Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_EFI_H
3#define _ASM_X86_EFI_H
4
5#include <asm/fpu/api.h>
6#include <asm/processor-flags.h>
7#include <asm/tlb.h>
8#include <asm/nospec-branch.h>
9#include <asm/mmu_context.h>
10#include <asm/ibt.h>
11#include <linux/build_bug.h>
12#include <linux/kernel.h>
13#include <linux/pgtable.h>
14
15extern unsigned long efi_fw_vendor, efi_config_table;
16extern unsigned long efi_mixed_mode_stack_pa;
17
18/*
19 * We map the EFI regions needed for runtime services non-contiguously,
20 * with preserved alignment on virtual addresses starting from -4G down
21 * for a total max space of 64G. This way, we provide for stable runtime
22 * services addresses across kernels so that a kexec'd kernel can still
23 * use them.
24 *
25 * This is the main reason why we're doing stable VA mappings for RT
26 * services.
27 */
28
29#define EFI32_LOADER_SIGNATURE "EL32"
30#define EFI64_LOADER_SIGNATURE "EL64"
31
32#define ARCH_EFI_IRQ_FLAGS_MASK X86_EFLAGS_IF
33
34/*
35 * The EFI services are called through variadic functions in many cases. These
36 * functions are implemented in assembler and support only a fixed number of
37 * arguments. The macros below allows us to check at build time that we don't
38 * try to call them with too many arguments.
39 *
40 * __efi_nargs() will return the number of arguments if it is 7 or less, and
41 * cause a BUILD_BUG otherwise. The limitations of the C preprocessor make it
42 * impossible to calculate the exact number of arguments beyond some
43 * pre-defined limit. The maximum number of arguments currently supported by
44 * any of the thunks is 7, so this is good enough for now and can be extended
45 * in the obvious way if we ever need more.
46 */
47
48#define __efi_nargs(...) __efi_nargs_(__VA_ARGS__)
49#define __efi_nargs_(...) __efi_nargs__(0, ##__VA_ARGS__, \
50 __efi_arg_sentinel(9), __efi_arg_sentinel(8), \
51 __efi_arg_sentinel(7), __efi_arg_sentinel(6), \
52 __efi_arg_sentinel(5), __efi_arg_sentinel(4), \
53 __efi_arg_sentinel(3), __efi_arg_sentinel(2), \
54 __efi_arg_sentinel(1), __efi_arg_sentinel(0))
55#define __efi_nargs__(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, n, ...) \
56 __take_second_arg(n, \
57 ({ BUILD_BUG_ON_MSG(1, "__efi_nargs limit exceeded"); 10; }))
58#define __efi_arg_sentinel(n) , n
59
60/*
61 * __efi_nargs_check(f, n, ...) will cause a BUILD_BUG if the ellipsis
62 * represents more than n arguments.
63 */
64
65#define __efi_nargs_check(f, n, ...) \
66 __efi_nargs_check_(f, __efi_nargs(__VA_ARGS__), n)
67#define __efi_nargs_check_(f, p, n) __efi_nargs_check__(f, p, n)
68#define __efi_nargs_check__(f, p, n) ({ \
69 BUILD_BUG_ON_MSG( \
70 (p) > (n), \
71 #f " called with too many arguments (" #p ">" #n ")"); \
72})
73
74static inline void efi_fpu_begin(void)
75{
76 /*
77 * The UEFI calling convention (UEFI spec 2.3.2 and 2.3.4) requires
78 * that FCW and MXCSR (64-bit) must be initialized prior to calling
79 * UEFI code. (Oddly the spec does not require that the FPU stack
80 * be empty.)
81 */
82 kernel_fpu_begin_mask(KFPU_387 | KFPU_MXCSR);
83}
84
85static inline void efi_fpu_end(void)
86{
87 kernel_fpu_end();
88}
89
90#ifdef CONFIG_X86_32
91#define arch_efi_call_virt_setup() \
92({ \
93 efi_fpu_begin(); \
94 firmware_restrict_branch_speculation_start(); \
95})
96
97#define arch_efi_call_virt_teardown() \
98({ \
99 firmware_restrict_branch_speculation_end(); \
100 efi_fpu_end(); \
101})
102
103#else /* !CONFIG_X86_32 */
104
105#define EFI_LOADER_SIGNATURE "EL64"
106
107extern asmlinkage u64 __efi_call(void *fp, ...);
108
109#define efi_call(...) ({ \
110 __efi_nargs_check(efi_call, 7, __VA_ARGS__); \
111 __efi_call(__VA_ARGS__); \
112})
113
114#define arch_efi_call_virt_setup() \
115({ \
116 efi_sync_low_kernel_mappings(); \
117 efi_fpu_begin(); \
118 firmware_restrict_branch_speculation_start(); \
119 efi_enter_mm(); \
120})
121
122#undef arch_efi_call_virt
123#define arch_efi_call_virt(p, f, args...) ({ \
124 u64 ret, ibt = ibt_save(); \
125 ret = efi_call((void *)p->f, args); \
126 ibt_restore(ibt); \
127 ret; \
128})
129
130#define arch_efi_call_virt_teardown() \
131({ \
132 efi_leave_mm(); \
133 firmware_restrict_branch_speculation_end(); \
134 efi_fpu_end(); \
135})
136
137#ifdef CONFIG_KASAN
138/*
139 * CONFIG_KASAN may redefine memset to __memset. __memset function is present
140 * only in kernel binary. Since the EFI stub linked into a separate binary it
141 * doesn't have __memset(). So we should use standard memset from
142 * arch/x86/boot/compressed/string.c. The same applies to memcpy and memmove.
143 */
144#undef memcpy
145#undef memset
146#undef memmove
147#endif
148
149#endif /* CONFIG_X86_32 */
150
151extern int __init efi_memblock_x86_reserve_range(void);
152extern void __init efi_print_memmap(void);
153extern void __init efi_map_region(efi_memory_desc_t *md);
154extern void __init efi_map_region_fixed(efi_memory_desc_t *md);
155extern void efi_sync_low_kernel_mappings(void);
156extern int __init efi_alloc_page_tables(void);
157extern int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages);
158extern void __init efi_runtime_update_mappings(void);
159extern void __init efi_dump_pagetable(void);
160extern void __init efi_apply_memmap_quirks(void);
161extern int __init efi_reuse_config(u64 tables, int nr_tables);
162extern void efi_delete_dummy_variable(void);
163extern void efi_crash_gracefully_on_page_fault(unsigned long phys_addr);
164extern void efi_free_boot_services(void);
165
166void efi_enter_mm(void);
167void efi_leave_mm(void);
168
169/* kexec external ABI */
170struct efi_setup_data {
171 u64 fw_vendor;
172 u64 __unused;
173 u64 tables;
174 u64 smbios;
175 u64 reserved[8];
176};
177
178extern u64 efi_setup;
179
180#ifdef CONFIG_EFI
181extern u64 __efi64_thunk(u32, ...);
182
183#define efi64_thunk(...) ({ \
184 u64 __pad[3]; /* must have space for 3 args on the stack */ \
185 __efi_nargs_check(efi64_thunk, 9, __VA_ARGS__); \
186 __efi64_thunk(__VA_ARGS__, __pad); \
187})
188
189static inline bool efi_is_mixed(void)
190{
191 if (!IS_ENABLED(CONFIG_EFI_MIXED))
192 return false;
193 return IS_ENABLED(CONFIG_X86_64) && !efi_enabled(EFI_64BIT);
194}
195
196static inline bool efi_runtime_supported(void)
197{
198 if (IS_ENABLED(CONFIG_X86_64) == efi_enabled(EFI_64BIT))
199 return true;
200
201 return IS_ENABLED(CONFIG_EFI_MIXED);
202}
203
204extern void parse_efi_setup(u64 phys_addr, u32 data_len);
205
206extern void efi_thunk_runtime_setup(void);
207efi_status_t efi_set_virtual_address_map(unsigned long memory_map_size,
208 unsigned long descriptor_size,
209 u32 descriptor_version,
210 efi_memory_desc_t *virtual_map,
211 unsigned long systab_phys);
212
213/* arch specific definitions used by the stub code */
214
215#ifdef CONFIG_EFI_MIXED
216
217#define ARCH_HAS_EFISTUB_WRAPPERS
218
219static inline bool efi_is_64bit(void)
220{
221 extern const bool efi_is64;
222
223 return efi_is64;
224}
225
226static inline bool efi_is_native(void)
227{
228 return efi_is_64bit();
229}
230
231#define efi_table_attr(inst, attr) \
232 (efi_is_native() ? (inst)->attr \
233 : efi_mixed_table_attr((inst), attr))
234
235#define efi_mixed_table_attr(inst, attr) \
236 (__typeof__(inst->attr)) \
237 _Generic(inst->mixed_mode.attr, \
238 u32: (unsigned long)(inst->mixed_mode.attr), \
239 default: (inst->mixed_mode.attr))
240
241/*
242 * The following macros allow translating arguments if necessary from native to
243 * mixed mode. The use case for this is to initialize the upper 32 bits of
244 * output parameters, and where the 32-bit method requires a 64-bit argument,
245 * which must be split up into two arguments to be thunked properly.
246 *
247 * As examples, the AllocatePool boot service returns the address of the
248 * allocation, but it will not set the high 32 bits of the address. To ensure
249 * that the full 64-bit address is initialized, we zero-init the address before
250 * calling the thunk.
251 *
252 * The FreePages boot service takes a 64-bit physical address even in 32-bit
253 * mode. For the thunk to work correctly, a native 64-bit call of
254 * free_pages(addr, size)
255 * must be translated to
256 * efi64_thunk(free_pages, addr & U32_MAX, addr >> 32, size)
257 * so that the two 32-bit halves of addr get pushed onto the stack separately.
258 */
259
260static inline void *efi64_zero_upper(void *p)
261{
262 ((u32 *)p)[1] = 0;
263 return p;
264}
265
266static inline u32 efi64_convert_status(efi_status_t status)
267{
268 return (u32)(status | (u64)status >> 32);
269}
270
271#define __efi64_split(val) (val) & U32_MAX, (u64)(val) >> 32
272
273#define __efi64_argmap_free_pages(addr, size) \
274 ((addr), 0, (size))
275
276#define __efi64_argmap_get_memory_map(mm_size, mm, key, size, ver) \
277 ((mm_size), (mm), efi64_zero_upper(key), efi64_zero_upper(size), (ver))
278
279#define __efi64_argmap_allocate_pool(type, size, buffer) \
280 ((type), (size), efi64_zero_upper(buffer))
281
282#define __efi64_argmap_create_event(type, tpl, f, c, event) \
283 ((type), (tpl), (f), (c), efi64_zero_upper(event))
284
285#define __efi64_argmap_set_timer(event, type, time) \
286 ((event), (type), lower_32_bits(time), upper_32_bits(time))
287
288#define __efi64_argmap_wait_for_event(num, event, index) \
289 ((num), (event), efi64_zero_upper(index))
290
291#define __efi64_argmap_handle_protocol(handle, protocol, interface) \
292 ((handle), (protocol), efi64_zero_upper(interface))
293
294#define __efi64_argmap_locate_protocol(protocol, reg, interface) \
295 ((protocol), (reg), efi64_zero_upper(interface))
296
297#define __efi64_argmap_locate_device_path(protocol, path, handle) \
298 ((protocol), (path), efi64_zero_upper(handle))
299
300#define __efi64_argmap_exit(handle, status, size, data) \
301 ((handle), efi64_convert_status(status), (size), (data))
302
303/* PCI I/O */
304#define __efi64_argmap_get_location(protocol, seg, bus, dev, func) \
305 ((protocol), efi64_zero_upper(seg), efi64_zero_upper(bus), \
306 efi64_zero_upper(dev), efi64_zero_upper(func))
307
308/* LoadFile */
309#define __efi64_argmap_load_file(protocol, path, policy, bufsize, buf) \
310 ((protocol), (path), (policy), efi64_zero_upper(bufsize), (buf))
311
312/* Graphics Output Protocol */
313#define __efi64_argmap_query_mode(gop, mode, size, info) \
314 ((gop), (mode), efi64_zero_upper(size), efi64_zero_upper(info))
315
316/* TCG2 protocol */
317#define __efi64_argmap_hash_log_extend_event(prot, fl, addr, size, ev) \
318 ((prot), (fl), 0ULL, (u64)(addr), 0ULL, (u64)(size), 0ULL, ev)
319
320/* DXE services */
321#define __efi64_argmap_get_memory_space_descriptor(phys, desc) \
322 (__efi64_split(phys), (desc))
323
324#define __efi64_argmap_set_memory_space_attributes(phys, size, flags) \
325 (__efi64_split(phys), __efi64_split(size), __efi64_split(flags))
326
327/* file protocol */
328#define __efi64_argmap_open(prot, newh, fname, mode, attr) \
329 ((prot), efi64_zero_upper(newh), (fname), __efi64_split(mode), \
330 __efi64_split(attr))
331
332#define __efi64_argmap_set_position(pos) (__efi64_split(pos))
333
334/* file system protocol */
335#define __efi64_argmap_open_volume(prot, file) \
336 ((prot), efi64_zero_upper(file))
337
338/*
339 * The macros below handle the plumbing for the argument mapping. To add a
340 * mapping for a specific EFI method, simply define a macro
341 * __efi64_argmap_<method name>, following the examples above.
342 */
343
344#define __efi64_thunk_map(inst, func, ...) \
345 efi64_thunk(inst->mixed_mode.func, \
346 __efi64_argmap(__efi64_argmap_ ## func(__VA_ARGS__), \
347 (__VA_ARGS__)))
348
349#define __efi64_argmap(mapped, args) \
350 __PASTE(__efi64_argmap__, __efi_nargs(__efi_eat mapped))(mapped, args)
351#define __efi64_argmap__0(mapped, args) __efi_eval mapped
352#define __efi64_argmap__1(mapped, args) __efi_eval args
353
354#define __efi_eat(...)
355#define __efi_eval(...) __VA_ARGS__
356
357static inline efi_status_t __efi64_widen_efi_status(u64 status)
358{
359 /* use rotate to move the value of bit #31 into position #63 */
360 return ror64(rol32(status, 1), 1);
361}
362
363/* The macro below handles dispatching via the thunk if needed */
364
365#define efi_fn_call(inst, func, ...) \
366 (efi_is_native() ? (inst)->func(__VA_ARGS__) \
367 : efi_mixed_call((inst), func, ##__VA_ARGS__))
368
369#define efi_mixed_call(inst, func, ...) \
370 _Generic(inst->func(__VA_ARGS__), \
371 efi_status_t: \
372 __efi64_widen_efi_status( \
373 __efi64_thunk_map(inst, func, ##__VA_ARGS__)), \
374 u64: ({ BUILD_BUG(); ULONG_MAX; }), \
375 default: \
376 (__typeof__(inst->func(__VA_ARGS__))) \
377 __efi64_thunk_map(inst, func, ##__VA_ARGS__))
378
379#else /* CONFIG_EFI_MIXED */
380
381static inline bool efi_is_64bit(void)
382{
383 return IS_ENABLED(CONFIG_X86_64);
384}
385
386#endif /* CONFIG_EFI_MIXED */
387
388extern bool efi_reboot_required(void);
389extern bool efi_is_table_address(unsigned long phys_addr);
390
391extern void efi_reserve_boot_services(void);
392#else
393static inline void parse_efi_setup(u64 phys_addr, u32 data_len) {}
394static inline bool efi_reboot_required(void)
395{
396 return false;
397}
398static inline bool efi_is_table_address(unsigned long phys_addr)
399{
400 return false;
401}
402static inline void efi_reserve_boot_services(void)
403{
404}
405#endif /* CONFIG_EFI */
406
407#ifdef CONFIG_EFI_FAKE_MEMMAP
408extern void __init efi_fake_memmap_early(void);
409extern void __init efi_fake_memmap(void);
410#else
411static inline void efi_fake_memmap_early(void)
412{
413}
414
415static inline void efi_fake_memmap(void)
416{
417}
418#endif
419
420extern int __init efi_memmap_alloc(unsigned int num_entries,
421 struct efi_memory_map_data *data);
422extern void __efi_memmap_free(u64 phys, unsigned long size,
423 unsigned long flags);
424#define __efi_memmap_free __efi_memmap_free
425
426extern int __init efi_memmap_install(struct efi_memory_map_data *data);
427extern int __init efi_memmap_split_count(efi_memory_desc_t *md,
428 struct range *range);
429extern void __init efi_memmap_insert(struct efi_memory_map *old_memmap,
430 void *buf, struct efi_mem_range *mem);
431
432#define arch_ima_efi_boot_mode \
433 ({ extern struct boot_params boot_params; boot_params.secure_boot; })
434
435#ifdef CONFIG_EFI_RUNTIME_MAP
436int efi_get_runtime_map_size(void);
437int efi_get_runtime_map_desc_size(void);
438int efi_runtime_map_copy(void *buf, size_t bufsz);
439#else
440static inline int efi_get_runtime_map_size(void)
441{
442 return 0;
443}
444
445static inline int efi_get_runtime_map_desc_size(void)
446{
447 return 0;
448}
449
450static inline int efi_runtime_map_copy(void *buf, size_t bufsz)
451{
452 return 0;
453}
454
455#endif
456
457#endif /* _ASM_X86_EFI_H */
1#ifndef _ASM_X86_EFI_H
2#define _ASM_X86_EFI_H
3
4#include <asm/fpu/api.h>
5#include <asm/pgtable.h>
6#include <asm/tlb.h>
7
8/*
9 * We map the EFI regions needed for runtime services non-contiguously,
10 * with preserved alignment on virtual addresses starting from -4G down
11 * for a total max space of 64G. This way, we provide for stable runtime
12 * services addresses across kernels so that a kexec'd kernel can still
13 * use them.
14 *
15 * This is the main reason why we're doing stable VA mappings for RT
16 * services.
17 *
18 * This flag is used in conjuction with a chicken bit called
19 * "efi=old_map" which can be used as a fallback to the old runtime
20 * services mapping method in case there's some b0rkage with a
21 * particular EFI implementation (haha, it is hard to hold up the
22 * sarcasm here...).
23 */
24#define EFI_OLD_MEMMAP EFI_ARCH_1
25
26#define EFI32_LOADER_SIGNATURE "EL32"
27#define EFI64_LOADER_SIGNATURE "EL64"
28
29#define MAX_CMDLINE_ADDRESS UINT_MAX
30
31#ifdef CONFIG_X86_32
32
33
34extern unsigned long asmlinkage efi_call_phys(void *, ...);
35
36/*
37 * Wrap all the virtual calls in a way that forces the parameters on the stack.
38 */
39
40/* Use this macro if your virtual returns a non-void value */
41#define efi_call_virt(f, args...) \
42({ \
43 efi_status_t __s; \
44 kernel_fpu_begin(); \
45 __s = ((efi_##f##_t __attribute__((regparm(0)))*) \
46 efi.systab->runtime->f)(args); \
47 kernel_fpu_end(); \
48 __s; \
49})
50
51/* Use this macro if your virtual call does not return any value */
52#define __efi_call_virt(f, args...) \
53({ \
54 kernel_fpu_begin(); \
55 ((efi_##f##_t __attribute__((regparm(0)))*) \
56 efi.systab->runtime->f)(args); \
57 kernel_fpu_end(); \
58})
59
60#define efi_ioremap(addr, size, type, attr) ioremap_cache(addr, size)
61
62#else /* !CONFIG_X86_32 */
63
64#define EFI_LOADER_SIGNATURE "EL64"
65
66extern u64 asmlinkage efi_call(void *fp, ...);
67
68#define efi_call_phys(f, args...) efi_call((f), args)
69
70/*
71 * Scratch space used for switching the pagetable in the EFI stub
72 */
73struct efi_scratch {
74 u64 r15;
75 u64 prev_cr3;
76 pgd_t *efi_pgt;
77 bool use_pgd;
78 u64 phys_stack;
79} __packed;
80
81#define efi_call_virt(f, ...) \
82({ \
83 efi_status_t __s; \
84 \
85 efi_sync_low_kernel_mappings(); \
86 preempt_disable(); \
87 __kernel_fpu_begin(); \
88 \
89 if (efi_scratch.use_pgd) { \
90 efi_scratch.prev_cr3 = read_cr3(); \
91 write_cr3((unsigned long)efi_scratch.efi_pgt); \
92 __flush_tlb_all(); \
93 } \
94 \
95 __s = efi_call((void *)efi.systab->runtime->f, __VA_ARGS__); \
96 \
97 if (efi_scratch.use_pgd) { \
98 write_cr3(efi_scratch.prev_cr3); \
99 __flush_tlb_all(); \
100 } \
101 \
102 __kernel_fpu_end(); \
103 preempt_enable(); \
104 __s; \
105})
106
107/*
108 * All X86_64 virt calls return non-void values. Thus, use non-void call for
109 * virt calls that would be void on X86_32.
110 */
111#define __efi_call_virt(f, args...) efi_call_virt(f, args)
112
113extern void __iomem *__init efi_ioremap(unsigned long addr, unsigned long size,
114 u32 type, u64 attribute);
115
116#ifdef CONFIG_KASAN
117/*
118 * CONFIG_KASAN may redefine memset to __memset. __memset function is present
119 * only in kernel binary. Since the EFI stub linked into a separate binary it
120 * doesn't have __memset(). So we should use standard memset from
121 * arch/x86/boot/compressed/string.c. The same applies to memcpy and memmove.
122 */
123#undef memcpy
124#undef memset
125#undef memmove
126#endif
127
128#endif /* CONFIG_X86_32 */
129
130extern struct efi_scratch efi_scratch;
131extern void __init efi_set_executable(efi_memory_desc_t *md, bool executable);
132extern int __init efi_memblock_x86_reserve_range(void);
133extern pgd_t * __init efi_call_phys_prolog(void);
134extern void __init efi_call_phys_epilog(pgd_t *save_pgd);
135extern void __init efi_print_memmap(void);
136extern void __init efi_unmap_memmap(void);
137extern void __init efi_memory_uc(u64 addr, unsigned long size);
138extern void __init efi_map_region(efi_memory_desc_t *md);
139extern void __init efi_map_region_fixed(efi_memory_desc_t *md);
140extern void efi_sync_low_kernel_mappings(void);
141extern int __init efi_alloc_page_tables(void);
142extern int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages);
143extern void __init efi_cleanup_page_tables(unsigned long pa_memmap, unsigned num_pages);
144extern void __init old_map_region(efi_memory_desc_t *md);
145extern void __init runtime_code_page_mkexec(void);
146extern void __init efi_runtime_update_mappings(void);
147extern void __init efi_dump_pagetable(void);
148extern void __init efi_apply_memmap_quirks(void);
149extern int __init efi_reuse_config(u64 tables, int nr_tables);
150extern void efi_delete_dummy_variable(void);
151
152struct efi_setup_data {
153 u64 fw_vendor;
154 u64 runtime;
155 u64 tables;
156 u64 smbios;
157 u64 reserved[8];
158};
159
160extern u64 efi_setup;
161
162#ifdef CONFIG_EFI
163
164static inline bool efi_is_native(void)
165{
166 return IS_ENABLED(CONFIG_X86_64) == efi_enabled(EFI_64BIT);
167}
168
169static inline bool efi_runtime_supported(void)
170{
171 if (efi_is_native())
172 return true;
173
174 if (IS_ENABLED(CONFIG_EFI_MIXED) && !efi_enabled(EFI_OLD_MEMMAP))
175 return true;
176
177 return false;
178}
179
180extern struct console early_efi_console;
181extern void parse_efi_setup(u64 phys_addr, u32 data_len);
182
183#ifdef CONFIG_EFI_MIXED
184extern void efi_thunk_runtime_setup(void);
185extern efi_status_t efi_thunk_set_virtual_address_map(
186 void *phys_set_virtual_address_map,
187 unsigned long memory_map_size,
188 unsigned long descriptor_size,
189 u32 descriptor_version,
190 efi_memory_desc_t *virtual_map);
191#else
192static inline void efi_thunk_runtime_setup(void) {}
193static inline efi_status_t efi_thunk_set_virtual_address_map(
194 void *phys_set_virtual_address_map,
195 unsigned long memory_map_size,
196 unsigned long descriptor_size,
197 u32 descriptor_version,
198 efi_memory_desc_t *virtual_map)
199{
200 return EFI_SUCCESS;
201}
202#endif /* CONFIG_EFI_MIXED */
203
204
205/* arch specific definitions used by the stub code */
206
207struct efi_config {
208 u64 image_handle;
209 u64 table;
210 u64 allocate_pool;
211 u64 allocate_pages;
212 u64 get_memory_map;
213 u64 free_pool;
214 u64 free_pages;
215 u64 locate_handle;
216 u64 handle_protocol;
217 u64 exit_boot_services;
218 u64 text_output;
219 efi_status_t (*call)(unsigned long, ...);
220 bool is64;
221} __packed;
222
223__pure const struct efi_config *__efi_early(void);
224
225#define efi_call_early(f, ...) \
226 __efi_early()->call(__efi_early()->f, __VA_ARGS__);
227
228extern bool efi_reboot_required(void);
229
230#else
231static inline void parse_efi_setup(u64 phys_addr, u32 data_len) {}
232static inline bool efi_reboot_required(void)
233{
234 return false;
235}
236#endif /* CONFIG_EFI */
237
238#endif /* _ASM_X86_EFI_H */