Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * property.c - Unified device property interface.
   4 *
   5 * Copyright (C) 2014, Intel Corporation
   6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
   7 *          Mika Westerberg <mika.westerberg@linux.intel.com>
 
 
 
 
   8 */
   9
  10#include <linux/acpi.h>
  11#include <linux/export.h>
  12#include <linux/kernel.h>
  13#include <linux/of.h>
  14#include <linux/of_address.h>
  15#include <linux/of_graph.h>
  16#include <linux/of_irq.h>
  17#include <linux/property.h>
 
  18#include <linux/phy.h>
  19
  20struct fwnode_handle *__dev_fwnode(struct device *dev)
  21{
  22	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
  23		of_fwnode_handle(dev->of_node) : dev->fwnode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  24}
  25EXPORT_SYMBOL_GPL(__dev_fwnode);
  26
  27const struct fwnode_handle *__dev_fwnode_const(const struct device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  28{
  29	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
  30		of_fwnode_handle(dev->of_node) : dev->fwnode;
  31}
  32EXPORT_SYMBOL_GPL(__dev_fwnode_const);
  33
  34/**
  35 * device_property_present - check if a property of a device is present
  36 * @dev: Device whose property is being checked
  37 * @propname: Name of the property
  38 *
  39 * Check if property @propname is present in the device firmware description.
  40 */
  41bool device_property_present(struct device *dev, const char *propname)
  42{
  43	return fwnode_property_present(dev_fwnode(dev), propname);
  44}
  45EXPORT_SYMBOL_GPL(device_property_present);
  46
 
 
 
 
 
 
 
 
 
 
 
 
  47/**
  48 * fwnode_property_present - check if a property of a firmware node is present
  49 * @fwnode: Firmware node whose property to check
  50 * @propname: Name of the property
  51 */
  52bool fwnode_property_present(const struct fwnode_handle *fwnode,
  53			     const char *propname)
  54{
  55	bool ret;
  56
  57	if (IS_ERR_OR_NULL(fwnode))
  58		return false;
  59
  60	ret = fwnode_call_bool_op(fwnode, property_present, propname);
  61	if (ret)
  62		return ret;
  63
  64	return fwnode_call_bool_op(fwnode->secondary, property_present, propname);
  65}
  66EXPORT_SYMBOL_GPL(fwnode_property_present);
  67
  68/**
  69 * device_property_read_u8_array - return a u8 array property of a device
  70 * @dev: Device to get the property of
  71 * @propname: Name of the property
  72 * @val: The values are stored here or %NULL to return the number of values
  73 * @nval: Size of the @val array
  74 *
  75 * Function reads an array of u8 properties with @propname from the device
  76 * firmware description and stores them to @val if found.
  77 *
  78 * It's recommended to call device_property_count_u8() instead of calling
  79 * this function with @val equals %NULL and @nval equals 0.
  80 *
  81 * Return: number of values if @val was %NULL,
  82 *         %0 if the property was found (success),
  83 *	   %-EINVAL if given arguments are not valid,
  84 *	   %-ENODATA if the property does not have a value,
  85 *	   %-EPROTO if the property is not an array of numbers,
  86 *	   %-EOVERFLOW if the size of the property is not as expected.
  87 *	   %-ENXIO if no suitable firmware interface is present.
  88 */
  89int device_property_read_u8_array(struct device *dev, const char *propname,
  90				  u8 *val, size_t nval)
  91{
  92	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
  93}
  94EXPORT_SYMBOL_GPL(device_property_read_u8_array);
  95
  96/**
  97 * device_property_read_u16_array - return a u16 array property of a device
  98 * @dev: Device to get the property of
  99 * @propname: Name of the property
 100 * @val: The values are stored here or %NULL to return the number of values
 101 * @nval: Size of the @val array
 102 *
 103 * Function reads an array of u16 properties with @propname from the device
 104 * firmware description and stores them to @val if found.
 105 *
 106 * It's recommended to call device_property_count_u16() instead of calling
 107 * this function with @val equals %NULL and @nval equals 0.
 108 *
 109 * Return: number of values if @val was %NULL,
 110 *         %0 if the property was found (success),
 111 *	   %-EINVAL if given arguments are not valid,
 112 *	   %-ENODATA if the property does not have a value,
 113 *	   %-EPROTO if the property is not an array of numbers,
 114 *	   %-EOVERFLOW if the size of the property is not as expected.
 115 *	   %-ENXIO if no suitable firmware interface is present.
 116 */
 117int device_property_read_u16_array(struct device *dev, const char *propname,
 118				   u16 *val, size_t nval)
 119{
 120	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
 121}
 122EXPORT_SYMBOL_GPL(device_property_read_u16_array);
 123
 124/**
 125 * device_property_read_u32_array - return a u32 array property of a device
 126 * @dev: Device to get the property of
 127 * @propname: Name of the property
 128 * @val: The values are stored here or %NULL to return the number of values
 129 * @nval: Size of the @val array
 130 *
 131 * Function reads an array of u32 properties with @propname from the device
 132 * firmware description and stores them to @val if found.
 133 *
 134 * It's recommended to call device_property_count_u32() instead of calling
 135 * this function with @val equals %NULL and @nval equals 0.
 136 *
 137 * Return: number of values if @val was %NULL,
 138 *         %0 if the property was found (success),
 139 *	   %-EINVAL if given arguments are not valid,
 140 *	   %-ENODATA if the property does not have a value,
 141 *	   %-EPROTO if the property is not an array of numbers,
 142 *	   %-EOVERFLOW if the size of the property is not as expected.
 143 *	   %-ENXIO if no suitable firmware interface is present.
 144 */
 145int device_property_read_u32_array(struct device *dev, const char *propname,
 146				   u32 *val, size_t nval)
 147{
 148	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
 149}
 150EXPORT_SYMBOL_GPL(device_property_read_u32_array);
 151
 152/**
 153 * device_property_read_u64_array - return a u64 array property of a device
 154 * @dev: Device to get the property of
 155 * @propname: Name of the property
 156 * @val: The values are stored here or %NULL to return the number of values
 157 * @nval: Size of the @val array
 158 *
 159 * Function reads an array of u64 properties with @propname from the device
 160 * firmware description and stores them to @val if found.
 161 *
 162 * It's recommended to call device_property_count_u64() instead of calling
 163 * this function with @val equals %NULL and @nval equals 0.
 164 *
 165 * Return: number of values if @val was %NULL,
 166 *         %0 if the property was found (success),
 167 *	   %-EINVAL if given arguments are not valid,
 168 *	   %-ENODATA if the property does not have a value,
 169 *	   %-EPROTO if the property is not an array of numbers,
 170 *	   %-EOVERFLOW if the size of the property is not as expected.
 171 *	   %-ENXIO if no suitable firmware interface is present.
 172 */
 173int device_property_read_u64_array(struct device *dev, const char *propname,
 174				   u64 *val, size_t nval)
 175{
 176	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
 177}
 178EXPORT_SYMBOL_GPL(device_property_read_u64_array);
 179
 180/**
 181 * device_property_read_string_array - return a string array property of device
 182 * @dev: Device to get the property of
 183 * @propname: Name of the property
 184 * @val: The values are stored here or %NULL to return the number of values
 185 * @nval: Size of the @val array
 186 *
 187 * Function reads an array of string properties with @propname from the device
 188 * firmware description and stores them to @val if found.
 189 *
 190 * It's recommended to call device_property_string_array_count() instead of calling
 191 * this function with @val equals %NULL and @nval equals 0.
 192 *
 193 * Return: number of values read on success if @val is non-NULL,
 194 *	   number of values available on success if @val is NULL,
 195 *	   %-EINVAL if given arguments are not valid,
 196 *	   %-ENODATA if the property does not have a value,
 197 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 198 *	   %-EOVERFLOW if the size of the property is not as expected.
 199 *	   %-ENXIO if no suitable firmware interface is present.
 200 */
 201int device_property_read_string_array(struct device *dev, const char *propname,
 202				      const char **val, size_t nval)
 203{
 204	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
 205}
 206EXPORT_SYMBOL_GPL(device_property_read_string_array);
 207
 208/**
 209 * device_property_read_string - return a string property of a device
 210 * @dev: Device to get the property of
 211 * @propname: Name of the property
 212 * @val: The value is stored here
 213 *
 214 * Function reads property @propname from the device firmware description and
 215 * stores the value into @val if found. The value is checked to be a string.
 216 *
 217 * Return: %0 if the property was found (success),
 218 *	   %-EINVAL if given arguments are not valid,
 219 *	   %-ENODATA if the property does not have a value,
 220 *	   %-EPROTO or %-EILSEQ if the property type is not a string.
 221 *	   %-ENXIO if no suitable firmware interface is present.
 222 */
 223int device_property_read_string(struct device *dev, const char *propname,
 224				const char **val)
 225{
 226	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
 227}
 228EXPORT_SYMBOL_GPL(device_property_read_string);
 229
 230/**
 231 * device_property_match_string - find a string in an array and return index
 232 * @dev: Device to get the property of
 233 * @propname: Name of the property holding the array
 234 * @string: String to look for
 235 *
 236 * Find a given string in a string array and if it is found return the
 237 * index back.
 238 *
 239 * Return: index, starting from %0, if the property was found (success),
 240 *	   %-EINVAL if given arguments are not valid,
 241 *	   %-ENODATA if the property does not have a value,
 242 *	   %-EPROTO if the property is not an array of strings,
 243 *	   %-ENXIO if no suitable firmware interface is present.
 244 */
 245int device_property_match_string(struct device *dev, const char *propname,
 246				 const char *string)
 247{
 248	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
 249}
 250EXPORT_SYMBOL_GPL(device_property_match_string);
 251
 252static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
 253					  const char *propname,
 254					  unsigned int elem_size, void *val,
 255					  size_t nval)
 256{
 257	int ret;
 258
 259	if (IS_ERR_OR_NULL(fwnode))
 260		return -EINVAL;
 261
 262	ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
 263				 elem_size, val, nval);
 264	if (ret != -EINVAL)
 265		return ret;
 266
 267	return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname,
 268				  elem_size, val, nval);
 269}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 270
 271/**
 272 * fwnode_property_read_u8_array - return a u8 array property of firmware node
 273 * @fwnode: Firmware node to get the property of
 274 * @propname: Name of the property
 275 * @val: The values are stored here or %NULL to return the number of values
 276 * @nval: Size of the @val array
 277 *
 278 * Read an array of u8 properties with @propname from @fwnode and stores them to
 279 * @val if found.
 280 *
 281 * It's recommended to call fwnode_property_count_u8() instead of calling
 282 * this function with @val equals %NULL and @nval equals 0.
 283 *
 284 * Return: number of values if @val was %NULL,
 285 *         %0 if the property was found (success),
 286 *	   %-EINVAL if given arguments are not valid,
 287 *	   %-ENODATA if the property does not have a value,
 288 *	   %-EPROTO if the property is not an array of numbers,
 289 *	   %-EOVERFLOW if the size of the property is not as expected,
 290 *	   %-ENXIO if no suitable firmware interface is present.
 291 */
 292int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
 293				  const char *propname, u8 *val, size_t nval)
 294{
 295	return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
 296					      val, nval);
 297}
 298EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
 299
 300/**
 301 * fwnode_property_read_u16_array - return a u16 array property of firmware node
 302 * @fwnode: Firmware node to get the property of
 303 * @propname: Name of the property
 304 * @val: The values are stored here or %NULL to return the number of values
 305 * @nval: Size of the @val array
 306 *
 307 * Read an array of u16 properties with @propname from @fwnode and store them to
 308 * @val if found.
 309 *
 310 * It's recommended to call fwnode_property_count_u16() instead of calling
 311 * this function with @val equals %NULL and @nval equals 0.
 312 *
 313 * Return: number of values if @val was %NULL,
 314 *         %0 if the property was found (success),
 315 *	   %-EINVAL if given arguments are not valid,
 316 *	   %-ENODATA if the property does not have a value,
 317 *	   %-EPROTO if the property is not an array of numbers,
 318 *	   %-EOVERFLOW if the size of the property is not as expected,
 319 *	   %-ENXIO if no suitable firmware interface is present.
 320 */
 321int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
 322				   const char *propname, u16 *val, size_t nval)
 323{
 324	return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
 325					      val, nval);
 326}
 327EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
 328
 329/**
 330 * fwnode_property_read_u32_array - return a u32 array property of firmware node
 331 * @fwnode: Firmware node to get the property of
 332 * @propname: Name of the property
 333 * @val: The values are stored here or %NULL to return the number of values
 334 * @nval: Size of the @val array
 335 *
 336 * Read an array of u32 properties with @propname from @fwnode store them to
 337 * @val if found.
 338 *
 339 * It's recommended to call fwnode_property_count_u32() instead of calling
 340 * this function with @val equals %NULL and @nval equals 0.
 341 *
 342 * Return: number of values if @val was %NULL,
 343 *         %0 if the property was found (success),
 344 *	   %-EINVAL if given arguments are not valid,
 345 *	   %-ENODATA if the property does not have a value,
 346 *	   %-EPROTO if the property is not an array of numbers,
 347 *	   %-EOVERFLOW if the size of the property is not as expected,
 348 *	   %-ENXIO if no suitable firmware interface is present.
 349 */
 350int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
 351				   const char *propname, u32 *val, size_t nval)
 352{
 353	return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
 354					      val, nval);
 355}
 356EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
 357
 358/**
 359 * fwnode_property_read_u64_array - return a u64 array property firmware node
 360 * @fwnode: Firmware node to get the property of
 361 * @propname: Name of the property
 362 * @val: The values are stored here or %NULL to return the number of values
 363 * @nval: Size of the @val array
 364 *
 365 * Read an array of u64 properties with @propname from @fwnode and store them to
 366 * @val if found.
 367 *
 368 * It's recommended to call fwnode_property_count_u64() instead of calling
 369 * this function with @val equals %NULL and @nval equals 0.
 370 *
 371 * Return: number of values if @val was %NULL,
 372 *         %0 if the property was found (success),
 373 *	   %-EINVAL if given arguments are not valid,
 374 *	   %-ENODATA if the property does not have a value,
 375 *	   %-EPROTO if the property is not an array of numbers,
 376 *	   %-EOVERFLOW if the size of the property is not as expected,
 377 *	   %-ENXIO if no suitable firmware interface is present.
 378 */
 379int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
 380				   const char *propname, u64 *val, size_t nval)
 381{
 382	return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
 383					      val, nval);
 384}
 385EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
 386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 387/**
 388 * fwnode_property_read_string_array - return string array property of a node
 389 * @fwnode: Firmware node to get the property of
 390 * @propname: Name of the property
 391 * @val: The values are stored here or %NULL to return the number of values
 392 * @nval: Size of the @val array
 393 *
 394 * Read an string list property @propname from the given firmware node and store
 395 * them to @val if found.
 396 *
 397 * It's recommended to call fwnode_property_string_array_count() instead of calling
 398 * this function with @val equals %NULL and @nval equals 0.
 399 *
 400 * Return: number of values read on success if @val is non-NULL,
 401 *	   number of values available on success if @val is NULL,
 402 *	   %-EINVAL if given arguments are not valid,
 403 *	   %-ENODATA if the property does not have a value,
 404 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 405 *	   %-EOVERFLOW if the size of the property is not as expected,
 406 *	   %-ENXIO if no suitable firmware interface is present.
 407 */
 408int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
 409				      const char *propname, const char **val,
 410				      size_t nval)
 411{
 412	int ret;
 413
 414	if (IS_ERR_OR_NULL(fwnode))
 415		return -EINVAL;
 416
 417	ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
 418				 val, nval);
 419	if (ret != -EINVAL)
 420		return ret;
 421
 422	return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname,
 423				  val, nval);
 424}
 425EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
 426
 427/**
 428 * fwnode_property_read_string - return a string property of a firmware node
 429 * @fwnode: Firmware node to get the property of
 430 * @propname: Name of the property
 431 * @val: The value is stored here
 432 *
 433 * Read property @propname from the given firmware node and store the value into
 434 * @val if found.  The value is checked to be a string.
 435 *
 436 * Return: %0 if the property was found (success),
 437 *	   %-EINVAL if given arguments are not valid,
 438 *	   %-ENODATA if the property does not have a value,
 439 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 440 *	   %-ENXIO if no suitable firmware interface is present.
 441 */
 442int fwnode_property_read_string(const struct fwnode_handle *fwnode,
 443				const char *propname, const char **val)
 444{
 445	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
 446
 447	return ret < 0 ? ret : 0;
 
 
 
 
 
 448}
 449EXPORT_SYMBOL_GPL(fwnode_property_read_string);
 450
 451/**
 452 * fwnode_property_match_string - find a string in an array and return index
 453 * @fwnode: Firmware node to get the property of
 454 * @propname: Name of the property holding the array
 455 * @string: String to look for
 456 *
 457 * Find a given string in a string array and if it is found return the
 458 * index back.
 459 *
 460 * Return: index, starting from %0, if the property was found (success),
 461 *	   %-EINVAL if given arguments are not valid,
 462 *	   %-ENODATA if the property does not have a value,
 463 *	   %-EPROTO if the property is not an array of strings,
 464 *	   %-ENXIO if no suitable firmware interface is present.
 465 */
 466int fwnode_property_match_string(const struct fwnode_handle *fwnode,
 467	const char *propname, const char *string)
 468{
 469	const char **values;
 470	int nval, ret;
 471
 472	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
 473	if (nval < 0)
 474		return nval;
 475
 476	if (nval == 0)
 477		return -ENODATA;
 478
 479	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
 480	if (!values)
 481		return -ENOMEM;
 482
 483	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
 484	if (ret < 0)
 485		goto out_free;
 486
 487	ret = match_string(values, nval, string);
 488	if (ret < 0)
 489		ret = -ENODATA;
 490
 491out_free:
 492	kfree(values);
 493	return ret;
 494}
 495EXPORT_SYMBOL_GPL(fwnode_property_match_string);
 496
 497/**
 498 * fwnode_property_get_reference_args() - Find a reference with arguments
 499 * @fwnode:	Firmware node where to look for the reference
 500 * @prop:	The name of the property
 501 * @nargs_prop:	The name of the property telling the number of
 502 *		arguments in the referred node. NULL if @nargs is known,
 503 *		otherwise @nargs is ignored. Only relevant on OF.
 504 * @nargs:	Number of arguments. Ignored if @nargs_prop is non-NULL.
 505 * @index:	Index of the reference, from zero onwards.
 506 * @args:	Result structure with reference and integer arguments.
 507 *
 508 * Obtain a reference based on a named property in an fwnode, with
 509 * integer arguments.
 510 *
 511 * Caller is responsible to call fwnode_handle_put() on the returned
 512 * args->fwnode pointer.
 513 *
 514 * Returns: %0 on success
 515 *	    %-ENOENT when the index is out of bounds, the index has an empty
 516 *		     reference or the property was not found
 517 *	    %-EINVAL on parse error
 518 */
 519int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
 520				       const char *prop, const char *nargs_prop,
 521				       unsigned int nargs, unsigned int index,
 522				       struct fwnode_reference_args *args)
 523{
 524	int ret;
 525
 526	if (IS_ERR_OR_NULL(fwnode))
 527		return -ENOENT;
 528
 529	ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
 530				 nargs, index, args);
 531	if (ret == 0)
 532		return ret;
 533
 534	if (IS_ERR_OR_NULL(fwnode->secondary))
 535		return ret;
 536
 537	return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop,
 538				  nargs, index, args);
 539}
 540EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
 541
 542/**
 543 * fwnode_find_reference - Find named reference to a fwnode_handle
 544 * @fwnode: Firmware node where to look for the reference
 545 * @name: The name of the reference
 546 * @index: Index of the reference
 547 *
 548 * @index can be used when the named reference holds a table of references.
 549 *
 550 * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to
 551 * call fwnode_handle_put() on the returned fwnode pointer.
 552 */
 553struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
 554					    const char *name,
 555					    unsigned int index)
 556{
 557	struct fwnode_reference_args args;
 558	int ret;
 559
 560	ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
 561						 &args);
 562	return ret ? ERR_PTR(ret) : args.fwnode;
 563}
 564EXPORT_SYMBOL_GPL(fwnode_find_reference);
 565
 566/**
 567 * fwnode_get_name - Return the name of a node
 568 * @fwnode: The firmware node
 569 *
 570 * Returns a pointer to the node name.
 
 571 */
 572const char *fwnode_get_name(const struct fwnode_handle *fwnode)
 573{
 574	return fwnode_call_ptr_op(fwnode, get_name);
 575}
 576EXPORT_SYMBOL_GPL(fwnode_get_name);
 577
 578/**
 579 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
 580 * @fwnode: The firmware node
 581 *
 582 * Returns the prefix of a node, intended to be printed right before the node.
 583 * The prefix works also as a separator between the nodes.
 584 */
 585const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
 586{
 587	return fwnode_call_ptr_op(fwnode, get_name_prefix);
 588}
 
 
 
 
 589
 590/**
 591 * fwnode_get_parent - Return parent firwmare node
 592 * @fwnode: Firmware whose parent is retrieved
 593 *
 594 * Return parent firmware node of the given node if possible or %NULL if no
 595 * parent was available.
 596 */
 597struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
 598{
 599	return fwnode_call_ptr_op(fwnode, get_parent);
 600}
 601EXPORT_SYMBOL_GPL(fwnode_get_parent);
 602
 603/**
 604 * fwnode_get_next_parent - Iterate to the node's parent
 605 * @fwnode: Firmware whose parent is retrieved
 606 *
 607 * This is like fwnode_get_parent() except that it drops the refcount
 608 * on the passed node, making it suitable for iterating through a
 609 * node's parents.
 610 *
 611 * Returns a node pointer with refcount incremented, use
 612 * fwnode_handle_put() on it when done.
 613 */
 614struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
 615{
 616	struct fwnode_handle *parent = fwnode_get_parent(fwnode);
 617
 618	fwnode_handle_put(fwnode);
 619
 620	return parent;
 621}
 622EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
 623
 624/**
 625 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
 626 * @fwnode: firmware node
 627 *
 628 * Given a firmware node (@fwnode), this function finds its closest ancestor
 629 * firmware node that has a corresponding struct device and returns that struct
 630 * device.
 631 *
 632 * The caller of this function is expected to call put_device() on the returned
 633 * device when they are done.
 634 */
 635struct device *fwnode_get_next_parent_dev(struct fwnode_handle *fwnode)
 636{
 637	struct fwnode_handle *parent;
 638	struct device *dev;
 639
 640	fwnode_for_each_parent_node(fwnode, parent) {
 641		dev = get_dev_from_fwnode(parent);
 642		if (dev) {
 643			fwnode_handle_put(parent);
 644			return dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 645		}
 
 
 
 
 
 
 646	}
 647	return NULL;
 648}
 649
 650/**
 651 * fwnode_count_parents - Return the number of parents a node has
 652 * @fwnode: The node the parents of which are to be counted
 653 *
 654 * Returns the number of parents a node has.
 655 */
 656unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
 657{
 658	struct fwnode_handle *parent;
 659	unsigned int count = 0;
 660
 661	fwnode_for_each_parent_node(fwnode, parent)
 662		count++;
 
 663
 664	return count;
 665}
 666EXPORT_SYMBOL_GPL(fwnode_count_parents);
 667
 668/**
 669 * fwnode_get_nth_parent - Return an nth parent of a node
 670 * @fwnode: The node the parent of which is requested
 671 * @depth: Distance of the parent from the node
 672 *
 673 * Returns the nth parent of a node. If there is no parent at the requested
 674 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
 675 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
 676 *
 677 * The caller is responsible for calling fwnode_handle_put() for the returned
 678 * node.
 679 */
 680struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
 681					    unsigned int depth)
 682{
 683	struct fwnode_handle *parent;
 
 
 684
 685	if (depth == 0)
 686		return fwnode_handle_get(fwnode);
 
 687
 688	fwnode_for_each_parent_node(fwnode, parent) {
 689		if (--depth == 0)
 690			return parent;
 
 
 
 
 691	}
 692	return NULL;
 
 
 
 
 
 
 
 
 
 
 693}
 694EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
 695
 696/**
 697 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
 698 * @ancestor: Firmware which is tested for being an ancestor
 699 * @child: Firmware which is tested for being the child
 700 *
 701 * A node is considered an ancestor of itself too.
 702 *
 703 * Returns true if @ancestor is an ancestor of @child. Otherwise, returns false.
 
 
 704 */
 705bool fwnode_is_ancestor_of(struct fwnode_handle *ancestor, struct fwnode_handle *child)
 706{
 707	struct fwnode_handle *parent;
 708
 709	if (IS_ERR_OR_NULL(ancestor))
 710		return false;
 711
 712	if (child == ancestor)
 713		return true;
 714
 715	fwnode_for_each_parent_node(child, parent) {
 716		if (parent == ancestor) {
 717			fwnode_handle_put(parent);
 718			return true;
 
 
 
 
 
 
 
 
 
 
 
 
 719		}
 720	}
 721	return false;
 722}
 723
 724/**
 725 * fwnode_get_next_child_node - Return the next child node handle for a node
 726 * @fwnode: Firmware node to find the next child node for.
 727 * @child: Handle to one of the node's child nodes or a %NULL handle.
 728 */
 729struct fwnode_handle *
 730fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
 731			   struct fwnode_handle *child)
 732{
 733	return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
 734}
 735EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
 736
 737/**
 738 * fwnode_get_next_available_child_node - Return the next
 739 * available child node handle for a node
 740 * @fwnode: Firmware node to find the next child node for.
 741 * @child: Handle to one of the node's child nodes or a %NULL handle.
 
 
 742 */
 743struct fwnode_handle *
 744fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
 745				     struct fwnode_handle *child)
 746{
 747	struct fwnode_handle *next_child = child;
 748
 749	if (IS_ERR_OR_NULL(fwnode))
 750		return NULL;
 751
 752	do {
 753		next_child = fwnode_get_next_child_node(fwnode, next_child);
 754		if (!next_child)
 755			return NULL;
 756	} while (!fwnode_device_is_available(next_child));
 757
 758	return next_child;
 
 
 
 
 
 
 759}
 760EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
 761
 762/**
 763 * device_get_next_child_node - Return the next child node handle for a device
 764 * @dev: Device to find the next child node for.
 765 * @child: Handle to one of the device's child nodes or a null handle.
 766 */
 767struct fwnode_handle *device_get_next_child_node(const struct device *dev,
 768						 struct fwnode_handle *child)
 769{
 770	const struct fwnode_handle *fwnode = dev_fwnode(dev);
 771	struct fwnode_handle *next;
 772
 773	if (IS_ERR_OR_NULL(fwnode))
 774		return NULL;
 775
 776	/* Try to find a child in primary fwnode */
 777	next = fwnode_get_next_child_node(fwnode, child);
 778	if (next)
 779		return next;
 780
 781	/* When no more children in primary, continue with secondary */
 782	return fwnode_get_next_child_node(fwnode->secondary, child);
 783}
 784EXPORT_SYMBOL_GPL(device_get_next_child_node);
 785
 786/**
 787 * fwnode_get_named_child_node - Return first matching named child node handle
 788 * @fwnode: Firmware node to find the named child node for.
 789 * @childname: String to match child node name against.
 790 */
 791struct fwnode_handle *
 792fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
 793			    const char *childname)
 794{
 795	return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
 796}
 797EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
 798
 799/**
 800 * device_get_named_child_node - Return first matching named child node handle
 801 * @dev: Device to find the named child node for.
 802 * @childname: String to match child node name against.
 803 */
 804struct fwnode_handle *device_get_named_child_node(const struct device *dev,
 805						  const char *childname)
 806{
 807	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
 808}
 809EXPORT_SYMBOL_GPL(device_get_named_child_node);
 810
 811/**
 812 * fwnode_handle_get - Obtain a reference to a device node
 813 * @fwnode: Pointer to the device node to obtain the reference to.
 814 *
 815 * Returns the fwnode handle.
 816 */
 817struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
 818{
 819	if (!fwnode_has_op(fwnode, get))
 820		return fwnode;
 821
 822	return fwnode_call_ptr_op(fwnode, get);
 823}
 824EXPORT_SYMBOL_GPL(fwnode_handle_get);
 825
 826/**
 827 * fwnode_handle_put - Drop reference to a device node
 828 * @fwnode: Pointer to the device node to drop the reference to.
 829 *
 830 * This has to be used when terminating device_for_each_child_node() iteration
 831 * with break or return to prevent stale device node references from being left
 832 * behind.
 833 */
 834void fwnode_handle_put(struct fwnode_handle *fwnode)
 835{
 836	fwnode_call_void_op(fwnode, put);
 
 837}
 838EXPORT_SYMBOL_GPL(fwnode_handle_put);
 839
 840/**
 841 * fwnode_device_is_available - check if a device is available for use
 842 * @fwnode: Pointer to the fwnode of the device.
 843 *
 844 * For fwnode node types that don't implement the .device_is_available()
 845 * operation, this function returns true.
 846 */
 847bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
 848{
 849	if (IS_ERR_OR_NULL(fwnode))
 850		return false;
 851
 852	if (!fwnode_has_op(fwnode, device_is_available))
 853		return true;
 854
 855	return fwnode_call_bool_op(fwnode, device_is_available);
 856}
 857EXPORT_SYMBOL_GPL(fwnode_device_is_available);
 858
 859/**
 860 * device_get_child_node_count - return the number of child nodes for device
 861 * @dev: Device to cound the child nodes for
 862 */
 863unsigned int device_get_child_node_count(const struct device *dev)
 864{
 865	struct fwnode_handle *child;
 866	unsigned int count = 0;
 867
 868	device_for_each_child_node(dev, child)
 869		count++;
 870
 871	return count;
 872}
 873EXPORT_SYMBOL_GPL(device_get_child_node_count);
 874
 875bool device_dma_supported(const struct device *dev)
 876{
 877	return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported);
 
 
 
 
 
 
 
 878}
 879EXPORT_SYMBOL_GPL(device_dma_supported);
 880
 881enum dev_dma_attr device_get_dma_attr(const struct device *dev)
 882{
 883	if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr))
 884		return DEV_DMA_NOT_SUPPORTED;
 885
 886	return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr);
 
 
 
 
 
 
 
 
 887}
 888EXPORT_SYMBOL_GPL(device_get_dma_attr);
 889
 890/**
 891 * fwnode_get_phy_mode - Get phy mode for given firmware node
 892 * @fwnode:	Pointer to the given node
 893 *
 894 * The function gets phy interface string from property 'phy-mode' or
 895 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 896 * error case.
 897 */
 898int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
 899{
 900	const char *pm;
 901	int err, i;
 902
 903	err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
 904	if (err < 0)
 905		err = fwnode_property_read_string(fwnode,
 906						  "phy-connection-type", &pm);
 907	if (err < 0)
 908		return err;
 909
 910	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
 911		if (!strcasecmp(pm, phy_modes(i)))
 912			return i;
 913
 914	return -ENODEV;
 915}
 916EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
 917
 918/**
 919 * device_get_phy_mode - Get phy mode for given device
 920 * @dev:	Pointer to the given device
 921 *
 922 * The function gets phy interface string from property 'phy-mode' or
 923 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 924 * error case.
 925 */
 926int device_get_phy_mode(struct device *dev)
 927{
 928	return fwnode_get_phy_mode(dev_fwnode(dev));
 929}
 930EXPORT_SYMBOL_GPL(device_get_phy_mode);
 931
 932/**
 933 * fwnode_iomap - Maps the memory mapped IO for a given fwnode
 934 * @fwnode:	Pointer to the firmware node
 935 * @index:	Index of the IO range
 936 *
 937 * Returns a pointer to the mapped memory.
 938 */
 939void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index)
 940{
 941	return fwnode_call_ptr_op(fwnode, iomap, index);
 942}
 943EXPORT_SYMBOL(fwnode_iomap);
 944
 945/**
 946 * fwnode_irq_get - Get IRQ directly from a fwnode
 947 * @fwnode:	Pointer to the firmware node
 948 * @index:	Zero-based index of the IRQ
 949 *
 950 * Returns Linux IRQ number on success. Other values are determined
 951 * accordingly to acpi_/of_ irq_get() operation.
 952 */
 953int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
 954{
 955	return fwnode_call_int_op(fwnode, irq_get, index);
 956}
 957EXPORT_SYMBOL(fwnode_irq_get);
 958
 959/**
 960 * fwnode_irq_get_byname - Get IRQ from a fwnode using its name
 961 * @fwnode:	Pointer to the firmware node
 962 * @name:	IRQ name
 963 *
 964 * Description:
 965 * Find a match to the string @name in the 'interrupt-names' string array
 966 * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ
 967 * number of the IRQ resource corresponding to the index of the matched
 968 * string.
 969 *
 970 * Return:
 971 * Linux IRQ number on success, or negative errno otherwise.
 972 */
 973int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name)
 974{
 975	int index;
 976
 977	if (!name)
 978		return -EINVAL;
 979
 980	index = fwnode_property_match_string(fwnode, "interrupt-names",  name);
 981	if (index < 0)
 982		return index;
 983
 984	return fwnode_irq_get(fwnode, index);
 985}
 986EXPORT_SYMBOL(fwnode_irq_get_byname);
 987
 988/**
 989 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
 990 * @fwnode: Pointer to the parent firmware node
 991 * @prev: Previous endpoint node or %NULL to get the first
 992 *
 993 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
 994 * are available.
 995 */
 996struct fwnode_handle *
 997fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
 998			       struct fwnode_handle *prev)
 999{
1000	struct fwnode_handle *ep, *port_parent = NULL;
1001	const struct fwnode_handle *parent;
1002
1003	/*
1004	 * If this function is in a loop and the previous iteration returned
1005	 * an endpoint from fwnode->secondary, then we need to use the secondary
1006	 * as parent rather than @fwnode.
1007	 */
1008	if (prev) {
1009		port_parent = fwnode_graph_get_port_parent(prev);
1010		parent = port_parent;
1011	} else {
1012		parent = fwnode;
1013	}
1014	if (IS_ERR_OR_NULL(parent))
1015		return NULL;
1016
1017	ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1018	if (ep)
1019		goto out_put_port_parent;
1020
1021	ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1022
1023out_put_port_parent:
1024	fwnode_handle_put(port_parent);
1025	return ep;
1026}
1027EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1028
1029/**
1030 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1031 * @endpoint: Endpoint firmware node of the port
1032 *
1033 * Return: the firmware node of the device the @endpoint belongs to.
1034 */
1035struct fwnode_handle *
1036fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1037{
1038	struct fwnode_handle *port, *parent;
1039
1040	port = fwnode_get_parent(endpoint);
1041	parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1042
1043	fwnode_handle_put(port);
1044
1045	return parent;
1046}
1047EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1048
1049/**
1050 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1051 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1052 *
1053 * Extracts firmware node of a remote device the @fwnode points to.
1054 */
1055struct fwnode_handle *
1056fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1057{
1058	struct fwnode_handle *endpoint, *parent;
1059
1060	endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1061	parent = fwnode_graph_get_port_parent(endpoint);
1062
1063	fwnode_handle_put(endpoint);
1064
1065	return parent;
1066}
1067EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1068
1069/**
1070 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1071 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1072 *
1073 * Extracts firmware node of a remote port the @fwnode points to.
1074 */
1075struct fwnode_handle *
1076fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1077{
1078	return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1079}
1080EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1081
1082/**
1083 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1084 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1085 *
1086 * Extracts firmware node of a remote endpoint the @fwnode points to.
1087 */
1088struct fwnode_handle *
1089fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1090{
1091	return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1092}
1093EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1094
1095static bool fwnode_graph_remote_available(struct fwnode_handle *ep)
1096{
1097	struct fwnode_handle *dev_node;
1098	bool available;
1099
1100	dev_node = fwnode_graph_get_remote_port_parent(ep);
1101	available = fwnode_device_is_available(dev_node);
1102	fwnode_handle_put(dev_node);
1103
1104	return available;
1105}
1106
1107/**
1108 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1109 * @fwnode: parent fwnode_handle containing the graph
1110 * @port: identifier of the port node
1111 * @endpoint: identifier of the endpoint node under the port node
1112 * @flags: fwnode lookup flags
1113 *
1114 * Return the fwnode handle of the local endpoint corresponding the port and
1115 * endpoint IDs or NULL if not found.
1116 *
1117 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1118 * has not been found, look for the closest endpoint ID greater than the
1119 * specified one and return the endpoint that corresponds to it, if present.
1120 *
1121 * Does not return endpoints that belong to disabled devices or endpoints that
1122 * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1123 *
1124 * The returned endpoint needs to be released by calling fwnode_handle_put() on
1125 * it when it is not needed any more.
1126 */
1127struct fwnode_handle *
1128fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1129				u32 port, u32 endpoint, unsigned long flags)
1130{
1131	struct fwnode_handle *ep, *best_ep = NULL;
1132	unsigned int best_ep_id = 0;
1133	bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1134	bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1135
1136	fwnode_graph_for_each_endpoint(fwnode, ep) {
1137		struct fwnode_endpoint fwnode_ep = { 0 };
1138		int ret;
1139
1140		if (enabled_only && !fwnode_graph_remote_available(ep))
1141			continue;
1142
1143		ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1144		if (ret < 0)
1145			continue;
1146
1147		if (fwnode_ep.port != port)
1148			continue;
1149
1150		if (fwnode_ep.id == endpoint)
1151			return ep;
1152
1153		if (!endpoint_next)
1154			continue;
1155
1156		/*
1157		 * If the endpoint that has just been found is not the first
1158		 * matching one and the ID of the one found previously is closer
1159		 * to the requested endpoint ID, skip it.
1160		 */
1161		if (fwnode_ep.id < endpoint ||
1162		    (best_ep && best_ep_id < fwnode_ep.id))
1163			continue;
1164
1165		fwnode_handle_put(best_ep);
1166		best_ep = fwnode_handle_get(ep);
1167		best_ep_id = fwnode_ep.id;
1168	}
1169
1170	return best_ep;
1171}
1172EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1173
1174/**
1175 * fwnode_graph_get_endpoint_count - Count endpoints on a device node
1176 * @fwnode: The node related to a device
1177 * @flags: fwnode lookup flags
1178 * Count endpoints in a device node.
1179 *
1180 * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints
1181 * and endpoints connected to disabled devices are counted.
1182 */
1183unsigned int fwnode_graph_get_endpoint_count(struct fwnode_handle *fwnode,
1184					     unsigned long flags)
1185{
1186	struct fwnode_handle *ep;
1187	unsigned int count = 0;
1188
1189	fwnode_graph_for_each_endpoint(fwnode, ep) {
1190		if (flags & FWNODE_GRAPH_DEVICE_DISABLED ||
1191		    fwnode_graph_remote_available(ep))
1192			count++;
1193	}
1194
1195	return count;
1196}
1197EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count);
1198
1199/**
1200 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1201 * @fwnode: pointer to endpoint fwnode_handle
1202 * @endpoint: pointer to the fwnode endpoint data structure
1203 *
1204 * Parse @fwnode representing a graph endpoint node and store the
1205 * information in @endpoint. The caller must hold a reference to
1206 * @fwnode.
1207 */
1208int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1209				struct fwnode_endpoint *endpoint)
1210{
1211	memset(endpoint, 0, sizeof(*endpoint));
1212
1213	return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1214}
1215EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1216
1217const void *device_get_match_data(const struct device *dev)
1218{
1219	return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1220}
1221EXPORT_SYMBOL_GPL(device_get_match_data);
1222
1223static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode,
1224						const char *con_id, void *data,
1225						devcon_match_fn_t match,
1226						void **matches,
1227						unsigned int matches_len)
1228{
1229	struct fwnode_handle *node;
1230	struct fwnode_handle *ep;
1231	unsigned int count = 0;
1232	void *ret;
1233
1234	fwnode_graph_for_each_endpoint(fwnode, ep) {
1235		if (matches && count >= matches_len) {
1236			fwnode_handle_put(ep);
1237			break;
1238		}
1239
1240		node = fwnode_graph_get_remote_port_parent(ep);
1241		if (!fwnode_device_is_available(node)) {
1242			fwnode_handle_put(node);
1243			continue;
1244		}
1245
1246		ret = match(node, con_id, data);
1247		fwnode_handle_put(node);
1248		if (ret) {
1249			if (matches)
1250				matches[count] = ret;
1251			count++;
1252		}
1253	}
1254	return count;
1255}
1256
1257static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode,
1258					  const char *con_id, void *data,
1259					  devcon_match_fn_t match,
1260					  void **matches,
1261					  unsigned int matches_len)
1262{
1263	struct fwnode_handle *node;
1264	unsigned int count = 0;
1265	unsigned int i;
1266	void *ret;
1267
1268	for (i = 0; ; i++) {
1269		if (matches && count >= matches_len)
1270			break;
1271
1272		node = fwnode_find_reference(fwnode, con_id, i);
1273		if (IS_ERR(node))
1274			break;
1275
1276		ret = match(node, NULL, data);
1277		fwnode_handle_put(node);
1278		if (ret) {
1279			if (matches)
1280				matches[count] = ret;
1281			count++;
1282		}
1283	}
1284
1285	return count;
1286}
1287
1288/**
1289 * fwnode_connection_find_match - Find connection from a device node
1290 * @fwnode: Device node with the connection
1291 * @con_id: Identifier for the connection
1292 * @data: Data for the match function
1293 * @match: Function to check and convert the connection description
1294 *
1295 * Find a connection with unique identifier @con_id between @fwnode and another
1296 * device node. @match will be used to convert the connection description to
1297 * data the caller is expecting to be returned.
1298 */
1299void *fwnode_connection_find_match(const struct fwnode_handle *fwnode,
1300				   const char *con_id, void *data,
1301				   devcon_match_fn_t match)
1302{
1303	unsigned int count;
1304	void *ret;
1305
1306	if (!fwnode || !match)
1307		return NULL;
1308
1309	count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1310	if (count)
1311		return ret;
1312
1313	count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1314	return count ? ret : NULL;
1315}
1316EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1317
1318/**
1319 * fwnode_connection_find_matches - Find connections from a device node
1320 * @fwnode: Device node with the connection
1321 * @con_id: Identifier for the connection
1322 * @data: Data for the match function
1323 * @match: Function to check and convert the connection description
1324 * @matches: (Optional) array of pointers to fill with matches
1325 * @matches_len: Length of @matches
1326 *
1327 * Find up to @matches_len connections with unique identifier @con_id between
1328 * @fwnode and other device nodes. @match will be used to convert the
1329 * connection description to data the caller is expecting to be returned
1330 * through the @matches array.
1331 * If @matches is NULL @matches_len is ignored and the total number of resolved
1332 * matches is returned.
1333 *
1334 * Return: Number of matches resolved, or negative errno.
1335 */
1336int fwnode_connection_find_matches(const struct fwnode_handle *fwnode,
1337				   const char *con_id, void *data,
1338				   devcon_match_fn_t match,
1339				   void **matches, unsigned int matches_len)
1340{
1341	unsigned int count_graph;
1342	unsigned int count_ref;
1343
1344	if (!fwnode || !match)
1345		return -EINVAL;
1346
1347	count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match,
1348						  matches, matches_len);
1349
1350	if (matches) {
1351		matches += count_graph;
1352		matches_len -= count_graph;
1353	}
1354
1355	count_ref = fwnode_devcon_matches(fwnode, con_id, data, match,
1356					  matches, matches_len);
1357
1358	return count_graph + count_ref;
1359}
1360EXPORT_SYMBOL_GPL(fwnode_connection_find_matches);
v4.6
 
   1/*
   2 * property.c - Unified device property interface.
   3 *
   4 * Copyright (C) 2014, Intel Corporation
   5 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
   6 *          Mika Westerberg <mika.westerberg@linux.intel.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/acpi.h>
  14#include <linux/export.h>
  15#include <linux/kernel.h>
  16#include <linux/of.h>
  17#include <linux/of_address.h>
 
 
  18#include <linux/property.h>
  19#include <linux/etherdevice.h>
  20#include <linux/phy.h>
  21
  22static inline bool is_pset_node(struct fwnode_handle *fwnode)
  23{
  24	return !IS_ERR_OR_NULL(fwnode) && fwnode->type == FWNODE_PDATA;
  25}
  26
  27static inline struct property_set *to_pset_node(struct fwnode_handle *fwnode)
  28{
  29	return is_pset_node(fwnode) ?
  30		container_of(fwnode, struct property_set, fwnode) : NULL;
  31}
  32
  33static struct property_entry *pset_prop_get(struct property_set *pset,
  34					    const char *name)
  35{
  36	struct property_entry *prop;
  37
  38	if (!pset || !pset->properties)
  39		return NULL;
  40
  41	for (prop = pset->properties; prop->name; prop++)
  42		if (!strcmp(name, prop->name))
  43			return prop;
  44
  45	return NULL;
  46}
  47
  48static void *pset_prop_find(struct property_set *pset, const char *propname,
  49			    size_t length)
  50{
  51	struct property_entry *prop;
  52	void *pointer;
  53
  54	prop = pset_prop_get(pset, propname);
  55	if (!prop)
  56		return ERR_PTR(-EINVAL);
  57	if (prop->is_array)
  58		pointer = prop->pointer.raw_data;
  59	else
  60		pointer = &prop->value.raw_data;
  61	if (!pointer)
  62		return ERR_PTR(-ENODATA);
  63	if (length > prop->length)
  64		return ERR_PTR(-EOVERFLOW);
  65	return pointer;
  66}
  67
  68static int pset_prop_read_u8_array(struct property_set *pset,
  69				   const char *propname,
  70				   u8 *values, size_t nval)
  71{
  72	void *pointer;
  73	size_t length = nval * sizeof(*values);
  74
  75	pointer = pset_prop_find(pset, propname, length);
  76	if (IS_ERR(pointer))
  77		return PTR_ERR(pointer);
  78
  79	memcpy(values, pointer, length);
  80	return 0;
  81}
 
  82
  83static int pset_prop_read_u16_array(struct property_set *pset,
  84				    const char *propname,
  85				    u16 *values, size_t nval)
  86{
  87	void *pointer;
  88	size_t length = nval * sizeof(*values);
  89
  90	pointer = pset_prop_find(pset, propname, length);
  91	if (IS_ERR(pointer))
  92		return PTR_ERR(pointer);
  93
  94	memcpy(values, pointer, length);
  95	return 0;
  96}
  97
  98static int pset_prop_read_u32_array(struct property_set *pset,
  99				    const char *propname,
 100				    u32 *values, size_t nval)
 101{
 102	void *pointer;
 103	size_t length = nval * sizeof(*values);
 104
 105	pointer = pset_prop_find(pset, propname, length);
 106	if (IS_ERR(pointer))
 107		return PTR_ERR(pointer);
 108
 109	memcpy(values, pointer, length);
 110	return 0;
 111}
 112
 113static int pset_prop_read_u64_array(struct property_set *pset,
 114				    const char *propname,
 115				    u64 *values, size_t nval)
 116{
 117	void *pointer;
 118	size_t length = nval * sizeof(*values);
 119
 120	pointer = pset_prop_find(pset, propname, length);
 121	if (IS_ERR(pointer))
 122		return PTR_ERR(pointer);
 123
 124	memcpy(values, pointer, length);
 125	return 0;
 126}
 127
 128static int pset_prop_count_elems_of_size(struct property_set *pset,
 129					 const char *propname, size_t length)
 130{
 131	struct property_entry *prop;
 132
 133	prop = pset_prop_get(pset, propname);
 134	if (!prop)
 135		return -EINVAL;
 136
 137	return prop->length / length;
 138}
 139
 140static int pset_prop_read_string_array(struct property_set *pset,
 141				       const char *propname,
 142				       const char **strings, size_t nval)
 143{
 144	void *pointer;
 145	size_t length = nval * sizeof(*strings);
 146
 147	pointer = pset_prop_find(pset, propname, length);
 148	if (IS_ERR(pointer))
 149		return PTR_ERR(pointer);
 150
 151	memcpy(strings, pointer, length);
 152	return 0;
 153}
 154
 155static int pset_prop_read_string(struct property_set *pset,
 156				 const char *propname, const char **strings)
 157{
 158	struct property_entry *prop;
 159	const char **pointer;
 160
 161	prop = pset_prop_get(pset, propname);
 162	if (!prop)
 163		return -EINVAL;
 164	if (!prop->is_string)
 165		return -EILSEQ;
 166	if (prop->is_array) {
 167		pointer = prop->pointer.str;
 168		if (!pointer)
 169			return -ENODATA;
 170	} else {
 171		pointer = &prop->value.str;
 172		if (*pointer && strnlen(*pointer, prop->length) >= prop->length)
 173			return -EILSEQ;
 174	}
 175
 176	*strings = *pointer;
 177	return 0;
 178}
 179
 180static inline struct fwnode_handle *dev_fwnode(struct device *dev)
 181{
 182	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
 183		&dev->of_node->fwnode : dev->fwnode;
 184}
 
 185
 186/**
 187 * device_property_present - check if a property of a device is present
 188 * @dev: Device whose property is being checked
 189 * @propname: Name of the property
 190 *
 191 * Check if property @propname is present in the device firmware description.
 192 */
 193bool device_property_present(struct device *dev, const char *propname)
 194{
 195	return fwnode_property_present(dev_fwnode(dev), propname);
 196}
 197EXPORT_SYMBOL_GPL(device_property_present);
 198
 199static bool __fwnode_property_present(struct fwnode_handle *fwnode,
 200				      const char *propname)
 201{
 202	if (is_of_node(fwnode))
 203		return of_property_read_bool(to_of_node(fwnode), propname);
 204	else if (is_acpi_node(fwnode))
 205		return !acpi_node_prop_get(fwnode, propname, NULL);
 206	else if (is_pset_node(fwnode))
 207		return !!pset_prop_get(to_pset_node(fwnode), propname);
 208	return false;
 209}
 210
 211/**
 212 * fwnode_property_present - check if a property of a firmware node is present
 213 * @fwnode: Firmware node whose property to check
 214 * @propname: Name of the property
 215 */
 216bool fwnode_property_present(struct fwnode_handle *fwnode, const char *propname)
 
 217{
 218	bool ret;
 219
 220	ret = __fwnode_property_present(fwnode, propname);
 221	if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
 222	    !IS_ERR_OR_NULL(fwnode->secondary))
 223		ret = __fwnode_property_present(fwnode->secondary, propname);
 224	return ret;
 
 
 
 225}
 226EXPORT_SYMBOL_GPL(fwnode_property_present);
 227
 228/**
 229 * device_property_read_u8_array - return a u8 array property of a device
 230 * @dev: Device to get the property of
 231 * @propname: Name of the property
 232 * @val: The values are stored here or %NULL to return the number of values
 233 * @nval: Size of the @val array
 234 *
 235 * Function reads an array of u8 properties with @propname from the device
 236 * firmware description and stores them to @val if found.
 237 *
 
 
 
 238 * Return: number of values if @val was %NULL,
 239 *         %0 if the property was found (success),
 240 *	   %-EINVAL if given arguments are not valid,
 241 *	   %-ENODATA if the property does not have a value,
 242 *	   %-EPROTO if the property is not an array of numbers,
 243 *	   %-EOVERFLOW if the size of the property is not as expected.
 244 *	   %-ENXIO if no suitable firmware interface is present.
 245 */
 246int device_property_read_u8_array(struct device *dev, const char *propname,
 247				  u8 *val, size_t nval)
 248{
 249	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
 250}
 251EXPORT_SYMBOL_GPL(device_property_read_u8_array);
 252
 253/**
 254 * device_property_read_u16_array - return a u16 array property of a device
 255 * @dev: Device to get the property of
 256 * @propname: Name of the property
 257 * @val: The values are stored here or %NULL to return the number of values
 258 * @nval: Size of the @val array
 259 *
 260 * Function reads an array of u16 properties with @propname from the device
 261 * firmware description and stores them to @val if found.
 262 *
 
 
 
 263 * Return: number of values if @val was %NULL,
 264 *         %0 if the property was found (success),
 265 *	   %-EINVAL if given arguments are not valid,
 266 *	   %-ENODATA if the property does not have a value,
 267 *	   %-EPROTO if the property is not an array of numbers,
 268 *	   %-EOVERFLOW if the size of the property is not as expected.
 269 *	   %-ENXIO if no suitable firmware interface is present.
 270 */
 271int device_property_read_u16_array(struct device *dev, const char *propname,
 272				   u16 *val, size_t nval)
 273{
 274	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
 275}
 276EXPORT_SYMBOL_GPL(device_property_read_u16_array);
 277
 278/**
 279 * device_property_read_u32_array - return a u32 array property of a device
 280 * @dev: Device to get the property of
 281 * @propname: Name of the property
 282 * @val: The values are stored here or %NULL to return the number of values
 283 * @nval: Size of the @val array
 284 *
 285 * Function reads an array of u32 properties with @propname from the device
 286 * firmware description and stores them to @val if found.
 287 *
 
 
 
 288 * Return: number of values if @val was %NULL,
 289 *         %0 if the property was found (success),
 290 *	   %-EINVAL if given arguments are not valid,
 291 *	   %-ENODATA if the property does not have a value,
 292 *	   %-EPROTO if the property is not an array of numbers,
 293 *	   %-EOVERFLOW if the size of the property is not as expected.
 294 *	   %-ENXIO if no suitable firmware interface is present.
 295 */
 296int device_property_read_u32_array(struct device *dev, const char *propname,
 297				   u32 *val, size_t nval)
 298{
 299	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
 300}
 301EXPORT_SYMBOL_GPL(device_property_read_u32_array);
 302
 303/**
 304 * device_property_read_u64_array - return a u64 array property of a device
 305 * @dev: Device to get the property of
 306 * @propname: Name of the property
 307 * @val: The values are stored here or %NULL to return the number of values
 308 * @nval: Size of the @val array
 309 *
 310 * Function reads an array of u64 properties with @propname from the device
 311 * firmware description and stores them to @val if found.
 312 *
 
 
 
 313 * Return: number of values if @val was %NULL,
 314 *         %0 if the property was found (success),
 315 *	   %-EINVAL if given arguments are not valid,
 316 *	   %-ENODATA if the property does not have a value,
 317 *	   %-EPROTO if the property is not an array of numbers,
 318 *	   %-EOVERFLOW if the size of the property is not as expected.
 319 *	   %-ENXIO if no suitable firmware interface is present.
 320 */
 321int device_property_read_u64_array(struct device *dev, const char *propname,
 322				   u64 *val, size_t nval)
 323{
 324	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
 325}
 326EXPORT_SYMBOL_GPL(device_property_read_u64_array);
 327
 328/**
 329 * device_property_read_string_array - return a string array property of device
 330 * @dev: Device to get the property of
 331 * @propname: Name of the property
 332 * @val: The values are stored here or %NULL to return the number of values
 333 * @nval: Size of the @val array
 334 *
 335 * Function reads an array of string properties with @propname from the device
 336 * firmware description and stores them to @val if found.
 337 *
 338 * Return: number of values if @val was %NULL,
 339 *         %0 if the property was found (success),
 
 
 
 340 *	   %-EINVAL if given arguments are not valid,
 341 *	   %-ENODATA if the property does not have a value,
 342 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 343 *	   %-EOVERFLOW if the size of the property is not as expected.
 344 *	   %-ENXIO if no suitable firmware interface is present.
 345 */
 346int device_property_read_string_array(struct device *dev, const char *propname,
 347				      const char **val, size_t nval)
 348{
 349	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
 350}
 351EXPORT_SYMBOL_GPL(device_property_read_string_array);
 352
 353/**
 354 * device_property_read_string - return a string property of a device
 355 * @dev: Device to get the property of
 356 * @propname: Name of the property
 357 * @val: The value is stored here
 358 *
 359 * Function reads property @propname from the device firmware description and
 360 * stores the value into @val if found. The value is checked to be a string.
 361 *
 362 * Return: %0 if the property was found (success),
 363 *	   %-EINVAL if given arguments are not valid,
 364 *	   %-ENODATA if the property does not have a value,
 365 *	   %-EPROTO or %-EILSEQ if the property type is not a string.
 366 *	   %-ENXIO if no suitable firmware interface is present.
 367 */
 368int device_property_read_string(struct device *dev, const char *propname,
 369				const char **val)
 370{
 371	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
 372}
 373EXPORT_SYMBOL_GPL(device_property_read_string);
 374
 375/**
 376 * device_property_match_string - find a string in an array and return index
 377 * @dev: Device to get the property of
 378 * @propname: Name of the property holding the array
 379 * @string: String to look for
 380 *
 381 * Find a given string in a string array and if it is found return the
 382 * index back.
 383 *
 384 * Return: %0 if the property was found (success),
 385 *	   %-EINVAL if given arguments are not valid,
 386 *	   %-ENODATA if the property does not have a value,
 387 *	   %-EPROTO if the property is not an array of strings,
 388 *	   %-ENXIO if no suitable firmware interface is present.
 389 */
 390int device_property_match_string(struct device *dev, const char *propname,
 391				 const char *string)
 392{
 393	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
 394}
 395EXPORT_SYMBOL_GPL(device_property_match_string);
 396
 397#define OF_DEV_PROP_READ_ARRAY(node, propname, type, val, nval)				\
 398	(val) ? of_property_read_##type##_array((node), (propname), (val), (nval))	\
 399	      : of_property_count_elems_of_size((node), (propname), sizeof(type))
 400
 401#define PSET_PROP_READ_ARRAY(node, propname, type, val, nval)				\
 402	(val) ? pset_prop_read_##type##_array((node), (propname), (val), (nval))	\
 403	      : pset_prop_count_elems_of_size((node), (propname), sizeof(type))
 404
 405#define FWNODE_PROP_READ(_fwnode_, _propname_, _type_, _proptype_, _val_, _nval_)	\
 406({											\
 407	int _ret_;									\
 408	if (is_of_node(_fwnode_))							\
 409		_ret_ = OF_DEV_PROP_READ_ARRAY(to_of_node(_fwnode_), _propname_,	\
 410					       _type_, _val_, _nval_);			\
 411	else if (is_acpi_node(_fwnode_))						\
 412		_ret_ = acpi_node_prop_read(_fwnode_, _propname_, _proptype_,		\
 413					    _val_, _nval_);				\
 414	else if (is_pset_node(_fwnode_)) 						\
 415		_ret_ = PSET_PROP_READ_ARRAY(to_pset_node(_fwnode_), _propname_,	\
 416					     _type_, _val_, _nval_);			\
 417	else										\
 418		_ret_ = -ENXIO;								\
 419	_ret_;										\
 420})
 421
 422#define FWNODE_PROP_READ_ARRAY(_fwnode_, _propname_, _type_, _proptype_, _val_, _nval_)	\
 423({											\
 424	int _ret_;									\
 425	_ret_ = FWNODE_PROP_READ(_fwnode_, _propname_, _type_, _proptype_,		\
 426				 _val_, _nval_);					\
 427	if (_ret_ == -EINVAL && !IS_ERR_OR_NULL(_fwnode_) &&				\
 428	    !IS_ERR_OR_NULL(_fwnode_->secondary))					\
 429		_ret_ = FWNODE_PROP_READ(_fwnode_->secondary, _propname_, _type_,	\
 430				_proptype_, _val_, _nval_);				\
 431	_ret_;										\
 432})
 433
 434/**
 435 * fwnode_property_read_u8_array - return a u8 array property of firmware node
 436 * @fwnode: Firmware node to get the property of
 437 * @propname: Name of the property
 438 * @val: The values are stored here or %NULL to return the number of values
 439 * @nval: Size of the @val array
 440 *
 441 * Read an array of u8 properties with @propname from @fwnode and stores them to
 442 * @val if found.
 443 *
 
 
 
 444 * Return: number of values if @val was %NULL,
 445 *         %0 if the property was found (success),
 446 *	   %-EINVAL if given arguments are not valid,
 447 *	   %-ENODATA if the property does not have a value,
 448 *	   %-EPROTO if the property is not an array of numbers,
 449 *	   %-EOVERFLOW if the size of the property is not as expected,
 450 *	   %-ENXIO if no suitable firmware interface is present.
 451 */
 452int fwnode_property_read_u8_array(struct fwnode_handle *fwnode,
 453				  const char *propname, u8 *val, size_t nval)
 454{
 455	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u8, DEV_PROP_U8,
 456				      val, nval);
 457}
 458EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
 459
 460/**
 461 * fwnode_property_read_u16_array - return a u16 array property of firmware node
 462 * @fwnode: Firmware node to get the property of
 463 * @propname: Name of the property
 464 * @val: The values are stored here or %NULL to return the number of values
 465 * @nval: Size of the @val array
 466 *
 467 * Read an array of u16 properties with @propname from @fwnode and store them to
 468 * @val if found.
 469 *
 
 
 
 470 * Return: number of values if @val was %NULL,
 471 *         %0 if the property was found (success),
 472 *	   %-EINVAL if given arguments are not valid,
 473 *	   %-ENODATA if the property does not have a value,
 474 *	   %-EPROTO if the property is not an array of numbers,
 475 *	   %-EOVERFLOW if the size of the property is not as expected,
 476 *	   %-ENXIO if no suitable firmware interface is present.
 477 */
 478int fwnode_property_read_u16_array(struct fwnode_handle *fwnode,
 479				   const char *propname, u16 *val, size_t nval)
 480{
 481	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u16, DEV_PROP_U16,
 482				      val, nval);
 483}
 484EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
 485
 486/**
 487 * fwnode_property_read_u32_array - return a u32 array property of firmware node
 488 * @fwnode: Firmware node to get the property of
 489 * @propname: Name of the property
 490 * @val: The values are stored here or %NULL to return the number of values
 491 * @nval: Size of the @val array
 492 *
 493 * Read an array of u32 properties with @propname from @fwnode store them to
 494 * @val if found.
 495 *
 
 
 
 496 * Return: number of values if @val was %NULL,
 497 *         %0 if the property was found (success),
 498 *	   %-EINVAL if given arguments are not valid,
 499 *	   %-ENODATA if the property does not have a value,
 500 *	   %-EPROTO if the property is not an array of numbers,
 501 *	   %-EOVERFLOW if the size of the property is not as expected,
 502 *	   %-ENXIO if no suitable firmware interface is present.
 503 */
 504int fwnode_property_read_u32_array(struct fwnode_handle *fwnode,
 505				   const char *propname, u32 *val, size_t nval)
 506{
 507	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u32, DEV_PROP_U32,
 508				      val, nval);
 509}
 510EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
 511
 512/**
 513 * fwnode_property_read_u64_array - return a u64 array property firmware node
 514 * @fwnode: Firmware node to get the property of
 515 * @propname: Name of the property
 516 * @val: The values are stored here or %NULL to return the number of values
 517 * @nval: Size of the @val array
 518 *
 519 * Read an array of u64 properties with @propname from @fwnode and store them to
 520 * @val if found.
 521 *
 
 
 
 522 * Return: number of values if @val was %NULL,
 523 *         %0 if the property was found (success),
 524 *	   %-EINVAL if given arguments are not valid,
 525 *	   %-ENODATA if the property does not have a value,
 526 *	   %-EPROTO if the property is not an array of numbers,
 527 *	   %-EOVERFLOW if the size of the property is not as expected,
 528 *	   %-ENXIO if no suitable firmware interface is present.
 529 */
 530int fwnode_property_read_u64_array(struct fwnode_handle *fwnode,
 531				   const char *propname, u64 *val, size_t nval)
 532{
 533	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u64, DEV_PROP_U64,
 534				      val, nval);
 535}
 536EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
 537
 538static int __fwnode_property_read_string_array(struct fwnode_handle *fwnode,
 539					       const char *propname,
 540					       const char **val, size_t nval)
 541{
 542	if (is_of_node(fwnode))
 543		return val ?
 544			of_property_read_string_array(to_of_node(fwnode),
 545						      propname, val, nval) :
 546			of_property_count_strings(to_of_node(fwnode), propname);
 547	else if (is_acpi_node(fwnode))
 548		return acpi_node_prop_read(fwnode, propname, DEV_PROP_STRING,
 549					   val, nval);
 550	else if (is_pset_node(fwnode))
 551		return val ?
 552			pset_prop_read_string_array(to_pset_node(fwnode),
 553						    propname, val, nval) :
 554			pset_prop_count_elems_of_size(to_pset_node(fwnode),
 555						      propname,
 556						      sizeof(const char *));
 557	return -ENXIO;
 558}
 559
 560static int __fwnode_property_read_string(struct fwnode_handle *fwnode,
 561					 const char *propname, const char **val)
 562{
 563	if (is_of_node(fwnode))
 564		return of_property_read_string(to_of_node(fwnode), propname, val);
 565	else if (is_acpi_node(fwnode))
 566		return acpi_node_prop_read(fwnode, propname, DEV_PROP_STRING,
 567					   val, 1);
 568	else if (is_pset_node(fwnode))
 569		return pset_prop_read_string(to_pset_node(fwnode), propname, val);
 570	return -ENXIO;
 571}
 572
 573/**
 574 * fwnode_property_read_string_array - return string array property of a node
 575 * @fwnode: Firmware node to get the property of
 576 * @propname: Name of the property
 577 * @val: The values are stored here or %NULL to return the number of values
 578 * @nval: Size of the @val array
 579 *
 580 * Read an string list property @propname from the given firmware node and store
 581 * them to @val if found.
 582 *
 583 * Return: number of values if @val was %NULL,
 584 *         %0 if the property was found (success),
 
 
 
 585 *	   %-EINVAL if given arguments are not valid,
 586 *	   %-ENODATA if the property does not have a value,
 587 *	   %-EPROTO if the property is not an array of strings,
 588 *	   %-EOVERFLOW if the size of the property is not as expected,
 589 *	   %-ENXIO if no suitable firmware interface is present.
 590 */
 591int fwnode_property_read_string_array(struct fwnode_handle *fwnode,
 592				      const char *propname, const char **val,
 593				      size_t nval)
 594{
 595	int ret;
 596
 597	ret = __fwnode_property_read_string_array(fwnode, propname, val, nval);
 598	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
 599	    !IS_ERR_OR_NULL(fwnode->secondary))
 600		ret = __fwnode_property_read_string_array(fwnode->secondary,
 601							  propname, val, nval);
 602	return ret;
 
 
 
 
 603}
 604EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
 605
 606/**
 607 * fwnode_property_read_string - return a string property of a firmware node
 608 * @fwnode: Firmware node to get the property of
 609 * @propname: Name of the property
 610 * @val: The value is stored here
 611 *
 612 * Read property @propname from the given firmware node and store the value into
 613 * @val if found.  The value is checked to be a string.
 614 *
 615 * Return: %0 if the property was found (success),
 616 *	   %-EINVAL if given arguments are not valid,
 617 *	   %-ENODATA if the property does not have a value,
 618 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 619 *	   %-ENXIO if no suitable firmware interface is present.
 620 */
 621int fwnode_property_read_string(struct fwnode_handle *fwnode,
 622				const char *propname, const char **val)
 623{
 624	int ret;
 625
 626	ret = __fwnode_property_read_string(fwnode, propname, val);
 627	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
 628	    !IS_ERR_OR_NULL(fwnode->secondary))
 629		ret = __fwnode_property_read_string(fwnode->secondary,
 630						    propname, val);
 631	return ret;
 632}
 633EXPORT_SYMBOL_GPL(fwnode_property_read_string);
 634
 635/**
 636 * fwnode_property_match_string - find a string in an array and return index
 637 * @fwnode: Firmware node to get the property of
 638 * @propname: Name of the property holding the array
 639 * @string: String to look for
 640 *
 641 * Find a given string in a string array and if it is found return the
 642 * index back.
 643 *
 644 * Return: %0 if the property was found (success),
 645 *	   %-EINVAL if given arguments are not valid,
 646 *	   %-ENODATA if the property does not have a value,
 647 *	   %-EPROTO if the property is not an array of strings,
 648 *	   %-ENXIO if no suitable firmware interface is present.
 649 */
 650int fwnode_property_match_string(struct fwnode_handle *fwnode,
 651	const char *propname, const char *string)
 652{
 653	const char **values;
 654	int nval, ret;
 655
 656	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
 657	if (nval < 0)
 658		return nval;
 659
 660	if (nval == 0)
 661		return -ENODATA;
 662
 663	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
 664	if (!values)
 665		return -ENOMEM;
 666
 667	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
 668	if (ret < 0)
 669		goto out;
 670
 671	ret = match_string(values, nval, string);
 672	if (ret < 0)
 673		ret = -ENODATA;
 674out:
 
 675	kfree(values);
 676	return ret;
 677}
 678EXPORT_SYMBOL_GPL(fwnode_property_match_string);
 679
 680/**
 681 * pset_free_set - releases memory allocated for copied property set
 682 * @pset: Property set to release
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683 *
 684 * Function takes previously copied property set and releases all the
 685 * memory allocated to it.
 686 */
 687static void pset_free_set(struct property_set *pset)
 688{
 689	const struct property_entry *prop;
 690	size_t i, nval;
 691
 692	if (!pset)
 693		return;
 694
 695	for (prop = pset->properties; prop->name; prop++) {
 696		if (prop->is_array) {
 697			if (prop->is_string && prop->pointer.str) {
 698				nval = prop->length / sizeof(const char *);
 699				for (i = 0; i < nval; i++)
 700					kfree(prop->pointer.str[i]);
 701			}
 702			kfree(prop->pointer.raw_data);
 703		} else if (prop->is_string) {
 704			kfree(prop->value.str);
 705		}
 706		kfree(prop->name);
 707	}
 708
 709	kfree(pset->properties);
 710	kfree(pset);
 
 
 
 
 
 
 
 
 711}
 
 712
 713static int pset_copy_entry(struct property_entry *dst,
 714			   const struct property_entry *src)
 
 
 
 
 
 
 
 
 
 
 715{
 716	const char **d, **s;
 717	size_t i, nval;
 
 
 
 
 
 718
 719	dst->name = kstrdup(src->name, GFP_KERNEL);
 720	if (!dst->name)
 721		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 722
 723	if (src->is_array) {
 724		if (!src->length)
 725			return -ENODATA;
 726
 727		if (src->is_string) {
 728			nval = src->length / sizeof(const char *);
 729			dst->pointer.str = kcalloc(nval, sizeof(const char *),
 730						   GFP_KERNEL);
 731			if (!dst->pointer.str)
 732				return -ENOMEM;
 733
 734			d = dst->pointer.str;
 735			s = src->pointer.str;
 736			for (i = 0; i < nval; i++) {
 737				d[i] = kstrdup(s[i], GFP_KERNEL);
 738				if (!d[i] && s[i])
 739					return -ENOMEM;
 740			}
 741		} else {
 742			dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
 743							src->length, GFP_KERNEL);
 744			if (!dst->pointer.raw_data)
 745				return -ENOMEM;
 746		}
 747	} else if (src->is_string) {
 748		dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
 749		if (!dst->value.str && src->value.str)
 750			return -ENOMEM;
 751	} else {
 752		dst->value.raw_data = src->value.raw_data;
 753	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 754
 755	dst->length = src->length;
 756	dst->is_array = src->is_array;
 757	dst->is_string = src->is_string;
 758
 759	return 0;
 760}
 
 761
 762/**
 763 * pset_copy_set - copies property set
 764 * @pset: Property set to copy
 
 765 *
 766 * This function takes a deep copy of the given property set and returns
 767 * pointer to the copy. Call device_free_property_set() to free resources
 768 * allocated in this function.
 769 *
 770 * Return: Pointer to the new property set or error pointer.
 
 771 */
 772static struct property_set *pset_copy_set(const struct property_set *pset)
 
 773{
 774	const struct property_entry *entry;
 775	struct property_set *p;
 776	size_t i, n = 0;
 777
 778	p = kzalloc(sizeof(*p), GFP_KERNEL);
 779	if (!p)
 780		return ERR_PTR(-ENOMEM);
 781
 782	while (pset->properties[n].name)
 783		n++;
 784
 785	p->properties = kcalloc(n + 1, sizeof(*entry), GFP_KERNEL);
 786	if (!p->properties) {
 787		kfree(p);
 788		return ERR_PTR(-ENOMEM);
 789	}
 790
 791	for (i = 0; i < n; i++) {
 792		int ret = pset_copy_entry(&p->properties[i],
 793					  &pset->properties[i]);
 794		if (ret) {
 795			pset_free_set(p);
 796			return ERR_PTR(ret);
 797		}
 798	}
 799
 800	return p;
 801}
 
 802
 803/**
 804 * device_remove_property_set - Remove properties from a device object.
 805 * @dev: Device whose properties to remove.
 
 
 
 806 *
 807 * The function removes properties previously associated to the device
 808 * secondary firmware node with device_add_property_set(). Memory allocated
 809 * to the properties will also be released.
 810 */
 811void device_remove_property_set(struct device *dev)
 812{
 813	struct fwnode_handle *fwnode;
 
 
 
 
 
 
 814
 815	fwnode = dev_fwnode(dev);
 816	if (!fwnode)
 817		return;
 818	/*
 819	 * Pick either primary or secondary node depending which one holds
 820	 * the pset. If there is no real firmware node (ACPI/DT) primary
 821	 * will hold the pset.
 822	 */
 823	if (is_pset_node(fwnode)) {
 824		set_primary_fwnode(dev, NULL);
 825		pset_free_set(to_pset_node(fwnode));
 826	} else {
 827		fwnode = fwnode->secondary;
 828		if (!IS_ERR(fwnode) && is_pset_node(fwnode)) {
 829			set_secondary_fwnode(dev, NULL);
 830			pset_free_set(to_pset_node(fwnode));
 831		}
 832	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 833}
 834EXPORT_SYMBOL_GPL(device_remove_property_set);
 835
 836/**
 837 * device_add_property_set - Add a collection of properties to a device object.
 838 * @dev: Device to add properties to.
 839 * @pset: Collection of properties to add.
 840 *
 841 * Associate a collection of device properties represented by @pset with @dev
 842 * as its secondary firmware node. The function takes a copy of @pset.
 843 */
 844int device_add_property_set(struct device *dev, const struct property_set *pset)
 
 
 845{
 846	struct property_set *p;
 
 
 
 847
 848	if (!pset)
 849		return -EINVAL;
 
 
 
 850
 851	p = pset_copy_set(pset);
 852	if (IS_ERR(p))
 853		return PTR_ERR(p);
 854
 855	p->fwnode.type = FWNODE_PDATA;
 856	set_secondary_fwnode(dev, &p->fwnode);
 857	return 0;
 858}
 859EXPORT_SYMBOL_GPL(device_add_property_set);
 860
 861/**
 862 * device_get_next_child_node - Return the next child node handle for a device
 863 * @dev: Device to find the next child node for.
 864 * @child: Handle to one of the device's child nodes or a null handle.
 865 */
 866struct fwnode_handle *device_get_next_child_node(struct device *dev,
 867						 struct fwnode_handle *child)
 868{
 869	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
 870		struct device_node *node;
 
 
 
 871
 872		node = of_get_next_available_child(dev->of_node, to_of_node(child));
 873		if (node)
 874			return &node->fwnode;
 875	} else if (IS_ENABLED(CONFIG_ACPI)) {
 876		return acpi_get_next_subnode(dev, child);
 877	}
 878	return NULL;
 879}
 880EXPORT_SYMBOL_GPL(device_get_next_child_node);
 881
 882/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 883 * fwnode_handle_put - Drop reference to a device node
 884 * @fwnode: Pointer to the device node to drop the reference to.
 885 *
 886 * This has to be used when terminating device_for_each_child_node() iteration
 887 * with break or return to prevent stale device node references from being left
 888 * behind.
 889 */
 890void fwnode_handle_put(struct fwnode_handle *fwnode)
 891{
 892	if (is_of_node(fwnode))
 893		of_node_put(to_of_node(fwnode));
 894}
 895EXPORT_SYMBOL_GPL(fwnode_handle_put);
 896
 897/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 898 * device_get_child_node_count - return the number of child nodes for device
 899 * @dev: Device to cound the child nodes for
 900 */
 901unsigned int device_get_child_node_count(struct device *dev)
 902{
 903	struct fwnode_handle *child;
 904	unsigned int count = 0;
 905
 906	device_for_each_child_node(dev, child)
 907		count++;
 908
 909	return count;
 910}
 911EXPORT_SYMBOL_GPL(device_get_child_node_count);
 912
 913bool device_dma_supported(struct device *dev)
 914{
 915	/* For DT, this is always supported.
 916	 * For ACPI, this depends on CCA, which
 917	 * is determined by the acpi_dma_supported().
 918	 */
 919	if (IS_ENABLED(CONFIG_OF) && dev->of_node)
 920		return true;
 921
 922	return acpi_dma_supported(ACPI_COMPANION(dev));
 923}
 924EXPORT_SYMBOL_GPL(device_dma_supported);
 925
 926enum dev_dma_attr device_get_dma_attr(struct device *dev)
 927{
 928	enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
 
 929
 930	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
 931		if (of_dma_is_coherent(dev->of_node))
 932			attr = DEV_DMA_COHERENT;
 933		else
 934			attr = DEV_DMA_NON_COHERENT;
 935	} else
 936		attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
 937
 938	return attr;
 939}
 940EXPORT_SYMBOL_GPL(device_get_dma_attr);
 941
 942/**
 943 * device_get_phy_mode - Get phy mode for given device
 944 * @dev:	Pointer to the given device
 945 *
 946 * The function gets phy interface string from property 'phy-mode' or
 947 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 948 * error case.
 949 */
 950int device_get_phy_mode(struct device *dev)
 951{
 952	const char *pm;
 953	int err, i;
 954
 955	err = device_property_read_string(dev, "phy-mode", &pm);
 956	if (err < 0)
 957		err = device_property_read_string(dev,
 958						  "phy-connection-type", &pm);
 959	if (err < 0)
 960		return err;
 961
 962	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
 963		if (!strcasecmp(pm, phy_modes(i)))
 964			return i;
 965
 966	return -ENODEV;
 967}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 968EXPORT_SYMBOL_GPL(device_get_phy_mode);
 969
 970static void *device_get_mac_addr(struct device *dev,
 971				 const char *name, char *addr,
 972				 int alen)
 
 
 
 
 
 973{
 974	int ret = device_property_read_u8_array(dev, name, addr, alen);
 
 
 975
 976	if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
 977		return addr;
 978	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 979}
 980
 981/**
 982 * device_get_mac_address - Get the MAC for a given device
 983 * @dev:	Pointer to the device
 984 * @addr:	Address of buffer to store the MAC in
 985 * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
 986 *
 987 * Search the firmware node for the best MAC address to use.  'mac-address' is
 988 * checked first, because that is supposed to contain to "most recent" MAC
 989 * address. If that isn't set, then 'local-mac-address' is checked next,
 990 * because that is the default address.  If that isn't set, then the obsolete
 991 * 'address' is checked, just in case we're using an old device tree.
 992 *
 993 * Note that the 'address' property is supposed to contain a virtual address of
 994 * the register set, but some DTS files have redefined that property to be the
 995 * MAC address.
 996 *
 997 * All-zero MAC addresses are rejected, because those could be properties that
 998 * exist in the firmware tables, but were not updated by the firmware.  For
 999 * example, the DTS could define 'mac-address' and 'local-mac-address', with
1000 * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
1001 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
1002 * exists but is all zeros.
1003*/
1004void *device_get_mac_address(struct device *dev, char *addr, int alen)
1005{
1006	char *res;
1007
1008	res = device_get_mac_addr(dev, "mac-address", addr, alen);
1009	if (res)
1010		return res;
1011
1012	res = device_get_mac_addr(dev, "local-mac-address", addr, alen);
1013	if (res)
1014		return res;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015
1016	return device_get_mac_addr(dev, "address", addr, alen);
1017}
1018EXPORT_SYMBOL(device_get_mac_address);