESET_CONTROL_CE_RST_MASK);
2606	msleep(10);
2607	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2608			       val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2609}
2610
2611static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2612{
2613	u32 val;
2614
2615	val = ath10k_pci_soc_read32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS);
2616	ath10k_pci_soc_write32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS,
2617			       val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
 
 
2618}
2619
2620static int ath10k_pci_warm_reset(struct ath10k *ar)
2621{
2622	int ret;
2623
2624	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2625
2626	spin_lock_bh(&ar->data_lock);
2627	ar->stats.fw_warm_reset_counter++;
2628	spin_unlock_bh(&ar->data_lock);
2629
2630	ath10k_pci_irq_disable(ar);
2631
2632	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2633	 * were to access copy engine while host performs copy engine reset
2634	 * then it is possible for the device to confuse pci-e controller to
2635	 * the point of bringing host system to a complete stop (i.e. hang).
2636	 */
2637	ath10k_pci_warm_reset_si0(ar);
2638	ath10k_pci_warm_reset_cpu(ar);
2639	ath10k_pci_init_pipes(ar);
2640	ath10k_pci_wait_for_target_init(ar);
2641
2642	ath10k_pci_warm_reset_clear_lf(ar);
2643	ath10k_pci_warm_reset_ce(ar);
2644	ath10k_pci_warm_reset_cpu(ar);
2645	ath10k_pci_init_pipes(ar);
2646
2647	ret = ath10k_pci_wait_for_target_init(ar);
2648	if (ret) {
2649		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2650		return ret;
2651	}
2652
2653	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2654
2655	return 0;
2656}
2657
2658static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2659{
2660	ath10k_pci_irq_disable(ar);
2661	return ath10k_pci_qca99x0_chip_reset(ar);
2662}
2663
2664static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2665{
2666	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2667
2668	if (!ar_pci->pci_soft_reset)
 
 
 
2669		return -ENOTSUPP;
2670
2671	return ar_pci->pci_soft_reset(ar);
2672}
2673
2674static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2675{
2676	int i, ret;
2677	u32 val;
2678
2679	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2680
2681	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2682	 * It is thus preferred to use warm reset which is safer but may not be
2683	 * able to recover the device from all possible fail scenarios.
2684	 *
2685	 * Warm reset doesn't always work on first try so attempt it a few
2686	 * times before giving up.
2687	 */
2688	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2689		ret = ath10k_pci_warm_reset(ar);
2690		if (ret) {
2691			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2692				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2693				    ret);
2694			continue;
2695		}
2696
2697		/* FIXME: Sometimes copy engine doesn't recover after warm
2698		 * reset. In most cases this needs cold reset. In some of these
2699		 * cases the device is in such a state that a cold reset may
2700		 * lock up the host.
2701		 *
2702		 * Reading any host interest register via copy engine is
2703		 * sufficient to verify if device is capable of booting
2704		 * firmware blob.
2705		 */
2706		ret = ath10k_pci_init_pipes(ar);
2707		if (ret) {
2708			ath10k_warn(ar, "failed to init copy engine: %d\n",
2709				    ret);
2710			continue;
2711		}
2712
2713		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2714					     &val);
2715		if (ret) {
2716			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2717				    ret);
2718			continue;
2719		}
2720
2721		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2722		return 0;
2723	}
2724
2725	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2726		ath10k_warn(ar, "refusing cold reset as requested\n");
2727		return -EPERM;
2728	}
2729
2730	ret = ath10k_pci_cold_reset(ar);
2731	if (ret) {
2732		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2733		return ret;
2734	}
2735
2736	ret = ath10k_pci_wait_for_target_init(ar);
2737	if (ret) {
2738		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2739			    ret);
2740		return ret;
2741	}
2742
2743	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2744
2745	return 0;
2746}
2747
2748static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2749{
2750	int ret;
2751
2752	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2753
2754	/* FIXME: QCA6174 requires cold + warm reset to work. */
2755
2756	ret = ath10k_pci_cold_reset(ar);
2757	if (ret) {
2758		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2759		return ret;
2760	}
2761
2762	ret = ath10k_pci_wait_for_target_init(ar);
2763	if (ret) {
2764		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2765			    ret);
2766		return ret;
2767	}
2768
2769	ret = ath10k_pci_warm_reset(ar);
2770	if (ret) {
2771		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2772		return ret;
2773	}
2774
2775	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2776
2777	return 0;
2778}
2779
2780static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2781{
2782	int ret;
2783
2784	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2785
2786	ret = ath10k_pci_cold_reset(ar);
2787	if (ret) {
2788		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2789		return ret;
2790	}
2791
2792	ret = ath10k_pci_wait_for_target_init(ar);
2793	if (ret) {
2794		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2795			    ret);
2796		return ret;
2797	}
2798
2799	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2800
2801	return 0;
2802}
2803
2804static int ath10k_pci_chip_reset(struct ath10k *ar)
2805{
2806	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2807
2808	if (WARN_ON(!ar_pci->pci_hard_reset))
 
 
 
 
 
 
2809		return -ENOTSUPP;
2810
2811	return ar_pci->pci_hard_reset(ar);
2812}
2813
2814static int ath10k_pci_hif_power_up(struct ath10k *ar,
2815				   enum ath10k_firmware_mode fw_mode)
2816{
2817	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2818	int ret;
2819
2820	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2821
2822	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2823				  &ar_pci->link_ctl);
2824	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2825				   ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2826
2827	/*
2828	 * Bring the target up cleanly.
2829	 *
2830	 * The target may be in an undefined state with an AUX-powered Target
2831	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2832	 * restarted (without unloading the driver) then the Target is left
2833	 * (aux) powered and running. On a subsequent driver load, the Target
2834	 * is in an unexpected state. We try to catch that here in order to
2835	 * reset the Target and retry the probe.
2836	 */
2837	ret = ath10k_pci_chip_reset(ar);
2838	if (ret) {
2839		if (ath10k_pci_has_fw_crashed(ar)) {
2840			ath10k_warn(ar, "firmware crashed during chip reset\n");
2841			ath10k_pci_fw_crashed_clear(ar);
2842			ath10k_pci_fw_crashed_dump(ar);
2843		}
2844
2845		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2846		goto err_sleep;
2847	}
2848
2849	ret = ath10k_pci_init_pipes(ar);
2850	if (ret) {
2851		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2852		goto err_sleep;
2853	}
2854
2855	ret = ath10k_pci_init_config(ar);
2856	if (ret) {
2857		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2858		goto err_ce;
2859	}
2860
2861	ret = ath10k_pci_wake_target_cpu(ar);
2862	if (ret) {
2863		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2864		goto err_ce;
2865	}
2866
2867	return 0;
2868
2869err_ce:
2870	ath10k_pci_ce_deinit(ar);
2871
2872err_sleep:
2873	return ret;
2874}
2875
2876void ath10k_pci_hif_power_down(struct ath10k *ar)
2877{
2878	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2879
2880	/* Currently hif_power_up performs effectively a reset and hif_stop
2881	 * resets the chip as well so there's no point in resetting here.
2882	 */
2883}
2884
2885static int ath10k_pci_hif_suspend(struct ath10k *ar)
2886{
2887	/* Nothing to do; the important stuff is in the driver suspend. */
2888	return 0;
2889}
2890
2891static int ath10k_pci_suspend(struct ath10k *ar)
2892{
2893	/* The grace timer can still be counting down and ar->ps_awake be true.
2894	 * It is known that the device may be asleep after resuming regardless
2895	 * of the SoC powersave state before suspending. Hence make sure the
2896	 * device is asleep before proceeding.
2897	 */
2898	ath10k_pci_sleep_sync(ar);
2899
2900	return 0;
2901}
2902
2903static int ath10k_pci_hif_resume(struct ath10k *ar)
2904{
2905	/* Nothing to do; the important stuff is in the driver resume. */
2906	return 0;
2907}
2908
2909static int ath10k_pci_resume(struct ath10k *ar)
2910{
2911	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2912	struct pci_dev *pdev = ar_pci->pdev;
2913	u32 val;
2914	int ret = 0;
2915
2916	ret = ath10k_pci_force_wake(ar);
2917	if (ret) {
2918		ath10k_err(ar, "failed to wake up target: %d\n", ret);
2919		return ret;
2920	}
2921
2922	/* Suspend/Resume resets the PCI configuration space, so we have to
2923	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2924	 * from interfering with C3 CPU state. pci_restore_state won't help
2925	 * here since it only restores the first 64 bytes pci config header.
2926	 */
2927	pci_read_config_dword(pdev, 0x40, &val);
2928	if ((val & 0x0000ff00) != 0)
2929		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2930
2931	return ret;
2932}
2933
2934static bool ath10k_pci_validate_cal(void *data, size_t size)
2935{
2936	__le16 *cal_words = data;
2937	u16 checksum = 0;
2938	size_t i;
2939
2940	if (size % 2 != 0)
2941		return false;
2942
2943	for (i = 0; i < size / 2; i++)
2944		checksum ^= le16_to_cpu(cal_words[i]);
2945
2946	return checksum == 0xffff;
2947}
2948
2949static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2950{
2951	/* Enable SI clock */
2952	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2953
2954	/* Configure GPIOs for I2C operation */
2955	ath10k_pci_write32(ar,
2956			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2957			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2958			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2959			      GPIO_PIN0_CONFIG) |
2960			   SM(1, GPIO_PIN0_PAD_PULL));
2961
2962	ath10k_pci_write32(ar,
2963			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2964			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2965			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2966			   SM(1, GPIO_PIN0_PAD_PULL));
2967
2968	ath10k_pci_write32(ar,
2969			   GPIO_BASE_ADDRESS +
2970			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2971			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2972
2973	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2974	ath10k_pci_write32(ar,
2975			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2976			   SM(1, SI_CONFIG_ERR_INT) |
2977			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2978			   SM(1, SI_CONFIG_I2C) |
2979			   SM(1, SI_CONFIG_POS_SAMPLE) |
2980			   SM(1, SI_CONFIG_INACTIVE_DATA) |
2981			   SM(1, SI_CONFIG_INACTIVE_CLK) |
2982			   SM(8, SI_CONFIG_DIVIDER));
2983}
2984
2985static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2986{
2987	u32 reg;
2988	int wait_limit;
2989
2990	/* set device select byte and for the read operation */
2991	reg = QCA9887_EEPROM_SELECT_READ |
2992	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
2993	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2994	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2995
2996	/* write transmit data, transfer length, and START bit */
2997	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
2998			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
2999			   SM(4, SI_CS_TX_CNT));
3000
3001	/* wait max 1 sec */
3002	wait_limit = 100000;
3003
3004	/* wait for SI_CS_DONE_INT */
3005	do {
3006		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
3007		if (MS(reg, SI_CS_DONE_INT))
3008			break;
3009
3010		wait_limit--;
3011		udelay(10);
3012	} while (wait_limit > 0);
3013
3014	if (!MS(reg, SI_CS_DONE_INT)) {
3015		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
3016			   addr);
3017		return -ETIMEDOUT;
3018	}
3019
3020	/* clear SI_CS_DONE_INT */
3021	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
3022
3023	if (MS(reg, SI_CS_DONE_ERR)) {
3024		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
3025		return -EIO;
3026	}
3027
3028	/* extract receive data */
3029	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
3030	*out = reg;
3031
3032	return 0;
3033}
3034
3035static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
3036					   size_t *data_len)
3037{
3038	u8 *caldata = NULL;
3039	size_t calsize, i;
3040	int ret;
3041
3042	if (!QCA_REV_9887(ar))
3043		return -EOPNOTSUPP;
3044
3045	calsize = ar->hw_params.cal_data_len;
3046	caldata = kmalloc(calsize, GFP_KERNEL);
3047	if (!caldata)
3048		return -ENOMEM;
3049
3050	ath10k_pci_enable_eeprom(ar);
3051
3052	for (i = 0; i < calsize; i++) {
3053		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
3054		if (ret)
3055			goto err_free;
3056	}
3057
3058	if (!ath10k_pci_validate_cal(caldata, calsize))
3059		goto err_free;
3060
3061	*data = caldata;
3062	*data_len = calsize;
3063
3064	return 0;
3065
3066err_free:
3067	kfree(caldata);
3068
3069	return -EINVAL;
3070}
3071
3072static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
3073	.tx_sg			= ath10k_pci_hif_tx_sg,
3074	.diag_read		= ath10k_pci_hif_diag_read,
3075	.diag_write		= ath10k_pci_diag_write_mem,
3076	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
3077	.start			= ath10k_pci_hif_start,
3078	.stop			= ath10k_pci_hif_stop,
3079	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
3080	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
3081	.send_complete_check	= ath10k_pci_hif_send_complete_check,
3082	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
3083	.power_up		= ath10k_pci_hif_power_up,
3084	.power_down		= ath10k_pci_hif_power_down,
3085	.read32			= ath10k_pci_read32,
3086	.write32		= ath10k_pci_write32,
 
3087	.suspend		= ath10k_pci_hif_suspend,
3088	.resume			= ath10k_pci_hif_resume,
3089	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
3090};
3091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3092/*
3093 * Top-level interrupt handler for all PCI interrupts from a Target.
3094 * When a block of MSI interrupts is allocated, this top-level handler
3095 * is not used; instead, we directly call the correct sub-handler.
3096 */
3097static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
3098{
3099	struct ath10k *ar = arg;
3100	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3101	int ret;
3102
3103	if (ath10k_pci_has_device_gone(ar))
3104		return IRQ_NONE;
3105
3106	ret = ath10k_pci_force_wake(ar);
3107	if (ret) {
3108		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
3109		return IRQ_NONE;
3110	}
3111
3112	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
3113	    !ath10k_pci_irq_pending(ar))
3114		return IRQ_NONE;
3115
3116	ath10k_pci_disable_and_clear_legacy_irq(ar);
3117	ath10k_pci_irq_msi_fw_mask(ar);
3118	napi_schedule(&ar->napi);
 
3119
3120	return IRQ_HANDLED;
3121}
3122
3123static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
3124{
3125	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
3126	int done = 0;
3127
3128	if (ath10k_pci_has_fw_crashed(ar)) {
 
3129		ath10k_pci_fw_crashed_clear(ar);
3130		ath10k_pci_fw_crashed_dump(ar);
3131		napi_complete(ctx);
3132		return done;
3133	}
3134
3135	ath10k_ce_per_engine_service_any(ar);
3136
3137	done = ath10k_htt_txrx_compl_task(ar, budget);
 
 
 
3138
3139	if (done < budget) {
3140		napi_complete_done(ctx, done);
3141		/* In case of MSI, it is possible that interrupts are received
3142		 * while NAPI poll is inprogress. So pending interrupts that are
3143		 * received after processing all copy engine pipes by NAPI poll
3144		 * will not be handled again. This is causing failure to
3145		 * complete boot sequence in x86 platform. So before enabling
3146		 * interrupts safer to check for pending interrupts for
3147		 * immediate servicing.
3148		 */
3149		if (ath10k_ce_interrupt_summary(ar)) {
3150			napi_reschedule(ctx);
3151			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3152		}
3153		ath10k_pci_enable_legacy_irq(ar);
3154		ath10k_pci_irq_msi_fw_unmask(ar);
3155	}
3156
3157out:
3158	return done;
3159}
3160
3161static int ath10k_pci_request_irq_msi(struct ath10k *ar)
3162{
3163	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3164	int ret;
3165
3166	ret = request_irq(ar_pci->pdev->irq,
3167			  ath10k_pci_interrupt_handler,
3168			  IRQF_SHARED, "ath10k_pci", ar);
3169	if (ret) {
3170		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
3171			    ar_pci->pdev->irq, ret);
3172		return ret;
3173	}
3174
3175	return 0;
3176}
3177
3178static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
3179{
3180	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3181	int ret;
3182
3183	ret = request_irq(ar_pci->pdev->irq,
3184			  ath10k_pci_interrupt_handler,
3185			  IRQF_SHARED, "ath10k_pci", ar);
3186	if (ret) {
3187		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
3188			    ar_pci->pdev->irq, ret);
3189		return ret;
3190	}
3191
3192	return 0;
3193}
3194
3195static int ath10k_pci_request_irq(struct ath10k *ar)
3196{
3197	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3198
3199	switch (ar_pci->oper_irq_mode) {
3200	case ATH10K_PCI_IRQ_LEGACY:
3201		return ath10k_pci_request_irq_legacy(ar);
3202	case ATH10K_PCI_IRQ_MSI:
3203		return ath10k_pci_request_irq_msi(ar);
3204	default:
3205		return -EINVAL;
3206	}
3207}
3208
3209static void ath10k_pci_free_irq(struct ath10k *ar)
3210{
3211	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 
3212
3213	free_irq(ar_pci->pdev->irq, ar);
 
 
 
3214}
3215
3216void ath10k_pci_init_napi(struct ath10k *ar)
3217{
3218	netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll);
 
 
 
 
 
 
 
 
 
 
 
3219}
3220
3221static int ath10k_pci_init_irq(struct ath10k *ar)
3222{
3223	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3224	int ret;
3225
3226	ath10k_pci_init_napi(ar);
3227
3228	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
3229		ath10k_info(ar, "limiting irq mode to: %d\n",
3230			    ath10k_pci_irq_mode);
3231
 
 
 
 
 
 
 
 
 
 
 
3232	/* Try MSI */
3233	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
3234		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
3235		ret = pci_enable_msi(ar_pci->pdev);
3236		if (ret == 0)
3237			return 0;
3238
3239		/* MHI failed, try legacy irq next */
3240	}
3241
3242	/* Try legacy irq
3243	 *
3244	 * A potential race occurs here: The CORE_BASE write
3245	 * depends on target correctly decoding AXI address but
3246	 * host won't know when target writes BAR to CORE_CTRL.
3247	 * This write might get lost if target has NOT written BAR.
3248	 * For now, fix the race by repeating the write in below
3249	 * synchronization checking.
3250	 */
3251	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
3252
3253	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3254			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
3255
3256	return 0;
3257}
3258
3259static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
3260{
3261	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3262			   0);
3263}
3264
3265static int ath10k_pci_deinit_irq(struct ath10k *ar)
3266{
3267	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3268
3269	switch (ar_pci->oper_irq_mode) {
3270	case ATH10K_PCI_IRQ_LEGACY:
3271		ath10k_pci_deinit_irq_legacy(ar);
3272		break;
3273	default:
3274		pci_disable_msi(ar_pci->pdev);
3275		break;
3276	}
3277
3278	return 0;
3279}
3280
3281int ath10k_pci_wait_for_target_init(struct ath10k *ar)
3282{
3283	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3284	unsigned long timeout;
3285	u32 val;
3286
3287	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
3288
3289	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
3290
3291	do {
3292		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
3293
3294		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
3295			   val);
3296
3297		/* target should never return this */
3298		if (val == 0xffffffff)
3299			continue;
3300
3301		/* the device has crashed so don't bother trying anymore */
3302		if (val & FW_IND_EVENT_PENDING)
3303			break;
3304
3305		if (val & FW_IND_INITIALIZED)
3306			break;
3307
3308		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
3309			/* Fix potential race by repeating CORE_BASE writes */
3310			ath10k_pci_enable_legacy_irq(ar);
3311
3312		mdelay(10);
3313	} while (time_before(jiffies, timeout));
3314
3315	ath10k_pci_disable_and_clear_legacy_irq(ar);
3316	ath10k_pci_irq_msi_fw_mask(ar);
3317
3318	if (val == 0xffffffff) {
3319		ath10k_err(ar, "failed to read device register, device is gone\n");
3320		return -EIO;
3321	}
3322
3323	if (val & FW_IND_EVENT_PENDING) {
3324		ath10k_warn(ar, "device has crashed during init\n");
3325		return -ECOMM;
3326	}
3327
3328	if (!(val & FW_IND_INITIALIZED)) {
3329		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3330			   val);
3331		return -ETIMEDOUT;
3332	}
3333
3334	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3335	return 0;
3336}
3337
3338static int ath10k_pci_cold_reset(struct ath10k *ar)
3339{
3340	u32 val;
3341
3342	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3343
3344	spin_lock_bh(&ar->data_lock);
3345
3346	ar->stats.fw_cold_reset_counter++;
3347
3348	spin_unlock_bh(&ar->data_lock);
3349
3350	/* Put Target, including PCIe, into RESET. */
3351	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3352	val |= 1;
3353	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3354
3355	/* After writing into SOC_GLOBAL_RESET to put device into
3356	 * reset and pulling out of reset pcie may not be stable
3357	 * for any immediate pcie register access and cause bus error,
3358	 * add delay before any pcie access request to fix this issue.
3359	 */
3360	msleep(20);
3361
3362	/* Pull Target, including PCIe, out of RESET. */
3363	val &= ~1;
3364	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3365
3366	msleep(20);
3367
3368	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3369
3370	return 0;
3371}
3372
3373static int ath10k_pci_claim(struct ath10k *ar)
3374{
3375	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3376	struct pci_dev *pdev = ar_pci->pdev;
3377	int ret;
3378
3379	pci_set_drvdata(pdev, ar);
3380
3381	ret = pci_enable_device(pdev);
3382	if (ret) {
3383		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3384		return ret;
3385	}
3386
3387	ret = pci_request_region(pdev, BAR_NUM, "ath");
3388	if (ret) {
3389		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3390			   ret);
3391		goto err_device;
3392	}
3393
3394	/* Target expects 32 bit DMA. Enforce it. */
3395	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3396	if (ret) {
3397		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3398		goto err_region;
3399	}
3400
 
 
 
 
 
 
 
3401	pci_set_master(pdev);
3402
3403	/* Arrange for access to Target SoC registers. */
3404	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3405	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3406	if (!ar_pci->mem) {
3407		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3408		ret = -EIO;
3409		goto err_master;
3410	}
3411
3412	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3413	return 0;
3414
3415err_master:
3416	pci_clear_master(pdev);
3417
3418err_region:
3419	pci_release_region(pdev, BAR_NUM);
3420
3421err_device:
3422	pci_disable_device(pdev);
3423
3424	return ret;
3425}
3426
3427static void ath10k_pci_release(struct ath10k *ar)
3428{
3429	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3430	struct pci_dev *pdev = ar_pci->pdev;
3431
3432	pci_iounmap(pdev, ar_pci->mem);
3433	pci_release_region(pdev, BAR_NUM);
3434	pci_clear_master(pdev);
3435	pci_disable_device(pdev);
3436}
3437
3438static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3439{
3440	const struct ath10k_pci_supp_chip *supp_chip;
3441	int i;
3442	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3443
3444	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3445		supp_chip = &ath10k_pci_supp_chips[i];
3446
3447		if (supp_chip->dev_id == dev_id &&
3448		    supp_chip->rev_id == rev_id)
3449			return true;
3450	}
3451
3452	return false;
3453}
3454
3455int ath10k_pci_setup_resource(struct ath10k *ar)
3456{
3457	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3458	struct ath10k_ce *ce = ath10k_ce_priv(ar);
3459	int ret;
3460
3461	spin_lock_init(&ce->ce_lock);
3462	spin_lock_init(&ar_pci->ps_lock);
3463	mutex_init(&ar_pci->ce_diag_mutex);
3464
3465	INIT_WORK(&ar_pci->dump_work, ath10k_pci_fw_dump_work);
 
3466
3467	timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
3468
3469	ar_pci->attr = kmemdup(pci_host_ce_config_wlan,
3470			       sizeof(pci_host_ce_config_wlan),
3471			       GFP_KERNEL);
3472	if (!ar_pci->attr)
3473		return -ENOMEM;
3474
3475	ar_pci->pipe_config = kmemdup(pci_target_ce_config_wlan,
3476				      sizeof(pci_target_ce_config_wlan),
3477				      GFP_KERNEL);
3478	if (!ar_pci->pipe_config) {
3479		ret = -ENOMEM;
3480		goto err_free_attr;
3481	}
3482
3483	ar_pci->serv_to_pipe = kmemdup(pci_target_service_to_ce_map_wlan,
3484				       sizeof(pci_target_service_to_ce_map_wlan),
3485				       GFP_KERNEL);
3486	if (!ar_pci->serv_to_pipe) {
3487		ret = -ENOMEM;
3488		goto err_free_pipe_config;
3489	}
3490
3491	if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3492		ath10k_pci_override_ce_config(ar);
3493
3494	ret = ath10k_pci_alloc_pipes(ar);
3495	if (ret) {
3496		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3497			   ret);
3498		goto err_free_serv_to_pipe;
3499	}
3500
3501	return 0;
3502
3503err_free_serv_to_pipe:
3504	kfree(ar_pci->serv_to_pipe);
3505err_free_pipe_config:
3506	kfree(ar_pci->pipe_config);
3507err_free_attr:
3508	kfree(ar_pci->attr);
3509	return ret;
3510}
3511
3512void ath10k_pci_release_resource(struct ath10k *ar)
3513{
3514	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3515
3516	ath10k_pci_rx_retry_sync(ar);
3517	netif_napi_del(&ar->napi);
3518	ath10k_pci_ce_deinit(ar);
3519	ath10k_pci_free_pipes(ar);
3520	kfree(ar_pci->attr);
3521	kfree(ar_pci->pipe_config);
3522	kfree(ar_pci->serv_to_pipe);
3523}
3524
3525static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3526	.read32		= ath10k_bus_pci_read32,
3527	.write32	= ath10k_bus_pci_write32,
3528	.get_num_banks	= ath10k_pci_get_num_banks,
3529};
3530
3531static int ath10k_pci_probe(struct pci_dev *pdev,
3532			    const struct pci_device_id *pci_dev)
3533{
3534	int ret = 0;
3535	struct ath10k *ar;
3536	struct ath10k_pci *ar_pci;
3537	enum ath10k_hw_rev hw_rev;
3538	struct ath10k_bus_params bus_params = {};
3539	bool pci_ps, is_qca988x = false;
3540	int (*pci_soft_reset)(struct ath10k *ar);
3541	int (*pci_hard_reset)(struct ath10k *ar);
3542	u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3543
3544	switch (pci_dev->device) {
3545	case QCA988X_2_0_DEVICE_ID_UBNT:
3546	case QCA988X_2_0_DEVICE_ID:
3547		hw_rev = ATH10K_HW_QCA988X;
3548		pci_ps = false;
3549		is_qca988x = true;
3550		pci_soft_reset = ath10k_pci_warm_reset;
3551		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3552		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3553		break;
3554	case QCA9887_1_0_DEVICE_ID:
3555		hw_rev = ATH10K_HW_QCA9887;
3556		pci_ps = false;
3557		pci_soft_reset = ath10k_pci_warm_reset;
3558		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3559		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3560		break;
3561	case QCA6164_2_1_DEVICE_ID:
3562	case QCA6174_2_1_DEVICE_ID:
3563		hw_rev = ATH10K_HW_QCA6174;
3564		pci_ps = true;
3565		pci_soft_reset = ath10k_pci_warm_reset;
3566		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3567		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3568		break;
3569	case QCA99X0_2_0_DEVICE_ID:
3570		hw_rev = ATH10K_HW_QCA99X0;
3571		pci_ps = false;
3572		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3573		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3574		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3575		break;
3576	case QCA9984_1_0_DEVICE_ID:
3577		hw_rev = ATH10K_HW_QCA9984;
3578		pci_ps = false;
3579		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3580		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3581		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3582		break;
3583	case QCA9888_2_0_DEVICE_ID:
3584		hw_rev = ATH10K_HW_QCA9888;
3585		pci_ps = false;
3586		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3587		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3588		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3589		break;
3590	case QCA9377_1_0_DEVICE_ID:
3591		hw_rev = ATH10K_HW_QCA9377;
3592		pci_ps = true;
3593		pci_soft_reset = ath10k_pci_warm_reset;
3594		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3595		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3596		break;
3597	default:
3598		WARN_ON(1);
3599		return -ENOTSUPP;
3600	}
3601
3602	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3603				hw_rev, &ath10k_pci_hif_ops);
3604	if (!ar) {
3605		dev_err(&pdev->dev, "failed to allocate core\n");
3606		return -ENOMEM;
3607	}
3608
3609	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3610		   pdev->vendor, pdev->device,
3611		   pdev->subsystem_vendor, pdev->subsystem_device);
3612
3613	ar_pci = ath10k_pci_priv(ar);
3614	ar_pci->pdev = pdev;
3615	ar_pci->dev = &pdev->dev;
3616	ar_pci->ar = ar;
3617	ar->dev_id = pci_dev->device;
3618	ar_pci->pci_ps = pci_ps;
3619	ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3620	ar_pci->pci_soft_reset = pci_soft_reset;
3621	ar_pci->pci_hard_reset = pci_hard_reset;
3622	ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3623	ar->ce_priv = &ar_pci->ce;
3624
3625	ar->id.vendor = pdev->vendor;
3626	ar->id.device = pdev->device;
3627	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3628	ar->id.subsystem_device = pdev->subsystem_device;
3629
3630	timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
 
3631
3632	ret = ath10k_pci_setup_resource(ar);
3633	if (ret) {
3634		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3635		goto err_core_destroy;
3636	}
3637
3638	ret = ath10k_pci_claim(ar);
3639	if (ret) {
3640		ath10k_err(ar, "failed to claim device: %d\n", ret);
3641		goto err_free_pipes;
3642	}
3643
3644	ret = ath10k_pci_force_wake(ar);
3645	if (ret) {
3646		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3647		goto err_sleep;
3648	}
3649
3650	ath10k_pci_ce_deinit(ar);
3651	ath10k_pci_irq_disable(ar);
3652
3653	ret = ath10k_pci_init_irq(ar);
3654	if (ret) {
3655		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3656		goto err_sleep;
3657	}
3658
3659	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3660		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3661		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3662
3663	ret = ath10k_pci_request_irq(ar);
3664	if (ret) {
3665		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3666		goto err_deinit_irq;
3667	}
3668
3669	bus_params.dev_type = ATH10K_DEV_TYPE_LL;
3670	bus_params.link_can_suspend = true;
3671	/* Read CHIP_ID before reset to catch QCA9880-AR1A v1 devices that
3672	 * fall off the bus during chip_reset. These chips have the same pci
3673	 * device id as the QCA9880 BR4A or 2R4E. So that's why the check.
3674	 */
3675	if (is_qca988x) {
3676		bus_params.chip_id =
3677			ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3678		if (bus_params.chip_id != 0xffffffff) {
3679			if (!ath10k_pci_chip_is_supported(pdev->device,
3680							  bus_params.chip_id)) {
3681				ret = -ENODEV;
3682				goto err_unsupported;
3683			}
3684		}
3685	}
3686
3687	ret = ath10k_pci_chip_reset(ar);
3688	if (ret) {
3689		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3690		goto err_free_irq;
3691	}
3692
3693	bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3694	if (bus_params.chip_id == 0xffffffff) {
3695		ret = -ENODEV;
3696		goto err_unsupported;
3697	}
3698
3699	if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id)) {
3700		ret = -ENODEV;
3701		goto err_unsupported;
 
3702	}
3703
3704	ret = ath10k_core_register(ar, &bus_params);
3705	if (ret) {
3706		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3707		goto err_free_irq;
3708	}
3709
3710	return 0;
3711
3712err_unsupported:
3713	ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3714		   pdev->device, bus_params.chip_id);
3715
3716err_free_irq:
3717	ath10k_pci_free_irq(ar);
 
3718
3719err_deinit_irq:
3720	ath10k_pci_release_resource(ar);
3721
3722err_sleep:
3723	ath10k_pci_sleep_sync(ar);
3724	ath10k_pci_release(ar);
3725
3726err_free_pipes:
3727	ath10k_pci_free_pipes(ar);
3728
3729err_core_destroy:
3730	ath10k_core_destroy(ar);
3731
3732	return ret;
3733}
3734
3735static void ath10k_pci_remove(struct pci_dev *pdev)
3736{
3737	struct ath10k *ar = pci_get_drvdata(pdev);
 
3738
3739	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3740
3741	if (!ar)
3742		return;
3743
 
 
 
 
 
3744	ath10k_core_unregister(ar);
3745	ath10k_pci_free_irq(ar);
3746	ath10k_pci_deinit_irq(ar);
3747	ath10k_pci_release_resource(ar);
3748	ath10k_pci_sleep_sync(ar);
3749	ath10k_pci_release(ar);
3750	ath10k_core_destroy(ar);
3751}
3752
3753MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3754
3755static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
3756{
3757	struct ath10k *ar = dev_get_drvdata(dev);
3758	int ret;
3759
3760	ret = ath10k_pci_suspend(ar);
3761	if (ret)
3762		ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
3763
3764	return ret;
3765}
3766
3767static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
3768{
3769	struct ath10k *ar = dev_get_drvdata(dev);
3770	int ret;
3771
3772	ret = ath10k_pci_resume(ar);
3773	if (ret)
3774		ath10k_warn(ar, "failed to resume hif: %d\n", ret);
3775
3776	return ret;
3777}
3778
3779static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3780			 ath10k_pci_pm_suspend,
3781			 ath10k_pci_pm_resume);
3782
3783static struct pci_driver ath10k_pci_driver = {
3784	.name = "ath10k_pci",
3785	.id_table = ath10k_pci_id_table,
3786	.probe = ath10k_pci_probe,
3787	.remove = ath10k_pci_remove,
3788#ifdef CONFIG_PM
3789	.driver.pm = &ath10k_pci_pm_ops,
3790#endif
3791};
3792
3793static int __init ath10k_pci_init(void)
3794{
3795	int ret1, ret2;
3796
3797	ret1 = pci_register_driver(&ath10k_pci_driver);
3798	if (ret1)
3799		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3800		       ret1);
3801
3802	ret2 = ath10k_ahb_init();
3803	if (ret2)
3804		printk(KERN_ERR "ahb init failed: %d\n", ret2);
3805
3806	if (ret1 && ret2)
3807		return ret1;
3808
3809	/* registered to at least one bus */
3810	return 0;
3811}
3812module_init(ath10k_pci_init);
3813
3814static void __exit ath10k_pci_exit(void)
3815{
3816	pci_unregister_driver(&ath10k_pci_driver);
3817	ath10k_ahb_exit();
3818}
3819
3820module_exit(ath10k_pci_exit);
3821
3822MODULE_AUTHOR("Qualcomm Atheros");
3823MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
3824MODULE_LICENSE("Dual BSD/GPL");
3825
3826/* QCA988x 2.0 firmware files */
 
3827MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3828MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3829MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3830MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3831MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3832MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3833
3834/* QCA9887 1.0 firmware files */
3835MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3836MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3837MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3838
3839/* QCA6174 2.1 firmware files */
3840MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3841MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3842MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3843MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3844
3845/* QCA6174 3.1 firmware files */
3846MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3847MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3848MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3849MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3850MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3851
3852/* QCA9377 1.0 firmware files */
3853MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3854MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3855MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
v4.6
 
   1/*
   2 * Copyright (c) 2005-2011 Atheros Communications Inc.
   3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
   4 *
   5 * Permission to use, copy, modify, and/or distribute this software for any
   6 * purpose with or without fee is hereby granted, provided that the above
   7 * copyright notice and this permission notice appear in all copies.
   8 *
   9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16 */
  17
  18#include <linux/pci.h>
  19#include <linux/module.h>
  20#include <linux/interrupt.h>
  21#include <linux/spinlock.h>
  22#include <linux/bitops.h>
  23
  24#include "core.h"
  25#include "debug.h"
 
  26
  27#include "targaddrs.h"
  28#include "bmi.h"
  29
  30#include "hif.h"
  31#include "htc.h"
  32
  33#include "ce.h"
  34#include "pci.h"
  35
  36enum ath10k_pci_irq_mode {
  37	ATH10K_PCI_IRQ_AUTO = 0,
  38	ATH10K_PCI_IRQ_LEGACY = 1,
  39	ATH10K_PCI_IRQ_MSI = 2,
  40};
  41
  42enum ath10k_pci_reset_mode {
  43	ATH10K_PCI_RESET_AUTO = 0,
  44	ATH10K_PCI_RESET_WARM_ONLY = 1,
  45};
  46
  47static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
  48static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
  49
  50module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
  51MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
  52
  53module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
  54MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
  55
  56/* how long wait to wait for target to initialise, in ms */
  57#define ATH10K_PCI_TARGET_WAIT 3000
  58#define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
  59
 
 
 
 
 
 
 
 
 
  60static const struct pci_device_id ath10k_pci_id_table[] = {
 
 
 
  61	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
  62	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
  63	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
  64	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
 
 
  65	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
 
  66	{0}
  67};
  68
  69static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
  70	/* QCA988X pre 2.0 chips are not supported because they need some nasty
  71	 * hacks. ath10k doesn't have them and these devices crash horribly
  72	 * because of that.
  73	 */
 
  74	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
  75
  76	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
  77	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
  78	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
  79	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
  80	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
  81
  82	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
  83	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
  84	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
  85	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
  86	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
  87
  88	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
  89
 
 
 
 
  90	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
  91	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
 
 
  92};
  93
  94static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
  95static int ath10k_pci_cold_reset(struct ath10k *ar);
  96static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
  97static int ath10k_pci_init_irq(struct ath10k *ar);
  98static int ath10k_pci_deinit_irq(struct ath10k *ar);
  99static int ath10k_pci_request_irq(struct ath10k *ar);
 100static void ath10k_pci_free_irq(struct ath10k *ar);
 101static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
 
 102			       struct ath10k_ce_pipe *rx_pipe,
 103			       struct bmi_xfer *xfer);
 104static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
 105static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
 106static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
 107static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
 108static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
 109static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
 110static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
 111
 112static struct ce_attr host_ce_config_wlan[] = {
 113	/* CE0: host->target HTC control and raw streams */
 114	{
 115		.flags = CE_ATTR_FLAGS,
 116		.src_nentries = 16,
 117		.src_sz_max = 256,
 118		.dest_nentries = 0,
 119		.send_cb = ath10k_pci_htc_tx_cb,
 120	},
 121
 122	/* CE1: target->host HTT + HTC control */
 123	{
 124		.flags = CE_ATTR_FLAGS,
 125		.src_nentries = 0,
 126		.src_sz_max = 2048,
 127		.dest_nentries = 512,
 128		.recv_cb = ath10k_pci_htt_htc_rx_cb,
 129	},
 130
 131	/* CE2: target->host WMI */
 132	{
 133		.flags = CE_ATTR_FLAGS,
 134		.src_nentries = 0,
 135		.src_sz_max = 2048,
 136		.dest_nentries = 128,
 137		.recv_cb = ath10k_pci_htc_rx_cb,
 138	},
 139
 140	/* CE3: host->target WMI */
 141	{
 142		.flags = CE_ATTR_FLAGS,
 143		.src_nentries = 32,
 144		.src_sz_max = 2048,
 145		.dest_nentries = 0,
 146		.send_cb = ath10k_pci_htc_tx_cb,
 147	},
 148
 149	/* CE4: host->target HTT */
 150	{
 151		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
 152		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
 153		.src_sz_max = 256,
 154		.dest_nentries = 0,
 155		.send_cb = ath10k_pci_htt_tx_cb,
 156	},
 157
 158	/* CE5: target->host HTT (HIF->HTT) */
 159	{
 160		.flags = CE_ATTR_FLAGS,
 161		.src_nentries = 0,
 162		.src_sz_max = 512,
 163		.dest_nentries = 512,
 164		.recv_cb = ath10k_pci_htt_rx_cb,
 165	},
 166
 167	/* CE6: target autonomous hif_memcpy */
 168	{
 169		.flags = CE_ATTR_FLAGS,
 170		.src_nentries = 0,
 171		.src_sz_max = 0,
 172		.dest_nentries = 0,
 173	},
 174
 175	/* CE7: ce_diag, the Diagnostic Window */
 176	{
 177		.flags = CE_ATTR_FLAGS,
 178		.src_nentries = 2,
 179		.src_sz_max = DIAG_TRANSFER_LIMIT,
 180		.dest_nentries = 2,
 181	},
 182
 183	/* CE8: target->host pktlog */
 184	{
 185		.flags = CE_ATTR_FLAGS,
 186		.src_nentries = 0,
 187		.src_sz_max = 2048,
 188		.dest_nentries = 128,
 189		.recv_cb = ath10k_pci_pktlog_rx_cb,
 190	},
 191
 192	/* CE9 target autonomous qcache memcpy */
 193	{
 194		.flags = CE_ATTR_FLAGS,
 195		.src_nentries = 0,
 196		.src_sz_max = 0,
 197		.dest_nentries = 0,
 198	},
 199
 200	/* CE10: target autonomous hif memcpy */
 201	{
 202		.flags = CE_ATTR_FLAGS,
 203		.src_nentries = 0,
 204		.src_sz_max = 0,
 205		.dest_nentries = 0,
 206	},
 207
 208	/* CE11: target autonomous hif memcpy */
 209	{
 210		.flags = CE_ATTR_FLAGS,
 211		.src_nentries = 0,
 212		.src_sz_max = 0,
 213		.dest_nentries = 0,
 214	},
 215};
 216
 217/* Target firmware's Copy Engine configuration. */
 218static struct ce_pipe_config target_ce_config_wlan[] = {
 219	/* CE0: host->target HTC control and raw streams */
 220	{
 221		.pipenum = __cpu_to_le32(0),
 222		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
 223		.nentries = __cpu_to_le32(32),
 224		.nbytes_max = __cpu_to_le32(256),
 225		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 226		.reserved = __cpu_to_le32(0),
 227	},
 228
 229	/* CE1: target->host HTT + HTC control */
 230	{
 231		.pipenum = __cpu_to_le32(1),
 232		.pipedir = __cpu_to_le32(PIPEDIR_IN),
 233		.nentries = __cpu_to_le32(32),
 234		.nbytes_max = __cpu_to_le32(2048),
 235		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 236		.reserved = __cpu_to_le32(0),
 237	},
 238
 239	/* CE2: target->host WMI */
 240	{
 241		.pipenum = __cpu_to_le32(2),
 242		.pipedir = __cpu_to_le32(PIPEDIR_IN),
 243		.nentries = __cpu_to_le32(64),
 244		.nbytes_max = __cpu_to_le32(2048),
 245		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 246		.reserved = __cpu_to_le32(0),
 247	},
 248
 249	/* CE3: host->target WMI */
 250	{
 251		.pipenum = __cpu_to_le32(3),
 252		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
 253		.nentries = __cpu_to_le32(32),
 254		.nbytes_max = __cpu_to_le32(2048),
 255		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 256		.reserved = __cpu_to_le32(0),
 257	},
 258
 259	/* CE4: host->target HTT */
 260	{
 261		.pipenum = __cpu_to_le32(4),
 262		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
 263		.nentries = __cpu_to_le32(256),
 264		.nbytes_max = __cpu_to_le32(256),
 265		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 266		.reserved = __cpu_to_le32(0),
 267	},
 268
 269	/* NB: 50% of src nentries, since tx has 2 frags */
 270
 271	/* CE5: target->host HTT (HIF->HTT) */
 272	{
 273		.pipenum = __cpu_to_le32(5),
 274		.pipedir = __cpu_to_le32(PIPEDIR_IN),
 275		.nentries = __cpu_to_le32(32),
 276		.nbytes_max = __cpu_to_le32(512),
 277		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 278		.reserved = __cpu_to_le32(0),
 279	},
 280
 281	/* CE6: Reserved for target autonomous hif_memcpy */
 282	{
 283		.pipenum = __cpu_to_le32(6),
 284		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
 285		.nentries = __cpu_to_le32(32),
 286		.nbytes_max = __cpu_to_le32(4096),
 287		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 288		.reserved = __cpu_to_le32(0),
 289	},
 290
 291	/* CE7 used only by Host */
 292	{
 293		.pipenum = __cpu_to_le32(7),
 294		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
 295		.nentries = __cpu_to_le32(0),
 296		.nbytes_max = __cpu_to_le32(0),
 297		.flags = __cpu_to_le32(0),
 298		.reserved = __cpu_to_le32(0),
 299	},
 300
 301	/* CE8 target->host packtlog */
 302	{
 303		.pipenum = __cpu_to_le32(8),
 304		.pipedir = __cpu_to_le32(PIPEDIR_IN),
 305		.nentries = __cpu_to_le32(64),
 306		.nbytes_max = __cpu_to_le32(2048),
 307		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
 308		.reserved = __cpu_to_le32(0),
 309	},
 310
 311	/* CE9 target autonomous qcache memcpy */
 312	{
 313		.pipenum = __cpu_to_le32(9),
 314		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
 315		.nentries = __cpu_to_le32(32),
 316		.nbytes_max = __cpu_to_le32(2048),
 317		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
 318		.reserved = __cpu_to_le32(0),
 319	},
 320
 321	/* It not necessary to send target wlan configuration for CE10 & CE11
 322	 * as these CEs are not actively used in target.
 323	 */
 324};
 325
 326/*
 327 * Map from service/endpoint to Copy Engine.
 328 * This table is derived from the CE_PCI TABLE, above.
 329 * It is passed to the Target at startup for use by firmware.
 330 */
 331static struct service_to_pipe target_service_to_ce_map_wlan[] = {
 332	{
 333		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
 334		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 335		__cpu_to_le32(3),
 336	},
 337	{
 338		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
 339		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 340		__cpu_to_le32(2),
 341	},
 342	{
 343		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
 344		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 345		__cpu_to_le32(3),
 346	},
 347	{
 348		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
 349		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 350		__cpu_to_le32(2),
 351	},
 352	{
 353		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
 354		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 355		__cpu_to_le32(3),
 356	},
 357	{
 358		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
 359		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 360		__cpu_to_le32(2),
 361	},
 362	{
 363		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
 364		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 365		__cpu_to_le32(3),
 366	},
 367	{
 368		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
 369		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 370		__cpu_to_le32(2),
 371	},
 372	{
 373		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
 374		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 375		__cpu_to_le32(3),
 376	},
 377	{
 378		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
 379		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 380		__cpu_to_le32(2),
 381	},
 382	{
 383		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
 384		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 385		__cpu_to_le32(0),
 386	},
 387	{
 388		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
 389		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 390		__cpu_to_le32(1),
 391	},
 392	{ /* not used */
 393		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
 394		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 395		__cpu_to_le32(0),
 396	},
 397	{ /* not used */
 398		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
 399		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 400		__cpu_to_le32(1),
 401	},
 402	{
 403		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
 404		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 405		__cpu_to_le32(4),
 406	},
 407	{
 408		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
 409		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 410		__cpu_to_le32(5),
 411	},
 412
 413	/* (Additions here) */
 414
 415	{ /* must be last */
 416		__cpu_to_le32(0),
 417		__cpu_to_le32(0),
 418		__cpu_to_le32(0),
 419	},
 420};
 421
 422static bool ath10k_pci_is_awake(struct ath10k *ar)
 423{
 424	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 425	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 426			   RTC_STATE_ADDRESS);
 427
 428	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
 429}
 430
 431static void __ath10k_pci_wake(struct ath10k *ar)
 432{
 433	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 434
 435	lockdep_assert_held(&ar_pci->ps_lock);
 436
 437	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
 438		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 439
 440	iowrite32(PCIE_SOC_WAKE_V_MASK,
 441		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 442		  PCIE_SOC_WAKE_ADDRESS);
 443}
 444
 445static void __ath10k_pci_sleep(struct ath10k *ar)
 446{
 447	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 448
 449	lockdep_assert_held(&ar_pci->ps_lock);
 450
 451	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
 452		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 453
 454	iowrite32(PCIE_SOC_WAKE_RESET,
 455		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 456		  PCIE_SOC_WAKE_ADDRESS);
 457	ar_pci->ps_awake = false;
 458}
 459
 460static int ath10k_pci_wake_wait(struct ath10k *ar)
 461{
 462	int tot_delay = 0;
 463	int curr_delay = 5;
 464
 465	while (tot_delay < PCIE_WAKE_TIMEOUT) {
 466		if (ath10k_pci_is_awake(ar)) {
 467			if (tot_delay > PCIE_WAKE_LATE_US)
 468				ath10k_warn(ar, "device wakeup took %d ms which is unusally long, otherwise it works normally.\n",
 469					    tot_delay / 1000);
 470			return 0;
 471		}
 472
 473		udelay(curr_delay);
 474		tot_delay += curr_delay;
 475
 476		if (curr_delay < 50)
 477			curr_delay += 5;
 478	}
 479
 480	return -ETIMEDOUT;
 481}
 482
 483static int ath10k_pci_force_wake(struct ath10k *ar)
 484{
 485	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 486	unsigned long flags;
 487	int ret = 0;
 488
 489	if (ar_pci->pci_ps)
 490		return ret;
 491
 492	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 493
 494	if (!ar_pci->ps_awake) {
 495		iowrite32(PCIE_SOC_WAKE_V_MASK,
 496			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 497			  PCIE_SOC_WAKE_ADDRESS);
 498
 499		ret = ath10k_pci_wake_wait(ar);
 500		if (ret == 0)
 501			ar_pci->ps_awake = true;
 502	}
 503
 504	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 505
 506	return ret;
 507}
 508
 509static void ath10k_pci_force_sleep(struct ath10k *ar)
 510{
 511	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 512	unsigned long flags;
 513
 514	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 515
 516	iowrite32(PCIE_SOC_WAKE_RESET,
 517		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 518		  PCIE_SOC_WAKE_ADDRESS);
 519	ar_pci->ps_awake = false;
 520
 521	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 522}
 523
 524static int ath10k_pci_wake(struct ath10k *ar)
 525{
 526	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 527	unsigned long flags;
 528	int ret = 0;
 529
 530	if (ar_pci->pci_ps == 0)
 531		return ret;
 532
 533	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 534
 535	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
 536		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 537
 538	/* This function can be called very frequently. To avoid excessive
 539	 * CPU stalls for MMIO reads use a cache var to hold the device state.
 540	 */
 541	if (!ar_pci->ps_awake) {
 542		__ath10k_pci_wake(ar);
 543
 544		ret = ath10k_pci_wake_wait(ar);
 545		if (ret == 0)
 546			ar_pci->ps_awake = true;
 547	}
 548
 549	if (ret == 0) {
 550		ar_pci->ps_wake_refcount++;
 551		WARN_ON(ar_pci->ps_wake_refcount == 0);
 552	}
 553
 554	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 555
 556	return ret;
 557}
 558
 559static void ath10k_pci_sleep(struct ath10k *ar)
 560{
 561	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 562	unsigned long flags;
 563
 564	if (ar_pci->pci_ps == 0)
 565		return;
 566
 567	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 568
 569	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
 570		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 571
 572	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
 573		goto skip;
 574
 575	ar_pci->ps_wake_refcount--;
 576
 577	mod_timer(&ar_pci->ps_timer, jiffies +
 578		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
 579
 580skip:
 581	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 582}
 583
 584static void ath10k_pci_ps_timer(unsigned long ptr)
 585{
 586	struct ath10k *ar = (void *)ptr;
 587	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 588	unsigned long flags;
 589
 590	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 591
 592	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
 593		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 594
 595	if (ar_pci->ps_wake_refcount > 0)
 596		goto skip;
 597
 598	__ath10k_pci_sleep(ar);
 599
 600skip:
 601	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 602}
 603
 604static void ath10k_pci_sleep_sync(struct ath10k *ar)
 605{
 606	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 607	unsigned long flags;
 608
 609	if (ar_pci->pci_ps == 0) {
 610		ath10k_pci_force_sleep(ar);
 611		return;
 612	}
 613
 614	del_timer_sync(&ar_pci->ps_timer);
 615
 616	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 617	WARN_ON(ar_pci->ps_wake_refcount > 0);
 618	__ath10k_pci_sleep(ar);
 619	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 620}
 621
 622static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
 623{
 624	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 625	int ret;
 626
 627	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
 628		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
 629			    offset, offset + sizeof(value), ar_pci->mem_len);
 630		return;
 631	}
 632
 633	ret = ath10k_pci_wake(ar);
 634	if (ret) {
 635		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
 636			    value, offset, ret);
 637		return;
 638	}
 639
 640	iowrite32(value, ar_pci->mem + offset);
 641	ath10k_pci_sleep(ar);
 642}
 643
 644static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
 645{
 646	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 647	u32 val;
 648	int ret;
 649
 650	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
 651		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
 652			    offset, offset + sizeof(val), ar_pci->mem_len);
 653		return 0;
 654	}
 655
 656	ret = ath10k_pci_wake(ar);
 657	if (ret) {
 658		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
 659			    offset, ret);
 660		return 0xffffffff;
 661	}
 662
 663	val = ioread32(ar_pci->mem + offset);
 664	ath10k_pci_sleep(ar);
 665
 666	return val;
 667}
 668
 669inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
 670{
 671	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 672
 673	ar_pci->bus_ops->write32(ar, offset, value);
 674}
 675
 676inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
 677{
 678	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 679
 680	return ar_pci->bus_ops->read32(ar, offset);
 681}
 682
 683u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
 684{
 685	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
 686}
 687
 688void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
 689{
 690	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
 691}
 692
 693u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
 694{
 695	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
 696}
 697
 698void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
 699{
 700	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
 701}
 702
 703bool ath10k_pci_irq_pending(struct ath10k *ar)
 704{
 705	u32 cause;
 706
 707	/* Check if the shared legacy irq is for us */
 708	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
 709				  PCIE_INTR_CAUSE_ADDRESS);
 710	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
 711		return true;
 712
 713	return false;
 714}
 715
 716void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
 717{
 718	/* IMPORTANT: INTR_CLR register has to be set after
 719	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
 720	 * really cleared. */
 
 721	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
 722			   0);
 723	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
 724			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
 725
 726	/* IMPORTANT: this extra read transaction is required to
 727	 * flush the posted write buffer. */
 
 728	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
 729				PCIE_INTR_ENABLE_ADDRESS);
 730}
 731
 732void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
 733{
 734	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
 735			   PCIE_INTR_ENABLE_ADDRESS,
 736			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
 737
 738	/* IMPORTANT: this extra read transaction is required to
 739	 * flush the posted write buffer. */
 
 740	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
 741				PCIE_INTR_ENABLE_ADDRESS);
 742}
 743
 744static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
 745{
 746	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 747
 748	if (ar_pci->num_msi_intrs > 1)
 749		return "msi-x";
 750
 751	if (ar_pci->num_msi_intrs == 1)
 752		return "msi";
 753
 754	return "legacy";
 755}
 756
 757static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
 758{
 759	struct ath10k *ar = pipe->hif_ce_state;
 760	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 761	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
 762	struct sk_buff *skb;
 763	dma_addr_t paddr;
 764	int ret;
 765
 766	skb = dev_alloc_skb(pipe->buf_sz);
 767	if (!skb)
 768		return -ENOMEM;
 769
 770	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
 771
 772	paddr = dma_map_single(ar->dev, skb->data,
 773			       skb->len + skb_tailroom(skb),
 774			       DMA_FROM_DEVICE);
 775	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
 776		ath10k_warn(ar, "failed to dma map pci rx buf\n");
 777		dev_kfree_skb_any(skb);
 778		return -EIO;
 779	}
 780
 781	ATH10K_SKB_RXCB(skb)->paddr = paddr;
 782
 783	spin_lock_bh(&ar_pci->ce_lock);
 784	ret = __ath10k_ce_rx_post_buf(ce_pipe, skb, paddr);
 785	spin_unlock_bh(&ar_pci->ce_lock);
 786	if (ret) {
 787		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
 788				 DMA_FROM_DEVICE);
 789		dev_kfree_skb_any(skb);
 790		return ret;
 791	}
 792
 793	return 0;
 794}
 795
 796static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
 797{
 798	struct ath10k *ar = pipe->hif_ce_state;
 799	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 
 800	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
 801	int ret, num;
 802
 803	if (pipe->buf_sz == 0)
 804		return;
 805
 806	if (!ce_pipe->dest_ring)
 807		return;
 808
 809	spin_lock_bh(&ar_pci->ce_lock);
 810	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
 811	spin_unlock_bh(&ar_pci->ce_lock);
 812	while (num--) {
 
 813		ret = __ath10k_pci_rx_post_buf(pipe);
 814		if (ret) {
 815			if (ret == -ENOSPC)
 816				break;
 817			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
 818			mod_timer(&ar_pci->rx_post_retry, jiffies +
 819				  ATH10K_PCI_RX_POST_RETRY_MS);
 820			break;
 821		}
 
 822	}
 823}
 824
 825void ath10k_pci_rx_post(struct ath10k *ar)
 826{
 827	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 828	int i;
 829
 830	for (i = 0; i < CE_COUNT; i++)
 831		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
 832}
 833
 834void ath10k_pci_rx_replenish_retry(unsigned long ptr)
 835{
 836	struct ath10k *ar = (void *)ptr;
 
 837
 838	ath10k_pci_rx_post(ar);
 839}
 840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 841static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
 842{
 843	u32 val = 0;
 844
 845	switch (ar->hw_rev) {
 846	case ATH10K_HW_QCA988X:
 847	case ATH10K_HW_QCA6174:
 848	case ATH10K_HW_QCA9377:
 849		val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
 850					  CORE_CTRL_ADDRESS) &
 851		       0x7ff) << 21;
 852		break;
 853	case ATH10K_HW_QCA99X0:
 854	case ATH10K_HW_QCA4019:
 855		val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
 856		break;
 857	}
 858
 859	val |= 0x100000 | (addr & 0xfffff);
 860	return val;
 861}
 862
 863/*
 864 * Diagnostic read/write access is provided for startup/config/debug usage.
 865 * Caller must guarantee proper alignment, when applicable, and single user
 866 * at any moment.
 867 */
 868static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
 869				    int nbytes)
 870{
 871	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 872	int ret = 0;
 873	u32 buf;
 874	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
 875	unsigned int id;
 876	unsigned int flags;
 877	struct ath10k_ce_pipe *ce_diag;
 878	/* Host buffer address in CE space */
 879	u32 ce_data;
 880	dma_addr_t ce_data_base = 0;
 881	void *data_buf = NULL;
 882	int i;
 883
 884	spin_lock_bh(&ar_pci->ce_lock);
 885
 886	ce_diag = ar_pci->ce_diag;
 887
 888	/*
 889	 * Allocate a temporary bounce buffer to hold caller's data
 890	 * to be DMA'ed from Target. This guarantees
 891	 *   1) 4-byte alignment
 892	 *   2) Buffer in DMA-able space
 893	 */
 894	orig_nbytes = nbytes;
 895	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
 896						       orig_nbytes,
 897						       &ce_data_base,
 898						       GFP_ATOMIC);
 899
 
 
 900	if (!data_buf) {
 901		ret = -ENOMEM;
 902		goto done;
 903	}
 904	memset(data_buf, 0, orig_nbytes);
 905
 906	remaining_bytes = orig_nbytes;
 
 
 
 
 
 
 
 
 
 907	ce_data = ce_data_base;
 908	while (remaining_bytes) {
 909		nbytes = min_t(unsigned int, remaining_bytes,
 910			       DIAG_TRANSFER_LIMIT);
 911
 912		ret = __ath10k_ce_rx_post_buf(ce_diag, NULL, ce_data);
 913		if (ret != 0)
 914			goto done;
 915
 916		/* Request CE to send from Target(!) address to Host buffer */
 917		/*
 918		 * The address supplied by the caller is in the
 919		 * Target CPU virtual address space.
 920		 *
 921		 * In order to use this address with the diagnostic CE,
 922		 * convert it from Target CPU virtual address space
 923		 * to CE address space
 924		 */
 925		address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
 926
 927		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0,
 928					    0);
 929		if (ret)
 930			goto done;
 931
 932		i = 0;
 933		while (ath10k_ce_completed_send_next_nolock(ce_diag,
 934							    NULL) != 0) {
 935			mdelay(1);
 936			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
 
 937				ret = -EBUSY;
 938				goto done;
 939			}
 940		}
 941
 942		i = 0;
 943		while (ath10k_ce_completed_recv_next_nolock(ce_diag, NULL, &buf,
 944							    &completed_nbytes,
 945							    &id, &flags) != 0) {
 946			mdelay(1);
 947
 948			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
 949				ret = -EBUSY;
 950				goto done;
 951			}
 952		}
 953
 954		if (nbytes != completed_nbytes) {
 955			ret = -EIO;
 956			goto done;
 957		}
 958
 959		if (buf != ce_data) {
 960			ret = -EIO;
 961			goto done;
 962		}
 963
 964		remaining_bytes -= nbytes;
 
 
 965		address += nbytes;
 966		ce_data += nbytes;
 967	}
 968
 969done:
 970	if (ret == 0)
 971		memcpy(data, data_buf, orig_nbytes);
 972	else
 973		ath10k_warn(ar, "failed to read diag value at 0x%x: %d\n",
 974			    address, ret);
 975
 976	if (data_buf)
 977		dma_free_coherent(ar->dev, orig_nbytes, data_buf,
 978				  ce_data_base);
 979
 980	spin_unlock_bh(&ar_pci->ce_lock);
 981
 982	return ret;
 983}
 984
 985static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
 986{
 987	__le32 val = 0;
 988	int ret;
 989
 990	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
 991	*value = __le32_to_cpu(val);
 992
 993	return ret;
 994}
 995
 996static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
 997				     u32 src, u32 len)
 998{
 999	u32 host_addr, addr;
1000	int ret;
1001
1002	host_addr = host_interest_item_address(src);
1003
1004	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1005	if (ret != 0) {
1006		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1007			    src, ret);
1008		return ret;
1009	}
1010
1011	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1012	if (ret != 0) {
1013		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1014			    addr, len, ret);
1015		return ret;
1016	}
1017
1018	return 0;
1019}
1020
1021#define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1022	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1023
1024int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1025			      const void *data, int nbytes)
1026{
1027	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1028	int ret = 0;
1029	u32 buf;
1030	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
1031	unsigned int id;
1032	unsigned int flags;
1033	struct ath10k_ce_pipe *ce_diag;
1034	void *data_buf = NULL;
1035	u32 ce_data;	/* Host buffer address in CE space */
1036	dma_addr_t ce_data_base = 0;
1037	int i;
1038
1039	spin_lock_bh(&ar_pci->ce_lock);
1040
1041	ce_diag = ar_pci->ce_diag;
1042
1043	/*
1044	 * Allocate a temporary bounce buffer to hold caller's data
1045	 * to be DMA'ed to Target. This guarantees
1046	 *   1) 4-byte alignment
1047	 *   2) Buffer in DMA-able space
1048	 */
1049	orig_nbytes = nbytes;
1050	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
1051						       orig_nbytes,
1052						       &ce_data_base,
1053						       GFP_ATOMIC);
1054	if (!data_buf) {
1055		ret = -ENOMEM;
1056		goto done;
1057	}
1058
1059	/* Copy caller's data to allocated DMA buf */
1060	memcpy(data_buf, data, orig_nbytes);
1061
1062	/*
1063	 * The address supplied by the caller is in the
1064	 * Target CPU virtual address space.
1065	 *
1066	 * In order to use this address with the diagnostic CE,
1067	 * convert it from
1068	 *    Target CPU virtual address space
1069	 * to
1070	 *    CE address space
1071	 */
1072	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1073
1074	remaining_bytes = orig_nbytes;
1075	ce_data = ce_data_base;
1076	while (remaining_bytes) {
1077		/* FIXME: check cast */
1078		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1079
 
 
 
1080		/* Set up to receive directly into Target(!) address */
1081		ret = __ath10k_ce_rx_post_buf(ce_diag, NULL, address);
1082		if (ret != 0)
1083			goto done;
1084
1085		/*
1086		 * Request CE to send caller-supplied data that
1087		 * was copied to bounce buffer to Target(!) address.
1088		 */
1089		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)ce_data,
1090					    nbytes, 0, 0);
1091		if (ret != 0)
1092			goto done;
1093
1094		i = 0;
1095		while (ath10k_ce_completed_send_next_nolock(ce_diag,
1096							    NULL) != 0) {
1097			mdelay(1);
1098
1099			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1100				ret = -EBUSY;
1101				goto done;
1102			}
1103		}
1104
1105		i = 0;
1106		while (ath10k_ce_completed_recv_next_nolock(ce_diag, NULL, &buf,
1107							    &completed_nbytes,
1108							    &id, &flags) != 0) {
1109			mdelay(1);
1110
1111			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1112				ret = -EBUSY;
1113				goto done;
1114			}
1115		}
1116
1117		if (nbytes != completed_nbytes) {
1118			ret = -EIO;
1119			goto done;
1120		}
1121
1122		if (buf != address) {
1123			ret = -EIO;
1124			goto done;
1125		}
1126
1127		remaining_bytes -= nbytes;
1128		address += nbytes;
1129		ce_data += nbytes;
1130	}
1131
1132done:
1133	if (data_buf) {
1134		dma_free_coherent(ar->dev, orig_nbytes, data_buf,
1135				  ce_data_base);
1136	}
1137
1138	if (ret != 0)
1139		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1140			    address, ret);
1141
1142	spin_unlock_bh(&ar_pci->ce_lock);
1143
1144	return ret;
1145}
1146
1147static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1148{
1149	__le32 val = __cpu_to_le32(value);
1150
1151	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1152}
1153
1154/* Called by lower (CE) layer when a send to Target completes. */
1155static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1156{
1157	struct ath10k *ar = ce_state->ar;
1158	struct sk_buff_head list;
1159	struct sk_buff *skb;
1160
1161	__skb_queue_head_init(&list);
1162	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1163		/* no need to call tx completion for NULL pointers */
1164		if (skb == NULL)
1165			continue;
1166
1167		__skb_queue_tail(&list, skb);
1168	}
1169
1170	while ((skb = __skb_dequeue(&list)))
1171		ath10k_htc_tx_completion_handler(ar, skb);
1172}
1173
1174static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1175				     void (*callback)(struct ath10k *ar,
1176						      struct sk_buff *skb))
1177{
1178	struct ath10k *ar = ce_state->ar;
1179	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1180	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1181	struct sk_buff *skb;
1182	struct sk_buff_head list;
1183	void *transfer_context;
1184	u32 ce_data;
1185	unsigned int nbytes, max_nbytes;
1186	unsigned int transfer_id;
1187	unsigned int flags;
1188
1189	__skb_queue_head_init(&list);
1190	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1191					     &ce_data, &nbytes, &transfer_id,
1192					     &flags) == 0) {
1193		skb = transfer_context;
1194		max_nbytes = skb->len + skb_tailroom(skb);
1195		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1196				 max_nbytes, DMA_FROM_DEVICE);
1197
1198		if (unlikely(max_nbytes < nbytes)) {
1199			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1200				    nbytes, max_nbytes);
1201			dev_kfree_skb_any(skb);
1202			continue;
1203		}
1204
1205		skb_put(skb, nbytes);
1206		__skb_queue_tail(&list, skb);
1207	}
1208
1209	while ((skb = __skb_dequeue(&list))) {
1210		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1211			   ce_state->id, skb->len);
1212		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1213				skb->data, skb->len);
1214
1215		callback(ar, skb);
1216	}
1217
1218	ath10k_pci_rx_post_pipe(pipe_info);
1219}
1220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1221/* Called by lower (CE) layer when data is received from the Target. */
1222static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1223{
1224	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1225}
1226
1227static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1228{
1229	/* CE4 polling needs to be done whenever CE pipe which transports
1230	 * HTT Rx (target->host) is processed.
1231	 */
1232	ath10k_ce_per_engine_service(ce_state->ar, 4);
1233
1234	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1235}
1236
1237/* Called by lower (CE) layer when data is received from the Target.
1238 * Only 10.4 firmware uses separate CE to transfer pktlog data.
1239 */
1240static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1241{
1242	ath10k_pci_process_rx_cb(ce_state,
1243				 ath10k_htt_rx_pktlog_completion_handler);
1244}
1245
1246/* Called by lower (CE) layer when a send to HTT Target completes. */
1247static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1248{
1249	struct ath10k *ar = ce_state->ar;
1250	struct sk_buff *skb;
1251
1252	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1253		/* no need to call tx completion for NULL pointers */
1254		if (!skb)
1255			continue;
1256
1257		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1258				 skb->len, DMA_TO_DEVICE);
1259		ath10k_htt_hif_tx_complete(ar, skb);
1260	}
1261}
1262
1263static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1264{
1265	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1266	ath10k_htt_t2h_msg_handler(ar, skb);
1267}
1268
1269/* Called by lower (CE) layer when HTT data is received from the Target. */
1270static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1271{
1272	/* CE4 polling needs to be done whenever CE pipe which transports
1273	 * HTT Rx (target->host) is processed.
1274	 */
1275	ath10k_ce_per_engine_service(ce_state->ar, 4);
1276
1277	ath10k_pci_process_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1278}
1279
1280int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1281			 struct ath10k_hif_sg_item *items, int n_items)
1282{
1283	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 
1284	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1285	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1286	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1287	unsigned int nentries_mask;
1288	unsigned int sw_index;
1289	unsigned int write_index;
1290	int err, i = 0;
1291
1292	spin_lock_bh(&ar_pci->ce_lock);
1293
1294	nentries_mask = src_ring->nentries_mask;
1295	sw_index = src_ring->sw_index;
1296	write_index = src_ring->write_index;
1297
1298	if (unlikely(CE_RING_DELTA(nentries_mask,
1299				   write_index, sw_index - 1) < n_items)) {
1300		err = -ENOBUFS;
1301		goto err;
1302	}
1303
1304	for (i = 0; i < n_items - 1; i++) {
1305		ath10k_dbg(ar, ATH10K_DBG_PCI,
1306			   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1307			   i, items[i].paddr, items[i].len, n_items);
1308		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1309				items[i].vaddr, items[i].len);
1310
1311		err = ath10k_ce_send_nolock(ce_pipe,
1312					    items[i].transfer_context,
1313					    items[i].paddr,
1314					    items[i].len,
1315					    items[i].transfer_id,
1316					    CE_SEND_FLAG_GATHER);
1317		if (err)
1318			goto err;
1319	}
1320
1321	/* `i` is equal to `n_items -1` after for() */
1322
1323	ath10k_dbg(ar, ATH10K_DBG_PCI,
1324		   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1325		   i, items[i].paddr, items[i].len, n_items);
1326	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1327			items[i].vaddr, items[i].len);
1328
1329	err = ath10k_ce_send_nolock(ce_pipe,
1330				    items[i].transfer_context,
1331				    items[i].paddr,
1332				    items[i].len,
1333				    items[i].transfer_id,
1334				    0);
1335	if (err)
1336		goto err;
1337
1338	spin_unlock_bh(&ar_pci->ce_lock);
1339	return 0;
1340
1341err:
1342	for (; i > 0; i--)
1343		__ath10k_ce_send_revert(ce_pipe);
1344
1345	spin_unlock_bh(&ar_pci->ce_lock);
1346	return err;
1347}
1348
1349int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1350			     size_t buf_len)
1351{
1352	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1353}
1354
1355u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1356{
1357	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1358
1359	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1360
1361	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1362}
1363
1364static void ath10k_pci_dump_registers(struct ath10k *ar,
1365				      struct ath10k_fw_crash_data *crash_data)
1366{
1367	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1368	int i, ret;
1369
1370	lockdep_assert_held(&ar->data_lock);
1371
1372	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1373				      hi_failure_state,
1374				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1375	if (ret) {
1376		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1377		return;
1378	}
1379
1380	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1381
1382	ath10k_err(ar, "firmware register dump:\n");
1383	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1384		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1385			   i,
1386			   __le32_to_cpu(reg_dump_values[i]),
1387			   __le32_to_cpu(reg_dump_values[i + 1]),
1388			   __le32_to_cpu(reg_dump_values[i + 2]),
1389			   __le32_to_cpu(reg_dump_values[i + 3]));
1390
1391	if (!crash_data)
1392		return;
1393
1394	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1395		crash_data->registers[i] = reg_dump_values[i];
1396}
1397
1398static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1399{
 
 
1400	struct ath10k_fw_crash_data *crash_data;
1401	char uuid[50];
 
 
 
1402
1403	spin_lock_bh(&ar->data_lock);
1404
1405	ar->stats.fw_crash_counter++;
 
1406
1407	crash_data = ath10k_debug_get_new_fw_crash_data(ar);
1408
1409	if (crash_data)
1410		scnprintf(uuid, sizeof(uuid), "%pUl", &crash_data->uuid);
1411	else
1412		scnprintf(uuid, sizeof(uuid), "n/a");
1413
1414	ath10k_err(ar, "firmware crashed! (uuid %s)\n", uuid);
1415	ath10k_print_driver_info(ar);
1416	ath10k_pci_dump_registers(ar, crash_data);
 
 
1417
1418	spin_unlock_bh(&ar->data_lock);
 
 
 
 
 
 
 
1419
1420	queue_work(ar->workqueue, &ar->restart_work);
1421}
1422
1423void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1424					int force)
1425{
 
 
1426	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1427
1428	if (!force) {
1429		int resources;
1430		/*
1431		 * Decide whether to actually poll for completions, or just
1432		 * wait for a later chance.
1433		 * If there seem to be plenty of resources left, then just wait
1434		 * since checking involves reading a CE register, which is a
1435		 * relatively expensive operation.
1436		 */
1437		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1438
1439		/*
1440		 * If at least 50% of the total resources are still available,
1441		 * don't bother checking again yet.
1442		 */
1443		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1444			return;
1445	}
1446	ath10k_ce_per_engine_service(ar, pipe);
1447}
1448
1449void ath10k_pci_kill_tasklet(struct ath10k *ar)
1450{
1451	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1452	int i;
1453
1454	tasklet_kill(&ar_pci->intr_tq);
1455	tasklet_kill(&ar_pci->msi_fw_err);
1456
1457	for (i = 0; i < CE_COUNT; i++)
1458		tasklet_kill(&ar_pci->pipe_info[i].intr);
1459
1460	del_timer_sync(&ar_pci->rx_post_retry);
1461}
1462
1463int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1464				       u8 *ul_pipe, u8 *dl_pipe)
1465{
1466	const struct service_to_pipe *entry;
 
1467	bool ul_set = false, dl_set = false;
1468	int i;
1469
1470	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1471
1472	for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1473		entry = &target_service_to_ce_map_wlan[i];
1474
1475		if (__le32_to_cpu(entry->service_id) != service_id)
1476			continue;
1477
1478		switch (__le32_to_cpu(entry->pipedir)) {
1479		case PIPEDIR_NONE:
1480			break;
1481		case PIPEDIR_IN:
1482			WARN_ON(dl_set);
1483			*dl_pipe = __le32_to_cpu(entry->pipenum);
1484			dl_set = true;
1485			break;
1486		case PIPEDIR_OUT:
1487			WARN_ON(ul_set);
1488			*ul_pipe = __le32_to_cpu(entry->pipenum);
1489			ul_set = true;
1490			break;
1491		case PIPEDIR_INOUT:
1492			WARN_ON(dl_set);
1493			WARN_ON(ul_set);
1494			*dl_pipe = __le32_to_cpu(entry->pipenum);
1495			*ul_pipe = __le32_to_cpu(entry->pipenum);
1496			dl_set = true;
1497			ul_set = true;
1498			break;
1499		}
1500	}
1501
1502	if (WARN_ON(!ul_set || !dl_set))
1503		return -ENOENT;
1504
1505	return 0;
1506}
1507
1508void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1509				     u8 *ul_pipe, u8 *dl_pipe)
1510{
1511	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1512
1513	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1514						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1515						 ul_pipe, dl_pipe);
1516}
1517
1518static void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1519{
1520	u32 val;
1521
1522	switch (ar->hw_rev) {
1523	case ATH10K_HW_QCA988X:
 
1524	case ATH10K_HW_QCA6174:
1525	case ATH10K_HW_QCA9377:
1526		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1527					CORE_CTRL_ADDRESS);
1528		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1529		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1530				   CORE_CTRL_ADDRESS, val);
1531		break;
1532	case ATH10K_HW_QCA99X0:
 
 
1533	case ATH10K_HW_QCA4019:
1534		/* TODO: Find appropriate register configuration for QCA99X0
1535		 *  to mask irq/MSI.
1536		 */
1537		 break;
 
 
1538	}
1539}
1540
1541static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1542{
1543	u32 val;
1544
1545	switch (ar->hw_rev) {
1546	case ATH10K_HW_QCA988X:
 
1547	case ATH10K_HW_QCA6174:
1548	case ATH10K_HW_QCA9377:
1549		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1550					CORE_CTRL_ADDRESS);
1551		val |= CORE_CTRL_PCIE_REG_31_MASK;
1552		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1553				   CORE_CTRL_ADDRESS, val);
1554		break;
1555	case ATH10K_HW_QCA99X0:
 
 
1556	case ATH10K_HW_QCA4019:
1557		/* TODO: Find appropriate register configuration for QCA99X0
1558		 *  to unmask irq/MSI.
1559		 */
1560		break;
 
 
1561	}
1562}
1563
1564static void ath10k_pci_irq_disable(struct ath10k *ar)
1565{
1566	ath10k_ce_disable_interrupts(ar);
1567	ath10k_pci_disable_and_clear_legacy_irq(ar);
1568	ath10k_pci_irq_msi_fw_mask(ar);
1569}
1570
1571static void ath10k_pci_irq_sync(struct ath10k *ar)
1572{
1573	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1574	int i;
1575
1576	for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
1577		synchronize_irq(ar_pci->pdev->irq + i);
1578}
1579
1580static void ath10k_pci_irq_enable(struct ath10k *ar)
1581{
1582	ath10k_ce_enable_interrupts(ar);
1583	ath10k_pci_enable_legacy_irq(ar);
1584	ath10k_pci_irq_msi_fw_unmask(ar);
1585}
1586
1587static int ath10k_pci_hif_start(struct ath10k *ar)
1588{
1589	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1590
1591	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1592
 
 
1593	ath10k_pci_irq_enable(ar);
1594	ath10k_pci_rx_post(ar);
1595
1596	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1597				   ar_pci->link_ctl);
1598
1599	return 0;
1600}
1601
1602static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1603{
1604	struct ath10k *ar;
1605	struct ath10k_ce_pipe *ce_pipe;
1606	struct ath10k_ce_ring *ce_ring;
1607	struct sk_buff *skb;
1608	int i;
1609
1610	ar = pci_pipe->hif_ce_state;
1611	ce_pipe = pci_pipe->ce_hdl;
1612	ce_ring = ce_pipe->dest_ring;
1613
1614	if (!ce_ring)
1615		return;
1616
1617	if (!pci_pipe->buf_sz)
1618		return;
1619
1620	for (i = 0; i < ce_ring->nentries; i++) {
1621		skb = ce_ring->per_transfer_context[i];
1622		if (!skb)
1623			continue;
1624
1625		ce_ring->per_transfer_context[i] = NULL;
1626
1627		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1628				 skb->len + skb_tailroom(skb),
1629				 DMA_FROM_DEVICE);
1630		dev_kfree_skb_any(skb);
1631	}
1632}
1633
1634static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1635{
1636	struct ath10k *ar;
1637	struct ath10k_pci *ar_pci;
1638	struct ath10k_ce_pipe *ce_pipe;
1639	struct ath10k_ce_ring *ce_ring;
1640	struct sk_buff *skb;
1641	int i;
1642
1643	ar = pci_pipe->hif_ce_state;
1644	ar_pci = ath10k_pci_priv(ar);
1645	ce_pipe = pci_pipe->ce_hdl;
1646	ce_ring = ce_pipe->src_ring;
1647
1648	if (!ce_ring)
1649		return;
1650
1651	if (!pci_pipe->buf_sz)
1652		return;
1653
1654	for (i = 0; i < ce_ring->nentries; i++) {
1655		skb = ce_ring->per_transfer_context[i];
1656		if (!skb)
1657			continue;
1658
1659		ce_ring->per_transfer_context[i] = NULL;
1660
1661		ath10k_htc_tx_completion_handler(ar, skb);
1662	}
1663}
1664
1665/*
1666 * Cleanup residual buffers for device shutdown:
1667 *    buffers that were enqueued for receive
1668 *    buffers that were to be sent
1669 * Note: Buffers that had completed but which were
1670 * not yet processed are on a completion queue. They
1671 * are handled when the completion thread shuts down.
1672 */
1673static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1674{
1675	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1676	int pipe_num;
1677
1678	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1679		struct ath10k_pci_pipe *pipe_info;
1680
1681		pipe_info = &ar_pci->pipe_info[pipe_num];
1682		ath10k_pci_rx_pipe_cleanup(pipe_info);
1683		ath10k_pci_tx_pipe_cleanup(pipe_info);
1684	}
1685}
1686
1687void ath10k_pci_ce_deinit(struct ath10k *ar)
1688{
1689	int i;
1690
1691	for (i = 0; i < CE_COUNT; i++)
1692		ath10k_ce_deinit_pipe(ar, i);
1693}
1694
1695void ath10k_pci_flush(struct ath10k *ar)
1696{
1697	ath10k_pci_kill_tasklet(ar);
1698	ath10k_pci_buffer_cleanup(ar);
1699}
1700
1701static void ath10k_pci_hif_stop(struct ath10k *ar)
1702{
1703	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1704	unsigned long flags;
1705
1706	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
1707
 
 
 
 
 
 
 
1708	/* Most likely the device has HTT Rx ring configured. The only way to
1709	 * prevent the device from accessing (and possible corrupting) host
1710	 * memory is to reset the chip now.
1711	 *
1712	 * There's also no known way of masking MSI interrupts on the device.
1713	 * For ranged MSI the CE-related interrupts can be masked. However
1714	 * regardless how many MSI interrupts are assigned the first one
1715	 * is always used for firmware indications (crashes) and cannot be
1716	 * masked. To prevent the device from asserting the interrupt reset it
1717	 * before proceeding with cleanup.
1718	 */
1719	ath10k_pci_safe_chip_reset(ar);
1720
1721	ath10k_pci_irq_disable(ar);
1722	ath10k_pci_irq_sync(ar);
1723	ath10k_pci_flush(ar);
1724
1725	spin_lock_irqsave(&ar_pci->ps_lock, flags);
1726	WARN_ON(ar_pci->ps_wake_refcount > 0);
1727	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
1728}
1729
1730int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1731				    void *req, u32 req_len,
1732				    void *resp, u32 *resp_len)
1733{
1734	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1735	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1736	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1737	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
1738	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
1739	dma_addr_t req_paddr = 0;
1740	dma_addr_t resp_paddr = 0;
1741	struct bmi_xfer xfer = {};
1742	void *treq, *tresp = NULL;
1743	int ret = 0;
1744
1745	might_sleep();
1746
1747	if (resp && !resp_len)
1748		return -EINVAL;
1749
1750	if (resp && resp_len && *resp_len == 0)
1751		return -EINVAL;
1752
1753	treq = kmemdup(req, req_len, GFP_KERNEL);
1754	if (!treq)
1755		return -ENOMEM;
1756
1757	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1758	ret = dma_mapping_error(ar->dev, req_paddr);
1759	if (ret) {
1760		ret = -EIO;
1761		goto err_dma;
1762	}
1763
1764	if (resp && resp_len) {
1765		tresp = kzalloc(*resp_len, GFP_KERNEL);
1766		if (!tresp) {
1767			ret = -ENOMEM;
1768			goto err_req;
1769		}
1770
1771		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1772					    DMA_FROM_DEVICE);
1773		ret = dma_mapping_error(ar->dev, resp_paddr);
1774		if (ret) {
1775			ret = -EIO;
1776			goto err_req;
1777		}
1778
1779		xfer.wait_for_resp = true;
1780		xfer.resp_len = 0;
1781
1782		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
1783	}
1784
1785	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1786	if (ret)
1787		goto err_resp;
1788
1789	ret = ath10k_pci_bmi_wait(ce_tx, ce_rx, &xfer);
1790	if (ret) {
1791		u32 unused_buffer;
1792		unsigned int unused_nbytes;
1793		unsigned int unused_id;
1794
1795		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1796					   &unused_nbytes, &unused_id);
1797	} else {
1798		/* non-zero means we did not time out */
1799		ret = 0;
1800	}
1801
1802err_resp:
1803	if (resp) {
1804		u32 unused_buffer;
1805
1806		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1807		dma_unmap_single(ar->dev, resp_paddr,
1808				 *resp_len, DMA_FROM_DEVICE);
1809	}
1810err_req:
1811	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1812
1813	if (ret == 0 && resp_len) {
1814		*resp_len = min(*resp_len, xfer.resp_len);
1815		memcpy(resp, tresp, xfer.resp_len);
1816	}
1817err_dma:
1818	kfree(treq);
1819	kfree(tresp);
1820
1821	return ret;
1822}
1823
1824static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
1825{
1826	struct bmi_xfer *xfer;
1827
1828	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
1829		return;
1830
1831	xfer->tx_done = true;
1832}
1833
1834static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
1835{
1836	struct ath10k *ar = ce_state->ar;
1837	struct bmi_xfer *xfer;
1838	u32 ce_data;
1839	unsigned int nbytes;
1840	unsigned int transfer_id;
1841	unsigned int flags;
1842
1843	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer, &ce_data,
1844					  &nbytes, &transfer_id, &flags))
1845		return;
1846
1847	if (WARN_ON_ONCE(!xfer))
1848		return;
1849
1850	if (!xfer->wait_for_resp) {
1851		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
1852		return;
1853	}
1854
1855	xfer->resp_len = nbytes;
1856	xfer->rx_done = true;
1857}
1858
1859static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
 
1860			       struct ath10k_ce_pipe *rx_pipe,
1861			       struct bmi_xfer *xfer)
1862{
1863	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
 
 
 
1864
1865	while (time_before_eq(jiffies, timeout)) {
1866		ath10k_pci_bmi_send_done(tx_pipe);
1867		ath10k_pci_bmi_recv_data(rx_pipe);
1868
1869		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp))
1870			return 0;
 
 
1871
1872		schedule();
1873	}
1874
1875	return -ETIMEDOUT;
 
 
 
 
 
 
 
 
1876}
1877
1878/*
1879 * Send an interrupt to the device to wake up the Target CPU
1880 * so it has an opportunity to notice any changed state.
1881 */
1882static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1883{
1884	u32 addr, val;
1885
1886	addr = SOC_CORE_BASE_ADDRESS | CORE_CTRL_ADDRESS;
1887	val = ath10k_pci_read32(ar, addr);
1888	val |= CORE_CTRL_CPU_INTR_MASK;
1889	ath10k_pci_write32(ar, addr, val);
1890
1891	return 0;
1892}
1893
1894static int ath10k_pci_get_num_banks(struct ath10k *ar)
1895{
1896	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1897
1898	switch (ar_pci->pdev->device) {
 
1899	case QCA988X_2_0_DEVICE_ID:
1900	case QCA99X0_2_0_DEVICE_ID:
 
 
 
1901		return 1;
1902	case QCA6164_2_1_DEVICE_ID:
1903	case QCA6174_2_1_DEVICE_ID:
1904		switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) {
1905		case QCA6174_HW_1_0_CHIP_ID_REV:
1906		case QCA6174_HW_1_1_CHIP_ID_REV:
1907		case QCA6174_HW_2_1_CHIP_ID_REV:
1908		case QCA6174_HW_2_2_CHIP_ID_REV:
1909			return 3;
1910		case QCA6174_HW_1_3_CHIP_ID_REV:
1911			return 2;
1912		case QCA6174_HW_3_0_CHIP_ID_REV:
1913		case QCA6174_HW_3_1_CHIP_ID_REV:
1914		case QCA6174_HW_3_2_CHIP_ID_REV:
1915			return 9;
1916		}
1917		break;
1918	case QCA9377_1_0_DEVICE_ID:
1919		return 2;
1920	}
1921
1922	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
1923	return 1;
1924}
1925
1926static int ath10k_bus_get_num_banks(struct ath10k *ar)
1927{
1928	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1929
1930	return ar_pci->bus_ops->get_num_banks(ar);
1931}
1932
1933int ath10k_pci_init_config(struct ath10k *ar)
1934{
 
1935	u32 interconnect_targ_addr;
1936	u32 pcie_state_targ_addr = 0;
1937	u32 pipe_cfg_targ_addr = 0;
1938	u32 svc_to_pipe_map = 0;
1939	u32 pcie_config_flags = 0;
1940	u32 ealloc_value;
1941	u32 ealloc_targ_addr;
1942	u32 flag2_value;
1943	u32 flag2_targ_addr;
1944	int ret = 0;
1945
1946	/* Download to Target the CE Config and the service-to-CE map */
1947	interconnect_targ_addr =
1948		host_interest_item_address(HI_ITEM(hi_interconnect_state));
1949
1950	/* Supply Target-side CE configuration */
1951	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
1952				     &pcie_state_targ_addr);
1953	if (ret != 0) {
1954		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
1955		return ret;
1956	}
1957
1958	if (pcie_state_targ_addr == 0) {
1959		ret = -EIO;
1960		ath10k_err(ar, "Invalid pcie state addr\n");
1961		return ret;
1962	}
1963
1964	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1965					  offsetof(struct pcie_state,
1966						   pipe_cfg_addr)),
1967				     &pipe_cfg_targ_addr);
1968	if (ret != 0) {
1969		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
1970		return ret;
1971	}
1972
1973	if (pipe_cfg_targ_addr == 0) {
1974		ret = -EIO;
1975		ath10k_err(ar, "Invalid pipe cfg addr\n");
1976		return ret;
1977	}
1978
1979	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
1980					target_ce_config_wlan,
1981					sizeof(struct ce_pipe_config) *
1982					NUM_TARGET_CE_CONFIG_WLAN);
1983
1984	if (ret != 0) {
1985		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
1986		return ret;
1987	}
1988
1989	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1990					  offsetof(struct pcie_state,
1991						   svc_to_pipe_map)),
1992				     &svc_to_pipe_map);
1993	if (ret != 0) {
1994		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
1995		return ret;
1996	}
1997
1998	if (svc_to_pipe_map == 0) {
1999		ret = -EIO;
2000		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2001		return ret;
2002	}
2003
2004	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2005					target_service_to_ce_map_wlan,
2006					sizeof(target_service_to_ce_map_wlan));
2007	if (ret != 0) {
2008		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2009		return ret;
2010	}
2011
2012	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2013					  offsetof(struct pcie_state,
2014						   config_flags)),
2015				     &pcie_config_flags);
2016	if (ret != 0) {
2017		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2018		return ret;
2019	}
2020
2021	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2022
2023	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2024					   offsetof(struct pcie_state,
2025						    config_flags)),
2026				      pcie_config_flags);
2027	if (ret != 0) {
2028		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2029		return ret;
2030	}
2031
2032	/* configure early allocation */
2033	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2034
2035	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2036	if (ret != 0) {
2037		ath10k_err(ar, "Faile to get early alloc val: %d\n", ret);
2038		return ret;
2039	}
2040
2041	/* first bank is switched to IRAM */
2042	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2043			 HI_EARLY_ALLOC_MAGIC_MASK);
2044	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2045			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2046			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2047
2048	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2049	if (ret != 0) {
2050		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2051		return ret;
2052	}
2053
2054	/* Tell Target to proceed with initialization */
2055	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2056
2057	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2058	if (ret != 0) {
2059		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2060		return ret;
2061	}
2062
2063	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2064
2065	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2066	if (ret != 0) {
2067		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2068		return ret;
2069	}
2070
2071	return 0;
2072}
2073
2074static void ath10k_pci_override_ce_config(struct ath10k *ar)
2075{
2076	struct ce_attr *attr;
2077	struct ce_pipe_config *config;
 
2078
2079	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2080	 * since it is currently used for other feature.
2081	 */
2082
2083	/* Override Host's Copy Engine 5 configuration */
2084	attr = &host_ce_config_wlan[5];
2085	attr->src_sz_max = 0;
2086	attr->dest_nentries = 0;
2087
2088	/* Override Target firmware's Copy Engine configuration */
2089	config = &target_ce_config_wlan[5];
2090	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2091	config->nbytes_max = __cpu_to_le32(2048);
2092
2093	/* Map from service/endpoint to Copy Engine */
2094	target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1);
2095}
2096
2097int ath10k_pci_alloc_pipes(struct ath10k *ar)
2098{
2099	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2100	struct ath10k_pci_pipe *pipe;
 
2101	int i, ret;
2102
2103	for (i = 0; i < CE_COUNT; i++) {
2104		pipe = &ar_pci->pipe_info[i];
2105		pipe->ce_hdl = &ar_pci->ce_states[i];
2106		pipe->pipe_num = i;
2107		pipe->hif_ce_state = ar;
2108
2109		ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
2110		if (ret) {
2111			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2112				   i, ret);
2113			return ret;
2114		}
2115
2116		/* Last CE is Diagnostic Window */
2117		if (i == CE_DIAG_PIPE) {
2118			ar_pci->ce_diag = pipe->ce_hdl;
2119			continue;
2120		}
2121
2122		pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
2123	}
2124
2125	return 0;
2126}
2127
2128void ath10k_pci_free_pipes(struct ath10k *ar)
2129{
2130	int i;
2131
2132	for (i = 0; i < CE_COUNT; i++)
2133		ath10k_ce_free_pipe(ar, i);
2134}
2135
2136int ath10k_pci_init_pipes(struct ath10k *ar)
2137{
 
2138	int i, ret;
2139
2140	for (i = 0; i < CE_COUNT; i++) {
2141		ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
2142		if (ret) {
2143			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2144				   i, ret);
2145			return ret;
2146		}
2147	}
2148
2149	return 0;
2150}
2151
2152static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2153{
2154	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2155	       FW_IND_EVENT_PENDING;
2156}
2157
2158static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2159{
2160	u32 val;
2161
2162	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2163	val &= ~FW_IND_EVENT_PENDING;
2164	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2165}
2166
 
 
 
 
 
 
 
 
2167/* this function effectively clears target memory controller assert line */
2168static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2169{
2170	u32 val;
2171
2172	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2173	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2174			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2175	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2176
2177	msleep(10);
2178
2179	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2180	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2181			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2182	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2183
2184	msleep(10);
2185}
2186
2187static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2188{
2189	u32 val;
2190
2191	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2192
2193	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2194				SOC_RESET_CONTROL_ADDRESS);
2195	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2196			   val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2197}
2198
2199static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2200{
2201	u32 val;
2202
2203	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2204				SOC_RESET_CONTROL_ADDRESS);
2205
2206	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2207			   val | SOC_RESET_CONTROL_CE_RST_MASK);
2208	msleep(10);
2209	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2210			   val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2211}
2212
2213static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2214{
2215	u32 val;
2216
2217	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2218				SOC_LF_TIMER_CONTROL0_ADDRESS);
2219	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
2220			   SOC_LF_TIMER_CONTROL0_ADDRESS,
2221			   val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2222}
2223
2224static int ath10k_pci_warm_reset(struct ath10k *ar)
2225{
2226	int ret;
2227
2228	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2229
2230	spin_lock_bh(&ar->data_lock);
2231	ar->stats.fw_warm_reset_counter++;
2232	spin_unlock_bh(&ar->data_lock);
2233
2234	ath10k_pci_irq_disable(ar);
2235
2236	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2237	 * were to access copy engine while host performs copy engine reset
2238	 * then it is possible for the device to confuse pci-e controller to
2239	 * the point of bringing host system to a complete stop (i.e. hang).
2240	 */
2241	ath10k_pci_warm_reset_si0(ar);
2242	ath10k_pci_warm_reset_cpu(ar);
2243	ath10k_pci_init_pipes(ar);
2244	ath10k_pci_wait_for_target_init(ar);
2245
2246	ath10k_pci_warm_reset_clear_lf(ar);
2247	ath10k_pci_warm_reset_ce(ar);
2248	ath10k_pci_warm_reset_cpu(ar);
2249	ath10k_pci_init_pipes(ar);
2250
2251	ret = ath10k_pci_wait_for_target_init(ar);
2252	if (ret) {
2253		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2254		return ret;
2255	}
2256
2257	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2258
2259	return 0;
2260}
2261
 
 
 
 
 
 
2262static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2263{
2264	if (QCA_REV_988X(ar) || QCA_REV_6174(ar)) {
2265		return ath10k_pci_warm_reset(ar);
2266	} else if (QCA_REV_99X0(ar)) {
2267		ath10k_pci_irq_disable(ar);
2268		return ath10k_pci_qca99x0_chip_reset(ar);
2269	} else {
2270		return -ENOTSUPP;
2271	}
 
2272}
2273
2274static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2275{
2276	int i, ret;
2277	u32 val;
2278
2279	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2280
2281	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2282	 * It is thus preferred to use warm reset which is safer but may not be
2283	 * able to recover the device from all possible fail scenarios.
2284	 *
2285	 * Warm reset doesn't always work on first try so attempt it a few
2286	 * times before giving up.
2287	 */
2288	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2289		ret = ath10k_pci_warm_reset(ar);
2290		if (ret) {
2291			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2292				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2293				    ret);
2294			continue;
2295		}
2296
2297		/* FIXME: Sometimes copy engine doesn't recover after warm
2298		 * reset. In most cases this needs cold reset. In some of these
2299		 * cases the device is in such a state that a cold reset may
2300		 * lock up the host.
2301		 *
2302		 * Reading any host interest register via copy engine is
2303		 * sufficient to verify if device is capable of booting
2304		 * firmware blob.
2305		 */
2306		ret = ath10k_pci_init_pipes(ar);
2307		if (ret) {
2308			ath10k_warn(ar, "failed to init copy engine: %d\n",
2309				    ret);
2310			continue;
2311		}
2312
2313		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2314					     &val);
2315		if (ret) {
2316			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2317				    ret);
2318			continue;
2319		}
2320
2321		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2322		return 0;
2323	}
2324
2325	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2326		ath10k_warn(ar, "refusing cold reset as requested\n");
2327		return -EPERM;
2328	}
2329
2330	ret = ath10k_pci_cold_reset(ar);
2331	if (ret) {
2332		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2333		return ret;
2334	}
2335
2336	ret = ath10k_pci_wait_for_target_init(ar);
2337	if (ret) {
2338		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2339			    ret);
2340		return ret;
2341	}
2342
2343	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2344
2345	return 0;
2346}
2347
2348static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2349{
2350	int ret;
2351
2352	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2353
2354	/* FIXME: QCA6174 requires cold + warm reset to work. */
2355
2356	ret = ath10k_pci_cold_reset(ar);
2357	if (ret) {
2358		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2359		return ret;
2360	}
2361
2362	ret = ath10k_pci_wait_for_target_init(ar);
2363	if (ret) {
2364		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2365			    ret);
2366		return ret;
2367	}
2368
2369	ret = ath10k_pci_warm_reset(ar);
2370	if (ret) {
2371		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2372		return ret;
2373	}
2374
2375	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2376
2377	return 0;
2378}
2379
2380static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2381{
2382	int ret;
2383
2384	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2385
2386	ret = ath10k_pci_cold_reset(ar);
2387	if (ret) {
2388		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2389		return ret;
2390	}
2391
2392	ret = ath10k_pci_wait_for_target_init(ar);
2393	if (ret) {
2394		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2395			    ret);
2396		return ret;
2397	}
2398
2399	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2400
2401	return 0;
2402}
2403
2404static int ath10k_pci_chip_reset(struct ath10k *ar)
2405{
2406	if (QCA_REV_988X(ar))
2407		return ath10k_pci_qca988x_chip_reset(ar);
2408	else if (QCA_REV_6174(ar))
2409		return ath10k_pci_qca6174_chip_reset(ar);
2410	else if (QCA_REV_9377(ar))
2411		return ath10k_pci_qca6174_chip_reset(ar);
2412	else if (QCA_REV_99X0(ar))
2413		return ath10k_pci_qca99x0_chip_reset(ar);
2414	else
2415		return -ENOTSUPP;
 
 
2416}
2417
2418static int ath10k_pci_hif_power_up(struct ath10k *ar)
 
2419{
2420	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2421	int ret;
2422
2423	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2424
2425	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2426				  &ar_pci->link_ctl);
2427	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2428				   ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2429
2430	/*
2431	 * Bring the target up cleanly.
2432	 *
2433	 * The target may be in an undefined state with an AUX-powered Target
2434	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2435	 * restarted (without unloading the driver) then the Target is left
2436	 * (aux) powered and running. On a subsequent driver load, the Target
2437	 * is in an unexpected state. We try to catch that here in order to
2438	 * reset the Target and retry the probe.
2439	 */
2440	ret = ath10k_pci_chip_reset(ar);
2441	if (ret) {
2442		if (ath10k_pci_has_fw_crashed(ar)) {
2443			ath10k_warn(ar, "firmware crashed during chip reset\n");
2444			ath10k_pci_fw_crashed_clear(ar);
2445			ath10k_pci_fw_crashed_dump(ar);
2446		}
2447
2448		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2449		goto err_sleep;
2450	}
2451
2452	ret = ath10k_pci_init_pipes(ar);
2453	if (ret) {
2454		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2455		goto err_sleep;
2456	}
2457
2458	ret = ath10k_pci_init_config(ar);
2459	if (ret) {
2460		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2461		goto err_ce;
2462	}
2463
2464	ret = ath10k_pci_wake_target_cpu(ar);
2465	if (ret) {
2466		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2467		goto err_ce;
2468	}
2469
2470	return 0;
2471
2472err_ce:
2473	ath10k_pci_ce_deinit(ar);
2474
2475err_sleep:
2476	return ret;
2477}
2478
2479void ath10k_pci_hif_power_down(struct ath10k *ar)
2480{
2481	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2482
2483	/* Currently hif_power_up performs effectively a reset and hif_stop
2484	 * resets the chip as well so there's no point in resetting here.
2485	 */
2486}
2487
2488#ifdef CONFIG_PM
 
 
 
 
2489
2490static int ath10k_pci_hif_suspend(struct ath10k *ar)
2491{
2492	/* The grace timer can still be counting down and ar->ps_awake be true.
2493	 * It is known that the device may be asleep after resuming regardless
2494	 * of the SoC powersave state before suspending. Hence make sure the
2495	 * device is asleep before proceeding.
2496	 */
2497	ath10k_pci_sleep_sync(ar);
2498
2499	return 0;
2500}
2501
2502static int ath10k_pci_hif_resume(struct ath10k *ar)
2503{
 
 
 
 
 
 
2504	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2505	struct pci_dev *pdev = ar_pci->pdev;
2506	u32 val;
2507	int ret = 0;
2508
2509	ret = ath10k_pci_force_wake(ar);
2510	if (ret) {
2511		ath10k_err(ar, "failed to wake up target: %d\n", ret);
2512		return ret;
2513	}
2514
2515	/* Suspend/Resume resets the PCI configuration space, so we have to
2516	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2517	 * from interfering with C3 CPU state. pci_restore_state won't help
2518	 * here since it only restores the first 64 bytes pci config header.
2519	 */
2520	pci_read_config_dword(pdev, 0x40, &val);
2521	if ((val & 0x0000ff00) != 0)
2522		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2523
2524	return ret;
2525}
2526#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2527
2528static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
2529	.tx_sg			= ath10k_pci_hif_tx_sg,
2530	.diag_read		= ath10k_pci_hif_diag_read,
2531	.diag_write		= ath10k_pci_diag_write_mem,
2532	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
2533	.start			= ath10k_pci_hif_start,
2534	.stop			= ath10k_pci_hif_stop,
2535	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
2536	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
2537	.send_complete_check	= ath10k_pci_hif_send_complete_check,
2538	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
2539	.power_up		= ath10k_pci_hif_power_up,
2540	.power_down		= ath10k_pci_hif_power_down,
2541	.read32			= ath10k_pci_read32,
2542	.write32		= ath10k_pci_write32,
2543#ifdef CONFIG_PM
2544	.suspend		= ath10k_pci_hif_suspend,
2545	.resume			= ath10k_pci_hif_resume,
2546#endif
2547};
2548
2549static void ath10k_pci_ce_tasklet(unsigned long ptr)
2550{
2551	struct ath10k_pci_pipe *pipe = (struct ath10k_pci_pipe *)ptr;
2552	struct ath10k_pci *ar_pci = pipe->ar_pci;
2553
2554	ath10k_ce_per_engine_service(ar_pci->ar, pipe->pipe_num);
2555}
2556
2557static void ath10k_msi_err_tasklet(unsigned long data)
2558{
2559	struct ath10k *ar = (struct ath10k *)data;
2560
2561	if (!ath10k_pci_has_fw_crashed(ar)) {
2562		ath10k_warn(ar, "received unsolicited fw crash interrupt\n");
2563		return;
2564	}
2565
2566	ath10k_pci_irq_disable(ar);
2567	ath10k_pci_fw_crashed_clear(ar);
2568	ath10k_pci_fw_crashed_dump(ar);
2569}
2570
2571/*
2572 * Handler for a per-engine interrupt on a PARTICULAR CE.
2573 * This is used in cases where each CE has a private MSI interrupt.
2574 */
2575static irqreturn_t ath10k_pci_per_engine_handler(int irq, void *arg)
2576{
2577	struct ath10k *ar = arg;
2578	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2579	int ce_id = irq - ar_pci->pdev->irq - MSI_ASSIGN_CE_INITIAL;
2580
2581	if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_pci->pipe_info)) {
2582		ath10k_warn(ar, "unexpected/invalid irq %d ce_id %d\n", irq,
2583			    ce_id);
2584		return IRQ_HANDLED;
2585	}
2586
2587	/*
2588	 * NOTE: We are able to derive ce_id from irq because we
2589	 * use a one-to-one mapping for CE's 0..5.
2590	 * CE's 6 & 7 do not use interrupts at all.
2591	 *
2592	 * This mapping must be kept in sync with the mapping
2593	 * used by firmware.
2594	 */
2595	tasklet_schedule(&ar_pci->pipe_info[ce_id].intr);
2596	return IRQ_HANDLED;
2597}
2598
2599static irqreturn_t ath10k_pci_msi_fw_handler(int irq, void *arg)
2600{
2601	struct ath10k *ar = arg;
2602	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2603
2604	tasklet_schedule(&ar_pci->msi_fw_err);
2605	return IRQ_HANDLED;
2606}
2607
2608/*
2609 * Top-level interrupt handler for all PCI interrupts from a Target.
2610 * When a block of MSI interrupts is allocated, this top-level handler
2611 * is not used; instead, we directly call the correct sub-handler.
2612 */
2613static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
2614{
2615	struct ath10k *ar = arg;
2616	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2617	int ret;
2618
 
 
 
2619	ret = ath10k_pci_force_wake(ar);
2620	if (ret) {
2621		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
2622		return IRQ_NONE;
2623	}
2624
2625	if (ar_pci->num_msi_intrs == 0) {
2626		if (!ath10k_pci_irq_pending(ar))
2627			return IRQ_NONE;
2628
2629		ath10k_pci_disable_and_clear_legacy_irq(ar);
2630	}
2631
2632	tasklet_schedule(&ar_pci->intr_tq);
2633
2634	return IRQ_HANDLED;
2635}
2636
2637static void ath10k_pci_tasklet(unsigned long data)
2638{
2639	struct ath10k *ar = (struct ath10k *)data;
2640	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2641
2642	if (ath10k_pci_has_fw_crashed(ar)) {
2643		ath10k_pci_irq_disable(ar);
2644		ath10k_pci_fw_crashed_clear(ar);
2645		ath10k_pci_fw_crashed_dump(ar);
2646		return;
 
2647	}
2648
2649	ath10k_ce_per_engine_service_any(ar);
2650
2651	/* Re-enable legacy irq that was disabled in the irq handler */
2652	if (ar_pci->num_msi_intrs == 0)
2653		ath10k_pci_enable_legacy_irq(ar);
2654}
2655
2656static int ath10k_pci_request_irq_msix(struct ath10k *ar)
2657{
2658	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2659	int ret, i;
2660
2661	ret = request_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW,
2662			  ath10k_pci_msi_fw_handler,
2663			  IRQF_SHARED, "ath10k_pci", ar);
2664	if (ret) {
2665		ath10k_warn(ar, "failed to request MSI-X fw irq %d: %d\n",
2666			    ar_pci->pdev->irq + MSI_ASSIGN_FW, ret);
2667		return ret;
2668	}
2669
2670	for (i = MSI_ASSIGN_CE_INITIAL; i <= MSI_ASSIGN_CE_MAX; i++) {
2671		ret = request_irq(ar_pci->pdev->irq + i,
2672				  ath10k_pci_per_engine_handler,
2673				  IRQF_SHARED, "ath10k_pci", ar);
2674		if (ret) {
2675			ath10k_warn(ar, "failed to request MSI-X ce irq %d: %d\n",
2676				    ar_pci->pdev->irq + i, ret);
2677
2678			for (i--; i >= MSI_ASSIGN_CE_INITIAL; i--)
2679				free_irq(ar_pci->pdev->irq + i, ar);
2680
2681			free_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ar);
2682			return ret;
2683		}
 
 
2684	}
2685
2686	return 0;
 
2687}
2688
2689static int ath10k_pci_request_irq_msi(struct ath10k *ar)
2690{
2691	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2692	int ret;
2693
2694	ret = request_irq(ar_pci->pdev->irq,
2695			  ath10k_pci_interrupt_handler,
2696			  IRQF_SHARED, "ath10k_pci", ar);
2697	if (ret) {
2698		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
2699			    ar_pci->pdev->irq, ret);
2700		return ret;
2701	}
2702
2703	return 0;
2704}
2705
2706static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
2707{
2708	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2709	int ret;
2710
2711	ret = request_irq(ar_pci->pdev->irq,
2712			  ath10k_pci_interrupt_handler,
2713			  IRQF_SHARED, "ath10k_pci", ar);
2714	if (ret) {
2715		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
2716			    ar_pci->pdev->irq, ret);
2717		return ret;
2718	}
2719
2720	return 0;
2721}
2722
2723static int ath10k_pci_request_irq(struct ath10k *ar)
2724{
2725	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2726
2727	switch (ar_pci->num_msi_intrs) {
2728	case 0:
2729		return ath10k_pci_request_irq_legacy(ar);
2730	case 1:
2731		return ath10k_pci_request_irq_msi(ar);
2732	default:
2733		return ath10k_pci_request_irq_msix(ar);
2734	}
2735}
2736
2737static void ath10k_pci_free_irq(struct ath10k *ar)
2738{
2739	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2740	int i;
2741
2742	/* There's at least one interrupt irregardless whether its legacy INTR
2743	 * or MSI or MSI-X */
2744	for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
2745		free_irq(ar_pci->pdev->irq + i, ar);
2746}
2747
2748void ath10k_pci_init_irq_tasklets(struct ath10k *ar)
2749{
2750	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2751	int i;
2752
2753	tasklet_init(&ar_pci->intr_tq, ath10k_pci_tasklet, (unsigned long)ar);
2754	tasklet_init(&ar_pci->msi_fw_err, ath10k_msi_err_tasklet,
2755		     (unsigned long)ar);
2756
2757	for (i = 0; i < CE_COUNT; i++) {
2758		ar_pci->pipe_info[i].ar_pci = ar_pci;
2759		tasklet_init(&ar_pci->pipe_info[i].intr, ath10k_pci_ce_tasklet,
2760			     (unsigned long)&ar_pci->pipe_info[i]);
2761	}
2762}
2763
2764static int ath10k_pci_init_irq(struct ath10k *ar)
2765{
2766	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2767	int ret;
2768
2769	ath10k_pci_init_irq_tasklets(ar);
2770
2771	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
2772		ath10k_info(ar, "limiting irq mode to: %d\n",
2773			    ath10k_pci_irq_mode);
2774
2775	/* Try MSI-X */
2776	if (ath10k_pci_irq_mode == ATH10K_PCI_IRQ_AUTO) {
2777		ar_pci->num_msi_intrs = MSI_ASSIGN_CE_MAX + 1;
2778		ret = pci_enable_msi_range(ar_pci->pdev, ar_pci->num_msi_intrs,
2779					   ar_pci->num_msi_intrs);
2780		if (ret > 0)
2781			return 0;
2782
2783		/* fall-through */
2784	}
2785
2786	/* Try MSI */
2787	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
2788		ar_pci->num_msi_intrs = 1;
2789		ret = pci_enable_msi(ar_pci->pdev);
2790		if (ret == 0)
2791			return 0;
2792
2793		/* fall-through */
2794	}
2795
2796	/* Try legacy irq
2797	 *
2798	 * A potential race occurs here: The CORE_BASE write
2799	 * depends on target correctly decoding AXI address but
2800	 * host won't know when target writes BAR to CORE_CTRL.
2801	 * This write might get lost if target has NOT written BAR.
2802	 * For now, fix the race by repeating the write in below
2803	 * synchronization checking. */
2804	ar_pci->num_msi_intrs = 0;
 
2805
2806	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2807			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
2808
2809	return 0;
2810}
2811
2812static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
2813{
2814	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2815			   0);
2816}
2817
2818static int ath10k_pci_deinit_irq(struct ath10k *ar)
2819{
2820	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2821
2822	switch (ar_pci->num_msi_intrs) {
2823	case 0:
2824		ath10k_pci_deinit_irq_legacy(ar);
2825		break;
2826	default:
2827		pci_disable_msi(ar_pci->pdev);
2828		break;
2829	}
2830
2831	return 0;
2832}
2833
2834int ath10k_pci_wait_for_target_init(struct ath10k *ar)
2835{
2836	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2837	unsigned long timeout;
2838	u32 val;
2839
2840	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
2841
2842	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
2843
2844	do {
2845		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2846
2847		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
2848			   val);
2849
2850		/* target should never return this */
2851		if (val == 0xffffffff)
2852			continue;
2853
2854		/* the device has crashed so don't bother trying anymore */
2855		if (val & FW_IND_EVENT_PENDING)
2856			break;
2857
2858		if (val & FW_IND_INITIALIZED)
2859			break;
2860
2861		if (ar_pci->num_msi_intrs == 0)
2862			/* Fix potential race by repeating CORE_BASE writes */
2863			ath10k_pci_enable_legacy_irq(ar);
2864
2865		mdelay(10);
2866	} while (time_before(jiffies, timeout));
2867
2868	ath10k_pci_disable_and_clear_legacy_irq(ar);
2869	ath10k_pci_irq_msi_fw_mask(ar);
2870
2871	if (val == 0xffffffff) {
2872		ath10k_err(ar, "failed to read device register, device is gone\n");
2873		return -EIO;
2874	}
2875
2876	if (val & FW_IND_EVENT_PENDING) {
2877		ath10k_warn(ar, "device has crashed during init\n");
2878		return -ECOMM;
2879	}
2880
2881	if (!(val & FW_IND_INITIALIZED)) {
2882		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
2883			   val);
2884		return -ETIMEDOUT;
2885	}
2886
2887	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
2888	return 0;
2889}
2890
2891static int ath10k_pci_cold_reset(struct ath10k *ar)
2892{
2893	u32 val;
2894
2895	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
2896
2897	spin_lock_bh(&ar->data_lock);
2898
2899	ar->stats.fw_cold_reset_counter++;
2900
2901	spin_unlock_bh(&ar->data_lock);
2902
2903	/* Put Target, including PCIe, into RESET. */
2904	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
2905	val |= 1;
2906	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2907
2908	/* After writing into SOC_GLOBAL_RESET to put device into
2909	 * reset and pulling out of reset pcie may not be stable
2910	 * for any immediate pcie register access and cause bus error,
2911	 * add delay before any pcie access request to fix this issue.
2912	 */
2913	msleep(20);
2914
2915	/* Pull Target, including PCIe, out of RESET. */
2916	val &= ~1;
2917	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2918
2919	msleep(20);
2920
2921	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
2922
2923	return 0;
2924}
2925
2926static int ath10k_pci_claim(struct ath10k *ar)
2927{
2928	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2929	struct pci_dev *pdev = ar_pci->pdev;
2930	int ret;
2931
2932	pci_set_drvdata(pdev, ar);
2933
2934	ret = pci_enable_device(pdev);
2935	if (ret) {
2936		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
2937		return ret;
2938	}
2939
2940	ret = pci_request_region(pdev, BAR_NUM, "ath");
2941	if (ret) {
2942		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
2943			   ret);
2944		goto err_device;
2945	}
2946
2947	/* Target expects 32 bit DMA. Enforce it. */
2948	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2949	if (ret) {
2950		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
2951		goto err_region;
2952	}
2953
2954	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2955	if (ret) {
2956		ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
2957			   ret);
2958		goto err_region;
2959	}
2960
2961	pci_set_master(pdev);
2962
2963	/* Arrange for access to Target SoC registers. */
2964	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
2965	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
2966	if (!ar_pci->mem) {
2967		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
2968		ret = -EIO;
2969		goto err_master;
2970	}
2971
2972	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%p\n", ar_pci->mem);
2973	return 0;
2974
2975err_master:
2976	pci_clear_master(pdev);
2977
2978err_region:
2979	pci_release_region(pdev, BAR_NUM);
2980
2981err_device:
2982	pci_disable_device(pdev);
2983
2984	return ret;
2985}
2986
2987static void ath10k_pci_release(struct ath10k *ar)
2988{
2989	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2990	struct pci_dev *pdev = ar_pci->pdev;
2991
2992	pci_iounmap(pdev, ar_pci->mem);
2993	pci_release_region(pdev, BAR_NUM);
2994	pci_clear_master(pdev);
2995	pci_disable_device(pdev);
2996}
2997
2998static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
2999{
3000	const struct ath10k_pci_supp_chip *supp_chip;
3001	int i;
3002	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3003
3004	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3005		supp_chip = &ath10k_pci_supp_chips[i];
3006
3007		if (supp_chip->dev_id == dev_id &&
3008		    supp_chip->rev_id == rev_id)
3009			return true;
3010	}
3011
3012	return false;
3013}
3014
3015int ath10k_pci_setup_resource(struct ath10k *ar)
3016{
3017	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 
3018	int ret;
3019
3020	spin_lock_init(&ar_pci->ce_lock);
3021	spin_lock_init(&ar_pci->ps_lock);
 
3022
3023	setup_timer(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry,
3024		    (unsigned long)ar);
3025
3026	if (QCA_REV_6174(ar))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3027		ath10k_pci_override_ce_config(ar);
3028
3029	ret = ath10k_pci_alloc_pipes(ar);
3030	if (ret) {
3031		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3032			   ret);
3033		return ret;
3034	}
3035
3036	return 0;
 
 
 
 
 
 
 
 
3037}
3038
3039void ath10k_pci_release_resource(struct ath10k *ar)
3040{
3041	ath10k_pci_kill_tasklet(ar);
 
 
 
3042	ath10k_pci_ce_deinit(ar);
3043	ath10k_pci_free_pipes(ar);
 
 
 
3044}
3045
3046static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3047	.read32		= ath10k_bus_pci_read32,
3048	.write32	= ath10k_bus_pci_write32,
3049	.get_num_banks	= ath10k_pci_get_num_banks,
3050};
3051
3052static int ath10k_pci_probe(struct pci_dev *pdev,
3053			    const struct pci_device_id *pci_dev)
3054{
3055	int ret = 0;
3056	struct ath10k *ar;
3057	struct ath10k_pci *ar_pci;
3058	enum ath10k_hw_rev hw_rev;
3059	u32 chip_id;
3060	bool pci_ps;
 
 
 
3061
3062	switch (pci_dev->device) {
 
3063	case QCA988X_2_0_DEVICE_ID:
3064		hw_rev = ATH10K_HW_QCA988X;
3065		pci_ps = false;
 
 
 
 
 
 
 
 
 
 
 
3066		break;
3067	case QCA6164_2_1_DEVICE_ID:
3068	case QCA6174_2_1_DEVICE_ID:
3069		hw_rev = ATH10K_HW_QCA6174;
3070		pci_ps = true;
 
 
 
3071		break;
3072	case QCA99X0_2_0_DEVICE_ID:
3073		hw_rev = ATH10K_HW_QCA99X0;
3074		pci_ps = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3075		break;
3076	case QCA9377_1_0_DEVICE_ID:
3077		hw_rev = ATH10K_HW_QCA9377;
3078		pci_ps = true;
 
 
 
3079		break;
3080	default:
3081		WARN_ON(1);
3082		return -ENOTSUPP;
3083	}
3084
3085	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3086				hw_rev, &ath10k_pci_hif_ops);
3087	if (!ar) {
3088		dev_err(&pdev->dev, "failed to allocate core\n");
3089		return -ENOMEM;
3090	}
3091
3092	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3093		   pdev->vendor, pdev->device,
3094		   pdev->subsystem_vendor, pdev->subsystem_device);
3095
3096	ar_pci = ath10k_pci_priv(ar);
3097	ar_pci->pdev = pdev;
3098	ar_pci->dev = &pdev->dev;
3099	ar_pci->ar = ar;
3100	ar->dev_id = pci_dev->device;
3101	ar_pci->pci_ps = pci_ps;
3102	ar_pci->bus_ops = &ath10k_pci_bus_ops;
 
 
 
 
3103
3104	ar->id.vendor = pdev->vendor;
3105	ar->id.device = pdev->device;
3106	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3107	ar->id.subsystem_device = pdev->subsystem_device;
3108
3109	setup_timer(&ar_pci->ps_timer, ath10k_pci_ps_timer,
3110		    (unsigned long)ar);
3111
3112	ret = ath10k_pci_setup_resource(ar);
3113	if (ret) {
3114		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3115		goto err_core_destroy;
3116	}
3117
3118	ret = ath10k_pci_claim(ar);
3119	if (ret) {
3120		ath10k_err(ar, "failed to claim device: %d\n", ret);
3121		goto err_free_pipes;
3122	}
3123
3124	ret = ath10k_pci_force_wake(ar);
3125	if (ret) {
3126		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3127		goto err_sleep;
3128	}
3129
3130	ath10k_pci_ce_deinit(ar);
3131	ath10k_pci_irq_disable(ar);
3132
3133	ret = ath10k_pci_init_irq(ar);
3134	if (ret) {
3135		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3136		goto err_sleep;
3137	}
3138
3139	ath10k_info(ar, "pci irq %s interrupts %d irq_mode %d reset_mode %d\n",
3140		    ath10k_pci_get_irq_method(ar), ar_pci->num_msi_intrs,
3141		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3142
3143	ret = ath10k_pci_request_irq(ar);
3144	if (ret) {
3145		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3146		goto err_deinit_irq;
3147	}
3148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3149	ret = ath10k_pci_chip_reset(ar);
3150	if (ret) {
3151		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3152		goto err_free_irq;
3153	}
3154
3155	chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3156	if (chip_id == 0xffffffff) {
3157		ath10k_err(ar, "failed to get chip id\n");
3158		goto err_free_irq;
3159	}
3160
3161	if (!ath10k_pci_chip_is_supported(pdev->device, chip_id)) {
3162		ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3163			   pdev->device, chip_id);
3164		goto err_free_irq;
3165	}
3166
3167	ret = ath10k_core_register(ar, chip_id);
3168	if (ret) {
3169		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3170		goto err_free_irq;
3171	}
3172
3173	return 0;
3174
 
 
 
 
3175err_free_irq:
3176	ath10k_pci_free_irq(ar);
3177	ath10k_pci_kill_tasklet(ar);
3178
3179err_deinit_irq:
3180	ath10k_pci_deinit_irq(ar);
3181
3182err_sleep:
3183	ath10k_pci_sleep_sync(ar);
3184	ath10k_pci_release(ar);
3185
3186err_free_pipes:
3187	ath10k_pci_free_pipes(ar);
3188
3189err_core_destroy:
3190	ath10k_core_destroy(ar);
3191
3192	return ret;
3193}
3194
3195static void ath10k_pci_remove(struct pci_dev *pdev)
3196{
3197	struct ath10k *ar = pci_get_drvdata(pdev);
3198	struct ath10k_pci *ar_pci;
3199
3200	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3201
3202	if (!ar)
3203		return;
3204
3205	ar_pci = ath10k_pci_priv(ar);
3206
3207	if (!ar_pci)
3208		return;
3209
3210	ath10k_core_unregister(ar);
3211	ath10k_pci_free_irq(ar);
3212	ath10k_pci_deinit_irq(ar);
3213	ath10k_pci_release_resource(ar);
3214	ath10k_pci_sleep_sync(ar);
3215	ath10k_pci_release(ar);
3216	ath10k_core_destroy(ar);
3217}
3218
3219MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3221static struct pci_driver ath10k_pci_driver = {
3222	.name = "ath10k_pci",
3223	.id_table = ath10k_pci_id_table,
3224	.probe = ath10k_pci_probe,
3225	.remove = ath10k_pci_remove,
 
 
 
3226};
3227
3228static int __init ath10k_pci_init(void)
3229{
3230	int ret;
3231
3232	ret = pci_register_driver(&ath10k_pci_driver);
3233	if (ret)
3234		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3235		       ret);
3236
3237	ret = ath10k_ahb_init();
3238	if (ret)
3239		printk(KERN_ERR "ahb init failed: %d\n", ret);
 
 
 
3240
3241	return ret;
 
3242}
3243module_init(ath10k_pci_init);
3244
3245static void __exit ath10k_pci_exit(void)
3246{
3247	pci_unregister_driver(&ath10k_pci_driver);
3248	ath10k_ahb_exit();
3249}
3250
3251module_exit(ath10k_pci_exit);
3252
3253MODULE_AUTHOR("Qualcomm Atheros");
3254MODULE_DESCRIPTION("Driver support for Atheros QCA988X PCIe devices");
3255MODULE_LICENSE("Dual BSD/GPL");
3256
3257/* QCA988x 2.0 firmware files */
3258MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_FW_FILE);
3259MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3260MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3261MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3262MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3263MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3264MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3265
 
 
 
 
 
3266/* QCA6174 2.1 firmware files */
3267MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3268MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3269MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3270MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3271
3272/* QCA6174 3.1 firmware files */
3273MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3274MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
 
3275MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3276MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3277
3278/* QCA9377 1.0 firmware files */
 
3279MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3280MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);