Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* Parse a signed PE binary
3 *
4 * Copyright (C) 2014 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8#define pr_fmt(fmt) "PEFILE: "fmt
9#include <linux/module.h>
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/err.h>
13#include <linux/pe.h>
14#include <linux/asn1.h>
15#include <linux/verification.h>
16#include <crypto/hash.h>
17#include "verify_pefile.h"
18
19/*
20 * Parse a PE binary.
21 */
22static int pefile_parse_binary(const void *pebuf, unsigned int pelen,
23 struct pefile_context *ctx)
24{
25 const struct mz_hdr *mz = pebuf;
26 const struct pe_hdr *pe;
27 const struct pe32_opt_hdr *pe32;
28 const struct pe32plus_opt_hdr *pe64;
29 const struct data_directory *ddir;
30 const struct data_dirent *dde;
31 const struct section_header *secs, *sec;
32 size_t cursor, datalen = pelen;
33
34 kenter("");
35
36#define chkaddr(base, x, s) \
37 do { \
38 if ((x) < base || (s) >= datalen || (x) > datalen - (s)) \
39 return -ELIBBAD; \
40 } while (0)
41
42 chkaddr(0, 0, sizeof(*mz));
43 if (mz->magic != MZ_MAGIC)
44 return -ELIBBAD;
45 cursor = sizeof(*mz);
46
47 chkaddr(cursor, mz->peaddr, sizeof(*pe));
48 pe = pebuf + mz->peaddr;
49 if (pe->magic != PE_MAGIC)
50 return -ELIBBAD;
51 cursor = mz->peaddr + sizeof(*pe);
52
53 chkaddr(0, cursor, sizeof(pe32->magic));
54 pe32 = pebuf + cursor;
55 pe64 = pebuf + cursor;
56
57 switch (pe32->magic) {
58 case PE_OPT_MAGIC_PE32:
59 chkaddr(0, cursor, sizeof(*pe32));
60 ctx->image_checksum_offset =
61 (unsigned long)&pe32->csum - (unsigned long)pebuf;
62 ctx->header_size = pe32->header_size;
63 cursor += sizeof(*pe32);
64 ctx->n_data_dirents = pe32->data_dirs;
65 break;
66
67 case PE_OPT_MAGIC_PE32PLUS:
68 chkaddr(0, cursor, sizeof(*pe64));
69 ctx->image_checksum_offset =
70 (unsigned long)&pe64->csum - (unsigned long)pebuf;
71 ctx->header_size = pe64->header_size;
72 cursor += sizeof(*pe64);
73 ctx->n_data_dirents = pe64->data_dirs;
74 break;
75
76 default:
77 pr_debug("Unknown PEOPT magic = %04hx\n", pe32->magic);
78 return -ELIBBAD;
79 }
80
81 pr_debug("checksum @ %x\n", ctx->image_checksum_offset);
82 pr_debug("header size = %x\n", ctx->header_size);
83
84 if (cursor >= ctx->header_size || ctx->header_size >= datalen)
85 return -ELIBBAD;
86
87 if (ctx->n_data_dirents > (ctx->header_size - cursor) / sizeof(*dde))
88 return -ELIBBAD;
89
90 ddir = pebuf + cursor;
91 cursor += sizeof(*dde) * ctx->n_data_dirents;
92
93 ctx->cert_dirent_offset =
94 (unsigned long)&ddir->certs - (unsigned long)pebuf;
95 ctx->certs_size = ddir->certs.size;
96
97 if (!ddir->certs.virtual_address || !ddir->certs.size) {
98 pr_debug("Unsigned PE binary\n");
99 return -ENODATA;
100 }
101
102 chkaddr(ctx->header_size, ddir->certs.virtual_address,
103 ddir->certs.size);
104 ctx->sig_offset = ddir->certs.virtual_address;
105 ctx->sig_len = ddir->certs.size;
106 pr_debug("cert = %x @%x [%*ph]\n",
107 ctx->sig_len, ctx->sig_offset,
108 ctx->sig_len, pebuf + ctx->sig_offset);
109
110 ctx->n_sections = pe->sections;
111 if (ctx->n_sections > (ctx->header_size - cursor) / sizeof(*sec))
112 return -ELIBBAD;
113 ctx->secs = secs = pebuf + cursor;
114
115 return 0;
116}
117
118/*
119 * Check and strip the PE wrapper from around the signature and check that the
120 * remnant looks something like PKCS#7.
121 */
122static int pefile_strip_sig_wrapper(const void *pebuf,
123 struct pefile_context *ctx)
124{
125 struct win_certificate wrapper;
126 const u8 *pkcs7;
127 unsigned len;
128
129 if (ctx->sig_len < sizeof(wrapper)) {
130 pr_debug("Signature wrapper too short\n");
131 return -ELIBBAD;
132 }
133
134 memcpy(&wrapper, pebuf + ctx->sig_offset, sizeof(wrapper));
135 pr_debug("sig wrapper = { %x, %x, %x }\n",
136 wrapper.length, wrapper.revision, wrapper.cert_type);
137
138 /* Both pesign and sbsign round up the length of certificate table
139 * (in optional header data directories) to 8 byte alignment.
140 */
141 if (round_up(wrapper.length, 8) != ctx->sig_len) {
142 pr_debug("Signature wrapper len wrong\n");
143 return -ELIBBAD;
144 }
145 if (wrapper.revision != WIN_CERT_REVISION_2_0) {
146 pr_debug("Signature is not revision 2.0\n");
147 return -ENOTSUPP;
148 }
149 if (wrapper.cert_type != WIN_CERT_TYPE_PKCS_SIGNED_DATA) {
150 pr_debug("Signature certificate type is not PKCS\n");
151 return -ENOTSUPP;
152 }
153
154 /* It looks like the pkcs signature length in wrapper->length and the
155 * size obtained from the data dir entries, which lists the total size
156 * of certificate table, are both aligned to an octaword boundary, so
157 * we may have to deal with some padding.
158 */
159 ctx->sig_len = wrapper.length;
160 ctx->sig_offset += sizeof(wrapper);
161 ctx->sig_len -= sizeof(wrapper);
162 if (ctx->sig_len < 4) {
163 pr_debug("Signature data missing\n");
164 return -EKEYREJECTED;
165 }
166
167 /* What's left should be a PKCS#7 cert */
168 pkcs7 = pebuf + ctx->sig_offset;
169 if (pkcs7[0] != (ASN1_CONS_BIT | ASN1_SEQ))
170 goto not_pkcs7;
171
172 switch (pkcs7[1]) {
173 case 0 ... 0x7f:
174 len = pkcs7[1] + 2;
175 goto check_len;
176 case ASN1_INDEFINITE_LENGTH:
177 return 0;
178 case 0x81:
179 len = pkcs7[2] + 3;
180 goto check_len;
181 case 0x82:
182 len = ((pkcs7[2] << 8) | pkcs7[3]) + 4;
183 goto check_len;
184 case 0x83 ... 0xff:
185 return -EMSGSIZE;
186 default:
187 goto not_pkcs7;
188 }
189
190check_len:
191 if (len <= ctx->sig_len) {
192 /* There may be padding */
193 ctx->sig_len = len;
194 return 0;
195 }
196not_pkcs7:
197 pr_debug("Signature data not PKCS#7\n");
198 return -ELIBBAD;
199}
200
201/*
202 * Compare two sections for canonicalisation.
203 */
204static int pefile_compare_shdrs(const void *a, const void *b)
205{
206 const struct section_header *shdra = a;
207 const struct section_header *shdrb = b;
208 int rc;
209
210 if (shdra->data_addr > shdrb->data_addr)
211 return 1;
212 if (shdrb->data_addr > shdra->data_addr)
213 return -1;
214
215 if (shdra->virtual_address > shdrb->virtual_address)
216 return 1;
217 if (shdrb->virtual_address > shdra->virtual_address)
218 return -1;
219
220 rc = strcmp(shdra->name, shdrb->name);
221 if (rc != 0)
222 return rc;
223
224 if (shdra->virtual_size > shdrb->virtual_size)
225 return 1;
226 if (shdrb->virtual_size > shdra->virtual_size)
227 return -1;
228
229 if (shdra->raw_data_size > shdrb->raw_data_size)
230 return 1;
231 if (shdrb->raw_data_size > shdra->raw_data_size)
232 return -1;
233
234 return 0;
235}
236
237/*
238 * Load the contents of the PE binary into the digest, leaving out the image
239 * checksum and the certificate data block.
240 */
241static int pefile_digest_pe_contents(const void *pebuf, unsigned int pelen,
242 struct pefile_context *ctx,
243 struct shash_desc *desc)
244{
245 unsigned *canon, tmp, loop, i, hashed_bytes;
246 int ret;
247
248 /* Digest the header and data directory, but leave out the image
249 * checksum and the data dirent for the signature.
250 */
251 ret = crypto_shash_update(desc, pebuf, ctx->image_checksum_offset);
252 if (ret < 0)
253 return ret;
254
255 tmp = ctx->image_checksum_offset + sizeof(uint32_t);
256 ret = crypto_shash_update(desc, pebuf + tmp,
257 ctx->cert_dirent_offset - tmp);
258 if (ret < 0)
259 return ret;
260
261 tmp = ctx->cert_dirent_offset + sizeof(struct data_dirent);
262 ret = crypto_shash_update(desc, pebuf + tmp, ctx->header_size - tmp);
263 if (ret < 0)
264 return ret;
265
266 canon = kcalloc(ctx->n_sections, sizeof(unsigned), GFP_KERNEL);
267 if (!canon)
268 return -ENOMEM;
269
270 /* We have to canonicalise the section table, so we perform an
271 * insertion sort.
272 */
273 canon[0] = 0;
274 for (loop = 1; loop < ctx->n_sections; loop++) {
275 for (i = 0; i < loop; i++) {
276 if (pefile_compare_shdrs(&ctx->secs[canon[i]],
277 &ctx->secs[loop]) > 0) {
278 memmove(&canon[i + 1], &canon[i],
279 (loop - i) * sizeof(canon[0]));
280 break;
281 }
282 }
283 canon[i] = loop;
284 }
285
286 hashed_bytes = ctx->header_size;
287 for (loop = 0; loop < ctx->n_sections; loop++) {
288 i = canon[loop];
289 if (ctx->secs[i].raw_data_size == 0)
290 continue;
291 ret = crypto_shash_update(desc,
292 pebuf + ctx->secs[i].data_addr,
293 ctx->secs[i].raw_data_size);
294 if (ret < 0) {
295 kfree(canon);
296 return ret;
297 }
298 hashed_bytes += ctx->secs[i].raw_data_size;
299 }
300 kfree(canon);
301
302 if (pelen > hashed_bytes) {
303 tmp = hashed_bytes + ctx->certs_size;
304 ret = crypto_shash_update(desc,
305 pebuf + hashed_bytes,
306 pelen - tmp);
307 if (ret < 0)
308 return ret;
309 }
310
311 return 0;
312}
313
314/*
315 * Digest the contents of the PE binary, leaving out the image checksum and the
316 * certificate data block.
317 */
318static int pefile_digest_pe(const void *pebuf, unsigned int pelen,
319 struct pefile_context *ctx)
320{
321 struct crypto_shash *tfm;
322 struct shash_desc *desc;
323 size_t digest_size, desc_size;
324 void *digest;
325 int ret;
326
327 kenter(",%s", ctx->digest_algo);
328
329 /* Allocate the hashing algorithm we're going to need and find out how
330 * big the hash operational data will be.
331 */
332 tfm = crypto_alloc_shash(ctx->digest_algo, 0, 0);
333 if (IS_ERR(tfm))
334 return (PTR_ERR(tfm) == -ENOENT) ? -ENOPKG : PTR_ERR(tfm);
335
336 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
337 digest_size = crypto_shash_digestsize(tfm);
338
339 if (digest_size != ctx->digest_len) {
340 pr_debug("Digest size mismatch (%zx != %x)\n",
341 digest_size, ctx->digest_len);
342 ret = -EBADMSG;
343 goto error_no_desc;
344 }
345 pr_debug("Digest: desc=%zu size=%zu\n", desc_size, digest_size);
346
347 ret = -ENOMEM;
348 desc = kzalloc(desc_size + digest_size, GFP_KERNEL);
349 if (!desc)
350 goto error_no_desc;
351
352 desc->tfm = tfm;
353 ret = crypto_shash_init(desc);
354 if (ret < 0)
355 goto error;
356
357 ret = pefile_digest_pe_contents(pebuf, pelen, ctx, desc);
358 if (ret < 0)
359 goto error;
360
361 digest = (void *)desc + desc_size;
362 ret = crypto_shash_final(desc, digest);
363 if (ret < 0)
364 goto error;
365
366 pr_debug("Digest calc = [%*ph]\n", ctx->digest_len, digest);
367
368 /* Check that the PE file digest matches that in the MSCODE part of the
369 * PKCS#7 certificate.
370 */
371 if (memcmp(digest, ctx->digest, ctx->digest_len) != 0) {
372 pr_debug("Digest mismatch\n");
373 ret = -EKEYREJECTED;
374 } else {
375 pr_debug("The digests match!\n");
376 }
377
378error:
379 kfree_sensitive(desc);
380error_no_desc:
381 crypto_free_shash(tfm);
382 kleave(" = %d", ret);
383 return ret;
384}
385
386/**
387 * verify_pefile_signature - Verify the signature on a PE binary image
388 * @pebuf: Buffer containing the PE binary image
389 * @pelen: Length of the binary image
390 * @trust_keys: Signing certificate(s) to use as starting points
391 * @usage: The use to which the key is being put.
392 *
393 * Validate that the certificate chain inside the PKCS#7 message inside the PE
394 * binary image intersects keys we already know and trust.
395 *
396 * Returns, in order of descending priority:
397 *
398 * (*) -ELIBBAD if the image cannot be parsed, or:
399 *
400 * (*) -EKEYREJECTED if a signature failed to match for which we have a valid
401 * key, or:
402 *
403 * (*) 0 if at least one signature chain intersects with the keys in the trust
404 * keyring, or:
405 *
406 * (*) -ENODATA if there is no signature present.
407 *
408 * (*) -ENOPKG if a suitable crypto module couldn't be found for a check on a
409 * chain.
410 *
411 * (*) -ENOKEY if we couldn't find a match for any of the signature chains in
412 * the message.
413 *
414 * May also return -ENOMEM.
415 */
416int verify_pefile_signature(const void *pebuf, unsigned pelen,
417 struct key *trusted_keys,
418 enum key_being_used_for usage)
419{
420 struct pefile_context ctx;
421 int ret;
422
423 kenter("");
424
425 memset(&ctx, 0, sizeof(ctx));
426 ret = pefile_parse_binary(pebuf, pelen, &ctx);
427 if (ret < 0)
428 return ret;
429
430 ret = pefile_strip_sig_wrapper(pebuf, &ctx);
431 if (ret < 0)
432 return ret;
433
434 ret = verify_pkcs7_signature(NULL, 0,
435 pebuf + ctx.sig_offset, ctx.sig_len,
436 trusted_keys, usage,
437 mscode_parse, &ctx);
438 if (ret < 0)
439 goto error;
440
441 pr_debug("Digest: %u [%*ph]\n",
442 ctx.digest_len, ctx.digest_len, ctx.digest);
443
444 /* Generate the digest and check against the PKCS7 certificate
445 * contents.
446 */
447 ret = pefile_digest_pe(pebuf, pelen, &ctx);
448
449error:
450 kfree_sensitive(ctx.digest);
451 return ret;
452}
1/* Parse a signed PE binary
2 *
3 * Copyright (C) 2014 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public Licence
8 * as published by the Free Software Foundation; either version
9 * 2 of the Licence, or (at your option) any later version.
10 */
11
12#define pr_fmt(fmt) "PEFILE: "fmt
13#include <linux/module.h>
14#include <linux/kernel.h>
15#include <linux/slab.h>
16#include <linux/err.h>
17#include <linux/pe.h>
18#include <linux/asn1.h>
19#include <crypto/pkcs7.h>
20#include <crypto/hash.h>
21#include "verify_pefile.h"
22
23/*
24 * Parse a PE binary.
25 */
26static int pefile_parse_binary(const void *pebuf, unsigned int pelen,
27 struct pefile_context *ctx)
28{
29 const struct mz_hdr *mz = pebuf;
30 const struct pe_hdr *pe;
31 const struct pe32_opt_hdr *pe32;
32 const struct pe32plus_opt_hdr *pe64;
33 const struct data_directory *ddir;
34 const struct data_dirent *dde;
35 const struct section_header *secs, *sec;
36 size_t cursor, datalen = pelen;
37
38 kenter("");
39
40#define chkaddr(base, x, s) \
41 do { \
42 if ((x) < base || (s) >= datalen || (x) > datalen - (s)) \
43 return -ELIBBAD; \
44 } while (0)
45
46 chkaddr(0, 0, sizeof(*mz));
47 if (mz->magic != MZ_MAGIC)
48 return -ELIBBAD;
49 cursor = sizeof(*mz);
50
51 chkaddr(cursor, mz->peaddr, sizeof(*pe));
52 pe = pebuf + mz->peaddr;
53 if (pe->magic != PE_MAGIC)
54 return -ELIBBAD;
55 cursor = mz->peaddr + sizeof(*pe);
56
57 chkaddr(0, cursor, sizeof(pe32->magic));
58 pe32 = pebuf + cursor;
59 pe64 = pebuf + cursor;
60
61 switch (pe32->magic) {
62 case PE_OPT_MAGIC_PE32:
63 chkaddr(0, cursor, sizeof(*pe32));
64 ctx->image_checksum_offset =
65 (unsigned long)&pe32->csum - (unsigned long)pebuf;
66 ctx->header_size = pe32->header_size;
67 cursor += sizeof(*pe32);
68 ctx->n_data_dirents = pe32->data_dirs;
69 break;
70
71 case PE_OPT_MAGIC_PE32PLUS:
72 chkaddr(0, cursor, sizeof(*pe64));
73 ctx->image_checksum_offset =
74 (unsigned long)&pe64->csum - (unsigned long)pebuf;
75 ctx->header_size = pe64->header_size;
76 cursor += sizeof(*pe64);
77 ctx->n_data_dirents = pe64->data_dirs;
78 break;
79
80 default:
81 pr_debug("Unknown PEOPT magic = %04hx\n", pe32->magic);
82 return -ELIBBAD;
83 }
84
85 pr_debug("checksum @ %x\n", ctx->image_checksum_offset);
86 pr_debug("header size = %x\n", ctx->header_size);
87
88 if (cursor >= ctx->header_size || ctx->header_size >= datalen)
89 return -ELIBBAD;
90
91 if (ctx->n_data_dirents > (ctx->header_size - cursor) / sizeof(*dde))
92 return -ELIBBAD;
93
94 ddir = pebuf + cursor;
95 cursor += sizeof(*dde) * ctx->n_data_dirents;
96
97 ctx->cert_dirent_offset =
98 (unsigned long)&ddir->certs - (unsigned long)pebuf;
99 ctx->certs_size = ddir->certs.size;
100
101 if (!ddir->certs.virtual_address || !ddir->certs.size) {
102 pr_debug("Unsigned PE binary\n");
103 return -EKEYREJECTED;
104 }
105
106 chkaddr(ctx->header_size, ddir->certs.virtual_address,
107 ddir->certs.size);
108 ctx->sig_offset = ddir->certs.virtual_address;
109 ctx->sig_len = ddir->certs.size;
110 pr_debug("cert = %x @%x [%*ph]\n",
111 ctx->sig_len, ctx->sig_offset,
112 ctx->sig_len, pebuf + ctx->sig_offset);
113
114 ctx->n_sections = pe->sections;
115 if (ctx->n_sections > (ctx->header_size - cursor) / sizeof(*sec))
116 return -ELIBBAD;
117 ctx->secs = secs = pebuf + cursor;
118
119 return 0;
120}
121
122/*
123 * Check and strip the PE wrapper from around the signature and check that the
124 * remnant looks something like PKCS#7.
125 */
126static int pefile_strip_sig_wrapper(const void *pebuf,
127 struct pefile_context *ctx)
128{
129 struct win_certificate wrapper;
130 const u8 *pkcs7;
131 unsigned len;
132
133 if (ctx->sig_len < sizeof(wrapper)) {
134 pr_debug("Signature wrapper too short\n");
135 return -ELIBBAD;
136 }
137
138 memcpy(&wrapper, pebuf + ctx->sig_offset, sizeof(wrapper));
139 pr_debug("sig wrapper = { %x, %x, %x }\n",
140 wrapper.length, wrapper.revision, wrapper.cert_type);
141
142 /* Both pesign and sbsign round up the length of certificate table
143 * (in optional header data directories) to 8 byte alignment.
144 */
145 if (round_up(wrapper.length, 8) != ctx->sig_len) {
146 pr_debug("Signature wrapper len wrong\n");
147 return -ELIBBAD;
148 }
149 if (wrapper.revision != WIN_CERT_REVISION_2_0) {
150 pr_debug("Signature is not revision 2.0\n");
151 return -ENOTSUPP;
152 }
153 if (wrapper.cert_type != WIN_CERT_TYPE_PKCS_SIGNED_DATA) {
154 pr_debug("Signature certificate type is not PKCS\n");
155 return -ENOTSUPP;
156 }
157
158 /* It looks like the pkcs signature length in wrapper->length and the
159 * size obtained from the data dir entries, which lists the total size
160 * of certificate table, are both aligned to an octaword boundary, so
161 * we may have to deal with some padding.
162 */
163 ctx->sig_len = wrapper.length;
164 ctx->sig_offset += sizeof(wrapper);
165 ctx->sig_len -= sizeof(wrapper);
166 if (ctx->sig_len < 4) {
167 pr_debug("Signature data missing\n");
168 return -EKEYREJECTED;
169 }
170
171 /* What's left should be a PKCS#7 cert */
172 pkcs7 = pebuf + ctx->sig_offset;
173 if (pkcs7[0] != (ASN1_CONS_BIT | ASN1_SEQ))
174 goto not_pkcs7;
175
176 switch (pkcs7[1]) {
177 case 0 ... 0x7f:
178 len = pkcs7[1] + 2;
179 goto check_len;
180 case ASN1_INDEFINITE_LENGTH:
181 return 0;
182 case 0x81:
183 len = pkcs7[2] + 3;
184 goto check_len;
185 case 0x82:
186 len = ((pkcs7[2] << 8) | pkcs7[3]) + 4;
187 goto check_len;
188 case 0x83 ... 0xff:
189 return -EMSGSIZE;
190 default:
191 goto not_pkcs7;
192 }
193
194check_len:
195 if (len <= ctx->sig_len) {
196 /* There may be padding */
197 ctx->sig_len = len;
198 return 0;
199 }
200not_pkcs7:
201 pr_debug("Signature data not PKCS#7\n");
202 return -ELIBBAD;
203}
204
205/*
206 * Compare two sections for canonicalisation.
207 */
208static int pefile_compare_shdrs(const void *a, const void *b)
209{
210 const struct section_header *shdra = a;
211 const struct section_header *shdrb = b;
212 int rc;
213
214 if (shdra->data_addr > shdrb->data_addr)
215 return 1;
216 if (shdrb->data_addr > shdra->data_addr)
217 return -1;
218
219 if (shdra->virtual_address > shdrb->virtual_address)
220 return 1;
221 if (shdrb->virtual_address > shdra->virtual_address)
222 return -1;
223
224 rc = strcmp(shdra->name, shdrb->name);
225 if (rc != 0)
226 return rc;
227
228 if (shdra->virtual_size > shdrb->virtual_size)
229 return 1;
230 if (shdrb->virtual_size > shdra->virtual_size)
231 return -1;
232
233 if (shdra->raw_data_size > shdrb->raw_data_size)
234 return 1;
235 if (shdrb->raw_data_size > shdra->raw_data_size)
236 return -1;
237
238 return 0;
239}
240
241/*
242 * Load the contents of the PE binary into the digest, leaving out the image
243 * checksum and the certificate data block.
244 */
245static int pefile_digest_pe_contents(const void *pebuf, unsigned int pelen,
246 struct pefile_context *ctx,
247 struct shash_desc *desc)
248{
249 unsigned *canon, tmp, loop, i, hashed_bytes;
250 int ret;
251
252 /* Digest the header and data directory, but leave out the image
253 * checksum and the data dirent for the signature.
254 */
255 ret = crypto_shash_update(desc, pebuf, ctx->image_checksum_offset);
256 if (ret < 0)
257 return ret;
258
259 tmp = ctx->image_checksum_offset + sizeof(uint32_t);
260 ret = crypto_shash_update(desc, pebuf + tmp,
261 ctx->cert_dirent_offset - tmp);
262 if (ret < 0)
263 return ret;
264
265 tmp = ctx->cert_dirent_offset + sizeof(struct data_dirent);
266 ret = crypto_shash_update(desc, pebuf + tmp, ctx->header_size - tmp);
267 if (ret < 0)
268 return ret;
269
270 canon = kcalloc(ctx->n_sections, sizeof(unsigned), GFP_KERNEL);
271 if (!canon)
272 return -ENOMEM;
273
274 /* We have to canonicalise the section table, so we perform an
275 * insertion sort.
276 */
277 canon[0] = 0;
278 for (loop = 1; loop < ctx->n_sections; loop++) {
279 for (i = 0; i < loop; i++) {
280 if (pefile_compare_shdrs(&ctx->secs[canon[i]],
281 &ctx->secs[loop]) > 0) {
282 memmove(&canon[i + 1], &canon[i],
283 (loop - i) * sizeof(canon[0]));
284 break;
285 }
286 }
287 canon[i] = loop;
288 }
289
290 hashed_bytes = ctx->header_size;
291 for (loop = 0; loop < ctx->n_sections; loop++) {
292 i = canon[loop];
293 if (ctx->secs[i].raw_data_size == 0)
294 continue;
295 ret = crypto_shash_update(desc,
296 pebuf + ctx->secs[i].data_addr,
297 ctx->secs[i].raw_data_size);
298 if (ret < 0) {
299 kfree(canon);
300 return ret;
301 }
302 hashed_bytes += ctx->secs[i].raw_data_size;
303 }
304 kfree(canon);
305
306 if (pelen > hashed_bytes) {
307 tmp = hashed_bytes + ctx->certs_size;
308 ret = crypto_shash_update(desc,
309 pebuf + hashed_bytes,
310 pelen - tmp);
311 if (ret < 0)
312 return ret;
313 }
314
315 return 0;
316}
317
318/*
319 * Digest the contents of the PE binary, leaving out the image checksum and the
320 * certificate data block.
321 */
322static int pefile_digest_pe(const void *pebuf, unsigned int pelen,
323 struct pefile_context *ctx)
324{
325 struct crypto_shash *tfm;
326 struct shash_desc *desc;
327 size_t digest_size, desc_size;
328 void *digest;
329 int ret;
330
331 kenter(",%s", ctx->digest_algo);
332
333 /* Allocate the hashing algorithm we're going to need and find out how
334 * big the hash operational data will be.
335 */
336 tfm = crypto_alloc_shash(ctx->digest_algo, 0, 0);
337 if (IS_ERR(tfm))
338 return (PTR_ERR(tfm) == -ENOENT) ? -ENOPKG : PTR_ERR(tfm);
339
340 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
341 digest_size = crypto_shash_digestsize(tfm);
342
343 if (digest_size != ctx->digest_len) {
344 pr_debug("Digest size mismatch (%zx != %x)\n",
345 digest_size, ctx->digest_len);
346 ret = -EBADMSG;
347 goto error_no_desc;
348 }
349 pr_debug("Digest: desc=%zu size=%zu\n", desc_size, digest_size);
350
351 ret = -ENOMEM;
352 desc = kzalloc(desc_size + digest_size, GFP_KERNEL);
353 if (!desc)
354 goto error_no_desc;
355
356 desc->tfm = tfm;
357 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
358 ret = crypto_shash_init(desc);
359 if (ret < 0)
360 goto error;
361
362 ret = pefile_digest_pe_contents(pebuf, pelen, ctx, desc);
363 if (ret < 0)
364 goto error;
365
366 digest = (void *)desc + desc_size;
367 ret = crypto_shash_final(desc, digest);
368 if (ret < 0)
369 goto error;
370
371 pr_debug("Digest calc = [%*ph]\n", ctx->digest_len, digest);
372
373 /* Check that the PE file digest matches that in the MSCODE part of the
374 * PKCS#7 certificate.
375 */
376 if (memcmp(digest, ctx->digest, ctx->digest_len) != 0) {
377 pr_debug("Digest mismatch\n");
378 ret = -EKEYREJECTED;
379 } else {
380 pr_debug("The digests match!\n");
381 }
382
383error:
384 kfree(desc);
385error_no_desc:
386 crypto_free_shash(tfm);
387 kleave(" = %d", ret);
388 return ret;
389}
390
391/**
392 * verify_pefile_signature - Verify the signature on a PE binary image
393 * @pebuf: Buffer containing the PE binary image
394 * @pelen: Length of the binary image
395 * @trust_keyring: Signing certificates to use as starting points
396 * @usage: The use to which the key is being put.
397 * @_trusted: Set to true if trustworth, false otherwise
398 *
399 * Validate that the certificate chain inside the PKCS#7 message inside the PE
400 * binary image intersects keys we already know and trust.
401 *
402 * Returns, in order of descending priority:
403 *
404 * (*) -ELIBBAD if the image cannot be parsed, or:
405 *
406 * (*) -EKEYREJECTED if a signature failed to match for which we have a valid
407 * key, or:
408 *
409 * (*) 0 if at least one signature chain intersects with the keys in the trust
410 * keyring, or:
411 *
412 * (*) -ENOPKG if a suitable crypto module couldn't be found for a check on a
413 * chain.
414 *
415 * (*) -ENOKEY if we couldn't find a match for any of the signature chains in
416 * the message.
417 *
418 * May also return -ENOMEM.
419 */
420int verify_pefile_signature(const void *pebuf, unsigned pelen,
421 struct key *trusted_keyring,
422 enum key_being_used_for usage,
423 bool *_trusted)
424{
425 struct pkcs7_message *pkcs7;
426 struct pefile_context ctx;
427 const void *data;
428 size_t datalen;
429 int ret;
430
431 kenter("");
432
433 memset(&ctx, 0, sizeof(ctx));
434 ret = pefile_parse_binary(pebuf, pelen, &ctx);
435 if (ret < 0)
436 return ret;
437
438 ret = pefile_strip_sig_wrapper(pebuf, &ctx);
439 if (ret < 0)
440 return ret;
441
442 pkcs7 = pkcs7_parse_message(pebuf + ctx.sig_offset, ctx.sig_len);
443 if (IS_ERR(pkcs7))
444 return PTR_ERR(pkcs7);
445 ctx.pkcs7 = pkcs7;
446
447 ret = pkcs7_get_content_data(ctx.pkcs7, &data, &datalen, false);
448 if (ret < 0 || datalen == 0) {
449 pr_devel("PKCS#7 message does not contain data\n");
450 ret = -EBADMSG;
451 goto error;
452 }
453
454 ret = mscode_parse(&ctx);
455 if (ret < 0)
456 goto error;
457
458 pr_debug("Digest: %u [%*ph]\n",
459 ctx.digest_len, ctx.digest_len, ctx.digest);
460
461 /* Generate the digest and check against the PKCS7 certificate
462 * contents.
463 */
464 ret = pefile_digest_pe(pebuf, pelen, &ctx);
465 if (ret < 0)
466 goto error;
467
468 ret = pkcs7_verify(pkcs7, usage);
469 if (ret < 0)
470 goto error;
471
472 ret = pkcs7_validate_trust(pkcs7, trusted_keyring, _trusted);
473
474error:
475 pkcs7_free_message(ctx.pkcs7);
476 return ret;
477}