Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* smp.c: Sparc64 SMP support.
   3 *
   4 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
   5 */
   6
   7#include <linux/export.h>
   8#include <linux/kernel.h>
   9#include <linux/sched/mm.h>
  10#include <linux/sched/hotplug.h>
  11#include <linux/mm.h>
  12#include <linux/pagemap.h>
  13#include <linux/threads.h>
  14#include <linux/smp.h>
  15#include <linux/interrupt.h>
  16#include <linux/kernel_stat.h>
  17#include <linux/delay.h>
  18#include <linux/init.h>
  19#include <linux/spinlock.h>
  20#include <linux/fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/cache.h>
  23#include <linux/jiffies.h>
  24#include <linux/profile.h>
  25#include <linux/memblock.h>
  26#include <linux/vmalloc.h>
  27#include <linux/ftrace.h>
  28#include <linux/cpu.h>
  29#include <linux/slab.h>
  30#include <linux/kgdb.h>
  31
  32#include <asm/head.h>
  33#include <asm/ptrace.h>
  34#include <linux/atomic.h>
  35#include <asm/tlbflush.h>
  36#include <asm/mmu_context.h>
  37#include <asm/cpudata.h>
  38#include <asm/hvtramp.h>
  39#include <asm/io.h>
  40#include <asm/timer.h>
  41#include <asm/setup.h>
  42
  43#include <asm/irq.h>
  44#include <asm/irq_regs.h>
  45#include <asm/page.h>
 
  46#include <asm/oplib.h>
  47#include <linux/uaccess.h>
  48#include <asm/starfire.h>
  49#include <asm/tlb.h>
  50#include <asm/pgalloc.h>
  51#include <asm/sections.h>
  52#include <asm/prom.h>
  53#include <asm/mdesc.h>
  54#include <asm/ldc.h>
  55#include <asm/hypervisor.h>
  56#include <asm/pcr.h>
  57
  58#include "cpumap.h"
  59#include "kernel.h"
  60
  61DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  62cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  63	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  64
  65cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
  66	[0 ... NR_CPUS-1] = CPU_MASK_NONE };
  67
  68cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
  69	[0 ... NR_CPUS - 1] = CPU_MASK_NONE };
  70
  71EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  72EXPORT_SYMBOL(cpu_core_map);
  73EXPORT_SYMBOL(cpu_core_sib_map);
  74EXPORT_SYMBOL(cpu_core_sib_cache_map);
  75
  76static cpumask_t smp_commenced_mask;
  77
  78static DEFINE_PER_CPU(bool, poke);
  79static bool cpu_poke;
  80
  81void smp_info(struct seq_file *m)
  82{
  83	int i;
  84	
  85	seq_printf(m, "State:\n");
  86	for_each_online_cpu(i)
  87		seq_printf(m, "CPU%d:\t\tonline\n", i);
  88}
  89
  90void smp_bogo(struct seq_file *m)
  91{
  92	int i;
  93	
  94	for_each_online_cpu(i)
  95		seq_printf(m,
  96			   "Cpu%dClkTck\t: %016lx\n",
  97			   i, cpu_data(i).clock_tick);
  98}
  99
 100extern void setup_sparc64_timer(void);
 101
 102static volatile unsigned long callin_flag = 0;
 103
 104void smp_callin(void)
 105{
 106	int cpuid = hard_smp_processor_id();
 107
 108	__local_per_cpu_offset = __per_cpu_offset(cpuid);
 109
 110	if (tlb_type == hypervisor)
 111		sun4v_ktsb_register();
 112
 113	__flush_tlb_all();
 114
 115	setup_sparc64_timer();
 116
 117	if (cheetah_pcache_forced_on)
 118		cheetah_enable_pcache();
 119
 120	callin_flag = 1;
 121	__asm__ __volatile__("membar #Sync\n\t"
 122			     "flush  %%g6" : : : "memory");
 123
 124	/* Clear this or we will die instantly when we
 125	 * schedule back to this idler...
 126	 */
 127	current_thread_info()->new_child = 0;
 128
 129	/* Attach to the address space of init_task. */
 130	mmgrab(&init_mm);
 131	current->active_mm = &init_mm;
 132
 133	/* inform the notifiers about the new cpu */
 134	notify_cpu_starting(cpuid);
 135
 136	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
 137		rmb();
 138
 139	set_cpu_online(cpuid, true);
 140
 
 
 
 141	local_irq_enable();
 142
 143	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 144}
 145
 146void cpu_panic(void)
 147{
 148	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
 149	panic("SMP bolixed\n");
 150}
 151
 152/* This tick register synchronization scheme is taken entirely from
 153 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
 154 *
 155 * The only change I've made is to rework it so that the master
 156 * initiates the synchonization instead of the slave. -DaveM
 157 */
 158
 159#define MASTER	0
 160#define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
 161
 162#define NUM_ROUNDS	64	/* magic value */
 163#define NUM_ITERS	5	/* likewise */
 164
 165static DEFINE_RAW_SPINLOCK(itc_sync_lock);
 166static unsigned long go[SLAVE + 1];
 167
 168#define DEBUG_TICK_SYNC	0
 169
 170static inline long get_delta (long *rt, long *master)
 171{
 172	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 173	unsigned long tcenter, t0, t1, tm;
 174	unsigned long i;
 175
 176	for (i = 0; i < NUM_ITERS; i++) {
 177		t0 = tick_ops->get_tick();
 178		go[MASTER] = 1;
 179		membar_safe("#StoreLoad");
 180		while (!(tm = go[SLAVE]))
 181			rmb();
 182		go[SLAVE] = 0;
 183		wmb();
 184		t1 = tick_ops->get_tick();
 185
 186		if (t1 - t0 < best_t1 - best_t0)
 187			best_t0 = t0, best_t1 = t1, best_tm = tm;
 188	}
 189
 190	*rt = best_t1 - best_t0;
 191	*master = best_tm - best_t0;
 192
 193	/* average best_t0 and best_t1 without overflow: */
 194	tcenter = (best_t0/2 + best_t1/2);
 195	if (best_t0 % 2 + best_t1 % 2 == 2)
 196		tcenter++;
 197	return tcenter - best_tm;
 198}
 199
 200void smp_synchronize_tick_client(void)
 201{
 202	long i, delta, adj, adjust_latency = 0, done = 0;
 203	unsigned long flags, rt, master_time_stamp;
 204#if DEBUG_TICK_SYNC
 205	struct {
 206		long rt;	/* roundtrip time */
 207		long master;	/* master's timestamp */
 208		long diff;	/* difference between midpoint and master's timestamp */
 209		long lat;	/* estimate of itc adjustment latency */
 210	} t[NUM_ROUNDS];
 211#endif
 212
 213	go[MASTER] = 1;
 214
 215	while (go[MASTER])
 216		rmb();
 217
 218	local_irq_save(flags);
 219	{
 220		for (i = 0; i < NUM_ROUNDS; i++) {
 221			delta = get_delta(&rt, &master_time_stamp);
 222			if (delta == 0)
 223				done = 1;	/* let's lock on to this... */
 224
 225			if (!done) {
 226				if (i > 0) {
 227					adjust_latency += -delta;
 228					adj = -delta + adjust_latency/4;
 229				} else
 230					adj = -delta;
 231
 232				tick_ops->add_tick(adj);
 233			}
 234#if DEBUG_TICK_SYNC
 235			t[i].rt = rt;
 236			t[i].master = master_time_stamp;
 237			t[i].diff = delta;
 238			t[i].lat = adjust_latency/4;
 239#endif
 240		}
 241	}
 242	local_irq_restore(flags);
 243
 244#if DEBUG_TICK_SYNC
 245	for (i = 0; i < NUM_ROUNDS; i++)
 246		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 247		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 248#endif
 249
 250	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
 251	       "(last diff %ld cycles, maxerr %lu cycles)\n",
 252	       smp_processor_id(), delta, rt);
 253}
 254
 255static void smp_start_sync_tick_client(int cpu);
 256
 257static void smp_synchronize_one_tick(int cpu)
 258{
 259	unsigned long flags, i;
 260
 261	go[MASTER] = 0;
 262
 263	smp_start_sync_tick_client(cpu);
 264
 265	/* wait for client to be ready */
 266	while (!go[MASTER])
 267		rmb();
 268
 269	/* now let the client proceed into his loop */
 270	go[MASTER] = 0;
 271	membar_safe("#StoreLoad");
 272
 273	raw_spin_lock_irqsave(&itc_sync_lock, flags);
 274	{
 275		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
 276			while (!go[MASTER])
 277				rmb();
 278			go[MASTER] = 0;
 279			wmb();
 280			go[SLAVE] = tick_ops->get_tick();
 281			membar_safe("#StoreLoad");
 282		}
 283	}
 284	raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
 285}
 286
 287#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 288static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
 289				void **descrp)
 290{
 291	extern unsigned long sparc64_ttable_tl0;
 292	extern unsigned long kern_locked_tte_data;
 293	struct hvtramp_descr *hdesc;
 294	unsigned long trampoline_ra;
 295	struct trap_per_cpu *tb;
 296	u64 tte_vaddr, tte_data;
 297	unsigned long hv_err;
 298	int i;
 299
 300	hdesc = kzalloc(sizeof(*hdesc) +
 301			(sizeof(struct hvtramp_mapping) *
 302			 num_kernel_image_mappings - 1),
 303			GFP_KERNEL);
 304	if (!hdesc) {
 305		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
 306		       "hvtramp_descr.\n");
 307		return;
 308	}
 309	*descrp = hdesc;
 310
 311	hdesc->cpu = cpu;
 312	hdesc->num_mappings = num_kernel_image_mappings;
 313
 314	tb = &trap_block[cpu];
 315
 316	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
 317	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
 318
 319	hdesc->thread_reg = thread_reg;
 320
 321	tte_vaddr = (unsigned long) KERNBASE;
 322	tte_data = kern_locked_tte_data;
 323
 324	for (i = 0; i < hdesc->num_mappings; i++) {
 325		hdesc->maps[i].vaddr = tte_vaddr;
 326		hdesc->maps[i].tte   = tte_data;
 327		tte_vaddr += 0x400000;
 328		tte_data  += 0x400000;
 329	}
 330
 331	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
 332
 333	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
 334				 kimage_addr_to_ra(&sparc64_ttable_tl0),
 335				 __pa(hdesc));
 336	if (hv_err)
 337		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
 338		       "gives error %lu\n", hv_err);
 339}
 340#endif
 341
 342extern unsigned long sparc64_cpu_startup;
 343
 344/* The OBP cpu startup callback truncates the 3rd arg cookie to
 345 * 32-bits (I think) so to be safe we have it read the pointer
 346 * contained here so we work on >4GB machines. -DaveM
 347 */
 348static struct thread_info *cpu_new_thread = NULL;
 349
 350static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
 351{
 352	unsigned long entry =
 353		(unsigned long)(&sparc64_cpu_startup);
 354	unsigned long cookie =
 355		(unsigned long)(&cpu_new_thread);
 356	void *descr = NULL;
 357	int timeout, ret;
 358
 359	callin_flag = 0;
 360	cpu_new_thread = task_thread_info(idle);
 361
 362	if (tlb_type == hypervisor) {
 363#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 364		if (ldom_domaining_enabled)
 365			ldom_startcpu_cpuid(cpu,
 366					    (unsigned long) cpu_new_thread,
 367					    &descr);
 368		else
 369#endif
 370			prom_startcpu_cpuid(cpu, entry, cookie);
 371	} else {
 372		struct device_node *dp = of_find_node_by_cpuid(cpu);
 373
 374		prom_startcpu(dp->phandle, entry, cookie);
 375	}
 376
 377	for (timeout = 0; timeout < 50000; timeout++) {
 378		if (callin_flag)
 379			break;
 380		udelay(100);
 381	}
 382
 383	if (callin_flag) {
 384		ret = 0;
 385	} else {
 386		printk("Processor %d is stuck.\n", cpu);
 387		ret = -ENODEV;
 388	}
 389	cpu_new_thread = NULL;
 390
 391	kfree(descr);
 392
 393	return ret;
 394}
 395
 396static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
 397{
 398	u64 result, target;
 399	int stuck, tmp;
 400
 401	if (this_is_starfire) {
 402		/* map to real upaid */
 403		cpu = (((cpu & 0x3c) << 1) |
 404			((cpu & 0x40) >> 4) |
 405			(cpu & 0x3));
 406	}
 407
 408	target = (cpu << 14) | 0x70;
 409again:
 410	/* Ok, this is the real Spitfire Errata #54.
 411	 * One must read back from a UDB internal register
 412	 * after writes to the UDB interrupt dispatch, but
 413	 * before the membar Sync for that write.
 414	 * So we use the high UDB control register (ASI 0x7f,
 415	 * ADDR 0x20) for the dummy read. -DaveM
 416	 */
 417	tmp = 0x40;
 418	__asm__ __volatile__(
 419	"wrpr	%1, %2, %%pstate\n\t"
 420	"stxa	%4, [%0] %3\n\t"
 421	"stxa	%5, [%0+%8] %3\n\t"
 422	"add	%0, %8, %0\n\t"
 423	"stxa	%6, [%0+%8] %3\n\t"
 424	"membar	#Sync\n\t"
 425	"stxa	%%g0, [%7] %3\n\t"
 426	"membar	#Sync\n\t"
 427	"mov	0x20, %%g1\n\t"
 428	"ldxa	[%%g1] 0x7f, %%g0\n\t"
 429	"membar	#Sync"
 430	: "=r" (tmp)
 431	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
 432	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
 433	  "r" (0x10), "0" (tmp)
 434        : "g1");
 435
 436	/* NOTE: PSTATE_IE is still clear. */
 437	stuck = 100000;
 438	do {
 439		__asm__ __volatile__("ldxa [%%g0] %1, %0"
 440			: "=r" (result)
 441			: "i" (ASI_INTR_DISPATCH_STAT));
 442		if (result == 0) {
 443			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 444					     : : "r" (pstate));
 445			return;
 446		}
 447		stuck -= 1;
 448		if (stuck == 0)
 449			break;
 450	} while (result & 0x1);
 451	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 452			     : : "r" (pstate));
 453	if (stuck == 0) {
 454		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 455		       smp_processor_id(), result);
 456	} else {
 457		udelay(2);
 458		goto again;
 459	}
 460}
 461
 462static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 463{
 464	u64 *mondo, data0, data1, data2;
 465	u16 *cpu_list;
 466	u64 pstate;
 467	int i;
 468
 469	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 470	cpu_list = __va(tb->cpu_list_pa);
 471	mondo = __va(tb->cpu_mondo_block_pa);
 472	data0 = mondo[0];
 473	data1 = mondo[1];
 474	data2 = mondo[2];
 475	for (i = 0; i < cnt; i++)
 476		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
 477}
 478
 479/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
 480 * packet, but we have no use for that.  However we do take advantage of
 481 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
 482 */
 483static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 484{
 485	int nack_busy_id, is_jbus, need_more;
 486	u64 *mondo, pstate, ver, busy_mask;
 487	u16 *cpu_list;
 488
 489	cpu_list = __va(tb->cpu_list_pa);
 490	mondo = __va(tb->cpu_mondo_block_pa);
 491
 492	/* Unfortunately, someone at Sun had the brilliant idea to make the
 493	 * busy/nack fields hard-coded by ITID number for this Ultra-III
 494	 * derivative processor.
 495	 */
 496	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 497	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
 498		   (ver >> 32) == __SERRANO_ID);
 499
 500	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 501
 502retry:
 503	need_more = 0;
 504	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
 505			     : : "r" (pstate), "i" (PSTATE_IE));
 506
 507	/* Setup the dispatch data registers. */
 508	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
 509			     "stxa	%1, [%4] %6\n\t"
 510			     "stxa	%2, [%5] %6\n\t"
 511			     "membar	#Sync\n\t"
 512			     : /* no outputs */
 513			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
 514			       "r" (0x40), "r" (0x50), "r" (0x60),
 515			       "i" (ASI_INTR_W));
 516
 517	nack_busy_id = 0;
 518	busy_mask = 0;
 519	{
 520		int i;
 521
 522		for (i = 0; i < cnt; i++) {
 523			u64 target, nr;
 524
 525			nr = cpu_list[i];
 526			if (nr == 0xffff)
 527				continue;
 528
 529			target = (nr << 14) | 0x70;
 530			if (is_jbus) {
 531				busy_mask |= (0x1UL << (nr * 2));
 532			} else {
 533				target |= (nack_busy_id << 24);
 534				busy_mask |= (0x1UL <<
 535					      (nack_busy_id * 2));
 536			}
 537			__asm__ __volatile__(
 538				"stxa	%%g0, [%0] %1\n\t"
 539				"membar	#Sync\n\t"
 540				: /* no outputs */
 541				: "r" (target), "i" (ASI_INTR_W));
 542			nack_busy_id++;
 543			if (nack_busy_id == 32) {
 544				need_more = 1;
 545				break;
 546			}
 547		}
 548	}
 549
 550	/* Now, poll for completion. */
 551	{
 552		u64 dispatch_stat, nack_mask;
 553		long stuck;
 554
 555		stuck = 100000 * nack_busy_id;
 556		nack_mask = busy_mask << 1;
 557		do {
 558			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
 559					     : "=r" (dispatch_stat)
 560					     : "i" (ASI_INTR_DISPATCH_STAT));
 561			if (!(dispatch_stat & (busy_mask | nack_mask))) {
 562				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 563						     : : "r" (pstate));
 564				if (unlikely(need_more)) {
 565					int i, this_cnt = 0;
 566					for (i = 0; i < cnt; i++) {
 567						if (cpu_list[i] == 0xffff)
 568							continue;
 569						cpu_list[i] = 0xffff;
 570						this_cnt++;
 571						if (this_cnt == 32)
 572							break;
 573					}
 574					goto retry;
 575				}
 576				return;
 577			}
 578			if (!--stuck)
 579				break;
 580		} while (dispatch_stat & busy_mask);
 581
 582		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 583				     : : "r" (pstate));
 584
 585		if (dispatch_stat & busy_mask) {
 586			/* Busy bits will not clear, continue instead
 587			 * of freezing up on this cpu.
 588			 */
 589			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 590			       smp_processor_id(), dispatch_stat);
 591		} else {
 592			int i, this_busy_nack = 0;
 593
 594			/* Delay some random time with interrupts enabled
 595			 * to prevent deadlock.
 596			 */
 597			udelay(2 * nack_busy_id);
 598
 599			/* Clear out the mask bits for cpus which did not
 600			 * NACK us.
 601			 */
 602			for (i = 0; i < cnt; i++) {
 603				u64 check_mask, nr;
 604
 605				nr = cpu_list[i];
 606				if (nr == 0xffff)
 607					continue;
 608
 609				if (is_jbus)
 610					check_mask = (0x2UL << (2*nr));
 611				else
 612					check_mask = (0x2UL <<
 613						      this_busy_nack);
 614				if ((dispatch_stat & check_mask) == 0)
 615					cpu_list[i] = 0xffff;
 616				this_busy_nack += 2;
 617				if (this_busy_nack == 64)
 618					break;
 619			}
 620
 621			goto retry;
 622		}
 623	}
 624}
 625
 626#define	CPU_MONDO_COUNTER(cpuid)	(cpu_mondo_counter[cpuid])
 627#define	MONDO_USEC_WAIT_MIN		2
 628#define	MONDO_USEC_WAIT_MAX		100
 629#define	MONDO_RETRY_LIMIT		500000
 630
 631/* Multi-cpu list version.
 632 *
 633 * Deliver xcalls to 'cnt' number of cpus in 'cpu_list'.
 634 * Sometimes not all cpus receive the mondo, requiring us to re-send
 635 * the mondo until all cpus have received, or cpus are truly stuck
 636 * unable to receive mondo, and we timeout.
 637 * Occasionally a target cpu strand is borrowed briefly by hypervisor to
 638 * perform guest service, such as PCIe error handling. Consider the
 639 * service time, 1 second overall wait is reasonable for 1 cpu.
 640 * Here two in-between mondo check wait time are defined: 2 usec for
 641 * single cpu quick turn around and up to 100usec for large cpu count.
 642 * Deliver mondo to large number of cpus could take longer, we adjusts
 643 * the retry count as long as target cpus are making forward progress.
 644 */
 645static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 646{
 647	int this_cpu, tot_cpus, prev_sent, i, rem;
 648	int usec_wait, retries, tot_retries;
 649	u16 first_cpu = 0xffff;
 650	unsigned long xc_rcvd = 0;
 651	unsigned long status;
 652	int ecpuerror_id = 0;
 653	int enocpu_id = 0;
 654	u16 *cpu_list;
 655	u16 cpu;
 656
 657	this_cpu = smp_processor_id();
 
 658	cpu_list = __va(tb->cpu_list_pa);
 659	usec_wait = cnt * MONDO_USEC_WAIT_MIN;
 660	if (usec_wait > MONDO_USEC_WAIT_MAX)
 661		usec_wait = MONDO_USEC_WAIT_MAX;
 662	retries = tot_retries = 0;
 663	tot_cpus = cnt;
 664	prev_sent = 0;
 665
 
 
 
 666	do {
 667		int n_sent, mondo_delivered, target_cpu_busy;
 668
 669		status = sun4v_cpu_mondo_send(cnt,
 670					      tb->cpu_list_pa,
 671					      tb->cpu_mondo_block_pa);
 672
 673		/* HV_EOK means all cpus received the xcall, we're done.  */
 674		if (likely(status == HV_EOK))
 675			goto xcall_done;
 676
 677		/* If not these non-fatal errors, panic */
 678		if (unlikely((status != HV_EWOULDBLOCK) &&
 679			(status != HV_ECPUERROR) &&
 680			(status != HV_ENOCPU)))
 681			goto fatal_errors;
 682
 683		/* First, see if we made any forward progress.
 684		 *
 685		 * Go through the cpu_list, count the target cpus that have
 686		 * received our mondo (n_sent), and those that did not (rem).
 687		 * Re-pack cpu_list with the cpus remain to be retried in the
 688		 * front - this simplifies tracking the truly stalled cpus.
 689		 *
 690		 * The hypervisor indicates successful sends by setting
 691		 * cpu list entries to the value 0xffff.
 692		 *
 693		 * EWOULDBLOCK means some target cpus did not receive the
 694		 * mondo and retry usually helps.
 695		 *
 696		 * ECPUERROR means at least one target cpu is in error state,
 697		 * it's usually safe to skip the faulty cpu and retry.
 698		 *
 699		 * ENOCPU means one of the target cpu doesn't belong to the
 700		 * domain, perhaps offlined which is unexpected, but not
 701		 * fatal and it's okay to skip the offlined cpu.
 702		 */
 703		rem = 0;
 704		n_sent = 0;
 705		for (i = 0; i < cnt; i++) {
 706			cpu = cpu_list[i];
 707			if (likely(cpu == 0xffff)) {
 708				n_sent++;
 709			} else if ((status == HV_ECPUERROR) &&
 710				(sun4v_cpu_state(cpu) == HV_CPU_STATE_ERROR)) {
 711				ecpuerror_id = cpu + 1;
 712			} else if (status == HV_ENOCPU && !cpu_online(cpu)) {
 713				enocpu_id = cpu + 1;
 714			} else {
 715				cpu_list[rem++] = cpu;
 716			}
 717		}
 718
 719		/* No cpu remained, we're done. */
 720		if (rem == 0)
 721			break;
 722
 723		/* Otherwise, update the cpu count for retry. */
 724		cnt = rem;
 725
 726		/* Record the overall number of mondos received by the
 727		 * first of the remaining cpus.
 
 728		 */
 729		if (first_cpu != cpu_list[0]) {
 730			first_cpu = cpu_list[0];
 731			xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
 732		}
 733
 734		/* Was any mondo delivered successfully? */
 735		mondo_delivered = (n_sent > prev_sent);
 736		prev_sent = n_sent;
 737
 738		/* or, was any target cpu busy processing other mondos? */
 739		target_cpu_busy = (xc_rcvd < CPU_MONDO_COUNTER(first_cpu));
 740		xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
 741
 742		/* Retry count is for no progress. If we're making progress,
 743		 * reset the retry count.
 744		 */
 745		if (likely(mondo_delivered || target_cpu_busy)) {
 746			tot_retries += retries;
 747			retries = 0;
 748		} else if (unlikely(retries > MONDO_RETRY_LIMIT)) {
 749			goto fatal_mondo_timeout;
 750		}
 751
 752		/* Delay a little bit to let other cpus catch up on
 753		 * their cpu mondo queue work.
 
 
 
 
 754		 */
 755		if (!mondo_delivered)
 756			udelay(usec_wait);
 
 757
 758		retries++;
 
 
 
 
 759	} while (1);
 760
 761xcall_done:
 762	if (unlikely(ecpuerror_id > 0)) {
 763		pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) was in error state\n",
 764		       this_cpu, ecpuerror_id - 1);
 765	} else if (unlikely(enocpu_id > 0)) {
 766		pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) does not belong to the domain\n",
 767		       this_cpu, enocpu_id - 1);
 768	}
 769	return;
 770
 771fatal_errors:
 772	/* fatal errors include bad alignment, etc */
 773	pr_crit("CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) mondo_block_pa(%lx)\n",
 774	       this_cpu, tot_cpus, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
 775	panic("Unexpected SUN4V mondo error %lu\n", status);
 776
 777fatal_mondo_timeout:
 778	/* some cpus being non-responsive to the cpu mondo */
 779	pr_crit("CPU[%d]: SUN4V mondo timeout, cpu(%d) made no forward progress after %d retries. Total target cpus(%d).\n",
 780	       this_cpu, first_cpu, (tot_retries + retries), tot_cpus);
 781	panic("SUN4V mondo timeout panic\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 782}
 783
 784static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
 785
 786static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
 787{
 788	struct trap_per_cpu *tb;
 789	int this_cpu, i, cnt;
 790	unsigned long flags;
 791	u16 *cpu_list;
 792	u64 *mondo;
 793
 794	/* We have to do this whole thing with interrupts fully disabled.
 795	 * Otherwise if we send an xcall from interrupt context it will
 796	 * corrupt both our mondo block and cpu list state.
 797	 *
 798	 * One consequence of this is that we cannot use timeout mechanisms
 799	 * that depend upon interrupts being delivered locally.  So, for
 800	 * example, we cannot sample jiffies and expect it to advance.
 801	 *
 802	 * Fortunately, udelay() uses %stick/%tick so we can use that.
 803	 */
 804	local_irq_save(flags);
 805
 806	this_cpu = smp_processor_id();
 807	tb = &trap_block[this_cpu];
 808
 809	mondo = __va(tb->cpu_mondo_block_pa);
 810	mondo[0] = data0;
 811	mondo[1] = data1;
 812	mondo[2] = data2;
 813	wmb();
 814
 815	cpu_list = __va(tb->cpu_list_pa);
 816
 817	/* Setup the initial cpu list.  */
 818	cnt = 0;
 819	for_each_cpu(i, mask) {
 820		if (i == this_cpu || !cpu_online(i))
 821			continue;
 822		cpu_list[cnt++] = i;
 823	}
 824
 825	if (cnt)
 826		xcall_deliver_impl(tb, cnt);
 827
 828	local_irq_restore(flags);
 829}
 830
 831/* Send cross call to all processors mentioned in MASK_P
 832 * except self.  Really, there are only two cases currently,
 833 * "cpu_online_mask" and "mm_cpumask(mm)".
 834 */
 835static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
 836{
 837	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
 838
 839	xcall_deliver(data0, data1, data2, mask);
 840}
 841
 842/* Send cross call to all processors except self. */
 843static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
 844{
 845	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
 846}
 847
 848extern unsigned long xcall_sync_tick;
 849
 850static void smp_start_sync_tick_client(int cpu)
 851{
 852	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
 853		      cpumask_of(cpu));
 854}
 855
 856extern unsigned long xcall_call_function;
 857
 858void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 859{
 860	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
 861}
 862
 863extern unsigned long xcall_call_function_single;
 864
 865void arch_send_call_function_single_ipi(int cpu)
 866{
 867	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
 868		      cpumask_of(cpu));
 869}
 870
 871void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
 872{
 873	clear_softint(1 << irq);
 874	irq_enter();
 875	generic_smp_call_function_interrupt();
 876	irq_exit();
 877}
 878
 879void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
 880{
 881	clear_softint(1 << irq);
 882	irq_enter();
 883	generic_smp_call_function_single_interrupt();
 884	irq_exit();
 885}
 886
 887static void tsb_sync(void *info)
 888{
 889	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
 890	struct mm_struct *mm = info;
 891
 892	/* It is not valid to test "current->active_mm == mm" here.
 893	 *
 894	 * The value of "current" is not changed atomically with
 895	 * switch_mm().  But that's OK, we just need to check the
 896	 * current cpu's trap block PGD physical address.
 897	 */
 898	if (tp->pgd_paddr == __pa(mm->pgd))
 899		tsb_context_switch(mm);
 900}
 901
 902void smp_tsb_sync(struct mm_struct *mm)
 903{
 904	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
 905}
 906
 907extern unsigned long xcall_flush_tlb_mm;
 908extern unsigned long xcall_flush_tlb_page;
 909extern unsigned long xcall_flush_tlb_kernel_range;
 910extern unsigned long xcall_fetch_glob_regs;
 911extern unsigned long xcall_fetch_glob_pmu;
 912extern unsigned long xcall_fetch_glob_pmu_n4;
 913extern unsigned long xcall_receive_signal;
 914extern unsigned long xcall_new_mmu_context_version;
 915#ifdef CONFIG_KGDB
 916extern unsigned long xcall_kgdb_capture;
 917#endif
 918
 919#ifdef DCACHE_ALIASING_POSSIBLE
 920extern unsigned long xcall_flush_dcache_page_cheetah;
 921#endif
 922extern unsigned long xcall_flush_dcache_page_spitfire;
 923
 924static inline void __local_flush_dcache_page(struct page *page)
 925{
 926#ifdef DCACHE_ALIASING_POSSIBLE
 927	__flush_dcache_page(page_address(page),
 928			    ((tlb_type == spitfire) &&
 929			     page_mapping_file(page) != NULL));
 930#else
 931	if (page_mapping_file(page) != NULL &&
 932	    tlb_type == spitfire)
 933		__flush_icache_page(__pa(page_address(page)));
 934#endif
 935}
 936
 937void smp_flush_dcache_page_impl(struct page *page, int cpu)
 938{
 939	int this_cpu;
 940
 941	if (tlb_type == hypervisor)
 942		return;
 943
 944#ifdef CONFIG_DEBUG_DCFLUSH
 945	atomic_inc(&dcpage_flushes);
 946#endif
 947
 948	this_cpu = get_cpu();
 949
 950	if (cpu == this_cpu) {
 951		__local_flush_dcache_page(page);
 952	} else if (cpu_online(cpu)) {
 953		void *pg_addr = page_address(page);
 954		u64 data0 = 0;
 955
 956		if (tlb_type == spitfire) {
 957			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 958			if (page_mapping_file(page) != NULL)
 959				data0 |= ((u64)1 << 32);
 960		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 961#ifdef DCACHE_ALIASING_POSSIBLE
 962			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
 963#endif
 964		}
 965		if (data0) {
 966			xcall_deliver(data0, __pa(pg_addr),
 967				      (u64) pg_addr, cpumask_of(cpu));
 968#ifdef CONFIG_DEBUG_DCFLUSH
 969			atomic_inc(&dcpage_flushes_xcall);
 970#endif
 971		}
 972	}
 973
 974	put_cpu();
 975}
 976
 977void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
 978{
 979	void *pg_addr;
 980	u64 data0;
 981
 982	if (tlb_type == hypervisor)
 983		return;
 984
 985	preempt_disable();
 986
 987#ifdef CONFIG_DEBUG_DCFLUSH
 988	atomic_inc(&dcpage_flushes);
 989#endif
 990	data0 = 0;
 991	pg_addr = page_address(page);
 992	if (tlb_type == spitfire) {
 993		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 994		if (page_mapping_file(page) != NULL)
 995			data0 |= ((u64)1 << 32);
 996	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 997#ifdef DCACHE_ALIASING_POSSIBLE
 998		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 999#endif
1000	}
1001	if (data0) {
1002		xcall_deliver(data0, __pa(pg_addr),
1003			      (u64) pg_addr, cpu_online_mask);
1004#ifdef CONFIG_DEBUG_DCFLUSH
1005		atomic_inc(&dcpage_flushes_xcall);
1006#endif
1007	}
1008	__local_flush_dcache_page(page);
1009
1010	preempt_enable();
1011}
1012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1013#ifdef CONFIG_KGDB
1014void kgdb_roundup_cpus(void)
1015{
1016	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1017}
1018#endif
1019
1020void smp_fetch_global_regs(void)
1021{
1022	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1023}
1024
1025void smp_fetch_global_pmu(void)
1026{
1027	if (tlb_type == hypervisor &&
1028	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1029		smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1030	else
1031		smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1032}
1033
1034/* We know that the window frames of the user have been flushed
1035 * to the stack before we get here because all callers of us
1036 * are flush_tlb_*() routines, and these run after flush_cache_*()
1037 * which performs the flushw.
1038 *
1039 * mm->cpu_vm_mask is a bit mask of which cpus an address
1040 * space has (potentially) executed on, this is the heuristic
1041 * we use to limit cross calls.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1042 */
1043
1044/* This currently is only used by the hugetlb arch pre-fault
1045 * hook on UltraSPARC-III+ and later when changing the pagesize
1046 * bits of the context register for an address space.
1047 */
1048void smp_flush_tlb_mm(struct mm_struct *mm)
1049{
1050	u32 ctx = CTX_HWBITS(mm->context);
 
1051
1052	get_cpu();
 
 
 
1053
1054	smp_cross_call_masked(&xcall_flush_tlb_mm,
1055			      ctx, 0, 0,
1056			      mm_cpumask(mm));
1057
 
1058	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1059
1060	put_cpu();
1061}
1062
1063struct tlb_pending_info {
1064	unsigned long ctx;
1065	unsigned long nr;
1066	unsigned long *vaddrs;
1067};
1068
1069static void tlb_pending_func(void *info)
1070{
1071	struct tlb_pending_info *t = info;
1072
1073	__flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1074}
1075
1076void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1077{
1078	u32 ctx = CTX_HWBITS(mm->context);
1079	struct tlb_pending_info info;
1080
1081	get_cpu();
1082
1083	info.ctx = ctx;
1084	info.nr = nr;
1085	info.vaddrs = vaddrs;
1086
1087	smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1088			       &info, 1);
 
 
 
1089
1090	__flush_tlb_pending(ctx, nr, vaddrs);
1091
1092	put_cpu();
1093}
1094
1095void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1096{
1097	unsigned long context = CTX_HWBITS(mm->context);
 
1098
1099	get_cpu();
1100
1101	smp_cross_call_masked(&xcall_flush_tlb_page,
1102			      context, vaddr, 0,
1103			      mm_cpumask(mm));
1104
1105	__flush_tlb_page(context, vaddr);
1106
1107	put_cpu();
1108}
1109
1110void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1111{
1112	start &= PAGE_MASK;
1113	end    = PAGE_ALIGN(end);
1114	if (start != end) {
1115		smp_cross_call(&xcall_flush_tlb_kernel_range,
1116			       0, start, end);
1117
1118		__flush_tlb_kernel_range(start, end);
1119	}
1120}
1121
1122/* CPU capture. */
1123/* #define CAPTURE_DEBUG */
1124extern unsigned long xcall_capture;
1125
1126static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1127static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1128static unsigned long penguins_are_doing_time;
1129
1130void smp_capture(void)
1131{
1132	int result = atomic_add_return(1, &smp_capture_depth);
1133
1134	if (result == 1) {
1135		int ncpus = num_online_cpus();
1136
1137#ifdef CAPTURE_DEBUG
1138		printk("CPU[%d]: Sending penguins to jail...",
1139		       smp_processor_id());
1140#endif
1141		penguins_are_doing_time = 1;
1142		atomic_inc(&smp_capture_registry);
1143		smp_cross_call(&xcall_capture, 0, 0, 0);
1144		while (atomic_read(&smp_capture_registry) != ncpus)
1145			rmb();
1146#ifdef CAPTURE_DEBUG
1147		printk("done\n");
1148#endif
1149	}
1150}
1151
1152void smp_release(void)
1153{
1154	if (atomic_dec_and_test(&smp_capture_depth)) {
1155#ifdef CAPTURE_DEBUG
1156		printk("CPU[%d]: Giving pardon to "
1157		       "imprisoned penguins\n",
1158		       smp_processor_id());
1159#endif
1160		penguins_are_doing_time = 0;
1161		membar_safe("#StoreLoad");
1162		atomic_dec(&smp_capture_registry);
1163	}
1164}
1165
1166/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1167 * set, so they can service tlb flush xcalls...
1168 */
1169extern void prom_world(int);
1170
1171void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1172{
1173	clear_softint(1 << irq);
1174
1175	preempt_disable();
1176
1177	__asm__ __volatile__("flushw");
1178	prom_world(1);
1179	atomic_inc(&smp_capture_registry);
1180	membar_safe("#StoreLoad");
1181	while (penguins_are_doing_time)
1182		rmb();
1183	atomic_dec(&smp_capture_registry);
1184	prom_world(0);
1185
1186	preempt_enable();
1187}
1188
 
 
 
 
 
 
1189void __init smp_prepare_cpus(unsigned int max_cpus)
1190{
1191}
1192
1193void smp_prepare_boot_cpu(void)
1194{
1195}
1196
1197void __init smp_setup_processor_id(void)
1198{
1199	if (tlb_type == spitfire)
1200		xcall_deliver_impl = spitfire_xcall_deliver;
1201	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1202		xcall_deliver_impl = cheetah_xcall_deliver;
1203	else
1204		xcall_deliver_impl = hypervisor_xcall_deliver;
1205}
1206
1207void __init smp_fill_in_cpu_possible_map(void)
1208{
1209	int possible_cpus = num_possible_cpus();
1210	int i;
1211
1212	if (possible_cpus > nr_cpu_ids)
1213		possible_cpus = nr_cpu_ids;
1214
1215	for (i = 0; i < possible_cpus; i++)
1216		set_cpu_possible(i, true);
1217	for (; i < NR_CPUS; i++)
1218		set_cpu_possible(i, false);
1219}
1220
1221void smp_fill_in_sib_core_maps(void)
1222{
1223	unsigned int i;
1224
1225	for_each_present_cpu(i) {
1226		unsigned int j;
1227
1228		cpumask_clear(&cpu_core_map[i]);
1229		if (cpu_data(i).core_id == 0) {
1230			cpumask_set_cpu(i, &cpu_core_map[i]);
1231			continue;
1232		}
1233
1234		for_each_present_cpu(j) {
1235			if (cpu_data(i).core_id ==
1236			    cpu_data(j).core_id)
1237				cpumask_set_cpu(j, &cpu_core_map[i]);
1238		}
1239	}
1240
1241	for_each_present_cpu(i)  {
1242		unsigned int j;
1243
1244		for_each_present_cpu(j)  {
1245			if (cpu_data(i).max_cache_id ==
1246			    cpu_data(j).max_cache_id)
1247				cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1248
1249			if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1250				cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1251		}
1252	}
1253
1254	for_each_present_cpu(i) {
1255		unsigned int j;
1256
1257		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1258		if (cpu_data(i).proc_id == -1) {
1259			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1260			continue;
1261		}
1262
1263		for_each_present_cpu(j) {
1264			if (cpu_data(i).proc_id ==
1265			    cpu_data(j).proc_id)
1266				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1267		}
1268	}
1269}
1270
1271int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1272{
1273	int ret = smp_boot_one_cpu(cpu, tidle);
1274
1275	if (!ret) {
1276		cpumask_set_cpu(cpu, &smp_commenced_mask);
1277		while (!cpu_online(cpu))
1278			mb();
1279		if (!cpu_online(cpu)) {
1280			ret = -ENODEV;
1281		} else {
1282			/* On SUN4V, writes to %tick and %stick are
1283			 * not allowed.
1284			 */
1285			if (tlb_type != hypervisor)
1286				smp_synchronize_one_tick(cpu);
1287		}
1288	}
1289	return ret;
1290}
1291
1292#ifdef CONFIG_HOTPLUG_CPU
1293void cpu_play_dead(void)
1294{
1295	int cpu = smp_processor_id();
1296	unsigned long pstate;
1297
1298	idle_task_exit();
1299
1300	if (tlb_type == hypervisor) {
1301		struct trap_per_cpu *tb = &trap_block[cpu];
1302
1303		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1304				tb->cpu_mondo_pa, 0);
1305		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1306				tb->dev_mondo_pa, 0);
1307		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1308				tb->resum_mondo_pa, 0);
1309		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1310				tb->nonresum_mondo_pa, 0);
1311	}
1312
1313	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1314	membar_safe("#Sync");
1315
1316	local_irq_disable();
1317
1318	__asm__ __volatile__(
1319		"rdpr	%%pstate, %0\n\t"
1320		"wrpr	%0, %1, %%pstate"
1321		: "=r" (pstate)
1322		: "i" (PSTATE_IE));
1323
1324	while (1)
1325		barrier();
1326}
1327
1328int __cpu_disable(void)
1329{
1330	int cpu = smp_processor_id();
1331	cpuinfo_sparc *c;
1332	int i;
1333
1334	for_each_cpu(i, &cpu_core_map[cpu])
1335		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1336	cpumask_clear(&cpu_core_map[cpu]);
1337
1338	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1339		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1340	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1341
1342	c = &cpu_data(cpu);
1343
1344	c->core_id = 0;
1345	c->proc_id = -1;
1346
1347	smp_wmb();
1348
1349	/* Make sure no interrupts point to this cpu.  */
1350	fixup_irqs();
1351
1352	local_irq_enable();
1353	mdelay(1);
1354	local_irq_disable();
1355
1356	set_cpu_online(cpu, false);
1357
1358	cpu_map_rebuild();
1359
1360	return 0;
1361}
1362
1363void __cpu_die(unsigned int cpu)
1364{
1365	int i;
1366
1367	for (i = 0; i < 100; i++) {
1368		smp_rmb();
1369		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1370			break;
1371		msleep(100);
1372	}
1373	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1374		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1375	} else {
1376#if defined(CONFIG_SUN_LDOMS)
1377		unsigned long hv_err;
1378		int limit = 100;
1379
1380		do {
1381			hv_err = sun4v_cpu_stop(cpu);
1382			if (hv_err == HV_EOK) {
1383				set_cpu_present(cpu, false);
1384				break;
1385			}
1386		} while (--limit > 0);
1387		if (limit <= 0) {
1388			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1389			       hv_err);
1390		}
1391#endif
1392	}
1393}
1394#endif
1395
1396void __init smp_cpus_done(unsigned int max_cpus)
1397{
1398}
1399
1400static void send_cpu_ipi(int cpu)
1401{
1402	xcall_deliver((u64) &xcall_receive_signal,
1403			0, 0, cpumask_of(cpu));
1404}
1405
1406void scheduler_poke(void)
1407{
1408	if (!cpu_poke)
1409		return;
1410
1411	if (!__this_cpu_read(poke))
1412		return;
1413
1414	__this_cpu_write(poke, false);
1415	set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1416}
1417
1418static unsigned long send_cpu_poke(int cpu)
1419{
1420	unsigned long hv_err;
1421
1422	per_cpu(poke, cpu) = true;
1423	hv_err = sun4v_cpu_poke(cpu);
1424	if (hv_err != HV_EOK) {
1425		per_cpu(poke, cpu) = false;
1426		pr_err_ratelimited("%s: sun4v_cpu_poke() fails err=%lu\n",
1427				    __func__, hv_err);
1428	}
1429
1430	return hv_err;
1431}
1432
1433void smp_send_reschedule(int cpu)
1434{
1435	if (cpu == smp_processor_id()) {
1436		WARN_ON_ONCE(preemptible());
1437		set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1438		return;
1439	}
1440
1441	/* Use cpu poke to resume idle cpu if supported. */
1442	if (cpu_poke && idle_cpu(cpu)) {
1443		unsigned long ret;
1444
1445		ret = send_cpu_poke(cpu);
1446		if (ret == HV_EOK)
1447			return;
1448	}
1449
1450	/* Use IPI in following cases:
1451	 * - cpu poke not supported
1452	 * - cpu not idle
1453	 * - send_cpu_poke() returns with error
1454	 */
1455	send_cpu_ipi(cpu);
1456}
1457
1458void smp_init_cpu_poke(void)
1459{
1460	unsigned long major;
1461	unsigned long minor;
1462	int ret;
1463
1464	if (tlb_type != hypervisor)
1465		return;
1466
1467	ret = sun4v_hvapi_get(HV_GRP_CORE, &major, &minor);
1468	if (ret) {
1469		pr_debug("HV_GRP_CORE is not registered\n");
1470		return;
1471	}
1472
1473	if (major == 1 && minor >= 6) {
1474		/* CPU POKE is registered. */
1475		cpu_poke = true;
1476		return;
1477	}
1478
1479	pr_debug("CPU_POKE not supported\n");
1480}
1481
1482void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1483{
1484	clear_softint(1 << irq);
1485	scheduler_ipi();
1486}
1487
1488static void stop_this_cpu(void *dummy)
1489{
1490	set_cpu_online(smp_processor_id(), false);
1491	prom_stopself();
1492}
1493
1494void smp_send_stop(void)
1495{
1496	int cpu;
1497
1498	if (tlb_type == hypervisor) {
1499		int this_cpu = smp_processor_id();
1500#ifdef CONFIG_SERIAL_SUNHV
1501		sunhv_migrate_hvcons_irq(this_cpu);
1502#endif
1503		for_each_online_cpu(cpu) {
1504			if (cpu == this_cpu)
1505				continue;
1506
1507			set_cpu_online(cpu, false);
1508#ifdef CONFIG_SUN_LDOMS
1509			if (ldom_domaining_enabled) {
1510				unsigned long hv_err;
1511				hv_err = sun4v_cpu_stop(cpu);
1512				if (hv_err)
1513					printk(KERN_ERR "sun4v_cpu_stop() "
1514					       "failed err=%lu\n", hv_err);
1515			} else
1516#endif
1517				prom_stopcpu_cpuid(cpu);
1518		}
1519	} else
1520		smp_call_function(stop_this_cpu, NULL, 0);
1521}
1522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1523static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1524{
1525	if (cpu_to_node(from) == cpu_to_node(to))
1526		return LOCAL_DISTANCE;
1527	else
1528		return REMOTE_DISTANCE;
1529}
1530
1531static int __init pcpu_cpu_to_node(int cpu)
1532{
1533	return cpu_to_node(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1534}
1535
1536void __init setup_per_cpu_areas(void)
1537{
1538	unsigned long delta;
1539	unsigned int cpu;
1540	int rc = -EINVAL;
1541
1542	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1543		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1544					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1545					    pcpu_cpu_distance,
1546					    pcpu_cpu_to_node);
 
1547		if (rc)
1548			pr_warn("PERCPU: %s allocator failed (%d), "
1549				"falling back to page size\n",
1550				pcpu_fc_names[pcpu_chosen_fc], rc);
1551	}
1552	if (rc < 0)
1553		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1554					   pcpu_cpu_to_node);
 
 
1555	if (rc < 0)
1556		panic("cannot initialize percpu area (err=%d)", rc);
1557
1558	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1559	for_each_possible_cpu(cpu)
1560		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1561
1562	/* Setup %g5 for the boot cpu.  */
1563	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1564
1565	of_fill_in_cpu_data();
1566	if (tlb_type == hypervisor)
1567		mdesc_fill_in_cpu_data(cpu_all_mask);
1568}
v4.6
 
   1/* smp.c: Sparc64 SMP support.
   2 *
   3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
   4 */
   5
   6#include <linux/export.h>
   7#include <linux/kernel.h>
   8#include <linux/sched.h>
 
   9#include <linux/mm.h>
  10#include <linux/pagemap.h>
  11#include <linux/threads.h>
  12#include <linux/smp.h>
  13#include <linux/interrupt.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/delay.h>
  16#include <linux/init.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/seq_file.h>
  20#include <linux/cache.h>
  21#include <linux/jiffies.h>
  22#include <linux/profile.h>
  23#include <linux/bootmem.h>
  24#include <linux/vmalloc.h>
  25#include <linux/ftrace.h>
  26#include <linux/cpu.h>
  27#include <linux/slab.h>
  28#include <linux/kgdb.h>
  29
  30#include <asm/head.h>
  31#include <asm/ptrace.h>
  32#include <linux/atomic.h>
  33#include <asm/tlbflush.h>
  34#include <asm/mmu_context.h>
  35#include <asm/cpudata.h>
  36#include <asm/hvtramp.h>
  37#include <asm/io.h>
  38#include <asm/timer.h>
  39#include <asm/setup.h>
  40
  41#include <asm/irq.h>
  42#include <asm/irq_regs.h>
  43#include <asm/page.h>
  44#include <asm/pgtable.h>
  45#include <asm/oplib.h>
  46#include <asm/uaccess.h>
  47#include <asm/starfire.h>
  48#include <asm/tlb.h>
 
  49#include <asm/sections.h>
  50#include <asm/prom.h>
  51#include <asm/mdesc.h>
  52#include <asm/ldc.h>
  53#include <asm/hypervisor.h>
  54#include <asm/pcr.h>
  55
  56#include "cpumap.h"
  57#include "kernel.h"
  58
  59DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  60cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  61	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  62
  63cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
  64	[0 ... NR_CPUS-1] = CPU_MASK_NONE };
  65
 
 
 
  66EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  67EXPORT_SYMBOL(cpu_core_map);
  68EXPORT_SYMBOL(cpu_core_sib_map);
 
  69
  70static cpumask_t smp_commenced_mask;
  71
 
 
 
  72void smp_info(struct seq_file *m)
  73{
  74	int i;
  75	
  76	seq_printf(m, "State:\n");
  77	for_each_online_cpu(i)
  78		seq_printf(m, "CPU%d:\t\tonline\n", i);
  79}
  80
  81void smp_bogo(struct seq_file *m)
  82{
  83	int i;
  84	
  85	for_each_online_cpu(i)
  86		seq_printf(m,
  87			   "Cpu%dClkTck\t: %016lx\n",
  88			   i, cpu_data(i).clock_tick);
  89}
  90
  91extern void setup_sparc64_timer(void);
  92
  93static volatile unsigned long callin_flag = 0;
  94
  95void smp_callin(void)
  96{
  97	int cpuid = hard_smp_processor_id();
  98
  99	__local_per_cpu_offset = __per_cpu_offset(cpuid);
 100
 101	if (tlb_type == hypervisor)
 102		sun4v_ktsb_register();
 103
 104	__flush_tlb_all();
 105
 106	setup_sparc64_timer();
 107
 108	if (cheetah_pcache_forced_on)
 109		cheetah_enable_pcache();
 110
 111	callin_flag = 1;
 112	__asm__ __volatile__("membar #Sync\n\t"
 113			     "flush  %%g6" : : : "memory");
 114
 115	/* Clear this or we will die instantly when we
 116	 * schedule back to this idler...
 117	 */
 118	current_thread_info()->new_child = 0;
 119
 120	/* Attach to the address space of init_task. */
 121	atomic_inc(&init_mm.mm_count);
 122	current->active_mm = &init_mm;
 123
 124	/* inform the notifiers about the new cpu */
 125	notify_cpu_starting(cpuid);
 126
 127	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
 128		rmb();
 129
 130	set_cpu_online(cpuid, true);
 131
 132	/* idle thread is expected to have preempt disabled */
 133	preempt_disable();
 134
 135	local_irq_enable();
 136
 137	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 138}
 139
 140void cpu_panic(void)
 141{
 142	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
 143	panic("SMP bolixed\n");
 144}
 145
 146/* This tick register synchronization scheme is taken entirely from
 147 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
 148 *
 149 * The only change I've made is to rework it so that the master
 150 * initiates the synchonization instead of the slave. -DaveM
 151 */
 152
 153#define MASTER	0
 154#define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
 155
 156#define NUM_ROUNDS	64	/* magic value */
 157#define NUM_ITERS	5	/* likewise */
 158
 159static DEFINE_RAW_SPINLOCK(itc_sync_lock);
 160static unsigned long go[SLAVE + 1];
 161
 162#define DEBUG_TICK_SYNC	0
 163
 164static inline long get_delta (long *rt, long *master)
 165{
 166	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 167	unsigned long tcenter, t0, t1, tm;
 168	unsigned long i;
 169
 170	for (i = 0; i < NUM_ITERS; i++) {
 171		t0 = tick_ops->get_tick();
 172		go[MASTER] = 1;
 173		membar_safe("#StoreLoad");
 174		while (!(tm = go[SLAVE]))
 175			rmb();
 176		go[SLAVE] = 0;
 177		wmb();
 178		t1 = tick_ops->get_tick();
 179
 180		if (t1 - t0 < best_t1 - best_t0)
 181			best_t0 = t0, best_t1 = t1, best_tm = tm;
 182	}
 183
 184	*rt = best_t1 - best_t0;
 185	*master = best_tm - best_t0;
 186
 187	/* average best_t0 and best_t1 without overflow: */
 188	tcenter = (best_t0/2 + best_t1/2);
 189	if (best_t0 % 2 + best_t1 % 2 == 2)
 190		tcenter++;
 191	return tcenter - best_tm;
 192}
 193
 194void smp_synchronize_tick_client(void)
 195{
 196	long i, delta, adj, adjust_latency = 0, done = 0;
 197	unsigned long flags, rt, master_time_stamp;
 198#if DEBUG_TICK_SYNC
 199	struct {
 200		long rt;	/* roundtrip time */
 201		long master;	/* master's timestamp */
 202		long diff;	/* difference between midpoint and master's timestamp */
 203		long lat;	/* estimate of itc adjustment latency */
 204	} t[NUM_ROUNDS];
 205#endif
 206
 207	go[MASTER] = 1;
 208
 209	while (go[MASTER])
 210		rmb();
 211
 212	local_irq_save(flags);
 213	{
 214		for (i = 0; i < NUM_ROUNDS; i++) {
 215			delta = get_delta(&rt, &master_time_stamp);
 216			if (delta == 0)
 217				done = 1;	/* let's lock on to this... */
 218
 219			if (!done) {
 220				if (i > 0) {
 221					adjust_latency += -delta;
 222					adj = -delta + adjust_latency/4;
 223				} else
 224					adj = -delta;
 225
 226				tick_ops->add_tick(adj);
 227			}
 228#if DEBUG_TICK_SYNC
 229			t[i].rt = rt;
 230			t[i].master = master_time_stamp;
 231			t[i].diff = delta;
 232			t[i].lat = adjust_latency/4;
 233#endif
 234		}
 235	}
 236	local_irq_restore(flags);
 237
 238#if DEBUG_TICK_SYNC
 239	for (i = 0; i < NUM_ROUNDS; i++)
 240		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 241		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 242#endif
 243
 244	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
 245	       "(last diff %ld cycles, maxerr %lu cycles)\n",
 246	       smp_processor_id(), delta, rt);
 247}
 248
 249static void smp_start_sync_tick_client(int cpu);
 250
 251static void smp_synchronize_one_tick(int cpu)
 252{
 253	unsigned long flags, i;
 254
 255	go[MASTER] = 0;
 256
 257	smp_start_sync_tick_client(cpu);
 258
 259	/* wait for client to be ready */
 260	while (!go[MASTER])
 261		rmb();
 262
 263	/* now let the client proceed into his loop */
 264	go[MASTER] = 0;
 265	membar_safe("#StoreLoad");
 266
 267	raw_spin_lock_irqsave(&itc_sync_lock, flags);
 268	{
 269		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
 270			while (!go[MASTER])
 271				rmb();
 272			go[MASTER] = 0;
 273			wmb();
 274			go[SLAVE] = tick_ops->get_tick();
 275			membar_safe("#StoreLoad");
 276		}
 277	}
 278	raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
 279}
 280
 281#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 282static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
 283				void **descrp)
 284{
 285	extern unsigned long sparc64_ttable_tl0;
 286	extern unsigned long kern_locked_tte_data;
 287	struct hvtramp_descr *hdesc;
 288	unsigned long trampoline_ra;
 289	struct trap_per_cpu *tb;
 290	u64 tte_vaddr, tte_data;
 291	unsigned long hv_err;
 292	int i;
 293
 294	hdesc = kzalloc(sizeof(*hdesc) +
 295			(sizeof(struct hvtramp_mapping) *
 296			 num_kernel_image_mappings - 1),
 297			GFP_KERNEL);
 298	if (!hdesc) {
 299		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
 300		       "hvtramp_descr.\n");
 301		return;
 302	}
 303	*descrp = hdesc;
 304
 305	hdesc->cpu = cpu;
 306	hdesc->num_mappings = num_kernel_image_mappings;
 307
 308	tb = &trap_block[cpu];
 309
 310	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
 311	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
 312
 313	hdesc->thread_reg = thread_reg;
 314
 315	tte_vaddr = (unsigned long) KERNBASE;
 316	tte_data = kern_locked_tte_data;
 317
 318	for (i = 0; i < hdesc->num_mappings; i++) {
 319		hdesc->maps[i].vaddr = tte_vaddr;
 320		hdesc->maps[i].tte   = tte_data;
 321		tte_vaddr += 0x400000;
 322		tte_data  += 0x400000;
 323	}
 324
 325	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
 326
 327	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
 328				 kimage_addr_to_ra(&sparc64_ttable_tl0),
 329				 __pa(hdesc));
 330	if (hv_err)
 331		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
 332		       "gives error %lu\n", hv_err);
 333}
 334#endif
 335
 336extern unsigned long sparc64_cpu_startup;
 337
 338/* The OBP cpu startup callback truncates the 3rd arg cookie to
 339 * 32-bits (I think) so to be safe we have it read the pointer
 340 * contained here so we work on >4GB machines. -DaveM
 341 */
 342static struct thread_info *cpu_new_thread = NULL;
 343
 344static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
 345{
 346	unsigned long entry =
 347		(unsigned long)(&sparc64_cpu_startup);
 348	unsigned long cookie =
 349		(unsigned long)(&cpu_new_thread);
 350	void *descr = NULL;
 351	int timeout, ret;
 352
 353	callin_flag = 0;
 354	cpu_new_thread = task_thread_info(idle);
 355
 356	if (tlb_type == hypervisor) {
 357#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 358		if (ldom_domaining_enabled)
 359			ldom_startcpu_cpuid(cpu,
 360					    (unsigned long) cpu_new_thread,
 361					    &descr);
 362		else
 363#endif
 364			prom_startcpu_cpuid(cpu, entry, cookie);
 365	} else {
 366		struct device_node *dp = of_find_node_by_cpuid(cpu);
 367
 368		prom_startcpu(dp->phandle, entry, cookie);
 369	}
 370
 371	for (timeout = 0; timeout < 50000; timeout++) {
 372		if (callin_flag)
 373			break;
 374		udelay(100);
 375	}
 376
 377	if (callin_flag) {
 378		ret = 0;
 379	} else {
 380		printk("Processor %d is stuck.\n", cpu);
 381		ret = -ENODEV;
 382	}
 383	cpu_new_thread = NULL;
 384
 385	kfree(descr);
 386
 387	return ret;
 388}
 389
 390static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
 391{
 392	u64 result, target;
 393	int stuck, tmp;
 394
 395	if (this_is_starfire) {
 396		/* map to real upaid */
 397		cpu = (((cpu & 0x3c) << 1) |
 398			((cpu & 0x40) >> 4) |
 399			(cpu & 0x3));
 400	}
 401
 402	target = (cpu << 14) | 0x70;
 403again:
 404	/* Ok, this is the real Spitfire Errata #54.
 405	 * One must read back from a UDB internal register
 406	 * after writes to the UDB interrupt dispatch, but
 407	 * before the membar Sync for that write.
 408	 * So we use the high UDB control register (ASI 0x7f,
 409	 * ADDR 0x20) for the dummy read. -DaveM
 410	 */
 411	tmp = 0x40;
 412	__asm__ __volatile__(
 413	"wrpr	%1, %2, %%pstate\n\t"
 414	"stxa	%4, [%0] %3\n\t"
 415	"stxa	%5, [%0+%8] %3\n\t"
 416	"add	%0, %8, %0\n\t"
 417	"stxa	%6, [%0+%8] %3\n\t"
 418	"membar	#Sync\n\t"
 419	"stxa	%%g0, [%7] %3\n\t"
 420	"membar	#Sync\n\t"
 421	"mov	0x20, %%g1\n\t"
 422	"ldxa	[%%g1] 0x7f, %%g0\n\t"
 423	"membar	#Sync"
 424	: "=r" (tmp)
 425	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
 426	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
 427	  "r" (0x10), "0" (tmp)
 428        : "g1");
 429
 430	/* NOTE: PSTATE_IE is still clear. */
 431	stuck = 100000;
 432	do {
 433		__asm__ __volatile__("ldxa [%%g0] %1, %0"
 434			: "=r" (result)
 435			: "i" (ASI_INTR_DISPATCH_STAT));
 436		if (result == 0) {
 437			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 438					     : : "r" (pstate));
 439			return;
 440		}
 441		stuck -= 1;
 442		if (stuck == 0)
 443			break;
 444	} while (result & 0x1);
 445	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 446			     : : "r" (pstate));
 447	if (stuck == 0) {
 448		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 449		       smp_processor_id(), result);
 450	} else {
 451		udelay(2);
 452		goto again;
 453	}
 454}
 455
 456static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 457{
 458	u64 *mondo, data0, data1, data2;
 459	u16 *cpu_list;
 460	u64 pstate;
 461	int i;
 462
 463	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 464	cpu_list = __va(tb->cpu_list_pa);
 465	mondo = __va(tb->cpu_mondo_block_pa);
 466	data0 = mondo[0];
 467	data1 = mondo[1];
 468	data2 = mondo[2];
 469	for (i = 0; i < cnt; i++)
 470		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
 471}
 472
 473/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
 474 * packet, but we have no use for that.  However we do take advantage of
 475 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
 476 */
 477static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 478{
 479	int nack_busy_id, is_jbus, need_more;
 480	u64 *mondo, pstate, ver, busy_mask;
 481	u16 *cpu_list;
 482
 483	cpu_list = __va(tb->cpu_list_pa);
 484	mondo = __va(tb->cpu_mondo_block_pa);
 485
 486	/* Unfortunately, someone at Sun had the brilliant idea to make the
 487	 * busy/nack fields hard-coded by ITID number for this Ultra-III
 488	 * derivative processor.
 489	 */
 490	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 491	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
 492		   (ver >> 32) == __SERRANO_ID);
 493
 494	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 495
 496retry:
 497	need_more = 0;
 498	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
 499			     : : "r" (pstate), "i" (PSTATE_IE));
 500
 501	/* Setup the dispatch data registers. */
 502	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
 503			     "stxa	%1, [%4] %6\n\t"
 504			     "stxa	%2, [%5] %6\n\t"
 505			     "membar	#Sync\n\t"
 506			     : /* no outputs */
 507			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
 508			       "r" (0x40), "r" (0x50), "r" (0x60),
 509			       "i" (ASI_INTR_W));
 510
 511	nack_busy_id = 0;
 512	busy_mask = 0;
 513	{
 514		int i;
 515
 516		for (i = 0; i < cnt; i++) {
 517			u64 target, nr;
 518
 519			nr = cpu_list[i];
 520			if (nr == 0xffff)
 521				continue;
 522
 523			target = (nr << 14) | 0x70;
 524			if (is_jbus) {
 525				busy_mask |= (0x1UL << (nr * 2));
 526			} else {
 527				target |= (nack_busy_id << 24);
 528				busy_mask |= (0x1UL <<
 529					      (nack_busy_id * 2));
 530			}
 531			__asm__ __volatile__(
 532				"stxa	%%g0, [%0] %1\n\t"
 533				"membar	#Sync\n\t"
 534				: /* no outputs */
 535				: "r" (target), "i" (ASI_INTR_W));
 536			nack_busy_id++;
 537			if (nack_busy_id == 32) {
 538				need_more = 1;
 539				break;
 540			}
 541		}
 542	}
 543
 544	/* Now, poll for completion. */
 545	{
 546		u64 dispatch_stat, nack_mask;
 547		long stuck;
 548
 549		stuck = 100000 * nack_busy_id;
 550		nack_mask = busy_mask << 1;
 551		do {
 552			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
 553					     : "=r" (dispatch_stat)
 554					     : "i" (ASI_INTR_DISPATCH_STAT));
 555			if (!(dispatch_stat & (busy_mask | nack_mask))) {
 556				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 557						     : : "r" (pstate));
 558				if (unlikely(need_more)) {
 559					int i, this_cnt = 0;
 560					for (i = 0; i < cnt; i++) {
 561						if (cpu_list[i] == 0xffff)
 562							continue;
 563						cpu_list[i] = 0xffff;
 564						this_cnt++;
 565						if (this_cnt == 32)
 566							break;
 567					}
 568					goto retry;
 569				}
 570				return;
 571			}
 572			if (!--stuck)
 573				break;
 574		} while (dispatch_stat & busy_mask);
 575
 576		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 577				     : : "r" (pstate));
 578
 579		if (dispatch_stat & busy_mask) {
 580			/* Busy bits will not clear, continue instead
 581			 * of freezing up on this cpu.
 582			 */
 583			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 584			       smp_processor_id(), dispatch_stat);
 585		} else {
 586			int i, this_busy_nack = 0;
 587
 588			/* Delay some random time with interrupts enabled
 589			 * to prevent deadlock.
 590			 */
 591			udelay(2 * nack_busy_id);
 592
 593			/* Clear out the mask bits for cpus which did not
 594			 * NACK us.
 595			 */
 596			for (i = 0; i < cnt; i++) {
 597				u64 check_mask, nr;
 598
 599				nr = cpu_list[i];
 600				if (nr == 0xffff)
 601					continue;
 602
 603				if (is_jbus)
 604					check_mask = (0x2UL << (2*nr));
 605				else
 606					check_mask = (0x2UL <<
 607						      this_busy_nack);
 608				if ((dispatch_stat & check_mask) == 0)
 609					cpu_list[i] = 0xffff;
 610				this_busy_nack += 2;
 611				if (this_busy_nack == 64)
 612					break;
 613			}
 614
 615			goto retry;
 616		}
 617	}
 618}
 619
 620/* Multi-cpu list version.  */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 622{
 623	int retries, this_cpu, prev_sent, i, saw_cpu_error;
 
 
 
 624	unsigned long status;
 
 
 625	u16 *cpu_list;
 
 626
 627	this_cpu = smp_processor_id();
 628
 629	cpu_list = __va(tb->cpu_list_pa);
 
 
 
 
 
 
 630
 631	saw_cpu_error = 0;
 632	retries = 0;
 633	prev_sent = 0;
 634	do {
 635		int forward_progress, n_sent;
 636
 637		status = sun4v_cpu_mondo_send(cnt,
 638					      tb->cpu_list_pa,
 639					      tb->cpu_mondo_block_pa);
 640
 641		/* HV_EOK means all cpus received the xcall, we're done.  */
 642		if (likely(status == HV_EOK))
 643			break;
 
 
 
 
 
 
 644
 645		/* First, see if we made any forward progress.
 646		 *
 
 
 
 
 
 647		 * The hypervisor indicates successful sends by setting
 648		 * cpu list entries to the value 0xffff.
 
 
 
 
 
 
 
 
 
 
 649		 */
 
 650		n_sent = 0;
 651		for (i = 0; i < cnt; i++) {
 652			if (likely(cpu_list[i] == 0xffff))
 
 653				n_sent++;
 
 
 
 
 
 
 
 
 654		}
 655
 656		forward_progress = 0;
 657		if (n_sent > prev_sent)
 658			forward_progress = 1;
 659
 660		prev_sent = n_sent;
 
 661
 662		/* If we get a HV_ECPUERROR, then one or more of the cpus
 663		 * in the list are in error state.  Use the cpu_state()
 664		 * hypervisor call to find out which cpus are in error state.
 665		 */
 666		if (unlikely(status == HV_ECPUERROR)) {
 667			for (i = 0; i < cnt; i++) {
 668				long err;
 669				u16 cpu;
 
 
 
 
 670
 671				cpu = cpu_list[i];
 672				if (cpu == 0xffff)
 673					continue;
 674
 675				err = sun4v_cpu_state(cpu);
 676				if (err == HV_CPU_STATE_ERROR) {
 677					saw_cpu_error = (cpu + 1);
 678					cpu_list[i] = 0xffff;
 679				}
 680			}
 681		} else if (unlikely(status != HV_EWOULDBLOCK))
 682			goto fatal_mondo_error;
 
 683
 684		/* Don't bother rewriting the CPU list, just leave the
 685		 * 0xffff and non-0xffff entries in there and the
 686		 * hypervisor will do the right thing.
 687		 *
 688		 * Only advance timeout state if we didn't make any
 689		 * forward progress.
 690		 */
 691		if (unlikely(!forward_progress)) {
 692			if (unlikely(++retries > 10000))
 693				goto fatal_mondo_timeout;
 694
 695			/* Delay a little bit to let other cpus catch up
 696			 * on their cpu mondo queue work.
 697			 */
 698			udelay(2 * cnt);
 699		}
 700	} while (1);
 701
 702	if (unlikely(saw_cpu_error))
 703		goto fatal_mondo_cpu_error;
 704
 
 
 
 
 
 705	return;
 706
 707fatal_mondo_cpu_error:
 708	printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
 709	       "(including %d) were in error state\n",
 710	       this_cpu, saw_cpu_error - 1);
 711	return;
 712
 713fatal_mondo_timeout:
 714	printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
 715	       " progress after %d retries.\n",
 716	       this_cpu, retries);
 717	goto dump_cpu_list_and_out;
 718
 719fatal_mondo_error:
 720	printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
 721	       this_cpu, status);
 722	printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
 723	       "mondo_block_pa(%lx)\n",
 724	       this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
 725
 726dump_cpu_list_and_out:
 727	printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
 728	for (i = 0; i < cnt; i++)
 729		printk("%u ", cpu_list[i]);
 730	printk("]\n");
 731}
 732
 733static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
 734
 735static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
 736{
 737	struct trap_per_cpu *tb;
 738	int this_cpu, i, cnt;
 739	unsigned long flags;
 740	u16 *cpu_list;
 741	u64 *mondo;
 742
 743	/* We have to do this whole thing with interrupts fully disabled.
 744	 * Otherwise if we send an xcall from interrupt context it will
 745	 * corrupt both our mondo block and cpu list state.
 746	 *
 747	 * One consequence of this is that we cannot use timeout mechanisms
 748	 * that depend upon interrupts being delivered locally.  So, for
 749	 * example, we cannot sample jiffies and expect it to advance.
 750	 *
 751	 * Fortunately, udelay() uses %stick/%tick so we can use that.
 752	 */
 753	local_irq_save(flags);
 754
 755	this_cpu = smp_processor_id();
 756	tb = &trap_block[this_cpu];
 757
 758	mondo = __va(tb->cpu_mondo_block_pa);
 759	mondo[0] = data0;
 760	mondo[1] = data1;
 761	mondo[2] = data2;
 762	wmb();
 763
 764	cpu_list = __va(tb->cpu_list_pa);
 765
 766	/* Setup the initial cpu list.  */
 767	cnt = 0;
 768	for_each_cpu(i, mask) {
 769		if (i == this_cpu || !cpu_online(i))
 770			continue;
 771		cpu_list[cnt++] = i;
 772	}
 773
 774	if (cnt)
 775		xcall_deliver_impl(tb, cnt);
 776
 777	local_irq_restore(flags);
 778}
 779
 780/* Send cross call to all processors mentioned in MASK_P
 781 * except self.  Really, there are only two cases currently,
 782 * "cpu_online_mask" and "mm_cpumask(mm)".
 783 */
 784static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
 785{
 786	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
 787
 788	xcall_deliver(data0, data1, data2, mask);
 789}
 790
 791/* Send cross call to all processors except self. */
 792static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
 793{
 794	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
 795}
 796
 797extern unsigned long xcall_sync_tick;
 798
 799static void smp_start_sync_tick_client(int cpu)
 800{
 801	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
 802		      cpumask_of(cpu));
 803}
 804
 805extern unsigned long xcall_call_function;
 806
 807void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 808{
 809	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
 810}
 811
 812extern unsigned long xcall_call_function_single;
 813
 814void arch_send_call_function_single_ipi(int cpu)
 815{
 816	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
 817		      cpumask_of(cpu));
 818}
 819
 820void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
 821{
 822	clear_softint(1 << irq);
 823	irq_enter();
 824	generic_smp_call_function_interrupt();
 825	irq_exit();
 826}
 827
 828void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
 829{
 830	clear_softint(1 << irq);
 831	irq_enter();
 832	generic_smp_call_function_single_interrupt();
 833	irq_exit();
 834}
 835
 836static void tsb_sync(void *info)
 837{
 838	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
 839	struct mm_struct *mm = info;
 840
 841	/* It is not valid to test "current->active_mm == mm" here.
 842	 *
 843	 * The value of "current" is not changed atomically with
 844	 * switch_mm().  But that's OK, we just need to check the
 845	 * current cpu's trap block PGD physical address.
 846	 */
 847	if (tp->pgd_paddr == __pa(mm->pgd))
 848		tsb_context_switch(mm);
 849}
 850
 851void smp_tsb_sync(struct mm_struct *mm)
 852{
 853	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
 854}
 855
 856extern unsigned long xcall_flush_tlb_mm;
 857extern unsigned long xcall_flush_tlb_page;
 858extern unsigned long xcall_flush_tlb_kernel_range;
 859extern unsigned long xcall_fetch_glob_regs;
 860extern unsigned long xcall_fetch_glob_pmu;
 861extern unsigned long xcall_fetch_glob_pmu_n4;
 862extern unsigned long xcall_receive_signal;
 863extern unsigned long xcall_new_mmu_context_version;
 864#ifdef CONFIG_KGDB
 865extern unsigned long xcall_kgdb_capture;
 866#endif
 867
 868#ifdef DCACHE_ALIASING_POSSIBLE
 869extern unsigned long xcall_flush_dcache_page_cheetah;
 870#endif
 871extern unsigned long xcall_flush_dcache_page_spitfire;
 872
 873static inline void __local_flush_dcache_page(struct page *page)
 874{
 875#ifdef DCACHE_ALIASING_POSSIBLE
 876	__flush_dcache_page(page_address(page),
 877			    ((tlb_type == spitfire) &&
 878			     page_mapping(page) != NULL));
 879#else
 880	if (page_mapping(page) != NULL &&
 881	    tlb_type == spitfire)
 882		__flush_icache_page(__pa(page_address(page)));
 883#endif
 884}
 885
 886void smp_flush_dcache_page_impl(struct page *page, int cpu)
 887{
 888	int this_cpu;
 889
 890	if (tlb_type == hypervisor)
 891		return;
 892
 893#ifdef CONFIG_DEBUG_DCFLUSH
 894	atomic_inc(&dcpage_flushes);
 895#endif
 896
 897	this_cpu = get_cpu();
 898
 899	if (cpu == this_cpu) {
 900		__local_flush_dcache_page(page);
 901	} else if (cpu_online(cpu)) {
 902		void *pg_addr = page_address(page);
 903		u64 data0 = 0;
 904
 905		if (tlb_type == spitfire) {
 906			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 907			if (page_mapping(page) != NULL)
 908				data0 |= ((u64)1 << 32);
 909		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 910#ifdef DCACHE_ALIASING_POSSIBLE
 911			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
 912#endif
 913		}
 914		if (data0) {
 915			xcall_deliver(data0, __pa(pg_addr),
 916				      (u64) pg_addr, cpumask_of(cpu));
 917#ifdef CONFIG_DEBUG_DCFLUSH
 918			atomic_inc(&dcpage_flushes_xcall);
 919#endif
 920		}
 921	}
 922
 923	put_cpu();
 924}
 925
 926void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
 927{
 928	void *pg_addr;
 929	u64 data0;
 930
 931	if (tlb_type == hypervisor)
 932		return;
 933
 934	preempt_disable();
 935
 936#ifdef CONFIG_DEBUG_DCFLUSH
 937	atomic_inc(&dcpage_flushes);
 938#endif
 939	data0 = 0;
 940	pg_addr = page_address(page);
 941	if (tlb_type == spitfire) {
 942		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 943		if (page_mapping(page) != NULL)
 944			data0 |= ((u64)1 << 32);
 945	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 946#ifdef DCACHE_ALIASING_POSSIBLE
 947		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 948#endif
 949	}
 950	if (data0) {
 951		xcall_deliver(data0, __pa(pg_addr),
 952			      (u64) pg_addr, cpu_online_mask);
 953#ifdef CONFIG_DEBUG_DCFLUSH
 954		atomic_inc(&dcpage_flushes_xcall);
 955#endif
 956	}
 957	__local_flush_dcache_page(page);
 958
 959	preempt_enable();
 960}
 961
 962void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
 963{
 964	struct mm_struct *mm;
 965	unsigned long flags;
 966
 967	clear_softint(1 << irq);
 968
 969	/* See if we need to allocate a new TLB context because
 970	 * the version of the one we are using is now out of date.
 971	 */
 972	mm = current->active_mm;
 973	if (unlikely(!mm || (mm == &init_mm)))
 974		return;
 975
 976	spin_lock_irqsave(&mm->context.lock, flags);
 977
 978	if (unlikely(!CTX_VALID(mm->context)))
 979		get_new_mmu_context(mm);
 980
 981	spin_unlock_irqrestore(&mm->context.lock, flags);
 982
 983	load_secondary_context(mm);
 984	__flush_tlb_mm(CTX_HWBITS(mm->context),
 985		       SECONDARY_CONTEXT);
 986}
 987
 988void smp_new_mmu_context_version(void)
 989{
 990	smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
 991}
 992
 993#ifdef CONFIG_KGDB
 994void kgdb_roundup_cpus(unsigned long flags)
 995{
 996	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
 997}
 998#endif
 999
1000void smp_fetch_global_regs(void)
1001{
1002	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1003}
1004
1005void smp_fetch_global_pmu(void)
1006{
1007	if (tlb_type == hypervisor &&
1008	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1009		smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1010	else
1011		smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1012}
1013
1014/* We know that the window frames of the user have been flushed
1015 * to the stack before we get here because all callers of us
1016 * are flush_tlb_*() routines, and these run after flush_cache_*()
1017 * which performs the flushw.
1018 *
1019 * The SMP TLB coherency scheme we use works as follows:
1020 *
1021 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1022 *    space has (potentially) executed on, this is the heuristic
1023 *    we use to avoid doing cross calls.
1024 *
1025 *    Also, for flushing from kswapd and also for clones, we
1026 *    use cpu_vm_mask as the list of cpus to make run the TLB.
1027 *
1028 * 2) TLB context numbers are shared globally across all processors
1029 *    in the system, this allows us to play several games to avoid
1030 *    cross calls.
1031 *
1032 *    One invariant is that when a cpu switches to a process, and
1033 *    that processes tsk->active_mm->cpu_vm_mask does not have the
1034 *    current cpu's bit set, that tlb context is flushed locally.
1035 *
1036 *    If the address space is non-shared (ie. mm->count == 1) we avoid
1037 *    cross calls when we want to flush the currently running process's
1038 *    tlb state.  This is done by clearing all cpu bits except the current
1039 *    processor's in current->mm->cpu_vm_mask and performing the
1040 *    flush locally only.  This will force any subsequent cpus which run
1041 *    this task to flush the context from the local tlb if the process
1042 *    migrates to another cpu (again).
1043 *
1044 * 3) For shared address spaces (threads) and swapping we bite the
1045 *    bullet for most cases and perform the cross call (but only to
1046 *    the cpus listed in cpu_vm_mask).
1047 *
1048 *    The performance gain from "optimizing" away the cross call for threads is
1049 *    questionable (in theory the big win for threads is the massive sharing of
1050 *    address space state across processors).
1051 */
1052
1053/* This currently is only used by the hugetlb arch pre-fault
1054 * hook on UltraSPARC-III+ and later when changing the pagesize
1055 * bits of the context register for an address space.
1056 */
1057void smp_flush_tlb_mm(struct mm_struct *mm)
1058{
1059	u32 ctx = CTX_HWBITS(mm->context);
1060	int cpu = get_cpu();
1061
1062	if (atomic_read(&mm->mm_users) == 1) {
1063		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1064		goto local_flush_and_out;
1065	}
1066
1067	smp_cross_call_masked(&xcall_flush_tlb_mm,
1068			      ctx, 0, 0,
1069			      mm_cpumask(mm));
1070
1071local_flush_and_out:
1072	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1073
1074	put_cpu();
1075}
1076
1077struct tlb_pending_info {
1078	unsigned long ctx;
1079	unsigned long nr;
1080	unsigned long *vaddrs;
1081};
1082
1083static void tlb_pending_func(void *info)
1084{
1085	struct tlb_pending_info *t = info;
1086
1087	__flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1088}
1089
1090void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1091{
1092	u32 ctx = CTX_HWBITS(mm->context);
1093	struct tlb_pending_info info;
1094	int cpu = get_cpu();
 
1095
1096	info.ctx = ctx;
1097	info.nr = nr;
1098	info.vaddrs = vaddrs;
1099
1100	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1101		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1102	else
1103		smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1104				       &info, 1);
1105
1106	__flush_tlb_pending(ctx, nr, vaddrs);
1107
1108	put_cpu();
1109}
1110
1111void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1112{
1113	unsigned long context = CTX_HWBITS(mm->context);
1114	int cpu = get_cpu();
1115
1116	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1117		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1118	else
1119		smp_cross_call_masked(&xcall_flush_tlb_page,
1120				      context, vaddr, 0,
1121				      mm_cpumask(mm));
1122	__flush_tlb_page(context, vaddr);
1123
1124	put_cpu();
1125}
1126
1127void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1128{
1129	start &= PAGE_MASK;
1130	end    = PAGE_ALIGN(end);
1131	if (start != end) {
1132		smp_cross_call(&xcall_flush_tlb_kernel_range,
1133			       0, start, end);
1134
1135		__flush_tlb_kernel_range(start, end);
1136	}
1137}
1138
1139/* CPU capture. */
1140/* #define CAPTURE_DEBUG */
1141extern unsigned long xcall_capture;
1142
1143static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1144static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1145static unsigned long penguins_are_doing_time;
1146
1147void smp_capture(void)
1148{
1149	int result = atomic_add_return(1, &smp_capture_depth);
1150
1151	if (result == 1) {
1152		int ncpus = num_online_cpus();
1153
1154#ifdef CAPTURE_DEBUG
1155		printk("CPU[%d]: Sending penguins to jail...",
1156		       smp_processor_id());
1157#endif
1158		penguins_are_doing_time = 1;
1159		atomic_inc(&smp_capture_registry);
1160		smp_cross_call(&xcall_capture, 0, 0, 0);
1161		while (atomic_read(&smp_capture_registry) != ncpus)
1162			rmb();
1163#ifdef CAPTURE_DEBUG
1164		printk("done\n");
1165#endif
1166	}
1167}
1168
1169void smp_release(void)
1170{
1171	if (atomic_dec_and_test(&smp_capture_depth)) {
1172#ifdef CAPTURE_DEBUG
1173		printk("CPU[%d]: Giving pardon to "
1174		       "imprisoned penguins\n",
1175		       smp_processor_id());
1176#endif
1177		penguins_are_doing_time = 0;
1178		membar_safe("#StoreLoad");
1179		atomic_dec(&smp_capture_registry);
1180	}
1181}
1182
1183/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1184 * set, so they can service tlb flush xcalls...
1185 */
1186extern void prom_world(int);
1187
1188void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1189{
1190	clear_softint(1 << irq);
1191
1192	preempt_disable();
1193
1194	__asm__ __volatile__("flushw");
1195	prom_world(1);
1196	atomic_inc(&smp_capture_registry);
1197	membar_safe("#StoreLoad");
1198	while (penguins_are_doing_time)
1199		rmb();
1200	atomic_dec(&smp_capture_registry);
1201	prom_world(0);
1202
1203	preempt_enable();
1204}
1205
1206/* /proc/profile writes can call this, don't __init it please. */
1207int setup_profiling_timer(unsigned int multiplier)
1208{
1209	return -EINVAL;
1210}
1211
1212void __init smp_prepare_cpus(unsigned int max_cpus)
1213{
1214}
1215
1216void smp_prepare_boot_cpu(void)
1217{
1218}
1219
1220void __init smp_setup_processor_id(void)
1221{
1222	if (tlb_type == spitfire)
1223		xcall_deliver_impl = spitfire_xcall_deliver;
1224	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1225		xcall_deliver_impl = cheetah_xcall_deliver;
1226	else
1227		xcall_deliver_impl = hypervisor_xcall_deliver;
1228}
1229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1230void smp_fill_in_sib_core_maps(void)
1231{
1232	unsigned int i;
1233
1234	for_each_present_cpu(i) {
1235		unsigned int j;
1236
1237		cpumask_clear(&cpu_core_map[i]);
1238		if (cpu_data(i).core_id == 0) {
1239			cpumask_set_cpu(i, &cpu_core_map[i]);
1240			continue;
1241		}
1242
1243		for_each_present_cpu(j) {
1244			if (cpu_data(i).core_id ==
1245			    cpu_data(j).core_id)
1246				cpumask_set_cpu(j, &cpu_core_map[i]);
1247		}
1248	}
1249
1250	for_each_present_cpu(i)  {
1251		unsigned int j;
1252
1253		for_each_present_cpu(j)  {
 
 
 
 
1254			if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1255				cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1256		}
1257	}
1258
1259	for_each_present_cpu(i) {
1260		unsigned int j;
1261
1262		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1263		if (cpu_data(i).proc_id == -1) {
1264			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1265			continue;
1266		}
1267
1268		for_each_present_cpu(j) {
1269			if (cpu_data(i).proc_id ==
1270			    cpu_data(j).proc_id)
1271				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1272		}
1273	}
1274}
1275
1276int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1277{
1278	int ret = smp_boot_one_cpu(cpu, tidle);
1279
1280	if (!ret) {
1281		cpumask_set_cpu(cpu, &smp_commenced_mask);
1282		while (!cpu_online(cpu))
1283			mb();
1284		if (!cpu_online(cpu)) {
1285			ret = -ENODEV;
1286		} else {
1287			/* On SUN4V, writes to %tick and %stick are
1288			 * not allowed.
1289			 */
1290			if (tlb_type != hypervisor)
1291				smp_synchronize_one_tick(cpu);
1292		}
1293	}
1294	return ret;
1295}
1296
1297#ifdef CONFIG_HOTPLUG_CPU
1298void cpu_play_dead(void)
1299{
1300	int cpu = smp_processor_id();
1301	unsigned long pstate;
1302
1303	idle_task_exit();
1304
1305	if (tlb_type == hypervisor) {
1306		struct trap_per_cpu *tb = &trap_block[cpu];
1307
1308		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1309				tb->cpu_mondo_pa, 0);
1310		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1311				tb->dev_mondo_pa, 0);
1312		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1313				tb->resum_mondo_pa, 0);
1314		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1315				tb->nonresum_mondo_pa, 0);
1316	}
1317
1318	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1319	membar_safe("#Sync");
1320
1321	local_irq_disable();
1322
1323	__asm__ __volatile__(
1324		"rdpr	%%pstate, %0\n\t"
1325		"wrpr	%0, %1, %%pstate"
1326		: "=r" (pstate)
1327		: "i" (PSTATE_IE));
1328
1329	while (1)
1330		barrier();
1331}
1332
1333int __cpu_disable(void)
1334{
1335	int cpu = smp_processor_id();
1336	cpuinfo_sparc *c;
1337	int i;
1338
1339	for_each_cpu(i, &cpu_core_map[cpu])
1340		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1341	cpumask_clear(&cpu_core_map[cpu]);
1342
1343	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1344		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1345	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1346
1347	c = &cpu_data(cpu);
1348
1349	c->core_id = 0;
1350	c->proc_id = -1;
1351
1352	smp_wmb();
1353
1354	/* Make sure no interrupts point to this cpu.  */
1355	fixup_irqs();
1356
1357	local_irq_enable();
1358	mdelay(1);
1359	local_irq_disable();
1360
1361	set_cpu_online(cpu, false);
1362
1363	cpu_map_rebuild();
1364
1365	return 0;
1366}
1367
1368void __cpu_die(unsigned int cpu)
1369{
1370	int i;
1371
1372	for (i = 0; i < 100; i++) {
1373		smp_rmb();
1374		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1375			break;
1376		msleep(100);
1377	}
1378	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1379		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1380	} else {
1381#if defined(CONFIG_SUN_LDOMS)
1382		unsigned long hv_err;
1383		int limit = 100;
1384
1385		do {
1386			hv_err = sun4v_cpu_stop(cpu);
1387			if (hv_err == HV_EOK) {
1388				set_cpu_present(cpu, false);
1389				break;
1390			}
1391		} while (--limit > 0);
1392		if (limit <= 0) {
1393			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1394			       hv_err);
1395		}
1396#endif
1397	}
1398}
1399#endif
1400
1401void __init smp_cpus_done(unsigned int max_cpus)
1402{
1403}
1404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1405void smp_send_reschedule(int cpu)
1406{
1407	if (cpu == smp_processor_id()) {
1408		WARN_ON_ONCE(preemptible());
1409		set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1410	} else {
1411		xcall_deliver((u64) &xcall_receive_signal,
1412			      0, 0, cpumask_of(cpu));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1413	}
 
 
1414}
1415
1416void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1417{
1418	clear_softint(1 << irq);
1419	scheduler_ipi();
1420}
1421
1422static void stop_this_cpu(void *dummy)
1423{
 
1424	prom_stopself();
1425}
1426
1427void smp_send_stop(void)
1428{
1429	int cpu;
1430
1431	if (tlb_type == hypervisor) {
 
 
 
 
1432		for_each_online_cpu(cpu) {
1433			if (cpu == smp_processor_id())
1434				continue;
 
 
1435#ifdef CONFIG_SUN_LDOMS
1436			if (ldom_domaining_enabled) {
1437				unsigned long hv_err;
1438				hv_err = sun4v_cpu_stop(cpu);
1439				if (hv_err)
1440					printk(KERN_ERR "sun4v_cpu_stop() "
1441					       "failed err=%lu\n", hv_err);
1442			} else
1443#endif
1444				prom_stopcpu_cpuid(cpu);
1445		}
1446	} else
1447		smp_call_function(stop_this_cpu, NULL, 0);
1448}
1449
1450/**
1451 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1452 * @cpu: cpu to allocate for
1453 * @size: size allocation in bytes
1454 * @align: alignment
1455 *
1456 * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1457 * does the right thing for NUMA regardless of the current
1458 * configuration.
1459 *
1460 * RETURNS:
1461 * Pointer to the allocated area on success, NULL on failure.
1462 */
1463static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1464					size_t align)
1465{
1466	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1467#ifdef CONFIG_NEED_MULTIPLE_NODES
1468	int node = cpu_to_node(cpu);
1469	void *ptr;
1470
1471	if (!node_online(node) || !NODE_DATA(node)) {
1472		ptr = __alloc_bootmem(size, align, goal);
1473		pr_info("cpu %d has no node %d or node-local memory\n",
1474			cpu, node);
1475		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1476			 cpu, size, __pa(ptr));
1477	} else {
1478		ptr = __alloc_bootmem_node(NODE_DATA(node),
1479					   size, align, goal);
1480		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1481			 "%016lx\n", cpu, size, node, __pa(ptr));
1482	}
1483	return ptr;
1484#else
1485	return __alloc_bootmem(size, align, goal);
1486#endif
1487}
1488
1489static void __init pcpu_free_bootmem(void *ptr, size_t size)
1490{
1491	free_bootmem(__pa(ptr), size);
1492}
1493
1494static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1495{
1496	if (cpu_to_node(from) == cpu_to_node(to))
1497		return LOCAL_DISTANCE;
1498	else
1499		return REMOTE_DISTANCE;
1500}
1501
1502static void __init pcpu_populate_pte(unsigned long addr)
1503{
1504	pgd_t *pgd = pgd_offset_k(addr);
1505	pud_t *pud;
1506	pmd_t *pmd;
1507
1508	if (pgd_none(*pgd)) {
1509		pud_t *new;
1510
1511		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1512		pgd_populate(&init_mm, pgd, new);
1513	}
1514
1515	pud = pud_offset(pgd, addr);
1516	if (pud_none(*pud)) {
1517		pmd_t *new;
1518
1519		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1520		pud_populate(&init_mm, pud, new);
1521	}
1522
1523	pmd = pmd_offset(pud, addr);
1524	if (!pmd_present(*pmd)) {
1525		pte_t *new;
1526
1527		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1528		pmd_populate_kernel(&init_mm, pmd, new);
1529	}
1530}
1531
1532void __init setup_per_cpu_areas(void)
1533{
1534	unsigned long delta;
1535	unsigned int cpu;
1536	int rc = -EINVAL;
1537
1538	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1539		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1540					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1541					    pcpu_cpu_distance,
1542					    pcpu_alloc_bootmem,
1543					    pcpu_free_bootmem);
1544		if (rc)
1545			pr_warning("PERCPU: %s allocator failed (%d), "
1546				   "falling back to page size\n",
1547				   pcpu_fc_names[pcpu_chosen_fc], rc);
1548	}
1549	if (rc < 0)
1550		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1551					   pcpu_alloc_bootmem,
1552					   pcpu_free_bootmem,
1553					   pcpu_populate_pte);
1554	if (rc < 0)
1555		panic("cannot initialize percpu area (err=%d)", rc);
1556
1557	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1558	for_each_possible_cpu(cpu)
1559		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1560
1561	/* Setup %g5 for the boot cpu.  */
1562	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1563
1564	of_fill_in_cpu_data();
1565	if (tlb_type == hypervisor)
1566		mdesc_fill_in_cpu_data(cpu_all_mask);
1567}