Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * at24.c - handle most I2C EEPROMs
  4 *
  5 * Copyright (C) 2005-2007 David Brownell
  6 * Copyright (C) 2008 Wolfram Sang, Pengutronix
 
 
 
 
 
  7 */
  8
  9#include <linux/acpi.h>
 10#include <linux/bitops.h>
 11#include <linux/capability.h>
 12#include <linux/delay.h>
 13#include <linux/i2c.h>
 14#include <linux/init.h>
 15#include <linux/jiffies.h>
 16#include <linux/kernel.h>
 17#include <linux/mod_devicetable.h>
 18#include <linux/module.h>
 
 
 19#include <linux/mutex.h>
 
 
 
 
 
 
 
 20#include <linux/nvmem-provider.h>
 21#include <linux/of_device.h>
 22#include <linux/pm_runtime.h>
 23#include <linux/property.h>
 24#include <linux/regmap.h>
 25#include <linux/regulator/consumer.h>
 26#include <linux/slab.h>
 27
 28/* Address pointer is 16 bit. */
 29#define AT24_FLAG_ADDR16	BIT(7)
 30/* sysfs-entry will be read-only. */
 31#define AT24_FLAG_READONLY	BIT(6)
 32/* sysfs-entry will be world-readable. */
 33#define AT24_FLAG_IRUGO		BIT(5)
 34/* Take always 8 addresses (24c00). */
 35#define AT24_FLAG_TAKE8ADDR	BIT(4)
 36/* Factory-programmed serial number. */
 37#define AT24_FLAG_SERIAL	BIT(3)
 38/* Factory-programmed mac address. */
 39#define AT24_FLAG_MAC		BIT(2)
 40/* Does not auto-rollover reads to the next slave address. */
 41#define AT24_FLAG_NO_RDROL	BIT(1)
 42
 43/*
 44 * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
 45 * Differences between different vendor product lines (like Atmel AT24C or
 46 * MicroChip 24LC, etc) won't much matter for typical read/write access.
 47 * There are also I2C RAM chips, likewise interchangeable. One example
 48 * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
 49 *
 50 * However, misconfiguration can lose data. "Set 16-bit memory address"
 51 * to a part with 8-bit addressing will overwrite data. Writing with too
 52 * big a page size also loses data. And it's not safe to assume that the
 53 * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
 54 * uses 0x51, for just one example.
 55 *
 56 * Accordingly, explicit board-specific configuration data should be used
 57 * in almost all cases. (One partial exception is an SMBus used to access
 58 * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
 59 *
 60 * So this driver uses "new style" I2C driver binding, expecting to be
 61 * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
 62 * similar kernel-resident tables; or, configuration data coming from
 63 * a bootloader.
 64 *
 65 * Other than binding model, current differences from "eeprom" driver are
 66 * that this one handles write access and isn't restricted to 24c02 devices.
 67 * It also handles larger devices (32 kbit and up) with two-byte addresses,
 68 * which won't work on pure SMBus systems.
 69 */
 70
 71struct at24_data {
 
 
 
 
 72	/*
 73	 * Lock protects against activities from other Linux tasks,
 74	 * but not from changes by other I2C masters.
 75	 */
 76	struct mutex lock;
 77
 78	unsigned int write_max;
 79	unsigned int num_addresses;
 80	unsigned int offset_adj;
 81
 82	u32 byte_len;
 83	u16 page_size;
 84	u8 flags;
 85
 
 
 86	struct nvmem_device *nvmem;
 87	struct regulator *vcc_reg;
 88	void (*read_post)(unsigned int off, char *buf, size_t count);
 89
 90	/*
 91	 * Some chips tie up multiple I2C addresses; dummy devices reserve
 92	 * them for us.
 93	 */
 94	u8 bank_addr_shift;
 95	struct regmap *client_regmaps[];
 96};
 97
 98/*
 99 * This parameter is to help this driver avoid blocking other drivers out
100 * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
101 * clock, one 256 byte read takes about 1/43 second which is excessive;
102 * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
103 * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
104 *
105 * This value is forced to be a power of two so that writes align on pages.
106 */
107static unsigned int at24_io_limit = 128;
108module_param_named(io_limit, at24_io_limit, uint, 0);
109MODULE_PARM_DESC(at24_io_limit, "Maximum bytes per I/O (default 128)");
110
111/*
112 * Specs often allow 5 msec for a page write, sometimes 20 msec;
113 * it's important to recover from write timeouts.
114 */
115static unsigned int at24_write_timeout = 25;
116module_param_named(write_timeout, at24_write_timeout, uint, 0);
117MODULE_PARM_DESC(at24_write_timeout, "Time (in ms) to try writes (default 25)");
118
119struct at24_chip_data {
120	u32 byte_len;
121	u8 flags;
122	u8 bank_addr_shift;
123	void (*read_post)(unsigned int off, char *buf, size_t count);
124};
125
126#define AT24_CHIP_DATA(_name, _len, _flags)				\
127	static const struct at24_chip_data _name = {			\
128		.byte_len = _len, .flags = _flags,			\
129	}
130
131#define AT24_CHIP_DATA_CB(_name, _len, _flags, _read_post)		\
132	static const struct at24_chip_data _name = {			\
133		.byte_len = _len, .flags = _flags,			\
134		.read_post = _read_post,				\
135	}
136
137#define AT24_CHIP_DATA_BS(_name, _len, _flags, _bank_addr_shift)	\
138	static const struct at24_chip_data _name = {			\
139		.byte_len = _len, .flags = _flags,			\
140		.bank_addr_shift = _bank_addr_shift			\
141	}
142
143static void at24_read_post_vaio(unsigned int off, char *buf, size_t count)
144{
145	int i;
146
147	if (capable(CAP_SYS_ADMIN))
148		return;
149
150	/*
151	 * Hide VAIO private settings to regular users:
152	 * - BIOS passwords: bytes 0x00 to 0x0f
153	 * - UUID: bytes 0x10 to 0x1f
154	 * - Serial number: 0xc0 to 0xdf
155	 */
156	for (i = 0; i < count; i++) {
157		if ((off + i <= 0x1f) ||
158		    (off + i >= 0xc0 && off + i <= 0xdf))
159			buf[i] = 0;
160	}
161}
162
163/* needs 8 addresses as A0-A2 are ignored */
164AT24_CHIP_DATA(at24_data_24c00, 128 / 8, AT24_FLAG_TAKE8ADDR);
165/* old variants can't be handled with this generic entry! */
166AT24_CHIP_DATA(at24_data_24c01, 1024 / 8, 0);
167AT24_CHIP_DATA(at24_data_24cs01, 16,
168	AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
169AT24_CHIP_DATA(at24_data_24c02, 2048 / 8, 0);
170AT24_CHIP_DATA(at24_data_24cs02, 16,
171	AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
172AT24_CHIP_DATA(at24_data_24mac402, 48 / 8,
173	AT24_FLAG_MAC | AT24_FLAG_READONLY);
174AT24_CHIP_DATA(at24_data_24mac602, 64 / 8,
175	AT24_FLAG_MAC | AT24_FLAG_READONLY);
176/* spd is a 24c02 in memory DIMMs */
177AT24_CHIP_DATA(at24_data_spd, 2048 / 8,
178	AT24_FLAG_READONLY | AT24_FLAG_IRUGO);
179/* 24c02_vaio is a 24c02 on some Sony laptops */
180AT24_CHIP_DATA_CB(at24_data_24c02_vaio, 2048 / 8,
181	AT24_FLAG_READONLY | AT24_FLAG_IRUGO,
182	at24_read_post_vaio);
183AT24_CHIP_DATA(at24_data_24c04, 4096 / 8, 0);
184AT24_CHIP_DATA(at24_data_24cs04, 16,
185	AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
186/* 24rf08 quirk is handled at i2c-core */
187AT24_CHIP_DATA(at24_data_24c08, 8192 / 8, 0);
188AT24_CHIP_DATA(at24_data_24cs08, 16,
189	AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
190AT24_CHIP_DATA(at24_data_24c16, 16384 / 8, 0);
191AT24_CHIP_DATA(at24_data_24cs16, 16,
192	AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
193AT24_CHIP_DATA(at24_data_24c32, 32768 / 8, AT24_FLAG_ADDR16);
194AT24_CHIP_DATA(at24_data_24cs32, 16,
195	AT24_FLAG_ADDR16 | AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
196AT24_CHIP_DATA(at24_data_24c64, 65536 / 8, AT24_FLAG_ADDR16);
197AT24_CHIP_DATA(at24_data_24cs64, 16,
198	AT24_FLAG_ADDR16 | AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
199AT24_CHIP_DATA(at24_data_24c128, 131072 / 8, AT24_FLAG_ADDR16);
200AT24_CHIP_DATA(at24_data_24c256, 262144 / 8, AT24_FLAG_ADDR16);
201AT24_CHIP_DATA(at24_data_24c512, 524288 / 8, AT24_FLAG_ADDR16);
202AT24_CHIP_DATA(at24_data_24c1024, 1048576 / 8, AT24_FLAG_ADDR16);
203AT24_CHIP_DATA_BS(at24_data_24c1025, 1048576 / 8, AT24_FLAG_ADDR16, 2);
204AT24_CHIP_DATA(at24_data_24c2048, 2097152 / 8, AT24_FLAG_ADDR16);
205/* identical to 24c08 ? */
206AT24_CHIP_DATA(at24_data_INT3499, 8192 / 8, 0);
207
208static const struct i2c_device_id at24_ids[] = {
209	{ "24c00",	(kernel_ulong_t)&at24_data_24c00 },
210	{ "24c01",	(kernel_ulong_t)&at24_data_24c01 },
211	{ "24cs01",	(kernel_ulong_t)&at24_data_24cs01 },
212	{ "24c02",	(kernel_ulong_t)&at24_data_24c02 },
213	{ "24cs02",	(kernel_ulong_t)&at24_data_24cs02 },
214	{ "24mac402",	(kernel_ulong_t)&at24_data_24mac402 },
215	{ "24mac602",	(kernel_ulong_t)&at24_data_24mac602 },
216	{ "spd",	(kernel_ulong_t)&at24_data_spd },
217	{ "24c02-vaio",	(kernel_ulong_t)&at24_data_24c02_vaio },
218	{ "24c04",	(kernel_ulong_t)&at24_data_24c04 },
219	{ "24cs04",	(kernel_ulong_t)&at24_data_24cs04 },
220	{ "24c08",	(kernel_ulong_t)&at24_data_24c08 },
221	{ "24cs08",	(kernel_ulong_t)&at24_data_24cs08 },
222	{ "24c16",	(kernel_ulong_t)&at24_data_24c16 },
223	{ "24cs16",	(kernel_ulong_t)&at24_data_24cs16 },
224	{ "24c32",	(kernel_ulong_t)&at24_data_24c32 },
225	{ "24cs32",	(kernel_ulong_t)&at24_data_24cs32 },
226	{ "24c64",	(kernel_ulong_t)&at24_data_24c64 },
227	{ "24cs64",	(kernel_ulong_t)&at24_data_24cs64 },
228	{ "24c128",	(kernel_ulong_t)&at24_data_24c128 },
229	{ "24c256",	(kernel_ulong_t)&at24_data_24c256 },
230	{ "24c512",	(kernel_ulong_t)&at24_data_24c512 },
231	{ "24c1024",	(kernel_ulong_t)&at24_data_24c1024 },
232	{ "24c1025",	(kernel_ulong_t)&at24_data_24c1025 },
233	{ "24c2048",    (kernel_ulong_t)&at24_data_24c2048 },
234	{ "at24",	0 },
235	{ /* END OF LIST */ }
236};
237MODULE_DEVICE_TABLE(i2c, at24_ids);
238
239static const struct of_device_id at24_of_match[] = {
240	{ .compatible = "atmel,24c00",		.data = &at24_data_24c00 },
241	{ .compatible = "atmel,24c01",		.data = &at24_data_24c01 },
242	{ .compatible = "atmel,24cs01",		.data = &at24_data_24cs01 },
243	{ .compatible = "atmel,24c02",		.data = &at24_data_24c02 },
244	{ .compatible = "atmel,24cs02",		.data = &at24_data_24cs02 },
245	{ .compatible = "atmel,24mac402",	.data = &at24_data_24mac402 },
246	{ .compatible = "atmel,24mac602",	.data = &at24_data_24mac602 },
247	{ .compatible = "atmel,spd",		.data = &at24_data_spd },
248	{ .compatible = "atmel,24c04",		.data = &at24_data_24c04 },
249	{ .compatible = "atmel,24cs04",		.data = &at24_data_24cs04 },
250	{ .compatible = "atmel,24c08",		.data = &at24_data_24c08 },
251	{ .compatible = "atmel,24cs08",		.data = &at24_data_24cs08 },
252	{ .compatible = "atmel,24c16",		.data = &at24_data_24c16 },
253	{ .compatible = "atmel,24cs16",		.data = &at24_data_24cs16 },
254	{ .compatible = "atmel,24c32",		.data = &at24_data_24c32 },
255	{ .compatible = "atmel,24cs32",		.data = &at24_data_24cs32 },
256	{ .compatible = "atmel,24c64",		.data = &at24_data_24c64 },
257	{ .compatible = "atmel,24cs64",		.data = &at24_data_24cs64 },
258	{ .compatible = "atmel,24c128",		.data = &at24_data_24c128 },
259	{ .compatible = "atmel,24c256",		.data = &at24_data_24c256 },
260	{ .compatible = "atmel,24c512",		.data = &at24_data_24c512 },
261	{ .compatible = "atmel,24c1024",	.data = &at24_data_24c1024 },
262	{ .compatible = "atmel,24c1025",	.data = &at24_data_24c1025 },
263	{ .compatible = "atmel,24c2048",	.data = &at24_data_24c2048 },
264	{ /* END OF LIST */ },
265};
266MODULE_DEVICE_TABLE(of, at24_of_match);
267
268static const struct acpi_device_id __maybe_unused at24_acpi_ids[] = {
269	{ "INT3499",	(kernel_ulong_t)&at24_data_INT3499 },
270	{ "TPF0001",	(kernel_ulong_t)&at24_data_24c1024 },
271	{ /* END OF LIST */ }
272};
273MODULE_DEVICE_TABLE(acpi, at24_acpi_ids);
274
 
 
275/*
276 * This routine supports chips which consume multiple I2C addresses. It
277 * computes the addressing information to be used for a given r/w request.
278 * Assumes that sanity checks for offset happened at sysfs-layer.
279 *
280 * Slave address and byte offset derive from the offset. Always
281 * set the byte address; on a multi-master board, another master
282 * may have changed the chip's "current" address pointer.
283 */
284static struct regmap *at24_translate_offset(struct at24_data *at24,
285					    unsigned int *offset)
286{
287	unsigned int i;
288
289	if (at24->flags & AT24_FLAG_ADDR16) {
290		i = *offset >> 16;
291		*offset &= 0xffff;
292	} else {
293		i = *offset >> 8;
294		*offset &= 0xff;
295	}
296
297	return at24->client_regmaps[i];
298}
299
300static struct device *at24_base_client_dev(struct at24_data *at24)
 
301{
302	return regmap_get_device(at24->client_regmaps[0]);
303}
 
 
 
304
305static size_t at24_adjust_read_count(struct at24_data *at24,
306				      unsigned int offset, size_t count)
307{
308	unsigned int bits;
309	size_t remainder;
310
311	/*
312	 * In case of multi-address chips that don't rollover reads to
313	 * the next slave address: truncate the count to the slave boundary,
314	 * so that the read never straddles slaves.
 
 
 
 
 
315	 */
316	if (at24->flags & AT24_FLAG_NO_RDROL) {
317		bits = (at24->flags & AT24_FLAG_ADDR16) ? 16 : 8;
318		remainder = BIT(bits) - offset;
319		if (count > remainder)
320			count = remainder;
321	}
322
323	if (count > at24_io_limit)
324		count = at24_io_limit;
325
326	return count;
327}
328
329static ssize_t at24_regmap_read(struct at24_data *at24, char *buf,
330				unsigned int offset, size_t count)
331{
332	unsigned long timeout, read_time;
333	struct regmap *regmap;
334	int ret;
335
336	regmap = at24_translate_offset(at24, &offset);
337	count = at24_adjust_read_count(at24, offset, count);
338
339	/* adjust offset for mac and serial read ops */
340	offset += at24->offset_adj;
341
342	timeout = jiffies + msecs_to_jiffies(at24_write_timeout);
343	do {
 
 
 
344		/*
345		 * The timestamp shall be taken before the actual operation
346		 * to avoid a premature timeout in case of high CPU load.
 
 
 
347		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348		read_time = jiffies;
 
 
 
 
 
 
 
 
 
 
349
350		ret = regmap_bulk_read(regmap, offset, buf, count);
351		dev_dbg(regmap_get_device(regmap), "read %zu@%d --> %d (%ld)\n",
352			count, offset, ret, jiffies);
353		if (!ret)
354			return count;
355
356		usleep_range(1000, 1500);
 
357	} while (time_before(read_time, timeout));
358
359	return -ETIMEDOUT;
360}
361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
362/*
363 * Note that if the hardware write-protect pin is pulled high, the whole
364 * chip is normally write protected. But there are plenty of product
365 * variants here, including OTP fuses and partial chip protect.
366 *
367 * We only use page mode writes; the alternative is sloooow. These routines
368 * write at most one page.
369 */
370
371static size_t at24_adjust_write_count(struct at24_data *at24,
372				      unsigned int offset, size_t count)
373{
374	unsigned int next_page;
 
 
 
 
 
 
 
375
376	/* write_max is at most a page */
377	if (count > at24->write_max)
378		count = at24->write_max;
379
380	/* Never roll over backwards, to the start of this page */
381	next_page = roundup(offset + 1, at24->page_size);
382	if (offset + count > next_page)
383		count = next_page - offset;
384
385	return count;
386}
387
388static ssize_t at24_regmap_write(struct at24_data *at24, const char *buf,
389				 unsigned int offset, size_t count)
390{
391	unsigned long timeout, write_time;
392	struct regmap *regmap;
393	int ret;
394
395	regmap = at24_translate_offset(at24, &offset);
396	count = at24_adjust_write_count(at24, offset, count);
397	timeout = jiffies + msecs_to_jiffies(at24_write_timeout);
 
 
 
398
 
 
 
 
 
 
399	do {
400		/*
401		 * The timestamp shall be taken before the actual operation
402		 * to avoid a premature timeout in case of high CPU load.
403		 */
404		write_time = jiffies;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
405
406		ret = regmap_bulk_write(regmap, offset, buf, count);
407		dev_dbg(regmap_get_device(regmap), "write %zu@%d --> %d (%ld)\n",
408			count, offset, ret, jiffies);
409		if (!ret)
410			return count;
411
412		usleep_range(1000, 1500);
 
413	} while (time_before(write_time, timeout));
414
415	return -ETIMEDOUT;
416}
417
418static int at24_read(void *priv, unsigned int off, void *val, size_t count)
 
419{
420	struct at24_data *at24;
421	struct device *dev;
422	char *buf = val;
423	int i, ret;
424
425	at24 = priv;
426	dev = at24_base_client_dev(at24);
427
428	if (unlikely(!count))
429		return count;
430
431	if (off + count > at24->byte_len)
432		return -EINVAL;
433
434	ret = pm_runtime_get_sync(dev);
435	if (ret < 0) {
436		pm_runtime_put_noidle(dev);
437		return ret;
438	}
439
440	/*
441	 * Read data from chip, protecting against concurrent updates
442	 * from this host, but not from other I2C masters.
443	 */
444	mutex_lock(&at24->lock);
445
446	for (i = 0; count; i += ret, count -= ret) {
447		ret = at24_regmap_read(at24, buf + i, off + i, count);
448		if (ret < 0) {
449			mutex_unlock(&at24->lock);
450			pm_runtime_put(dev);
451			return ret;
452		}
453	}
454
455	mutex_unlock(&at24->lock);
456
457	pm_runtime_put(dev);
458
459	if (unlikely(at24->read_post))
460		at24->read_post(off, buf, i);
461
462	return 0;
463}
464
465static int at24_write(void *priv, unsigned int off, void *val, size_t count)
466{
467	struct at24_data *at24;
468	struct device *dev;
469	char *buf = val;
470	int ret;
471
472	at24 = priv;
473	dev = at24_base_client_dev(at24);
474
475	if (unlikely(!count))
476		return -EINVAL;
477
478	if (off + count > at24->byte_len)
479		return -EINVAL;
480
481	ret = pm_runtime_get_sync(dev);
482	if (ret < 0) {
483		pm_runtime_put_noidle(dev);
484		return ret;
485	}
486
487	/*
488	 * Write data to chip, protecting against concurrent updates
489	 * from this host, but not from other I2C masters.
490	 */
491	mutex_lock(&at24->lock);
492
493	while (count) {
494		ret = at24_regmap_write(at24, buf, off, count);
495		if (ret < 0) {
496			mutex_unlock(&at24->lock);
497			pm_runtime_put(dev);
498			return ret;
 
 
499		}
500		buf += ret;
501		off += ret;
502		count -= ret;
 
503	}
504
505	mutex_unlock(&at24->lock);
506
507	pm_runtime_put(dev);
508
509	return 0;
510}
511
512static const struct at24_chip_data *at24_get_chip_data(struct device *dev)
513{
514	struct device_node *of_node = dev->of_node;
515	const struct at24_chip_data *cdata;
516	const struct i2c_device_id *id;
517
518	id = i2c_match_id(at24_ids, to_i2c_client(dev));
519
520	/*
521	 * The I2C core allows OF nodes compatibles to match against the
522	 * I2C device ID table as a fallback, so check not only if an OF
523	 * node is present but also if it matches an OF device ID entry.
524	 */
525	if (of_node && of_match_device(at24_of_match, dev))
526		cdata = of_device_get_match_data(dev);
527	else if (id)
528		cdata = (void *)id->driver_data;
529	else
530		cdata = acpi_device_get_match_data(dev);
531
532	if (!cdata)
533		return ERR_PTR(-ENODEV);
 
 
 
 
 
 
 
 
534
535	return cdata;
 
 
 
536}
537
538static int at24_make_dummy_client(struct at24_data *at24, unsigned int index,
539				  struct i2c_client *base_client,
540				  struct regmap_config *regmap_config)
541{
542	struct i2c_client *dummy_client;
543	struct regmap *regmap;
544
545	dummy_client = devm_i2c_new_dummy_device(&base_client->dev,
546						 base_client->adapter,
547						 base_client->addr +
548						 (index << at24->bank_addr_shift));
549	if (IS_ERR(dummy_client))
550		return PTR_ERR(dummy_client);
551
552	regmap = devm_regmap_init_i2c(dummy_client, regmap_config);
553	if (IS_ERR(regmap))
554		return PTR_ERR(regmap);
555
556	at24->client_regmaps[index] = regmap;
 
 
557
 
 
 
558	return 0;
559}
560
561static unsigned int at24_get_offset_adj(u8 flags, unsigned int byte_len)
 
 
 
 
 
 
 
 
 
 
562{
563	if (flags & AT24_FLAG_MAC) {
564		/* EUI-48 starts from 0x9a, EUI-64 from 0x98 */
565		return 0xa0 - byte_len;
566	} else if (flags & AT24_FLAG_SERIAL && flags & AT24_FLAG_ADDR16) {
567		/*
568		 * For 16 bit address pointers, the word address must contain
569		 * a '10' sequence in bits 11 and 10 regardless of the
570		 * intended position of the address pointer.
571		 */
572		return 0x0800;
573	} else if (flags & AT24_FLAG_SERIAL) {
574		/*
575		 * Otherwise the word address must begin with a '10' sequence,
576		 * regardless of the intended address.
577		 */
578		return 0x0080;
579	} else {
580		return 0;
581	}
582}
 
 
 
 
 
583
584static int at24_probe(struct i2c_client *client)
585{
586	struct regmap_config regmap_config = { };
587	struct nvmem_config nvmem_config = { };
588	u32 byte_len, page_size, flags, addrw;
589	const struct at24_chip_data *cdata;
590	struct device *dev = &client->dev;
591	bool i2c_fn_i2c, i2c_fn_block;
592	unsigned int i, num_addresses;
593	struct at24_data *at24;
594	bool full_power;
595	struct regmap *regmap;
596	bool writable;
597	u8 test_byte;
 
 
598	int err;
 
 
599
600	i2c_fn_i2c = i2c_check_functionality(client->adapter, I2C_FUNC_I2C);
601	i2c_fn_block = i2c_check_functionality(client->adapter,
602					       I2C_FUNC_SMBUS_WRITE_I2C_BLOCK);
603
604	cdata = at24_get_chip_data(dev);
605	if (IS_ERR(cdata))
606		return PTR_ERR(cdata);
 
 
 
 
 
 
 
607
608	err = device_property_read_u32(dev, "pagesize", &page_size);
609	if (err)
 
610		/*
611		 * This is slow, but we can't know all eeproms, so we better
612		 * play safe. Specifying custom eeprom-types via device tree
613		 * or properties is recommended anyhow.
614		 */
615		page_size = 1;
616
617	flags = cdata->flags;
618	if (device_property_present(dev, "read-only"))
619		flags |= AT24_FLAG_READONLY;
620	if (device_property_present(dev, "no-read-rollover"))
621		flags |= AT24_FLAG_NO_RDROL;
622
623	err = device_property_read_u32(dev, "address-width", &addrw);
624	if (!err) {
625		switch (addrw) {
626		case 8:
627			if (flags & AT24_FLAG_ADDR16)
628				dev_warn(dev,
629					 "Override address width to be 8, while default is 16\n");
630			flags &= ~AT24_FLAG_ADDR16;
631			break;
632		case 16:
633			flags |= AT24_FLAG_ADDR16;
634			break;
635		default:
636			dev_warn(dev, "Bad \"address-width\" property: %u\n",
637				 addrw);
638		}
639	}
640
641	err = device_property_read_u32(dev, "size", &byte_len);
642	if (err)
643		byte_len = cdata->byte_len;
644
645	if (!i2c_fn_i2c && !i2c_fn_block)
646		page_size = 1;
 
647
648	if (!page_size) {
649		dev_err(dev, "page_size must not be 0!\n");
 
 
 
650		return -EINVAL;
651	}
652
653	if (!is_power_of_2(page_size))
654		dev_warn(dev, "page_size looks suspicious (no power of 2)!\n");
655
656	err = device_property_read_u32(dev, "num-addresses", &num_addresses);
657	if (err) {
658		if (flags & AT24_FLAG_TAKE8ADDR)
659			num_addresses = 8;
660		else
661			num_addresses =	DIV_ROUND_UP(byte_len,
662				(flags & AT24_FLAG_ADDR16) ? 65536 : 256);
 
 
 
 
 
 
 
 
 
 
663	}
664
665	if ((flags & AT24_FLAG_SERIAL) && (flags & AT24_FLAG_MAC)) {
666		dev_err(dev,
667			"invalid device data - cannot have both AT24_FLAG_SERIAL & AT24_FLAG_MAC.");
668		return -EINVAL;
 
 
 
 
 
 
669	}
670
671	regmap_config.val_bits = 8;
672	regmap_config.reg_bits = (flags & AT24_FLAG_ADDR16) ? 16 : 8;
673	regmap_config.disable_locking = true;
674
675	regmap = devm_regmap_init_i2c(client, &regmap_config);
676	if (IS_ERR(regmap))
677		return PTR_ERR(regmap);
678
679	at24 = devm_kzalloc(dev, struct_size(at24, client_regmaps, num_addresses),
680			    GFP_KERNEL);
681	if (!at24)
682		return -ENOMEM;
683
684	mutex_init(&at24->lock);
685	at24->byte_len = byte_len;
686	at24->page_size = page_size;
687	at24->flags = flags;
688	at24->read_post = cdata->read_post;
689	at24->bank_addr_shift = cdata->bank_addr_shift;
690	at24->num_addresses = num_addresses;
691	at24->offset_adj = at24_get_offset_adj(flags, byte_len);
692	at24->client_regmaps[0] = regmap;
693
694	at24->vcc_reg = devm_regulator_get(dev, "vcc");
695	if (IS_ERR(at24->vcc_reg))
696		return PTR_ERR(at24->vcc_reg);
697
698	writable = !(flags & AT24_FLAG_READONLY);
699	if (writable) {
700		at24->write_max = min_t(unsigned int,
701					page_size, at24_io_limit);
702		if (!i2c_fn_i2c && at24->write_max > I2C_SMBUS_BLOCK_MAX)
703			at24->write_max = I2C_SMBUS_BLOCK_MAX;
704	}
705
706	/* use dummy devices for multiple-address chips */
707	for (i = 1; i < num_addresses; i++) {
708		err = at24_make_dummy_client(at24, i, client, &regmap_config);
709		if (err)
710			return err;
711	}
712
713	/*
714	 * We initialize nvmem_config.id to NVMEM_DEVID_AUTO even if the
715	 * label property is set as some platform can have multiple eeproms
716	 * with same label and we can not register each of those with same
717	 * label. Failing to register those eeproms trigger cascade failure
718	 * on such platform.
719	 */
720	nvmem_config.id = NVMEM_DEVID_AUTO;
721
722	if (device_property_present(dev, "label")) {
723		err = device_property_read_string(dev, "label",
724						  &nvmem_config.name);
725		if (err)
726			return err;
727	} else {
728		nvmem_config.name = dev_name(dev);
 
 
 
 
 
 
 
 
729	}
730
731	nvmem_config.type = NVMEM_TYPE_EEPROM;
732	nvmem_config.dev = dev;
733	nvmem_config.read_only = !writable;
734	nvmem_config.root_only = !(flags & AT24_FLAG_IRUGO);
735	nvmem_config.owner = THIS_MODULE;
736	nvmem_config.compat = true;
737	nvmem_config.base_dev = dev;
738	nvmem_config.reg_read = at24_read;
739	nvmem_config.reg_write = at24_write;
740	nvmem_config.priv = at24;
741	nvmem_config.stride = 1;
742	nvmem_config.word_size = 1;
743	nvmem_config.size = byte_len;
744
745	i2c_set_clientdata(client, at24);
746
747	full_power = acpi_dev_state_d0(&client->dev);
748	if (full_power) {
749		err = regulator_enable(at24->vcc_reg);
750		if (err) {
751			dev_err(dev, "Failed to enable vcc regulator\n");
752			return err;
 
 
 
753		}
754
755		pm_runtime_set_active(dev);
756	}
757	pm_runtime_enable(dev);
758
759	at24->nvmem = devm_nvmem_register(dev, &nvmem_config);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760	if (IS_ERR(at24->nvmem)) {
761		pm_runtime_disable(dev);
762		if (!pm_runtime_status_suspended(dev))
763			regulator_disable(at24->vcc_reg);
764		return PTR_ERR(at24->nvmem);
765	}
766
767	/*
768	 * Perform a one-byte test read to verify that the chip is functional,
769	 * unless powering on the device is to be avoided during probe (i.e.
770	 * it's powered off right now).
771	 */
772	if (full_power) {
773		err = at24_read(at24, 0, &test_byte, 1);
774		if (err) {
775			pm_runtime_disable(dev);
776			if (!pm_runtime_status_suspended(dev))
777				regulator_disable(at24->vcc_reg);
778			return -ENODEV;
779		}
780	}
781
782	pm_runtime_idle(dev);
 
 
 
 
 
 
 
 
783
784	if (writable)
785		dev_info(dev, "%u byte %s EEPROM, writable, %u bytes/write\n",
786			 byte_len, client->name, at24->write_max);
787	else
788		dev_info(dev, "%u byte %s EEPROM, read-only\n",
789			 byte_len, client->name);
790
791	return 0;
792}
793
794static void at24_remove(struct i2c_client *client)
795{
796	struct at24_data *at24 = i2c_get_clientdata(client);
 
797
798	pm_runtime_disable(&client->dev);
799	if (acpi_dev_state_d0(&client->dev)) {
800		if (!pm_runtime_status_suspended(&client->dev))
801			regulator_disable(at24->vcc_reg);
802		pm_runtime_set_suspended(&client->dev);
803	}
804}
805
806static int __maybe_unused at24_suspend(struct device *dev)
807{
808	struct i2c_client *client = to_i2c_client(dev);
809	struct at24_data *at24 = i2c_get_clientdata(client);
810
811	return regulator_disable(at24->vcc_reg);
812}
813
814static int __maybe_unused at24_resume(struct device *dev)
815{
816	struct i2c_client *client = to_i2c_client(dev);
817	struct at24_data *at24 = i2c_get_clientdata(client);
818
819	return regulator_enable(at24->vcc_reg);
 
 
 
820}
821
822static const struct dev_pm_ops at24_pm_ops = {
823	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
824				pm_runtime_force_resume)
825	SET_RUNTIME_PM_OPS(at24_suspend, at24_resume, NULL)
826};
827
828static struct i2c_driver at24_driver = {
829	.driver = {
830		.name = "at24",
831		.pm = &at24_pm_ops,
832		.of_match_table = at24_of_match,
833		.acpi_match_table = ACPI_PTR(at24_acpi_ids),
834	},
835	.probe_new = at24_probe,
836	.remove = at24_remove,
837	.id_table = at24_ids,
838	.flags = I2C_DRV_ACPI_WAIVE_D0_PROBE,
839};
840
841static int __init at24_init(void)
842{
843	if (!at24_io_limit) {
844		pr_err("at24: at24_io_limit must not be 0!\n");
845		return -EINVAL;
846	}
847
848	at24_io_limit = rounddown_pow_of_two(at24_io_limit);
849	return i2c_add_driver(&at24_driver);
850}
851module_init(at24_init);
852
853static void __exit at24_exit(void)
854{
855	i2c_del_driver(&at24_driver);
856}
857module_exit(at24_exit);
858
859MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
860MODULE_AUTHOR("David Brownell and Wolfram Sang");
861MODULE_LICENSE("GPL");
v4.6
 
  1/*
  2 * at24.c - handle most I2C EEPROMs
  3 *
  4 * Copyright (C) 2005-2007 David Brownell
  5 * Copyright (C) 2008 Wolfram Sang, Pengutronix
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License as published by
  9 * the Free Software Foundation; either version 2 of the License, or
 10 * (at your option) any later version.
 11 */
 
 
 
 
 
 
 
 
 12#include <linux/kernel.h>
 13#include <linux/init.h>
 14#include <linux/module.h>
 15#include <linux/slab.h>
 16#include <linux/delay.h>
 17#include <linux/mutex.h>
 18#include <linux/mod_devicetable.h>
 19#include <linux/log2.h>
 20#include <linux/bitops.h>
 21#include <linux/jiffies.h>
 22#include <linux/of.h>
 23#include <linux/acpi.h>
 24#include <linux/i2c.h>
 25#include <linux/nvmem-provider.h>
 
 
 
 26#include <linux/regmap.h>
 27#include <linux/platform_data/at24.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 28
 29/*
 30 * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
 31 * Differences between different vendor product lines (like Atmel AT24C or
 32 * MicroChip 24LC, etc) won't much matter for typical read/write access.
 33 * There are also I2C RAM chips, likewise interchangeable. One example
 34 * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
 35 *
 36 * However, misconfiguration can lose data. "Set 16-bit memory address"
 37 * to a part with 8-bit addressing will overwrite data. Writing with too
 38 * big a page size also loses data. And it's not safe to assume that the
 39 * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
 40 * uses 0x51, for just one example.
 41 *
 42 * Accordingly, explicit board-specific configuration data should be used
 43 * in almost all cases. (One partial exception is an SMBus used to access
 44 * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
 45 *
 46 * So this driver uses "new style" I2C driver binding, expecting to be
 47 * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
 48 * similar kernel-resident tables; or, configuration data coming from
 49 * a bootloader.
 50 *
 51 * Other than binding model, current differences from "eeprom" driver are
 52 * that this one handles write access and isn't restricted to 24c02 devices.
 53 * It also handles larger devices (32 kbit and up) with two-byte addresses,
 54 * which won't work on pure SMBus systems.
 55 */
 56
 57struct at24_data {
 58	struct at24_platform_data chip;
 59	int use_smbus;
 60	int use_smbus_write;
 61
 62	/*
 63	 * Lock protects against activities from other Linux tasks,
 64	 * but not from changes by other I2C masters.
 65	 */
 66	struct mutex lock;
 67
 68	u8 *writebuf;
 69	unsigned write_max;
 70	unsigned num_addresses;
 
 
 
 
 71
 72	struct regmap_config regmap_config;
 73	struct nvmem_config nvmem_config;
 74	struct nvmem_device *nvmem;
 
 
 75
 76	/*
 77	 * Some chips tie up multiple I2C addresses; dummy devices reserve
 78	 * them for us, and we'll use them with SMBus calls.
 79	 */
 80	struct i2c_client *client[];
 
 81};
 82
 83/*
 84 * This parameter is to help this driver avoid blocking other drivers out
 85 * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
 86 * clock, one 256 byte read takes about 1/43 second which is excessive;
 87 * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
 88 * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
 89 *
 90 * This value is forced to be a power of two so that writes align on pages.
 91 */
 92static unsigned io_limit = 128;
 93module_param(io_limit, uint, 0);
 94MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");
 95
 96/*
 97 * Specs often allow 5 msec for a page write, sometimes 20 msec;
 98 * it's important to recover from write timeouts.
 99 */
100static unsigned write_timeout = 25;
101module_param(write_timeout, uint, 0);
102MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
103
104#define AT24_SIZE_BYTELEN 5
105#define AT24_SIZE_FLAGS 8
106
107#define AT24_BITMASK(x) (BIT(x) - 1)
108
109/* create non-zero magic value for given eeprom parameters */
110#define AT24_DEVICE_MAGIC(_len, _flags) 		\
111	((1 << AT24_SIZE_FLAGS | (_flags)) 		\
112	    << AT24_SIZE_BYTELEN | ilog2(_len))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
114static const struct i2c_device_id at24_ids[] = {
115	/* needs 8 addresses as A0-A2 are ignored */
116	{ "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
117	/* old variants can't be handled with this generic entry! */
118	{ "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
119	{ "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
120	/* spd is a 24c02 in memory DIMMs */
121	{ "spd", AT24_DEVICE_MAGIC(2048 / 8,
122		AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
123	{ "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },
124	/* 24rf08 quirk is handled at i2c-core */
125	{ "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },
126	{ "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },
127	{ "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },
128	{ "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
129	{ "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },
130	{ "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },
131	{ "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },
132	{ "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },
133	{ "at24", 0 },
 
 
 
 
 
 
 
134	{ /* END OF LIST */ }
135};
136MODULE_DEVICE_TABLE(i2c, at24_ids);
137
138static const struct acpi_device_id at24_acpi_ids[] = {
139	{ "INT3499", AT24_DEVICE_MAGIC(8192 / 8, 0) },
140	{ }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141};
142MODULE_DEVICE_TABLE(acpi, at24_acpi_ids);
143
144/*-------------------------------------------------------------------------*/
145
146/*
147 * This routine supports chips which consume multiple I2C addresses. It
148 * computes the addressing information to be used for a given r/w request.
149 * Assumes that sanity checks for offset happened at sysfs-layer.
 
 
 
 
150 */
151static struct i2c_client *at24_translate_offset(struct at24_data *at24,
152		unsigned *offset)
153{
154	unsigned i;
155
156	if (at24->chip.flags & AT24_FLAG_ADDR16) {
157		i = *offset >> 16;
158		*offset &= 0xffff;
159	} else {
160		i = *offset >> 8;
161		*offset &= 0xff;
162	}
163
164	return at24->client[i];
165}
166
167static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf,
168		unsigned offset, size_t count)
169{
170	struct i2c_msg msg[2];
171	u8 msgbuf[2];
172	struct i2c_client *client;
173	unsigned long timeout, read_time;
174	int status, i;
175
176	memset(msg, 0, sizeof(msg));
 
 
 
 
177
178	/*
179	 * REVISIT some multi-address chips don't rollover page reads to
180	 * the next slave address, so we may need to truncate the count.
181	 * Those chips might need another quirk flag.
182	 *
183	 * If the real hardware used four adjacent 24c02 chips and that
184	 * were misconfigured as one 24c08, that would be a similar effect:
185	 * one "eeprom" file not four, but larger reads would fail when
186	 * they crossed certain pages.
187	 */
 
 
 
 
 
 
 
 
 
188
189	/*
190	 * Slave address and byte offset derive from the offset. Always
191	 * set the byte address; on a multi-master board, another master
192	 * may have changed the chip's "current" address pointer.
193	 */
194	client = at24_translate_offset(at24, &offset);
 
 
 
 
 
 
195
196	if (count > io_limit)
197		count = io_limit;
198
199	if (at24->use_smbus) {
200		/* Smaller eeproms can work given some SMBus extension calls */
201		if (count > I2C_SMBUS_BLOCK_MAX)
202			count = I2C_SMBUS_BLOCK_MAX;
203	} else {
204		/*
205		 * When we have a better choice than SMBus calls, use a
206		 * combined I2C message. Write address; then read up to
207		 * io_limit data bytes. Note that read page rollover helps us
208		 * here (unlike writes). msgbuf is u8 and will cast to our
209		 * needs.
210		 */
211		i = 0;
212		if (at24->chip.flags & AT24_FLAG_ADDR16)
213			msgbuf[i++] = offset >> 8;
214		msgbuf[i++] = offset;
215
216		msg[0].addr = client->addr;
217		msg[0].buf = msgbuf;
218		msg[0].len = i;
219
220		msg[1].addr = client->addr;
221		msg[1].flags = I2C_M_RD;
222		msg[1].buf = buf;
223		msg[1].len = count;
224	}
225
226	/*
227	 * Reads fail if the previous write didn't complete yet. We may
228	 * loop a few times until this one succeeds, waiting at least
229	 * long enough for one entire page write to work.
230	 */
231	timeout = jiffies + msecs_to_jiffies(write_timeout);
232	do {
233		read_time = jiffies;
234		if (at24->use_smbus) {
235			status = i2c_smbus_read_i2c_block_data_or_emulated(client, offset,
236									   count, buf);
237		} else {
238			status = i2c_transfer(client->adapter, msg, 2);
239			if (status == 2)
240				status = count;
241		}
242		dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
243				count, offset, status, jiffies);
244
245		if (status == count)
 
 
 
246			return count;
247
248		/* REVISIT: at HZ=100, this is sloooow */
249		msleep(1);
250	} while (time_before(read_time, timeout));
251
252	return -ETIMEDOUT;
253}
254
255static ssize_t at24_read(struct at24_data *at24,
256		char *buf, loff_t off, size_t count)
257{
258	ssize_t retval = 0;
259
260	if (unlikely(!count))
261		return count;
262
263	/*
264	 * Read data from chip, protecting against concurrent updates
265	 * from this host, but not from other I2C masters.
266	 */
267	mutex_lock(&at24->lock);
268
269	while (count) {
270		ssize_t	status;
271
272		status = at24_eeprom_read(at24, buf, off, count);
273		if (status <= 0) {
274			if (retval == 0)
275				retval = status;
276			break;
277		}
278		buf += status;
279		off += status;
280		count -= status;
281		retval += status;
282	}
283
284	mutex_unlock(&at24->lock);
285
286	return retval;
287}
288
289/*
290 * Note that if the hardware write-protect pin is pulled high, the whole
291 * chip is normally write protected. But there are plenty of product
292 * variants here, including OTP fuses and partial chip protect.
293 *
294 * We only use page mode writes; the alternative is sloooow. This routine
295 * writes at most one page.
296 */
297static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf,
298		unsigned offset, size_t count)
 
299{
300	struct i2c_client *client;
301	struct i2c_msg msg;
302	ssize_t status = 0;
303	unsigned long timeout, write_time;
304	unsigned next_page;
305
306	/* Get corresponding I2C address and adjust offset */
307	client = at24_translate_offset(at24, &offset);
308
309	/* write_max is at most a page */
310	if (count > at24->write_max)
311		count = at24->write_max;
312
313	/* Never roll over backwards, to the start of this page */
314	next_page = roundup(offset + 1, at24->chip.page_size);
315	if (offset + count > next_page)
316		count = next_page - offset;
317
318	/* If we'll use I2C calls for I/O, set up the message */
319	if (!at24->use_smbus) {
320		int i = 0;
321
322		msg.addr = client->addr;
323		msg.flags = 0;
324
325		/* msg.buf is u8 and casts will mask the values */
326		msg.buf = at24->writebuf;
327		if (at24->chip.flags & AT24_FLAG_ADDR16)
328			msg.buf[i++] = offset >> 8;
329
330		msg.buf[i++] = offset;
331		memcpy(&msg.buf[i], buf, count);
332		msg.len = i + count;
333	}
334
335	/*
336	 * Writes fail if the previous one didn't complete yet. We may
337	 * loop a few times until this one succeeds, waiting at least
338	 * long enough for one entire page write to work.
339	 */
340	timeout = jiffies + msecs_to_jiffies(write_timeout);
341	do {
 
 
 
 
342		write_time = jiffies;
343		if (at24->use_smbus_write) {
344			switch (at24->use_smbus_write) {
345			case I2C_SMBUS_I2C_BLOCK_DATA:
346				status = i2c_smbus_write_i2c_block_data(client,
347						offset, count, buf);
348				break;
349			case I2C_SMBUS_BYTE_DATA:
350				status = i2c_smbus_write_byte_data(client,
351						offset, buf[0]);
352				break;
353			}
354
355			if (status == 0)
356				status = count;
357		} else {
358			status = i2c_transfer(client->adapter, &msg, 1);
359			if (status == 1)
360				status = count;
361		}
362		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
363				count, offset, status, jiffies);
364
365		if (status == count)
 
 
 
366			return count;
367
368		/* REVISIT: at HZ=100, this is sloooow */
369		msleep(1);
370	} while (time_before(write_time, timeout));
371
372	return -ETIMEDOUT;
373}
374
375static ssize_t at24_write(struct at24_data *at24, const char *buf, loff_t off,
376			  size_t count)
377{
378	ssize_t retval = 0;
 
 
 
 
 
 
379
380	if (unlikely(!count))
381		return count;
382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
383	/*
384	 * Write data to chip, protecting against concurrent updates
385	 * from this host, but not from other I2C masters.
386	 */
387	mutex_lock(&at24->lock);
388
389	while (count) {
390		ssize_t	status;
391
392		status = at24_eeprom_write(at24, buf, off, count);
393		if (status <= 0) {
394			if (retval == 0)
395				retval = status;
396			break;
397		}
398		buf += status;
399		off += status;
400		count -= status;
401		retval += status;
402	}
403
404	mutex_unlock(&at24->lock);
405
406	return retval;
 
 
407}
408
409/*-------------------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
410
411/*
412 * Provide a regmap interface, which is registered with the NVMEM
413 * framework
414*/
415static int at24_regmap_read(void *context, const void *reg, size_t reg_size,
416			    void *val, size_t val_size)
417{
418	struct at24_data *at24 = context;
419	off_t offset = *(u32 *)reg;
420	int err;
421
422	err = at24_read(at24, val, offset, val_size);
423	if (err)
424		return err;
425	return 0;
426}
427
428static int at24_regmap_write(void *context, const void *data, size_t count)
 
 
429{
430	struct at24_data *at24 = context;
431	const char *buf;
432	u32 offset;
433	size_t len;
434	int err;
 
 
 
 
 
 
 
 
435
436	memcpy(&offset, data, sizeof(offset));
437	buf = (const char *)data + sizeof(offset);
438	len = count - sizeof(offset);
439
440	err = at24_write(at24, buf, offset, len);
441	if (err)
442		return err;
443	return 0;
444}
445
446static const struct regmap_bus at24_regmap_bus = {
447	.read = at24_regmap_read,
448	.write = at24_regmap_write,
449	.reg_format_endian_default = REGMAP_ENDIAN_NATIVE,
450};
451
452/*-------------------------------------------------------------------------*/
453
454#ifdef CONFIG_OF
455static void at24_get_ofdata(struct i2c_client *client,
456		struct at24_platform_data *chip)
457{
458	const __be32 *val;
459	struct device_node *node = client->dev.of_node;
460
461	if (node) {
462		if (of_get_property(node, "read-only", NULL))
463			chip->flags |= AT24_FLAG_READONLY;
464		val = of_get_property(node, "pagesize", NULL);
465		if (val)
466			chip->page_size = be32_to_cpup(val);
 
 
 
 
 
 
 
 
 
467	}
468}
469#else
470static void at24_get_ofdata(struct i2c_client *client,
471		struct at24_platform_data *chip)
472{ }
473#endif /* CONFIG_OF */
474
475static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
476{
477	struct at24_platform_data chip;
478	kernel_ulong_t magic = 0;
 
 
 
 
 
 
 
 
479	bool writable;
480	int use_smbus = 0;
481	int use_smbus_write = 0;
482	struct at24_data *at24;
483	int err;
484	unsigned i, num_addresses;
485	struct regmap *regmap;
486
487	if (client->dev.platform_data) {
488		chip = *(struct at24_platform_data *)client->dev.platform_data;
489	} else {
490		if (id) {
491			magic = id->driver_data;
492		} else {
493			const struct acpi_device_id *aid;
494
495			aid = acpi_match_device(at24_acpi_ids, &client->dev);
496			if (aid)
497				magic = aid->driver_data;
498		}
499		if (!magic)
500			return -ENODEV;
501
502		chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
503		magic >>= AT24_SIZE_BYTELEN;
504		chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
505		/*
506		 * This is slow, but we can't know all eeproms, so we better
507		 * play safe. Specifying custom eeprom-types via platform_data
508		 * is recommended anyhow.
509		 */
510		chip.page_size = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
511
512		/* update chipdata if OF is present */
513		at24_get_ofdata(client, &chip);
 
514
515		chip.setup = NULL;
516		chip.context = NULL;
517	}
518
519	if (!is_power_of_2(chip.byte_len))
520		dev_warn(&client->dev,
521			"byte_len looks suspicious (no power of 2)!\n");
522	if (!chip.page_size) {
523		dev_err(&client->dev, "page_size must not be 0!\n");
524		return -EINVAL;
525	}
526	if (!is_power_of_2(chip.page_size))
527		dev_warn(&client->dev,
528			"page_size looks suspicious (no power of 2)!\n");
529
530	/* Use I2C operations unless we're stuck with SMBus extensions. */
531	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
532		if (chip.flags & AT24_FLAG_ADDR16)
533			return -EPFNOSUPPORT;
534
535		if (i2c_check_functionality(client->adapter,
536				I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
537			use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;
538		} else if (i2c_check_functionality(client->adapter,
539				I2C_FUNC_SMBUS_READ_WORD_DATA)) {
540			use_smbus = I2C_SMBUS_WORD_DATA;
541		} else if (i2c_check_functionality(client->adapter,
542				I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
543			use_smbus = I2C_SMBUS_BYTE_DATA;
544		} else {
545			return -EPFNOSUPPORT;
546		}
547	}
548
549	/* Use I2C operations unless we're stuck with SMBus extensions. */
550	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
551		if (i2c_check_functionality(client->adapter,
552				I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
553			use_smbus_write = I2C_SMBUS_I2C_BLOCK_DATA;
554		} else if (i2c_check_functionality(client->adapter,
555				I2C_FUNC_SMBUS_WRITE_BYTE_DATA)) {
556			use_smbus_write = I2C_SMBUS_BYTE_DATA;
557			chip.page_size = 1;
558		}
559	}
560
561	if (chip.flags & AT24_FLAG_TAKE8ADDR)
562		num_addresses = 8;
563	else
564		num_addresses =	DIV_ROUND_UP(chip.byte_len,
565			(chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
 
 
566
567	at24 = devm_kzalloc(&client->dev, sizeof(struct at24_data) +
568		num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
569	if (!at24)
570		return -ENOMEM;
571
572	mutex_init(&at24->lock);
573	at24->use_smbus = use_smbus;
574	at24->use_smbus_write = use_smbus_write;
575	at24->chip = chip;
 
 
576	at24->num_addresses = num_addresses;
 
 
 
 
 
 
577
578	writable = !(chip.flags & AT24_FLAG_READONLY);
579	if (writable) {
580		if (!use_smbus || use_smbus_write) {
 
 
 
 
581
582			unsigned write_max = chip.page_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
583
584			if (write_max > io_limit)
585				write_max = io_limit;
586			if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
587				write_max = I2C_SMBUS_BLOCK_MAX;
588			at24->write_max = write_max;
589
590			/* buffer (data + address at the beginning) */
591			at24->writebuf = devm_kzalloc(&client->dev,
592				write_max + 2, GFP_KERNEL);
593			if (!at24->writebuf)
594				return -ENOMEM;
595		} else {
596			dev_warn(&client->dev,
597				"cannot write due to controller restrictions.");
598		}
599	}
600
601	at24->client[0] = client;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
602
603	/* use dummy devices for multiple-address chips */
604	for (i = 1; i < num_addresses; i++) {
605		at24->client[i] = i2c_new_dummy(client->adapter,
606					client->addr + i);
607		if (!at24->client[i]) {
608			dev_err(&client->dev, "address 0x%02x unavailable\n",
609					client->addr + i);
610			err = -EADDRINUSE;
611			goto err_clients;
612		}
 
 
613	}
 
614
615	at24->regmap_config.reg_bits = 32;
616	at24->regmap_config.val_bits = 8;
617	at24->regmap_config.reg_stride = 1;
618	at24->regmap_config.max_register = chip.byte_len - 1;
619
620	regmap = devm_regmap_init(&client->dev, &at24_regmap_bus, at24,
621				  &at24->regmap_config);
622	if (IS_ERR(regmap)) {
623		dev_err(&client->dev, "regmap init failed\n");
624		err = PTR_ERR(regmap);
625		goto err_clients;
626	}
627
628	at24->nvmem_config.name = dev_name(&client->dev);
629	at24->nvmem_config.dev = &client->dev;
630	at24->nvmem_config.read_only = !writable;
631	at24->nvmem_config.root_only = true;
632	at24->nvmem_config.owner = THIS_MODULE;
633	at24->nvmem_config.compat = true;
634	at24->nvmem_config.base_dev = &client->dev;
635
636	at24->nvmem = nvmem_register(&at24->nvmem_config);
637
638	if (IS_ERR(at24->nvmem)) {
639		err = PTR_ERR(at24->nvmem);
640		goto err_clients;
 
 
641	}
642
643	i2c_set_clientdata(client, at24);
 
 
 
 
 
 
 
 
 
 
 
 
 
644
645	dev_info(&client->dev, "%u byte %s EEPROM, %s, %u bytes/write\n",
646		chip.byte_len, client->name,
647		writable ? "writable" : "read-only", at24->write_max);
648	if (use_smbus == I2C_SMBUS_WORD_DATA ||
649	    use_smbus == I2C_SMBUS_BYTE_DATA) {
650		dev_notice(&client->dev, "Falling back to %s reads, "
651			   "performance will suffer\n", use_smbus ==
652			   I2C_SMBUS_WORD_DATA ? "word" : "byte");
653	}
654
655	/* export data to kernel code */
656	if (chip.setup)
657		chip.setup(at24->nvmem, chip.context);
 
 
 
658
659	return 0;
 
660
661err_clients:
662	for (i = 1; i < num_addresses; i++)
663		if (at24->client[i])
664			i2c_unregister_device(at24->client[i]);
665
666	return err;
 
 
 
 
 
667}
668
669static int at24_remove(struct i2c_client *client)
670{
671	struct at24_data *at24;
672	int i;
673
674	at24 = i2c_get_clientdata(client);
 
675
676	nvmem_unregister(at24->nvmem);
 
 
 
677
678	for (i = 1; i < at24->num_addresses; i++)
679		i2c_unregister_device(at24->client[i]);
680
681	return 0;
682}
683
684/*-------------------------------------------------------------------------*/
 
 
 
 
685
686static struct i2c_driver at24_driver = {
687	.driver = {
688		.name = "at24",
 
 
689		.acpi_match_table = ACPI_PTR(at24_acpi_ids),
690	},
691	.probe = at24_probe,
692	.remove = at24_remove,
693	.id_table = at24_ids,
 
694};
695
696static int __init at24_init(void)
697{
698	if (!io_limit) {
699		pr_err("at24: io_limit must not be 0!\n");
700		return -EINVAL;
701	}
702
703	io_limit = rounddown_pow_of_two(io_limit);
704	return i2c_add_driver(&at24_driver);
705}
706module_init(at24_init);
707
708static void __exit at24_exit(void)
709{
710	i2c_del_driver(&at24_driver);
711}
712module_exit(at24_exit);
713
714MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
715MODULE_AUTHOR("David Brownell and Wolfram Sang");
716MODULE_LICENSE("GPL");