Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc.
  4 *
  5 * Copyright (C) 1996, 2008 David S. Miller (davem@davemloft.net)
  6 * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz)
  7 */
  8
  9#include <asm/head.h>
 10
 11#include <linux/string.h>
 12#include <linux/types.h>
 13#include <linux/sched.h>
 14#include <linux/sched/debug.h>
 15#include <linux/ptrace.h>
 16#include <linux/mman.h>
 17#include <linux/signal.h>
 18#include <linux/mm.h>
 19#include <linux/extable.h>
 20#include <linux/init.h>
 21#include <linux/perf_event.h>
 22#include <linux/interrupt.h>
 23#include <linux/kprobes.h>
 24#include <linux/kdebug.h>
 25#include <linux/percpu.h>
 26#include <linux/context_tracking.h>
 27#include <linux/uaccess.h>
 28
 29#include <asm/page.h>
 
 30#include <asm/openprom.h>
 31#include <asm/oplib.h>
 32#include <asm/asi.h>
 33#include <asm/lsu.h>
 34#include <asm/sections.h>
 35#include <asm/mmu_context.h>
 36#include <asm/setup.h>
 37
 38int show_unhandled_signals = 1;
 39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 40static void __kprobes unhandled_fault(unsigned long address,
 41				      struct task_struct *tsk,
 42				      struct pt_regs *regs)
 43{
 44	if ((unsigned long) address < PAGE_SIZE) {
 45		printk(KERN_ALERT "Unable to handle kernel NULL "
 46		       "pointer dereference\n");
 47	} else {
 48		printk(KERN_ALERT "Unable to handle kernel paging request "
 49		       "at virtual address %016lx\n", (unsigned long)address);
 50	}
 51	printk(KERN_ALERT "tsk->{mm,active_mm}->context = %016lx\n",
 52	       (tsk->mm ?
 53		CTX_HWBITS(tsk->mm->context) :
 54		CTX_HWBITS(tsk->active_mm->context)));
 55	printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %016lx\n",
 56	       (tsk->mm ? (unsigned long) tsk->mm->pgd :
 57		          (unsigned long) tsk->active_mm->pgd));
 58	die_if_kernel("Oops", regs);
 59}
 60
 61static void __kprobes bad_kernel_pc(struct pt_regs *regs, unsigned long vaddr)
 62{
 63	printk(KERN_CRIT "OOPS: Bogus kernel PC [%016lx] in fault handler\n",
 64	       regs->tpc);
 65	printk(KERN_CRIT "OOPS: RPC [%016lx]\n", regs->u_regs[15]);
 66	printk("OOPS: RPC <%pS>\n", (void *) regs->u_regs[15]);
 67	printk(KERN_CRIT "OOPS: Fault was to vaddr[%lx]\n", vaddr);
 68	dump_stack();
 69	unhandled_fault(regs->tpc, current, regs);
 70}
 71
 72/*
 73 * We now make sure that mmap_lock is held in all paths that call
 74 * this. Additionally, to prevent kswapd from ripping ptes from
 75 * under us, raise interrupts around the time that we look at the
 76 * pte, kswapd will have to wait to get his smp ipi response from
 77 * us. vmtruncate likewise. This saves us having to get pte lock.
 78 */
 79static unsigned int get_user_insn(unsigned long tpc)
 80{
 81	pgd_t *pgdp = pgd_offset(current->mm, tpc);
 82	p4d_t *p4dp;
 83	pud_t *pudp;
 84	pmd_t *pmdp;
 85	pte_t *ptep, pte;
 86	unsigned long pa;
 87	u32 insn = 0;
 88
 89	if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
 90		goto out;
 91	p4dp = p4d_offset(pgdp, tpc);
 92	if (p4d_none(*p4dp) || unlikely(p4d_bad(*p4dp)))
 93		goto out;
 94	pudp = pud_offset(p4dp, tpc);
 95	if (pud_none(*pudp) || unlikely(pud_bad(*pudp)))
 96		goto out;
 97
 98	/* This disables preemption for us as well. */
 99	local_irq_disable();
100
101	pmdp = pmd_offset(pudp, tpc);
102	if (pmd_none(*pmdp) || unlikely(pmd_bad(*pmdp)))
103		goto out_irq_enable;
104
105#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
106	if (is_hugetlb_pmd(*pmdp)) {
107		pa  = pmd_pfn(*pmdp) << PAGE_SHIFT;
108		pa += tpc & ~HPAGE_MASK;
109
110		/* Use phys bypass so we don't pollute dtlb/dcache. */
111		__asm__ __volatile__("lduwa [%1] %2, %0"
112				     : "=r" (insn)
113				     : "r" (pa), "i" (ASI_PHYS_USE_EC));
114	} else
115#endif
116	{
117		ptep = pte_offset_map(pmdp, tpc);
118		pte = *ptep;
119		if (pte_present(pte)) {
120			pa  = (pte_pfn(pte) << PAGE_SHIFT);
121			pa += (tpc & ~PAGE_MASK);
122
123			/* Use phys bypass so we don't pollute dtlb/dcache. */
124			__asm__ __volatile__("lduwa [%1] %2, %0"
125					     : "=r" (insn)
126					     : "r" (pa), "i" (ASI_PHYS_USE_EC));
127		}
128		pte_unmap(ptep);
129	}
130out_irq_enable:
131	local_irq_enable();
132out:
133	return insn;
134}
135
136static inline void
137show_signal_msg(struct pt_regs *regs, int sig, int code,
138		unsigned long address, struct task_struct *tsk)
139{
140	if (!unhandled_signal(tsk, sig))
141		return;
142
143	if (!printk_ratelimit())
144		return;
145
146	printk("%s%s[%d]: segfault at %lx ip %px (rpc %px) sp %px error %x",
147	       task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
148	       tsk->comm, task_pid_nr(tsk), address,
149	       (void *)regs->tpc, (void *)regs->u_regs[UREG_I7],
150	       (void *)regs->u_regs[UREG_FP], code);
151
152	print_vma_addr(KERN_CONT " in ", regs->tpc);
153
154	printk(KERN_CONT "\n");
155}
156
157static void do_fault_siginfo(int code, int sig, struct pt_regs *regs,
158			     unsigned long fault_addr, unsigned int insn,
159			     int fault_code)
160{
161	unsigned long addr;
 
162
 
 
 
163	if (fault_code & FAULT_CODE_ITLB) {
164		addr = regs->tpc;
165	} else {
166		/* If we were able to probe the faulting instruction, use it
167		 * to compute a precise fault address.  Otherwise use the fault
168		 * time provided address which may only have page granularity.
169		 */
170		if (insn)
171			addr = compute_effective_address(regs, insn, 0);
172		else
173			addr = fault_addr;
174	}
 
 
175
176	if (unlikely(show_unhandled_signals))
177		show_signal_msg(regs, sig, code, addr, current);
178
179	force_sig_fault(sig, code, (void __user *) addr);
180}
181
182static unsigned int get_fault_insn(struct pt_regs *regs, unsigned int insn)
183{
184	if (!insn) {
185		if (!regs->tpc || (regs->tpc & 0x3))
186			return 0;
187		if (regs->tstate & TSTATE_PRIV) {
188			insn = *(unsigned int *) regs->tpc;
189		} else {
190			insn = get_user_insn(regs->tpc);
191		}
192	}
193	return insn;
194}
195
196static void __kprobes do_kernel_fault(struct pt_regs *regs, int si_code,
197				      int fault_code, unsigned int insn,
198				      unsigned long address)
199{
200	unsigned char asi = ASI_P;
201 
202	if ((!insn) && (regs->tstate & TSTATE_PRIV))
203		goto cannot_handle;
204
205	/* If user insn could be read (thus insn is zero), that
206	 * is fine.  We will just gun down the process with a signal
207	 * in that case.
208	 */
209
210	if (!(fault_code & (FAULT_CODE_WRITE|FAULT_CODE_ITLB)) &&
211	    (insn & 0xc0800000) == 0xc0800000) {
212		if (insn & 0x2000)
213			asi = (regs->tstate >> 24);
214		else
215			asi = (insn >> 5);
216		if ((asi & 0xf2) == 0x82) {
217			if (insn & 0x1000000) {
218				handle_ldf_stq(insn, regs);
219			} else {
220				/* This was a non-faulting load. Just clear the
221				 * destination register(s) and continue with the next
222				 * instruction. -jj
223				 */
224				handle_ld_nf(insn, regs);
225			}
226			return;
227		}
228	}
229		
230	/* Is this in ex_table? */
231	if (regs->tstate & TSTATE_PRIV) {
232		const struct exception_table_entry *entry;
233
234		entry = search_exception_tables(regs->tpc);
235		if (entry) {
236			regs->tpc = entry->fixup;
237			regs->tnpc = regs->tpc + 4;
238			return;
239		}
240	} else {
241		/* The si_code was set to make clear whether
242		 * this was a SEGV_MAPERR or SEGV_ACCERR fault.
243		 */
244		do_fault_siginfo(si_code, SIGSEGV, regs, address, insn, fault_code);
245		return;
246	}
247
248cannot_handle:
249	unhandled_fault (address, current, regs);
250}
251
252static void noinline __kprobes bogus_32bit_fault_tpc(struct pt_regs *regs)
253{
254	static int times;
255
256	if (times++ < 10)
257		printk(KERN_ERR "FAULT[%s:%d]: 32-bit process reports "
258		       "64-bit TPC [%lx]\n",
259		       current->comm, current->pid,
260		       regs->tpc);
261	show_regs(regs);
262}
263
264asmlinkage void __kprobes do_sparc64_fault(struct pt_regs *regs)
265{
266	enum ctx_state prev_state = exception_enter();
267	struct mm_struct *mm = current->mm;
268	struct vm_area_struct *vma;
269	unsigned int insn = 0;
270	int si_code, fault_code;
271	vm_fault_t fault;
272	unsigned long address, mm_rss;
273	unsigned int flags = FAULT_FLAG_DEFAULT;
274
275	fault_code = get_thread_fault_code();
276
277	if (kprobe_page_fault(regs, 0))
278		goto exit_exception;
279
280	si_code = SEGV_MAPERR;
281	address = current_thread_info()->fault_address;
282
283	if ((fault_code & FAULT_CODE_ITLB) &&
284	    (fault_code & FAULT_CODE_DTLB))
285		BUG();
286
287	if (test_thread_flag(TIF_32BIT)) {
288		if (!(regs->tstate & TSTATE_PRIV)) {
289			if (unlikely((regs->tpc >> 32) != 0)) {
290				bogus_32bit_fault_tpc(regs);
291				goto intr_or_no_mm;
292			}
293		}
294		if (unlikely((address >> 32) != 0))
295			goto intr_or_no_mm;
296	}
297
298	if (regs->tstate & TSTATE_PRIV) {
299		unsigned long tpc = regs->tpc;
300
301		/* Sanity check the PC. */
302		if ((tpc >= KERNBASE && tpc < (unsigned long) __init_end) ||
303		    (tpc >= MODULES_VADDR && tpc < MODULES_END)) {
304			/* Valid, no problems... */
305		} else {
306			bad_kernel_pc(regs, address);
307			goto exit_exception;
308		}
309	} else
310		flags |= FAULT_FLAG_USER;
311
312	/*
313	 * If we're in an interrupt or have no user
314	 * context, we must not take the fault..
315	 */
316	if (faulthandler_disabled() || !mm)
317		goto intr_or_no_mm;
318
319	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
320
321	if (!mmap_read_trylock(mm)) {
322		if ((regs->tstate & TSTATE_PRIV) &&
323		    !search_exception_tables(regs->tpc)) {
324			insn = get_fault_insn(regs, insn);
325			goto handle_kernel_fault;
326		}
327
328retry:
329		mmap_read_lock(mm);
330	}
331
332	if (fault_code & FAULT_CODE_BAD_RA)
333		goto do_sigbus;
334
335	vma = find_vma(mm, address);
336	if (!vma)
337		goto bad_area;
338
339	/* Pure DTLB misses do not tell us whether the fault causing
340	 * load/store/atomic was a write or not, it only says that there
341	 * was no match.  So in such a case we (carefully) read the
342	 * instruction to try and figure this out.  It's an optimization
343	 * so it's ok if we can't do this.
344	 *
345	 * Special hack, window spill/fill knows the exact fault type.
346	 */
347	if (((fault_code &
348	      (FAULT_CODE_DTLB | FAULT_CODE_WRITE | FAULT_CODE_WINFIXUP)) == FAULT_CODE_DTLB) &&
349	    (vma->vm_flags & VM_WRITE) != 0) {
350		insn = get_fault_insn(regs, 0);
351		if (!insn)
352			goto continue_fault;
353		/* All loads, stores and atomics have bits 30 and 31 both set
354		 * in the instruction.  Bit 21 is set in all stores, but we
355		 * have to avoid prefetches which also have bit 21 set.
356		 */
357		if ((insn & 0xc0200000) == 0xc0200000 &&
358		    (insn & 0x01780000) != 0x01680000) {
359			/* Don't bother updating thread struct value,
360			 * because update_mmu_cache only cares which tlb
361			 * the access came from.
362			 */
363			fault_code |= FAULT_CODE_WRITE;
364		}
365	}
366continue_fault:
367
368	if (vma->vm_start <= address)
369		goto good_area;
370	if (!(vma->vm_flags & VM_GROWSDOWN))
371		goto bad_area;
372	if (!(fault_code & FAULT_CODE_WRITE)) {
373		/* Non-faulting loads shouldn't expand stack. */
374		insn = get_fault_insn(regs, insn);
375		if ((insn & 0xc0800000) == 0xc0800000) {
376			unsigned char asi;
377
378			if (insn & 0x2000)
379				asi = (regs->tstate >> 24);
380			else
381				asi = (insn >> 5);
382			if ((asi & 0xf2) == 0x82)
383				goto bad_area;
384		}
385	}
386	if (expand_stack(vma, address))
387		goto bad_area;
388	/*
389	 * Ok, we have a good vm_area for this memory access, so
390	 * we can handle it..
391	 */
392good_area:
393	si_code = SEGV_ACCERR;
394
395	/* If we took a ITLB miss on a non-executable page, catch
396	 * that here.
397	 */
398	if ((fault_code & FAULT_CODE_ITLB) && !(vma->vm_flags & VM_EXEC)) {
399		WARN(address != regs->tpc,
400		     "address (%lx) != regs->tpc (%lx)\n", address, regs->tpc);
401		WARN_ON(regs->tstate & TSTATE_PRIV);
402		goto bad_area;
403	}
404
405	if (fault_code & FAULT_CODE_WRITE) {
406		if (!(vma->vm_flags & VM_WRITE))
407			goto bad_area;
408
409		/* Spitfire has an icache which does not snoop
410		 * processor stores.  Later processors do...
411		 */
412		if (tlb_type == spitfire &&
413		    (vma->vm_flags & VM_EXEC) != 0 &&
414		    vma->vm_file != NULL)
415			set_thread_fault_code(fault_code |
416					      FAULT_CODE_BLKCOMMIT);
417
418		flags |= FAULT_FLAG_WRITE;
419	} else {
420		/* Allow reads even for write-only mappings */
421		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
422			goto bad_area;
423	}
424
425	fault = handle_mm_fault(vma, address, flags, regs);
426
427	if (fault_signal_pending(fault, regs))
428		goto exit_exception;
429
430	/* The fault is fully completed (including releasing mmap lock) */
431	if (fault & VM_FAULT_COMPLETED)
432		goto lock_released;
433
434	if (unlikely(fault & VM_FAULT_ERROR)) {
435		if (fault & VM_FAULT_OOM)
436			goto out_of_memory;
437		else if (fault & VM_FAULT_SIGSEGV)
438			goto bad_area;
439		else if (fault & VM_FAULT_SIGBUS)
440			goto do_sigbus;
441		BUG();
442	}
443
444	if (fault & VM_FAULT_RETRY) {
445		flags |= FAULT_FLAG_TRIED;
446
447		/* No need to mmap_read_unlock(mm) as we would
448		 * have already released it in __lock_page_or_retry
449		 * in mm/filemap.c.
450		 */
 
 
 
 
 
 
 
 
 
 
 
451
452		goto retry;
 
453	}
454	mmap_read_unlock(mm);
455
456lock_released:
457	mm_rss = get_mm_rss(mm);
458#if defined(CONFIG_TRANSPARENT_HUGEPAGE)
459	mm_rss -= (mm->context.thp_pte_count * (HPAGE_SIZE / PAGE_SIZE));
460#endif
461	if (unlikely(mm_rss >
462		     mm->context.tsb_block[MM_TSB_BASE].tsb_rss_limit))
463		tsb_grow(mm, MM_TSB_BASE, mm_rss);
464#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
465	mm_rss = mm->context.hugetlb_pte_count + mm->context.thp_pte_count;
466	mm_rss *= REAL_HPAGE_PER_HPAGE;
467	if (unlikely(mm_rss >
468		     mm->context.tsb_block[MM_TSB_HUGE].tsb_rss_limit)) {
469		if (mm->context.tsb_block[MM_TSB_HUGE].tsb)
470			tsb_grow(mm, MM_TSB_HUGE, mm_rss);
471		else
472			hugetlb_setup(regs);
473
474	}
475#endif
476exit_exception:
477	exception_exit(prev_state);
478	return;
479
480	/*
481	 * Something tried to access memory that isn't in our memory map..
482	 * Fix it, but check if it's kernel or user first..
483	 */
484bad_area:
485	insn = get_fault_insn(regs, insn);
486	mmap_read_unlock(mm);
487
488handle_kernel_fault:
489	do_kernel_fault(regs, si_code, fault_code, insn, address);
490	goto exit_exception;
491
492/*
493 * We ran out of memory, or some other thing happened to us that made
494 * us unable to handle the page fault gracefully.
495 */
496out_of_memory:
497	insn = get_fault_insn(regs, insn);
498	mmap_read_unlock(mm);
499	if (!(regs->tstate & TSTATE_PRIV)) {
500		pagefault_out_of_memory();
501		goto exit_exception;
502	}
503	goto handle_kernel_fault;
504
505intr_or_no_mm:
506	insn = get_fault_insn(regs, 0);
507	goto handle_kernel_fault;
508
509do_sigbus:
510	insn = get_fault_insn(regs, insn);
511	mmap_read_unlock(mm);
512
513	/*
514	 * Send a sigbus, regardless of whether we were in kernel
515	 * or user mode.
516	 */
517	do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, address, insn, fault_code);
518
519	/* Kernel mode? Handle exceptions or die */
520	if (regs->tstate & TSTATE_PRIV)
521		goto handle_kernel_fault;
522}
v4.6
 
  1/*
  2 * arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc.
  3 *
  4 * Copyright (C) 1996, 2008 David S. Miller (davem@davemloft.net)
  5 * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz)
  6 */
  7
  8#include <asm/head.h>
  9
 10#include <linux/string.h>
 11#include <linux/types.h>
 12#include <linux/sched.h>
 
 13#include <linux/ptrace.h>
 14#include <linux/mman.h>
 15#include <linux/signal.h>
 16#include <linux/mm.h>
 17#include <linux/module.h>
 18#include <linux/init.h>
 19#include <linux/perf_event.h>
 20#include <linux/interrupt.h>
 21#include <linux/kprobes.h>
 22#include <linux/kdebug.h>
 23#include <linux/percpu.h>
 24#include <linux/context_tracking.h>
 25#include <linux/uaccess.h>
 26
 27#include <asm/page.h>
 28#include <asm/pgtable.h>
 29#include <asm/openprom.h>
 30#include <asm/oplib.h>
 31#include <asm/asi.h>
 32#include <asm/lsu.h>
 33#include <asm/sections.h>
 34#include <asm/mmu_context.h>
 35#include <asm/setup.h>
 36
 37int show_unhandled_signals = 1;
 38
 39static inline __kprobes int notify_page_fault(struct pt_regs *regs)
 40{
 41	int ret = 0;
 42
 43	/* kprobe_running() needs smp_processor_id() */
 44	if (kprobes_built_in() && !user_mode(regs)) {
 45		preempt_disable();
 46		if (kprobe_running() && kprobe_fault_handler(regs, 0))
 47			ret = 1;
 48		preempt_enable();
 49	}
 50	return ret;
 51}
 52
 53static void __kprobes unhandled_fault(unsigned long address,
 54				      struct task_struct *tsk,
 55				      struct pt_regs *regs)
 56{
 57	if ((unsigned long) address < PAGE_SIZE) {
 58		printk(KERN_ALERT "Unable to handle kernel NULL "
 59		       "pointer dereference\n");
 60	} else {
 61		printk(KERN_ALERT "Unable to handle kernel paging request "
 62		       "at virtual address %016lx\n", (unsigned long)address);
 63	}
 64	printk(KERN_ALERT "tsk->{mm,active_mm}->context = %016lx\n",
 65	       (tsk->mm ?
 66		CTX_HWBITS(tsk->mm->context) :
 67		CTX_HWBITS(tsk->active_mm->context)));
 68	printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %016lx\n",
 69	       (tsk->mm ? (unsigned long) tsk->mm->pgd :
 70		          (unsigned long) tsk->active_mm->pgd));
 71	die_if_kernel("Oops", regs);
 72}
 73
 74static void __kprobes bad_kernel_pc(struct pt_regs *regs, unsigned long vaddr)
 75{
 76	printk(KERN_CRIT "OOPS: Bogus kernel PC [%016lx] in fault handler\n",
 77	       regs->tpc);
 78	printk(KERN_CRIT "OOPS: RPC [%016lx]\n", regs->u_regs[15]);
 79	printk("OOPS: RPC <%pS>\n", (void *) regs->u_regs[15]);
 80	printk(KERN_CRIT "OOPS: Fault was to vaddr[%lx]\n", vaddr);
 81	dump_stack();
 82	unhandled_fault(regs->tpc, current, regs);
 83}
 84
 85/*
 86 * We now make sure that mmap_sem is held in all paths that call 
 87 * this. Additionally, to prevent kswapd from ripping ptes from
 88 * under us, raise interrupts around the time that we look at the
 89 * pte, kswapd will have to wait to get his smp ipi response from
 90 * us. vmtruncate likewise. This saves us having to get pte lock.
 91 */
 92static unsigned int get_user_insn(unsigned long tpc)
 93{
 94	pgd_t *pgdp = pgd_offset(current->mm, tpc);
 
 95	pud_t *pudp;
 96	pmd_t *pmdp;
 97	pte_t *ptep, pte;
 98	unsigned long pa;
 99	u32 insn = 0;
100
101	if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
102		goto out;
103	pudp = pud_offset(pgdp, tpc);
 
 
 
104	if (pud_none(*pudp) || unlikely(pud_bad(*pudp)))
105		goto out;
106
107	/* This disables preemption for us as well. */
108	local_irq_disable();
109
110	pmdp = pmd_offset(pudp, tpc);
111	if (pmd_none(*pmdp) || unlikely(pmd_bad(*pmdp)))
112		goto out_irq_enable;
113
114#ifdef CONFIG_TRANSPARENT_HUGEPAGE
115	if (pmd_trans_huge(*pmdp)) {
116		pa  = pmd_pfn(*pmdp) << PAGE_SHIFT;
117		pa += tpc & ~HPAGE_MASK;
118
119		/* Use phys bypass so we don't pollute dtlb/dcache. */
120		__asm__ __volatile__("lduwa [%1] %2, %0"
121				     : "=r" (insn)
122				     : "r" (pa), "i" (ASI_PHYS_USE_EC));
123	} else
124#endif
125	{
126		ptep = pte_offset_map(pmdp, tpc);
127		pte = *ptep;
128		if (pte_present(pte)) {
129			pa  = (pte_pfn(pte) << PAGE_SHIFT);
130			pa += (tpc & ~PAGE_MASK);
131
132			/* Use phys bypass so we don't pollute dtlb/dcache. */
133			__asm__ __volatile__("lduwa [%1] %2, %0"
134					     : "=r" (insn)
135					     : "r" (pa), "i" (ASI_PHYS_USE_EC));
136		}
137		pte_unmap(ptep);
138	}
139out_irq_enable:
140	local_irq_enable();
141out:
142	return insn;
143}
144
145static inline void
146show_signal_msg(struct pt_regs *regs, int sig, int code,
147		unsigned long address, struct task_struct *tsk)
148{
149	if (!unhandled_signal(tsk, sig))
150		return;
151
152	if (!printk_ratelimit())
153		return;
154
155	printk("%s%s[%d]: segfault at %lx ip %p (rpc %p) sp %p error %x",
156	       task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
157	       tsk->comm, task_pid_nr(tsk), address,
158	       (void *)regs->tpc, (void *)regs->u_regs[UREG_I7],
159	       (void *)regs->u_regs[UREG_FP], code);
160
161	print_vma_addr(KERN_CONT " in ", regs->tpc);
162
163	printk(KERN_CONT "\n");
164}
165
166static void do_fault_siginfo(int code, int sig, struct pt_regs *regs,
167			     unsigned long fault_addr, unsigned int insn,
168			     int fault_code)
169{
170	unsigned long addr;
171	siginfo_t info;
172
173	info.si_code = code;
174	info.si_signo = sig;
175	info.si_errno = 0;
176	if (fault_code & FAULT_CODE_ITLB) {
177		addr = regs->tpc;
178	} else {
179		/* If we were able to probe the faulting instruction, use it
180		 * to compute a precise fault address.  Otherwise use the fault
181		 * time provided address which may only have page granularity.
182		 */
183		if (insn)
184			addr = compute_effective_address(regs, insn, 0);
185		else
186			addr = fault_addr;
187	}
188	info.si_addr = (void __user *) addr;
189	info.si_trapno = 0;
190
191	if (unlikely(show_unhandled_signals))
192		show_signal_msg(regs, sig, code, addr, current);
193
194	force_sig_info(sig, &info, current);
195}
196
197static unsigned int get_fault_insn(struct pt_regs *regs, unsigned int insn)
198{
199	if (!insn) {
200		if (!regs->tpc || (regs->tpc & 0x3))
201			return 0;
202		if (regs->tstate & TSTATE_PRIV) {
203			insn = *(unsigned int *) regs->tpc;
204		} else {
205			insn = get_user_insn(regs->tpc);
206		}
207	}
208	return insn;
209}
210
211static void __kprobes do_kernel_fault(struct pt_regs *regs, int si_code,
212				      int fault_code, unsigned int insn,
213				      unsigned long address)
214{
215	unsigned char asi = ASI_P;
216 
217	if ((!insn) && (regs->tstate & TSTATE_PRIV))
218		goto cannot_handle;
219
220	/* If user insn could be read (thus insn is zero), that
221	 * is fine.  We will just gun down the process with a signal
222	 * in that case.
223	 */
224
225	if (!(fault_code & (FAULT_CODE_WRITE|FAULT_CODE_ITLB)) &&
226	    (insn & 0xc0800000) == 0xc0800000) {
227		if (insn & 0x2000)
228			asi = (regs->tstate >> 24);
229		else
230			asi = (insn >> 5);
231		if ((asi & 0xf2) == 0x82) {
232			if (insn & 0x1000000) {
233				handle_ldf_stq(insn, regs);
234			} else {
235				/* This was a non-faulting load. Just clear the
236				 * destination register(s) and continue with the next
237				 * instruction. -jj
238				 */
239				handle_ld_nf(insn, regs);
240			}
241			return;
242		}
243	}
244		
245	/* Is this in ex_table? */
246	if (regs->tstate & TSTATE_PRIV) {
247		const struct exception_table_entry *entry;
248
249		entry = search_exception_tables(regs->tpc);
250		if (entry) {
251			regs->tpc = entry->fixup;
252			regs->tnpc = regs->tpc + 4;
253			return;
254		}
255	} else {
256		/* The si_code was set to make clear whether
257		 * this was a SEGV_MAPERR or SEGV_ACCERR fault.
258		 */
259		do_fault_siginfo(si_code, SIGSEGV, regs, address, insn, fault_code);
260		return;
261	}
262
263cannot_handle:
264	unhandled_fault (address, current, regs);
265}
266
267static void noinline __kprobes bogus_32bit_fault_tpc(struct pt_regs *regs)
268{
269	static int times;
270
271	if (times++ < 10)
272		printk(KERN_ERR "FAULT[%s:%d]: 32-bit process reports "
273		       "64-bit TPC [%lx]\n",
274		       current->comm, current->pid,
275		       regs->tpc);
276	show_regs(regs);
277}
278
279asmlinkage void __kprobes do_sparc64_fault(struct pt_regs *regs)
280{
281	enum ctx_state prev_state = exception_enter();
282	struct mm_struct *mm = current->mm;
283	struct vm_area_struct *vma;
284	unsigned int insn = 0;
285	int si_code, fault_code, fault;
 
286	unsigned long address, mm_rss;
287	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
288
289	fault_code = get_thread_fault_code();
290
291	if (notify_page_fault(regs))
292		goto exit_exception;
293
294	si_code = SEGV_MAPERR;
295	address = current_thread_info()->fault_address;
296
297	if ((fault_code & FAULT_CODE_ITLB) &&
298	    (fault_code & FAULT_CODE_DTLB))
299		BUG();
300
301	if (test_thread_flag(TIF_32BIT)) {
302		if (!(regs->tstate & TSTATE_PRIV)) {
303			if (unlikely((regs->tpc >> 32) != 0)) {
304				bogus_32bit_fault_tpc(regs);
305				goto intr_or_no_mm;
306			}
307		}
308		if (unlikely((address >> 32) != 0))
309			goto intr_or_no_mm;
310	}
311
312	if (regs->tstate & TSTATE_PRIV) {
313		unsigned long tpc = regs->tpc;
314
315		/* Sanity check the PC. */
316		if ((tpc >= KERNBASE && tpc < (unsigned long) __init_end) ||
317		    (tpc >= MODULES_VADDR && tpc < MODULES_END)) {
318			/* Valid, no problems... */
319		} else {
320			bad_kernel_pc(regs, address);
321			goto exit_exception;
322		}
323	} else
324		flags |= FAULT_FLAG_USER;
325
326	/*
327	 * If we're in an interrupt or have no user
328	 * context, we must not take the fault..
329	 */
330	if (faulthandler_disabled() || !mm)
331		goto intr_or_no_mm;
332
333	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
334
335	if (!down_read_trylock(&mm->mmap_sem)) {
336		if ((regs->tstate & TSTATE_PRIV) &&
337		    !search_exception_tables(regs->tpc)) {
338			insn = get_fault_insn(regs, insn);
339			goto handle_kernel_fault;
340		}
341
342retry:
343		down_read(&mm->mmap_sem);
344	}
345
346	if (fault_code & FAULT_CODE_BAD_RA)
347		goto do_sigbus;
348
349	vma = find_vma(mm, address);
350	if (!vma)
351		goto bad_area;
352
353	/* Pure DTLB misses do not tell us whether the fault causing
354	 * load/store/atomic was a write or not, it only says that there
355	 * was no match.  So in such a case we (carefully) read the
356	 * instruction to try and figure this out.  It's an optimization
357	 * so it's ok if we can't do this.
358	 *
359	 * Special hack, window spill/fill knows the exact fault type.
360	 */
361	if (((fault_code &
362	      (FAULT_CODE_DTLB | FAULT_CODE_WRITE | FAULT_CODE_WINFIXUP)) == FAULT_CODE_DTLB) &&
363	    (vma->vm_flags & VM_WRITE) != 0) {
364		insn = get_fault_insn(regs, 0);
365		if (!insn)
366			goto continue_fault;
367		/* All loads, stores and atomics have bits 30 and 31 both set
368		 * in the instruction.  Bit 21 is set in all stores, but we
369		 * have to avoid prefetches which also have bit 21 set.
370		 */
371		if ((insn & 0xc0200000) == 0xc0200000 &&
372		    (insn & 0x01780000) != 0x01680000) {
373			/* Don't bother updating thread struct value,
374			 * because update_mmu_cache only cares which tlb
375			 * the access came from.
376			 */
377			fault_code |= FAULT_CODE_WRITE;
378		}
379	}
380continue_fault:
381
382	if (vma->vm_start <= address)
383		goto good_area;
384	if (!(vma->vm_flags & VM_GROWSDOWN))
385		goto bad_area;
386	if (!(fault_code & FAULT_CODE_WRITE)) {
387		/* Non-faulting loads shouldn't expand stack. */
388		insn = get_fault_insn(regs, insn);
389		if ((insn & 0xc0800000) == 0xc0800000) {
390			unsigned char asi;
391
392			if (insn & 0x2000)
393				asi = (regs->tstate >> 24);
394			else
395				asi = (insn >> 5);
396			if ((asi & 0xf2) == 0x82)
397				goto bad_area;
398		}
399	}
400	if (expand_stack(vma, address))
401		goto bad_area;
402	/*
403	 * Ok, we have a good vm_area for this memory access, so
404	 * we can handle it..
405	 */
406good_area:
407	si_code = SEGV_ACCERR;
408
409	/* If we took a ITLB miss on a non-executable page, catch
410	 * that here.
411	 */
412	if ((fault_code & FAULT_CODE_ITLB) && !(vma->vm_flags & VM_EXEC)) {
413		WARN(address != regs->tpc,
414		     "address (%lx) != regs->tpc (%lx)\n", address, regs->tpc);
415		WARN_ON(regs->tstate & TSTATE_PRIV);
416		goto bad_area;
417	}
418
419	if (fault_code & FAULT_CODE_WRITE) {
420		if (!(vma->vm_flags & VM_WRITE))
421			goto bad_area;
422
423		/* Spitfire has an icache which does not snoop
424		 * processor stores.  Later processors do...
425		 */
426		if (tlb_type == spitfire &&
427		    (vma->vm_flags & VM_EXEC) != 0 &&
428		    vma->vm_file != NULL)
429			set_thread_fault_code(fault_code |
430					      FAULT_CODE_BLKCOMMIT);
431
432		flags |= FAULT_FLAG_WRITE;
433	} else {
434		/* Allow reads even for write-only mappings */
435		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
436			goto bad_area;
437	}
438
439	fault = handle_mm_fault(mm, vma, address, flags);
440
441	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
442		goto exit_exception;
443
 
 
 
 
444	if (unlikely(fault & VM_FAULT_ERROR)) {
445		if (fault & VM_FAULT_OOM)
446			goto out_of_memory;
447		else if (fault & VM_FAULT_SIGSEGV)
448			goto bad_area;
449		else if (fault & VM_FAULT_SIGBUS)
450			goto do_sigbus;
451		BUG();
452	}
453
454	if (flags & FAULT_FLAG_ALLOW_RETRY) {
455		if (fault & VM_FAULT_MAJOR) {
456			current->maj_flt++;
457			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ,
458				      1, regs, address);
459		} else {
460			current->min_flt++;
461			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN,
462				      1, regs, address);
463		}
464		if (fault & VM_FAULT_RETRY) {
465			flags &= ~FAULT_FLAG_ALLOW_RETRY;
466			flags |= FAULT_FLAG_TRIED;
467
468			/* No need to up_read(&mm->mmap_sem) as we would
469			 * have already released it in __lock_page_or_retry
470			 * in mm/filemap.c.
471			 */
472
473			goto retry;
474		}
475	}
476	up_read(&mm->mmap_sem);
477
 
478	mm_rss = get_mm_rss(mm);
479#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
480	mm_rss -= (mm->context.huge_pte_count * (HPAGE_SIZE / PAGE_SIZE));
481#endif
482	if (unlikely(mm_rss >
483		     mm->context.tsb_block[MM_TSB_BASE].tsb_rss_limit))
484		tsb_grow(mm, MM_TSB_BASE, mm_rss);
485#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
486	mm_rss = mm->context.huge_pte_count;
 
487	if (unlikely(mm_rss >
488		     mm->context.tsb_block[MM_TSB_HUGE].tsb_rss_limit)) {
489		if (mm->context.tsb_block[MM_TSB_HUGE].tsb)
490			tsb_grow(mm, MM_TSB_HUGE, mm_rss);
491		else
492			hugetlb_setup(regs);
493
494	}
495#endif
496exit_exception:
497	exception_exit(prev_state);
498	return;
499
500	/*
501	 * Something tried to access memory that isn't in our memory map..
502	 * Fix it, but check if it's kernel or user first..
503	 */
504bad_area:
505	insn = get_fault_insn(regs, insn);
506	up_read(&mm->mmap_sem);
507
508handle_kernel_fault:
509	do_kernel_fault(regs, si_code, fault_code, insn, address);
510	goto exit_exception;
511
512/*
513 * We ran out of memory, or some other thing happened to us that made
514 * us unable to handle the page fault gracefully.
515 */
516out_of_memory:
517	insn = get_fault_insn(regs, insn);
518	up_read(&mm->mmap_sem);
519	if (!(regs->tstate & TSTATE_PRIV)) {
520		pagefault_out_of_memory();
521		goto exit_exception;
522	}
523	goto handle_kernel_fault;
524
525intr_or_no_mm:
526	insn = get_fault_insn(regs, 0);
527	goto handle_kernel_fault;
528
529do_sigbus:
530	insn = get_fault_insn(regs, insn);
531	up_read(&mm->mmap_sem);
532
533	/*
534	 * Send a sigbus, regardless of whether we were in kernel
535	 * or user mode.
536	 */
537	do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, address, insn, fault_code);
538
539	/* Kernel mode? Handle exceptions or die */
540	if (regs->tstate & TSTATE_PRIV)
541		goto handle_kernel_fault;
542}