Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.2.
  1/*
  2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3 *
  4 *   This program is free software; you can redistribute it and/or
  5 *   modify it under the terms of the GNU General Public License
  6 *   as published by the Free Software Foundation, version 2.
  7 *
  8 *   This program is distributed in the hope that it will be useful, but
  9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 11 *   NON INFRINGEMENT.  See the GNU General Public License for
 12 *   more details.
 13 *
 14 * Support the cycle counter clocksource and tile timer clock event device.
 15 */
 16
 17#include <linux/time.h>
 18#include <linux/timex.h>
 19#include <linux/clocksource.h>
 20#include <linux/clockchips.h>
 21#include <linux/hardirq.h>
 22#include <linux/sched.h>
 23#include <linux/smp.h>
 24#include <linux/delay.h>
 25#include <linux/module.h>
 26#include <linux/timekeeper_internal.h>
 27#include <asm/irq_regs.h>
 28#include <asm/traps.h>
 29#include <asm/vdso.h>
 30#include <hv/hypervisor.h>
 31#include <arch/interrupts.h>
 32#include <arch/spr_def.h>
 33
 34
 35/*
 36 * Define the cycle counter clock source.
 37 */
 38
 39/* How many cycles per second we are running at. */
 40static cycles_t cycles_per_sec __write_once;
 41
 42cycles_t get_clock_rate(void)
 43{
 44	return cycles_per_sec;
 45}
 46
 47#if CHIP_HAS_SPLIT_CYCLE()
 48cycles_t get_cycles(void)
 49{
 50	unsigned int high = __insn_mfspr(SPR_CYCLE_HIGH);
 51	unsigned int low = __insn_mfspr(SPR_CYCLE_LOW);
 52	unsigned int high2 = __insn_mfspr(SPR_CYCLE_HIGH);
 53
 54	while (unlikely(high != high2)) {
 55		low = __insn_mfspr(SPR_CYCLE_LOW);
 56		high = high2;
 57		high2 = __insn_mfspr(SPR_CYCLE_HIGH);
 58	}
 59
 60	return (((cycles_t)high) << 32) | low;
 61}
 62EXPORT_SYMBOL(get_cycles);
 63#endif
 64
 65/*
 66 * We use a relatively small shift value so that sched_clock()
 67 * won't wrap around very often.
 68 */
 69#define SCHED_CLOCK_SHIFT 10
 70
 71static unsigned long sched_clock_mult __write_once;
 72
 73static cycles_t clocksource_get_cycles(struct clocksource *cs)
 74{
 75	return get_cycles();
 76}
 77
 78static struct clocksource cycle_counter_cs = {
 79	.name = "cycle counter",
 80	.rating = 300,
 81	.read = clocksource_get_cycles,
 82	.mask = CLOCKSOURCE_MASK(64),
 83	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
 84};
 85
 86/*
 87 * Called very early from setup_arch() to set cycles_per_sec.
 88 * We initialize it early so we can use it to set up loops_per_jiffy.
 89 */
 90void __init setup_clock(void)
 91{
 92	cycles_per_sec = hv_sysconf(HV_SYSCONF_CPU_SPEED);
 93	sched_clock_mult =
 94		clocksource_hz2mult(cycles_per_sec, SCHED_CLOCK_SHIFT);
 95}
 96
 97void __init calibrate_delay(void)
 98{
 99	loops_per_jiffy = get_clock_rate() / HZ;
100	pr_info("Clock rate yields %lu.%02lu BogoMIPS (lpj=%lu)\n",
101		loops_per_jiffy / (500000 / HZ),
102		(loops_per_jiffy / (5000 / HZ)) % 100, loops_per_jiffy);
103}
104
105/* Called fairly late in init/main.c, but before we go smp. */
106void __init time_init(void)
107{
108	/* Initialize and register the clock source. */
109	clocksource_register_hz(&cycle_counter_cs, cycles_per_sec);
110
111	/* Start up the tile-timer interrupt source on the boot cpu. */
112	setup_tile_timer();
113}
114
115/*
116 * Define the tile timer clock event device.  The timer is driven by
117 * the TILE_TIMER_CONTROL register, which consists of a 31-bit down
118 * counter, plus bit 31, which signifies that the counter has wrapped
119 * from zero to (2**31) - 1.  The INT_TILE_TIMER interrupt will be
120 * raised as long as bit 31 is set.
121 *
122 * The TILE_MINSEC value represents the largest range of real-time
123 * we can possibly cover with the timer, based on MAX_TICK combined
124 * with the slowest reasonable clock rate we might run at.
125 */
126
127#define MAX_TICK 0x7fffffff   /* we have 31 bits of countdown timer */
128#define TILE_MINSEC 5         /* timer covers no more than 5 seconds */
129
130static int tile_timer_set_next_event(unsigned long ticks,
131				     struct clock_event_device *evt)
132{
133	BUG_ON(ticks > MAX_TICK);
134	__insn_mtspr(SPR_TILE_TIMER_CONTROL, ticks);
135	arch_local_irq_unmask_now(INT_TILE_TIMER);
136	return 0;
137}
138
139/*
140 * Whenever anyone tries to change modes, we just mask interrupts
141 * and wait for the next event to get set.
142 */
143static int tile_timer_shutdown(struct clock_event_device *evt)
144{
145	arch_local_irq_mask_now(INT_TILE_TIMER);
146	return 0;
147}
148
149/*
150 * Set min_delta_ns to 1 microsecond, since it takes about
151 * that long to fire the interrupt.
152 */
153static DEFINE_PER_CPU(struct clock_event_device, tile_timer) = {
154	.name = "tile timer",
155	.features = CLOCK_EVT_FEAT_ONESHOT,
156	.min_delta_ns = 1000,
157	.rating = 100,
158	.irq = -1,
159	.set_next_event = tile_timer_set_next_event,
160	.set_state_shutdown = tile_timer_shutdown,
161	.set_state_oneshot = tile_timer_shutdown,
162	.tick_resume = tile_timer_shutdown,
163};
164
165void setup_tile_timer(void)
166{
167	struct clock_event_device *evt = this_cpu_ptr(&tile_timer);
168
169	/* Fill in fields that are speed-specific. */
170	clockevents_calc_mult_shift(evt, cycles_per_sec, TILE_MINSEC);
171	evt->max_delta_ns = clockevent_delta2ns(MAX_TICK, evt);
172
173	/* Mark as being for this cpu only. */
174	evt->cpumask = cpumask_of(smp_processor_id());
175
176	/* Start out with timer not firing. */
177	arch_local_irq_mask_now(INT_TILE_TIMER);
178
179	/* Register tile timer. */
180	clockevents_register_device(evt);
181}
182
183/* Called from the interrupt vector. */
184void do_timer_interrupt(struct pt_regs *regs, int fault_num)
185{
186	struct pt_regs *old_regs = set_irq_regs(regs);
187	struct clock_event_device *evt = this_cpu_ptr(&tile_timer);
188
189	/*
190	 * Mask the timer interrupt here, since we are a oneshot timer
191	 * and there are now by definition no events pending.
192	 */
193	arch_local_irq_mask(INT_TILE_TIMER);
194
195	/* Track time spent here in an interrupt context */
196	irq_enter();
197
198	/* Track interrupt count. */
199	__this_cpu_inc(irq_stat.irq_timer_count);
200
201	/* Call the generic timer handler */
202	evt->event_handler(evt);
203
204	/*
205	 * Track time spent against the current process again and
206	 * process any softirqs if they are waiting.
207	 */
208	irq_exit();
209
210	set_irq_regs(old_regs);
211}
212
213/*
214 * Scheduler clock - returns current time in nanosec units.
215 * Note that with LOCKDEP, this is called during lockdep_init(), and
216 * we will claim that sched_clock() is zero for a little while, until
217 * we run setup_clock(), above.
218 */
219unsigned long long sched_clock(void)
220{
221	return clocksource_cyc2ns(get_cycles(),
222				  sched_clock_mult, SCHED_CLOCK_SHIFT);
223}
224
225int setup_profiling_timer(unsigned int multiplier)
226{
227	return -EINVAL;
228}
229
230/*
231 * Use the tile timer to convert nsecs to core clock cycles, relying
232 * on it having the same frequency as SPR_CYCLE.
233 */
234cycles_t ns2cycles(unsigned long nsecs)
235{
236	/*
237	 * We do not have to disable preemption here as each core has the same
238	 * clock frequency.
239	 */
240	struct clock_event_device *dev = raw_cpu_ptr(&tile_timer);
241
242	/*
243	 * as in clocksource.h and x86's timer.h, we split the calculation
244	 * into 2 parts to avoid unecessary overflow of the intermediate
245	 * value. This will not lead to any loss of precision.
246	 */
247	u64 quot = (u64)nsecs >> dev->shift;
248	u64 rem  = (u64)nsecs & ((1ULL << dev->shift) - 1);
249	return quot * dev->mult + ((rem * dev->mult) >> dev->shift);
250}
251
252void update_vsyscall_tz(void)
253{
254	write_seqcount_begin(&vdso_data->tz_seq);
255	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
256	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
257	write_seqcount_end(&vdso_data->tz_seq);
258}
259
260void update_vsyscall(struct timekeeper *tk)
261{
262	if (tk->tkr_mono.clock != &cycle_counter_cs)
263		return;
264
265	write_seqcount_begin(&vdso_data->tb_seq);
266
267	vdso_data->cycle_last		= tk->tkr_mono.cycle_last;
268	vdso_data->mask			= tk->tkr_mono.mask;
269	vdso_data->mult			= tk->tkr_mono.mult;
270	vdso_data->shift		= tk->tkr_mono.shift;
271
272	vdso_data->wall_time_sec	= tk->xtime_sec;
273	vdso_data->wall_time_snsec	= tk->tkr_mono.xtime_nsec;
274
275	vdso_data->monotonic_time_sec	= tk->xtime_sec
276					+ tk->wall_to_monotonic.tv_sec;
277	vdso_data->monotonic_time_snsec	= tk->tkr_mono.xtime_nsec
278					+ ((u64)tk->wall_to_monotonic.tv_nsec
279						<< tk->tkr_mono.shift);
280	while (vdso_data->monotonic_time_snsec >=
281					(((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
282		vdso_data->monotonic_time_snsec -=
283					((u64)NSEC_PER_SEC) << tk->tkr_mono.shift;
284		vdso_data->monotonic_time_sec++;
285	}
286
287	vdso_data->wall_time_coarse_sec	= tk->xtime_sec;
288	vdso_data->wall_time_coarse_nsec = (long)(tk->tkr_mono.xtime_nsec >>
289						 tk->tkr_mono.shift);
290
291	vdso_data->monotonic_time_coarse_sec =
292		vdso_data->wall_time_coarse_sec + tk->wall_to_monotonic.tv_sec;
293	vdso_data->monotonic_time_coarse_nsec =
294		vdso_data->wall_time_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
295
296	while (vdso_data->monotonic_time_coarse_nsec >= NSEC_PER_SEC) {
297		vdso_data->monotonic_time_coarse_nsec -= NSEC_PER_SEC;
298		vdso_data->monotonic_time_coarse_sec++;
299	}
300
301	write_seqcount_end(&vdso_data->tb_seq);
302}