Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1992 Ross Biro
7 * Copyright (C) Linus Torvalds
8 * Copyright (C) 1994, 95, 96, 97, 98, 2000 Ralf Baechle
9 * Copyright (C) 1996 David S. Miller
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 1999 MIPS Technologies, Inc.
12 * Copyright (C) 2000 Ulf Carlsson
13 *
14 * At this time Linux/MIPS64 only supports syscall tracing, even for 32-bit
15 * binaries.
16 */
17#include <linux/compiler.h>
18#include <linux/context_tracking.h>
19#include <linux/elf.h>
20#include <linux/kernel.h>
21#include <linux/sched.h>
22#include <linux/sched/task_stack.h>
23#include <linux/mm.h>
24#include <linux/errno.h>
25#include <linux/ptrace.h>
26#include <linux/regset.h>
27#include <linux/smp.h>
28#include <linux/security.h>
29#include <linux/stddef.h>
30#include <linux/audit.h>
31#include <linux/seccomp.h>
32#include <linux/ftrace.h>
33
34#include <asm/byteorder.h>
35#include <asm/cpu.h>
36#include <asm/cpu-info.h>
37#include <asm/dsp.h>
38#include <asm/fpu.h>
39#include <asm/mipsregs.h>
40#include <asm/mipsmtregs.h>
41#include <asm/page.h>
42#include <asm/processor.h>
43#include <asm/syscall.h>
44#include <linux/uaccess.h>
45#include <asm/bootinfo.h>
46#include <asm/reg.h>
47
48#define CREATE_TRACE_POINTS
49#include <trace/events/syscalls.h>
50
51/*
52 * Called by kernel/ptrace.c when detaching..
53 *
54 * Make sure single step bits etc are not set.
55 */
56void ptrace_disable(struct task_struct *child)
57{
58 /* Don't load the watchpoint registers for the ex-child. */
59 clear_tsk_thread_flag(child, TIF_LOAD_WATCH);
60}
61
62/*
63 * Read a general register set. We always use the 64-bit format, even
64 * for 32-bit kernels and for 32-bit processes on a 64-bit kernel.
65 * Registers are sign extended to fill the available space.
66 */
67int ptrace_getregs(struct task_struct *child, struct user_pt_regs __user *data)
68{
69 struct pt_regs *regs;
70 int i;
71
72 if (!access_ok(data, 38 * 8))
73 return -EIO;
74
75 regs = task_pt_regs(child);
76
77 for (i = 0; i < 32; i++)
78 __put_user((long)regs->regs[i], (__s64 __user *)&data->regs[i]);
79 __put_user((long)regs->lo, (__s64 __user *)&data->lo);
80 __put_user((long)regs->hi, (__s64 __user *)&data->hi);
81 __put_user((long)regs->cp0_epc, (__s64 __user *)&data->cp0_epc);
82 __put_user((long)regs->cp0_badvaddr, (__s64 __user *)&data->cp0_badvaddr);
83 __put_user((long)regs->cp0_status, (__s64 __user *)&data->cp0_status);
84 __put_user((long)regs->cp0_cause, (__s64 __user *)&data->cp0_cause);
85
86 return 0;
87}
88
89/*
90 * Write a general register set. As for PTRACE_GETREGS, we always use
91 * the 64-bit format. On a 32-bit kernel only the lower order half
92 * (according to endianness) will be used.
93 */
94int ptrace_setregs(struct task_struct *child, struct user_pt_regs __user *data)
95{
96 struct pt_regs *regs;
97 int i;
98
99 if (!access_ok(data, 38 * 8))
100 return -EIO;
101
102 regs = task_pt_regs(child);
103
104 for (i = 0; i < 32; i++)
105 __get_user(regs->regs[i], (__s64 __user *)&data->regs[i]);
106 __get_user(regs->lo, (__s64 __user *)&data->lo);
107 __get_user(regs->hi, (__s64 __user *)&data->hi);
108 __get_user(regs->cp0_epc, (__s64 __user *)&data->cp0_epc);
109
110 /* badvaddr, status, and cause may not be written. */
111
112 /* System call number may have been changed */
113 mips_syscall_update_nr(child, regs);
114
115 return 0;
116}
117
118int ptrace_get_watch_regs(struct task_struct *child,
119 struct pt_watch_regs __user *addr)
120{
121 enum pt_watch_style style;
122 int i;
123
124 if (!cpu_has_watch || boot_cpu_data.watch_reg_use_cnt == 0)
125 return -EIO;
126 if (!access_ok(addr, sizeof(struct pt_watch_regs)))
127 return -EIO;
128
129#ifdef CONFIG_32BIT
130 style = pt_watch_style_mips32;
131#define WATCH_STYLE mips32
132#else
133 style = pt_watch_style_mips64;
134#define WATCH_STYLE mips64
135#endif
136
137 __put_user(style, &addr->style);
138 __put_user(boot_cpu_data.watch_reg_use_cnt,
139 &addr->WATCH_STYLE.num_valid);
140 for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) {
141 __put_user(child->thread.watch.mips3264.watchlo[i],
142 &addr->WATCH_STYLE.watchlo[i]);
143 __put_user(child->thread.watch.mips3264.watchhi[i] &
144 (MIPS_WATCHHI_MASK | MIPS_WATCHHI_IRW),
145 &addr->WATCH_STYLE.watchhi[i]);
146 __put_user(boot_cpu_data.watch_reg_masks[i],
147 &addr->WATCH_STYLE.watch_masks[i]);
148 }
149 for (; i < 8; i++) {
150 __put_user(0, &addr->WATCH_STYLE.watchlo[i]);
151 __put_user(0, &addr->WATCH_STYLE.watchhi[i]);
152 __put_user(0, &addr->WATCH_STYLE.watch_masks[i]);
153 }
154
155 return 0;
156}
157
158int ptrace_set_watch_regs(struct task_struct *child,
159 struct pt_watch_regs __user *addr)
160{
161 int i;
162 int watch_active = 0;
163 unsigned long lt[NUM_WATCH_REGS];
164 u16 ht[NUM_WATCH_REGS];
165
166 if (!cpu_has_watch || boot_cpu_data.watch_reg_use_cnt == 0)
167 return -EIO;
168 if (!access_ok(addr, sizeof(struct pt_watch_regs)))
169 return -EIO;
170 /* Check the values. */
171 for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) {
172 __get_user(lt[i], &addr->WATCH_STYLE.watchlo[i]);
173#ifdef CONFIG_32BIT
174 if (lt[i] & __UA_LIMIT)
175 return -EINVAL;
176#else
177 if (test_tsk_thread_flag(child, TIF_32BIT_ADDR)) {
178 if (lt[i] & 0xffffffff80000000UL)
179 return -EINVAL;
180 } else {
181 if (lt[i] & __UA_LIMIT)
182 return -EINVAL;
183 }
184#endif
185 __get_user(ht[i], &addr->WATCH_STYLE.watchhi[i]);
186 if (ht[i] & ~MIPS_WATCHHI_MASK)
187 return -EINVAL;
188 }
189 /* Install them. */
190 for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) {
191 if (lt[i] & MIPS_WATCHLO_IRW)
192 watch_active = 1;
193 child->thread.watch.mips3264.watchlo[i] = lt[i];
194 /* Set the G bit. */
195 child->thread.watch.mips3264.watchhi[i] = ht[i];
196 }
197
198 if (watch_active)
199 set_tsk_thread_flag(child, TIF_LOAD_WATCH);
200 else
201 clear_tsk_thread_flag(child, TIF_LOAD_WATCH);
202
203 return 0;
204}
205
206/* regset get/set implementations */
207
208#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
209
210static int gpr32_get(struct task_struct *target,
211 const struct user_regset *regset,
212 struct membuf to)
213{
214 struct pt_regs *regs = task_pt_regs(target);
215 u32 uregs[ELF_NGREG] = {};
216
217 mips_dump_regs32(uregs, regs);
218 return membuf_write(&to, uregs, sizeof(uregs));
219}
220
221static int gpr32_set(struct task_struct *target,
222 const struct user_regset *regset,
223 unsigned int pos, unsigned int count,
224 const void *kbuf, const void __user *ubuf)
225{
226 struct pt_regs *regs = task_pt_regs(target);
227 u32 uregs[ELF_NGREG];
228 unsigned start, num_regs, i;
229 int err;
230
231 start = pos / sizeof(u32);
232 num_regs = count / sizeof(u32);
233
234 if (start + num_regs > ELF_NGREG)
235 return -EIO;
236
237 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
238 sizeof(uregs));
239 if (err)
240 return err;
241
242 for (i = start; i < num_regs; i++) {
243 /*
244 * Cast all values to signed here so that if this is a 64-bit
245 * kernel, the supplied 32-bit values will be sign extended.
246 */
247 switch (i) {
248 case MIPS32_EF_R1 ... MIPS32_EF_R25:
249 /* k0/k1 are ignored. */
250 case MIPS32_EF_R28 ... MIPS32_EF_R31:
251 regs->regs[i - MIPS32_EF_R0] = (s32)uregs[i];
252 break;
253 case MIPS32_EF_LO:
254 regs->lo = (s32)uregs[i];
255 break;
256 case MIPS32_EF_HI:
257 regs->hi = (s32)uregs[i];
258 break;
259 case MIPS32_EF_CP0_EPC:
260 regs->cp0_epc = (s32)uregs[i];
261 break;
262 }
263 }
264
265 /* System call number may have been changed */
266 mips_syscall_update_nr(target, regs);
267
268 return 0;
269}
270
271#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
272
273#ifdef CONFIG_64BIT
274
275static int gpr64_get(struct task_struct *target,
276 const struct user_regset *regset,
277 struct membuf to)
278{
279 struct pt_regs *regs = task_pt_regs(target);
280 u64 uregs[ELF_NGREG] = {};
281
282 mips_dump_regs64(uregs, regs);
283 return membuf_write(&to, uregs, sizeof(uregs));
284}
285
286static int gpr64_set(struct task_struct *target,
287 const struct user_regset *regset,
288 unsigned int pos, unsigned int count,
289 const void *kbuf, const void __user *ubuf)
290{
291 struct pt_regs *regs = task_pt_regs(target);
292 u64 uregs[ELF_NGREG];
293 unsigned start, num_regs, i;
294 int err;
295
296 start = pos / sizeof(u64);
297 num_regs = count / sizeof(u64);
298
299 if (start + num_regs > ELF_NGREG)
300 return -EIO;
301
302 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
303 sizeof(uregs));
304 if (err)
305 return err;
306
307 for (i = start; i < num_regs; i++) {
308 switch (i) {
309 case MIPS64_EF_R1 ... MIPS64_EF_R25:
310 /* k0/k1 are ignored. */
311 case MIPS64_EF_R28 ... MIPS64_EF_R31:
312 regs->regs[i - MIPS64_EF_R0] = uregs[i];
313 break;
314 case MIPS64_EF_LO:
315 regs->lo = uregs[i];
316 break;
317 case MIPS64_EF_HI:
318 regs->hi = uregs[i];
319 break;
320 case MIPS64_EF_CP0_EPC:
321 regs->cp0_epc = uregs[i];
322 break;
323 }
324 }
325
326 /* System call number may have been changed */
327 mips_syscall_update_nr(target, regs);
328
329 return 0;
330}
331
332#endif /* CONFIG_64BIT */
333
334
335#ifdef CONFIG_MIPS_FP_SUPPORT
336
337/*
338 * Poke at FCSR according to its mask. Set the Cause bits even
339 * if a corresponding Enable bit is set. This will be noticed at
340 * the time the thread is switched to and SIGFPE thrown accordingly.
341 */
342static void ptrace_setfcr31(struct task_struct *child, u32 value)
343{
344 u32 fcr31;
345 u32 mask;
346
347 fcr31 = child->thread.fpu.fcr31;
348 mask = boot_cpu_data.fpu_msk31;
349 child->thread.fpu.fcr31 = (value & ~mask) | (fcr31 & mask);
350}
351
352int ptrace_getfpregs(struct task_struct *child, __u32 __user *data)
353{
354 int i;
355
356 if (!access_ok(data, 33 * 8))
357 return -EIO;
358
359 if (tsk_used_math(child)) {
360 union fpureg *fregs = get_fpu_regs(child);
361 for (i = 0; i < 32; i++)
362 __put_user(get_fpr64(&fregs[i], 0),
363 i + (__u64 __user *)data);
364 } else {
365 for (i = 0; i < 32; i++)
366 __put_user((__u64) -1, i + (__u64 __user *) data);
367 }
368
369 __put_user(child->thread.fpu.fcr31, data + 64);
370 __put_user(boot_cpu_data.fpu_id, data + 65);
371
372 return 0;
373}
374
375int ptrace_setfpregs(struct task_struct *child, __u32 __user *data)
376{
377 union fpureg *fregs;
378 u64 fpr_val;
379 u32 value;
380 int i;
381
382 if (!access_ok(data, 33 * 8))
383 return -EIO;
384
385 init_fp_ctx(child);
386 fregs = get_fpu_regs(child);
387
388 for (i = 0; i < 32; i++) {
389 __get_user(fpr_val, i + (__u64 __user *)data);
390 set_fpr64(&fregs[i], 0, fpr_val);
391 }
392
393 __get_user(value, data + 64);
394 ptrace_setfcr31(child, value);
395
396 /* FIR may not be written. */
397
398 return 0;
399}
400
401/*
402 * Copy the floating-point context to the supplied NT_PRFPREG buffer,
403 * !CONFIG_CPU_HAS_MSA variant. FP context's general register slots
404 * correspond 1:1 to buffer slots. Only general registers are copied.
405 */
406static void fpr_get_fpa(struct task_struct *target,
407 struct membuf *to)
408{
409 membuf_write(to, &target->thread.fpu,
410 NUM_FPU_REGS * sizeof(elf_fpreg_t));
411}
412
413/*
414 * Copy the floating-point context to the supplied NT_PRFPREG buffer,
415 * CONFIG_CPU_HAS_MSA variant. Only lower 64 bits of FP context's
416 * general register slots are copied to buffer slots. Only general
417 * registers are copied.
418 */
419static void fpr_get_msa(struct task_struct *target, struct membuf *to)
420{
421 unsigned int i;
422
423 BUILD_BUG_ON(sizeof(u64) != sizeof(elf_fpreg_t));
424 for (i = 0; i < NUM_FPU_REGS; i++)
425 membuf_store(to, get_fpr64(&target->thread.fpu.fpr[i], 0));
426}
427
428/*
429 * Copy the floating-point context to the supplied NT_PRFPREG buffer.
430 * Choose the appropriate helper for general registers, and then copy
431 * the FCSR and FIR registers separately.
432 */
433static int fpr_get(struct task_struct *target,
434 const struct user_regset *regset,
435 struct membuf to)
436{
437 if (sizeof(target->thread.fpu.fpr[0]) == sizeof(elf_fpreg_t))
438 fpr_get_fpa(target, &to);
439 else
440 fpr_get_msa(target, &to);
441
442 membuf_write(&to, &target->thread.fpu.fcr31, sizeof(u32));
443 membuf_write(&to, &boot_cpu_data.fpu_id, sizeof(u32));
444 return 0;
445}
446
447/*
448 * Copy the supplied NT_PRFPREG buffer to the floating-point context,
449 * !CONFIG_CPU_HAS_MSA variant. Buffer slots correspond 1:1 to FP
450 * context's general register slots. Only general registers are copied.
451 */
452static int fpr_set_fpa(struct task_struct *target,
453 unsigned int *pos, unsigned int *count,
454 const void **kbuf, const void __user **ubuf)
455{
456 return user_regset_copyin(pos, count, kbuf, ubuf,
457 &target->thread.fpu,
458 0, NUM_FPU_REGS * sizeof(elf_fpreg_t));
459}
460
461/*
462 * Copy the supplied NT_PRFPREG buffer to the floating-point context,
463 * CONFIG_CPU_HAS_MSA variant. Buffer slots are copied to lower 64
464 * bits only of FP context's general register slots. Only general
465 * registers are copied.
466 */
467static int fpr_set_msa(struct task_struct *target,
468 unsigned int *pos, unsigned int *count,
469 const void **kbuf, const void __user **ubuf)
470{
471 unsigned int i;
472 u64 fpr_val;
473 int err;
474
475 BUILD_BUG_ON(sizeof(fpr_val) != sizeof(elf_fpreg_t));
476 for (i = 0; i < NUM_FPU_REGS && *count > 0; i++) {
477 err = user_regset_copyin(pos, count, kbuf, ubuf,
478 &fpr_val, i * sizeof(elf_fpreg_t),
479 (i + 1) * sizeof(elf_fpreg_t));
480 if (err)
481 return err;
482 set_fpr64(&target->thread.fpu.fpr[i], 0, fpr_val);
483 }
484
485 return 0;
486}
487
488/*
489 * Copy the supplied NT_PRFPREG buffer to the floating-point context.
490 * Choose the appropriate helper for general registers, and then copy
491 * the FCSR register separately. Ignore the incoming FIR register
492 * contents though, as the register is read-only.
493 *
494 * We optimize for the case where `count % sizeof(elf_fpreg_t) == 0',
495 * which is supposed to have been guaranteed by the kernel before
496 * calling us, e.g. in `ptrace_regset'. We enforce that requirement,
497 * so that we can safely avoid preinitializing temporaries for
498 * partial register writes.
499 */
500static int fpr_set(struct task_struct *target,
501 const struct user_regset *regset,
502 unsigned int pos, unsigned int count,
503 const void *kbuf, const void __user *ubuf)
504{
505 const int fcr31_pos = NUM_FPU_REGS * sizeof(elf_fpreg_t);
506 const int fir_pos = fcr31_pos + sizeof(u32);
507 u32 fcr31;
508 int err;
509
510 BUG_ON(count % sizeof(elf_fpreg_t));
511
512 if (pos + count > sizeof(elf_fpregset_t))
513 return -EIO;
514
515 init_fp_ctx(target);
516
517 if (sizeof(target->thread.fpu.fpr[0]) == sizeof(elf_fpreg_t))
518 err = fpr_set_fpa(target, &pos, &count, &kbuf, &ubuf);
519 else
520 err = fpr_set_msa(target, &pos, &count, &kbuf, &ubuf);
521 if (err)
522 return err;
523
524 if (count > 0) {
525 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
526 &fcr31,
527 fcr31_pos, fcr31_pos + sizeof(u32));
528 if (err)
529 return err;
530
531 ptrace_setfcr31(target, fcr31);
532 }
533
534 if (count > 0) {
535 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
536 fir_pos, fir_pos + sizeof(u32));
537 return 0;
538 }
539
540 return err;
541}
542
543/* Copy the FP mode setting to the supplied NT_MIPS_FP_MODE buffer. */
544static int fp_mode_get(struct task_struct *target,
545 const struct user_regset *regset,
546 struct membuf to)
547{
548 return membuf_store(&to, (int)mips_get_process_fp_mode(target));
549}
550
551/*
552 * Copy the supplied NT_MIPS_FP_MODE buffer to the FP mode setting.
553 *
554 * We optimize for the case where `count % sizeof(int) == 0', which
555 * is supposed to have been guaranteed by the kernel before calling
556 * us, e.g. in `ptrace_regset'. We enforce that requirement, so
557 * that we can safely avoid preinitializing temporaries for partial
558 * mode writes.
559 */
560static int fp_mode_set(struct task_struct *target,
561 const struct user_regset *regset,
562 unsigned int pos, unsigned int count,
563 const void *kbuf, const void __user *ubuf)
564{
565 int fp_mode;
566 int err;
567
568 BUG_ON(count % sizeof(int));
569
570 if (pos + count > sizeof(fp_mode))
571 return -EIO;
572
573 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fp_mode, 0,
574 sizeof(fp_mode));
575 if (err)
576 return err;
577
578 if (count > 0)
579 err = mips_set_process_fp_mode(target, fp_mode);
580
581 return err;
582}
583
584#endif /* CONFIG_MIPS_FP_SUPPORT */
585
586#ifdef CONFIG_CPU_HAS_MSA
587
588struct msa_control_regs {
589 unsigned int fir;
590 unsigned int fcsr;
591 unsigned int msair;
592 unsigned int msacsr;
593};
594
595static void copy_pad_fprs(struct task_struct *target,
596 const struct user_regset *regset,
597 struct membuf *to,
598 unsigned int live_sz)
599{
600 int i, j;
601 unsigned long long fill = ~0ull;
602 unsigned int cp_sz, pad_sz;
603
604 cp_sz = min(regset->size, live_sz);
605 pad_sz = regset->size - cp_sz;
606 WARN_ON(pad_sz % sizeof(fill));
607
608 for (i = 0; i < NUM_FPU_REGS; i++) {
609 membuf_write(to, &target->thread.fpu.fpr[i], cp_sz);
610 for (j = 0; j < (pad_sz / sizeof(fill)); j++)
611 membuf_store(to, fill);
612 }
613}
614
615static int msa_get(struct task_struct *target,
616 const struct user_regset *regset,
617 struct membuf to)
618{
619 const unsigned int wr_size = NUM_FPU_REGS * regset->size;
620 const struct msa_control_regs ctrl_regs = {
621 .fir = boot_cpu_data.fpu_id,
622 .fcsr = target->thread.fpu.fcr31,
623 .msair = boot_cpu_data.msa_id,
624 .msacsr = target->thread.fpu.msacsr,
625 };
626
627 if (!tsk_used_math(target)) {
628 /* The task hasn't used FP or MSA, fill with 0xff */
629 copy_pad_fprs(target, regset, &to, 0);
630 } else if (!test_tsk_thread_flag(target, TIF_MSA_CTX_LIVE)) {
631 /* Copy scalar FP context, fill the rest with 0xff */
632 copy_pad_fprs(target, regset, &to, 8);
633 } else if (sizeof(target->thread.fpu.fpr[0]) == regset->size) {
634 /* Trivially copy the vector registers */
635 membuf_write(&to, &target->thread.fpu.fpr, wr_size);
636 } else {
637 /* Copy as much context as possible, fill the rest with 0xff */
638 copy_pad_fprs(target, regset, &to,
639 sizeof(target->thread.fpu.fpr[0]));
640 }
641
642 return membuf_write(&to, &ctrl_regs, sizeof(ctrl_regs));
643}
644
645static int msa_set(struct task_struct *target,
646 const struct user_regset *regset,
647 unsigned int pos, unsigned int count,
648 const void *kbuf, const void __user *ubuf)
649{
650 const unsigned int wr_size = NUM_FPU_REGS * regset->size;
651 struct msa_control_regs ctrl_regs;
652 unsigned int cp_sz;
653 int i, err, start;
654
655 init_fp_ctx(target);
656
657 if (sizeof(target->thread.fpu.fpr[0]) == regset->size) {
658 /* Trivially copy the vector registers */
659 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
660 &target->thread.fpu.fpr,
661 0, wr_size);
662 } else {
663 /* Copy as much context as possible */
664 cp_sz = min_t(unsigned int, regset->size,
665 sizeof(target->thread.fpu.fpr[0]));
666
667 i = start = err = 0;
668 for (; i < NUM_FPU_REGS; i++, start += regset->size) {
669 err |= user_regset_copyin(&pos, &count, &kbuf, &ubuf,
670 &target->thread.fpu.fpr[i],
671 start, start + cp_sz);
672 }
673 }
674
675 if (!err)
676 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl_regs,
677 wr_size, wr_size + sizeof(ctrl_regs));
678 if (!err) {
679 target->thread.fpu.fcr31 = ctrl_regs.fcsr & ~FPU_CSR_ALL_X;
680 target->thread.fpu.msacsr = ctrl_regs.msacsr & ~MSA_CSR_CAUSEF;
681 }
682
683 return err;
684}
685
686#endif /* CONFIG_CPU_HAS_MSA */
687
688#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
689
690/*
691 * Copy the DSP context to the supplied 32-bit NT_MIPS_DSP buffer.
692 */
693static int dsp32_get(struct task_struct *target,
694 const struct user_regset *regset,
695 struct membuf to)
696{
697 u32 dspregs[NUM_DSP_REGS + 1];
698 unsigned int i;
699
700 BUG_ON(to.left % sizeof(u32));
701
702 if (!cpu_has_dsp)
703 return -EIO;
704
705 for (i = 0; i < NUM_DSP_REGS; i++)
706 dspregs[i] = target->thread.dsp.dspr[i];
707 dspregs[NUM_DSP_REGS] = target->thread.dsp.dspcontrol;
708 return membuf_write(&to, dspregs, sizeof(dspregs));
709}
710
711/*
712 * Copy the supplied 32-bit NT_MIPS_DSP buffer to the DSP context.
713 */
714static int dsp32_set(struct task_struct *target,
715 const struct user_regset *regset,
716 unsigned int pos, unsigned int count,
717 const void *kbuf, const void __user *ubuf)
718{
719 unsigned int start, num_regs, i;
720 u32 dspregs[NUM_DSP_REGS + 1];
721 int err;
722
723 BUG_ON(count % sizeof(u32));
724
725 if (!cpu_has_dsp)
726 return -EIO;
727
728 start = pos / sizeof(u32);
729 num_regs = count / sizeof(u32);
730
731 if (start + num_regs > NUM_DSP_REGS + 1)
732 return -EIO;
733
734 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, dspregs, 0,
735 sizeof(dspregs));
736 if (err)
737 return err;
738
739 for (i = start; i < num_regs; i++)
740 switch (i) {
741 case 0 ... NUM_DSP_REGS - 1:
742 target->thread.dsp.dspr[i] = (s32)dspregs[i];
743 break;
744 case NUM_DSP_REGS:
745 target->thread.dsp.dspcontrol = (s32)dspregs[i];
746 break;
747 }
748
749 return 0;
750}
751
752#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
753
754#ifdef CONFIG_64BIT
755
756/*
757 * Copy the DSP context to the supplied 64-bit NT_MIPS_DSP buffer.
758 */
759static int dsp64_get(struct task_struct *target,
760 const struct user_regset *regset,
761 struct membuf to)
762{
763 u64 dspregs[NUM_DSP_REGS + 1];
764 unsigned int i;
765
766 BUG_ON(to.left % sizeof(u64));
767
768 if (!cpu_has_dsp)
769 return -EIO;
770
771 for (i = 0; i < NUM_DSP_REGS; i++)
772 dspregs[i] = target->thread.dsp.dspr[i];
773 dspregs[NUM_DSP_REGS] = target->thread.dsp.dspcontrol;
774 return membuf_write(&to, dspregs, sizeof(dspregs));
775}
776
777/*
778 * Copy the supplied 64-bit NT_MIPS_DSP buffer to the DSP context.
779 */
780static int dsp64_set(struct task_struct *target,
781 const struct user_regset *regset,
782 unsigned int pos, unsigned int count,
783 const void *kbuf, const void __user *ubuf)
784{
785 unsigned int start, num_regs, i;
786 u64 dspregs[NUM_DSP_REGS + 1];
787 int err;
788
789 BUG_ON(count % sizeof(u64));
790
791 if (!cpu_has_dsp)
792 return -EIO;
793
794 start = pos / sizeof(u64);
795 num_regs = count / sizeof(u64);
796
797 if (start + num_regs > NUM_DSP_REGS + 1)
798 return -EIO;
799
800 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, dspregs, 0,
801 sizeof(dspregs));
802 if (err)
803 return err;
804
805 for (i = start; i < num_regs; i++)
806 switch (i) {
807 case 0 ... NUM_DSP_REGS - 1:
808 target->thread.dsp.dspr[i] = dspregs[i];
809 break;
810 case NUM_DSP_REGS:
811 target->thread.dsp.dspcontrol = dspregs[i];
812 break;
813 }
814
815 return 0;
816}
817
818#endif /* CONFIG_64BIT */
819
820/*
821 * Determine whether the DSP context is present.
822 */
823static int dsp_active(struct task_struct *target,
824 const struct user_regset *regset)
825{
826 return cpu_has_dsp ? NUM_DSP_REGS + 1 : -ENODEV;
827}
828
829enum mips_regset {
830 REGSET_GPR,
831 REGSET_DSP,
832#ifdef CONFIG_MIPS_FP_SUPPORT
833 REGSET_FPR,
834 REGSET_FP_MODE,
835#endif
836#ifdef CONFIG_CPU_HAS_MSA
837 REGSET_MSA,
838#endif
839};
840
841struct pt_regs_offset {
842 const char *name;
843 int offset;
844};
845
846#define REG_OFFSET_NAME(reg, r) { \
847 .name = #reg, \
848 .offset = offsetof(struct pt_regs, r) \
849}
850
851#define REG_OFFSET_END { \
852 .name = NULL, \
853 .offset = 0 \
854}
855
856static const struct pt_regs_offset regoffset_table[] = {
857 REG_OFFSET_NAME(r0, regs[0]),
858 REG_OFFSET_NAME(r1, regs[1]),
859 REG_OFFSET_NAME(r2, regs[2]),
860 REG_OFFSET_NAME(r3, regs[3]),
861 REG_OFFSET_NAME(r4, regs[4]),
862 REG_OFFSET_NAME(r5, regs[5]),
863 REG_OFFSET_NAME(r6, regs[6]),
864 REG_OFFSET_NAME(r7, regs[7]),
865 REG_OFFSET_NAME(r8, regs[8]),
866 REG_OFFSET_NAME(r9, regs[9]),
867 REG_OFFSET_NAME(r10, regs[10]),
868 REG_OFFSET_NAME(r11, regs[11]),
869 REG_OFFSET_NAME(r12, regs[12]),
870 REG_OFFSET_NAME(r13, regs[13]),
871 REG_OFFSET_NAME(r14, regs[14]),
872 REG_OFFSET_NAME(r15, regs[15]),
873 REG_OFFSET_NAME(r16, regs[16]),
874 REG_OFFSET_NAME(r17, regs[17]),
875 REG_OFFSET_NAME(r18, regs[18]),
876 REG_OFFSET_NAME(r19, regs[19]),
877 REG_OFFSET_NAME(r20, regs[20]),
878 REG_OFFSET_NAME(r21, regs[21]),
879 REG_OFFSET_NAME(r22, regs[22]),
880 REG_OFFSET_NAME(r23, regs[23]),
881 REG_OFFSET_NAME(r24, regs[24]),
882 REG_OFFSET_NAME(r25, regs[25]),
883 REG_OFFSET_NAME(r26, regs[26]),
884 REG_OFFSET_NAME(r27, regs[27]),
885 REG_OFFSET_NAME(r28, regs[28]),
886 REG_OFFSET_NAME(r29, regs[29]),
887 REG_OFFSET_NAME(r30, regs[30]),
888 REG_OFFSET_NAME(r31, regs[31]),
889 REG_OFFSET_NAME(c0_status, cp0_status),
890 REG_OFFSET_NAME(hi, hi),
891 REG_OFFSET_NAME(lo, lo),
892#ifdef CONFIG_CPU_HAS_SMARTMIPS
893 REG_OFFSET_NAME(acx, acx),
894#endif
895 REG_OFFSET_NAME(c0_badvaddr, cp0_badvaddr),
896 REG_OFFSET_NAME(c0_cause, cp0_cause),
897 REG_OFFSET_NAME(c0_epc, cp0_epc),
898#ifdef CONFIG_CPU_CAVIUM_OCTEON
899 REG_OFFSET_NAME(mpl0, mpl[0]),
900 REG_OFFSET_NAME(mpl1, mpl[1]),
901 REG_OFFSET_NAME(mpl2, mpl[2]),
902 REG_OFFSET_NAME(mtp0, mtp[0]),
903 REG_OFFSET_NAME(mtp1, mtp[1]),
904 REG_OFFSET_NAME(mtp2, mtp[2]),
905#endif
906 REG_OFFSET_END,
907};
908
909/**
910 * regs_query_register_offset() - query register offset from its name
911 * @name: the name of a register
912 *
913 * regs_query_register_offset() returns the offset of a register in struct
914 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
915 */
916int regs_query_register_offset(const char *name)
917{
918 const struct pt_regs_offset *roff;
919 for (roff = regoffset_table; roff->name != NULL; roff++)
920 if (!strcmp(roff->name, name))
921 return roff->offset;
922 return -EINVAL;
923}
924
925#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
926
927static const struct user_regset mips_regsets[] = {
928 [REGSET_GPR] = {
929 .core_note_type = NT_PRSTATUS,
930 .n = ELF_NGREG,
931 .size = sizeof(unsigned int),
932 .align = sizeof(unsigned int),
933 .regset_get = gpr32_get,
934 .set = gpr32_set,
935 },
936 [REGSET_DSP] = {
937 .core_note_type = NT_MIPS_DSP,
938 .n = NUM_DSP_REGS + 1,
939 .size = sizeof(u32),
940 .align = sizeof(u32),
941 .regset_get = dsp32_get,
942 .set = dsp32_set,
943 .active = dsp_active,
944 },
945#ifdef CONFIG_MIPS_FP_SUPPORT
946 [REGSET_FPR] = {
947 .core_note_type = NT_PRFPREG,
948 .n = ELF_NFPREG,
949 .size = sizeof(elf_fpreg_t),
950 .align = sizeof(elf_fpreg_t),
951 .regset_get = fpr_get,
952 .set = fpr_set,
953 },
954 [REGSET_FP_MODE] = {
955 .core_note_type = NT_MIPS_FP_MODE,
956 .n = 1,
957 .size = sizeof(int),
958 .align = sizeof(int),
959 .regset_get = fp_mode_get,
960 .set = fp_mode_set,
961 },
962#endif
963#ifdef CONFIG_CPU_HAS_MSA
964 [REGSET_MSA] = {
965 .core_note_type = NT_MIPS_MSA,
966 .n = NUM_FPU_REGS + 1,
967 .size = 16,
968 .align = 16,
969 .regset_get = msa_get,
970 .set = msa_set,
971 },
972#endif
973};
974
975static const struct user_regset_view user_mips_view = {
976 .name = "mips",
977 .e_machine = ELF_ARCH,
978 .ei_osabi = ELF_OSABI,
979 .regsets = mips_regsets,
980 .n = ARRAY_SIZE(mips_regsets),
981};
982
983#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
984
985#ifdef CONFIG_64BIT
986
987static const struct user_regset mips64_regsets[] = {
988 [REGSET_GPR] = {
989 .core_note_type = NT_PRSTATUS,
990 .n = ELF_NGREG,
991 .size = sizeof(unsigned long),
992 .align = sizeof(unsigned long),
993 .regset_get = gpr64_get,
994 .set = gpr64_set,
995 },
996 [REGSET_DSP] = {
997 .core_note_type = NT_MIPS_DSP,
998 .n = NUM_DSP_REGS + 1,
999 .size = sizeof(u64),
1000 .align = sizeof(u64),
1001 .regset_get = dsp64_get,
1002 .set = dsp64_set,
1003 .active = dsp_active,
1004 },
1005#ifdef CONFIG_MIPS_FP_SUPPORT
1006 [REGSET_FP_MODE] = {
1007 .core_note_type = NT_MIPS_FP_MODE,
1008 .n = 1,
1009 .size = sizeof(int),
1010 .align = sizeof(int),
1011 .regset_get = fp_mode_get,
1012 .set = fp_mode_set,
1013 },
1014 [REGSET_FPR] = {
1015 .core_note_type = NT_PRFPREG,
1016 .n = ELF_NFPREG,
1017 .size = sizeof(elf_fpreg_t),
1018 .align = sizeof(elf_fpreg_t),
1019 .regset_get = fpr_get,
1020 .set = fpr_set,
1021 },
1022#endif
1023#ifdef CONFIG_CPU_HAS_MSA
1024 [REGSET_MSA] = {
1025 .core_note_type = NT_MIPS_MSA,
1026 .n = NUM_FPU_REGS + 1,
1027 .size = 16,
1028 .align = 16,
1029 .regset_get = msa_get,
1030 .set = msa_set,
1031 },
1032#endif
1033};
1034
1035static const struct user_regset_view user_mips64_view = {
1036 .name = "mips64",
1037 .e_machine = ELF_ARCH,
1038 .ei_osabi = ELF_OSABI,
1039 .regsets = mips64_regsets,
1040 .n = ARRAY_SIZE(mips64_regsets),
1041};
1042
1043#ifdef CONFIG_MIPS32_N32
1044
1045static const struct user_regset_view user_mipsn32_view = {
1046 .name = "mipsn32",
1047 .e_flags = EF_MIPS_ABI2,
1048 .e_machine = ELF_ARCH,
1049 .ei_osabi = ELF_OSABI,
1050 .regsets = mips64_regsets,
1051 .n = ARRAY_SIZE(mips64_regsets),
1052};
1053
1054#endif /* CONFIG_MIPS32_N32 */
1055
1056#endif /* CONFIG_64BIT */
1057
1058const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1059{
1060#ifdef CONFIG_32BIT
1061 return &user_mips_view;
1062#else
1063#ifdef CONFIG_MIPS32_O32
1064 if (test_tsk_thread_flag(task, TIF_32BIT_REGS))
1065 return &user_mips_view;
1066#endif
1067#ifdef CONFIG_MIPS32_N32
1068 if (test_tsk_thread_flag(task, TIF_32BIT_ADDR))
1069 return &user_mipsn32_view;
1070#endif
1071 return &user_mips64_view;
1072#endif
1073}
1074
1075long arch_ptrace(struct task_struct *child, long request,
1076 unsigned long addr, unsigned long data)
1077{
1078 int ret;
1079 void __user *addrp = (void __user *) addr;
1080 void __user *datavp = (void __user *) data;
1081 unsigned long __user *datalp = (void __user *) data;
1082
1083 switch (request) {
1084 /* when I and D space are separate, these will need to be fixed. */
1085 case PTRACE_PEEKTEXT: /* read word at location addr. */
1086 case PTRACE_PEEKDATA:
1087 ret = generic_ptrace_peekdata(child, addr, data);
1088 break;
1089
1090 /* Read the word at location addr in the USER area. */
1091 case PTRACE_PEEKUSR: {
1092 struct pt_regs *regs;
1093 unsigned long tmp = 0;
1094
1095 regs = task_pt_regs(child);
1096 ret = 0; /* Default return value. */
1097
1098 switch (addr) {
1099 case 0 ... 31:
1100 tmp = regs->regs[addr];
1101 break;
1102#ifdef CONFIG_MIPS_FP_SUPPORT
1103 case FPR_BASE ... FPR_BASE + 31: {
1104 union fpureg *fregs;
1105
1106 if (!tsk_used_math(child)) {
1107 /* FP not yet used */
1108 tmp = -1;
1109 break;
1110 }
1111 fregs = get_fpu_regs(child);
1112
1113#ifdef CONFIG_32BIT
1114 if (test_tsk_thread_flag(child, TIF_32BIT_FPREGS)) {
1115 /*
1116 * The odd registers are actually the high
1117 * order bits of the values stored in the even
1118 * registers.
1119 */
1120 tmp = get_fpr32(&fregs[(addr & ~1) - FPR_BASE],
1121 addr & 1);
1122 break;
1123 }
1124#endif
1125 tmp = get_fpr64(&fregs[addr - FPR_BASE], 0);
1126 break;
1127 }
1128 case FPC_CSR:
1129 tmp = child->thread.fpu.fcr31;
1130 break;
1131 case FPC_EIR:
1132 /* implementation / version register */
1133 tmp = boot_cpu_data.fpu_id;
1134 break;
1135#endif
1136 case PC:
1137 tmp = regs->cp0_epc;
1138 break;
1139 case CAUSE:
1140 tmp = regs->cp0_cause;
1141 break;
1142 case BADVADDR:
1143 tmp = regs->cp0_badvaddr;
1144 break;
1145 case MMHI:
1146 tmp = regs->hi;
1147 break;
1148 case MMLO:
1149 tmp = regs->lo;
1150 break;
1151#ifdef CONFIG_CPU_HAS_SMARTMIPS
1152 case ACX:
1153 tmp = regs->acx;
1154 break;
1155#endif
1156 case DSP_BASE ... DSP_BASE + 5: {
1157 dspreg_t *dregs;
1158
1159 if (!cpu_has_dsp) {
1160 tmp = 0;
1161 ret = -EIO;
1162 goto out;
1163 }
1164 dregs = __get_dsp_regs(child);
1165 tmp = dregs[addr - DSP_BASE];
1166 break;
1167 }
1168 case DSP_CONTROL:
1169 if (!cpu_has_dsp) {
1170 tmp = 0;
1171 ret = -EIO;
1172 goto out;
1173 }
1174 tmp = child->thread.dsp.dspcontrol;
1175 break;
1176 default:
1177 tmp = 0;
1178 ret = -EIO;
1179 goto out;
1180 }
1181 ret = put_user(tmp, datalp);
1182 break;
1183 }
1184
1185 /* when I and D space are separate, this will have to be fixed. */
1186 case PTRACE_POKETEXT: /* write the word at location addr. */
1187 case PTRACE_POKEDATA:
1188 ret = generic_ptrace_pokedata(child, addr, data);
1189 break;
1190
1191 case PTRACE_POKEUSR: {
1192 struct pt_regs *regs;
1193 ret = 0;
1194 regs = task_pt_regs(child);
1195
1196 switch (addr) {
1197 case 0 ... 31:
1198 regs->regs[addr] = data;
1199 /* System call number may have been changed */
1200 if (addr == 2)
1201 mips_syscall_update_nr(child, regs);
1202 else if (addr == 4 &&
1203 mips_syscall_is_indirect(child, regs))
1204 mips_syscall_update_nr(child, regs);
1205 break;
1206#ifdef CONFIG_MIPS_FP_SUPPORT
1207 case FPR_BASE ... FPR_BASE + 31: {
1208 union fpureg *fregs = get_fpu_regs(child);
1209
1210 init_fp_ctx(child);
1211#ifdef CONFIG_32BIT
1212 if (test_tsk_thread_flag(child, TIF_32BIT_FPREGS)) {
1213 /*
1214 * The odd registers are actually the high
1215 * order bits of the values stored in the even
1216 * registers.
1217 */
1218 set_fpr32(&fregs[(addr & ~1) - FPR_BASE],
1219 addr & 1, data);
1220 break;
1221 }
1222#endif
1223 set_fpr64(&fregs[addr - FPR_BASE], 0, data);
1224 break;
1225 }
1226 case FPC_CSR:
1227 init_fp_ctx(child);
1228 ptrace_setfcr31(child, data);
1229 break;
1230#endif
1231 case PC:
1232 regs->cp0_epc = data;
1233 break;
1234 case MMHI:
1235 regs->hi = data;
1236 break;
1237 case MMLO:
1238 regs->lo = data;
1239 break;
1240#ifdef CONFIG_CPU_HAS_SMARTMIPS
1241 case ACX:
1242 regs->acx = data;
1243 break;
1244#endif
1245 case DSP_BASE ... DSP_BASE + 5: {
1246 dspreg_t *dregs;
1247
1248 if (!cpu_has_dsp) {
1249 ret = -EIO;
1250 break;
1251 }
1252
1253 dregs = __get_dsp_regs(child);
1254 dregs[addr - DSP_BASE] = data;
1255 break;
1256 }
1257 case DSP_CONTROL:
1258 if (!cpu_has_dsp) {
1259 ret = -EIO;
1260 break;
1261 }
1262 child->thread.dsp.dspcontrol = data;
1263 break;
1264 default:
1265 /* The rest are not allowed. */
1266 ret = -EIO;
1267 break;
1268 }
1269 break;
1270 }
1271
1272 case PTRACE_GETREGS:
1273 ret = ptrace_getregs(child, datavp);
1274 break;
1275
1276 case PTRACE_SETREGS:
1277 ret = ptrace_setregs(child, datavp);
1278 break;
1279
1280#ifdef CONFIG_MIPS_FP_SUPPORT
1281 case PTRACE_GETFPREGS:
1282 ret = ptrace_getfpregs(child, datavp);
1283 break;
1284
1285 case PTRACE_SETFPREGS:
1286 ret = ptrace_setfpregs(child, datavp);
1287 break;
1288#endif
1289 case PTRACE_GET_THREAD_AREA:
1290 ret = put_user(task_thread_info(child)->tp_value, datalp);
1291 break;
1292
1293 case PTRACE_GET_WATCH_REGS:
1294 ret = ptrace_get_watch_regs(child, addrp);
1295 break;
1296
1297 case PTRACE_SET_WATCH_REGS:
1298 ret = ptrace_set_watch_regs(child, addrp);
1299 break;
1300
1301 default:
1302 ret = ptrace_request(child, request, addr, data);
1303 break;
1304 }
1305 out:
1306 return ret;
1307}
1308
1309/*
1310 * Notification of system call entry/exit
1311 * - triggered by current->work.syscall_trace
1312 */
1313asmlinkage long syscall_trace_enter(struct pt_regs *regs, long syscall)
1314{
1315 user_exit();
1316
1317 current_thread_info()->syscall = syscall;
1318
1319 if (test_thread_flag(TIF_SYSCALL_TRACE)) {
1320 if (ptrace_report_syscall_entry(regs))
1321 return -1;
1322 syscall = current_thread_info()->syscall;
1323 }
1324
1325#ifdef CONFIG_SECCOMP
1326 if (unlikely(test_thread_flag(TIF_SECCOMP))) {
1327 int ret, i;
1328 struct seccomp_data sd;
1329 unsigned long args[6];
1330
1331 sd.nr = syscall;
1332 sd.arch = syscall_get_arch(current);
1333 syscall_get_arguments(current, regs, args);
1334 for (i = 0; i < 6; i++)
1335 sd.args[i] = args[i];
1336 sd.instruction_pointer = KSTK_EIP(current);
1337
1338 ret = __secure_computing(&sd);
1339 if (ret == -1)
1340 return ret;
1341 syscall = current_thread_info()->syscall;
1342 }
1343#endif
1344
1345 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
1346 trace_sys_enter(regs, regs->regs[2]);
1347
1348 audit_syscall_entry(syscall, regs->regs[4], regs->regs[5],
1349 regs->regs[6], regs->regs[7]);
1350
1351 /*
1352 * Negative syscall numbers are mistaken for rejected syscalls, but
1353 * won't have had the return value set appropriately, so we do so now.
1354 */
1355 if (syscall < 0)
1356 syscall_set_return_value(current, regs, -ENOSYS, 0);
1357 return syscall;
1358}
1359
1360/*
1361 * Notification of system call entry/exit
1362 * - triggered by current->work.syscall_trace
1363 */
1364asmlinkage void syscall_trace_leave(struct pt_regs *regs)
1365{
1366 /*
1367 * We may come here right after calling schedule_user()
1368 * or do_notify_resume(), in which case we can be in RCU
1369 * user mode.
1370 */
1371 user_exit();
1372
1373 audit_syscall_exit(regs);
1374
1375 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
1376 trace_sys_exit(regs, regs_return_value(regs));
1377
1378 if (test_thread_flag(TIF_SYSCALL_TRACE))
1379 ptrace_report_syscall_exit(regs, 0);
1380
1381 user_enter();
1382}
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1992 Ross Biro
7 * Copyright (C) Linus Torvalds
8 * Copyright (C) 1994, 95, 96, 97, 98, 2000 Ralf Baechle
9 * Copyright (C) 1996 David S. Miller
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 1999 MIPS Technologies, Inc.
12 * Copyright (C) 2000 Ulf Carlsson
13 *
14 * At this time Linux/MIPS64 only supports syscall tracing, even for 32-bit
15 * binaries.
16 */
17#include <linux/compiler.h>
18#include <linux/context_tracking.h>
19#include <linux/elf.h>
20#include <linux/kernel.h>
21#include <linux/sched.h>
22#include <linux/mm.h>
23#include <linux/errno.h>
24#include <linux/ptrace.h>
25#include <linux/regset.h>
26#include <linux/smp.h>
27#include <linux/security.h>
28#include <linux/stddef.h>
29#include <linux/tracehook.h>
30#include <linux/audit.h>
31#include <linux/seccomp.h>
32#include <linux/ftrace.h>
33
34#include <asm/byteorder.h>
35#include <asm/cpu.h>
36#include <asm/cpu-info.h>
37#include <asm/dsp.h>
38#include <asm/fpu.h>
39#include <asm/mipsregs.h>
40#include <asm/mipsmtregs.h>
41#include <asm/pgtable.h>
42#include <asm/page.h>
43#include <asm/syscall.h>
44#include <asm/uaccess.h>
45#include <asm/bootinfo.h>
46#include <asm/reg.h>
47
48#define CREATE_TRACE_POINTS
49#include <trace/events/syscalls.h>
50
51static void init_fp_ctx(struct task_struct *target)
52{
53 /* If FP has been used then the target already has context */
54 if (tsk_used_math(target))
55 return;
56
57 /* Begin with data registers set to all 1s... */
58 memset(&target->thread.fpu.fpr, ~0, sizeof(target->thread.fpu.fpr));
59
60 /* ...and FCSR zeroed */
61 target->thread.fpu.fcr31 = 0;
62
63 /*
64 * Record that the target has "used" math, such that the context
65 * just initialised, and any modifications made by the caller,
66 * aren't discarded.
67 */
68 set_stopped_child_used_math(target);
69}
70
71/*
72 * Called by kernel/ptrace.c when detaching..
73 *
74 * Make sure single step bits etc are not set.
75 */
76void ptrace_disable(struct task_struct *child)
77{
78 /* Don't load the watchpoint registers for the ex-child. */
79 clear_tsk_thread_flag(child, TIF_LOAD_WATCH);
80}
81
82/*
83 * Read a general register set. We always use the 64-bit format, even
84 * for 32-bit kernels and for 32-bit processes on a 64-bit kernel.
85 * Registers are sign extended to fill the available space.
86 */
87int ptrace_getregs(struct task_struct *child, struct user_pt_regs __user *data)
88{
89 struct pt_regs *regs;
90 int i;
91
92 if (!access_ok(VERIFY_WRITE, data, 38 * 8))
93 return -EIO;
94
95 regs = task_pt_regs(child);
96
97 for (i = 0; i < 32; i++)
98 __put_user((long)regs->regs[i], (__s64 __user *)&data->regs[i]);
99 __put_user((long)regs->lo, (__s64 __user *)&data->lo);
100 __put_user((long)regs->hi, (__s64 __user *)&data->hi);
101 __put_user((long)regs->cp0_epc, (__s64 __user *)&data->cp0_epc);
102 __put_user((long)regs->cp0_badvaddr, (__s64 __user *)&data->cp0_badvaddr);
103 __put_user((long)regs->cp0_status, (__s64 __user *)&data->cp0_status);
104 __put_user((long)regs->cp0_cause, (__s64 __user *)&data->cp0_cause);
105
106 return 0;
107}
108
109/*
110 * Write a general register set. As for PTRACE_GETREGS, we always use
111 * the 64-bit format. On a 32-bit kernel only the lower order half
112 * (according to endianness) will be used.
113 */
114int ptrace_setregs(struct task_struct *child, struct user_pt_regs __user *data)
115{
116 struct pt_regs *regs;
117 int i;
118
119 if (!access_ok(VERIFY_READ, data, 38 * 8))
120 return -EIO;
121
122 regs = task_pt_regs(child);
123
124 for (i = 0; i < 32; i++)
125 __get_user(regs->regs[i], (__s64 __user *)&data->regs[i]);
126 __get_user(regs->lo, (__s64 __user *)&data->lo);
127 __get_user(regs->hi, (__s64 __user *)&data->hi);
128 __get_user(regs->cp0_epc, (__s64 __user *)&data->cp0_epc);
129
130 /* badvaddr, status, and cause may not be written. */
131
132 return 0;
133}
134
135int ptrace_getfpregs(struct task_struct *child, __u32 __user *data)
136{
137 int i;
138
139 if (!access_ok(VERIFY_WRITE, data, 33 * 8))
140 return -EIO;
141
142 if (tsk_used_math(child)) {
143 union fpureg *fregs = get_fpu_regs(child);
144 for (i = 0; i < 32; i++)
145 __put_user(get_fpr64(&fregs[i], 0),
146 i + (__u64 __user *)data);
147 } else {
148 for (i = 0; i < 32; i++)
149 __put_user((__u64) -1, i + (__u64 __user *) data);
150 }
151
152 __put_user(child->thread.fpu.fcr31, data + 64);
153 __put_user(boot_cpu_data.fpu_id, data + 65);
154
155 return 0;
156}
157
158int ptrace_setfpregs(struct task_struct *child, __u32 __user *data)
159{
160 union fpureg *fregs;
161 u64 fpr_val;
162 u32 fcr31;
163 u32 value;
164 u32 mask;
165 int i;
166
167 if (!access_ok(VERIFY_READ, data, 33 * 8))
168 return -EIO;
169
170 init_fp_ctx(child);
171 fregs = get_fpu_regs(child);
172
173 for (i = 0; i < 32; i++) {
174 __get_user(fpr_val, i + (__u64 __user *)data);
175 set_fpr64(&fregs[i], 0, fpr_val);
176 }
177
178 __get_user(value, data + 64);
179 fcr31 = child->thread.fpu.fcr31;
180 mask = boot_cpu_data.fpu_msk31;
181 child->thread.fpu.fcr31 = (value & ~mask) | (fcr31 & mask);
182
183 /* FIR may not be written. */
184
185 return 0;
186}
187
188int ptrace_get_watch_regs(struct task_struct *child,
189 struct pt_watch_regs __user *addr)
190{
191 enum pt_watch_style style;
192 int i;
193
194 if (!cpu_has_watch || boot_cpu_data.watch_reg_use_cnt == 0)
195 return -EIO;
196 if (!access_ok(VERIFY_WRITE, addr, sizeof(struct pt_watch_regs)))
197 return -EIO;
198
199#ifdef CONFIG_32BIT
200 style = pt_watch_style_mips32;
201#define WATCH_STYLE mips32
202#else
203 style = pt_watch_style_mips64;
204#define WATCH_STYLE mips64
205#endif
206
207 __put_user(style, &addr->style);
208 __put_user(boot_cpu_data.watch_reg_use_cnt,
209 &addr->WATCH_STYLE.num_valid);
210 for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) {
211 __put_user(child->thread.watch.mips3264.watchlo[i],
212 &addr->WATCH_STYLE.watchlo[i]);
213 __put_user(child->thread.watch.mips3264.watchhi[i] & 0xfff,
214 &addr->WATCH_STYLE.watchhi[i]);
215 __put_user(boot_cpu_data.watch_reg_masks[i],
216 &addr->WATCH_STYLE.watch_masks[i]);
217 }
218 for (; i < 8; i++) {
219 __put_user(0, &addr->WATCH_STYLE.watchlo[i]);
220 __put_user(0, &addr->WATCH_STYLE.watchhi[i]);
221 __put_user(0, &addr->WATCH_STYLE.watch_masks[i]);
222 }
223
224 return 0;
225}
226
227int ptrace_set_watch_regs(struct task_struct *child,
228 struct pt_watch_regs __user *addr)
229{
230 int i;
231 int watch_active = 0;
232 unsigned long lt[NUM_WATCH_REGS];
233 u16 ht[NUM_WATCH_REGS];
234
235 if (!cpu_has_watch || boot_cpu_data.watch_reg_use_cnt == 0)
236 return -EIO;
237 if (!access_ok(VERIFY_READ, addr, sizeof(struct pt_watch_regs)))
238 return -EIO;
239 /* Check the values. */
240 for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) {
241 __get_user(lt[i], &addr->WATCH_STYLE.watchlo[i]);
242#ifdef CONFIG_32BIT
243 if (lt[i] & __UA_LIMIT)
244 return -EINVAL;
245#else
246 if (test_tsk_thread_flag(child, TIF_32BIT_ADDR)) {
247 if (lt[i] & 0xffffffff80000000UL)
248 return -EINVAL;
249 } else {
250 if (lt[i] & __UA_LIMIT)
251 return -EINVAL;
252 }
253#endif
254 __get_user(ht[i], &addr->WATCH_STYLE.watchhi[i]);
255 if (ht[i] & ~0xff8)
256 return -EINVAL;
257 }
258 /* Install them. */
259 for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) {
260 if (lt[i] & 7)
261 watch_active = 1;
262 child->thread.watch.mips3264.watchlo[i] = lt[i];
263 /* Set the G bit. */
264 child->thread.watch.mips3264.watchhi[i] = ht[i];
265 }
266
267 if (watch_active)
268 set_tsk_thread_flag(child, TIF_LOAD_WATCH);
269 else
270 clear_tsk_thread_flag(child, TIF_LOAD_WATCH);
271
272 return 0;
273}
274
275/* regset get/set implementations */
276
277#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
278
279static int gpr32_get(struct task_struct *target,
280 const struct user_regset *regset,
281 unsigned int pos, unsigned int count,
282 void *kbuf, void __user *ubuf)
283{
284 struct pt_regs *regs = task_pt_regs(target);
285 u32 uregs[ELF_NGREG] = {};
286 unsigned i;
287
288 for (i = MIPS32_EF_R1; i <= MIPS32_EF_R31; i++) {
289 /* k0/k1 are copied as zero. */
290 if (i == MIPS32_EF_R26 || i == MIPS32_EF_R27)
291 continue;
292
293 uregs[i] = regs->regs[i - MIPS32_EF_R0];
294 }
295
296 uregs[MIPS32_EF_LO] = regs->lo;
297 uregs[MIPS32_EF_HI] = regs->hi;
298 uregs[MIPS32_EF_CP0_EPC] = regs->cp0_epc;
299 uregs[MIPS32_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
300 uregs[MIPS32_EF_CP0_STATUS] = regs->cp0_status;
301 uregs[MIPS32_EF_CP0_CAUSE] = regs->cp0_cause;
302
303 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs, 0,
304 sizeof(uregs));
305}
306
307static int gpr32_set(struct task_struct *target,
308 const struct user_regset *regset,
309 unsigned int pos, unsigned int count,
310 const void *kbuf, const void __user *ubuf)
311{
312 struct pt_regs *regs = task_pt_regs(target);
313 u32 uregs[ELF_NGREG];
314 unsigned start, num_regs, i;
315 int err;
316
317 start = pos / sizeof(u32);
318 num_regs = count / sizeof(u32);
319
320 if (start + num_regs > ELF_NGREG)
321 return -EIO;
322
323 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
324 sizeof(uregs));
325 if (err)
326 return err;
327
328 for (i = start; i < num_regs; i++) {
329 /*
330 * Cast all values to signed here so that if this is a 64-bit
331 * kernel, the supplied 32-bit values will be sign extended.
332 */
333 switch (i) {
334 case MIPS32_EF_R1 ... MIPS32_EF_R25:
335 /* k0/k1 are ignored. */
336 case MIPS32_EF_R28 ... MIPS32_EF_R31:
337 regs->regs[i - MIPS32_EF_R0] = (s32)uregs[i];
338 break;
339 case MIPS32_EF_LO:
340 regs->lo = (s32)uregs[i];
341 break;
342 case MIPS32_EF_HI:
343 regs->hi = (s32)uregs[i];
344 break;
345 case MIPS32_EF_CP0_EPC:
346 regs->cp0_epc = (s32)uregs[i];
347 break;
348 }
349 }
350
351 return 0;
352}
353
354#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
355
356#ifdef CONFIG_64BIT
357
358static int gpr64_get(struct task_struct *target,
359 const struct user_regset *regset,
360 unsigned int pos, unsigned int count,
361 void *kbuf, void __user *ubuf)
362{
363 struct pt_regs *regs = task_pt_regs(target);
364 u64 uregs[ELF_NGREG] = {};
365 unsigned i;
366
367 for (i = MIPS64_EF_R1; i <= MIPS64_EF_R31; i++) {
368 /* k0/k1 are copied as zero. */
369 if (i == MIPS64_EF_R26 || i == MIPS64_EF_R27)
370 continue;
371
372 uregs[i] = regs->regs[i - MIPS64_EF_R0];
373 }
374
375 uregs[MIPS64_EF_LO] = regs->lo;
376 uregs[MIPS64_EF_HI] = regs->hi;
377 uregs[MIPS64_EF_CP0_EPC] = regs->cp0_epc;
378 uregs[MIPS64_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
379 uregs[MIPS64_EF_CP0_STATUS] = regs->cp0_status;
380 uregs[MIPS64_EF_CP0_CAUSE] = regs->cp0_cause;
381
382 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs, 0,
383 sizeof(uregs));
384}
385
386static int gpr64_set(struct task_struct *target,
387 const struct user_regset *regset,
388 unsigned int pos, unsigned int count,
389 const void *kbuf, const void __user *ubuf)
390{
391 struct pt_regs *regs = task_pt_regs(target);
392 u64 uregs[ELF_NGREG];
393 unsigned start, num_regs, i;
394 int err;
395
396 start = pos / sizeof(u64);
397 num_regs = count / sizeof(u64);
398
399 if (start + num_regs > ELF_NGREG)
400 return -EIO;
401
402 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
403 sizeof(uregs));
404 if (err)
405 return err;
406
407 for (i = start; i < num_regs; i++) {
408 switch (i) {
409 case MIPS64_EF_R1 ... MIPS64_EF_R25:
410 /* k0/k1 are ignored. */
411 case MIPS64_EF_R28 ... MIPS64_EF_R31:
412 regs->regs[i - MIPS64_EF_R0] = uregs[i];
413 break;
414 case MIPS64_EF_LO:
415 regs->lo = uregs[i];
416 break;
417 case MIPS64_EF_HI:
418 regs->hi = uregs[i];
419 break;
420 case MIPS64_EF_CP0_EPC:
421 regs->cp0_epc = uregs[i];
422 break;
423 }
424 }
425
426 return 0;
427}
428
429#endif /* CONFIG_64BIT */
430
431static int fpr_get(struct task_struct *target,
432 const struct user_regset *regset,
433 unsigned int pos, unsigned int count,
434 void *kbuf, void __user *ubuf)
435{
436 unsigned i;
437 int err;
438 u64 fpr_val;
439
440 /* XXX fcr31 */
441
442 if (sizeof(target->thread.fpu.fpr[i]) == sizeof(elf_fpreg_t))
443 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
444 &target->thread.fpu,
445 0, sizeof(elf_fpregset_t));
446
447 for (i = 0; i < NUM_FPU_REGS; i++) {
448 fpr_val = get_fpr64(&target->thread.fpu.fpr[i], 0);
449 err = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
450 &fpr_val, i * sizeof(elf_fpreg_t),
451 (i + 1) * sizeof(elf_fpreg_t));
452 if (err)
453 return err;
454 }
455
456 return 0;
457}
458
459static int fpr_set(struct task_struct *target,
460 const struct user_regset *regset,
461 unsigned int pos, unsigned int count,
462 const void *kbuf, const void __user *ubuf)
463{
464 unsigned i;
465 int err;
466 u64 fpr_val;
467
468 /* XXX fcr31 */
469
470 init_fp_ctx(target);
471
472 if (sizeof(target->thread.fpu.fpr[i]) == sizeof(elf_fpreg_t))
473 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
474 &target->thread.fpu,
475 0, sizeof(elf_fpregset_t));
476
477 for (i = 0; i < NUM_FPU_REGS; i++) {
478 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
479 &fpr_val, i * sizeof(elf_fpreg_t),
480 (i + 1) * sizeof(elf_fpreg_t));
481 if (err)
482 return err;
483 set_fpr64(&target->thread.fpu.fpr[i], 0, fpr_val);
484 }
485
486 return 0;
487}
488
489enum mips_regset {
490 REGSET_GPR,
491 REGSET_FPR,
492};
493
494struct pt_regs_offset {
495 const char *name;
496 int offset;
497};
498
499#define REG_OFFSET_NAME(reg, r) { \
500 .name = #reg, \
501 .offset = offsetof(struct pt_regs, r) \
502}
503
504#define REG_OFFSET_END { \
505 .name = NULL, \
506 .offset = 0 \
507}
508
509static const struct pt_regs_offset regoffset_table[] = {
510 REG_OFFSET_NAME(r0, regs[0]),
511 REG_OFFSET_NAME(r1, regs[1]),
512 REG_OFFSET_NAME(r2, regs[2]),
513 REG_OFFSET_NAME(r3, regs[3]),
514 REG_OFFSET_NAME(r4, regs[4]),
515 REG_OFFSET_NAME(r5, regs[5]),
516 REG_OFFSET_NAME(r6, regs[6]),
517 REG_OFFSET_NAME(r7, regs[7]),
518 REG_OFFSET_NAME(r8, regs[8]),
519 REG_OFFSET_NAME(r9, regs[9]),
520 REG_OFFSET_NAME(r10, regs[10]),
521 REG_OFFSET_NAME(r11, regs[11]),
522 REG_OFFSET_NAME(r12, regs[12]),
523 REG_OFFSET_NAME(r13, regs[13]),
524 REG_OFFSET_NAME(r14, regs[14]),
525 REG_OFFSET_NAME(r15, regs[15]),
526 REG_OFFSET_NAME(r16, regs[16]),
527 REG_OFFSET_NAME(r17, regs[17]),
528 REG_OFFSET_NAME(r18, regs[18]),
529 REG_OFFSET_NAME(r19, regs[19]),
530 REG_OFFSET_NAME(r20, regs[20]),
531 REG_OFFSET_NAME(r21, regs[21]),
532 REG_OFFSET_NAME(r22, regs[22]),
533 REG_OFFSET_NAME(r23, regs[23]),
534 REG_OFFSET_NAME(r24, regs[24]),
535 REG_OFFSET_NAME(r25, regs[25]),
536 REG_OFFSET_NAME(r26, regs[26]),
537 REG_OFFSET_NAME(r27, regs[27]),
538 REG_OFFSET_NAME(r28, regs[28]),
539 REG_OFFSET_NAME(r29, regs[29]),
540 REG_OFFSET_NAME(r30, regs[30]),
541 REG_OFFSET_NAME(r31, regs[31]),
542 REG_OFFSET_NAME(c0_status, cp0_status),
543 REG_OFFSET_NAME(hi, hi),
544 REG_OFFSET_NAME(lo, lo),
545#ifdef CONFIG_CPU_HAS_SMARTMIPS
546 REG_OFFSET_NAME(acx, acx),
547#endif
548 REG_OFFSET_NAME(c0_badvaddr, cp0_badvaddr),
549 REG_OFFSET_NAME(c0_cause, cp0_cause),
550 REG_OFFSET_NAME(c0_epc, cp0_epc),
551#ifdef CONFIG_CPU_CAVIUM_OCTEON
552 REG_OFFSET_NAME(mpl0, mpl[0]),
553 REG_OFFSET_NAME(mpl1, mpl[1]),
554 REG_OFFSET_NAME(mpl2, mpl[2]),
555 REG_OFFSET_NAME(mtp0, mtp[0]),
556 REG_OFFSET_NAME(mtp1, mtp[1]),
557 REG_OFFSET_NAME(mtp2, mtp[2]),
558#endif
559 REG_OFFSET_END,
560};
561
562/**
563 * regs_query_register_offset() - query register offset from its name
564 * @name: the name of a register
565 *
566 * regs_query_register_offset() returns the offset of a register in struct
567 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
568 */
569int regs_query_register_offset(const char *name)
570{
571 const struct pt_regs_offset *roff;
572 for (roff = regoffset_table; roff->name != NULL; roff++)
573 if (!strcmp(roff->name, name))
574 return roff->offset;
575 return -EINVAL;
576}
577
578#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
579
580static const struct user_regset mips_regsets[] = {
581 [REGSET_GPR] = {
582 .core_note_type = NT_PRSTATUS,
583 .n = ELF_NGREG,
584 .size = sizeof(unsigned int),
585 .align = sizeof(unsigned int),
586 .get = gpr32_get,
587 .set = gpr32_set,
588 },
589 [REGSET_FPR] = {
590 .core_note_type = NT_PRFPREG,
591 .n = ELF_NFPREG,
592 .size = sizeof(elf_fpreg_t),
593 .align = sizeof(elf_fpreg_t),
594 .get = fpr_get,
595 .set = fpr_set,
596 },
597};
598
599static const struct user_regset_view user_mips_view = {
600 .name = "mips",
601 .e_machine = ELF_ARCH,
602 .ei_osabi = ELF_OSABI,
603 .regsets = mips_regsets,
604 .n = ARRAY_SIZE(mips_regsets),
605};
606
607#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
608
609#ifdef CONFIG_64BIT
610
611static const struct user_regset mips64_regsets[] = {
612 [REGSET_GPR] = {
613 .core_note_type = NT_PRSTATUS,
614 .n = ELF_NGREG,
615 .size = sizeof(unsigned long),
616 .align = sizeof(unsigned long),
617 .get = gpr64_get,
618 .set = gpr64_set,
619 },
620 [REGSET_FPR] = {
621 .core_note_type = NT_PRFPREG,
622 .n = ELF_NFPREG,
623 .size = sizeof(elf_fpreg_t),
624 .align = sizeof(elf_fpreg_t),
625 .get = fpr_get,
626 .set = fpr_set,
627 },
628};
629
630static const struct user_regset_view user_mips64_view = {
631 .name = "mips64",
632 .e_machine = ELF_ARCH,
633 .ei_osabi = ELF_OSABI,
634 .regsets = mips64_regsets,
635 .n = ARRAY_SIZE(mips64_regsets),
636};
637
638#endif /* CONFIG_64BIT */
639
640const struct user_regset_view *task_user_regset_view(struct task_struct *task)
641{
642#ifdef CONFIG_32BIT
643 return &user_mips_view;
644#else
645#ifdef CONFIG_MIPS32_O32
646 if (test_tsk_thread_flag(task, TIF_32BIT_REGS))
647 return &user_mips_view;
648#endif
649 return &user_mips64_view;
650#endif
651}
652
653long arch_ptrace(struct task_struct *child, long request,
654 unsigned long addr, unsigned long data)
655{
656 int ret;
657 void __user *addrp = (void __user *) addr;
658 void __user *datavp = (void __user *) data;
659 unsigned long __user *datalp = (void __user *) data;
660
661 switch (request) {
662 /* when I and D space are separate, these will need to be fixed. */
663 case PTRACE_PEEKTEXT: /* read word at location addr. */
664 case PTRACE_PEEKDATA:
665 ret = generic_ptrace_peekdata(child, addr, data);
666 break;
667
668 /* Read the word at location addr in the USER area. */
669 case PTRACE_PEEKUSR: {
670 struct pt_regs *regs;
671 union fpureg *fregs;
672 unsigned long tmp = 0;
673
674 regs = task_pt_regs(child);
675 ret = 0; /* Default return value. */
676
677 switch (addr) {
678 case 0 ... 31:
679 tmp = regs->regs[addr];
680 break;
681 case FPR_BASE ... FPR_BASE + 31:
682 if (!tsk_used_math(child)) {
683 /* FP not yet used */
684 tmp = -1;
685 break;
686 }
687 fregs = get_fpu_regs(child);
688
689#ifdef CONFIG_32BIT
690 if (test_thread_flag(TIF_32BIT_FPREGS)) {
691 /*
692 * The odd registers are actually the high
693 * order bits of the values stored in the even
694 * registers - unless we're using r2k_switch.S.
695 */
696 tmp = get_fpr32(&fregs[(addr & ~1) - FPR_BASE],
697 addr & 1);
698 break;
699 }
700#endif
701 tmp = get_fpr32(&fregs[addr - FPR_BASE], 0);
702 break;
703 case PC:
704 tmp = regs->cp0_epc;
705 break;
706 case CAUSE:
707 tmp = regs->cp0_cause;
708 break;
709 case BADVADDR:
710 tmp = regs->cp0_badvaddr;
711 break;
712 case MMHI:
713 tmp = regs->hi;
714 break;
715 case MMLO:
716 tmp = regs->lo;
717 break;
718#ifdef CONFIG_CPU_HAS_SMARTMIPS
719 case ACX:
720 tmp = regs->acx;
721 break;
722#endif
723 case FPC_CSR:
724 tmp = child->thread.fpu.fcr31;
725 break;
726 case FPC_EIR:
727 /* implementation / version register */
728 tmp = boot_cpu_data.fpu_id;
729 break;
730 case DSP_BASE ... DSP_BASE + 5: {
731 dspreg_t *dregs;
732
733 if (!cpu_has_dsp) {
734 tmp = 0;
735 ret = -EIO;
736 goto out;
737 }
738 dregs = __get_dsp_regs(child);
739 tmp = (unsigned long) (dregs[addr - DSP_BASE]);
740 break;
741 }
742 case DSP_CONTROL:
743 if (!cpu_has_dsp) {
744 tmp = 0;
745 ret = -EIO;
746 goto out;
747 }
748 tmp = child->thread.dsp.dspcontrol;
749 break;
750 default:
751 tmp = 0;
752 ret = -EIO;
753 goto out;
754 }
755 ret = put_user(tmp, datalp);
756 break;
757 }
758
759 /* when I and D space are separate, this will have to be fixed. */
760 case PTRACE_POKETEXT: /* write the word at location addr. */
761 case PTRACE_POKEDATA:
762 ret = generic_ptrace_pokedata(child, addr, data);
763 break;
764
765 case PTRACE_POKEUSR: {
766 struct pt_regs *regs;
767 ret = 0;
768 regs = task_pt_regs(child);
769
770 switch (addr) {
771 case 0 ... 31:
772 regs->regs[addr] = data;
773 break;
774 case FPR_BASE ... FPR_BASE + 31: {
775 union fpureg *fregs = get_fpu_regs(child);
776
777 init_fp_ctx(child);
778#ifdef CONFIG_32BIT
779 if (test_thread_flag(TIF_32BIT_FPREGS)) {
780 /*
781 * The odd registers are actually the high
782 * order bits of the values stored in the even
783 * registers - unless we're using r2k_switch.S.
784 */
785 set_fpr32(&fregs[(addr & ~1) - FPR_BASE],
786 addr & 1, data);
787 break;
788 }
789#endif
790 set_fpr64(&fregs[addr - FPR_BASE], 0, data);
791 break;
792 }
793 case PC:
794 regs->cp0_epc = data;
795 break;
796 case MMHI:
797 regs->hi = data;
798 break;
799 case MMLO:
800 regs->lo = data;
801 break;
802#ifdef CONFIG_CPU_HAS_SMARTMIPS
803 case ACX:
804 regs->acx = data;
805 break;
806#endif
807 case FPC_CSR:
808 child->thread.fpu.fcr31 = data & ~FPU_CSR_ALL_X;
809 break;
810 case DSP_BASE ... DSP_BASE + 5: {
811 dspreg_t *dregs;
812
813 if (!cpu_has_dsp) {
814 ret = -EIO;
815 break;
816 }
817
818 dregs = __get_dsp_regs(child);
819 dregs[addr - DSP_BASE] = data;
820 break;
821 }
822 case DSP_CONTROL:
823 if (!cpu_has_dsp) {
824 ret = -EIO;
825 break;
826 }
827 child->thread.dsp.dspcontrol = data;
828 break;
829 default:
830 /* The rest are not allowed. */
831 ret = -EIO;
832 break;
833 }
834 break;
835 }
836
837 case PTRACE_GETREGS:
838 ret = ptrace_getregs(child, datavp);
839 break;
840
841 case PTRACE_SETREGS:
842 ret = ptrace_setregs(child, datavp);
843 break;
844
845 case PTRACE_GETFPREGS:
846 ret = ptrace_getfpregs(child, datavp);
847 break;
848
849 case PTRACE_SETFPREGS:
850 ret = ptrace_setfpregs(child, datavp);
851 break;
852
853 case PTRACE_GET_THREAD_AREA:
854 ret = put_user(task_thread_info(child)->tp_value, datalp);
855 break;
856
857 case PTRACE_GET_WATCH_REGS:
858 ret = ptrace_get_watch_regs(child, addrp);
859 break;
860
861 case PTRACE_SET_WATCH_REGS:
862 ret = ptrace_set_watch_regs(child, addrp);
863 break;
864
865 default:
866 ret = ptrace_request(child, request, addr, data);
867 break;
868 }
869 out:
870 return ret;
871}
872
873/*
874 * Notification of system call entry/exit
875 * - triggered by current->work.syscall_trace
876 */
877asmlinkage long syscall_trace_enter(struct pt_regs *regs, long syscall)
878{
879 long ret = 0;
880 user_exit();
881
882 current_thread_info()->syscall = syscall;
883
884 if (secure_computing() == -1)
885 return -1;
886
887 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
888 tracehook_report_syscall_entry(regs))
889 ret = -1;
890
891 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
892 trace_sys_enter(regs, regs->regs[2]);
893
894 audit_syscall_entry(syscall, regs->regs[4], regs->regs[5],
895 regs->regs[6], regs->regs[7]);
896 return syscall;
897}
898
899/*
900 * Notification of system call entry/exit
901 * - triggered by current->work.syscall_trace
902 */
903asmlinkage void syscall_trace_leave(struct pt_regs *regs)
904{
905 /*
906 * We may come here right after calling schedule_user()
907 * or do_notify_resume(), in which case we can be in RCU
908 * user mode.
909 */
910 user_exit();
911
912 audit_syscall_exit(regs);
913
914 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
915 trace_sys_exit(regs, regs->regs[2]);
916
917 if (test_thread_flag(TIF_SYSCALL_TRACE))
918 tracehook_report_syscall_exit(regs, 0);
919
920 user_enter();
921}