Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10#include <linux/acpi.h>
11#include <linux/export.h>
12#include <linux/kernel.h>
13#include <linux/of.h>
14#include <linux/of_address.h>
15#include <linux/of_graph.h>
16#include <linux/of_irq.h>
17#include <linux/property.h>
18#include <linux/phy.h>
19
20struct fwnode_handle *__dev_fwnode(struct device *dev)
21{
22 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
23 of_fwnode_handle(dev->of_node) : dev->fwnode;
24}
25EXPORT_SYMBOL_GPL(__dev_fwnode);
26
27const struct fwnode_handle *__dev_fwnode_const(const struct device *dev)
28{
29 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
30 of_fwnode_handle(dev->of_node) : dev->fwnode;
31}
32EXPORT_SYMBOL_GPL(__dev_fwnode_const);
33
34/**
35 * device_property_present - check if a property of a device is present
36 * @dev: Device whose property is being checked
37 * @propname: Name of the property
38 *
39 * Check if property @propname is present in the device firmware description.
40 */
41bool device_property_present(struct device *dev, const char *propname)
42{
43 return fwnode_property_present(dev_fwnode(dev), propname);
44}
45EXPORT_SYMBOL_GPL(device_property_present);
46
47/**
48 * fwnode_property_present - check if a property of a firmware node is present
49 * @fwnode: Firmware node whose property to check
50 * @propname: Name of the property
51 */
52bool fwnode_property_present(const struct fwnode_handle *fwnode,
53 const char *propname)
54{
55 bool ret;
56
57 if (IS_ERR_OR_NULL(fwnode))
58 return false;
59
60 ret = fwnode_call_bool_op(fwnode, property_present, propname);
61 if (ret)
62 return ret;
63
64 return fwnode_call_bool_op(fwnode->secondary, property_present, propname);
65}
66EXPORT_SYMBOL_GPL(fwnode_property_present);
67
68/**
69 * device_property_read_u8_array - return a u8 array property of a device
70 * @dev: Device to get the property of
71 * @propname: Name of the property
72 * @val: The values are stored here or %NULL to return the number of values
73 * @nval: Size of the @val array
74 *
75 * Function reads an array of u8 properties with @propname from the device
76 * firmware description and stores them to @val if found.
77 *
78 * It's recommended to call device_property_count_u8() instead of calling
79 * this function with @val equals %NULL and @nval equals 0.
80 *
81 * Return: number of values if @val was %NULL,
82 * %0 if the property was found (success),
83 * %-EINVAL if given arguments are not valid,
84 * %-ENODATA if the property does not have a value,
85 * %-EPROTO if the property is not an array of numbers,
86 * %-EOVERFLOW if the size of the property is not as expected.
87 * %-ENXIO if no suitable firmware interface is present.
88 */
89int device_property_read_u8_array(struct device *dev, const char *propname,
90 u8 *val, size_t nval)
91{
92 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
93}
94EXPORT_SYMBOL_GPL(device_property_read_u8_array);
95
96/**
97 * device_property_read_u16_array - return a u16 array property of a device
98 * @dev: Device to get the property of
99 * @propname: Name of the property
100 * @val: The values are stored here or %NULL to return the number of values
101 * @nval: Size of the @val array
102 *
103 * Function reads an array of u16 properties with @propname from the device
104 * firmware description and stores them to @val if found.
105 *
106 * It's recommended to call device_property_count_u16() instead of calling
107 * this function with @val equals %NULL and @nval equals 0.
108 *
109 * Return: number of values if @val was %NULL,
110 * %0 if the property was found (success),
111 * %-EINVAL if given arguments are not valid,
112 * %-ENODATA if the property does not have a value,
113 * %-EPROTO if the property is not an array of numbers,
114 * %-EOVERFLOW if the size of the property is not as expected.
115 * %-ENXIO if no suitable firmware interface is present.
116 */
117int device_property_read_u16_array(struct device *dev, const char *propname,
118 u16 *val, size_t nval)
119{
120 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
121}
122EXPORT_SYMBOL_GPL(device_property_read_u16_array);
123
124/**
125 * device_property_read_u32_array - return a u32 array property of a device
126 * @dev: Device to get the property of
127 * @propname: Name of the property
128 * @val: The values are stored here or %NULL to return the number of values
129 * @nval: Size of the @val array
130 *
131 * Function reads an array of u32 properties with @propname from the device
132 * firmware description and stores them to @val if found.
133 *
134 * It's recommended to call device_property_count_u32() instead of calling
135 * this function with @val equals %NULL and @nval equals 0.
136 *
137 * Return: number of values if @val was %NULL,
138 * %0 if the property was found (success),
139 * %-EINVAL if given arguments are not valid,
140 * %-ENODATA if the property does not have a value,
141 * %-EPROTO if the property is not an array of numbers,
142 * %-EOVERFLOW if the size of the property is not as expected.
143 * %-ENXIO if no suitable firmware interface is present.
144 */
145int device_property_read_u32_array(struct device *dev, const char *propname,
146 u32 *val, size_t nval)
147{
148 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
149}
150EXPORT_SYMBOL_GPL(device_property_read_u32_array);
151
152/**
153 * device_property_read_u64_array - return a u64 array property of a device
154 * @dev: Device to get the property of
155 * @propname: Name of the property
156 * @val: The values are stored here or %NULL to return the number of values
157 * @nval: Size of the @val array
158 *
159 * Function reads an array of u64 properties with @propname from the device
160 * firmware description and stores them to @val if found.
161 *
162 * It's recommended to call device_property_count_u64() instead of calling
163 * this function with @val equals %NULL and @nval equals 0.
164 *
165 * Return: number of values if @val was %NULL,
166 * %0 if the property was found (success),
167 * %-EINVAL if given arguments are not valid,
168 * %-ENODATA if the property does not have a value,
169 * %-EPROTO if the property is not an array of numbers,
170 * %-EOVERFLOW if the size of the property is not as expected.
171 * %-ENXIO if no suitable firmware interface is present.
172 */
173int device_property_read_u64_array(struct device *dev, const char *propname,
174 u64 *val, size_t nval)
175{
176 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
177}
178EXPORT_SYMBOL_GPL(device_property_read_u64_array);
179
180/**
181 * device_property_read_string_array - return a string array property of device
182 * @dev: Device to get the property of
183 * @propname: Name of the property
184 * @val: The values are stored here or %NULL to return the number of values
185 * @nval: Size of the @val array
186 *
187 * Function reads an array of string properties with @propname from the device
188 * firmware description and stores them to @val if found.
189 *
190 * It's recommended to call device_property_string_array_count() instead of calling
191 * this function with @val equals %NULL and @nval equals 0.
192 *
193 * Return: number of values read on success if @val is non-NULL,
194 * number of values available on success if @val is NULL,
195 * %-EINVAL if given arguments are not valid,
196 * %-ENODATA if the property does not have a value,
197 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
198 * %-EOVERFLOW if the size of the property is not as expected.
199 * %-ENXIO if no suitable firmware interface is present.
200 */
201int device_property_read_string_array(struct device *dev, const char *propname,
202 const char **val, size_t nval)
203{
204 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
205}
206EXPORT_SYMBOL_GPL(device_property_read_string_array);
207
208/**
209 * device_property_read_string - return a string property of a device
210 * @dev: Device to get the property of
211 * @propname: Name of the property
212 * @val: The value is stored here
213 *
214 * Function reads property @propname from the device firmware description and
215 * stores the value into @val if found. The value is checked to be a string.
216 *
217 * Return: %0 if the property was found (success),
218 * %-EINVAL if given arguments are not valid,
219 * %-ENODATA if the property does not have a value,
220 * %-EPROTO or %-EILSEQ if the property type is not a string.
221 * %-ENXIO if no suitable firmware interface is present.
222 */
223int device_property_read_string(struct device *dev, const char *propname,
224 const char **val)
225{
226 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
227}
228EXPORT_SYMBOL_GPL(device_property_read_string);
229
230/**
231 * device_property_match_string - find a string in an array and return index
232 * @dev: Device to get the property of
233 * @propname: Name of the property holding the array
234 * @string: String to look for
235 *
236 * Find a given string in a string array and if it is found return the
237 * index back.
238 *
239 * Return: index, starting from %0, if the property was found (success),
240 * %-EINVAL if given arguments are not valid,
241 * %-ENODATA if the property does not have a value,
242 * %-EPROTO if the property is not an array of strings,
243 * %-ENXIO if no suitable firmware interface is present.
244 */
245int device_property_match_string(struct device *dev, const char *propname,
246 const char *string)
247{
248 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
249}
250EXPORT_SYMBOL_GPL(device_property_match_string);
251
252static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
253 const char *propname,
254 unsigned int elem_size, void *val,
255 size_t nval)
256{
257 int ret;
258
259 if (IS_ERR_OR_NULL(fwnode))
260 return -EINVAL;
261
262 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
263 elem_size, val, nval);
264 if (ret != -EINVAL)
265 return ret;
266
267 return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname,
268 elem_size, val, nval);
269}
270
271/**
272 * fwnode_property_read_u8_array - return a u8 array property of firmware node
273 * @fwnode: Firmware node to get the property of
274 * @propname: Name of the property
275 * @val: The values are stored here or %NULL to return the number of values
276 * @nval: Size of the @val array
277 *
278 * Read an array of u8 properties with @propname from @fwnode and stores them to
279 * @val if found.
280 *
281 * It's recommended to call fwnode_property_count_u8() instead of calling
282 * this function with @val equals %NULL and @nval equals 0.
283 *
284 * Return: number of values if @val was %NULL,
285 * %0 if the property was found (success),
286 * %-EINVAL if given arguments are not valid,
287 * %-ENODATA if the property does not have a value,
288 * %-EPROTO if the property is not an array of numbers,
289 * %-EOVERFLOW if the size of the property is not as expected,
290 * %-ENXIO if no suitable firmware interface is present.
291 */
292int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
293 const char *propname, u8 *val, size_t nval)
294{
295 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
296 val, nval);
297}
298EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
299
300/**
301 * fwnode_property_read_u16_array - return a u16 array property of firmware node
302 * @fwnode: Firmware node to get the property of
303 * @propname: Name of the property
304 * @val: The values are stored here or %NULL to return the number of values
305 * @nval: Size of the @val array
306 *
307 * Read an array of u16 properties with @propname from @fwnode and store them to
308 * @val if found.
309 *
310 * It's recommended to call fwnode_property_count_u16() instead of calling
311 * this function with @val equals %NULL and @nval equals 0.
312 *
313 * Return: number of values if @val was %NULL,
314 * %0 if the property was found (success),
315 * %-EINVAL if given arguments are not valid,
316 * %-ENODATA if the property does not have a value,
317 * %-EPROTO if the property is not an array of numbers,
318 * %-EOVERFLOW if the size of the property is not as expected,
319 * %-ENXIO if no suitable firmware interface is present.
320 */
321int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
322 const char *propname, u16 *val, size_t nval)
323{
324 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
325 val, nval);
326}
327EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
328
329/**
330 * fwnode_property_read_u32_array - return a u32 array property of firmware node
331 * @fwnode: Firmware node to get the property of
332 * @propname: Name of the property
333 * @val: The values are stored here or %NULL to return the number of values
334 * @nval: Size of the @val array
335 *
336 * Read an array of u32 properties with @propname from @fwnode store them to
337 * @val if found.
338 *
339 * It's recommended to call fwnode_property_count_u32() instead of calling
340 * this function with @val equals %NULL and @nval equals 0.
341 *
342 * Return: number of values if @val was %NULL,
343 * %0 if the property was found (success),
344 * %-EINVAL if given arguments are not valid,
345 * %-ENODATA if the property does not have a value,
346 * %-EPROTO if the property is not an array of numbers,
347 * %-EOVERFLOW if the size of the property is not as expected,
348 * %-ENXIO if no suitable firmware interface is present.
349 */
350int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
351 const char *propname, u32 *val, size_t nval)
352{
353 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
354 val, nval);
355}
356EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
357
358/**
359 * fwnode_property_read_u64_array - return a u64 array property firmware node
360 * @fwnode: Firmware node to get the property of
361 * @propname: Name of the property
362 * @val: The values are stored here or %NULL to return the number of values
363 * @nval: Size of the @val array
364 *
365 * Read an array of u64 properties with @propname from @fwnode and store them to
366 * @val if found.
367 *
368 * It's recommended to call fwnode_property_count_u64() instead of calling
369 * this function with @val equals %NULL and @nval equals 0.
370 *
371 * Return: number of values if @val was %NULL,
372 * %0 if the property was found (success),
373 * %-EINVAL if given arguments are not valid,
374 * %-ENODATA if the property does not have a value,
375 * %-EPROTO if the property is not an array of numbers,
376 * %-EOVERFLOW if the size of the property is not as expected,
377 * %-ENXIO if no suitable firmware interface is present.
378 */
379int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
380 const char *propname, u64 *val, size_t nval)
381{
382 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
383 val, nval);
384}
385EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
386
387/**
388 * fwnode_property_read_string_array - return string array property of a node
389 * @fwnode: Firmware node to get the property of
390 * @propname: Name of the property
391 * @val: The values are stored here or %NULL to return the number of values
392 * @nval: Size of the @val array
393 *
394 * Read an string list property @propname from the given firmware node and store
395 * them to @val if found.
396 *
397 * It's recommended to call fwnode_property_string_array_count() instead of calling
398 * this function with @val equals %NULL and @nval equals 0.
399 *
400 * Return: number of values read on success if @val is non-NULL,
401 * number of values available on success if @val is NULL,
402 * %-EINVAL if given arguments are not valid,
403 * %-ENODATA if the property does not have a value,
404 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
405 * %-EOVERFLOW if the size of the property is not as expected,
406 * %-ENXIO if no suitable firmware interface is present.
407 */
408int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
409 const char *propname, const char **val,
410 size_t nval)
411{
412 int ret;
413
414 if (IS_ERR_OR_NULL(fwnode))
415 return -EINVAL;
416
417 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
418 val, nval);
419 if (ret != -EINVAL)
420 return ret;
421
422 return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname,
423 val, nval);
424}
425EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
426
427/**
428 * fwnode_property_read_string - return a string property of a firmware node
429 * @fwnode: Firmware node to get the property of
430 * @propname: Name of the property
431 * @val: The value is stored here
432 *
433 * Read property @propname from the given firmware node and store the value into
434 * @val if found. The value is checked to be a string.
435 *
436 * Return: %0 if the property was found (success),
437 * %-EINVAL if given arguments are not valid,
438 * %-ENODATA if the property does not have a value,
439 * %-EPROTO or %-EILSEQ if the property is not a string,
440 * %-ENXIO if no suitable firmware interface is present.
441 */
442int fwnode_property_read_string(const struct fwnode_handle *fwnode,
443 const char *propname, const char **val)
444{
445 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
446
447 return ret < 0 ? ret : 0;
448}
449EXPORT_SYMBOL_GPL(fwnode_property_read_string);
450
451/**
452 * fwnode_property_match_string - find a string in an array and return index
453 * @fwnode: Firmware node to get the property of
454 * @propname: Name of the property holding the array
455 * @string: String to look for
456 *
457 * Find a given string in a string array and if it is found return the
458 * index back.
459 *
460 * Return: index, starting from %0, if the property was found (success),
461 * %-EINVAL if given arguments are not valid,
462 * %-ENODATA if the property does not have a value,
463 * %-EPROTO if the property is not an array of strings,
464 * %-ENXIO if no suitable firmware interface is present.
465 */
466int fwnode_property_match_string(const struct fwnode_handle *fwnode,
467 const char *propname, const char *string)
468{
469 const char **values;
470 int nval, ret;
471
472 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
473 if (nval < 0)
474 return nval;
475
476 if (nval == 0)
477 return -ENODATA;
478
479 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
480 if (!values)
481 return -ENOMEM;
482
483 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
484 if (ret < 0)
485 goto out_free;
486
487 ret = match_string(values, nval, string);
488 if (ret < 0)
489 ret = -ENODATA;
490
491out_free:
492 kfree(values);
493 return ret;
494}
495EXPORT_SYMBOL_GPL(fwnode_property_match_string);
496
497/**
498 * fwnode_property_get_reference_args() - Find a reference with arguments
499 * @fwnode: Firmware node where to look for the reference
500 * @prop: The name of the property
501 * @nargs_prop: The name of the property telling the number of
502 * arguments in the referred node. NULL if @nargs is known,
503 * otherwise @nargs is ignored. Only relevant on OF.
504 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
505 * @index: Index of the reference, from zero onwards.
506 * @args: Result structure with reference and integer arguments.
507 *
508 * Obtain a reference based on a named property in an fwnode, with
509 * integer arguments.
510 *
511 * Caller is responsible to call fwnode_handle_put() on the returned
512 * args->fwnode pointer.
513 *
514 * Returns: %0 on success
515 * %-ENOENT when the index is out of bounds, the index has an empty
516 * reference or the property was not found
517 * %-EINVAL on parse error
518 */
519int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
520 const char *prop, const char *nargs_prop,
521 unsigned int nargs, unsigned int index,
522 struct fwnode_reference_args *args)
523{
524 int ret;
525
526 if (IS_ERR_OR_NULL(fwnode))
527 return -ENOENT;
528
529 ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
530 nargs, index, args);
531 if (ret == 0)
532 return ret;
533
534 if (IS_ERR_OR_NULL(fwnode->secondary))
535 return ret;
536
537 return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop,
538 nargs, index, args);
539}
540EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
541
542/**
543 * fwnode_find_reference - Find named reference to a fwnode_handle
544 * @fwnode: Firmware node where to look for the reference
545 * @name: The name of the reference
546 * @index: Index of the reference
547 *
548 * @index can be used when the named reference holds a table of references.
549 *
550 * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to
551 * call fwnode_handle_put() on the returned fwnode pointer.
552 */
553struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
554 const char *name,
555 unsigned int index)
556{
557 struct fwnode_reference_args args;
558 int ret;
559
560 ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
561 &args);
562 return ret ? ERR_PTR(ret) : args.fwnode;
563}
564EXPORT_SYMBOL_GPL(fwnode_find_reference);
565
566/**
567 * fwnode_get_name - Return the name of a node
568 * @fwnode: The firmware node
569 *
570 * Returns a pointer to the node name.
571 */
572const char *fwnode_get_name(const struct fwnode_handle *fwnode)
573{
574 return fwnode_call_ptr_op(fwnode, get_name);
575}
576EXPORT_SYMBOL_GPL(fwnode_get_name);
577
578/**
579 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
580 * @fwnode: The firmware node
581 *
582 * Returns the prefix of a node, intended to be printed right before the node.
583 * The prefix works also as a separator between the nodes.
584 */
585const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
586{
587 return fwnode_call_ptr_op(fwnode, get_name_prefix);
588}
589
590/**
591 * fwnode_get_parent - Return parent firwmare node
592 * @fwnode: Firmware whose parent is retrieved
593 *
594 * Return parent firmware node of the given node if possible or %NULL if no
595 * parent was available.
596 */
597struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
598{
599 return fwnode_call_ptr_op(fwnode, get_parent);
600}
601EXPORT_SYMBOL_GPL(fwnode_get_parent);
602
603/**
604 * fwnode_get_next_parent - Iterate to the node's parent
605 * @fwnode: Firmware whose parent is retrieved
606 *
607 * This is like fwnode_get_parent() except that it drops the refcount
608 * on the passed node, making it suitable for iterating through a
609 * node's parents.
610 *
611 * Returns a node pointer with refcount incremented, use
612 * fwnode_handle_put() on it when done.
613 */
614struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
615{
616 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
617
618 fwnode_handle_put(fwnode);
619
620 return parent;
621}
622EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
623
624/**
625 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
626 * @fwnode: firmware node
627 *
628 * Given a firmware node (@fwnode), this function finds its closest ancestor
629 * firmware node that has a corresponding struct device and returns that struct
630 * device.
631 *
632 * The caller of this function is expected to call put_device() on the returned
633 * device when they are done.
634 */
635struct device *fwnode_get_next_parent_dev(struct fwnode_handle *fwnode)
636{
637 struct fwnode_handle *parent;
638 struct device *dev;
639
640 fwnode_for_each_parent_node(fwnode, parent) {
641 dev = get_dev_from_fwnode(parent);
642 if (dev) {
643 fwnode_handle_put(parent);
644 return dev;
645 }
646 }
647 return NULL;
648}
649
650/**
651 * fwnode_count_parents - Return the number of parents a node has
652 * @fwnode: The node the parents of which are to be counted
653 *
654 * Returns the number of parents a node has.
655 */
656unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
657{
658 struct fwnode_handle *parent;
659 unsigned int count = 0;
660
661 fwnode_for_each_parent_node(fwnode, parent)
662 count++;
663
664 return count;
665}
666EXPORT_SYMBOL_GPL(fwnode_count_parents);
667
668/**
669 * fwnode_get_nth_parent - Return an nth parent of a node
670 * @fwnode: The node the parent of which is requested
671 * @depth: Distance of the parent from the node
672 *
673 * Returns the nth parent of a node. If there is no parent at the requested
674 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
675 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
676 *
677 * The caller is responsible for calling fwnode_handle_put() for the returned
678 * node.
679 */
680struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
681 unsigned int depth)
682{
683 struct fwnode_handle *parent;
684
685 if (depth == 0)
686 return fwnode_handle_get(fwnode);
687
688 fwnode_for_each_parent_node(fwnode, parent) {
689 if (--depth == 0)
690 return parent;
691 }
692 return NULL;
693}
694EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
695
696/**
697 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
698 * @ancestor: Firmware which is tested for being an ancestor
699 * @child: Firmware which is tested for being the child
700 *
701 * A node is considered an ancestor of itself too.
702 *
703 * Returns true if @ancestor is an ancestor of @child. Otherwise, returns false.
704 */
705bool fwnode_is_ancestor_of(struct fwnode_handle *ancestor, struct fwnode_handle *child)
706{
707 struct fwnode_handle *parent;
708
709 if (IS_ERR_OR_NULL(ancestor))
710 return false;
711
712 if (child == ancestor)
713 return true;
714
715 fwnode_for_each_parent_node(child, parent) {
716 if (parent == ancestor) {
717 fwnode_handle_put(parent);
718 return true;
719 }
720 }
721 return false;
722}
723
724/**
725 * fwnode_get_next_child_node - Return the next child node handle for a node
726 * @fwnode: Firmware node to find the next child node for.
727 * @child: Handle to one of the node's child nodes or a %NULL handle.
728 */
729struct fwnode_handle *
730fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
731 struct fwnode_handle *child)
732{
733 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
734}
735EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
736
737/**
738 * fwnode_get_next_available_child_node - Return the next
739 * available child node handle for a node
740 * @fwnode: Firmware node to find the next child node for.
741 * @child: Handle to one of the node's child nodes or a %NULL handle.
742 */
743struct fwnode_handle *
744fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
745 struct fwnode_handle *child)
746{
747 struct fwnode_handle *next_child = child;
748
749 if (IS_ERR_OR_NULL(fwnode))
750 return NULL;
751
752 do {
753 next_child = fwnode_get_next_child_node(fwnode, next_child);
754 if (!next_child)
755 return NULL;
756 } while (!fwnode_device_is_available(next_child));
757
758 return next_child;
759}
760EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
761
762/**
763 * device_get_next_child_node - Return the next child node handle for a device
764 * @dev: Device to find the next child node for.
765 * @child: Handle to one of the device's child nodes or a null handle.
766 */
767struct fwnode_handle *device_get_next_child_node(const struct device *dev,
768 struct fwnode_handle *child)
769{
770 const struct fwnode_handle *fwnode = dev_fwnode(dev);
771 struct fwnode_handle *next;
772
773 if (IS_ERR_OR_NULL(fwnode))
774 return NULL;
775
776 /* Try to find a child in primary fwnode */
777 next = fwnode_get_next_child_node(fwnode, child);
778 if (next)
779 return next;
780
781 /* When no more children in primary, continue with secondary */
782 return fwnode_get_next_child_node(fwnode->secondary, child);
783}
784EXPORT_SYMBOL_GPL(device_get_next_child_node);
785
786/**
787 * fwnode_get_named_child_node - Return first matching named child node handle
788 * @fwnode: Firmware node to find the named child node for.
789 * @childname: String to match child node name against.
790 */
791struct fwnode_handle *
792fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
793 const char *childname)
794{
795 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
796}
797EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
798
799/**
800 * device_get_named_child_node - Return first matching named child node handle
801 * @dev: Device to find the named child node for.
802 * @childname: String to match child node name against.
803 */
804struct fwnode_handle *device_get_named_child_node(const struct device *dev,
805 const char *childname)
806{
807 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
808}
809EXPORT_SYMBOL_GPL(device_get_named_child_node);
810
811/**
812 * fwnode_handle_get - Obtain a reference to a device node
813 * @fwnode: Pointer to the device node to obtain the reference to.
814 *
815 * Returns the fwnode handle.
816 */
817struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
818{
819 if (!fwnode_has_op(fwnode, get))
820 return fwnode;
821
822 return fwnode_call_ptr_op(fwnode, get);
823}
824EXPORT_SYMBOL_GPL(fwnode_handle_get);
825
826/**
827 * fwnode_handle_put - Drop reference to a device node
828 * @fwnode: Pointer to the device node to drop the reference to.
829 *
830 * This has to be used when terminating device_for_each_child_node() iteration
831 * with break or return to prevent stale device node references from being left
832 * behind.
833 */
834void fwnode_handle_put(struct fwnode_handle *fwnode)
835{
836 fwnode_call_void_op(fwnode, put);
837}
838EXPORT_SYMBOL_GPL(fwnode_handle_put);
839
840/**
841 * fwnode_device_is_available - check if a device is available for use
842 * @fwnode: Pointer to the fwnode of the device.
843 *
844 * For fwnode node types that don't implement the .device_is_available()
845 * operation, this function returns true.
846 */
847bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
848{
849 if (IS_ERR_OR_NULL(fwnode))
850 return false;
851
852 if (!fwnode_has_op(fwnode, device_is_available))
853 return true;
854
855 return fwnode_call_bool_op(fwnode, device_is_available);
856}
857EXPORT_SYMBOL_GPL(fwnode_device_is_available);
858
859/**
860 * device_get_child_node_count - return the number of child nodes for device
861 * @dev: Device to cound the child nodes for
862 */
863unsigned int device_get_child_node_count(const struct device *dev)
864{
865 struct fwnode_handle *child;
866 unsigned int count = 0;
867
868 device_for_each_child_node(dev, child)
869 count++;
870
871 return count;
872}
873EXPORT_SYMBOL_GPL(device_get_child_node_count);
874
875bool device_dma_supported(const struct device *dev)
876{
877 return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported);
878}
879EXPORT_SYMBOL_GPL(device_dma_supported);
880
881enum dev_dma_attr device_get_dma_attr(const struct device *dev)
882{
883 if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr))
884 return DEV_DMA_NOT_SUPPORTED;
885
886 return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr);
887}
888EXPORT_SYMBOL_GPL(device_get_dma_attr);
889
890/**
891 * fwnode_get_phy_mode - Get phy mode for given firmware node
892 * @fwnode: Pointer to the given node
893 *
894 * The function gets phy interface string from property 'phy-mode' or
895 * 'phy-connection-type', and return its index in phy_modes table, or errno in
896 * error case.
897 */
898int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
899{
900 const char *pm;
901 int err, i;
902
903 err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
904 if (err < 0)
905 err = fwnode_property_read_string(fwnode,
906 "phy-connection-type", &pm);
907 if (err < 0)
908 return err;
909
910 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
911 if (!strcasecmp(pm, phy_modes(i)))
912 return i;
913
914 return -ENODEV;
915}
916EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
917
918/**
919 * device_get_phy_mode - Get phy mode for given device
920 * @dev: Pointer to the given device
921 *
922 * The function gets phy interface string from property 'phy-mode' or
923 * 'phy-connection-type', and return its index in phy_modes table, or errno in
924 * error case.
925 */
926int device_get_phy_mode(struct device *dev)
927{
928 return fwnode_get_phy_mode(dev_fwnode(dev));
929}
930EXPORT_SYMBOL_GPL(device_get_phy_mode);
931
932/**
933 * fwnode_iomap - Maps the memory mapped IO for a given fwnode
934 * @fwnode: Pointer to the firmware node
935 * @index: Index of the IO range
936 *
937 * Returns a pointer to the mapped memory.
938 */
939void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index)
940{
941 return fwnode_call_ptr_op(fwnode, iomap, index);
942}
943EXPORT_SYMBOL(fwnode_iomap);
944
945/**
946 * fwnode_irq_get - Get IRQ directly from a fwnode
947 * @fwnode: Pointer to the firmware node
948 * @index: Zero-based index of the IRQ
949 *
950 * Returns Linux IRQ number on success. Other values are determined
951 * accordingly to acpi_/of_ irq_get() operation.
952 */
953int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
954{
955 return fwnode_call_int_op(fwnode, irq_get, index);
956}
957EXPORT_SYMBOL(fwnode_irq_get);
958
959/**
960 * fwnode_irq_get_byname - Get IRQ from a fwnode using its name
961 * @fwnode: Pointer to the firmware node
962 * @name: IRQ name
963 *
964 * Description:
965 * Find a match to the string @name in the 'interrupt-names' string array
966 * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ
967 * number of the IRQ resource corresponding to the index of the matched
968 * string.
969 *
970 * Return:
971 * Linux IRQ number on success, or negative errno otherwise.
972 */
973int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name)
974{
975 int index;
976
977 if (!name)
978 return -EINVAL;
979
980 index = fwnode_property_match_string(fwnode, "interrupt-names", name);
981 if (index < 0)
982 return index;
983
984 return fwnode_irq_get(fwnode, index);
985}
986EXPORT_SYMBOL(fwnode_irq_get_byname);
987
988/**
989 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
990 * @fwnode: Pointer to the parent firmware node
991 * @prev: Previous endpoint node or %NULL to get the first
992 *
993 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
994 * are available.
995 */
996struct fwnode_handle *
997fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
998 struct fwnode_handle *prev)
999{
1000 struct fwnode_handle *ep, *port_parent = NULL;
1001 const struct fwnode_handle *parent;
1002
1003 /*
1004 * If this function is in a loop and the previous iteration returned
1005 * an endpoint from fwnode->secondary, then we need to use the secondary
1006 * as parent rather than @fwnode.
1007 */
1008 if (prev) {
1009 port_parent = fwnode_graph_get_port_parent(prev);
1010 parent = port_parent;
1011 } else {
1012 parent = fwnode;
1013 }
1014 if (IS_ERR_OR_NULL(parent))
1015 return NULL;
1016
1017 ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1018 if (ep)
1019 goto out_put_port_parent;
1020
1021 ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1022
1023out_put_port_parent:
1024 fwnode_handle_put(port_parent);
1025 return ep;
1026}
1027EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1028
1029/**
1030 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1031 * @endpoint: Endpoint firmware node of the port
1032 *
1033 * Return: the firmware node of the device the @endpoint belongs to.
1034 */
1035struct fwnode_handle *
1036fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1037{
1038 struct fwnode_handle *port, *parent;
1039
1040 port = fwnode_get_parent(endpoint);
1041 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1042
1043 fwnode_handle_put(port);
1044
1045 return parent;
1046}
1047EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1048
1049/**
1050 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1051 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1052 *
1053 * Extracts firmware node of a remote device the @fwnode points to.
1054 */
1055struct fwnode_handle *
1056fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1057{
1058 struct fwnode_handle *endpoint, *parent;
1059
1060 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1061 parent = fwnode_graph_get_port_parent(endpoint);
1062
1063 fwnode_handle_put(endpoint);
1064
1065 return parent;
1066}
1067EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1068
1069/**
1070 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1071 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1072 *
1073 * Extracts firmware node of a remote port the @fwnode points to.
1074 */
1075struct fwnode_handle *
1076fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1077{
1078 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1079}
1080EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1081
1082/**
1083 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1084 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1085 *
1086 * Extracts firmware node of a remote endpoint the @fwnode points to.
1087 */
1088struct fwnode_handle *
1089fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1090{
1091 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1092}
1093EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1094
1095static bool fwnode_graph_remote_available(struct fwnode_handle *ep)
1096{
1097 struct fwnode_handle *dev_node;
1098 bool available;
1099
1100 dev_node = fwnode_graph_get_remote_port_parent(ep);
1101 available = fwnode_device_is_available(dev_node);
1102 fwnode_handle_put(dev_node);
1103
1104 return available;
1105}
1106
1107/**
1108 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1109 * @fwnode: parent fwnode_handle containing the graph
1110 * @port: identifier of the port node
1111 * @endpoint: identifier of the endpoint node under the port node
1112 * @flags: fwnode lookup flags
1113 *
1114 * Return the fwnode handle of the local endpoint corresponding the port and
1115 * endpoint IDs or NULL if not found.
1116 *
1117 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1118 * has not been found, look for the closest endpoint ID greater than the
1119 * specified one and return the endpoint that corresponds to it, if present.
1120 *
1121 * Does not return endpoints that belong to disabled devices or endpoints that
1122 * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1123 *
1124 * The returned endpoint needs to be released by calling fwnode_handle_put() on
1125 * it when it is not needed any more.
1126 */
1127struct fwnode_handle *
1128fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1129 u32 port, u32 endpoint, unsigned long flags)
1130{
1131 struct fwnode_handle *ep, *best_ep = NULL;
1132 unsigned int best_ep_id = 0;
1133 bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1134 bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1135
1136 fwnode_graph_for_each_endpoint(fwnode, ep) {
1137 struct fwnode_endpoint fwnode_ep = { 0 };
1138 int ret;
1139
1140 if (enabled_only && !fwnode_graph_remote_available(ep))
1141 continue;
1142
1143 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1144 if (ret < 0)
1145 continue;
1146
1147 if (fwnode_ep.port != port)
1148 continue;
1149
1150 if (fwnode_ep.id == endpoint)
1151 return ep;
1152
1153 if (!endpoint_next)
1154 continue;
1155
1156 /*
1157 * If the endpoint that has just been found is not the first
1158 * matching one and the ID of the one found previously is closer
1159 * to the requested endpoint ID, skip it.
1160 */
1161 if (fwnode_ep.id < endpoint ||
1162 (best_ep && best_ep_id < fwnode_ep.id))
1163 continue;
1164
1165 fwnode_handle_put(best_ep);
1166 best_ep = fwnode_handle_get(ep);
1167 best_ep_id = fwnode_ep.id;
1168 }
1169
1170 return best_ep;
1171}
1172EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1173
1174/**
1175 * fwnode_graph_get_endpoint_count - Count endpoints on a device node
1176 * @fwnode: The node related to a device
1177 * @flags: fwnode lookup flags
1178 * Count endpoints in a device node.
1179 *
1180 * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints
1181 * and endpoints connected to disabled devices are counted.
1182 */
1183unsigned int fwnode_graph_get_endpoint_count(struct fwnode_handle *fwnode,
1184 unsigned long flags)
1185{
1186 struct fwnode_handle *ep;
1187 unsigned int count = 0;
1188
1189 fwnode_graph_for_each_endpoint(fwnode, ep) {
1190 if (flags & FWNODE_GRAPH_DEVICE_DISABLED ||
1191 fwnode_graph_remote_available(ep))
1192 count++;
1193 }
1194
1195 return count;
1196}
1197EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count);
1198
1199/**
1200 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1201 * @fwnode: pointer to endpoint fwnode_handle
1202 * @endpoint: pointer to the fwnode endpoint data structure
1203 *
1204 * Parse @fwnode representing a graph endpoint node and store the
1205 * information in @endpoint. The caller must hold a reference to
1206 * @fwnode.
1207 */
1208int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1209 struct fwnode_endpoint *endpoint)
1210{
1211 memset(endpoint, 0, sizeof(*endpoint));
1212
1213 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1214}
1215EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1216
1217const void *device_get_match_data(const struct device *dev)
1218{
1219 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1220}
1221EXPORT_SYMBOL_GPL(device_get_match_data);
1222
1223static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode,
1224 const char *con_id, void *data,
1225 devcon_match_fn_t match,
1226 void **matches,
1227 unsigned int matches_len)
1228{
1229 struct fwnode_handle *node;
1230 struct fwnode_handle *ep;
1231 unsigned int count = 0;
1232 void *ret;
1233
1234 fwnode_graph_for_each_endpoint(fwnode, ep) {
1235 if (matches && count >= matches_len) {
1236 fwnode_handle_put(ep);
1237 break;
1238 }
1239
1240 node = fwnode_graph_get_remote_port_parent(ep);
1241 if (!fwnode_device_is_available(node)) {
1242 fwnode_handle_put(node);
1243 continue;
1244 }
1245
1246 ret = match(node, con_id, data);
1247 fwnode_handle_put(node);
1248 if (ret) {
1249 if (matches)
1250 matches[count] = ret;
1251 count++;
1252 }
1253 }
1254 return count;
1255}
1256
1257static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode,
1258 const char *con_id, void *data,
1259 devcon_match_fn_t match,
1260 void **matches,
1261 unsigned int matches_len)
1262{
1263 struct fwnode_handle *node;
1264 unsigned int count = 0;
1265 unsigned int i;
1266 void *ret;
1267
1268 for (i = 0; ; i++) {
1269 if (matches && count >= matches_len)
1270 break;
1271
1272 node = fwnode_find_reference(fwnode, con_id, i);
1273 if (IS_ERR(node))
1274 break;
1275
1276 ret = match(node, NULL, data);
1277 fwnode_handle_put(node);
1278 if (ret) {
1279 if (matches)
1280 matches[count] = ret;
1281 count++;
1282 }
1283 }
1284
1285 return count;
1286}
1287
1288/**
1289 * fwnode_connection_find_match - Find connection from a device node
1290 * @fwnode: Device node with the connection
1291 * @con_id: Identifier for the connection
1292 * @data: Data for the match function
1293 * @match: Function to check and convert the connection description
1294 *
1295 * Find a connection with unique identifier @con_id between @fwnode and another
1296 * device node. @match will be used to convert the connection description to
1297 * data the caller is expecting to be returned.
1298 */
1299void *fwnode_connection_find_match(const struct fwnode_handle *fwnode,
1300 const char *con_id, void *data,
1301 devcon_match_fn_t match)
1302{
1303 unsigned int count;
1304 void *ret;
1305
1306 if (!fwnode || !match)
1307 return NULL;
1308
1309 count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1310 if (count)
1311 return ret;
1312
1313 count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1314 return count ? ret : NULL;
1315}
1316EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1317
1318/**
1319 * fwnode_connection_find_matches - Find connections from a device node
1320 * @fwnode: Device node with the connection
1321 * @con_id: Identifier for the connection
1322 * @data: Data for the match function
1323 * @match: Function to check and convert the connection description
1324 * @matches: (Optional) array of pointers to fill with matches
1325 * @matches_len: Length of @matches
1326 *
1327 * Find up to @matches_len connections with unique identifier @con_id between
1328 * @fwnode and other device nodes. @match will be used to convert the
1329 * connection description to data the caller is expecting to be returned
1330 * through the @matches array.
1331 * If @matches is NULL @matches_len is ignored and the total number of resolved
1332 * matches is returned.
1333 *
1334 * Return: Number of matches resolved, or negative errno.
1335 */
1336int fwnode_connection_find_matches(const struct fwnode_handle *fwnode,
1337 const char *con_id, void *data,
1338 devcon_match_fn_t match,
1339 void **matches, unsigned int matches_len)
1340{
1341 unsigned int count_graph;
1342 unsigned int count_ref;
1343
1344 if (!fwnode || !match)
1345 return -EINVAL;
1346
1347 count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match,
1348 matches, matches_len);
1349
1350 if (matches) {
1351 matches += count_graph;
1352 matches_len -= count_graph;
1353 }
1354
1355 count_ref = fwnode_devcon_matches(fwnode, con_id, data, match,
1356 matches, matches_len);
1357
1358 return count_graph + count_ref;
1359}
1360EXPORT_SYMBOL_GPL(fwnode_connection_find_matches);
1/*
2 * property.c - Unified device property interface.
3 *
4 * Copyright (C) 2014, Intel Corporation
5 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
6 * Mika Westerberg <mika.westerberg@linux.intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/acpi.h>
14#include <linux/export.h>
15#include <linux/kernel.h>
16#include <linux/of.h>
17#include <linux/of_address.h>
18#include <linux/property.h>
19#include <linux/etherdevice.h>
20#include <linux/phy.h>
21
22static inline bool is_pset_node(struct fwnode_handle *fwnode)
23{
24 return !IS_ERR_OR_NULL(fwnode) && fwnode->type == FWNODE_PDATA;
25}
26
27static inline struct property_set *to_pset_node(struct fwnode_handle *fwnode)
28{
29 return is_pset_node(fwnode) ?
30 container_of(fwnode, struct property_set, fwnode) : NULL;
31}
32
33static struct property_entry *pset_prop_get(struct property_set *pset,
34 const char *name)
35{
36 struct property_entry *prop;
37
38 if (!pset || !pset->properties)
39 return NULL;
40
41 for (prop = pset->properties; prop->name; prop++)
42 if (!strcmp(name, prop->name))
43 return prop;
44
45 return NULL;
46}
47
48static void *pset_prop_find(struct property_set *pset, const char *propname,
49 size_t length)
50{
51 struct property_entry *prop;
52 void *pointer;
53
54 prop = pset_prop_get(pset, propname);
55 if (!prop)
56 return ERR_PTR(-EINVAL);
57 if (prop->is_array)
58 pointer = prop->pointer.raw_data;
59 else
60 pointer = &prop->value.raw_data;
61 if (!pointer)
62 return ERR_PTR(-ENODATA);
63 if (length > prop->length)
64 return ERR_PTR(-EOVERFLOW);
65 return pointer;
66}
67
68static int pset_prop_read_u8_array(struct property_set *pset,
69 const char *propname,
70 u8 *values, size_t nval)
71{
72 void *pointer;
73 size_t length = nval * sizeof(*values);
74
75 pointer = pset_prop_find(pset, propname, length);
76 if (IS_ERR(pointer))
77 return PTR_ERR(pointer);
78
79 memcpy(values, pointer, length);
80 return 0;
81}
82
83static int pset_prop_read_u16_array(struct property_set *pset,
84 const char *propname,
85 u16 *values, size_t nval)
86{
87 void *pointer;
88 size_t length = nval * sizeof(*values);
89
90 pointer = pset_prop_find(pset, propname, length);
91 if (IS_ERR(pointer))
92 return PTR_ERR(pointer);
93
94 memcpy(values, pointer, length);
95 return 0;
96}
97
98static int pset_prop_read_u32_array(struct property_set *pset,
99 const char *propname,
100 u32 *values, size_t nval)
101{
102 void *pointer;
103 size_t length = nval * sizeof(*values);
104
105 pointer = pset_prop_find(pset, propname, length);
106 if (IS_ERR(pointer))
107 return PTR_ERR(pointer);
108
109 memcpy(values, pointer, length);
110 return 0;
111}
112
113static int pset_prop_read_u64_array(struct property_set *pset,
114 const char *propname,
115 u64 *values, size_t nval)
116{
117 void *pointer;
118 size_t length = nval * sizeof(*values);
119
120 pointer = pset_prop_find(pset, propname, length);
121 if (IS_ERR(pointer))
122 return PTR_ERR(pointer);
123
124 memcpy(values, pointer, length);
125 return 0;
126}
127
128static int pset_prop_count_elems_of_size(struct property_set *pset,
129 const char *propname, size_t length)
130{
131 struct property_entry *prop;
132
133 prop = pset_prop_get(pset, propname);
134 if (!prop)
135 return -EINVAL;
136
137 return prop->length / length;
138}
139
140static int pset_prop_read_string_array(struct property_set *pset,
141 const char *propname,
142 const char **strings, size_t nval)
143{
144 void *pointer;
145 size_t length = nval * sizeof(*strings);
146
147 pointer = pset_prop_find(pset, propname, length);
148 if (IS_ERR(pointer))
149 return PTR_ERR(pointer);
150
151 memcpy(strings, pointer, length);
152 return 0;
153}
154
155static int pset_prop_read_string(struct property_set *pset,
156 const char *propname, const char **strings)
157{
158 struct property_entry *prop;
159 const char **pointer;
160
161 prop = pset_prop_get(pset, propname);
162 if (!prop)
163 return -EINVAL;
164 if (!prop->is_string)
165 return -EILSEQ;
166 if (prop->is_array) {
167 pointer = prop->pointer.str;
168 if (!pointer)
169 return -ENODATA;
170 } else {
171 pointer = &prop->value.str;
172 if (*pointer && strnlen(*pointer, prop->length) >= prop->length)
173 return -EILSEQ;
174 }
175
176 *strings = *pointer;
177 return 0;
178}
179
180static inline struct fwnode_handle *dev_fwnode(struct device *dev)
181{
182 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
183 &dev->of_node->fwnode : dev->fwnode;
184}
185
186/**
187 * device_property_present - check if a property of a device is present
188 * @dev: Device whose property is being checked
189 * @propname: Name of the property
190 *
191 * Check if property @propname is present in the device firmware description.
192 */
193bool device_property_present(struct device *dev, const char *propname)
194{
195 return fwnode_property_present(dev_fwnode(dev), propname);
196}
197EXPORT_SYMBOL_GPL(device_property_present);
198
199static bool __fwnode_property_present(struct fwnode_handle *fwnode,
200 const char *propname)
201{
202 if (is_of_node(fwnode))
203 return of_property_read_bool(to_of_node(fwnode), propname);
204 else if (is_acpi_node(fwnode))
205 return !acpi_node_prop_get(fwnode, propname, NULL);
206 else if (is_pset_node(fwnode))
207 return !!pset_prop_get(to_pset_node(fwnode), propname);
208 return false;
209}
210
211/**
212 * fwnode_property_present - check if a property of a firmware node is present
213 * @fwnode: Firmware node whose property to check
214 * @propname: Name of the property
215 */
216bool fwnode_property_present(struct fwnode_handle *fwnode, const char *propname)
217{
218 bool ret;
219
220 ret = __fwnode_property_present(fwnode, propname);
221 if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
222 !IS_ERR_OR_NULL(fwnode->secondary))
223 ret = __fwnode_property_present(fwnode->secondary, propname);
224 return ret;
225}
226EXPORT_SYMBOL_GPL(fwnode_property_present);
227
228/**
229 * device_property_read_u8_array - return a u8 array property of a device
230 * @dev: Device to get the property of
231 * @propname: Name of the property
232 * @val: The values are stored here or %NULL to return the number of values
233 * @nval: Size of the @val array
234 *
235 * Function reads an array of u8 properties with @propname from the device
236 * firmware description and stores them to @val if found.
237 *
238 * Return: number of values if @val was %NULL,
239 * %0 if the property was found (success),
240 * %-EINVAL if given arguments are not valid,
241 * %-ENODATA if the property does not have a value,
242 * %-EPROTO if the property is not an array of numbers,
243 * %-EOVERFLOW if the size of the property is not as expected.
244 * %-ENXIO if no suitable firmware interface is present.
245 */
246int device_property_read_u8_array(struct device *dev, const char *propname,
247 u8 *val, size_t nval)
248{
249 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
250}
251EXPORT_SYMBOL_GPL(device_property_read_u8_array);
252
253/**
254 * device_property_read_u16_array - return a u16 array property of a device
255 * @dev: Device to get the property of
256 * @propname: Name of the property
257 * @val: The values are stored here or %NULL to return the number of values
258 * @nval: Size of the @val array
259 *
260 * Function reads an array of u16 properties with @propname from the device
261 * firmware description and stores them to @val if found.
262 *
263 * Return: number of values if @val was %NULL,
264 * %0 if the property was found (success),
265 * %-EINVAL if given arguments are not valid,
266 * %-ENODATA if the property does not have a value,
267 * %-EPROTO if the property is not an array of numbers,
268 * %-EOVERFLOW if the size of the property is not as expected.
269 * %-ENXIO if no suitable firmware interface is present.
270 */
271int device_property_read_u16_array(struct device *dev, const char *propname,
272 u16 *val, size_t nval)
273{
274 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
275}
276EXPORT_SYMBOL_GPL(device_property_read_u16_array);
277
278/**
279 * device_property_read_u32_array - return a u32 array property of a device
280 * @dev: Device to get the property of
281 * @propname: Name of the property
282 * @val: The values are stored here or %NULL to return the number of values
283 * @nval: Size of the @val array
284 *
285 * Function reads an array of u32 properties with @propname from the device
286 * firmware description and stores them to @val if found.
287 *
288 * Return: number of values if @val was %NULL,
289 * %0 if the property was found (success),
290 * %-EINVAL if given arguments are not valid,
291 * %-ENODATA if the property does not have a value,
292 * %-EPROTO if the property is not an array of numbers,
293 * %-EOVERFLOW if the size of the property is not as expected.
294 * %-ENXIO if no suitable firmware interface is present.
295 */
296int device_property_read_u32_array(struct device *dev, const char *propname,
297 u32 *val, size_t nval)
298{
299 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
300}
301EXPORT_SYMBOL_GPL(device_property_read_u32_array);
302
303/**
304 * device_property_read_u64_array - return a u64 array property of a device
305 * @dev: Device to get the property of
306 * @propname: Name of the property
307 * @val: The values are stored here or %NULL to return the number of values
308 * @nval: Size of the @val array
309 *
310 * Function reads an array of u64 properties with @propname from the device
311 * firmware description and stores them to @val if found.
312 *
313 * Return: number of values if @val was %NULL,
314 * %0 if the property was found (success),
315 * %-EINVAL if given arguments are not valid,
316 * %-ENODATA if the property does not have a value,
317 * %-EPROTO if the property is not an array of numbers,
318 * %-EOVERFLOW if the size of the property is not as expected.
319 * %-ENXIO if no suitable firmware interface is present.
320 */
321int device_property_read_u64_array(struct device *dev, const char *propname,
322 u64 *val, size_t nval)
323{
324 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
325}
326EXPORT_SYMBOL_GPL(device_property_read_u64_array);
327
328/**
329 * device_property_read_string_array - return a string array property of device
330 * @dev: Device to get the property of
331 * @propname: Name of the property
332 * @val: The values are stored here or %NULL to return the number of values
333 * @nval: Size of the @val array
334 *
335 * Function reads an array of string properties with @propname from the device
336 * firmware description and stores them to @val if found.
337 *
338 * Return: number of values if @val was %NULL,
339 * %0 if the property was found (success),
340 * %-EINVAL if given arguments are not valid,
341 * %-ENODATA if the property does not have a value,
342 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
343 * %-EOVERFLOW if the size of the property is not as expected.
344 * %-ENXIO if no suitable firmware interface is present.
345 */
346int device_property_read_string_array(struct device *dev, const char *propname,
347 const char **val, size_t nval)
348{
349 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
350}
351EXPORT_SYMBOL_GPL(device_property_read_string_array);
352
353/**
354 * device_property_read_string - return a string property of a device
355 * @dev: Device to get the property of
356 * @propname: Name of the property
357 * @val: The value is stored here
358 *
359 * Function reads property @propname from the device firmware description and
360 * stores the value into @val if found. The value is checked to be a string.
361 *
362 * Return: %0 if the property was found (success),
363 * %-EINVAL if given arguments are not valid,
364 * %-ENODATA if the property does not have a value,
365 * %-EPROTO or %-EILSEQ if the property type is not a string.
366 * %-ENXIO if no suitable firmware interface is present.
367 */
368int device_property_read_string(struct device *dev, const char *propname,
369 const char **val)
370{
371 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
372}
373EXPORT_SYMBOL_GPL(device_property_read_string);
374
375/**
376 * device_property_match_string - find a string in an array and return index
377 * @dev: Device to get the property of
378 * @propname: Name of the property holding the array
379 * @string: String to look for
380 *
381 * Find a given string in a string array and if it is found return the
382 * index back.
383 *
384 * Return: %0 if the property was found (success),
385 * %-EINVAL if given arguments are not valid,
386 * %-ENODATA if the property does not have a value,
387 * %-EPROTO if the property is not an array of strings,
388 * %-ENXIO if no suitable firmware interface is present.
389 */
390int device_property_match_string(struct device *dev, const char *propname,
391 const char *string)
392{
393 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
394}
395EXPORT_SYMBOL_GPL(device_property_match_string);
396
397#define OF_DEV_PROP_READ_ARRAY(node, propname, type, val, nval) \
398 (val) ? of_property_read_##type##_array((node), (propname), (val), (nval)) \
399 : of_property_count_elems_of_size((node), (propname), sizeof(type))
400
401#define PSET_PROP_READ_ARRAY(node, propname, type, val, nval) \
402 (val) ? pset_prop_read_##type##_array((node), (propname), (val), (nval)) \
403 : pset_prop_count_elems_of_size((node), (propname), sizeof(type))
404
405#define FWNODE_PROP_READ(_fwnode_, _propname_, _type_, _proptype_, _val_, _nval_) \
406({ \
407 int _ret_; \
408 if (is_of_node(_fwnode_)) \
409 _ret_ = OF_DEV_PROP_READ_ARRAY(to_of_node(_fwnode_), _propname_, \
410 _type_, _val_, _nval_); \
411 else if (is_acpi_node(_fwnode_)) \
412 _ret_ = acpi_node_prop_read(_fwnode_, _propname_, _proptype_, \
413 _val_, _nval_); \
414 else if (is_pset_node(_fwnode_)) \
415 _ret_ = PSET_PROP_READ_ARRAY(to_pset_node(_fwnode_), _propname_, \
416 _type_, _val_, _nval_); \
417 else \
418 _ret_ = -ENXIO; \
419 _ret_; \
420})
421
422#define FWNODE_PROP_READ_ARRAY(_fwnode_, _propname_, _type_, _proptype_, _val_, _nval_) \
423({ \
424 int _ret_; \
425 _ret_ = FWNODE_PROP_READ(_fwnode_, _propname_, _type_, _proptype_, \
426 _val_, _nval_); \
427 if (_ret_ == -EINVAL && !IS_ERR_OR_NULL(_fwnode_) && \
428 !IS_ERR_OR_NULL(_fwnode_->secondary)) \
429 _ret_ = FWNODE_PROP_READ(_fwnode_->secondary, _propname_, _type_, \
430 _proptype_, _val_, _nval_); \
431 _ret_; \
432})
433
434/**
435 * fwnode_property_read_u8_array - return a u8 array property of firmware node
436 * @fwnode: Firmware node to get the property of
437 * @propname: Name of the property
438 * @val: The values are stored here or %NULL to return the number of values
439 * @nval: Size of the @val array
440 *
441 * Read an array of u8 properties with @propname from @fwnode and stores them to
442 * @val if found.
443 *
444 * Return: number of values if @val was %NULL,
445 * %0 if the property was found (success),
446 * %-EINVAL if given arguments are not valid,
447 * %-ENODATA if the property does not have a value,
448 * %-EPROTO if the property is not an array of numbers,
449 * %-EOVERFLOW if the size of the property is not as expected,
450 * %-ENXIO if no suitable firmware interface is present.
451 */
452int fwnode_property_read_u8_array(struct fwnode_handle *fwnode,
453 const char *propname, u8 *val, size_t nval)
454{
455 return FWNODE_PROP_READ_ARRAY(fwnode, propname, u8, DEV_PROP_U8,
456 val, nval);
457}
458EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
459
460/**
461 * fwnode_property_read_u16_array - return a u16 array property of firmware node
462 * @fwnode: Firmware node to get the property of
463 * @propname: Name of the property
464 * @val: The values are stored here or %NULL to return the number of values
465 * @nval: Size of the @val array
466 *
467 * Read an array of u16 properties with @propname from @fwnode and store them to
468 * @val if found.
469 *
470 * Return: number of values if @val was %NULL,
471 * %0 if the property was found (success),
472 * %-EINVAL if given arguments are not valid,
473 * %-ENODATA if the property does not have a value,
474 * %-EPROTO if the property is not an array of numbers,
475 * %-EOVERFLOW if the size of the property is not as expected,
476 * %-ENXIO if no suitable firmware interface is present.
477 */
478int fwnode_property_read_u16_array(struct fwnode_handle *fwnode,
479 const char *propname, u16 *val, size_t nval)
480{
481 return FWNODE_PROP_READ_ARRAY(fwnode, propname, u16, DEV_PROP_U16,
482 val, nval);
483}
484EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
485
486/**
487 * fwnode_property_read_u32_array - return a u32 array property of firmware node
488 * @fwnode: Firmware node to get the property of
489 * @propname: Name of the property
490 * @val: The values are stored here or %NULL to return the number of values
491 * @nval: Size of the @val array
492 *
493 * Read an array of u32 properties with @propname from @fwnode store them to
494 * @val if found.
495 *
496 * Return: number of values if @val was %NULL,
497 * %0 if the property was found (success),
498 * %-EINVAL if given arguments are not valid,
499 * %-ENODATA if the property does not have a value,
500 * %-EPROTO if the property is not an array of numbers,
501 * %-EOVERFLOW if the size of the property is not as expected,
502 * %-ENXIO if no suitable firmware interface is present.
503 */
504int fwnode_property_read_u32_array(struct fwnode_handle *fwnode,
505 const char *propname, u32 *val, size_t nval)
506{
507 return FWNODE_PROP_READ_ARRAY(fwnode, propname, u32, DEV_PROP_U32,
508 val, nval);
509}
510EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
511
512/**
513 * fwnode_property_read_u64_array - return a u64 array property firmware node
514 * @fwnode: Firmware node to get the property of
515 * @propname: Name of the property
516 * @val: The values are stored here or %NULL to return the number of values
517 * @nval: Size of the @val array
518 *
519 * Read an array of u64 properties with @propname from @fwnode and store them to
520 * @val if found.
521 *
522 * Return: number of values if @val was %NULL,
523 * %0 if the property was found (success),
524 * %-EINVAL if given arguments are not valid,
525 * %-ENODATA if the property does not have a value,
526 * %-EPROTO if the property is not an array of numbers,
527 * %-EOVERFLOW if the size of the property is not as expected,
528 * %-ENXIO if no suitable firmware interface is present.
529 */
530int fwnode_property_read_u64_array(struct fwnode_handle *fwnode,
531 const char *propname, u64 *val, size_t nval)
532{
533 return FWNODE_PROP_READ_ARRAY(fwnode, propname, u64, DEV_PROP_U64,
534 val, nval);
535}
536EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
537
538static int __fwnode_property_read_string_array(struct fwnode_handle *fwnode,
539 const char *propname,
540 const char **val, size_t nval)
541{
542 if (is_of_node(fwnode))
543 return val ?
544 of_property_read_string_array(to_of_node(fwnode),
545 propname, val, nval) :
546 of_property_count_strings(to_of_node(fwnode), propname);
547 else if (is_acpi_node(fwnode))
548 return acpi_node_prop_read(fwnode, propname, DEV_PROP_STRING,
549 val, nval);
550 else if (is_pset_node(fwnode))
551 return val ?
552 pset_prop_read_string_array(to_pset_node(fwnode),
553 propname, val, nval) :
554 pset_prop_count_elems_of_size(to_pset_node(fwnode),
555 propname,
556 sizeof(const char *));
557 return -ENXIO;
558}
559
560static int __fwnode_property_read_string(struct fwnode_handle *fwnode,
561 const char *propname, const char **val)
562{
563 if (is_of_node(fwnode))
564 return of_property_read_string(to_of_node(fwnode), propname, val);
565 else if (is_acpi_node(fwnode))
566 return acpi_node_prop_read(fwnode, propname, DEV_PROP_STRING,
567 val, 1);
568 else if (is_pset_node(fwnode))
569 return pset_prop_read_string(to_pset_node(fwnode), propname, val);
570 return -ENXIO;
571}
572
573/**
574 * fwnode_property_read_string_array - return string array property of a node
575 * @fwnode: Firmware node to get the property of
576 * @propname: Name of the property
577 * @val: The values are stored here or %NULL to return the number of values
578 * @nval: Size of the @val array
579 *
580 * Read an string list property @propname from the given firmware node and store
581 * them to @val if found.
582 *
583 * Return: number of values if @val was %NULL,
584 * %0 if the property was found (success),
585 * %-EINVAL if given arguments are not valid,
586 * %-ENODATA if the property does not have a value,
587 * %-EPROTO if the property is not an array of strings,
588 * %-EOVERFLOW if the size of the property is not as expected,
589 * %-ENXIO if no suitable firmware interface is present.
590 */
591int fwnode_property_read_string_array(struct fwnode_handle *fwnode,
592 const char *propname, const char **val,
593 size_t nval)
594{
595 int ret;
596
597 ret = __fwnode_property_read_string_array(fwnode, propname, val, nval);
598 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
599 !IS_ERR_OR_NULL(fwnode->secondary))
600 ret = __fwnode_property_read_string_array(fwnode->secondary,
601 propname, val, nval);
602 return ret;
603}
604EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
605
606/**
607 * fwnode_property_read_string - return a string property of a firmware node
608 * @fwnode: Firmware node to get the property of
609 * @propname: Name of the property
610 * @val: The value is stored here
611 *
612 * Read property @propname from the given firmware node and store the value into
613 * @val if found. The value is checked to be a string.
614 *
615 * Return: %0 if the property was found (success),
616 * %-EINVAL if given arguments are not valid,
617 * %-ENODATA if the property does not have a value,
618 * %-EPROTO or %-EILSEQ if the property is not a string,
619 * %-ENXIO if no suitable firmware interface is present.
620 */
621int fwnode_property_read_string(struct fwnode_handle *fwnode,
622 const char *propname, const char **val)
623{
624 int ret;
625
626 ret = __fwnode_property_read_string(fwnode, propname, val);
627 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
628 !IS_ERR_OR_NULL(fwnode->secondary))
629 ret = __fwnode_property_read_string(fwnode->secondary,
630 propname, val);
631 return ret;
632}
633EXPORT_SYMBOL_GPL(fwnode_property_read_string);
634
635/**
636 * fwnode_property_match_string - find a string in an array and return index
637 * @fwnode: Firmware node to get the property of
638 * @propname: Name of the property holding the array
639 * @string: String to look for
640 *
641 * Find a given string in a string array and if it is found return the
642 * index back.
643 *
644 * Return: %0 if the property was found (success),
645 * %-EINVAL if given arguments are not valid,
646 * %-ENODATA if the property does not have a value,
647 * %-EPROTO if the property is not an array of strings,
648 * %-ENXIO if no suitable firmware interface is present.
649 */
650int fwnode_property_match_string(struct fwnode_handle *fwnode,
651 const char *propname, const char *string)
652{
653 const char **values;
654 int nval, ret;
655
656 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
657 if (nval < 0)
658 return nval;
659
660 if (nval == 0)
661 return -ENODATA;
662
663 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
664 if (!values)
665 return -ENOMEM;
666
667 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
668 if (ret < 0)
669 goto out;
670
671 ret = match_string(values, nval, string);
672 if (ret < 0)
673 ret = -ENODATA;
674out:
675 kfree(values);
676 return ret;
677}
678EXPORT_SYMBOL_GPL(fwnode_property_match_string);
679
680/**
681 * pset_free_set - releases memory allocated for copied property set
682 * @pset: Property set to release
683 *
684 * Function takes previously copied property set and releases all the
685 * memory allocated to it.
686 */
687static void pset_free_set(struct property_set *pset)
688{
689 const struct property_entry *prop;
690 size_t i, nval;
691
692 if (!pset)
693 return;
694
695 for (prop = pset->properties; prop->name; prop++) {
696 if (prop->is_array) {
697 if (prop->is_string && prop->pointer.str) {
698 nval = prop->length / sizeof(const char *);
699 for (i = 0; i < nval; i++)
700 kfree(prop->pointer.str[i]);
701 }
702 kfree(prop->pointer.raw_data);
703 } else if (prop->is_string) {
704 kfree(prop->value.str);
705 }
706 kfree(prop->name);
707 }
708
709 kfree(pset->properties);
710 kfree(pset);
711}
712
713static int pset_copy_entry(struct property_entry *dst,
714 const struct property_entry *src)
715{
716 const char **d, **s;
717 size_t i, nval;
718
719 dst->name = kstrdup(src->name, GFP_KERNEL);
720 if (!dst->name)
721 return -ENOMEM;
722
723 if (src->is_array) {
724 if (!src->length)
725 return -ENODATA;
726
727 if (src->is_string) {
728 nval = src->length / sizeof(const char *);
729 dst->pointer.str = kcalloc(nval, sizeof(const char *),
730 GFP_KERNEL);
731 if (!dst->pointer.str)
732 return -ENOMEM;
733
734 d = dst->pointer.str;
735 s = src->pointer.str;
736 for (i = 0; i < nval; i++) {
737 d[i] = kstrdup(s[i], GFP_KERNEL);
738 if (!d[i] && s[i])
739 return -ENOMEM;
740 }
741 } else {
742 dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
743 src->length, GFP_KERNEL);
744 if (!dst->pointer.raw_data)
745 return -ENOMEM;
746 }
747 } else if (src->is_string) {
748 dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
749 if (!dst->value.str && src->value.str)
750 return -ENOMEM;
751 } else {
752 dst->value.raw_data = src->value.raw_data;
753 }
754
755 dst->length = src->length;
756 dst->is_array = src->is_array;
757 dst->is_string = src->is_string;
758
759 return 0;
760}
761
762/**
763 * pset_copy_set - copies property set
764 * @pset: Property set to copy
765 *
766 * This function takes a deep copy of the given property set and returns
767 * pointer to the copy. Call device_free_property_set() to free resources
768 * allocated in this function.
769 *
770 * Return: Pointer to the new property set or error pointer.
771 */
772static struct property_set *pset_copy_set(const struct property_set *pset)
773{
774 const struct property_entry *entry;
775 struct property_set *p;
776 size_t i, n = 0;
777
778 p = kzalloc(sizeof(*p), GFP_KERNEL);
779 if (!p)
780 return ERR_PTR(-ENOMEM);
781
782 while (pset->properties[n].name)
783 n++;
784
785 p->properties = kcalloc(n + 1, sizeof(*entry), GFP_KERNEL);
786 if (!p->properties) {
787 kfree(p);
788 return ERR_PTR(-ENOMEM);
789 }
790
791 for (i = 0; i < n; i++) {
792 int ret = pset_copy_entry(&p->properties[i],
793 &pset->properties[i]);
794 if (ret) {
795 pset_free_set(p);
796 return ERR_PTR(ret);
797 }
798 }
799
800 return p;
801}
802
803/**
804 * device_remove_property_set - Remove properties from a device object.
805 * @dev: Device whose properties to remove.
806 *
807 * The function removes properties previously associated to the device
808 * secondary firmware node with device_add_property_set(). Memory allocated
809 * to the properties will also be released.
810 */
811void device_remove_property_set(struct device *dev)
812{
813 struct fwnode_handle *fwnode;
814
815 fwnode = dev_fwnode(dev);
816 if (!fwnode)
817 return;
818 /*
819 * Pick either primary or secondary node depending which one holds
820 * the pset. If there is no real firmware node (ACPI/DT) primary
821 * will hold the pset.
822 */
823 if (is_pset_node(fwnode)) {
824 set_primary_fwnode(dev, NULL);
825 pset_free_set(to_pset_node(fwnode));
826 } else {
827 fwnode = fwnode->secondary;
828 if (!IS_ERR(fwnode) && is_pset_node(fwnode)) {
829 set_secondary_fwnode(dev, NULL);
830 pset_free_set(to_pset_node(fwnode));
831 }
832 }
833}
834EXPORT_SYMBOL_GPL(device_remove_property_set);
835
836/**
837 * device_add_property_set - Add a collection of properties to a device object.
838 * @dev: Device to add properties to.
839 * @pset: Collection of properties to add.
840 *
841 * Associate a collection of device properties represented by @pset with @dev
842 * as its secondary firmware node. The function takes a copy of @pset.
843 */
844int device_add_property_set(struct device *dev, const struct property_set *pset)
845{
846 struct property_set *p;
847
848 if (!pset)
849 return -EINVAL;
850
851 p = pset_copy_set(pset);
852 if (IS_ERR(p))
853 return PTR_ERR(p);
854
855 p->fwnode.type = FWNODE_PDATA;
856 set_secondary_fwnode(dev, &p->fwnode);
857 return 0;
858}
859EXPORT_SYMBOL_GPL(device_add_property_set);
860
861/**
862 * device_get_next_child_node - Return the next child node handle for a device
863 * @dev: Device to find the next child node for.
864 * @child: Handle to one of the device's child nodes or a null handle.
865 */
866struct fwnode_handle *device_get_next_child_node(struct device *dev,
867 struct fwnode_handle *child)
868{
869 if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
870 struct device_node *node;
871
872 node = of_get_next_available_child(dev->of_node, to_of_node(child));
873 if (node)
874 return &node->fwnode;
875 } else if (IS_ENABLED(CONFIG_ACPI)) {
876 return acpi_get_next_subnode(dev, child);
877 }
878 return NULL;
879}
880EXPORT_SYMBOL_GPL(device_get_next_child_node);
881
882/**
883 * fwnode_handle_put - Drop reference to a device node
884 * @fwnode: Pointer to the device node to drop the reference to.
885 *
886 * This has to be used when terminating device_for_each_child_node() iteration
887 * with break or return to prevent stale device node references from being left
888 * behind.
889 */
890void fwnode_handle_put(struct fwnode_handle *fwnode)
891{
892 if (is_of_node(fwnode))
893 of_node_put(to_of_node(fwnode));
894}
895EXPORT_SYMBOL_GPL(fwnode_handle_put);
896
897/**
898 * device_get_child_node_count - return the number of child nodes for device
899 * @dev: Device to cound the child nodes for
900 */
901unsigned int device_get_child_node_count(struct device *dev)
902{
903 struct fwnode_handle *child;
904 unsigned int count = 0;
905
906 device_for_each_child_node(dev, child)
907 count++;
908
909 return count;
910}
911EXPORT_SYMBOL_GPL(device_get_child_node_count);
912
913bool device_dma_supported(struct device *dev)
914{
915 /* For DT, this is always supported.
916 * For ACPI, this depends on CCA, which
917 * is determined by the acpi_dma_supported().
918 */
919 if (IS_ENABLED(CONFIG_OF) && dev->of_node)
920 return true;
921
922 return acpi_dma_supported(ACPI_COMPANION(dev));
923}
924EXPORT_SYMBOL_GPL(device_dma_supported);
925
926enum dev_dma_attr device_get_dma_attr(struct device *dev)
927{
928 enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
929
930 if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
931 if (of_dma_is_coherent(dev->of_node))
932 attr = DEV_DMA_COHERENT;
933 else
934 attr = DEV_DMA_NON_COHERENT;
935 } else
936 attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
937
938 return attr;
939}
940EXPORT_SYMBOL_GPL(device_get_dma_attr);
941
942/**
943 * device_get_phy_mode - Get phy mode for given device
944 * @dev: Pointer to the given device
945 *
946 * The function gets phy interface string from property 'phy-mode' or
947 * 'phy-connection-type', and return its index in phy_modes table, or errno in
948 * error case.
949 */
950int device_get_phy_mode(struct device *dev)
951{
952 const char *pm;
953 int err, i;
954
955 err = device_property_read_string(dev, "phy-mode", &pm);
956 if (err < 0)
957 err = device_property_read_string(dev,
958 "phy-connection-type", &pm);
959 if (err < 0)
960 return err;
961
962 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
963 if (!strcasecmp(pm, phy_modes(i)))
964 return i;
965
966 return -ENODEV;
967}
968EXPORT_SYMBOL_GPL(device_get_phy_mode);
969
970static void *device_get_mac_addr(struct device *dev,
971 const char *name, char *addr,
972 int alen)
973{
974 int ret = device_property_read_u8_array(dev, name, addr, alen);
975
976 if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
977 return addr;
978 return NULL;
979}
980
981/**
982 * device_get_mac_address - Get the MAC for a given device
983 * @dev: Pointer to the device
984 * @addr: Address of buffer to store the MAC in
985 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
986 *
987 * Search the firmware node for the best MAC address to use. 'mac-address' is
988 * checked first, because that is supposed to contain to "most recent" MAC
989 * address. If that isn't set, then 'local-mac-address' is checked next,
990 * because that is the default address. If that isn't set, then the obsolete
991 * 'address' is checked, just in case we're using an old device tree.
992 *
993 * Note that the 'address' property is supposed to contain a virtual address of
994 * the register set, but some DTS files have redefined that property to be the
995 * MAC address.
996 *
997 * All-zero MAC addresses are rejected, because those could be properties that
998 * exist in the firmware tables, but were not updated by the firmware. For
999 * example, the DTS could define 'mac-address' and 'local-mac-address', with
1000 * zero MAC addresses. Some older U-Boots only initialized 'local-mac-address'.
1001 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
1002 * exists but is all zeros.
1003*/
1004void *device_get_mac_address(struct device *dev, char *addr, int alen)
1005{
1006 char *res;
1007
1008 res = device_get_mac_addr(dev, "mac-address", addr, alen);
1009 if (res)
1010 return res;
1011
1012 res = device_get_mac_addr(dev, "local-mac-address", addr, alen);
1013 if (res)
1014 return res;
1015
1016 return device_get_mac_addr(dev, "address", addr, alen);
1017}
1018EXPORT_SYMBOL(device_get_mac_address);