Loading...
1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3/*
4 * Common eBPF ELF object loading operations.
5 *
6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8 * Copyright (C) 2015 Huawei Inc.
9 * Copyright (C) 2017 Nicira, Inc.
10 * Copyright (C) 2019 Isovalent, Inc.
11 */
12
13#ifndef _GNU_SOURCE
14#define _GNU_SOURCE
15#endif
16#include <stdlib.h>
17#include <stdio.h>
18#include <stdarg.h>
19#include <libgen.h>
20#include <inttypes.h>
21#include <limits.h>
22#include <string.h>
23#include <unistd.h>
24#include <endian.h>
25#include <fcntl.h>
26#include <errno.h>
27#include <ctype.h>
28#include <asm/unistd.h>
29#include <linux/err.h>
30#include <linux/kernel.h>
31#include <linux/bpf.h>
32#include <linux/btf.h>
33#include <linux/filter.h>
34#include <linux/limits.h>
35#include <linux/perf_event.h>
36#include <linux/ring_buffer.h>
37#include <linux/version.h>
38#include <sys/epoll.h>
39#include <sys/ioctl.h>
40#include <sys/mman.h>
41#include <sys/stat.h>
42#include <sys/types.h>
43#include <sys/vfs.h>
44#include <sys/utsname.h>
45#include <sys/resource.h>
46#include <libelf.h>
47#include <gelf.h>
48#include <zlib.h>
49
50#include "libbpf.h"
51#include "bpf.h"
52#include "btf.h"
53#include "str_error.h"
54#include "libbpf_internal.h"
55#include "hashmap.h"
56#include "bpf_gen_internal.h"
57
58#ifndef BPF_FS_MAGIC
59#define BPF_FS_MAGIC 0xcafe4a11
60#endif
61
62#define BPF_INSN_SZ (sizeof(struct bpf_insn))
63
64/* vsprintf() in __base_pr() uses nonliteral format string. It may break
65 * compilation if user enables corresponding warning. Disable it explicitly.
66 */
67#pragma GCC diagnostic ignored "-Wformat-nonliteral"
68
69#define __printf(a, b) __attribute__((format(printf, a, b)))
70
71static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
72static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
73
74static const char * const attach_type_name[] = {
75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress",
76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress",
77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create",
78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release",
79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops",
80 [BPF_CGROUP_DEVICE] = "cgroup_device",
81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind",
82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind",
83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect",
84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect",
85 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind",
86 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind",
87 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername",
88 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername",
89 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname",
90 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname",
91 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg",
92 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg",
93 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl",
94 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg",
95 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg",
96 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt",
97 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt",
98 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser",
99 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict",
100 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict",
101 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict",
102 [BPF_LIRC_MODE2] = "lirc_mode2",
103 [BPF_FLOW_DISSECTOR] = "flow_dissector",
104 [BPF_TRACE_RAW_TP] = "trace_raw_tp",
105 [BPF_TRACE_FENTRY] = "trace_fentry",
106 [BPF_TRACE_FEXIT] = "trace_fexit",
107 [BPF_MODIFY_RETURN] = "modify_return",
108 [BPF_LSM_MAC] = "lsm_mac",
109 [BPF_LSM_CGROUP] = "lsm_cgroup",
110 [BPF_SK_LOOKUP] = "sk_lookup",
111 [BPF_TRACE_ITER] = "trace_iter",
112 [BPF_XDP_DEVMAP] = "xdp_devmap",
113 [BPF_XDP_CPUMAP] = "xdp_cpumap",
114 [BPF_XDP] = "xdp",
115 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select",
116 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate",
117 [BPF_PERF_EVENT] = "perf_event",
118 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi",
119};
120
121static const char * const link_type_name[] = {
122 [BPF_LINK_TYPE_UNSPEC] = "unspec",
123 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
124 [BPF_LINK_TYPE_TRACING] = "tracing",
125 [BPF_LINK_TYPE_CGROUP] = "cgroup",
126 [BPF_LINK_TYPE_ITER] = "iter",
127 [BPF_LINK_TYPE_NETNS] = "netns",
128 [BPF_LINK_TYPE_XDP] = "xdp",
129 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event",
130 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi",
131 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops",
132};
133
134static const char * const map_type_name[] = {
135 [BPF_MAP_TYPE_UNSPEC] = "unspec",
136 [BPF_MAP_TYPE_HASH] = "hash",
137 [BPF_MAP_TYPE_ARRAY] = "array",
138 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array",
139 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array",
140 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash",
141 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array",
142 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace",
143 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array",
144 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash",
145 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash",
146 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie",
147 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps",
148 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps",
149 [BPF_MAP_TYPE_DEVMAP] = "devmap",
150 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash",
151 [BPF_MAP_TYPE_SOCKMAP] = "sockmap",
152 [BPF_MAP_TYPE_CPUMAP] = "cpumap",
153 [BPF_MAP_TYPE_XSKMAP] = "xskmap",
154 [BPF_MAP_TYPE_SOCKHASH] = "sockhash",
155 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage",
156 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray",
157 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage",
158 [BPF_MAP_TYPE_QUEUE] = "queue",
159 [BPF_MAP_TYPE_STACK] = "stack",
160 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage",
161 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops",
162 [BPF_MAP_TYPE_RINGBUF] = "ringbuf",
163 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage",
164 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage",
165 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter",
166 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf",
167 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage",
168};
169
170static const char * const prog_type_name[] = {
171 [BPF_PROG_TYPE_UNSPEC] = "unspec",
172 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter",
173 [BPF_PROG_TYPE_KPROBE] = "kprobe",
174 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls",
175 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act",
176 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint",
177 [BPF_PROG_TYPE_XDP] = "xdp",
178 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event",
179 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb",
180 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock",
181 [BPF_PROG_TYPE_LWT_IN] = "lwt_in",
182 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out",
183 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit",
184 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops",
185 [BPF_PROG_TYPE_SK_SKB] = "sk_skb",
186 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device",
187 [BPF_PROG_TYPE_SK_MSG] = "sk_msg",
188 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
189 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr",
190 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local",
191 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2",
192 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport",
193 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector",
194 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl",
195 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable",
196 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt",
197 [BPF_PROG_TYPE_TRACING] = "tracing",
198 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops",
199 [BPF_PROG_TYPE_EXT] = "ext",
200 [BPF_PROG_TYPE_LSM] = "lsm",
201 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup",
202 [BPF_PROG_TYPE_SYSCALL] = "syscall",
203};
204
205static int __base_pr(enum libbpf_print_level level, const char *format,
206 va_list args)
207{
208 if (level == LIBBPF_DEBUG)
209 return 0;
210
211 return vfprintf(stderr, format, args);
212}
213
214static libbpf_print_fn_t __libbpf_pr = __base_pr;
215
216libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
217{
218 libbpf_print_fn_t old_print_fn = __libbpf_pr;
219
220 __libbpf_pr = fn;
221 return old_print_fn;
222}
223
224__printf(2, 3)
225void libbpf_print(enum libbpf_print_level level, const char *format, ...)
226{
227 va_list args;
228 int old_errno;
229
230 if (!__libbpf_pr)
231 return;
232
233 old_errno = errno;
234
235 va_start(args, format);
236 __libbpf_pr(level, format, args);
237 va_end(args);
238
239 errno = old_errno;
240}
241
242static void pr_perm_msg(int err)
243{
244 struct rlimit limit;
245 char buf[100];
246
247 if (err != -EPERM || geteuid() != 0)
248 return;
249
250 err = getrlimit(RLIMIT_MEMLOCK, &limit);
251 if (err)
252 return;
253
254 if (limit.rlim_cur == RLIM_INFINITY)
255 return;
256
257 if (limit.rlim_cur < 1024)
258 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
259 else if (limit.rlim_cur < 1024*1024)
260 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
261 else
262 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
263
264 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
265 buf);
266}
267
268#define STRERR_BUFSIZE 128
269
270/* Copied from tools/perf/util/util.h */
271#ifndef zfree
272# define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
273#endif
274
275#ifndef zclose
276# define zclose(fd) ({ \
277 int ___err = 0; \
278 if ((fd) >= 0) \
279 ___err = close((fd)); \
280 fd = -1; \
281 ___err; })
282#endif
283
284static inline __u64 ptr_to_u64(const void *ptr)
285{
286 return (__u64) (unsigned long) ptr;
287}
288
289int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
290{
291 /* as of v1.0 libbpf_set_strict_mode() is a no-op */
292 return 0;
293}
294
295__u32 libbpf_major_version(void)
296{
297 return LIBBPF_MAJOR_VERSION;
298}
299
300__u32 libbpf_minor_version(void)
301{
302 return LIBBPF_MINOR_VERSION;
303}
304
305const char *libbpf_version_string(void)
306{
307#define __S(X) #X
308#define _S(X) __S(X)
309 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
310#undef _S
311#undef __S
312}
313
314enum reloc_type {
315 RELO_LD64,
316 RELO_CALL,
317 RELO_DATA,
318 RELO_EXTERN_VAR,
319 RELO_EXTERN_FUNC,
320 RELO_SUBPROG_ADDR,
321 RELO_CORE,
322};
323
324struct reloc_desc {
325 enum reloc_type type;
326 int insn_idx;
327 union {
328 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
329 struct {
330 int map_idx;
331 int sym_off;
332 };
333 };
334};
335
336/* stored as sec_def->cookie for all libbpf-supported SEC()s */
337enum sec_def_flags {
338 SEC_NONE = 0,
339 /* expected_attach_type is optional, if kernel doesn't support that */
340 SEC_EXP_ATTACH_OPT = 1,
341 /* legacy, only used by libbpf_get_type_names() and
342 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
343 * This used to be associated with cgroup (and few other) BPF programs
344 * that were attachable through BPF_PROG_ATTACH command. Pretty
345 * meaningless nowadays, though.
346 */
347 SEC_ATTACHABLE = 2,
348 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
349 /* attachment target is specified through BTF ID in either kernel or
350 * other BPF program's BTF object
351 */
352 SEC_ATTACH_BTF = 4,
353 /* BPF program type allows sleeping/blocking in kernel */
354 SEC_SLEEPABLE = 8,
355 /* BPF program support non-linear XDP buffer */
356 SEC_XDP_FRAGS = 16,
357};
358
359struct bpf_sec_def {
360 char *sec;
361 enum bpf_prog_type prog_type;
362 enum bpf_attach_type expected_attach_type;
363 long cookie;
364 int handler_id;
365
366 libbpf_prog_setup_fn_t prog_setup_fn;
367 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
368 libbpf_prog_attach_fn_t prog_attach_fn;
369};
370
371/*
372 * bpf_prog should be a better name but it has been used in
373 * linux/filter.h.
374 */
375struct bpf_program {
376 char *name;
377 char *sec_name;
378 size_t sec_idx;
379 const struct bpf_sec_def *sec_def;
380 /* this program's instruction offset (in number of instructions)
381 * within its containing ELF section
382 */
383 size_t sec_insn_off;
384 /* number of original instructions in ELF section belonging to this
385 * program, not taking into account subprogram instructions possible
386 * appended later during relocation
387 */
388 size_t sec_insn_cnt;
389 /* Offset (in number of instructions) of the start of instruction
390 * belonging to this BPF program within its containing main BPF
391 * program. For the entry-point (main) BPF program, this is always
392 * zero. For a sub-program, this gets reset before each of main BPF
393 * programs are processed and relocated and is used to determined
394 * whether sub-program was already appended to the main program, and
395 * if yes, at which instruction offset.
396 */
397 size_t sub_insn_off;
398
399 /* instructions that belong to BPF program; insns[0] is located at
400 * sec_insn_off instruction within its ELF section in ELF file, so
401 * when mapping ELF file instruction index to the local instruction,
402 * one needs to subtract sec_insn_off; and vice versa.
403 */
404 struct bpf_insn *insns;
405 /* actual number of instruction in this BPF program's image; for
406 * entry-point BPF programs this includes the size of main program
407 * itself plus all the used sub-programs, appended at the end
408 */
409 size_t insns_cnt;
410
411 struct reloc_desc *reloc_desc;
412 int nr_reloc;
413
414 /* BPF verifier log settings */
415 char *log_buf;
416 size_t log_size;
417 __u32 log_level;
418
419 struct bpf_object *obj;
420
421 int fd;
422 bool autoload;
423 bool autoattach;
424 bool mark_btf_static;
425 enum bpf_prog_type type;
426 enum bpf_attach_type expected_attach_type;
427
428 int prog_ifindex;
429 __u32 attach_btf_obj_fd;
430 __u32 attach_btf_id;
431 __u32 attach_prog_fd;
432
433 void *func_info;
434 __u32 func_info_rec_size;
435 __u32 func_info_cnt;
436
437 void *line_info;
438 __u32 line_info_rec_size;
439 __u32 line_info_cnt;
440 __u32 prog_flags;
441};
442
443struct bpf_struct_ops {
444 const char *tname;
445 const struct btf_type *type;
446 struct bpf_program **progs;
447 __u32 *kern_func_off;
448 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
449 void *data;
450 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
451 * btf_vmlinux's format.
452 * struct bpf_struct_ops_tcp_congestion_ops {
453 * [... some other kernel fields ...]
454 * struct tcp_congestion_ops data;
455 * }
456 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
457 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
458 * from "data".
459 */
460 void *kern_vdata;
461 __u32 type_id;
462};
463
464#define DATA_SEC ".data"
465#define BSS_SEC ".bss"
466#define RODATA_SEC ".rodata"
467#define KCONFIG_SEC ".kconfig"
468#define KSYMS_SEC ".ksyms"
469#define STRUCT_OPS_SEC ".struct_ops"
470
471enum libbpf_map_type {
472 LIBBPF_MAP_UNSPEC,
473 LIBBPF_MAP_DATA,
474 LIBBPF_MAP_BSS,
475 LIBBPF_MAP_RODATA,
476 LIBBPF_MAP_KCONFIG,
477};
478
479struct bpf_map_def {
480 unsigned int type;
481 unsigned int key_size;
482 unsigned int value_size;
483 unsigned int max_entries;
484 unsigned int map_flags;
485};
486
487struct bpf_map {
488 struct bpf_object *obj;
489 char *name;
490 /* real_name is defined for special internal maps (.rodata*,
491 * .data*, .bss, .kconfig) and preserves their original ELF section
492 * name. This is important to be able to find corresponding BTF
493 * DATASEC information.
494 */
495 char *real_name;
496 int fd;
497 int sec_idx;
498 size_t sec_offset;
499 int map_ifindex;
500 int inner_map_fd;
501 struct bpf_map_def def;
502 __u32 numa_node;
503 __u32 btf_var_idx;
504 __u32 btf_key_type_id;
505 __u32 btf_value_type_id;
506 __u32 btf_vmlinux_value_type_id;
507 enum libbpf_map_type libbpf_type;
508 void *mmaped;
509 struct bpf_struct_ops *st_ops;
510 struct bpf_map *inner_map;
511 void **init_slots;
512 int init_slots_sz;
513 char *pin_path;
514 bool pinned;
515 bool reused;
516 bool autocreate;
517 __u64 map_extra;
518};
519
520enum extern_type {
521 EXT_UNKNOWN,
522 EXT_KCFG,
523 EXT_KSYM,
524};
525
526enum kcfg_type {
527 KCFG_UNKNOWN,
528 KCFG_CHAR,
529 KCFG_BOOL,
530 KCFG_INT,
531 KCFG_TRISTATE,
532 KCFG_CHAR_ARR,
533};
534
535struct extern_desc {
536 enum extern_type type;
537 int sym_idx;
538 int btf_id;
539 int sec_btf_id;
540 const char *name;
541 bool is_set;
542 bool is_weak;
543 union {
544 struct {
545 enum kcfg_type type;
546 int sz;
547 int align;
548 int data_off;
549 bool is_signed;
550 } kcfg;
551 struct {
552 unsigned long long addr;
553
554 /* target btf_id of the corresponding kernel var. */
555 int kernel_btf_obj_fd;
556 int kernel_btf_id;
557
558 /* local btf_id of the ksym extern's type. */
559 __u32 type_id;
560 /* BTF fd index to be patched in for insn->off, this is
561 * 0 for vmlinux BTF, index in obj->fd_array for module
562 * BTF
563 */
564 __s16 btf_fd_idx;
565 } ksym;
566 };
567};
568
569struct module_btf {
570 struct btf *btf;
571 char *name;
572 __u32 id;
573 int fd;
574 int fd_array_idx;
575};
576
577enum sec_type {
578 SEC_UNUSED = 0,
579 SEC_RELO,
580 SEC_BSS,
581 SEC_DATA,
582 SEC_RODATA,
583};
584
585struct elf_sec_desc {
586 enum sec_type sec_type;
587 Elf64_Shdr *shdr;
588 Elf_Data *data;
589};
590
591struct elf_state {
592 int fd;
593 const void *obj_buf;
594 size_t obj_buf_sz;
595 Elf *elf;
596 Elf64_Ehdr *ehdr;
597 Elf_Data *symbols;
598 Elf_Data *st_ops_data;
599 size_t shstrndx; /* section index for section name strings */
600 size_t strtabidx;
601 struct elf_sec_desc *secs;
602 size_t sec_cnt;
603 int btf_maps_shndx;
604 __u32 btf_maps_sec_btf_id;
605 int text_shndx;
606 int symbols_shndx;
607 int st_ops_shndx;
608};
609
610struct usdt_manager;
611
612struct bpf_object {
613 char name[BPF_OBJ_NAME_LEN];
614 char license[64];
615 __u32 kern_version;
616
617 struct bpf_program *programs;
618 size_t nr_programs;
619 struct bpf_map *maps;
620 size_t nr_maps;
621 size_t maps_cap;
622
623 char *kconfig;
624 struct extern_desc *externs;
625 int nr_extern;
626 int kconfig_map_idx;
627
628 bool loaded;
629 bool has_subcalls;
630 bool has_rodata;
631
632 struct bpf_gen *gen_loader;
633
634 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */
635 struct elf_state efile;
636
637 struct btf *btf;
638 struct btf_ext *btf_ext;
639
640 /* Parse and load BTF vmlinux if any of the programs in the object need
641 * it at load time.
642 */
643 struct btf *btf_vmlinux;
644 /* Path to the custom BTF to be used for BPF CO-RE relocations as an
645 * override for vmlinux BTF.
646 */
647 char *btf_custom_path;
648 /* vmlinux BTF override for CO-RE relocations */
649 struct btf *btf_vmlinux_override;
650 /* Lazily initialized kernel module BTFs */
651 struct module_btf *btf_modules;
652 bool btf_modules_loaded;
653 size_t btf_module_cnt;
654 size_t btf_module_cap;
655
656 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
657 char *log_buf;
658 size_t log_size;
659 __u32 log_level;
660
661 int *fd_array;
662 size_t fd_array_cap;
663 size_t fd_array_cnt;
664
665 struct usdt_manager *usdt_man;
666
667 char path[];
668};
669
670static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
671static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
672static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
673static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
674static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
675static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
676static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
677static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
678static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
679
680void bpf_program__unload(struct bpf_program *prog)
681{
682 if (!prog)
683 return;
684
685 zclose(prog->fd);
686
687 zfree(&prog->func_info);
688 zfree(&prog->line_info);
689}
690
691static void bpf_program__exit(struct bpf_program *prog)
692{
693 if (!prog)
694 return;
695
696 bpf_program__unload(prog);
697 zfree(&prog->name);
698 zfree(&prog->sec_name);
699 zfree(&prog->insns);
700 zfree(&prog->reloc_desc);
701
702 prog->nr_reloc = 0;
703 prog->insns_cnt = 0;
704 prog->sec_idx = -1;
705}
706
707static bool insn_is_subprog_call(const struct bpf_insn *insn)
708{
709 return BPF_CLASS(insn->code) == BPF_JMP &&
710 BPF_OP(insn->code) == BPF_CALL &&
711 BPF_SRC(insn->code) == BPF_K &&
712 insn->src_reg == BPF_PSEUDO_CALL &&
713 insn->dst_reg == 0 &&
714 insn->off == 0;
715}
716
717static bool is_call_insn(const struct bpf_insn *insn)
718{
719 return insn->code == (BPF_JMP | BPF_CALL);
720}
721
722static bool insn_is_pseudo_func(struct bpf_insn *insn)
723{
724 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
725}
726
727static int
728bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
729 const char *name, size_t sec_idx, const char *sec_name,
730 size_t sec_off, void *insn_data, size_t insn_data_sz)
731{
732 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
733 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
734 sec_name, name, sec_off, insn_data_sz);
735 return -EINVAL;
736 }
737
738 memset(prog, 0, sizeof(*prog));
739 prog->obj = obj;
740
741 prog->sec_idx = sec_idx;
742 prog->sec_insn_off = sec_off / BPF_INSN_SZ;
743 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
744 /* insns_cnt can later be increased by appending used subprograms */
745 prog->insns_cnt = prog->sec_insn_cnt;
746
747 prog->type = BPF_PROG_TYPE_UNSPEC;
748 prog->fd = -1;
749
750 /* libbpf's convention for SEC("?abc...") is that it's just like
751 * SEC("abc...") but the corresponding bpf_program starts out with
752 * autoload set to false.
753 */
754 if (sec_name[0] == '?') {
755 prog->autoload = false;
756 /* from now on forget there was ? in section name */
757 sec_name++;
758 } else {
759 prog->autoload = true;
760 }
761
762 prog->autoattach = true;
763
764 /* inherit object's log_level */
765 prog->log_level = obj->log_level;
766
767 prog->sec_name = strdup(sec_name);
768 if (!prog->sec_name)
769 goto errout;
770
771 prog->name = strdup(name);
772 if (!prog->name)
773 goto errout;
774
775 prog->insns = malloc(insn_data_sz);
776 if (!prog->insns)
777 goto errout;
778 memcpy(prog->insns, insn_data, insn_data_sz);
779
780 return 0;
781errout:
782 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
783 bpf_program__exit(prog);
784 return -ENOMEM;
785}
786
787static int
788bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
789 const char *sec_name, int sec_idx)
790{
791 Elf_Data *symbols = obj->efile.symbols;
792 struct bpf_program *prog, *progs;
793 void *data = sec_data->d_buf;
794 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
795 int nr_progs, err, i;
796 const char *name;
797 Elf64_Sym *sym;
798
799 progs = obj->programs;
800 nr_progs = obj->nr_programs;
801 nr_syms = symbols->d_size / sizeof(Elf64_Sym);
802 sec_off = 0;
803
804 for (i = 0; i < nr_syms; i++) {
805 sym = elf_sym_by_idx(obj, i);
806
807 if (sym->st_shndx != sec_idx)
808 continue;
809 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
810 continue;
811
812 prog_sz = sym->st_size;
813 sec_off = sym->st_value;
814
815 name = elf_sym_str(obj, sym->st_name);
816 if (!name) {
817 pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
818 sec_name, sec_off);
819 return -LIBBPF_ERRNO__FORMAT;
820 }
821
822 if (sec_off + prog_sz > sec_sz) {
823 pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
824 sec_name, sec_off);
825 return -LIBBPF_ERRNO__FORMAT;
826 }
827
828 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
829 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
830 return -ENOTSUP;
831 }
832
833 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
834 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
835
836 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
837 if (!progs) {
838 /*
839 * In this case the original obj->programs
840 * is still valid, so don't need special treat for
841 * bpf_close_object().
842 */
843 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
844 sec_name, name);
845 return -ENOMEM;
846 }
847 obj->programs = progs;
848
849 prog = &progs[nr_progs];
850
851 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
852 sec_off, data + sec_off, prog_sz);
853 if (err)
854 return err;
855
856 /* if function is a global/weak symbol, but has restricted
857 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
858 * as static to enable more permissive BPF verification mode
859 * with more outside context available to BPF verifier
860 */
861 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL
862 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
863 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
864 prog->mark_btf_static = true;
865
866 nr_progs++;
867 obj->nr_programs = nr_progs;
868 }
869
870 return 0;
871}
872
873__u32 get_kernel_version(void)
874{
875 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release,
876 * but Ubuntu provides /proc/version_signature file, as described at
877 * https://ubuntu.com/kernel, with an example contents below, which we
878 * can use to get a proper LINUX_VERSION_CODE.
879 *
880 * Ubuntu 5.4.0-12.15-generic 5.4.8
881 *
882 * In the above, 5.4.8 is what kernel is actually expecting, while
883 * uname() call will return 5.4.0 in info.release.
884 */
885 const char *ubuntu_kver_file = "/proc/version_signature";
886 __u32 major, minor, patch;
887 struct utsname info;
888
889 if (faccessat(AT_FDCWD, ubuntu_kver_file, R_OK, AT_EACCESS) == 0) {
890 FILE *f;
891
892 f = fopen(ubuntu_kver_file, "r");
893 if (f) {
894 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) {
895 fclose(f);
896 return KERNEL_VERSION(major, minor, patch);
897 }
898 fclose(f);
899 }
900 /* something went wrong, fall back to uname() approach */
901 }
902
903 uname(&info);
904 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
905 return 0;
906 return KERNEL_VERSION(major, minor, patch);
907}
908
909static const struct btf_member *
910find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
911{
912 struct btf_member *m;
913 int i;
914
915 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
916 if (btf_member_bit_offset(t, i) == bit_offset)
917 return m;
918 }
919
920 return NULL;
921}
922
923static const struct btf_member *
924find_member_by_name(const struct btf *btf, const struct btf_type *t,
925 const char *name)
926{
927 struct btf_member *m;
928 int i;
929
930 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
931 if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
932 return m;
933 }
934
935 return NULL;
936}
937
938#define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
939static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
940 const char *name, __u32 kind);
941
942static int
943find_struct_ops_kern_types(const struct btf *btf, const char *tname,
944 const struct btf_type **type, __u32 *type_id,
945 const struct btf_type **vtype, __u32 *vtype_id,
946 const struct btf_member **data_member)
947{
948 const struct btf_type *kern_type, *kern_vtype;
949 const struct btf_member *kern_data_member;
950 __s32 kern_vtype_id, kern_type_id;
951 __u32 i;
952
953 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
954 if (kern_type_id < 0) {
955 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
956 tname);
957 return kern_type_id;
958 }
959 kern_type = btf__type_by_id(btf, kern_type_id);
960
961 /* Find the corresponding "map_value" type that will be used
962 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example,
963 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
964 * btf_vmlinux.
965 */
966 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
967 tname, BTF_KIND_STRUCT);
968 if (kern_vtype_id < 0) {
969 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
970 STRUCT_OPS_VALUE_PREFIX, tname);
971 return kern_vtype_id;
972 }
973 kern_vtype = btf__type_by_id(btf, kern_vtype_id);
974
975 /* Find "struct tcp_congestion_ops" from
976 * struct bpf_struct_ops_tcp_congestion_ops {
977 * [ ... ]
978 * struct tcp_congestion_ops data;
979 * }
980 */
981 kern_data_member = btf_members(kern_vtype);
982 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
983 if (kern_data_member->type == kern_type_id)
984 break;
985 }
986 if (i == btf_vlen(kern_vtype)) {
987 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
988 tname, STRUCT_OPS_VALUE_PREFIX, tname);
989 return -EINVAL;
990 }
991
992 *type = kern_type;
993 *type_id = kern_type_id;
994 *vtype = kern_vtype;
995 *vtype_id = kern_vtype_id;
996 *data_member = kern_data_member;
997
998 return 0;
999}
1000
1001static bool bpf_map__is_struct_ops(const struct bpf_map *map)
1002{
1003 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
1004}
1005
1006/* Init the map's fields that depend on kern_btf */
1007static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
1008 const struct btf *btf,
1009 const struct btf *kern_btf)
1010{
1011 const struct btf_member *member, *kern_member, *kern_data_member;
1012 const struct btf_type *type, *kern_type, *kern_vtype;
1013 __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1014 struct bpf_struct_ops *st_ops;
1015 void *data, *kern_data;
1016 const char *tname;
1017 int err;
1018
1019 st_ops = map->st_ops;
1020 type = st_ops->type;
1021 tname = st_ops->tname;
1022 err = find_struct_ops_kern_types(kern_btf, tname,
1023 &kern_type, &kern_type_id,
1024 &kern_vtype, &kern_vtype_id,
1025 &kern_data_member);
1026 if (err)
1027 return err;
1028
1029 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1030 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1031
1032 map->def.value_size = kern_vtype->size;
1033 map->btf_vmlinux_value_type_id = kern_vtype_id;
1034
1035 st_ops->kern_vdata = calloc(1, kern_vtype->size);
1036 if (!st_ops->kern_vdata)
1037 return -ENOMEM;
1038
1039 data = st_ops->data;
1040 kern_data_off = kern_data_member->offset / 8;
1041 kern_data = st_ops->kern_vdata + kern_data_off;
1042
1043 member = btf_members(type);
1044 for (i = 0; i < btf_vlen(type); i++, member++) {
1045 const struct btf_type *mtype, *kern_mtype;
1046 __u32 mtype_id, kern_mtype_id;
1047 void *mdata, *kern_mdata;
1048 __s64 msize, kern_msize;
1049 __u32 moff, kern_moff;
1050 __u32 kern_member_idx;
1051 const char *mname;
1052
1053 mname = btf__name_by_offset(btf, member->name_off);
1054 kern_member = find_member_by_name(kern_btf, kern_type, mname);
1055 if (!kern_member) {
1056 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1057 map->name, mname);
1058 return -ENOTSUP;
1059 }
1060
1061 kern_member_idx = kern_member - btf_members(kern_type);
1062 if (btf_member_bitfield_size(type, i) ||
1063 btf_member_bitfield_size(kern_type, kern_member_idx)) {
1064 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1065 map->name, mname);
1066 return -ENOTSUP;
1067 }
1068
1069 moff = member->offset / 8;
1070 kern_moff = kern_member->offset / 8;
1071
1072 mdata = data + moff;
1073 kern_mdata = kern_data + kern_moff;
1074
1075 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1076 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1077 &kern_mtype_id);
1078 if (BTF_INFO_KIND(mtype->info) !=
1079 BTF_INFO_KIND(kern_mtype->info)) {
1080 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1081 map->name, mname, BTF_INFO_KIND(mtype->info),
1082 BTF_INFO_KIND(kern_mtype->info));
1083 return -ENOTSUP;
1084 }
1085
1086 if (btf_is_ptr(mtype)) {
1087 struct bpf_program *prog;
1088
1089 prog = st_ops->progs[i];
1090 if (!prog)
1091 continue;
1092
1093 kern_mtype = skip_mods_and_typedefs(kern_btf,
1094 kern_mtype->type,
1095 &kern_mtype_id);
1096
1097 /* mtype->type must be a func_proto which was
1098 * guaranteed in bpf_object__collect_st_ops_relos(),
1099 * so only check kern_mtype for func_proto here.
1100 */
1101 if (!btf_is_func_proto(kern_mtype)) {
1102 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1103 map->name, mname);
1104 return -ENOTSUP;
1105 }
1106
1107 prog->attach_btf_id = kern_type_id;
1108 prog->expected_attach_type = kern_member_idx;
1109
1110 st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1111
1112 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1113 map->name, mname, prog->name, moff,
1114 kern_moff);
1115
1116 continue;
1117 }
1118
1119 msize = btf__resolve_size(btf, mtype_id);
1120 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1121 if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1122 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1123 map->name, mname, (ssize_t)msize,
1124 (ssize_t)kern_msize);
1125 return -ENOTSUP;
1126 }
1127
1128 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1129 map->name, mname, (unsigned int)msize,
1130 moff, kern_moff);
1131 memcpy(kern_mdata, mdata, msize);
1132 }
1133
1134 return 0;
1135}
1136
1137static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1138{
1139 struct bpf_map *map;
1140 size_t i;
1141 int err;
1142
1143 for (i = 0; i < obj->nr_maps; i++) {
1144 map = &obj->maps[i];
1145
1146 if (!bpf_map__is_struct_ops(map))
1147 continue;
1148
1149 err = bpf_map__init_kern_struct_ops(map, obj->btf,
1150 obj->btf_vmlinux);
1151 if (err)
1152 return err;
1153 }
1154
1155 return 0;
1156}
1157
1158static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
1159{
1160 const struct btf_type *type, *datasec;
1161 const struct btf_var_secinfo *vsi;
1162 struct bpf_struct_ops *st_ops;
1163 const char *tname, *var_name;
1164 __s32 type_id, datasec_id;
1165 const struct btf *btf;
1166 struct bpf_map *map;
1167 __u32 i;
1168
1169 if (obj->efile.st_ops_shndx == -1)
1170 return 0;
1171
1172 btf = obj->btf;
1173 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
1174 BTF_KIND_DATASEC);
1175 if (datasec_id < 0) {
1176 pr_warn("struct_ops init: DATASEC %s not found\n",
1177 STRUCT_OPS_SEC);
1178 return -EINVAL;
1179 }
1180
1181 datasec = btf__type_by_id(btf, datasec_id);
1182 vsi = btf_var_secinfos(datasec);
1183 for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1184 type = btf__type_by_id(obj->btf, vsi->type);
1185 var_name = btf__name_by_offset(obj->btf, type->name_off);
1186
1187 type_id = btf__resolve_type(obj->btf, vsi->type);
1188 if (type_id < 0) {
1189 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1190 vsi->type, STRUCT_OPS_SEC);
1191 return -EINVAL;
1192 }
1193
1194 type = btf__type_by_id(obj->btf, type_id);
1195 tname = btf__name_by_offset(obj->btf, type->name_off);
1196 if (!tname[0]) {
1197 pr_warn("struct_ops init: anonymous type is not supported\n");
1198 return -ENOTSUP;
1199 }
1200 if (!btf_is_struct(type)) {
1201 pr_warn("struct_ops init: %s is not a struct\n", tname);
1202 return -EINVAL;
1203 }
1204
1205 map = bpf_object__add_map(obj);
1206 if (IS_ERR(map))
1207 return PTR_ERR(map);
1208
1209 map->sec_idx = obj->efile.st_ops_shndx;
1210 map->sec_offset = vsi->offset;
1211 map->name = strdup(var_name);
1212 if (!map->name)
1213 return -ENOMEM;
1214
1215 map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1216 map->def.key_size = sizeof(int);
1217 map->def.value_size = type->size;
1218 map->def.max_entries = 1;
1219
1220 map->st_ops = calloc(1, sizeof(*map->st_ops));
1221 if (!map->st_ops)
1222 return -ENOMEM;
1223 st_ops = map->st_ops;
1224 st_ops->data = malloc(type->size);
1225 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1226 st_ops->kern_func_off = malloc(btf_vlen(type) *
1227 sizeof(*st_ops->kern_func_off));
1228 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1229 return -ENOMEM;
1230
1231 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1232 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1233 var_name, STRUCT_OPS_SEC);
1234 return -EINVAL;
1235 }
1236
1237 memcpy(st_ops->data,
1238 obj->efile.st_ops_data->d_buf + vsi->offset,
1239 type->size);
1240 st_ops->tname = tname;
1241 st_ops->type = type;
1242 st_ops->type_id = type_id;
1243
1244 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1245 tname, type_id, var_name, vsi->offset);
1246 }
1247
1248 return 0;
1249}
1250
1251static struct bpf_object *bpf_object__new(const char *path,
1252 const void *obj_buf,
1253 size_t obj_buf_sz,
1254 const char *obj_name)
1255{
1256 struct bpf_object *obj;
1257 char *end;
1258
1259 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1260 if (!obj) {
1261 pr_warn("alloc memory failed for %s\n", path);
1262 return ERR_PTR(-ENOMEM);
1263 }
1264
1265 strcpy(obj->path, path);
1266 if (obj_name) {
1267 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1268 } else {
1269 /* Using basename() GNU version which doesn't modify arg. */
1270 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1271 end = strchr(obj->name, '.');
1272 if (end)
1273 *end = 0;
1274 }
1275
1276 obj->efile.fd = -1;
1277 /*
1278 * Caller of this function should also call
1279 * bpf_object__elf_finish() after data collection to return
1280 * obj_buf to user. If not, we should duplicate the buffer to
1281 * avoid user freeing them before elf finish.
1282 */
1283 obj->efile.obj_buf = obj_buf;
1284 obj->efile.obj_buf_sz = obj_buf_sz;
1285 obj->efile.btf_maps_shndx = -1;
1286 obj->efile.st_ops_shndx = -1;
1287 obj->kconfig_map_idx = -1;
1288
1289 obj->kern_version = get_kernel_version();
1290 obj->loaded = false;
1291
1292 return obj;
1293}
1294
1295static void bpf_object__elf_finish(struct bpf_object *obj)
1296{
1297 if (!obj->efile.elf)
1298 return;
1299
1300 elf_end(obj->efile.elf);
1301 obj->efile.elf = NULL;
1302 obj->efile.symbols = NULL;
1303 obj->efile.st_ops_data = NULL;
1304
1305 zfree(&obj->efile.secs);
1306 obj->efile.sec_cnt = 0;
1307 zclose(obj->efile.fd);
1308 obj->efile.obj_buf = NULL;
1309 obj->efile.obj_buf_sz = 0;
1310}
1311
1312static int bpf_object__elf_init(struct bpf_object *obj)
1313{
1314 Elf64_Ehdr *ehdr;
1315 int err = 0;
1316 Elf *elf;
1317
1318 if (obj->efile.elf) {
1319 pr_warn("elf: init internal error\n");
1320 return -LIBBPF_ERRNO__LIBELF;
1321 }
1322
1323 if (obj->efile.obj_buf_sz > 0) {
1324 /* obj_buf should have been validated by bpf_object__open_mem(). */
1325 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1326 } else {
1327 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1328 if (obj->efile.fd < 0) {
1329 char errmsg[STRERR_BUFSIZE], *cp;
1330
1331 err = -errno;
1332 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1333 pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1334 return err;
1335 }
1336
1337 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1338 }
1339
1340 if (!elf) {
1341 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1342 err = -LIBBPF_ERRNO__LIBELF;
1343 goto errout;
1344 }
1345
1346 obj->efile.elf = elf;
1347
1348 if (elf_kind(elf) != ELF_K_ELF) {
1349 err = -LIBBPF_ERRNO__FORMAT;
1350 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1351 goto errout;
1352 }
1353
1354 if (gelf_getclass(elf) != ELFCLASS64) {
1355 err = -LIBBPF_ERRNO__FORMAT;
1356 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1357 goto errout;
1358 }
1359
1360 obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1361 if (!obj->efile.ehdr) {
1362 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1363 err = -LIBBPF_ERRNO__FORMAT;
1364 goto errout;
1365 }
1366
1367 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1368 pr_warn("elf: failed to get section names section index for %s: %s\n",
1369 obj->path, elf_errmsg(-1));
1370 err = -LIBBPF_ERRNO__FORMAT;
1371 goto errout;
1372 }
1373
1374 /* Elf is corrupted/truncated, avoid calling elf_strptr. */
1375 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1376 pr_warn("elf: failed to get section names strings from %s: %s\n",
1377 obj->path, elf_errmsg(-1));
1378 err = -LIBBPF_ERRNO__FORMAT;
1379 goto errout;
1380 }
1381
1382 /* Old LLVM set e_machine to EM_NONE */
1383 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1384 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1385 err = -LIBBPF_ERRNO__FORMAT;
1386 goto errout;
1387 }
1388
1389 return 0;
1390errout:
1391 bpf_object__elf_finish(obj);
1392 return err;
1393}
1394
1395static int bpf_object__check_endianness(struct bpf_object *obj)
1396{
1397#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1398 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1399 return 0;
1400#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1401 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1402 return 0;
1403#else
1404# error "Unrecognized __BYTE_ORDER__"
1405#endif
1406 pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1407 return -LIBBPF_ERRNO__ENDIAN;
1408}
1409
1410static int
1411bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1412{
1413 if (!data) {
1414 pr_warn("invalid license section in %s\n", obj->path);
1415 return -LIBBPF_ERRNO__FORMAT;
1416 }
1417 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1418 * go over allowed ELF data section buffer
1419 */
1420 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1421 pr_debug("license of %s is %s\n", obj->path, obj->license);
1422 return 0;
1423}
1424
1425static int
1426bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1427{
1428 __u32 kver;
1429
1430 if (!data || size != sizeof(kver)) {
1431 pr_warn("invalid kver section in %s\n", obj->path);
1432 return -LIBBPF_ERRNO__FORMAT;
1433 }
1434 memcpy(&kver, data, sizeof(kver));
1435 obj->kern_version = kver;
1436 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1437 return 0;
1438}
1439
1440static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1441{
1442 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1443 type == BPF_MAP_TYPE_HASH_OF_MAPS)
1444 return true;
1445 return false;
1446}
1447
1448static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1449{
1450 Elf_Data *data;
1451 Elf_Scn *scn;
1452
1453 if (!name)
1454 return -EINVAL;
1455
1456 scn = elf_sec_by_name(obj, name);
1457 data = elf_sec_data(obj, scn);
1458 if (data) {
1459 *size = data->d_size;
1460 return 0; /* found it */
1461 }
1462
1463 return -ENOENT;
1464}
1465
1466static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1467{
1468 Elf_Data *symbols = obj->efile.symbols;
1469 const char *sname;
1470 size_t si;
1471
1472 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1473 Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1474
1475 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1476 continue;
1477
1478 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1479 ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1480 continue;
1481
1482 sname = elf_sym_str(obj, sym->st_name);
1483 if (!sname) {
1484 pr_warn("failed to get sym name string for var %s\n", name);
1485 return ERR_PTR(-EIO);
1486 }
1487 if (strcmp(name, sname) == 0)
1488 return sym;
1489 }
1490
1491 return ERR_PTR(-ENOENT);
1492}
1493
1494static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1495{
1496 struct bpf_map *map;
1497 int err;
1498
1499 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1500 sizeof(*obj->maps), obj->nr_maps + 1);
1501 if (err)
1502 return ERR_PTR(err);
1503
1504 map = &obj->maps[obj->nr_maps++];
1505 map->obj = obj;
1506 map->fd = -1;
1507 map->inner_map_fd = -1;
1508 map->autocreate = true;
1509
1510 return map;
1511}
1512
1513static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1514{
1515 long page_sz = sysconf(_SC_PAGE_SIZE);
1516 size_t map_sz;
1517
1518 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1519 map_sz = roundup(map_sz, page_sz);
1520 return map_sz;
1521}
1522
1523static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1524{
1525 char map_name[BPF_OBJ_NAME_LEN], *p;
1526 int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1527
1528 /* This is one of the more confusing parts of libbpf for various
1529 * reasons, some of which are historical. The original idea for naming
1530 * internal names was to include as much of BPF object name prefix as
1531 * possible, so that it can be distinguished from similar internal
1532 * maps of a different BPF object.
1533 * As an example, let's say we have bpf_object named 'my_object_name'
1534 * and internal map corresponding to '.rodata' ELF section. The final
1535 * map name advertised to user and to the kernel will be
1536 * 'my_objec.rodata', taking first 8 characters of object name and
1537 * entire 7 characters of '.rodata'.
1538 * Somewhat confusingly, if internal map ELF section name is shorter
1539 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1540 * for the suffix, even though we only have 4 actual characters, and
1541 * resulting map will be called 'my_objec.bss', not even using all 15
1542 * characters allowed by the kernel. Oh well, at least the truncated
1543 * object name is somewhat consistent in this case. But if the map
1544 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1545 * (8 chars) and thus will be left with only first 7 characters of the
1546 * object name ('my_obje'). Happy guessing, user, that the final map
1547 * name will be "my_obje.kconfig".
1548 * Now, with libbpf starting to support arbitrarily named .rodata.*
1549 * and .data.* data sections, it's possible that ELF section name is
1550 * longer than allowed 15 chars, so we now need to be careful to take
1551 * only up to 15 first characters of ELF name, taking no BPF object
1552 * name characters at all. So '.rodata.abracadabra' will result in
1553 * '.rodata.abracad' kernel and user-visible name.
1554 * We need to keep this convoluted logic intact for .data, .bss and
1555 * .rodata maps, but for new custom .data.custom and .rodata.custom
1556 * maps we use their ELF names as is, not prepending bpf_object name
1557 * in front. We still need to truncate them to 15 characters for the
1558 * kernel. Full name can be recovered for such maps by using DATASEC
1559 * BTF type associated with such map's value type, though.
1560 */
1561 if (sfx_len >= BPF_OBJ_NAME_LEN)
1562 sfx_len = BPF_OBJ_NAME_LEN - 1;
1563
1564 /* if there are two or more dots in map name, it's a custom dot map */
1565 if (strchr(real_name + 1, '.') != NULL)
1566 pfx_len = 0;
1567 else
1568 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1569
1570 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1571 sfx_len, real_name);
1572
1573 /* sanitise map name to characters allowed by kernel */
1574 for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1575 if (!isalnum(*p) && *p != '_' && *p != '.')
1576 *p = '_';
1577
1578 return strdup(map_name);
1579}
1580
1581static int
1582map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1583
1584/* Internal BPF map is mmap()'able only if at least one of corresponding
1585 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1586 * variable and it's not marked as __hidden (which turns it into, effectively,
1587 * a STATIC variable).
1588 */
1589static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1590{
1591 const struct btf_type *t, *vt;
1592 struct btf_var_secinfo *vsi;
1593 int i, n;
1594
1595 if (!map->btf_value_type_id)
1596 return false;
1597
1598 t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1599 if (!btf_is_datasec(t))
1600 return false;
1601
1602 vsi = btf_var_secinfos(t);
1603 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1604 vt = btf__type_by_id(obj->btf, vsi->type);
1605 if (!btf_is_var(vt))
1606 continue;
1607
1608 if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1609 return true;
1610 }
1611
1612 return false;
1613}
1614
1615static int
1616bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1617 const char *real_name, int sec_idx, void *data, size_t data_sz)
1618{
1619 struct bpf_map_def *def;
1620 struct bpf_map *map;
1621 int err;
1622
1623 map = bpf_object__add_map(obj);
1624 if (IS_ERR(map))
1625 return PTR_ERR(map);
1626
1627 map->libbpf_type = type;
1628 map->sec_idx = sec_idx;
1629 map->sec_offset = 0;
1630 map->real_name = strdup(real_name);
1631 map->name = internal_map_name(obj, real_name);
1632 if (!map->real_name || !map->name) {
1633 zfree(&map->real_name);
1634 zfree(&map->name);
1635 return -ENOMEM;
1636 }
1637
1638 def = &map->def;
1639 def->type = BPF_MAP_TYPE_ARRAY;
1640 def->key_size = sizeof(int);
1641 def->value_size = data_sz;
1642 def->max_entries = 1;
1643 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1644 ? BPF_F_RDONLY_PROG : 0;
1645
1646 /* failures are fine because of maps like .rodata.str1.1 */
1647 (void) map_fill_btf_type_info(obj, map);
1648
1649 if (map_is_mmapable(obj, map))
1650 def->map_flags |= BPF_F_MMAPABLE;
1651
1652 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1653 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1654
1655 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1656 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1657 if (map->mmaped == MAP_FAILED) {
1658 err = -errno;
1659 map->mmaped = NULL;
1660 pr_warn("failed to alloc map '%s' content buffer: %d\n",
1661 map->name, err);
1662 zfree(&map->real_name);
1663 zfree(&map->name);
1664 return err;
1665 }
1666
1667 if (data)
1668 memcpy(map->mmaped, data, data_sz);
1669
1670 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1671 return 0;
1672}
1673
1674static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1675{
1676 struct elf_sec_desc *sec_desc;
1677 const char *sec_name;
1678 int err = 0, sec_idx;
1679
1680 /*
1681 * Populate obj->maps with libbpf internal maps.
1682 */
1683 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1684 sec_desc = &obj->efile.secs[sec_idx];
1685
1686 /* Skip recognized sections with size 0. */
1687 if (!sec_desc->data || sec_desc->data->d_size == 0)
1688 continue;
1689
1690 switch (sec_desc->sec_type) {
1691 case SEC_DATA:
1692 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1693 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1694 sec_name, sec_idx,
1695 sec_desc->data->d_buf,
1696 sec_desc->data->d_size);
1697 break;
1698 case SEC_RODATA:
1699 obj->has_rodata = true;
1700 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1701 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1702 sec_name, sec_idx,
1703 sec_desc->data->d_buf,
1704 sec_desc->data->d_size);
1705 break;
1706 case SEC_BSS:
1707 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1708 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1709 sec_name, sec_idx,
1710 NULL,
1711 sec_desc->data->d_size);
1712 break;
1713 default:
1714 /* skip */
1715 break;
1716 }
1717 if (err)
1718 return err;
1719 }
1720 return 0;
1721}
1722
1723
1724static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1725 const void *name)
1726{
1727 int i;
1728
1729 for (i = 0; i < obj->nr_extern; i++) {
1730 if (strcmp(obj->externs[i].name, name) == 0)
1731 return &obj->externs[i];
1732 }
1733 return NULL;
1734}
1735
1736static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1737 char value)
1738{
1739 switch (ext->kcfg.type) {
1740 case KCFG_BOOL:
1741 if (value == 'm') {
1742 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1743 ext->name, value);
1744 return -EINVAL;
1745 }
1746 *(bool *)ext_val = value == 'y' ? true : false;
1747 break;
1748 case KCFG_TRISTATE:
1749 if (value == 'y')
1750 *(enum libbpf_tristate *)ext_val = TRI_YES;
1751 else if (value == 'm')
1752 *(enum libbpf_tristate *)ext_val = TRI_MODULE;
1753 else /* value == 'n' */
1754 *(enum libbpf_tristate *)ext_val = TRI_NO;
1755 break;
1756 case KCFG_CHAR:
1757 *(char *)ext_val = value;
1758 break;
1759 case KCFG_UNKNOWN:
1760 case KCFG_INT:
1761 case KCFG_CHAR_ARR:
1762 default:
1763 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1764 ext->name, value);
1765 return -EINVAL;
1766 }
1767 ext->is_set = true;
1768 return 0;
1769}
1770
1771static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1772 const char *value)
1773{
1774 size_t len;
1775
1776 if (ext->kcfg.type != KCFG_CHAR_ARR) {
1777 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1778 ext->name, value);
1779 return -EINVAL;
1780 }
1781
1782 len = strlen(value);
1783 if (value[len - 1] != '"') {
1784 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1785 ext->name, value);
1786 return -EINVAL;
1787 }
1788
1789 /* strip quotes */
1790 len -= 2;
1791 if (len >= ext->kcfg.sz) {
1792 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
1793 ext->name, value, len, ext->kcfg.sz - 1);
1794 len = ext->kcfg.sz - 1;
1795 }
1796 memcpy(ext_val, value + 1, len);
1797 ext_val[len] = '\0';
1798 ext->is_set = true;
1799 return 0;
1800}
1801
1802static int parse_u64(const char *value, __u64 *res)
1803{
1804 char *value_end;
1805 int err;
1806
1807 errno = 0;
1808 *res = strtoull(value, &value_end, 0);
1809 if (errno) {
1810 err = -errno;
1811 pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1812 return err;
1813 }
1814 if (*value_end) {
1815 pr_warn("failed to parse '%s' as integer completely\n", value);
1816 return -EINVAL;
1817 }
1818 return 0;
1819}
1820
1821static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1822{
1823 int bit_sz = ext->kcfg.sz * 8;
1824
1825 if (ext->kcfg.sz == 8)
1826 return true;
1827
1828 /* Validate that value stored in u64 fits in integer of `ext->sz`
1829 * bytes size without any loss of information. If the target integer
1830 * is signed, we rely on the following limits of integer type of
1831 * Y bits and subsequent transformation:
1832 *
1833 * -2^(Y-1) <= X <= 2^(Y-1) - 1
1834 * 0 <= X + 2^(Y-1) <= 2^Y - 1
1835 * 0 <= X + 2^(Y-1) < 2^Y
1836 *
1837 * For unsigned target integer, check that all the (64 - Y) bits are
1838 * zero.
1839 */
1840 if (ext->kcfg.is_signed)
1841 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1842 else
1843 return (v >> bit_sz) == 0;
1844}
1845
1846static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1847 __u64 value)
1848{
1849 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
1850 ext->kcfg.type != KCFG_BOOL) {
1851 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
1852 ext->name, (unsigned long long)value);
1853 return -EINVAL;
1854 }
1855 if (ext->kcfg.type == KCFG_BOOL && value > 1) {
1856 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
1857 ext->name, (unsigned long long)value);
1858 return -EINVAL;
1859
1860 }
1861 if (!is_kcfg_value_in_range(ext, value)) {
1862 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
1863 ext->name, (unsigned long long)value, ext->kcfg.sz);
1864 return -ERANGE;
1865 }
1866 switch (ext->kcfg.sz) {
1867 case 1:
1868 *(__u8 *)ext_val = value;
1869 break;
1870 case 2:
1871 *(__u16 *)ext_val = value;
1872 break;
1873 case 4:
1874 *(__u32 *)ext_val = value;
1875 break;
1876 case 8:
1877 *(__u64 *)ext_val = value;
1878 break;
1879 default:
1880 return -EINVAL;
1881 }
1882 ext->is_set = true;
1883 return 0;
1884}
1885
1886static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1887 char *buf, void *data)
1888{
1889 struct extern_desc *ext;
1890 char *sep, *value;
1891 int len, err = 0;
1892 void *ext_val;
1893 __u64 num;
1894
1895 if (!str_has_pfx(buf, "CONFIG_"))
1896 return 0;
1897
1898 sep = strchr(buf, '=');
1899 if (!sep) {
1900 pr_warn("failed to parse '%s': no separator\n", buf);
1901 return -EINVAL;
1902 }
1903
1904 /* Trim ending '\n' */
1905 len = strlen(buf);
1906 if (buf[len - 1] == '\n')
1907 buf[len - 1] = '\0';
1908 /* Split on '=' and ensure that a value is present. */
1909 *sep = '\0';
1910 if (!sep[1]) {
1911 *sep = '=';
1912 pr_warn("failed to parse '%s': no value\n", buf);
1913 return -EINVAL;
1914 }
1915
1916 ext = find_extern_by_name(obj, buf);
1917 if (!ext || ext->is_set)
1918 return 0;
1919
1920 ext_val = data + ext->kcfg.data_off;
1921 value = sep + 1;
1922
1923 switch (*value) {
1924 case 'y': case 'n': case 'm':
1925 err = set_kcfg_value_tri(ext, ext_val, *value);
1926 break;
1927 case '"':
1928 err = set_kcfg_value_str(ext, ext_val, value);
1929 break;
1930 default:
1931 /* assume integer */
1932 err = parse_u64(value, &num);
1933 if (err) {
1934 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
1935 return err;
1936 }
1937 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1938 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
1939 return -EINVAL;
1940 }
1941 err = set_kcfg_value_num(ext, ext_val, num);
1942 break;
1943 }
1944 if (err)
1945 return err;
1946 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
1947 return 0;
1948}
1949
1950static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1951{
1952 char buf[PATH_MAX];
1953 struct utsname uts;
1954 int len, err = 0;
1955 gzFile file;
1956
1957 uname(&uts);
1958 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1959 if (len < 0)
1960 return -EINVAL;
1961 else if (len >= PATH_MAX)
1962 return -ENAMETOOLONG;
1963
1964 /* gzopen also accepts uncompressed files. */
1965 file = gzopen(buf, "r");
1966 if (!file)
1967 file = gzopen("/proc/config.gz", "r");
1968
1969 if (!file) {
1970 pr_warn("failed to open system Kconfig\n");
1971 return -ENOENT;
1972 }
1973
1974 while (gzgets(file, buf, sizeof(buf))) {
1975 err = bpf_object__process_kconfig_line(obj, buf, data);
1976 if (err) {
1977 pr_warn("error parsing system Kconfig line '%s': %d\n",
1978 buf, err);
1979 goto out;
1980 }
1981 }
1982
1983out:
1984 gzclose(file);
1985 return err;
1986}
1987
1988static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1989 const char *config, void *data)
1990{
1991 char buf[PATH_MAX];
1992 int err = 0;
1993 FILE *file;
1994
1995 file = fmemopen((void *)config, strlen(config), "r");
1996 if (!file) {
1997 err = -errno;
1998 pr_warn("failed to open in-memory Kconfig: %d\n", err);
1999 return err;
2000 }
2001
2002 while (fgets(buf, sizeof(buf), file)) {
2003 err = bpf_object__process_kconfig_line(obj, buf, data);
2004 if (err) {
2005 pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
2006 buf, err);
2007 break;
2008 }
2009 }
2010
2011 fclose(file);
2012 return err;
2013}
2014
2015static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2016{
2017 struct extern_desc *last_ext = NULL, *ext;
2018 size_t map_sz;
2019 int i, err;
2020
2021 for (i = 0; i < obj->nr_extern; i++) {
2022 ext = &obj->externs[i];
2023 if (ext->type == EXT_KCFG)
2024 last_ext = ext;
2025 }
2026
2027 if (!last_ext)
2028 return 0;
2029
2030 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2031 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2032 ".kconfig", obj->efile.symbols_shndx,
2033 NULL, map_sz);
2034 if (err)
2035 return err;
2036
2037 obj->kconfig_map_idx = obj->nr_maps - 1;
2038
2039 return 0;
2040}
2041
2042const struct btf_type *
2043skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2044{
2045 const struct btf_type *t = btf__type_by_id(btf, id);
2046
2047 if (res_id)
2048 *res_id = id;
2049
2050 while (btf_is_mod(t) || btf_is_typedef(t)) {
2051 if (res_id)
2052 *res_id = t->type;
2053 t = btf__type_by_id(btf, t->type);
2054 }
2055
2056 return t;
2057}
2058
2059static const struct btf_type *
2060resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2061{
2062 const struct btf_type *t;
2063
2064 t = skip_mods_and_typedefs(btf, id, NULL);
2065 if (!btf_is_ptr(t))
2066 return NULL;
2067
2068 t = skip_mods_and_typedefs(btf, t->type, res_id);
2069
2070 return btf_is_func_proto(t) ? t : NULL;
2071}
2072
2073static const char *__btf_kind_str(__u16 kind)
2074{
2075 switch (kind) {
2076 case BTF_KIND_UNKN: return "void";
2077 case BTF_KIND_INT: return "int";
2078 case BTF_KIND_PTR: return "ptr";
2079 case BTF_KIND_ARRAY: return "array";
2080 case BTF_KIND_STRUCT: return "struct";
2081 case BTF_KIND_UNION: return "union";
2082 case BTF_KIND_ENUM: return "enum";
2083 case BTF_KIND_FWD: return "fwd";
2084 case BTF_KIND_TYPEDEF: return "typedef";
2085 case BTF_KIND_VOLATILE: return "volatile";
2086 case BTF_KIND_CONST: return "const";
2087 case BTF_KIND_RESTRICT: return "restrict";
2088 case BTF_KIND_FUNC: return "func";
2089 case BTF_KIND_FUNC_PROTO: return "func_proto";
2090 case BTF_KIND_VAR: return "var";
2091 case BTF_KIND_DATASEC: return "datasec";
2092 case BTF_KIND_FLOAT: return "float";
2093 case BTF_KIND_DECL_TAG: return "decl_tag";
2094 case BTF_KIND_TYPE_TAG: return "type_tag";
2095 case BTF_KIND_ENUM64: return "enum64";
2096 default: return "unknown";
2097 }
2098}
2099
2100const char *btf_kind_str(const struct btf_type *t)
2101{
2102 return __btf_kind_str(btf_kind(t));
2103}
2104
2105/*
2106 * Fetch integer attribute of BTF map definition. Such attributes are
2107 * represented using a pointer to an array, in which dimensionality of array
2108 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2109 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2110 * type definition, while using only sizeof(void *) space in ELF data section.
2111 */
2112static bool get_map_field_int(const char *map_name, const struct btf *btf,
2113 const struct btf_member *m, __u32 *res)
2114{
2115 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2116 const char *name = btf__name_by_offset(btf, m->name_off);
2117 const struct btf_array *arr_info;
2118 const struct btf_type *arr_t;
2119
2120 if (!btf_is_ptr(t)) {
2121 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2122 map_name, name, btf_kind_str(t));
2123 return false;
2124 }
2125
2126 arr_t = btf__type_by_id(btf, t->type);
2127 if (!arr_t) {
2128 pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2129 map_name, name, t->type);
2130 return false;
2131 }
2132 if (!btf_is_array(arr_t)) {
2133 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2134 map_name, name, btf_kind_str(arr_t));
2135 return false;
2136 }
2137 arr_info = btf_array(arr_t);
2138 *res = arr_info->nelems;
2139 return true;
2140}
2141
2142static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2143{
2144 int len;
2145
2146 len = snprintf(buf, buf_sz, "%s/%s", path, name);
2147 if (len < 0)
2148 return -EINVAL;
2149 if (len >= buf_sz)
2150 return -ENAMETOOLONG;
2151
2152 return 0;
2153}
2154
2155static int build_map_pin_path(struct bpf_map *map, const char *path)
2156{
2157 char buf[PATH_MAX];
2158 int err;
2159
2160 if (!path)
2161 path = "/sys/fs/bpf";
2162
2163 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2164 if (err)
2165 return err;
2166
2167 return bpf_map__set_pin_path(map, buf);
2168}
2169
2170/* should match definition in bpf_helpers.h */
2171enum libbpf_pin_type {
2172 LIBBPF_PIN_NONE,
2173 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2174 LIBBPF_PIN_BY_NAME,
2175};
2176
2177int parse_btf_map_def(const char *map_name, struct btf *btf,
2178 const struct btf_type *def_t, bool strict,
2179 struct btf_map_def *map_def, struct btf_map_def *inner_def)
2180{
2181 const struct btf_type *t;
2182 const struct btf_member *m;
2183 bool is_inner = inner_def == NULL;
2184 int vlen, i;
2185
2186 vlen = btf_vlen(def_t);
2187 m = btf_members(def_t);
2188 for (i = 0; i < vlen; i++, m++) {
2189 const char *name = btf__name_by_offset(btf, m->name_off);
2190
2191 if (!name) {
2192 pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2193 return -EINVAL;
2194 }
2195 if (strcmp(name, "type") == 0) {
2196 if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2197 return -EINVAL;
2198 map_def->parts |= MAP_DEF_MAP_TYPE;
2199 } else if (strcmp(name, "max_entries") == 0) {
2200 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2201 return -EINVAL;
2202 map_def->parts |= MAP_DEF_MAX_ENTRIES;
2203 } else if (strcmp(name, "map_flags") == 0) {
2204 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2205 return -EINVAL;
2206 map_def->parts |= MAP_DEF_MAP_FLAGS;
2207 } else if (strcmp(name, "numa_node") == 0) {
2208 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2209 return -EINVAL;
2210 map_def->parts |= MAP_DEF_NUMA_NODE;
2211 } else if (strcmp(name, "key_size") == 0) {
2212 __u32 sz;
2213
2214 if (!get_map_field_int(map_name, btf, m, &sz))
2215 return -EINVAL;
2216 if (map_def->key_size && map_def->key_size != sz) {
2217 pr_warn("map '%s': conflicting key size %u != %u.\n",
2218 map_name, map_def->key_size, sz);
2219 return -EINVAL;
2220 }
2221 map_def->key_size = sz;
2222 map_def->parts |= MAP_DEF_KEY_SIZE;
2223 } else if (strcmp(name, "key") == 0) {
2224 __s64 sz;
2225
2226 t = btf__type_by_id(btf, m->type);
2227 if (!t) {
2228 pr_warn("map '%s': key type [%d] not found.\n",
2229 map_name, m->type);
2230 return -EINVAL;
2231 }
2232 if (!btf_is_ptr(t)) {
2233 pr_warn("map '%s': key spec is not PTR: %s.\n",
2234 map_name, btf_kind_str(t));
2235 return -EINVAL;
2236 }
2237 sz = btf__resolve_size(btf, t->type);
2238 if (sz < 0) {
2239 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2240 map_name, t->type, (ssize_t)sz);
2241 return sz;
2242 }
2243 if (map_def->key_size && map_def->key_size != sz) {
2244 pr_warn("map '%s': conflicting key size %u != %zd.\n",
2245 map_name, map_def->key_size, (ssize_t)sz);
2246 return -EINVAL;
2247 }
2248 map_def->key_size = sz;
2249 map_def->key_type_id = t->type;
2250 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2251 } else if (strcmp(name, "value_size") == 0) {
2252 __u32 sz;
2253
2254 if (!get_map_field_int(map_name, btf, m, &sz))
2255 return -EINVAL;
2256 if (map_def->value_size && map_def->value_size != sz) {
2257 pr_warn("map '%s': conflicting value size %u != %u.\n",
2258 map_name, map_def->value_size, sz);
2259 return -EINVAL;
2260 }
2261 map_def->value_size = sz;
2262 map_def->parts |= MAP_DEF_VALUE_SIZE;
2263 } else if (strcmp(name, "value") == 0) {
2264 __s64 sz;
2265
2266 t = btf__type_by_id(btf, m->type);
2267 if (!t) {
2268 pr_warn("map '%s': value type [%d] not found.\n",
2269 map_name, m->type);
2270 return -EINVAL;
2271 }
2272 if (!btf_is_ptr(t)) {
2273 pr_warn("map '%s': value spec is not PTR: %s.\n",
2274 map_name, btf_kind_str(t));
2275 return -EINVAL;
2276 }
2277 sz = btf__resolve_size(btf, t->type);
2278 if (sz < 0) {
2279 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2280 map_name, t->type, (ssize_t)sz);
2281 return sz;
2282 }
2283 if (map_def->value_size && map_def->value_size != sz) {
2284 pr_warn("map '%s': conflicting value size %u != %zd.\n",
2285 map_name, map_def->value_size, (ssize_t)sz);
2286 return -EINVAL;
2287 }
2288 map_def->value_size = sz;
2289 map_def->value_type_id = t->type;
2290 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2291 }
2292 else if (strcmp(name, "values") == 0) {
2293 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2294 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2295 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2296 char inner_map_name[128];
2297 int err;
2298
2299 if (is_inner) {
2300 pr_warn("map '%s': multi-level inner maps not supported.\n",
2301 map_name);
2302 return -ENOTSUP;
2303 }
2304 if (i != vlen - 1) {
2305 pr_warn("map '%s': '%s' member should be last.\n",
2306 map_name, name);
2307 return -EINVAL;
2308 }
2309 if (!is_map_in_map && !is_prog_array) {
2310 pr_warn("map '%s': should be map-in-map or prog-array.\n",
2311 map_name);
2312 return -ENOTSUP;
2313 }
2314 if (map_def->value_size && map_def->value_size != 4) {
2315 pr_warn("map '%s': conflicting value size %u != 4.\n",
2316 map_name, map_def->value_size);
2317 return -EINVAL;
2318 }
2319 map_def->value_size = 4;
2320 t = btf__type_by_id(btf, m->type);
2321 if (!t) {
2322 pr_warn("map '%s': %s type [%d] not found.\n",
2323 map_name, desc, m->type);
2324 return -EINVAL;
2325 }
2326 if (!btf_is_array(t) || btf_array(t)->nelems) {
2327 pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2328 map_name, desc);
2329 return -EINVAL;
2330 }
2331 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2332 if (!btf_is_ptr(t)) {
2333 pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2334 map_name, desc, btf_kind_str(t));
2335 return -EINVAL;
2336 }
2337 t = skip_mods_and_typedefs(btf, t->type, NULL);
2338 if (is_prog_array) {
2339 if (!btf_is_func_proto(t)) {
2340 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2341 map_name, btf_kind_str(t));
2342 return -EINVAL;
2343 }
2344 continue;
2345 }
2346 if (!btf_is_struct(t)) {
2347 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2348 map_name, btf_kind_str(t));
2349 return -EINVAL;
2350 }
2351
2352 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2353 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2354 if (err)
2355 return err;
2356
2357 map_def->parts |= MAP_DEF_INNER_MAP;
2358 } else if (strcmp(name, "pinning") == 0) {
2359 __u32 val;
2360
2361 if (is_inner) {
2362 pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2363 return -EINVAL;
2364 }
2365 if (!get_map_field_int(map_name, btf, m, &val))
2366 return -EINVAL;
2367 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2368 pr_warn("map '%s': invalid pinning value %u.\n",
2369 map_name, val);
2370 return -EINVAL;
2371 }
2372 map_def->pinning = val;
2373 map_def->parts |= MAP_DEF_PINNING;
2374 } else if (strcmp(name, "map_extra") == 0) {
2375 __u32 map_extra;
2376
2377 if (!get_map_field_int(map_name, btf, m, &map_extra))
2378 return -EINVAL;
2379 map_def->map_extra = map_extra;
2380 map_def->parts |= MAP_DEF_MAP_EXTRA;
2381 } else {
2382 if (strict) {
2383 pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2384 return -ENOTSUP;
2385 }
2386 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2387 }
2388 }
2389
2390 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2391 pr_warn("map '%s': map type isn't specified.\n", map_name);
2392 return -EINVAL;
2393 }
2394
2395 return 0;
2396}
2397
2398static size_t adjust_ringbuf_sz(size_t sz)
2399{
2400 __u32 page_sz = sysconf(_SC_PAGE_SIZE);
2401 __u32 mul;
2402
2403 /* if user forgot to set any size, make sure they see error */
2404 if (sz == 0)
2405 return 0;
2406 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2407 * a power-of-2 multiple of kernel's page size. If user diligently
2408 * satisified these conditions, pass the size through.
2409 */
2410 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2411 return sz;
2412
2413 /* Otherwise find closest (page_sz * power_of_2) product bigger than
2414 * user-set size to satisfy both user size request and kernel
2415 * requirements and substitute correct max_entries for map creation.
2416 */
2417 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2418 if (mul * page_sz > sz)
2419 return mul * page_sz;
2420 }
2421
2422 /* if it's impossible to satisfy the conditions (i.e., user size is
2423 * very close to UINT_MAX but is not a power-of-2 multiple of
2424 * page_size) then just return original size and let kernel reject it
2425 */
2426 return sz;
2427}
2428
2429static bool map_is_ringbuf(const struct bpf_map *map)
2430{
2431 return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2432 map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2433}
2434
2435static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2436{
2437 map->def.type = def->map_type;
2438 map->def.key_size = def->key_size;
2439 map->def.value_size = def->value_size;
2440 map->def.max_entries = def->max_entries;
2441 map->def.map_flags = def->map_flags;
2442 map->map_extra = def->map_extra;
2443
2444 map->numa_node = def->numa_node;
2445 map->btf_key_type_id = def->key_type_id;
2446 map->btf_value_type_id = def->value_type_id;
2447
2448 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2449 if (map_is_ringbuf(map))
2450 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2451
2452 if (def->parts & MAP_DEF_MAP_TYPE)
2453 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2454
2455 if (def->parts & MAP_DEF_KEY_TYPE)
2456 pr_debug("map '%s': found key [%u], sz = %u.\n",
2457 map->name, def->key_type_id, def->key_size);
2458 else if (def->parts & MAP_DEF_KEY_SIZE)
2459 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2460
2461 if (def->parts & MAP_DEF_VALUE_TYPE)
2462 pr_debug("map '%s': found value [%u], sz = %u.\n",
2463 map->name, def->value_type_id, def->value_size);
2464 else if (def->parts & MAP_DEF_VALUE_SIZE)
2465 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2466
2467 if (def->parts & MAP_DEF_MAX_ENTRIES)
2468 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2469 if (def->parts & MAP_DEF_MAP_FLAGS)
2470 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2471 if (def->parts & MAP_DEF_MAP_EXTRA)
2472 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2473 (unsigned long long)def->map_extra);
2474 if (def->parts & MAP_DEF_PINNING)
2475 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2476 if (def->parts & MAP_DEF_NUMA_NODE)
2477 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2478
2479 if (def->parts & MAP_DEF_INNER_MAP)
2480 pr_debug("map '%s': found inner map definition.\n", map->name);
2481}
2482
2483static const char *btf_var_linkage_str(__u32 linkage)
2484{
2485 switch (linkage) {
2486 case BTF_VAR_STATIC: return "static";
2487 case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2488 case BTF_VAR_GLOBAL_EXTERN: return "extern";
2489 default: return "unknown";
2490 }
2491}
2492
2493static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2494 const struct btf_type *sec,
2495 int var_idx, int sec_idx,
2496 const Elf_Data *data, bool strict,
2497 const char *pin_root_path)
2498{
2499 struct btf_map_def map_def = {}, inner_def = {};
2500 const struct btf_type *var, *def;
2501 const struct btf_var_secinfo *vi;
2502 const struct btf_var *var_extra;
2503 const char *map_name;
2504 struct bpf_map *map;
2505 int err;
2506
2507 vi = btf_var_secinfos(sec) + var_idx;
2508 var = btf__type_by_id(obj->btf, vi->type);
2509 var_extra = btf_var(var);
2510 map_name = btf__name_by_offset(obj->btf, var->name_off);
2511
2512 if (map_name == NULL || map_name[0] == '\0') {
2513 pr_warn("map #%d: empty name.\n", var_idx);
2514 return -EINVAL;
2515 }
2516 if ((__u64)vi->offset + vi->size > data->d_size) {
2517 pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2518 return -EINVAL;
2519 }
2520 if (!btf_is_var(var)) {
2521 pr_warn("map '%s': unexpected var kind %s.\n",
2522 map_name, btf_kind_str(var));
2523 return -EINVAL;
2524 }
2525 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2526 pr_warn("map '%s': unsupported map linkage %s.\n",
2527 map_name, btf_var_linkage_str(var_extra->linkage));
2528 return -EOPNOTSUPP;
2529 }
2530
2531 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2532 if (!btf_is_struct(def)) {
2533 pr_warn("map '%s': unexpected def kind %s.\n",
2534 map_name, btf_kind_str(var));
2535 return -EINVAL;
2536 }
2537 if (def->size > vi->size) {
2538 pr_warn("map '%s': invalid def size.\n", map_name);
2539 return -EINVAL;
2540 }
2541
2542 map = bpf_object__add_map(obj);
2543 if (IS_ERR(map))
2544 return PTR_ERR(map);
2545 map->name = strdup(map_name);
2546 if (!map->name) {
2547 pr_warn("map '%s': failed to alloc map name.\n", map_name);
2548 return -ENOMEM;
2549 }
2550 map->libbpf_type = LIBBPF_MAP_UNSPEC;
2551 map->def.type = BPF_MAP_TYPE_UNSPEC;
2552 map->sec_idx = sec_idx;
2553 map->sec_offset = vi->offset;
2554 map->btf_var_idx = var_idx;
2555 pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2556 map_name, map->sec_idx, map->sec_offset);
2557
2558 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2559 if (err)
2560 return err;
2561
2562 fill_map_from_def(map, &map_def);
2563
2564 if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2565 err = build_map_pin_path(map, pin_root_path);
2566 if (err) {
2567 pr_warn("map '%s': couldn't build pin path.\n", map->name);
2568 return err;
2569 }
2570 }
2571
2572 if (map_def.parts & MAP_DEF_INNER_MAP) {
2573 map->inner_map = calloc(1, sizeof(*map->inner_map));
2574 if (!map->inner_map)
2575 return -ENOMEM;
2576 map->inner_map->fd = -1;
2577 map->inner_map->sec_idx = sec_idx;
2578 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2579 if (!map->inner_map->name)
2580 return -ENOMEM;
2581 sprintf(map->inner_map->name, "%s.inner", map_name);
2582
2583 fill_map_from_def(map->inner_map, &inner_def);
2584 }
2585
2586 err = map_fill_btf_type_info(obj, map);
2587 if (err)
2588 return err;
2589
2590 return 0;
2591}
2592
2593static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2594 const char *pin_root_path)
2595{
2596 const struct btf_type *sec = NULL;
2597 int nr_types, i, vlen, err;
2598 const struct btf_type *t;
2599 const char *name;
2600 Elf_Data *data;
2601 Elf_Scn *scn;
2602
2603 if (obj->efile.btf_maps_shndx < 0)
2604 return 0;
2605
2606 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2607 data = elf_sec_data(obj, scn);
2608 if (!scn || !data) {
2609 pr_warn("elf: failed to get %s map definitions for %s\n",
2610 MAPS_ELF_SEC, obj->path);
2611 return -EINVAL;
2612 }
2613
2614 nr_types = btf__type_cnt(obj->btf);
2615 for (i = 1; i < nr_types; i++) {
2616 t = btf__type_by_id(obj->btf, i);
2617 if (!btf_is_datasec(t))
2618 continue;
2619 name = btf__name_by_offset(obj->btf, t->name_off);
2620 if (strcmp(name, MAPS_ELF_SEC) == 0) {
2621 sec = t;
2622 obj->efile.btf_maps_sec_btf_id = i;
2623 break;
2624 }
2625 }
2626
2627 if (!sec) {
2628 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2629 return -ENOENT;
2630 }
2631
2632 vlen = btf_vlen(sec);
2633 for (i = 0; i < vlen; i++) {
2634 err = bpf_object__init_user_btf_map(obj, sec, i,
2635 obj->efile.btf_maps_shndx,
2636 data, strict,
2637 pin_root_path);
2638 if (err)
2639 return err;
2640 }
2641
2642 return 0;
2643}
2644
2645static int bpf_object__init_maps(struct bpf_object *obj,
2646 const struct bpf_object_open_opts *opts)
2647{
2648 const char *pin_root_path;
2649 bool strict;
2650 int err = 0;
2651
2652 strict = !OPTS_GET(opts, relaxed_maps, false);
2653 pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2654
2655 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2656 err = err ?: bpf_object__init_global_data_maps(obj);
2657 err = err ?: bpf_object__init_kconfig_map(obj);
2658 err = err ?: bpf_object__init_struct_ops_maps(obj);
2659
2660 return err;
2661}
2662
2663static bool section_have_execinstr(struct bpf_object *obj, int idx)
2664{
2665 Elf64_Shdr *sh;
2666
2667 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2668 if (!sh)
2669 return false;
2670
2671 return sh->sh_flags & SHF_EXECINSTR;
2672}
2673
2674static bool btf_needs_sanitization(struct bpf_object *obj)
2675{
2676 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2677 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2678 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2679 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2680 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2681 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2682 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2683
2684 return !has_func || !has_datasec || !has_func_global || !has_float ||
2685 !has_decl_tag || !has_type_tag || !has_enum64;
2686}
2687
2688static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2689{
2690 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2691 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2692 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2693 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2694 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2695 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2696 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2697 int enum64_placeholder_id = 0;
2698 struct btf_type *t;
2699 int i, j, vlen;
2700
2701 for (i = 1; i < btf__type_cnt(btf); i++) {
2702 t = (struct btf_type *)btf__type_by_id(btf, i);
2703
2704 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2705 /* replace VAR/DECL_TAG with INT */
2706 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2707 /*
2708 * using size = 1 is the safest choice, 4 will be too
2709 * big and cause kernel BTF validation failure if
2710 * original variable took less than 4 bytes
2711 */
2712 t->size = 1;
2713 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2714 } else if (!has_datasec && btf_is_datasec(t)) {
2715 /* replace DATASEC with STRUCT */
2716 const struct btf_var_secinfo *v = btf_var_secinfos(t);
2717 struct btf_member *m = btf_members(t);
2718 struct btf_type *vt;
2719 char *name;
2720
2721 name = (char *)btf__name_by_offset(btf, t->name_off);
2722 while (*name) {
2723 if (*name == '.')
2724 *name = '_';
2725 name++;
2726 }
2727
2728 vlen = btf_vlen(t);
2729 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2730 for (j = 0; j < vlen; j++, v++, m++) {
2731 /* order of field assignments is important */
2732 m->offset = v->offset * 8;
2733 m->type = v->type;
2734 /* preserve variable name as member name */
2735 vt = (void *)btf__type_by_id(btf, v->type);
2736 m->name_off = vt->name_off;
2737 }
2738 } else if (!has_func && btf_is_func_proto(t)) {
2739 /* replace FUNC_PROTO with ENUM */
2740 vlen = btf_vlen(t);
2741 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2742 t->size = sizeof(__u32); /* kernel enforced */
2743 } else if (!has_func && btf_is_func(t)) {
2744 /* replace FUNC with TYPEDEF */
2745 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2746 } else if (!has_func_global && btf_is_func(t)) {
2747 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2748 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2749 } else if (!has_float && btf_is_float(t)) {
2750 /* replace FLOAT with an equally-sized empty STRUCT;
2751 * since C compilers do not accept e.g. "float" as a
2752 * valid struct name, make it anonymous
2753 */
2754 t->name_off = 0;
2755 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2756 } else if (!has_type_tag && btf_is_type_tag(t)) {
2757 /* replace TYPE_TAG with a CONST */
2758 t->name_off = 0;
2759 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2760 } else if (!has_enum64 && btf_is_enum(t)) {
2761 /* clear the kflag */
2762 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
2763 } else if (!has_enum64 && btf_is_enum64(t)) {
2764 /* replace ENUM64 with a union */
2765 struct btf_member *m;
2766
2767 if (enum64_placeholder_id == 0) {
2768 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
2769 if (enum64_placeholder_id < 0)
2770 return enum64_placeholder_id;
2771
2772 t = (struct btf_type *)btf__type_by_id(btf, i);
2773 }
2774
2775 m = btf_members(t);
2776 vlen = btf_vlen(t);
2777 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
2778 for (j = 0; j < vlen; j++, m++) {
2779 m->type = enum64_placeholder_id;
2780 m->offset = 0;
2781 }
2782 }
2783 }
2784
2785 return 0;
2786}
2787
2788static bool libbpf_needs_btf(const struct bpf_object *obj)
2789{
2790 return obj->efile.btf_maps_shndx >= 0 ||
2791 obj->efile.st_ops_shndx >= 0 ||
2792 obj->nr_extern > 0;
2793}
2794
2795static bool kernel_needs_btf(const struct bpf_object *obj)
2796{
2797 return obj->efile.st_ops_shndx >= 0;
2798}
2799
2800static int bpf_object__init_btf(struct bpf_object *obj,
2801 Elf_Data *btf_data,
2802 Elf_Data *btf_ext_data)
2803{
2804 int err = -ENOENT;
2805
2806 if (btf_data) {
2807 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2808 err = libbpf_get_error(obj->btf);
2809 if (err) {
2810 obj->btf = NULL;
2811 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2812 goto out;
2813 }
2814 /* enforce 8-byte pointers for BPF-targeted BTFs */
2815 btf__set_pointer_size(obj->btf, 8);
2816 }
2817 if (btf_ext_data) {
2818 struct btf_ext_info *ext_segs[3];
2819 int seg_num, sec_num;
2820
2821 if (!obj->btf) {
2822 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2823 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2824 goto out;
2825 }
2826 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2827 err = libbpf_get_error(obj->btf_ext);
2828 if (err) {
2829 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2830 BTF_EXT_ELF_SEC, err);
2831 obj->btf_ext = NULL;
2832 goto out;
2833 }
2834
2835 /* setup .BTF.ext to ELF section mapping */
2836 ext_segs[0] = &obj->btf_ext->func_info;
2837 ext_segs[1] = &obj->btf_ext->line_info;
2838 ext_segs[2] = &obj->btf_ext->core_relo_info;
2839 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2840 struct btf_ext_info *seg = ext_segs[seg_num];
2841 const struct btf_ext_info_sec *sec;
2842 const char *sec_name;
2843 Elf_Scn *scn;
2844
2845 if (seg->sec_cnt == 0)
2846 continue;
2847
2848 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2849 if (!seg->sec_idxs) {
2850 err = -ENOMEM;
2851 goto out;
2852 }
2853
2854 sec_num = 0;
2855 for_each_btf_ext_sec(seg, sec) {
2856 /* preventively increment index to avoid doing
2857 * this before every continue below
2858 */
2859 sec_num++;
2860
2861 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2862 if (str_is_empty(sec_name))
2863 continue;
2864 scn = elf_sec_by_name(obj, sec_name);
2865 if (!scn)
2866 continue;
2867
2868 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
2869 }
2870 }
2871 }
2872out:
2873 if (err && libbpf_needs_btf(obj)) {
2874 pr_warn("BTF is required, but is missing or corrupted.\n");
2875 return err;
2876 }
2877 return 0;
2878}
2879
2880static int compare_vsi_off(const void *_a, const void *_b)
2881{
2882 const struct btf_var_secinfo *a = _a;
2883 const struct btf_var_secinfo *b = _b;
2884
2885 return a->offset - b->offset;
2886}
2887
2888static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2889 struct btf_type *t)
2890{
2891 __u32 size = 0, i, vars = btf_vlen(t);
2892 const char *sec_name = btf__name_by_offset(btf, t->name_off);
2893 struct btf_var_secinfo *vsi;
2894 bool fixup_offsets = false;
2895 int err;
2896
2897 if (!sec_name) {
2898 pr_debug("No name found in string section for DATASEC kind.\n");
2899 return -ENOENT;
2900 }
2901
2902 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and
2903 * variable offsets set at the previous step. Further, not every
2904 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
2905 * all fixups altogether for such sections and go straight to sorting
2906 * VARs within their DATASEC.
2907 */
2908 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
2909 goto sort_vars;
2910
2911 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
2912 * fix this up. But BPF static linker already fixes this up and fills
2913 * all the sizes and offsets during static linking. So this step has
2914 * to be optional. But the STV_HIDDEN handling is non-optional for any
2915 * non-extern DATASEC, so the variable fixup loop below handles both
2916 * functions at the same time, paying the cost of BTF VAR <-> ELF
2917 * symbol matching just once.
2918 */
2919 if (t->size == 0) {
2920 err = find_elf_sec_sz(obj, sec_name, &size);
2921 if (err || !size) {
2922 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n",
2923 sec_name, size, err);
2924 return -ENOENT;
2925 }
2926
2927 t->size = size;
2928 fixup_offsets = true;
2929 }
2930
2931 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2932 const struct btf_type *t_var;
2933 struct btf_var *var;
2934 const char *var_name;
2935 Elf64_Sym *sym;
2936
2937 t_var = btf__type_by_id(btf, vsi->type);
2938 if (!t_var || !btf_is_var(t_var)) {
2939 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
2940 return -EINVAL;
2941 }
2942
2943 var = btf_var(t_var);
2944 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
2945 continue;
2946
2947 var_name = btf__name_by_offset(btf, t_var->name_off);
2948 if (!var_name) {
2949 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
2950 sec_name, i);
2951 return -ENOENT;
2952 }
2953
2954 sym = find_elf_var_sym(obj, var_name);
2955 if (IS_ERR(sym)) {
2956 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
2957 sec_name, var_name);
2958 return -ENOENT;
2959 }
2960
2961 if (fixup_offsets)
2962 vsi->offset = sym->st_value;
2963
2964 /* if variable is a global/weak symbol, but has restricted
2965 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
2966 * as static. This follows similar logic for functions (BPF
2967 * subprogs) and influences libbpf's further decisions about
2968 * whether to make global data BPF array maps as
2969 * BPF_F_MMAPABLE.
2970 */
2971 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
2972 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
2973 var->linkage = BTF_VAR_STATIC;
2974 }
2975
2976sort_vars:
2977 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
2978 return 0;
2979}
2980
2981static int bpf_object_fixup_btf(struct bpf_object *obj)
2982{
2983 int i, n, err = 0;
2984
2985 if (!obj->btf)
2986 return 0;
2987
2988 n = btf__type_cnt(obj->btf);
2989 for (i = 1; i < n; i++) {
2990 struct btf_type *t = btf_type_by_id(obj->btf, i);
2991
2992 /* Loader needs to fix up some of the things compiler
2993 * couldn't get its hands on while emitting BTF. This
2994 * is section size and global variable offset. We use
2995 * the info from the ELF itself for this purpose.
2996 */
2997 if (btf_is_datasec(t)) {
2998 err = btf_fixup_datasec(obj, obj->btf, t);
2999 if (err)
3000 return err;
3001 }
3002 }
3003
3004 return 0;
3005}
3006
3007static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3008{
3009 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3010 prog->type == BPF_PROG_TYPE_LSM)
3011 return true;
3012
3013 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3014 * also need vmlinux BTF
3015 */
3016 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3017 return true;
3018
3019 return false;
3020}
3021
3022static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3023{
3024 struct bpf_program *prog;
3025 int i;
3026
3027 /* CO-RE relocations need kernel BTF, only when btf_custom_path
3028 * is not specified
3029 */
3030 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3031 return true;
3032
3033 /* Support for typed ksyms needs kernel BTF */
3034 for (i = 0; i < obj->nr_extern; i++) {
3035 const struct extern_desc *ext;
3036
3037 ext = &obj->externs[i];
3038 if (ext->type == EXT_KSYM && ext->ksym.type_id)
3039 return true;
3040 }
3041
3042 bpf_object__for_each_program(prog, obj) {
3043 if (!prog->autoload)
3044 continue;
3045 if (prog_needs_vmlinux_btf(prog))
3046 return true;
3047 }
3048
3049 return false;
3050}
3051
3052static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3053{
3054 int err;
3055
3056 /* btf_vmlinux could be loaded earlier */
3057 if (obj->btf_vmlinux || obj->gen_loader)
3058 return 0;
3059
3060 if (!force && !obj_needs_vmlinux_btf(obj))
3061 return 0;
3062
3063 obj->btf_vmlinux = btf__load_vmlinux_btf();
3064 err = libbpf_get_error(obj->btf_vmlinux);
3065 if (err) {
3066 pr_warn("Error loading vmlinux BTF: %d\n", err);
3067 obj->btf_vmlinux = NULL;
3068 return err;
3069 }
3070 return 0;
3071}
3072
3073static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3074{
3075 struct btf *kern_btf = obj->btf;
3076 bool btf_mandatory, sanitize;
3077 int i, err = 0;
3078
3079 if (!obj->btf)
3080 return 0;
3081
3082 if (!kernel_supports(obj, FEAT_BTF)) {
3083 if (kernel_needs_btf(obj)) {
3084 err = -EOPNOTSUPP;
3085 goto report;
3086 }
3087 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3088 return 0;
3089 }
3090
3091 /* Even though some subprogs are global/weak, user might prefer more
3092 * permissive BPF verification process that BPF verifier performs for
3093 * static functions, taking into account more context from the caller
3094 * functions. In such case, they need to mark such subprogs with
3095 * __attribute__((visibility("hidden"))) and libbpf will adjust
3096 * corresponding FUNC BTF type to be marked as static and trigger more
3097 * involved BPF verification process.
3098 */
3099 for (i = 0; i < obj->nr_programs; i++) {
3100 struct bpf_program *prog = &obj->programs[i];
3101 struct btf_type *t;
3102 const char *name;
3103 int j, n;
3104
3105 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3106 continue;
3107
3108 n = btf__type_cnt(obj->btf);
3109 for (j = 1; j < n; j++) {
3110 t = btf_type_by_id(obj->btf, j);
3111 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3112 continue;
3113
3114 name = btf__str_by_offset(obj->btf, t->name_off);
3115 if (strcmp(name, prog->name) != 0)
3116 continue;
3117
3118 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3119 break;
3120 }
3121 }
3122
3123 sanitize = btf_needs_sanitization(obj);
3124 if (sanitize) {
3125 const void *raw_data;
3126 __u32 sz;
3127
3128 /* clone BTF to sanitize a copy and leave the original intact */
3129 raw_data = btf__raw_data(obj->btf, &sz);
3130 kern_btf = btf__new(raw_data, sz);
3131 err = libbpf_get_error(kern_btf);
3132 if (err)
3133 return err;
3134
3135 /* enforce 8-byte pointers for BPF-targeted BTFs */
3136 btf__set_pointer_size(obj->btf, 8);
3137 err = bpf_object__sanitize_btf(obj, kern_btf);
3138 if (err)
3139 return err;
3140 }
3141
3142 if (obj->gen_loader) {
3143 __u32 raw_size = 0;
3144 const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3145
3146 if (!raw_data)
3147 return -ENOMEM;
3148 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3149 /* Pretend to have valid FD to pass various fd >= 0 checks.
3150 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3151 */
3152 btf__set_fd(kern_btf, 0);
3153 } else {
3154 /* currently BPF_BTF_LOAD only supports log_level 1 */
3155 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3156 obj->log_level ? 1 : 0);
3157 }
3158 if (sanitize) {
3159 if (!err) {
3160 /* move fd to libbpf's BTF */
3161 btf__set_fd(obj->btf, btf__fd(kern_btf));
3162 btf__set_fd(kern_btf, -1);
3163 }
3164 btf__free(kern_btf);
3165 }
3166report:
3167 if (err) {
3168 btf_mandatory = kernel_needs_btf(obj);
3169 pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3170 btf_mandatory ? "BTF is mandatory, can't proceed."
3171 : "BTF is optional, ignoring.");
3172 if (!btf_mandatory)
3173 err = 0;
3174 }
3175 return err;
3176}
3177
3178static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3179{
3180 const char *name;
3181
3182 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3183 if (!name) {
3184 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3185 off, obj->path, elf_errmsg(-1));
3186 return NULL;
3187 }
3188
3189 return name;
3190}
3191
3192static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3193{
3194 const char *name;
3195
3196 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3197 if (!name) {
3198 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3199 off, obj->path, elf_errmsg(-1));
3200 return NULL;
3201 }
3202
3203 return name;
3204}
3205
3206static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3207{
3208 Elf_Scn *scn;
3209
3210 scn = elf_getscn(obj->efile.elf, idx);
3211 if (!scn) {
3212 pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3213 idx, obj->path, elf_errmsg(-1));
3214 return NULL;
3215 }
3216 return scn;
3217}
3218
3219static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3220{
3221 Elf_Scn *scn = NULL;
3222 Elf *elf = obj->efile.elf;
3223 const char *sec_name;
3224
3225 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3226 sec_name = elf_sec_name(obj, scn);
3227 if (!sec_name)
3228 return NULL;
3229
3230 if (strcmp(sec_name, name) != 0)
3231 continue;
3232
3233 return scn;
3234 }
3235 return NULL;
3236}
3237
3238static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3239{
3240 Elf64_Shdr *shdr;
3241
3242 if (!scn)
3243 return NULL;
3244
3245 shdr = elf64_getshdr(scn);
3246 if (!shdr) {
3247 pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3248 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3249 return NULL;
3250 }
3251
3252 return shdr;
3253}
3254
3255static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3256{
3257 const char *name;
3258 Elf64_Shdr *sh;
3259
3260 if (!scn)
3261 return NULL;
3262
3263 sh = elf_sec_hdr(obj, scn);
3264 if (!sh)
3265 return NULL;
3266
3267 name = elf_sec_str(obj, sh->sh_name);
3268 if (!name) {
3269 pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3270 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3271 return NULL;
3272 }
3273
3274 return name;
3275}
3276
3277static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3278{
3279 Elf_Data *data;
3280
3281 if (!scn)
3282 return NULL;
3283
3284 data = elf_getdata(scn, 0);
3285 if (!data) {
3286 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3287 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3288 obj->path, elf_errmsg(-1));
3289 return NULL;
3290 }
3291
3292 return data;
3293}
3294
3295static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3296{
3297 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3298 return NULL;
3299
3300 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3301}
3302
3303static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3304{
3305 if (idx >= data->d_size / sizeof(Elf64_Rel))
3306 return NULL;
3307
3308 return (Elf64_Rel *)data->d_buf + idx;
3309}
3310
3311static bool is_sec_name_dwarf(const char *name)
3312{
3313 /* approximation, but the actual list is too long */
3314 return str_has_pfx(name, ".debug_");
3315}
3316
3317static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3318{
3319 /* no special handling of .strtab */
3320 if (hdr->sh_type == SHT_STRTAB)
3321 return true;
3322
3323 /* ignore .llvm_addrsig section as well */
3324 if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3325 return true;
3326
3327 /* no subprograms will lead to an empty .text section, ignore it */
3328 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3329 strcmp(name, ".text") == 0)
3330 return true;
3331
3332 /* DWARF sections */
3333 if (is_sec_name_dwarf(name))
3334 return true;
3335
3336 if (str_has_pfx(name, ".rel")) {
3337 name += sizeof(".rel") - 1;
3338 /* DWARF section relocations */
3339 if (is_sec_name_dwarf(name))
3340 return true;
3341
3342 /* .BTF and .BTF.ext don't need relocations */
3343 if (strcmp(name, BTF_ELF_SEC) == 0 ||
3344 strcmp(name, BTF_EXT_ELF_SEC) == 0)
3345 return true;
3346 }
3347
3348 return false;
3349}
3350
3351static int cmp_progs(const void *_a, const void *_b)
3352{
3353 const struct bpf_program *a = _a;
3354 const struct bpf_program *b = _b;
3355
3356 if (a->sec_idx != b->sec_idx)
3357 return a->sec_idx < b->sec_idx ? -1 : 1;
3358
3359 /* sec_insn_off can't be the same within the section */
3360 return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3361}
3362
3363static int bpf_object__elf_collect(struct bpf_object *obj)
3364{
3365 struct elf_sec_desc *sec_desc;
3366 Elf *elf = obj->efile.elf;
3367 Elf_Data *btf_ext_data = NULL;
3368 Elf_Data *btf_data = NULL;
3369 int idx = 0, err = 0;
3370 const char *name;
3371 Elf_Data *data;
3372 Elf_Scn *scn;
3373 Elf64_Shdr *sh;
3374
3375 /* ELF section indices are 0-based, but sec #0 is special "invalid"
3376 * section. Since section count retrieved by elf_getshdrnum() does
3377 * include sec #0, it is already the necessary size of an array to keep
3378 * all the sections.
3379 */
3380 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3381 pr_warn("elf: failed to get the number of sections for %s: %s\n",
3382 obj->path, elf_errmsg(-1));
3383 return -LIBBPF_ERRNO__FORMAT;
3384 }
3385 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3386 if (!obj->efile.secs)
3387 return -ENOMEM;
3388
3389 /* a bunch of ELF parsing functionality depends on processing symbols,
3390 * so do the first pass and find the symbol table
3391 */
3392 scn = NULL;
3393 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3394 sh = elf_sec_hdr(obj, scn);
3395 if (!sh)
3396 return -LIBBPF_ERRNO__FORMAT;
3397
3398 if (sh->sh_type == SHT_SYMTAB) {
3399 if (obj->efile.symbols) {
3400 pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3401 return -LIBBPF_ERRNO__FORMAT;
3402 }
3403
3404 data = elf_sec_data(obj, scn);
3405 if (!data)
3406 return -LIBBPF_ERRNO__FORMAT;
3407
3408 idx = elf_ndxscn(scn);
3409
3410 obj->efile.symbols = data;
3411 obj->efile.symbols_shndx = idx;
3412 obj->efile.strtabidx = sh->sh_link;
3413 }
3414 }
3415
3416 if (!obj->efile.symbols) {
3417 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3418 obj->path);
3419 return -ENOENT;
3420 }
3421
3422 scn = NULL;
3423 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3424 idx = elf_ndxscn(scn);
3425 sec_desc = &obj->efile.secs[idx];
3426
3427 sh = elf_sec_hdr(obj, scn);
3428 if (!sh)
3429 return -LIBBPF_ERRNO__FORMAT;
3430
3431 name = elf_sec_str(obj, sh->sh_name);
3432 if (!name)
3433 return -LIBBPF_ERRNO__FORMAT;
3434
3435 if (ignore_elf_section(sh, name))
3436 continue;
3437
3438 data = elf_sec_data(obj, scn);
3439 if (!data)
3440 return -LIBBPF_ERRNO__FORMAT;
3441
3442 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3443 idx, name, (unsigned long)data->d_size,
3444 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3445 (int)sh->sh_type);
3446
3447 if (strcmp(name, "license") == 0) {
3448 err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3449 if (err)
3450 return err;
3451 } else if (strcmp(name, "version") == 0) {
3452 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3453 if (err)
3454 return err;
3455 } else if (strcmp(name, "maps") == 0) {
3456 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3457 return -ENOTSUP;
3458 } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3459 obj->efile.btf_maps_shndx = idx;
3460 } else if (strcmp(name, BTF_ELF_SEC) == 0) {
3461 if (sh->sh_type != SHT_PROGBITS)
3462 return -LIBBPF_ERRNO__FORMAT;
3463 btf_data = data;
3464 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3465 if (sh->sh_type != SHT_PROGBITS)
3466 return -LIBBPF_ERRNO__FORMAT;
3467 btf_ext_data = data;
3468 } else if (sh->sh_type == SHT_SYMTAB) {
3469 /* already processed during the first pass above */
3470 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3471 if (sh->sh_flags & SHF_EXECINSTR) {
3472 if (strcmp(name, ".text") == 0)
3473 obj->efile.text_shndx = idx;
3474 err = bpf_object__add_programs(obj, data, name, idx);
3475 if (err)
3476 return err;
3477 } else if (strcmp(name, DATA_SEC) == 0 ||
3478 str_has_pfx(name, DATA_SEC ".")) {
3479 sec_desc->sec_type = SEC_DATA;
3480 sec_desc->shdr = sh;
3481 sec_desc->data = data;
3482 } else if (strcmp(name, RODATA_SEC) == 0 ||
3483 str_has_pfx(name, RODATA_SEC ".")) {
3484 sec_desc->sec_type = SEC_RODATA;
3485 sec_desc->shdr = sh;
3486 sec_desc->data = data;
3487 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3488 obj->efile.st_ops_data = data;
3489 obj->efile.st_ops_shndx = idx;
3490 } else {
3491 pr_info("elf: skipping unrecognized data section(%d) %s\n",
3492 idx, name);
3493 }
3494 } else if (sh->sh_type == SHT_REL) {
3495 int targ_sec_idx = sh->sh_info; /* points to other section */
3496
3497 if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3498 targ_sec_idx >= obj->efile.sec_cnt)
3499 return -LIBBPF_ERRNO__FORMAT;
3500
3501 /* Only do relo for section with exec instructions */
3502 if (!section_have_execinstr(obj, targ_sec_idx) &&
3503 strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3504 strcmp(name, ".rel" MAPS_ELF_SEC)) {
3505 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3506 idx, name, targ_sec_idx,
3507 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3508 continue;
3509 }
3510
3511 sec_desc->sec_type = SEC_RELO;
3512 sec_desc->shdr = sh;
3513 sec_desc->data = data;
3514 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3515 str_has_pfx(name, BSS_SEC "."))) {
3516 sec_desc->sec_type = SEC_BSS;
3517 sec_desc->shdr = sh;
3518 sec_desc->data = data;
3519 } else {
3520 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3521 (size_t)sh->sh_size);
3522 }
3523 }
3524
3525 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3526 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3527 return -LIBBPF_ERRNO__FORMAT;
3528 }
3529
3530 /* sort BPF programs by section name and in-section instruction offset
3531 * for faster search
3532 */
3533 if (obj->nr_programs)
3534 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3535
3536 return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3537}
3538
3539static bool sym_is_extern(const Elf64_Sym *sym)
3540{
3541 int bind = ELF64_ST_BIND(sym->st_info);
3542 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3543 return sym->st_shndx == SHN_UNDEF &&
3544 (bind == STB_GLOBAL || bind == STB_WEAK) &&
3545 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3546}
3547
3548static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3549{
3550 int bind = ELF64_ST_BIND(sym->st_info);
3551 int type = ELF64_ST_TYPE(sym->st_info);
3552
3553 /* in .text section */
3554 if (sym->st_shndx != text_shndx)
3555 return false;
3556
3557 /* local function */
3558 if (bind == STB_LOCAL && type == STT_SECTION)
3559 return true;
3560
3561 /* global function */
3562 return bind == STB_GLOBAL && type == STT_FUNC;
3563}
3564
3565static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3566{
3567 const struct btf_type *t;
3568 const char *tname;
3569 int i, n;
3570
3571 if (!btf)
3572 return -ESRCH;
3573
3574 n = btf__type_cnt(btf);
3575 for (i = 1; i < n; i++) {
3576 t = btf__type_by_id(btf, i);
3577
3578 if (!btf_is_var(t) && !btf_is_func(t))
3579 continue;
3580
3581 tname = btf__name_by_offset(btf, t->name_off);
3582 if (strcmp(tname, ext_name))
3583 continue;
3584
3585 if (btf_is_var(t) &&
3586 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3587 return -EINVAL;
3588
3589 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3590 return -EINVAL;
3591
3592 return i;
3593 }
3594
3595 return -ENOENT;
3596}
3597
3598static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3599 const struct btf_var_secinfo *vs;
3600 const struct btf_type *t;
3601 int i, j, n;
3602
3603 if (!btf)
3604 return -ESRCH;
3605
3606 n = btf__type_cnt(btf);
3607 for (i = 1; i < n; i++) {
3608 t = btf__type_by_id(btf, i);
3609
3610 if (!btf_is_datasec(t))
3611 continue;
3612
3613 vs = btf_var_secinfos(t);
3614 for (j = 0; j < btf_vlen(t); j++, vs++) {
3615 if (vs->type == ext_btf_id)
3616 return i;
3617 }
3618 }
3619
3620 return -ENOENT;
3621}
3622
3623static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3624 bool *is_signed)
3625{
3626 const struct btf_type *t;
3627 const char *name;
3628
3629 t = skip_mods_and_typedefs(btf, id, NULL);
3630 name = btf__name_by_offset(btf, t->name_off);
3631
3632 if (is_signed)
3633 *is_signed = false;
3634 switch (btf_kind(t)) {
3635 case BTF_KIND_INT: {
3636 int enc = btf_int_encoding(t);
3637
3638 if (enc & BTF_INT_BOOL)
3639 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3640 if (is_signed)
3641 *is_signed = enc & BTF_INT_SIGNED;
3642 if (t->size == 1)
3643 return KCFG_CHAR;
3644 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3645 return KCFG_UNKNOWN;
3646 return KCFG_INT;
3647 }
3648 case BTF_KIND_ENUM:
3649 if (t->size != 4)
3650 return KCFG_UNKNOWN;
3651 if (strcmp(name, "libbpf_tristate"))
3652 return KCFG_UNKNOWN;
3653 return KCFG_TRISTATE;
3654 case BTF_KIND_ENUM64:
3655 if (strcmp(name, "libbpf_tristate"))
3656 return KCFG_UNKNOWN;
3657 return KCFG_TRISTATE;
3658 case BTF_KIND_ARRAY:
3659 if (btf_array(t)->nelems == 0)
3660 return KCFG_UNKNOWN;
3661 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3662 return KCFG_UNKNOWN;
3663 return KCFG_CHAR_ARR;
3664 default:
3665 return KCFG_UNKNOWN;
3666 }
3667}
3668
3669static int cmp_externs(const void *_a, const void *_b)
3670{
3671 const struct extern_desc *a = _a;
3672 const struct extern_desc *b = _b;
3673
3674 if (a->type != b->type)
3675 return a->type < b->type ? -1 : 1;
3676
3677 if (a->type == EXT_KCFG) {
3678 /* descending order by alignment requirements */
3679 if (a->kcfg.align != b->kcfg.align)
3680 return a->kcfg.align > b->kcfg.align ? -1 : 1;
3681 /* ascending order by size, within same alignment class */
3682 if (a->kcfg.sz != b->kcfg.sz)
3683 return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3684 }
3685
3686 /* resolve ties by name */
3687 return strcmp(a->name, b->name);
3688}
3689
3690static int find_int_btf_id(const struct btf *btf)
3691{
3692 const struct btf_type *t;
3693 int i, n;
3694
3695 n = btf__type_cnt(btf);
3696 for (i = 1; i < n; i++) {
3697 t = btf__type_by_id(btf, i);
3698
3699 if (btf_is_int(t) && btf_int_bits(t) == 32)
3700 return i;
3701 }
3702
3703 return 0;
3704}
3705
3706static int add_dummy_ksym_var(struct btf *btf)
3707{
3708 int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3709 const struct btf_var_secinfo *vs;
3710 const struct btf_type *sec;
3711
3712 if (!btf)
3713 return 0;
3714
3715 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3716 BTF_KIND_DATASEC);
3717 if (sec_btf_id < 0)
3718 return 0;
3719
3720 sec = btf__type_by_id(btf, sec_btf_id);
3721 vs = btf_var_secinfos(sec);
3722 for (i = 0; i < btf_vlen(sec); i++, vs++) {
3723 const struct btf_type *vt;
3724
3725 vt = btf__type_by_id(btf, vs->type);
3726 if (btf_is_func(vt))
3727 break;
3728 }
3729
3730 /* No func in ksyms sec. No need to add dummy var. */
3731 if (i == btf_vlen(sec))
3732 return 0;
3733
3734 int_btf_id = find_int_btf_id(btf);
3735 dummy_var_btf_id = btf__add_var(btf,
3736 "dummy_ksym",
3737 BTF_VAR_GLOBAL_ALLOCATED,
3738 int_btf_id);
3739 if (dummy_var_btf_id < 0)
3740 pr_warn("cannot create a dummy_ksym var\n");
3741
3742 return dummy_var_btf_id;
3743}
3744
3745static int bpf_object__collect_externs(struct bpf_object *obj)
3746{
3747 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3748 const struct btf_type *t;
3749 struct extern_desc *ext;
3750 int i, n, off, dummy_var_btf_id;
3751 const char *ext_name, *sec_name;
3752 Elf_Scn *scn;
3753 Elf64_Shdr *sh;
3754
3755 if (!obj->efile.symbols)
3756 return 0;
3757
3758 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3759 sh = elf_sec_hdr(obj, scn);
3760 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3761 return -LIBBPF_ERRNO__FORMAT;
3762
3763 dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3764 if (dummy_var_btf_id < 0)
3765 return dummy_var_btf_id;
3766
3767 n = sh->sh_size / sh->sh_entsize;
3768 pr_debug("looking for externs among %d symbols...\n", n);
3769
3770 for (i = 0; i < n; i++) {
3771 Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3772
3773 if (!sym)
3774 return -LIBBPF_ERRNO__FORMAT;
3775 if (!sym_is_extern(sym))
3776 continue;
3777 ext_name = elf_sym_str(obj, sym->st_name);
3778 if (!ext_name || !ext_name[0])
3779 continue;
3780
3781 ext = obj->externs;
3782 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3783 if (!ext)
3784 return -ENOMEM;
3785 obj->externs = ext;
3786 ext = &ext[obj->nr_extern];
3787 memset(ext, 0, sizeof(*ext));
3788 obj->nr_extern++;
3789
3790 ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3791 if (ext->btf_id <= 0) {
3792 pr_warn("failed to find BTF for extern '%s': %d\n",
3793 ext_name, ext->btf_id);
3794 return ext->btf_id;
3795 }
3796 t = btf__type_by_id(obj->btf, ext->btf_id);
3797 ext->name = btf__name_by_offset(obj->btf, t->name_off);
3798 ext->sym_idx = i;
3799 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3800
3801 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3802 if (ext->sec_btf_id <= 0) {
3803 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3804 ext_name, ext->btf_id, ext->sec_btf_id);
3805 return ext->sec_btf_id;
3806 }
3807 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3808 sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3809
3810 if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3811 if (btf_is_func(t)) {
3812 pr_warn("extern function %s is unsupported under %s section\n",
3813 ext->name, KCONFIG_SEC);
3814 return -ENOTSUP;
3815 }
3816 kcfg_sec = sec;
3817 ext->type = EXT_KCFG;
3818 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3819 if (ext->kcfg.sz <= 0) {
3820 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3821 ext_name, ext->kcfg.sz);
3822 return ext->kcfg.sz;
3823 }
3824 ext->kcfg.align = btf__align_of(obj->btf, t->type);
3825 if (ext->kcfg.align <= 0) {
3826 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3827 ext_name, ext->kcfg.align);
3828 return -EINVAL;
3829 }
3830 ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3831 &ext->kcfg.is_signed);
3832 if (ext->kcfg.type == KCFG_UNKNOWN) {
3833 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
3834 return -ENOTSUP;
3835 }
3836 } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3837 ksym_sec = sec;
3838 ext->type = EXT_KSYM;
3839 skip_mods_and_typedefs(obj->btf, t->type,
3840 &ext->ksym.type_id);
3841 } else {
3842 pr_warn("unrecognized extern section '%s'\n", sec_name);
3843 return -ENOTSUP;
3844 }
3845 }
3846 pr_debug("collected %d externs total\n", obj->nr_extern);
3847
3848 if (!obj->nr_extern)
3849 return 0;
3850
3851 /* sort externs by type, for kcfg ones also by (align, size, name) */
3852 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3853
3854 /* for .ksyms section, we need to turn all externs into allocated
3855 * variables in BTF to pass kernel verification; we do this by
3856 * pretending that each extern is a 8-byte variable
3857 */
3858 if (ksym_sec) {
3859 /* find existing 4-byte integer type in BTF to use for fake
3860 * extern variables in DATASEC
3861 */
3862 int int_btf_id = find_int_btf_id(obj->btf);
3863 /* For extern function, a dummy_var added earlier
3864 * will be used to replace the vs->type and
3865 * its name string will be used to refill
3866 * the missing param's name.
3867 */
3868 const struct btf_type *dummy_var;
3869
3870 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3871 for (i = 0; i < obj->nr_extern; i++) {
3872 ext = &obj->externs[i];
3873 if (ext->type != EXT_KSYM)
3874 continue;
3875 pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3876 i, ext->sym_idx, ext->name);
3877 }
3878
3879 sec = ksym_sec;
3880 n = btf_vlen(sec);
3881 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3882 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3883 struct btf_type *vt;
3884
3885 vt = (void *)btf__type_by_id(obj->btf, vs->type);
3886 ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3887 ext = find_extern_by_name(obj, ext_name);
3888 if (!ext) {
3889 pr_warn("failed to find extern definition for BTF %s '%s'\n",
3890 btf_kind_str(vt), ext_name);
3891 return -ESRCH;
3892 }
3893 if (btf_is_func(vt)) {
3894 const struct btf_type *func_proto;
3895 struct btf_param *param;
3896 int j;
3897
3898 func_proto = btf__type_by_id(obj->btf,
3899 vt->type);
3900 param = btf_params(func_proto);
3901 /* Reuse the dummy_var string if the
3902 * func proto does not have param name.
3903 */
3904 for (j = 0; j < btf_vlen(func_proto); j++)
3905 if (param[j].type && !param[j].name_off)
3906 param[j].name_off =
3907 dummy_var->name_off;
3908 vs->type = dummy_var_btf_id;
3909 vt->info &= ~0xffff;
3910 vt->info |= BTF_FUNC_GLOBAL;
3911 } else {
3912 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3913 vt->type = int_btf_id;
3914 }
3915 vs->offset = off;
3916 vs->size = sizeof(int);
3917 }
3918 sec->size = off;
3919 }
3920
3921 if (kcfg_sec) {
3922 sec = kcfg_sec;
3923 /* for kcfg externs calculate their offsets within a .kconfig map */
3924 off = 0;
3925 for (i = 0; i < obj->nr_extern; i++) {
3926 ext = &obj->externs[i];
3927 if (ext->type != EXT_KCFG)
3928 continue;
3929
3930 ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3931 off = ext->kcfg.data_off + ext->kcfg.sz;
3932 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3933 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3934 }
3935 sec->size = off;
3936 n = btf_vlen(sec);
3937 for (i = 0; i < n; i++) {
3938 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3939
3940 t = btf__type_by_id(obj->btf, vs->type);
3941 ext_name = btf__name_by_offset(obj->btf, t->name_off);
3942 ext = find_extern_by_name(obj, ext_name);
3943 if (!ext) {
3944 pr_warn("failed to find extern definition for BTF var '%s'\n",
3945 ext_name);
3946 return -ESRCH;
3947 }
3948 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3949 vs->offset = ext->kcfg.data_off;
3950 }
3951 }
3952 return 0;
3953}
3954
3955static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
3956{
3957 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3958}
3959
3960struct bpf_program *
3961bpf_object__find_program_by_name(const struct bpf_object *obj,
3962 const char *name)
3963{
3964 struct bpf_program *prog;
3965
3966 bpf_object__for_each_program(prog, obj) {
3967 if (prog_is_subprog(obj, prog))
3968 continue;
3969 if (!strcmp(prog->name, name))
3970 return prog;
3971 }
3972 return errno = ENOENT, NULL;
3973}
3974
3975static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3976 int shndx)
3977{
3978 switch (obj->efile.secs[shndx].sec_type) {
3979 case SEC_BSS:
3980 case SEC_DATA:
3981 case SEC_RODATA:
3982 return true;
3983 default:
3984 return false;
3985 }
3986}
3987
3988static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3989 int shndx)
3990{
3991 return shndx == obj->efile.btf_maps_shndx;
3992}
3993
3994static enum libbpf_map_type
3995bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3996{
3997 if (shndx == obj->efile.symbols_shndx)
3998 return LIBBPF_MAP_KCONFIG;
3999
4000 switch (obj->efile.secs[shndx].sec_type) {
4001 case SEC_BSS:
4002 return LIBBPF_MAP_BSS;
4003 case SEC_DATA:
4004 return LIBBPF_MAP_DATA;
4005 case SEC_RODATA:
4006 return LIBBPF_MAP_RODATA;
4007 default:
4008 return LIBBPF_MAP_UNSPEC;
4009 }
4010}
4011
4012static int bpf_program__record_reloc(struct bpf_program *prog,
4013 struct reloc_desc *reloc_desc,
4014 __u32 insn_idx, const char *sym_name,
4015 const Elf64_Sym *sym, const Elf64_Rel *rel)
4016{
4017 struct bpf_insn *insn = &prog->insns[insn_idx];
4018 size_t map_idx, nr_maps = prog->obj->nr_maps;
4019 struct bpf_object *obj = prog->obj;
4020 __u32 shdr_idx = sym->st_shndx;
4021 enum libbpf_map_type type;
4022 const char *sym_sec_name;
4023 struct bpf_map *map;
4024
4025 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4026 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4027 prog->name, sym_name, insn_idx, insn->code);
4028 return -LIBBPF_ERRNO__RELOC;
4029 }
4030
4031 if (sym_is_extern(sym)) {
4032 int sym_idx = ELF64_R_SYM(rel->r_info);
4033 int i, n = obj->nr_extern;
4034 struct extern_desc *ext;
4035
4036 for (i = 0; i < n; i++) {
4037 ext = &obj->externs[i];
4038 if (ext->sym_idx == sym_idx)
4039 break;
4040 }
4041 if (i >= n) {
4042 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4043 prog->name, sym_name, sym_idx);
4044 return -LIBBPF_ERRNO__RELOC;
4045 }
4046 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4047 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4048 if (insn->code == (BPF_JMP | BPF_CALL))
4049 reloc_desc->type = RELO_EXTERN_FUNC;
4050 else
4051 reloc_desc->type = RELO_EXTERN_VAR;
4052 reloc_desc->insn_idx = insn_idx;
4053 reloc_desc->sym_off = i; /* sym_off stores extern index */
4054 return 0;
4055 }
4056
4057 /* sub-program call relocation */
4058 if (is_call_insn(insn)) {
4059 if (insn->src_reg != BPF_PSEUDO_CALL) {
4060 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4061 return -LIBBPF_ERRNO__RELOC;
4062 }
4063 /* text_shndx can be 0, if no default "main" program exists */
4064 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4065 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4066 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4067 prog->name, sym_name, sym_sec_name);
4068 return -LIBBPF_ERRNO__RELOC;
4069 }
4070 if (sym->st_value % BPF_INSN_SZ) {
4071 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4072 prog->name, sym_name, (size_t)sym->st_value);
4073 return -LIBBPF_ERRNO__RELOC;
4074 }
4075 reloc_desc->type = RELO_CALL;
4076 reloc_desc->insn_idx = insn_idx;
4077 reloc_desc->sym_off = sym->st_value;
4078 return 0;
4079 }
4080
4081 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4082 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4083 prog->name, sym_name, shdr_idx);
4084 return -LIBBPF_ERRNO__RELOC;
4085 }
4086
4087 /* loading subprog addresses */
4088 if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4089 /* global_func: sym->st_value = offset in the section, insn->imm = 0.
4090 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4091 */
4092 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4093 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4094 prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4095 return -LIBBPF_ERRNO__RELOC;
4096 }
4097
4098 reloc_desc->type = RELO_SUBPROG_ADDR;
4099 reloc_desc->insn_idx = insn_idx;
4100 reloc_desc->sym_off = sym->st_value;
4101 return 0;
4102 }
4103
4104 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4105 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4106
4107 /* generic map reference relocation */
4108 if (type == LIBBPF_MAP_UNSPEC) {
4109 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4110 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4111 prog->name, sym_name, sym_sec_name);
4112 return -LIBBPF_ERRNO__RELOC;
4113 }
4114 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4115 map = &obj->maps[map_idx];
4116 if (map->libbpf_type != type ||
4117 map->sec_idx != sym->st_shndx ||
4118 map->sec_offset != sym->st_value)
4119 continue;
4120 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4121 prog->name, map_idx, map->name, map->sec_idx,
4122 map->sec_offset, insn_idx);
4123 break;
4124 }
4125 if (map_idx >= nr_maps) {
4126 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4127 prog->name, sym_sec_name, (size_t)sym->st_value);
4128 return -LIBBPF_ERRNO__RELOC;
4129 }
4130 reloc_desc->type = RELO_LD64;
4131 reloc_desc->insn_idx = insn_idx;
4132 reloc_desc->map_idx = map_idx;
4133 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4134 return 0;
4135 }
4136
4137 /* global data map relocation */
4138 if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4139 pr_warn("prog '%s': bad data relo against section '%s'\n",
4140 prog->name, sym_sec_name);
4141 return -LIBBPF_ERRNO__RELOC;
4142 }
4143 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4144 map = &obj->maps[map_idx];
4145 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4146 continue;
4147 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4148 prog->name, map_idx, map->name, map->sec_idx,
4149 map->sec_offset, insn_idx);
4150 break;
4151 }
4152 if (map_idx >= nr_maps) {
4153 pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4154 prog->name, sym_sec_name);
4155 return -LIBBPF_ERRNO__RELOC;
4156 }
4157
4158 reloc_desc->type = RELO_DATA;
4159 reloc_desc->insn_idx = insn_idx;
4160 reloc_desc->map_idx = map_idx;
4161 reloc_desc->sym_off = sym->st_value;
4162 return 0;
4163}
4164
4165static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4166{
4167 return insn_idx >= prog->sec_insn_off &&
4168 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4169}
4170
4171static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4172 size_t sec_idx, size_t insn_idx)
4173{
4174 int l = 0, r = obj->nr_programs - 1, m;
4175 struct bpf_program *prog;
4176
4177 if (!obj->nr_programs)
4178 return NULL;
4179
4180 while (l < r) {
4181 m = l + (r - l + 1) / 2;
4182 prog = &obj->programs[m];
4183
4184 if (prog->sec_idx < sec_idx ||
4185 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4186 l = m;
4187 else
4188 r = m - 1;
4189 }
4190 /* matching program could be at index l, but it still might be the
4191 * wrong one, so we need to double check conditions for the last time
4192 */
4193 prog = &obj->programs[l];
4194 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4195 return prog;
4196 return NULL;
4197}
4198
4199static int
4200bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4201{
4202 const char *relo_sec_name, *sec_name;
4203 size_t sec_idx = shdr->sh_info, sym_idx;
4204 struct bpf_program *prog;
4205 struct reloc_desc *relos;
4206 int err, i, nrels;
4207 const char *sym_name;
4208 __u32 insn_idx;
4209 Elf_Scn *scn;
4210 Elf_Data *scn_data;
4211 Elf64_Sym *sym;
4212 Elf64_Rel *rel;
4213
4214 if (sec_idx >= obj->efile.sec_cnt)
4215 return -EINVAL;
4216
4217 scn = elf_sec_by_idx(obj, sec_idx);
4218 scn_data = elf_sec_data(obj, scn);
4219
4220 relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4221 sec_name = elf_sec_name(obj, scn);
4222 if (!relo_sec_name || !sec_name)
4223 return -EINVAL;
4224
4225 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4226 relo_sec_name, sec_idx, sec_name);
4227 nrels = shdr->sh_size / shdr->sh_entsize;
4228
4229 for (i = 0; i < nrels; i++) {
4230 rel = elf_rel_by_idx(data, i);
4231 if (!rel) {
4232 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4233 return -LIBBPF_ERRNO__FORMAT;
4234 }
4235
4236 sym_idx = ELF64_R_SYM(rel->r_info);
4237 sym = elf_sym_by_idx(obj, sym_idx);
4238 if (!sym) {
4239 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4240 relo_sec_name, sym_idx, i);
4241 return -LIBBPF_ERRNO__FORMAT;
4242 }
4243
4244 if (sym->st_shndx >= obj->efile.sec_cnt) {
4245 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4246 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4247 return -LIBBPF_ERRNO__FORMAT;
4248 }
4249
4250 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4251 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4252 relo_sec_name, (size_t)rel->r_offset, i);
4253 return -LIBBPF_ERRNO__FORMAT;
4254 }
4255
4256 insn_idx = rel->r_offset / BPF_INSN_SZ;
4257 /* relocations against static functions are recorded as
4258 * relocations against the section that contains a function;
4259 * in such case, symbol will be STT_SECTION and sym.st_name
4260 * will point to empty string (0), so fetch section name
4261 * instead
4262 */
4263 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4264 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4265 else
4266 sym_name = elf_sym_str(obj, sym->st_name);
4267 sym_name = sym_name ?: "<?";
4268
4269 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4270 relo_sec_name, i, insn_idx, sym_name);
4271
4272 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4273 if (!prog) {
4274 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4275 relo_sec_name, i, sec_name, insn_idx);
4276 continue;
4277 }
4278
4279 relos = libbpf_reallocarray(prog->reloc_desc,
4280 prog->nr_reloc + 1, sizeof(*relos));
4281 if (!relos)
4282 return -ENOMEM;
4283 prog->reloc_desc = relos;
4284
4285 /* adjust insn_idx to local BPF program frame of reference */
4286 insn_idx -= prog->sec_insn_off;
4287 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4288 insn_idx, sym_name, sym, rel);
4289 if (err)
4290 return err;
4291
4292 prog->nr_reloc++;
4293 }
4294 return 0;
4295}
4296
4297static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4298{
4299 int id;
4300
4301 if (!obj->btf)
4302 return -ENOENT;
4303
4304 /* if it's BTF-defined map, we don't need to search for type IDs.
4305 * For struct_ops map, it does not need btf_key_type_id and
4306 * btf_value_type_id.
4307 */
4308 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4309 return 0;
4310
4311 /*
4312 * LLVM annotates global data differently in BTF, that is,
4313 * only as '.data', '.bss' or '.rodata'.
4314 */
4315 if (!bpf_map__is_internal(map))
4316 return -ENOENT;
4317
4318 id = btf__find_by_name(obj->btf, map->real_name);
4319 if (id < 0)
4320 return id;
4321
4322 map->btf_key_type_id = 0;
4323 map->btf_value_type_id = id;
4324 return 0;
4325}
4326
4327static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4328{
4329 char file[PATH_MAX], buff[4096];
4330 FILE *fp;
4331 __u32 val;
4332 int err;
4333
4334 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4335 memset(info, 0, sizeof(*info));
4336
4337 fp = fopen(file, "r");
4338 if (!fp) {
4339 err = -errno;
4340 pr_warn("failed to open %s: %d. No procfs support?\n", file,
4341 err);
4342 return err;
4343 }
4344
4345 while (fgets(buff, sizeof(buff), fp)) {
4346 if (sscanf(buff, "map_type:\t%u", &val) == 1)
4347 info->type = val;
4348 else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4349 info->key_size = val;
4350 else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4351 info->value_size = val;
4352 else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4353 info->max_entries = val;
4354 else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4355 info->map_flags = val;
4356 }
4357
4358 fclose(fp);
4359
4360 return 0;
4361}
4362
4363bool bpf_map__autocreate(const struct bpf_map *map)
4364{
4365 return map->autocreate;
4366}
4367
4368int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4369{
4370 if (map->obj->loaded)
4371 return libbpf_err(-EBUSY);
4372
4373 map->autocreate = autocreate;
4374 return 0;
4375}
4376
4377int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4378{
4379 struct bpf_map_info info;
4380 __u32 len = sizeof(info), name_len;
4381 int new_fd, err;
4382 char *new_name;
4383
4384 memset(&info, 0, len);
4385 err = bpf_obj_get_info_by_fd(fd, &info, &len);
4386 if (err && errno == EINVAL)
4387 err = bpf_get_map_info_from_fdinfo(fd, &info);
4388 if (err)
4389 return libbpf_err(err);
4390
4391 name_len = strlen(info.name);
4392 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4393 new_name = strdup(map->name);
4394 else
4395 new_name = strdup(info.name);
4396
4397 if (!new_name)
4398 return libbpf_err(-errno);
4399
4400 new_fd = open("/", O_RDONLY | O_CLOEXEC);
4401 if (new_fd < 0) {
4402 err = -errno;
4403 goto err_free_new_name;
4404 }
4405
4406 new_fd = dup3(fd, new_fd, O_CLOEXEC);
4407 if (new_fd < 0) {
4408 err = -errno;
4409 goto err_close_new_fd;
4410 }
4411
4412 err = zclose(map->fd);
4413 if (err) {
4414 err = -errno;
4415 goto err_close_new_fd;
4416 }
4417 free(map->name);
4418
4419 map->fd = new_fd;
4420 map->name = new_name;
4421 map->def.type = info.type;
4422 map->def.key_size = info.key_size;
4423 map->def.value_size = info.value_size;
4424 map->def.max_entries = info.max_entries;
4425 map->def.map_flags = info.map_flags;
4426 map->btf_key_type_id = info.btf_key_type_id;
4427 map->btf_value_type_id = info.btf_value_type_id;
4428 map->reused = true;
4429 map->map_extra = info.map_extra;
4430
4431 return 0;
4432
4433err_close_new_fd:
4434 close(new_fd);
4435err_free_new_name:
4436 free(new_name);
4437 return libbpf_err(err);
4438}
4439
4440__u32 bpf_map__max_entries(const struct bpf_map *map)
4441{
4442 return map->def.max_entries;
4443}
4444
4445struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4446{
4447 if (!bpf_map_type__is_map_in_map(map->def.type))
4448 return errno = EINVAL, NULL;
4449
4450 return map->inner_map;
4451}
4452
4453int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4454{
4455 if (map->obj->loaded)
4456 return libbpf_err(-EBUSY);
4457
4458 map->def.max_entries = max_entries;
4459
4460 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4461 if (map_is_ringbuf(map))
4462 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4463
4464 return 0;
4465}
4466
4467static int
4468bpf_object__probe_loading(struct bpf_object *obj)
4469{
4470 char *cp, errmsg[STRERR_BUFSIZE];
4471 struct bpf_insn insns[] = {
4472 BPF_MOV64_IMM(BPF_REG_0, 0),
4473 BPF_EXIT_INSN(),
4474 };
4475 int ret, insn_cnt = ARRAY_SIZE(insns);
4476
4477 if (obj->gen_loader)
4478 return 0;
4479
4480 ret = bump_rlimit_memlock();
4481 if (ret)
4482 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4483
4484 /* make sure basic loading works */
4485 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4486 if (ret < 0)
4487 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4488 if (ret < 0) {
4489 ret = errno;
4490 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4491 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4492 "program. Make sure your kernel supports BPF "
4493 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4494 "set to big enough value.\n", __func__, cp, ret);
4495 return -ret;
4496 }
4497 close(ret);
4498
4499 return 0;
4500}
4501
4502static int probe_fd(int fd)
4503{
4504 if (fd >= 0)
4505 close(fd);
4506 return fd >= 0;
4507}
4508
4509static int probe_kern_prog_name(void)
4510{
4511 const size_t attr_sz = offsetofend(union bpf_attr, prog_name);
4512 struct bpf_insn insns[] = {
4513 BPF_MOV64_IMM(BPF_REG_0, 0),
4514 BPF_EXIT_INSN(),
4515 };
4516 union bpf_attr attr;
4517 int ret;
4518
4519 memset(&attr, 0, attr_sz);
4520 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4521 attr.license = ptr_to_u64("GPL");
4522 attr.insns = ptr_to_u64(insns);
4523 attr.insn_cnt = (__u32)ARRAY_SIZE(insns);
4524 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name));
4525
4526 /* make sure loading with name works */
4527 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS);
4528 return probe_fd(ret);
4529}
4530
4531static int probe_kern_global_data(void)
4532{
4533 char *cp, errmsg[STRERR_BUFSIZE];
4534 struct bpf_insn insns[] = {
4535 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4536 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4537 BPF_MOV64_IMM(BPF_REG_0, 0),
4538 BPF_EXIT_INSN(),
4539 };
4540 int ret, map, insn_cnt = ARRAY_SIZE(insns);
4541
4542 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL);
4543 if (map < 0) {
4544 ret = -errno;
4545 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4546 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4547 __func__, cp, -ret);
4548 return ret;
4549 }
4550
4551 insns[0].imm = map;
4552
4553 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4554 close(map);
4555 return probe_fd(ret);
4556}
4557
4558static int probe_kern_btf(void)
4559{
4560 static const char strs[] = "\0int";
4561 __u32 types[] = {
4562 /* int */
4563 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4564 };
4565
4566 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4567 strs, sizeof(strs)));
4568}
4569
4570static int probe_kern_btf_func(void)
4571{
4572 static const char strs[] = "\0int\0x\0a";
4573 /* void x(int a) {} */
4574 __u32 types[] = {
4575 /* int */
4576 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4577 /* FUNC_PROTO */ /* [2] */
4578 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4579 BTF_PARAM_ENC(7, 1),
4580 /* FUNC x */ /* [3] */
4581 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4582 };
4583
4584 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4585 strs, sizeof(strs)));
4586}
4587
4588static int probe_kern_btf_func_global(void)
4589{
4590 static const char strs[] = "\0int\0x\0a";
4591 /* static void x(int a) {} */
4592 __u32 types[] = {
4593 /* int */
4594 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4595 /* FUNC_PROTO */ /* [2] */
4596 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4597 BTF_PARAM_ENC(7, 1),
4598 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */
4599 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4600 };
4601
4602 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4603 strs, sizeof(strs)));
4604}
4605
4606static int probe_kern_btf_datasec(void)
4607{
4608 static const char strs[] = "\0x\0.data";
4609 /* static int a; */
4610 __u32 types[] = {
4611 /* int */
4612 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4613 /* VAR x */ /* [2] */
4614 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4615 BTF_VAR_STATIC,
4616 /* DATASEC val */ /* [3] */
4617 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4618 BTF_VAR_SECINFO_ENC(2, 0, 4),
4619 };
4620
4621 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4622 strs, sizeof(strs)));
4623}
4624
4625static int probe_kern_btf_float(void)
4626{
4627 static const char strs[] = "\0float";
4628 __u32 types[] = {
4629 /* float */
4630 BTF_TYPE_FLOAT_ENC(1, 4),
4631 };
4632
4633 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4634 strs, sizeof(strs)));
4635}
4636
4637static int probe_kern_btf_decl_tag(void)
4638{
4639 static const char strs[] = "\0tag";
4640 __u32 types[] = {
4641 /* int */
4642 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4643 /* VAR x */ /* [2] */
4644 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4645 BTF_VAR_STATIC,
4646 /* attr */
4647 BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4648 };
4649
4650 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4651 strs, sizeof(strs)));
4652}
4653
4654static int probe_kern_btf_type_tag(void)
4655{
4656 static const char strs[] = "\0tag";
4657 __u32 types[] = {
4658 /* int */
4659 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4660 /* attr */
4661 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */
4662 /* ptr */
4663 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */
4664 };
4665
4666 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4667 strs, sizeof(strs)));
4668}
4669
4670static int probe_kern_array_mmap(void)
4671{
4672 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4673 int fd;
4674
4675 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts);
4676 return probe_fd(fd);
4677}
4678
4679static int probe_kern_exp_attach_type(void)
4680{
4681 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4682 struct bpf_insn insns[] = {
4683 BPF_MOV64_IMM(BPF_REG_0, 0),
4684 BPF_EXIT_INSN(),
4685 };
4686 int fd, insn_cnt = ARRAY_SIZE(insns);
4687
4688 /* use any valid combination of program type and (optional)
4689 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4690 * to see if kernel supports expected_attach_type field for
4691 * BPF_PROG_LOAD command
4692 */
4693 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4694 return probe_fd(fd);
4695}
4696
4697static int probe_kern_probe_read_kernel(void)
4698{
4699 struct bpf_insn insns[] = {
4700 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */
4701 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */
4702 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */
4703 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */
4704 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4705 BPF_EXIT_INSN(),
4706 };
4707 int fd, insn_cnt = ARRAY_SIZE(insns);
4708
4709 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4710 return probe_fd(fd);
4711}
4712
4713static int probe_prog_bind_map(void)
4714{
4715 char *cp, errmsg[STRERR_BUFSIZE];
4716 struct bpf_insn insns[] = {
4717 BPF_MOV64_IMM(BPF_REG_0, 0),
4718 BPF_EXIT_INSN(),
4719 };
4720 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4721
4722 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL);
4723 if (map < 0) {
4724 ret = -errno;
4725 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4726 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4727 __func__, cp, -ret);
4728 return ret;
4729 }
4730
4731 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4732 if (prog < 0) {
4733 close(map);
4734 return 0;
4735 }
4736
4737 ret = bpf_prog_bind_map(prog, map, NULL);
4738
4739 close(map);
4740 close(prog);
4741
4742 return ret >= 0;
4743}
4744
4745static int probe_module_btf(void)
4746{
4747 static const char strs[] = "\0int";
4748 __u32 types[] = {
4749 /* int */
4750 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4751 };
4752 struct bpf_btf_info info;
4753 __u32 len = sizeof(info);
4754 char name[16];
4755 int fd, err;
4756
4757 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4758 if (fd < 0)
4759 return 0; /* BTF not supported at all */
4760
4761 memset(&info, 0, sizeof(info));
4762 info.name = ptr_to_u64(name);
4763 info.name_len = sizeof(name);
4764
4765 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4766 * kernel's module BTF support coincides with support for
4767 * name/name_len fields in struct bpf_btf_info.
4768 */
4769 err = bpf_obj_get_info_by_fd(fd, &info, &len);
4770 close(fd);
4771 return !err;
4772}
4773
4774static int probe_perf_link(void)
4775{
4776 struct bpf_insn insns[] = {
4777 BPF_MOV64_IMM(BPF_REG_0, 0),
4778 BPF_EXIT_INSN(),
4779 };
4780 int prog_fd, link_fd, err;
4781
4782 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4783 insns, ARRAY_SIZE(insns), NULL);
4784 if (prog_fd < 0)
4785 return -errno;
4786
4787 /* use invalid perf_event FD to get EBADF, if link is supported;
4788 * otherwise EINVAL should be returned
4789 */
4790 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4791 err = -errno; /* close() can clobber errno */
4792
4793 if (link_fd >= 0)
4794 close(link_fd);
4795 close(prog_fd);
4796
4797 return link_fd < 0 && err == -EBADF;
4798}
4799
4800static int probe_kern_bpf_cookie(void)
4801{
4802 struct bpf_insn insns[] = {
4803 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
4804 BPF_EXIT_INSN(),
4805 };
4806 int ret, insn_cnt = ARRAY_SIZE(insns);
4807
4808 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4809 return probe_fd(ret);
4810}
4811
4812static int probe_kern_btf_enum64(void)
4813{
4814 static const char strs[] = "\0enum64";
4815 __u32 types[] = {
4816 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8),
4817 };
4818
4819 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4820 strs, sizeof(strs)));
4821}
4822
4823static int probe_kern_syscall_wrapper(void);
4824
4825enum kern_feature_result {
4826 FEAT_UNKNOWN = 0,
4827 FEAT_SUPPORTED = 1,
4828 FEAT_MISSING = 2,
4829};
4830
4831typedef int (*feature_probe_fn)(void);
4832
4833static struct kern_feature_desc {
4834 const char *desc;
4835 feature_probe_fn probe;
4836 enum kern_feature_result res;
4837} feature_probes[__FEAT_CNT] = {
4838 [FEAT_PROG_NAME] = {
4839 "BPF program name", probe_kern_prog_name,
4840 },
4841 [FEAT_GLOBAL_DATA] = {
4842 "global variables", probe_kern_global_data,
4843 },
4844 [FEAT_BTF] = {
4845 "minimal BTF", probe_kern_btf,
4846 },
4847 [FEAT_BTF_FUNC] = {
4848 "BTF functions", probe_kern_btf_func,
4849 },
4850 [FEAT_BTF_GLOBAL_FUNC] = {
4851 "BTF global function", probe_kern_btf_func_global,
4852 },
4853 [FEAT_BTF_DATASEC] = {
4854 "BTF data section and variable", probe_kern_btf_datasec,
4855 },
4856 [FEAT_ARRAY_MMAP] = {
4857 "ARRAY map mmap()", probe_kern_array_mmap,
4858 },
4859 [FEAT_EXP_ATTACH_TYPE] = {
4860 "BPF_PROG_LOAD expected_attach_type attribute",
4861 probe_kern_exp_attach_type,
4862 },
4863 [FEAT_PROBE_READ_KERN] = {
4864 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4865 },
4866 [FEAT_PROG_BIND_MAP] = {
4867 "BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4868 },
4869 [FEAT_MODULE_BTF] = {
4870 "module BTF support", probe_module_btf,
4871 },
4872 [FEAT_BTF_FLOAT] = {
4873 "BTF_KIND_FLOAT support", probe_kern_btf_float,
4874 },
4875 [FEAT_PERF_LINK] = {
4876 "BPF perf link support", probe_perf_link,
4877 },
4878 [FEAT_BTF_DECL_TAG] = {
4879 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4880 },
4881 [FEAT_BTF_TYPE_TAG] = {
4882 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4883 },
4884 [FEAT_MEMCG_ACCOUNT] = {
4885 "memcg-based memory accounting", probe_memcg_account,
4886 },
4887 [FEAT_BPF_COOKIE] = {
4888 "BPF cookie support", probe_kern_bpf_cookie,
4889 },
4890 [FEAT_BTF_ENUM64] = {
4891 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64,
4892 },
4893 [FEAT_SYSCALL_WRAPPER] = {
4894 "Kernel using syscall wrapper", probe_kern_syscall_wrapper,
4895 },
4896};
4897
4898bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4899{
4900 struct kern_feature_desc *feat = &feature_probes[feat_id];
4901 int ret;
4902
4903 if (obj && obj->gen_loader)
4904 /* To generate loader program assume the latest kernel
4905 * to avoid doing extra prog_load, map_create syscalls.
4906 */
4907 return true;
4908
4909 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4910 ret = feat->probe();
4911 if (ret > 0) {
4912 WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4913 } else if (ret == 0) {
4914 WRITE_ONCE(feat->res, FEAT_MISSING);
4915 } else {
4916 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4917 WRITE_ONCE(feat->res, FEAT_MISSING);
4918 }
4919 }
4920
4921 return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4922}
4923
4924static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4925{
4926 struct bpf_map_info map_info;
4927 char msg[STRERR_BUFSIZE];
4928 __u32 map_info_len = sizeof(map_info);
4929 int err;
4930
4931 memset(&map_info, 0, map_info_len);
4932 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len);
4933 if (err && errno == EINVAL)
4934 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
4935 if (err) {
4936 pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
4937 libbpf_strerror_r(errno, msg, sizeof(msg)));
4938 return false;
4939 }
4940
4941 return (map_info.type == map->def.type &&
4942 map_info.key_size == map->def.key_size &&
4943 map_info.value_size == map->def.value_size &&
4944 map_info.max_entries == map->def.max_entries &&
4945 map_info.map_flags == map->def.map_flags &&
4946 map_info.map_extra == map->map_extra);
4947}
4948
4949static int
4950bpf_object__reuse_map(struct bpf_map *map)
4951{
4952 char *cp, errmsg[STRERR_BUFSIZE];
4953 int err, pin_fd;
4954
4955 pin_fd = bpf_obj_get(map->pin_path);
4956 if (pin_fd < 0) {
4957 err = -errno;
4958 if (err == -ENOENT) {
4959 pr_debug("found no pinned map to reuse at '%s'\n",
4960 map->pin_path);
4961 return 0;
4962 }
4963
4964 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4965 pr_warn("couldn't retrieve pinned map '%s': %s\n",
4966 map->pin_path, cp);
4967 return err;
4968 }
4969
4970 if (!map_is_reuse_compat(map, pin_fd)) {
4971 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4972 map->pin_path);
4973 close(pin_fd);
4974 return -EINVAL;
4975 }
4976
4977 err = bpf_map__reuse_fd(map, pin_fd);
4978 close(pin_fd);
4979 if (err)
4980 return err;
4981
4982 map->pinned = true;
4983 pr_debug("reused pinned map at '%s'\n", map->pin_path);
4984
4985 return 0;
4986}
4987
4988static int
4989bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4990{
4991 enum libbpf_map_type map_type = map->libbpf_type;
4992 char *cp, errmsg[STRERR_BUFSIZE];
4993 int err, zero = 0;
4994
4995 if (obj->gen_loader) {
4996 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
4997 map->mmaped, map->def.value_size);
4998 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
4999 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5000 return 0;
5001 }
5002 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5003 if (err) {
5004 err = -errno;
5005 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5006 pr_warn("Error setting initial map(%s) contents: %s\n",
5007 map->name, cp);
5008 return err;
5009 }
5010
5011 /* Freeze .rodata and .kconfig map as read-only from syscall side. */
5012 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5013 err = bpf_map_freeze(map->fd);
5014 if (err) {
5015 err = -errno;
5016 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5017 pr_warn("Error freezing map(%s) as read-only: %s\n",
5018 map->name, cp);
5019 return err;
5020 }
5021 }
5022 return 0;
5023}
5024
5025static void bpf_map__destroy(struct bpf_map *map);
5026
5027static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5028{
5029 LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5030 struct bpf_map_def *def = &map->def;
5031 const char *map_name = NULL;
5032 int err = 0;
5033
5034 if (kernel_supports(obj, FEAT_PROG_NAME))
5035 map_name = map->name;
5036 create_attr.map_ifindex = map->map_ifindex;
5037 create_attr.map_flags = def->map_flags;
5038 create_attr.numa_node = map->numa_node;
5039 create_attr.map_extra = map->map_extra;
5040
5041 if (bpf_map__is_struct_ops(map))
5042 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5043
5044 if (obj->btf && btf__fd(obj->btf) >= 0) {
5045 create_attr.btf_fd = btf__fd(obj->btf);
5046 create_attr.btf_key_type_id = map->btf_key_type_id;
5047 create_attr.btf_value_type_id = map->btf_value_type_id;
5048 }
5049
5050 if (bpf_map_type__is_map_in_map(def->type)) {
5051 if (map->inner_map) {
5052 err = bpf_object__create_map(obj, map->inner_map, true);
5053 if (err) {
5054 pr_warn("map '%s': failed to create inner map: %d\n",
5055 map->name, err);
5056 return err;
5057 }
5058 map->inner_map_fd = bpf_map__fd(map->inner_map);
5059 }
5060 if (map->inner_map_fd >= 0)
5061 create_attr.inner_map_fd = map->inner_map_fd;
5062 }
5063
5064 switch (def->type) {
5065 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5066 case BPF_MAP_TYPE_CGROUP_ARRAY:
5067 case BPF_MAP_TYPE_STACK_TRACE:
5068 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5069 case BPF_MAP_TYPE_HASH_OF_MAPS:
5070 case BPF_MAP_TYPE_DEVMAP:
5071 case BPF_MAP_TYPE_DEVMAP_HASH:
5072 case BPF_MAP_TYPE_CPUMAP:
5073 case BPF_MAP_TYPE_XSKMAP:
5074 case BPF_MAP_TYPE_SOCKMAP:
5075 case BPF_MAP_TYPE_SOCKHASH:
5076 case BPF_MAP_TYPE_QUEUE:
5077 case BPF_MAP_TYPE_STACK:
5078 create_attr.btf_fd = 0;
5079 create_attr.btf_key_type_id = 0;
5080 create_attr.btf_value_type_id = 0;
5081 map->btf_key_type_id = 0;
5082 map->btf_value_type_id = 0;
5083 default:
5084 break;
5085 }
5086
5087 if (obj->gen_loader) {
5088 bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5089 def->key_size, def->value_size, def->max_entries,
5090 &create_attr, is_inner ? -1 : map - obj->maps);
5091 /* Pretend to have valid FD to pass various fd >= 0 checks.
5092 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
5093 */
5094 map->fd = 0;
5095 } else {
5096 map->fd = bpf_map_create(def->type, map_name,
5097 def->key_size, def->value_size,
5098 def->max_entries, &create_attr);
5099 }
5100 if (map->fd < 0 && (create_attr.btf_key_type_id ||
5101 create_attr.btf_value_type_id)) {
5102 char *cp, errmsg[STRERR_BUFSIZE];
5103
5104 err = -errno;
5105 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5106 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5107 map->name, cp, err);
5108 create_attr.btf_fd = 0;
5109 create_attr.btf_key_type_id = 0;
5110 create_attr.btf_value_type_id = 0;
5111 map->btf_key_type_id = 0;
5112 map->btf_value_type_id = 0;
5113 map->fd = bpf_map_create(def->type, map_name,
5114 def->key_size, def->value_size,
5115 def->max_entries, &create_attr);
5116 }
5117
5118 err = map->fd < 0 ? -errno : 0;
5119
5120 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5121 if (obj->gen_loader)
5122 map->inner_map->fd = -1;
5123 bpf_map__destroy(map->inner_map);
5124 zfree(&map->inner_map);
5125 }
5126
5127 return err;
5128}
5129
5130static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5131{
5132 const struct bpf_map *targ_map;
5133 unsigned int i;
5134 int fd, err = 0;
5135
5136 for (i = 0; i < map->init_slots_sz; i++) {
5137 if (!map->init_slots[i])
5138 continue;
5139
5140 targ_map = map->init_slots[i];
5141 fd = bpf_map__fd(targ_map);
5142
5143 if (obj->gen_loader) {
5144 bpf_gen__populate_outer_map(obj->gen_loader,
5145 map - obj->maps, i,
5146 targ_map - obj->maps);
5147 } else {
5148 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5149 }
5150 if (err) {
5151 err = -errno;
5152 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5153 map->name, i, targ_map->name, fd, err);
5154 return err;
5155 }
5156 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5157 map->name, i, targ_map->name, fd);
5158 }
5159
5160 zfree(&map->init_slots);
5161 map->init_slots_sz = 0;
5162
5163 return 0;
5164}
5165
5166static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5167{
5168 const struct bpf_program *targ_prog;
5169 unsigned int i;
5170 int fd, err;
5171
5172 if (obj->gen_loader)
5173 return -ENOTSUP;
5174
5175 for (i = 0; i < map->init_slots_sz; i++) {
5176 if (!map->init_slots[i])
5177 continue;
5178
5179 targ_prog = map->init_slots[i];
5180 fd = bpf_program__fd(targ_prog);
5181
5182 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5183 if (err) {
5184 err = -errno;
5185 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5186 map->name, i, targ_prog->name, fd, err);
5187 return err;
5188 }
5189 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5190 map->name, i, targ_prog->name, fd);
5191 }
5192
5193 zfree(&map->init_slots);
5194 map->init_slots_sz = 0;
5195
5196 return 0;
5197}
5198
5199static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5200{
5201 struct bpf_map *map;
5202 int i, err;
5203
5204 for (i = 0; i < obj->nr_maps; i++) {
5205 map = &obj->maps[i];
5206
5207 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5208 continue;
5209
5210 err = init_prog_array_slots(obj, map);
5211 if (err < 0) {
5212 zclose(map->fd);
5213 return err;
5214 }
5215 }
5216 return 0;
5217}
5218
5219static int map_set_def_max_entries(struct bpf_map *map)
5220{
5221 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5222 int nr_cpus;
5223
5224 nr_cpus = libbpf_num_possible_cpus();
5225 if (nr_cpus < 0) {
5226 pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5227 map->name, nr_cpus);
5228 return nr_cpus;
5229 }
5230 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5231 map->def.max_entries = nr_cpus;
5232 }
5233
5234 return 0;
5235}
5236
5237static int
5238bpf_object__create_maps(struct bpf_object *obj)
5239{
5240 struct bpf_map *map;
5241 char *cp, errmsg[STRERR_BUFSIZE];
5242 unsigned int i, j;
5243 int err;
5244 bool retried;
5245
5246 for (i = 0; i < obj->nr_maps; i++) {
5247 map = &obj->maps[i];
5248
5249 /* To support old kernels, we skip creating global data maps
5250 * (.rodata, .data, .kconfig, etc); later on, during program
5251 * loading, if we detect that at least one of the to-be-loaded
5252 * programs is referencing any global data map, we'll error
5253 * out with program name and relocation index logged.
5254 * This approach allows to accommodate Clang emitting
5255 * unnecessary .rodata.str1.1 sections for string literals,
5256 * but also it allows to have CO-RE applications that use
5257 * global variables in some of BPF programs, but not others.
5258 * If those global variable-using programs are not loaded at
5259 * runtime due to bpf_program__set_autoload(prog, false),
5260 * bpf_object loading will succeed just fine even on old
5261 * kernels.
5262 */
5263 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5264 map->autocreate = false;
5265
5266 if (!map->autocreate) {
5267 pr_debug("map '%s': skipped auto-creating...\n", map->name);
5268 continue;
5269 }
5270
5271 err = map_set_def_max_entries(map);
5272 if (err)
5273 goto err_out;
5274
5275 retried = false;
5276retry:
5277 if (map->pin_path) {
5278 err = bpf_object__reuse_map(map);
5279 if (err) {
5280 pr_warn("map '%s': error reusing pinned map\n",
5281 map->name);
5282 goto err_out;
5283 }
5284 if (retried && map->fd < 0) {
5285 pr_warn("map '%s': cannot find pinned map\n",
5286 map->name);
5287 err = -ENOENT;
5288 goto err_out;
5289 }
5290 }
5291
5292 if (map->fd >= 0) {
5293 pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5294 map->name, map->fd);
5295 } else {
5296 err = bpf_object__create_map(obj, map, false);
5297 if (err)
5298 goto err_out;
5299
5300 pr_debug("map '%s': created successfully, fd=%d\n",
5301 map->name, map->fd);
5302
5303 if (bpf_map__is_internal(map)) {
5304 err = bpf_object__populate_internal_map(obj, map);
5305 if (err < 0) {
5306 zclose(map->fd);
5307 goto err_out;
5308 }
5309 }
5310
5311 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5312 err = init_map_in_map_slots(obj, map);
5313 if (err < 0) {
5314 zclose(map->fd);
5315 goto err_out;
5316 }
5317 }
5318 }
5319
5320 if (map->pin_path && !map->pinned) {
5321 err = bpf_map__pin(map, NULL);
5322 if (err) {
5323 zclose(map->fd);
5324 if (!retried && err == -EEXIST) {
5325 retried = true;
5326 goto retry;
5327 }
5328 pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5329 map->name, map->pin_path, err);
5330 goto err_out;
5331 }
5332 }
5333 }
5334
5335 return 0;
5336
5337err_out:
5338 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5339 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5340 pr_perm_msg(err);
5341 for (j = 0; j < i; j++)
5342 zclose(obj->maps[j].fd);
5343 return err;
5344}
5345
5346static bool bpf_core_is_flavor_sep(const char *s)
5347{
5348 /* check X___Y name pattern, where X and Y are not underscores */
5349 return s[0] != '_' && /* X */
5350 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
5351 s[4] != '_'; /* Y */
5352}
5353
5354/* Given 'some_struct_name___with_flavor' return the length of a name prefix
5355 * before last triple underscore. Struct name part after last triple
5356 * underscore is ignored by BPF CO-RE relocation during relocation matching.
5357 */
5358size_t bpf_core_essential_name_len(const char *name)
5359{
5360 size_t n = strlen(name);
5361 int i;
5362
5363 for (i = n - 5; i >= 0; i--) {
5364 if (bpf_core_is_flavor_sep(name + i))
5365 return i + 1;
5366 }
5367 return n;
5368}
5369
5370void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5371{
5372 if (!cands)
5373 return;
5374
5375 free(cands->cands);
5376 free(cands);
5377}
5378
5379int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5380 size_t local_essent_len,
5381 const struct btf *targ_btf,
5382 const char *targ_btf_name,
5383 int targ_start_id,
5384 struct bpf_core_cand_list *cands)
5385{
5386 struct bpf_core_cand *new_cands, *cand;
5387 const struct btf_type *t, *local_t;
5388 const char *targ_name, *local_name;
5389 size_t targ_essent_len;
5390 int n, i;
5391
5392 local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5393 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5394
5395 n = btf__type_cnt(targ_btf);
5396 for (i = targ_start_id; i < n; i++) {
5397 t = btf__type_by_id(targ_btf, i);
5398 if (!btf_kind_core_compat(t, local_t))
5399 continue;
5400
5401 targ_name = btf__name_by_offset(targ_btf, t->name_off);
5402 if (str_is_empty(targ_name))
5403 continue;
5404
5405 targ_essent_len = bpf_core_essential_name_len(targ_name);
5406 if (targ_essent_len != local_essent_len)
5407 continue;
5408
5409 if (strncmp(local_name, targ_name, local_essent_len) != 0)
5410 continue;
5411
5412 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5413 local_cand->id, btf_kind_str(local_t),
5414 local_name, i, btf_kind_str(t), targ_name,
5415 targ_btf_name);
5416 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5417 sizeof(*cands->cands));
5418 if (!new_cands)
5419 return -ENOMEM;
5420
5421 cand = &new_cands[cands->len];
5422 cand->btf = targ_btf;
5423 cand->id = i;
5424
5425 cands->cands = new_cands;
5426 cands->len++;
5427 }
5428 return 0;
5429}
5430
5431static int load_module_btfs(struct bpf_object *obj)
5432{
5433 struct bpf_btf_info info;
5434 struct module_btf *mod_btf;
5435 struct btf *btf;
5436 char name[64];
5437 __u32 id = 0, len;
5438 int err, fd;
5439
5440 if (obj->btf_modules_loaded)
5441 return 0;
5442
5443 if (obj->gen_loader)
5444 return 0;
5445
5446 /* don't do this again, even if we find no module BTFs */
5447 obj->btf_modules_loaded = true;
5448
5449 /* kernel too old to support module BTFs */
5450 if (!kernel_supports(obj, FEAT_MODULE_BTF))
5451 return 0;
5452
5453 while (true) {
5454 err = bpf_btf_get_next_id(id, &id);
5455 if (err && errno == ENOENT)
5456 return 0;
5457 if (err) {
5458 err = -errno;
5459 pr_warn("failed to iterate BTF objects: %d\n", err);
5460 return err;
5461 }
5462
5463 fd = bpf_btf_get_fd_by_id(id);
5464 if (fd < 0) {
5465 if (errno == ENOENT)
5466 continue; /* expected race: BTF was unloaded */
5467 err = -errno;
5468 pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5469 return err;
5470 }
5471
5472 len = sizeof(info);
5473 memset(&info, 0, sizeof(info));
5474 info.name = ptr_to_u64(name);
5475 info.name_len = sizeof(name);
5476
5477 err = bpf_obj_get_info_by_fd(fd, &info, &len);
5478 if (err) {
5479 err = -errno;
5480 pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5481 goto err_out;
5482 }
5483
5484 /* ignore non-module BTFs */
5485 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5486 close(fd);
5487 continue;
5488 }
5489
5490 btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5491 err = libbpf_get_error(btf);
5492 if (err) {
5493 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5494 name, id, err);
5495 goto err_out;
5496 }
5497
5498 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5499 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5500 if (err)
5501 goto err_out;
5502
5503 mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5504
5505 mod_btf->btf = btf;
5506 mod_btf->id = id;
5507 mod_btf->fd = fd;
5508 mod_btf->name = strdup(name);
5509 if (!mod_btf->name) {
5510 err = -ENOMEM;
5511 goto err_out;
5512 }
5513 continue;
5514
5515err_out:
5516 close(fd);
5517 return err;
5518 }
5519
5520 return 0;
5521}
5522
5523static struct bpf_core_cand_list *
5524bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5525{
5526 struct bpf_core_cand local_cand = {};
5527 struct bpf_core_cand_list *cands;
5528 const struct btf *main_btf;
5529 const struct btf_type *local_t;
5530 const char *local_name;
5531 size_t local_essent_len;
5532 int err, i;
5533
5534 local_cand.btf = local_btf;
5535 local_cand.id = local_type_id;
5536 local_t = btf__type_by_id(local_btf, local_type_id);
5537 if (!local_t)
5538 return ERR_PTR(-EINVAL);
5539
5540 local_name = btf__name_by_offset(local_btf, local_t->name_off);
5541 if (str_is_empty(local_name))
5542 return ERR_PTR(-EINVAL);
5543 local_essent_len = bpf_core_essential_name_len(local_name);
5544
5545 cands = calloc(1, sizeof(*cands));
5546 if (!cands)
5547 return ERR_PTR(-ENOMEM);
5548
5549 /* Attempt to find target candidates in vmlinux BTF first */
5550 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5551 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5552 if (err)
5553 goto err_out;
5554
5555 /* if vmlinux BTF has any candidate, don't got for module BTFs */
5556 if (cands->len)
5557 return cands;
5558
5559 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5560 if (obj->btf_vmlinux_override)
5561 return cands;
5562
5563 /* now look through module BTFs, trying to still find candidates */
5564 err = load_module_btfs(obj);
5565 if (err)
5566 goto err_out;
5567
5568 for (i = 0; i < obj->btf_module_cnt; i++) {
5569 err = bpf_core_add_cands(&local_cand, local_essent_len,
5570 obj->btf_modules[i].btf,
5571 obj->btf_modules[i].name,
5572 btf__type_cnt(obj->btf_vmlinux),
5573 cands);
5574 if (err)
5575 goto err_out;
5576 }
5577
5578 return cands;
5579err_out:
5580 bpf_core_free_cands(cands);
5581 return ERR_PTR(err);
5582}
5583
5584/* Check local and target types for compatibility. This check is used for
5585 * type-based CO-RE relocations and follow slightly different rules than
5586 * field-based relocations. This function assumes that root types were already
5587 * checked for name match. Beyond that initial root-level name check, names
5588 * are completely ignored. Compatibility rules are as follows:
5589 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5590 * kind should match for local and target types (i.e., STRUCT is not
5591 * compatible with UNION);
5592 * - for ENUMs, the size is ignored;
5593 * - for INT, size and signedness are ignored;
5594 * - for ARRAY, dimensionality is ignored, element types are checked for
5595 * compatibility recursively;
5596 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
5597 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5598 * - FUNC_PROTOs are compatible if they have compatible signature: same
5599 * number of input args and compatible return and argument types.
5600 * These rules are not set in stone and probably will be adjusted as we get
5601 * more experience with using BPF CO-RE relocations.
5602 */
5603int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5604 const struct btf *targ_btf, __u32 targ_id)
5605{
5606 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5607}
5608
5609int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5610 const struct btf *targ_btf, __u32 targ_id)
5611{
5612 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5613}
5614
5615static size_t bpf_core_hash_fn(const long key, void *ctx)
5616{
5617 return key;
5618}
5619
5620static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5621{
5622 return k1 == k2;
5623}
5624
5625static int record_relo_core(struct bpf_program *prog,
5626 const struct bpf_core_relo *core_relo, int insn_idx)
5627{
5628 struct reloc_desc *relos, *relo;
5629
5630 relos = libbpf_reallocarray(prog->reloc_desc,
5631 prog->nr_reloc + 1, sizeof(*relos));
5632 if (!relos)
5633 return -ENOMEM;
5634 relo = &relos[prog->nr_reloc];
5635 relo->type = RELO_CORE;
5636 relo->insn_idx = insn_idx;
5637 relo->core_relo = core_relo;
5638 prog->reloc_desc = relos;
5639 prog->nr_reloc++;
5640 return 0;
5641}
5642
5643static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5644{
5645 struct reloc_desc *relo;
5646 int i;
5647
5648 for (i = 0; i < prog->nr_reloc; i++) {
5649 relo = &prog->reloc_desc[i];
5650 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5651 continue;
5652
5653 return relo->core_relo;
5654 }
5655
5656 return NULL;
5657}
5658
5659static int bpf_core_resolve_relo(struct bpf_program *prog,
5660 const struct bpf_core_relo *relo,
5661 int relo_idx,
5662 const struct btf *local_btf,
5663 struct hashmap *cand_cache,
5664 struct bpf_core_relo_res *targ_res)
5665{
5666 struct bpf_core_spec specs_scratch[3] = {};
5667 struct bpf_core_cand_list *cands = NULL;
5668 const char *prog_name = prog->name;
5669 const struct btf_type *local_type;
5670 const char *local_name;
5671 __u32 local_id = relo->type_id;
5672 int err;
5673
5674 local_type = btf__type_by_id(local_btf, local_id);
5675 if (!local_type)
5676 return -EINVAL;
5677
5678 local_name = btf__name_by_offset(local_btf, local_type->name_off);
5679 if (!local_name)
5680 return -EINVAL;
5681
5682 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5683 !hashmap__find(cand_cache, local_id, &cands)) {
5684 cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5685 if (IS_ERR(cands)) {
5686 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5687 prog_name, relo_idx, local_id, btf_kind_str(local_type),
5688 local_name, PTR_ERR(cands));
5689 return PTR_ERR(cands);
5690 }
5691 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5692 if (err) {
5693 bpf_core_free_cands(cands);
5694 return err;
5695 }
5696 }
5697
5698 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5699 targ_res);
5700}
5701
5702static int
5703bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5704{
5705 const struct btf_ext_info_sec *sec;
5706 struct bpf_core_relo_res targ_res;
5707 const struct bpf_core_relo *rec;
5708 const struct btf_ext_info *seg;
5709 struct hashmap_entry *entry;
5710 struct hashmap *cand_cache = NULL;
5711 struct bpf_program *prog;
5712 struct bpf_insn *insn;
5713 const char *sec_name;
5714 int i, err = 0, insn_idx, sec_idx, sec_num;
5715
5716 if (obj->btf_ext->core_relo_info.len == 0)
5717 return 0;
5718
5719 if (targ_btf_path) {
5720 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5721 err = libbpf_get_error(obj->btf_vmlinux_override);
5722 if (err) {
5723 pr_warn("failed to parse target BTF: %d\n", err);
5724 return err;
5725 }
5726 }
5727
5728 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5729 if (IS_ERR(cand_cache)) {
5730 err = PTR_ERR(cand_cache);
5731 goto out;
5732 }
5733
5734 seg = &obj->btf_ext->core_relo_info;
5735 sec_num = 0;
5736 for_each_btf_ext_sec(seg, sec) {
5737 sec_idx = seg->sec_idxs[sec_num];
5738 sec_num++;
5739
5740 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5741 if (str_is_empty(sec_name)) {
5742 err = -EINVAL;
5743 goto out;
5744 }
5745
5746 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5747
5748 for_each_btf_ext_rec(seg, sec, i, rec) {
5749 if (rec->insn_off % BPF_INSN_SZ)
5750 return -EINVAL;
5751 insn_idx = rec->insn_off / BPF_INSN_SZ;
5752 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5753 if (!prog) {
5754 /* When __weak subprog is "overridden" by another instance
5755 * of the subprog from a different object file, linker still
5756 * appends all the .BTF.ext info that used to belong to that
5757 * eliminated subprogram.
5758 * This is similar to what x86-64 linker does for relocations.
5759 * So just ignore such relocations just like we ignore
5760 * subprog instructions when discovering subprograms.
5761 */
5762 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5763 sec_name, i, insn_idx);
5764 continue;
5765 }
5766 /* no need to apply CO-RE relocation if the program is
5767 * not going to be loaded
5768 */
5769 if (!prog->autoload)
5770 continue;
5771
5772 /* adjust insn_idx from section frame of reference to the local
5773 * program's frame of reference; (sub-)program code is not yet
5774 * relocated, so it's enough to just subtract in-section offset
5775 */
5776 insn_idx = insn_idx - prog->sec_insn_off;
5777 if (insn_idx >= prog->insns_cnt)
5778 return -EINVAL;
5779 insn = &prog->insns[insn_idx];
5780
5781 err = record_relo_core(prog, rec, insn_idx);
5782 if (err) {
5783 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5784 prog->name, i, err);
5785 goto out;
5786 }
5787
5788 if (prog->obj->gen_loader)
5789 continue;
5790
5791 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5792 if (err) {
5793 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5794 prog->name, i, err);
5795 goto out;
5796 }
5797
5798 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5799 if (err) {
5800 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5801 prog->name, i, insn_idx, err);
5802 goto out;
5803 }
5804 }
5805 }
5806
5807out:
5808 /* obj->btf_vmlinux and module BTFs are freed after object load */
5809 btf__free(obj->btf_vmlinux_override);
5810 obj->btf_vmlinux_override = NULL;
5811
5812 if (!IS_ERR_OR_NULL(cand_cache)) {
5813 hashmap__for_each_entry(cand_cache, entry, i) {
5814 bpf_core_free_cands(entry->pvalue);
5815 }
5816 hashmap__free(cand_cache);
5817 }
5818 return err;
5819}
5820
5821/* base map load ldimm64 special constant, used also for log fixup logic */
5822#define MAP_LDIMM64_POISON_BASE 2001000000
5823#define MAP_LDIMM64_POISON_PFX "200100"
5824
5825static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5826 int insn_idx, struct bpf_insn *insn,
5827 int map_idx, const struct bpf_map *map)
5828{
5829 int i;
5830
5831 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5832 prog->name, relo_idx, insn_idx, map_idx, map->name);
5833
5834 /* we turn single ldimm64 into two identical invalid calls */
5835 for (i = 0; i < 2; i++) {
5836 insn->code = BPF_JMP | BPF_CALL;
5837 insn->dst_reg = 0;
5838 insn->src_reg = 0;
5839 insn->off = 0;
5840 /* if this instruction is reachable (not a dead code),
5841 * verifier will complain with something like:
5842 * invalid func unknown#2001000123
5843 * where lower 123 is map index into obj->maps[] array
5844 */
5845 insn->imm = MAP_LDIMM64_POISON_BASE + map_idx;
5846
5847 insn++;
5848 }
5849}
5850
5851/* Relocate data references within program code:
5852 * - map references;
5853 * - global variable references;
5854 * - extern references.
5855 */
5856static int
5857bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5858{
5859 int i;
5860
5861 for (i = 0; i < prog->nr_reloc; i++) {
5862 struct reloc_desc *relo = &prog->reloc_desc[i];
5863 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5864 const struct bpf_map *map;
5865 struct extern_desc *ext;
5866
5867 switch (relo->type) {
5868 case RELO_LD64:
5869 map = &obj->maps[relo->map_idx];
5870 if (obj->gen_loader) {
5871 insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5872 insn[0].imm = relo->map_idx;
5873 } else if (map->autocreate) {
5874 insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5875 insn[0].imm = map->fd;
5876 } else {
5877 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5878 relo->map_idx, map);
5879 }
5880 break;
5881 case RELO_DATA:
5882 map = &obj->maps[relo->map_idx];
5883 insn[1].imm = insn[0].imm + relo->sym_off;
5884 if (obj->gen_loader) {
5885 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5886 insn[0].imm = relo->map_idx;
5887 } else if (map->autocreate) {
5888 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5889 insn[0].imm = map->fd;
5890 } else {
5891 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5892 relo->map_idx, map);
5893 }
5894 break;
5895 case RELO_EXTERN_VAR:
5896 ext = &obj->externs[relo->sym_off];
5897 if (ext->type == EXT_KCFG) {
5898 if (obj->gen_loader) {
5899 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5900 insn[0].imm = obj->kconfig_map_idx;
5901 } else {
5902 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5903 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
5904 }
5905 insn[1].imm = ext->kcfg.data_off;
5906 } else /* EXT_KSYM */ {
5907 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
5908 insn[0].src_reg = BPF_PSEUDO_BTF_ID;
5909 insn[0].imm = ext->ksym.kernel_btf_id;
5910 insn[1].imm = ext->ksym.kernel_btf_obj_fd;
5911 } else { /* typeless ksyms or unresolved typed ksyms */
5912 insn[0].imm = (__u32)ext->ksym.addr;
5913 insn[1].imm = ext->ksym.addr >> 32;
5914 }
5915 }
5916 break;
5917 case RELO_EXTERN_FUNC:
5918 ext = &obj->externs[relo->sym_off];
5919 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
5920 if (ext->is_set) {
5921 insn[0].imm = ext->ksym.kernel_btf_id;
5922 insn[0].off = ext->ksym.btf_fd_idx;
5923 } else { /* unresolved weak kfunc */
5924 insn[0].imm = 0;
5925 insn[0].off = 0;
5926 }
5927 break;
5928 case RELO_SUBPROG_ADDR:
5929 if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
5930 pr_warn("prog '%s': relo #%d: bad insn\n",
5931 prog->name, i);
5932 return -EINVAL;
5933 }
5934 /* handled already */
5935 break;
5936 case RELO_CALL:
5937 /* handled already */
5938 break;
5939 case RELO_CORE:
5940 /* will be handled by bpf_program_record_relos() */
5941 break;
5942 default:
5943 pr_warn("prog '%s': relo #%d: bad relo type %d\n",
5944 prog->name, i, relo->type);
5945 return -EINVAL;
5946 }
5947 }
5948
5949 return 0;
5950}
5951
5952static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
5953 const struct bpf_program *prog,
5954 const struct btf_ext_info *ext_info,
5955 void **prog_info, __u32 *prog_rec_cnt,
5956 __u32 *prog_rec_sz)
5957{
5958 void *copy_start = NULL, *copy_end = NULL;
5959 void *rec, *rec_end, *new_prog_info;
5960 const struct btf_ext_info_sec *sec;
5961 size_t old_sz, new_sz;
5962 int i, sec_num, sec_idx, off_adj;
5963
5964 sec_num = 0;
5965 for_each_btf_ext_sec(ext_info, sec) {
5966 sec_idx = ext_info->sec_idxs[sec_num];
5967 sec_num++;
5968 if (prog->sec_idx != sec_idx)
5969 continue;
5970
5971 for_each_btf_ext_rec(ext_info, sec, i, rec) {
5972 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
5973
5974 if (insn_off < prog->sec_insn_off)
5975 continue;
5976 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
5977 break;
5978
5979 if (!copy_start)
5980 copy_start = rec;
5981 copy_end = rec + ext_info->rec_size;
5982 }
5983
5984 if (!copy_start)
5985 return -ENOENT;
5986
5987 /* append func/line info of a given (sub-)program to the main
5988 * program func/line info
5989 */
5990 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
5991 new_sz = old_sz + (copy_end - copy_start);
5992 new_prog_info = realloc(*prog_info, new_sz);
5993 if (!new_prog_info)
5994 return -ENOMEM;
5995 *prog_info = new_prog_info;
5996 *prog_rec_cnt = new_sz / ext_info->rec_size;
5997 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
5998
5999 /* Kernel instruction offsets are in units of 8-byte
6000 * instructions, while .BTF.ext instruction offsets generated
6001 * by Clang are in units of bytes. So convert Clang offsets
6002 * into kernel offsets and adjust offset according to program
6003 * relocated position.
6004 */
6005 off_adj = prog->sub_insn_off - prog->sec_insn_off;
6006 rec = new_prog_info + old_sz;
6007 rec_end = new_prog_info + new_sz;
6008 for (; rec < rec_end; rec += ext_info->rec_size) {
6009 __u32 *insn_off = rec;
6010
6011 *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6012 }
6013 *prog_rec_sz = ext_info->rec_size;
6014 return 0;
6015 }
6016
6017 return -ENOENT;
6018}
6019
6020static int
6021reloc_prog_func_and_line_info(const struct bpf_object *obj,
6022 struct bpf_program *main_prog,
6023 const struct bpf_program *prog)
6024{
6025 int err;
6026
6027 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6028 * supprot func/line info
6029 */
6030 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6031 return 0;
6032
6033 /* only attempt func info relocation if main program's func_info
6034 * relocation was successful
6035 */
6036 if (main_prog != prog && !main_prog->func_info)
6037 goto line_info;
6038
6039 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6040 &main_prog->func_info,
6041 &main_prog->func_info_cnt,
6042 &main_prog->func_info_rec_size);
6043 if (err) {
6044 if (err != -ENOENT) {
6045 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6046 prog->name, err);
6047 return err;
6048 }
6049 if (main_prog->func_info) {
6050 /*
6051 * Some info has already been found but has problem
6052 * in the last btf_ext reloc. Must have to error out.
6053 */
6054 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6055 return err;
6056 }
6057 /* Have problem loading the very first info. Ignore the rest. */
6058 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6059 prog->name);
6060 }
6061
6062line_info:
6063 /* don't relocate line info if main program's relocation failed */
6064 if (main_prog != prog && !main_prog->line_info)
6065 return 0;
6066
6067 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6068 &main_prog->line_info,
6069 &main_prog->line_info_cnt,
6070 &main_prog->line_info_rec_size);
6071 if (err) {
6072 if (err != -ENOENT) {
6073 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6074 prog->name, err);
6075 return err;
6076 }
6077 if (main_prog->line_info) {
6078 /*
6079 * Some info has already been found but has problem
6080 * in the last btf_ext reloc. Must have to error out.
6081 */
6082 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6083 return err;
6084 }
6085 /* Have problem loading the very first info. Ignore the rest. */
6086 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6087 prog->name);
6088 }
6089 return 0;
6090}
6091
6092static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6093{
6094 size_t insn_idx = *(const size_t *)key;
6095 const struct reloc_desc *relo = elem;
6096
6097 if (insn_idx == relo->insn_idx)
6098 return 0;
6099 return insn_idx < relo->insn_idx ? -1 : 1;
6100}
6101
6102static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6103{
6104 if (!prog->nr_reloc)
6105 return NULL;
6106 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6107 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6108}
6109
6110static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6111{
6112 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6113 struct reloc_desc *relos;
6114 int i;
6115
6116 if (main_prog == subprog)
6117 return 0;
6118 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6119 if (!relos)
6120 return -ENOMEM;
6121 if (subprog->nr_reloc)
6122 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6123 sizeof(*relos) * subprog->nr_reloc);
6124
6125 for (i = main_prog->nr_reloc; i < new_cnt; i++)
6126 relos[i].insn_idx += subprog->sub_insn_off;
6127 /* After insn_idx adjustment the 'relos' array is still sorted
6128 * by insn_idx and doesn't break bsearch.
6129 */
6130 main_prog->reloc_desc = relos;
6131 main_prog->nr_reloc = new_cnt;
6132 return 0;
6133}
6134
6135static int
6136bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6137 struct bpf_program *prog)
6138{
6139 size_t sub_insn_idx, insn_idx, new_cnt;
6140 struct bpf_program *subprog;
6141 struct bpf_insn *insns, *insn;
6142 struct reloc_desc *relo;
6143 int err;
6144
6145 err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6146 if (err)
6147 return err;
6148
6149 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6150 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6151 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6152 continue;
6153
6154 relo = find_prog_insn_relo(prog, insn_idx);
6155 if (relo && relo->type == RELO_EXTERN_FUNC)
6156 /* kfunc relocations will be handled later
6157 * in bpf_object__relocate_data()
6158 */
6159 continue;
6160 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6161 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6162 prog->name, insn_idx, relo->type);
6163 return -LIBBPF_ERRNO__RELOC;
6164 }
6165 if (relo) {
6166 /* sub-program instruction index is a combination of
6167 * an offset of a symbol pointed to by relocation and
6168 * call instruction's imm field; for global functions,
6169 * call always has imm = -1, but for static functions
6170 * relocation is against STT_SECTION and insn->imm
6171 * points to a start of a static function
6172 *
6173 * for subprog addr relocation, the relo->sym_off + insn->imm is
6174 * the byte offset in the corresponding section.
6175 */
6176 if (relo->type == RELO_CALL)
6177 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6178 else
6179 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6180 } else if (insn_is_pseudo_func(insn)) {
6181 /*
6182 * RELO_SUBPROG_ADDR relo is always emitted even if both
6183 * functions are in the same section, so it shouldn't reach here.
6184 */
6185 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6186 prog->name, insn_idx);
6187 return -LIBBPF_ERRNO__RELOC;
6188 } else {
6189 /* if subprogram call is to a static function within
6190 * the same ELF section, there won't be any relocation
6191 * emitted, but it also means there is no additional
6192 * offset necessary, insns->imm is relative to
6193 * instruction's original position within the section
6194 */
6195 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6196 }
6197
6198 /* we enforce that sub-programs should be in .text section */
6199 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6200 if (!subprog) {
6201 pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6202 prog->name);
6203 return -LIBBPF_ERRNO__RELOC;
6204 }
6205
6206 /* if it's the first call instruction calling into this
6207 * subprogram (meaning this subprog hasn't been processed
6208 * yet) within the context of current main program:
6209 * - append it at the end of main program's instructions blog;
6210 * - process is recursively, while current program is put on hold;
6211 * - if that subprogram calls some other not yet processes
6212 * subprogram, same thing will happen recursively until
6213 * there are no more unprocesses subprograms left to append
6214 * and relocate.
6215 */
6216 if (subprog->sub_insn_off == 0) {
6217 subprog->sub_insn_off = main_prog->insns_cnt;
6218
6219 new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6220 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6221 if (!insns) {
6222 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6223 return -ENOMEM;
6224 }
6225 main_prog->insns = insns;
6226 main_prog->insns_cnt = new_cnt;
6227
6228 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6229 subprog->insns_cnt * sizeof(*insns));
6230
6231 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6232 main_prog->name, subprog->insns_cnt, subprog->name);
6233
6234 /* The subprog insns are now appended. Append its relos too. */
6235 err = append_subprog_relos(main_prog, subprog);
6236 if (err)
6237 return err;
6238 err = bpf_object__reloc_code(obj, main_prog, subprog);
6239 if (err)
6240 return err;
6241 }
6242
6243 /* main_prog->insns memory could have been re-allocated, so
6244 * calculate pointer again
6245 */
6246 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6247 /* calculate correct instruction position within current main
6248 * prog; each main prog can have a different set of
6249 * subprograms appended (potentially in different order as
6250 * well), so position of any subprog can be different for
6251 * different main programs
6252 */
6253 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6254
6255 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6256 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6257 }
6258
6259 return 0;
6260}
6261
6262/*
6263 * Relocate sub-program calls.
6264 *
6265 * Algorithm operates as follows. Each entry-point BPF program (referred to as
6266 * main prog) is processed separately. For each subprog (non-entry functions,
6267 * that can be called from either entry progs or other subprogs) gets their
6268 * sub_insn_off reset to zero. This serves as indicator that this subprogram
6269 * hasn't been yet appended and relocated within current main prog. Once its
6270 * relocated, sub_insn_off will point at the position within current main prog
6271 * where given subprog was appended. This will further be used to relocate all
6272 * the call instructions jumping into this subprog.
6273 *
6274 * We start with main program and process all call instructions. If the call
6275 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6276 * is zero), subprog instructions are appended at the end of main program's
6277 * instruction array. Then main program is "put on hold" while we recursively
6278 * process newly appended subprogram. If that subprogram calls into another
6279 * subprogram that hasn't been appended, new subprogram is appended again to
6280 * the *main* prog's instructions (subprog's instructions are always left
6281 * untouched, as they need to be in unmodified state for subsequent main progs
6282 * and subprog instructions are always sent only as part of a main prog) and
6283 * the process continues recursively. Once all the subprogs called from a main
6284 * prog or any of its subprogs are appended (and relocated), all their
6285 * positions within finalized instructions array are known, so it's easy to
6286 * rewrite call instructions with correct relative offsets, corresponding to
6287 * desired target subprog.
6288 *
6289 * Its important to realize that some subprogs might not be called from some
6290 * main prog and any of its called/used subprogs. Those will keep their
6291 * subprog->sub_insn_off as zero at all times and won't be appended to current
6292 * main prog and won't be relocated within the context of current main prog.
6293 * They might still be used from other main progs later.
6294 *
6295 * Visually this process can be shown as below. Suppose we have two main
6296 * programs mainA and mainB and BPF object contains three subprogs: subA,
6297 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6298 * subC both call subB:
6299 *
6300 * +--------+ +-------+
6301 * | v v |
6302 * +--+---+ +--+-+-+ +---+--+
6303 * | subA | | subB | | subC |
6304 * +--+---+ +------+ +---+--+
6305 * ^ ^
6306 * | |
6307 * +---+-------+ +------+----+
6308 * | mainA | | mainB |
6309 * +-----------+ +-----------+
6310 *
6311 * We'll start relocating mainA, will find subA, append it and start
6312 * processing sub A recursively:
6313 *
6314 * +-----------+------+
6315 * | mainA | subA |
6316 * +-----------+------+
6317 *
6318 * At this point we notice that subB is used from subA, so we append it and
6319 * relocate (there are no further subcalls from subB):
6320 *
6321 * +-----------+------+------+
6322 * | mainA | subA | subB |
6323 * +-----------+------+------+
6324 *
6325 * At this point, we relocate subA calls, then go one level up and finish with
6326 * relocatin mainA calls. mainA is done.
6327 *
6328 * For mainB process is similar but results in different order. We start with
6329 * mainB and skip subA and subB, as mainB never calls them (at least
6330 * directly), but we see subC is needed, so we append and start processing it:
6331 *
6332 * +-----------+------+
6333 * | mainB | subC |
6334 * +-----------+------+
6335 * Now we see subC needs subB, so we go back to it, append and relocate it:
6336 *
6337 * +-----------+------+------+
6338 * | mainB | subC | subB |
6339 * +-----------+------+------+
6340 *
6341 * At this point we unwind recursion, relocate calls in subC, then in mainB.
6342 */
6343static int
6344bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6345{
6346 struct bpf_program *subprog;
6347 int i, err;
6348
6349 /* mark all subprogs as not relocated (yet) within the context of
6350 * current main program
6351 */
6352 for (i = 0; i < obj->nr_programs; i++) {
6353 subprog = &obj->programs[i];
6354 if (!prog_is_subprog(obj, subprog))
6355 continue;
6356
6357 subprog->sub_insn_off = 0;
6358 }
6359
6360 err = bpf_object__reloc_code(obj, prog, prog);
6361 if (err)
6362 return err;
6363
6364 return 0;
6365}
6366
6367static void
6368bpf_object__free_relocs(struct bpf_object *obj)
6369{
6370 struct bpf_program *prog;
6371 int i;
6372
6373 /* free up relocation descriptors */
6374 for (i = 0; i < obj->nr_programs; i++) {
6375 prog = &obj->programs[i];
6376 zfree(&prog->reloc_desc);
6377 prog->nr_reloc = 0;
6378 }
6379}
6380
6381static int cmp_relocs(const void *_a, const void *_b)
6382{
6383 const struct reloc_desc *a = _a;
6384 const struct reloc_desc *b = _b;
6385
6386 if (a->insn_idx != b->insn_idx)
6387 return a->insn_idx < b->insn_idx ? -1 : 1;
6388
6389 /* no two relocations should have the same insn_idx, but ... */
6390 if (a->type != b->type)
6391 return a->type < b->type ? -1 : 1;
6392
6393 return 0;
6394}
6395
6396static void bpf_object__sort_relos(struct bpf_object *obj)
6397{
6398 int i;
6399
6400 for (i = 0; i < obj->nr_programs; i++) {
6401 struct bpf_program *p = &obj->programs[i];
6402
6403 if (!p->nr_reloc)
6404 continue;
6405
6406 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6407 }
6408}
6409
6410static int
6411bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6412{
6413 struct bpf_program *prog;
6414 size_t i, j;
6415 int err;
6416
6417 if (obj->btf_ext) {
6418 err = bpf_object__relocate_core(obj, targ_btf_path);
6419 if (err) {
6420 pr_warn("failed to perform CO-RE relocations: %d\n",
6421 err);
6422 return err;
6423 }
6424 bpf_object__sort_relos(obj);
6425 }
6426
6427 /* Before relocating calls pre-process relocations and mark
6428 * few ld_imm64 instructions that points to subprogs.
6429 * Otherwise bpf_object__reloc_code() later would have to consider
6430 * all ld_imm64 insns as relocation candidates. That would
6431 * reduce relocation speed, since amount of find_prog_insn_relo()
6432 * would increase and most of them will fail to find a relo.
6433 */
6434 for (i = 0; i < obj->nr_programs; i++) {
6435 prog = &obj->programs[i];
6436 for (j = 0; j < prog->nr_reloc; j++) {
6437 struct reloc_desc *relo = &prog->reloc_desc[j];
6438 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6439
6440 /* mark the insn, so it's recognized by insn_is_pseudo_func() */
6441 if (relo->type == RELO_SUBPROG_ADDR)
6442 insn[0].src_reg = BPF_PSEUDO_FUNC;
6443 }
6444 }
6445
6446 /* relocate subprogram calls and append used subprograms to main
6447 * programs; each copy of subprogram code needs to be relocated
6448 * differently for each main program, because its code location might
6449 * have changed.
6450 * Append subprog relos to main programs to allow data relos to be
6451 * processed after text is completely relocated.
6452 */
6453 for (i = 0; i < obj->nr_programs; i++) {
6454 prog = &obj->programs[i];
6455 /* sub-program's sub-calls are relocated within the context of
6456 * its main program only
6457 */
6458 if (prog_is_subprog(obj, prog))
6459 continue;
6460 if (!prog->autoload)
6461 continue;
6462
6463 err = bpf_object__relocate_calls(obj, prog);
6464 if (err) {
6465 pr_warn("prog '%s': failed to relocate calls: %d\n",
6466 prog->name, err);
6467 return err;
6468 }
6469 }
6470 /* Process data relos for main programs */
6471 for (i = 0; i < obj->nr_programs; i++) {
6472 prog = &obj->programs[i];
6473 if (prog_is_subprog(obj, prog))
6474 continue;
6475 if (!prog->autoload)
6476 continue;
6477 err = bpf_object__relocate_data(obj, prog);
6478 if (err) {
6479 pr_warn("prog '%s': failed to relocate data references: %d\n",
6480 prog->name, err);
6481 return err;
6482 }
6483 }
6484
6485 return 0;
6486}
6487
6488static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6489 Elf64_Shdr *shdr, Elf_Data *data);
6490
6491static int bpf_object__collect_map_relos(struct bpf_object *obj,
6492 Elf64_Shdr *shdr, Elf_Data *data)
6493{
6494 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6495 int i, j, nrels, new_sz;
6496 const struct btf_var_secinfo *vi = NULL;
6497 const struct btf_type *sec, *var, *def;
6498 struct bpf_map *map = NULL, *targ_map = NULL;
6499 struct bpf_program *targ_prog = NULL;
6500 bool is_prog_array, is_map_in_map;
6501 const struct btf_member *member;
6502 const char *name, *mname, *type;
6503 unsigned int moff;
6504 Elf64_Sym *sym;
6505 Elf64_Rel *rel;
6506 void *tmp;
6507
6508 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6509 return -EINVAL;
6510 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6511 if (!sec)
6512 return -EINVAL;
6513
6514 nrels = shdr->sh_size / shdr->sh_entsize;
6515 for (i = 0; i < nrels; i++) {
6516 rel = elf_rel_by_idx(data, i);
6517 if (!rel) {
6518 pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6519 return -LIBBPF_ERRNO__FORMAT;
6520 }
6521
6522 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6523 if (!sym) {
6524 pr_warn(".maps relo #%d: symbol %zx not found\n",
6525 i, (size_t)ELF64_R_SYM(rel->r_info));
6526 return -LIBBPF_ERRNO__FORMAT;
6527 }
6528 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6529
6530 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6531 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6532 (size_t)rel->r_offset, sym->st_name, name);
6533
6534 for (j = 0; j < obj->nr_maps; j++) {
6535 map = &obj->maps[j];
6536 if (map->sec_idx != obj->efile.btf_maps_shndx)
6537 continue;
6538
6539 vi = btf_var_secinfos(sec) + map->btf_var_idx;
6540 if (vi->offset <= rel->r_offset &&
6541 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6542 break;
6543 }
6544 if (j == obj->nr_maps) {
6545 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6546 i, name, (size_t)rel->r_offset);
6547 return -EINVAL;
6548 }
6549
6550 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
6551 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
6552 type = is_map_in_map ? "map" : "prog";
6553 if (is_map_in_map) {
6554 if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6555 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6556 i, name);
6557 return -LIBBPF_ERRNO__RELOC;
6558 }
6559 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6560 map->def.key_size != sizeof(int)) {
6561 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6562 i, map->name, sizeof(int));
6563 return -EINVAL;
6564 }
6565 targ_map = bpf_object__find_map_by_name(obj, name);
6566 if (!targ_map) {
6567 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
6568 i, name);
6569 return -ESRCH;
6570 }
6571 } else if (is_prog_array) {
6572 targ_prog = bpf_object__find_program_by_name(obj, name);
6573 if (!targ_prog) {
6574 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
6575 i, name);
6576 return -ESRCH;
6577 }
6578 if (targ_prog->sec_idx != sym->st_shndx ||
6579 targ_prog->sec_insn_off * 8 != sym->st_value ||
6580 prog_is_subprog(obj, targ_prog)) {
6581 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
6582 i, name);
6583 return -LIBBPF_ERRNO__RELOC;
6584 }
6585 } else {
6586 return -EINVAL;
6587 }
6588
6589 var = btf__type_by_id(obj->btf, vi->type);
6590 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6591 if (btf_vlen(def) == 0)
6592 return -EINVAL;
6593 member = btf_members(def) + btf_vlen(def) - 1;
6594 mname = btf__name_by_offset(obj->btf, member->name_off);
6595 if (strcmp(mname, "values"))
6596 return -EINVAL;
6597
6598 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6599 if (rel->r_offset - vi->offset < moff)
6600 return -EINVAL;
6601
6602 moff = rel->r_offset - vi->offset - moff;
6603 /* here we use BPF pointer size, which is always 64 bit, as we
6604 * are parsing ELF that was built for BPF target
6605 */
6606 if (moff % bpf_ptr_sz)
6607 return -EINVAL;
6608 moff /= bpf_ptr_sz;
6609 if (moff >= map->init_slots_sz) {
6610 new_sz = moff + 1;
6611 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6612 if (!tmp)
6613 return -ENOMEM;
6614 map->init_slots = tmp;
6615 memset(map->init_slots + map->init_slots_sz, 0,
6616 (new_sz - map->init_slots_sz) * host_ptr_sz);
6617 map->init_slots_sz = new_sz;
6618 }
6619 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
6620
6621 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
6622 i, map->name, moff, type, name);
6623 }
6624
6625 return 0;
6626}
6627
6628static int bpf_object__collect_relos(struct bpf_object *obj)
6629{
6630 int i, err;
6631
6632 for (i = 0; i < obj->efile.sec_cnt; i++) {
6633 struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6634 Elf64_Shdr *shdr;
6635 Elf_Data *data;
6636 int idx;
6637
6638 if (sec_desc->sec_type != SEC_RELO)
6639 continue;
6640
6641 shdr = sec_desc->shdr;
6642 data = sec_desc->data;
6643 idx = shdr->sh_info;
6644
6645 if (shdr->sh_type != SHT_REL) {
6646 pr_warn("internal error at %d\n", __LINE__);
6647 return -LIBBPF_ERRNO__INTERNAL;
6648 }
6649
6650 if (idx == obj->efile.st_ops_shndx)
6651 err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6652 else if (idx == obj->efile.btf_maps_shndx)
6653 err = bpf_object__collect_map_relos(obj, shdr, data);
6654 else
6655 err = bpf_object__collect_prog_relos(obj, shdr, data);
6656 if (err)
6657 return err;
6658 }
6659
6660 bpf_object__sort_relos(obj);
6661 return 0;
6662}
6663
6664static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6665{
6666 if (BPF_CLASS(insn->code) == BPF_JMP &&
6667 BPF_OP(insn->code) == BPF_CALL &&
6668 BPF_SRC(insn->code) == BPF_K &&
6669 insn->src_reg == 0 &&
6670 insn->dst_reg == 0) {
6671 *func_id = insn->imm;
6672 return true;
6673 }
6674 return false;
6675}
6676
6677static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6678{
6679 struct bpf_insn *insn = prog->insns;
6680 enum bpf_func_id func_id;
6681 int i;
6682
6683 if (obj->gen_loader)
6684 return 0;
6685
6686 for (i = 0; i < prog->insns_cnt; i++, insn++) {
6687 if (!insn_is_helper_call(insn, &func_id))
6688 continue;
6689
6690 /* on kernels that don't yet support
6691 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6692 * to bpf_probe_read() which works well for old kernels
6693 */
6694 switch (func_id) {
6695 case BPF_FUNC_probe_read_kernel:
6696 case BPF_FUNC_probe_read_user:
6697 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6698 insn->imm = BPF_FUNC_probe_read;
6699 break;
6700 case BPF_FUNC_probe_read_kernel_str:
6701 case BPF_FUNC_probe_read_user_str:
6702 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6703 insn->imm = BPF_FUNC_probe_read_str;
6704 break;
6705 default:
6706 break;
6707 }
6708 }
6709 return 0;
6710}
6711
6712static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6713 int *btf_obj_fd, int *btf_type_id);
6714
6715/* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
6716static int libbpf_prepare_prog_load(struct bpf_program *prog,
6717 struct bpf_prog_load_opts *opts, long cookie)
6718{
6719 enum sec_def_flags def = cookie;
6720
6721 /* old kernels might not support specifying expected_attach_type */
6722 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6723 opts->expected_attach_type = 0;
6724
6725 if (def & SEC_SLEEPABLE)
6726 opts->prog_flags |= BPF_F_SLEEPABLE;
6727
6728 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
6729 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
6730
6731 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
6732 int btf_obj_fd = 0, btf_type_id = 0, err;
6733 const char *attach_name;
6734
6735 attach_name = strchr(prog->sec_name, '/');
6736 if (!attach_name) {
6737 /* if BPF program is annotated with just SEC("fentry")
6738 * (or similar) without declaratively specifying
6739 * target, then it is expected that target will be
6740 * specified with bpf_program__set_attach_target() at
6741 * runtime before BPF object load step. If not, then
6742 * there is nothing to load into the kernel as BPF
6743 * verifier won't be able to validate BPF program
6744 * correctness anyways.
6745 */
6746 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
6747 prog->name);
6748 return -EINVAL;
6749 }
6750 attach_name++; /* skip over / */
6751
6752 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6753 if (err)
6754 return err;
6755
6756 /* cache resolved BTF FD and BTF type ID in the prog */
6757 prog->attach_btf_obj_fd = btf_obj_fd;
6758 prog->attach_btf_id = btf_type_id;
6759
6760 /* but by now libbpf common logic is not utilizing
6761 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
6762 * this callback is called after opts were populated by
6763 * libbpf, so this callback has to update opts explicitly here
6764 */
6765 opts->attach_btf_obj_fd = btf_obj_fd;
6766 opts->attach_btf_id = btf_type_id;
6767 }
6768 return 0;
6769}
6770
6771static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
6772
6773static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
6774 struct bpf_insn *insns, int insns_cnt,
6775 const char *license, __u32 kern_version, int *prog_fd)
6776{
6777 LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
6778 const char *prog_name = NULL;
6779 char *cp, errmsg[STRERR_BUFSIZE];
6780 size_t log_buf_size = 0;
6781 char *log_buf = NULL, *tmp;
6782 int btf_fd, ret, err;
6783 bool own_log_buf = true;
6784 __u32 log_level = prog->log_level;
6785
6786 if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6787 /*
6788 * The program type must be set. Most likely we couldn't find a proper
6789 * section definition at load time, and thus we didn't infer the type.
6790 */
6791 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6792 prog->name, prog->sec_name);
6793 return -EINVAL;
6794 }
6795
6796 if (!insns || !insns_cnt)
6797 return -EINVAL;
6798
6799 load_attr.expected_attach_type = prog->expected_attach_type;
6800 if (kernel_supports(obj, FEAT_PROG_NAME))
6801 prog_name = prog->name;
6802 load_attr.attach_prog_fd = prog->attach_prog_fd;
6803 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6804 load_attr.attach_btf_id = prog->attach_btf_id;
6805 load_attr.kern_version = kern_version;
6806 load_attr.prog_ifindex = prog->prog_ifindex;
6807
6808 /* specify func_info/line_info only if kernel supports them */
6809 btf_fd = bpf_object__btf_fd(obj);
6810 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
6811 load_attr.prog_btf_fd = btf_fd;
6812 load_attr.func_info = prog->func_info;
6813 load_attr.func_info_rec_size = prog->func_info_rec_size;
6814 load_attr.func_info_cnt = prog->func_info_cnt;
6815 load_attr.line_info = prog->line_info;
6816 load_attr.line_info_rec_size = prog->line_info_rec_size;
6817 load_attr.line_info_cnt = prog->line_info_cnt;
6818 }
6819 load_attr.log_level = log_level;
6820 load_attr.prog_flags = prog->prog_flags;
6821 load_attr.fd_array = obj->fd_array;
6822
6823 /* adjust load_attr if sec_def provides custom preload callback */
6824 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
6825 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
6826 if (err < 0) {
6827 pr_warn("prog '%s': failed to prepare load attributes: %d\n",
6828 prog->name, err);
6829 return err;
6830 }
6831 insns = prog->insns;
6832 insns_cnt = prog->insns_cnt;
6833 }
6834
6835 if (obj->gen_loader) {
6836 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
6837 license, insns, insns_cnt, &load_attr,
6838 prog - obj->programs);
6839 *prog_fd = -1;
6840 return 0;
6841 }
6842
6843retry_load:
6844 /* if log_level is zero, we don't request logs initially even if
6845 * custom log_buf is specified; if the program load fails, then we'll
6846 * bump log_level to 1 and use either custom log_buf or we'll allocate
6847 * our own and retry the load to get details on what failed
6848 */
6849 if (log_level) {
6850 if (prog->log_buf) {
6851 log_buf = prog->log_buf;
6852 log_buf_size = prog->log_size;
6853 own_log_buf = false;
6854 } else if (obj->log_buf) {
6855 log_buf = obj->log_buf;
6856 log_buf_size = obj->log_size;
6857 own_log_buf = false;
6858 } else {
6859 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
6860 tmp = realloc(log_buf, log_buf_size);
6861 if (!tmp) {
6862 ret = -ENOMEM;
6863 goto out;
6864 }
6865 log_buf = tmp;
6866 log_buf[0] = '\0';
6867 own_log_buf = true;
6868 }
6869 }
6870
6871 load_attr.log_buf = log_buf;
6872 load_attr.log_size = log_buf_size;
6873 load_attr.log_level = log_level;
6874
6875 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
6876 if (ret >= 0) {
6877 if (log_level && own_log_buf) {
6878 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6879 prog->name, log_buf);
6880 }
6881
6882 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
6883 struct bpf_map *map;
6884 int i;
6885
6886 for (i = 0; i < obj->nr_maps; i++) {
6887 map = &prog->obj->maps[i];
6888 if (map->libbpf_type != LIBBPF_MAP_RODATA)
6889 continue;
6890
6891 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
6892 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6893 pr_warn("prog '%s': failed to bind map '%s': %s\n",
6894 prog->name, map->real_name, cp);
6895 /* Don't fail hard if can't bind rodata. */
6896 }
6897 }
6898 }
6899
6900 *prog_fd = ret;
6901 ret = 0;
6902 goto out;
6903 }
6904
6905 if (log_level == 0) {
6906 log_level = 1;
6907 goto retry_load;
6908 }
6909 /* On ENOSPC, increase log buffer size and retry, unless custom
6910 * log_buf is specified.
6911 * Be careful to not overflow u32, though. Kernel's log buf size limit
6912 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
6913 * multiply by 2 unless we are sure we'll fit within 32 bits.
6914 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
6915 */
6916 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
6917 goto retry_load;
6918
6919 ret = -errno;
6920
6921 /* post-process verifier log to improve error descriptions */
6922 fixup_verifier_log(prog, log_buf, log_buf_size);
6923
6924 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6925 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
6926 pr_perm_msg(ret);
6927
6928 if (own_log_buf && log_buf && log_buf[0] != '\0') {
6929 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6930 prog->name, log_buf);
6931 }
6932
6933out:
6934 if (own_log_buf)
6935 free(log_buf);
6936 return ret;
6937}
6938
6939static char *find_prev_line(char *buf, char *cur)
6940{
6941 char *p;
6942
6943 if (cur == buf) /* end of a log buf */
6944 return NULL;
6945
6946 p = cur - 1;
6947 while (p - 1 >= buf && *(p - 1) != '\n')
6948 p--;
6949
6950 return p;
6951}
6952
6953static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
6954 char *orig, size_t orig_sz, const char *patch)
6955{
6956 /* size of the remaining log content to the right from the to-be-replaced part */
6957 size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
6958 size_t patch_sz = strlen(patch);
6959
6960 if (patch_sz != orig_sz) {
6961 /* If patch line(s) are longer than original piece of verifier log,
6962 * shift log contents by (patch_sz - orig_sz) bytes to the right
6963 * starting from after to-be-replaced part of the log.
6964 *
6965 * If patch line(s) are shorter than original piece of verifier log,
6966 * shift log contents by (orig_sz - patch_sz) bytes to the left
6967 * starting from after to-be-replaced part of the log
6968 *
6969 * We need to be careful about not overflowing available
6970 * buf_sz capacity. If that's the case, we'll truncate the end
6971 * of the original log, as necessary.
6972 */
6973 if (patch_sz > orig_sz) {
6974 if (orig + patch_sz >= buf + buf_sz) {
6975 /* patch is big enough to cover remaining space completely */
6976 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
6977 rem_sz = 0;
6978 } else if (patch_sz - orig_sz > buf_sz - log_sz) {
6979 /* patch causes part of remaining log to be truncated */
6980 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
6981 }
6982 }
6983 /* shift remaining log to the right by calculated amount */
6984 memmove(orig + patch_sz, orig + orig_sz, rem_sz);
6985 }
6986
6987 memcpy(orig, patch, patch_sz);
6988}
6989
6990static void fixup_log_failed_core_relo(struct bpf_program *prog,
6991 char *buf, size_t buf_sz, size_t log_sz,
6992 char *line1, char *line2, char *line3)
6993{
6994 /* Expected log for failed and not properly guarded CO-RE relocation:
6995 * line1 -> 123: (85) call unknown#195896080
6996 * line2 -> invalid func unknown#195896080
6997 * line3 -> <anything else or end of buffer>
6998 *
6999 * "123" is the index of the instruction that was poisoned. We extract
7000 * instruction index to find corresponding CO-RE relocation and
7001 * replace this part of the log with more relevant information about
7002 * failed CO-RE relocation.
7003 */
7004 const struct bpf_core_relo *relo;
7005 struct bpf_core_spec spec;
7006 char patch[512], spec_buf[256];
7007 int insn_idx, err, spec_len;
7008
7009 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7010 return;
7011
7012 relo = find_relo_core(prog, insn_idx);
7013 if (!relo)
7014 return;
7015
7016 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7017 if (err)
7018 return;
7019
7020 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7021 snprintf(patch, sizeof(patch),
7022 "%d: <invalid CO-RE relocation>\n"
7023 "failed to resolve CO-RE relocation %s%s\n",
7024 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7025
7026 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7027}
7028
7029static void fixup_log_missing_map_load(struct bpf_program *prog,
7030 char *buf, size_t buf_sz, size_t log_sz,
7031 char *line1, char *line2, char *line3)
7032{
7033 /* Expected log for failed and not properly guarded CO-RE relocation:
7034 * line1 -> 123: (85) call unknown#2001000345
7035 * line2 -> invalid func unknown#2001000345
7036 * line3 -> <anything else or end of buffer>
7037 *
7038 * "123" is the index of the instruction that was poisoned.
7039 * "345" in "2001000345" are map index in obj->maps to fetch map name.
7040 */
7041 struct bpf_object *obj = prog->obj;
7042 const struct bpf_map *map;
7043 int insn_idx, map_idx;
7044 char patch[128];
7045
7046 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7047 return;
7048
7049 map_idx -= MAP_LDIMM64_POISON_BASE;
7050 if (map_idx < 0 || map_idx >= obj->nr_maps)
7051 return;
7052 map = &obj->maps[map_idx];
7053
7054 snprintf(patch, sizeof(patch),
7055 "%d: <invalid BPF map reference>\n"
7056 "BPF map '%s' is referenced but wasn't created\n",
7057 insn_idx, map->name);
7058
7059 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7060}
7061
7062static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7063{
7064 /* look for familiar error patterns in last N lines of the log */
7065 const size_t max_last_line_cnt = 10;
7066 char *prev_line, *cur_line, *next_line;
7067 size_t log_sz;
7068 int i;
7069
7070 if (!buf)
7071 return;
7072
7073 log_sz = strlen(buf) + 1;
7074 next_line = buf + log_sz - 1;
7075
7076 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7077 cur_line = find_prev_line(buf, next_line);
7078 if (!cur_line)
7079 return;
7080
7081 /* failed CO-RE relocation case */
7082 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7083 prev_line = find_prev_line(buf, cur_line);
7084 if (!prev_line)
7085 continue;
7086
7087 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7088 prev_line, cur_line, next_line);
7089 return;
7090 } else if (str_has_pfx(cur_line, "invalid func unknown#"MAP_LDIMM64_POISON_PFX)) {
7091 prev_line = find_prev_line(buf, cur_line);
7092 if (!prev_line)
7093 continue;
7094
7095 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7096 prev_line, cur_line, next_line);
7097 return;
7098 }
7099 }
7100}
7101
7102static int bpf_program_record_relos(struct bpf_program *prog)
7103{
7104 struct bpf_object *obj = prog->obj;
7105 int i;
7106
7107 for (i = 0; i < prog->nr_reloc; i++) {
7108 struct reloc_desc *relo = &prog->reloc_desc[i];
7109 struct extern_desc *ext = &obj->externs[relo->sym_off];
7110
7111 switch (relo->type) {
7112 case RELO_EXTERN_VAR:
7113 if (ext->type != EXT_KSYM)
7114 continue;
7115 bpf_gen__record_extern(obj->gen_loader, ext->name,
7116 ext->is_weak, !ext->ksym.type_id,
7117 BTF_KIND_VAR, relo->insn_idx);
7118 break;
7119 case RELO_EXTERN_FUNC:
7120 bpf_gen__record_extern(obj->gen_loader, ext->name,
7121 ext->is_weak, false, BTF_KIND_FUNC,
7122 relo->insn_idx);
7123 break;
7124 case RELO_CORE: {
7125 struct bpf_core_relo cr = {
7126 .insn_off = relo->insn_idx * 8,
7127 .type_id = relo->core_relo->type_id,
7128 .access_str_off = relo->core_relo->access_str_off,
7129 .kind = relo->core_relo->kind,
7130 };
7131
7132 bpf_gen__record_relo_core(obj->gen_loader, &cr);
7133 break;
7134 }
7135 default:
7136 continue;
7137 }
7138 }
7139 return 0;
7140}
7141
7142static int
7143bpf_object__load_progs(struct bpf_object *obj, int log_level)
7144{
7145 struct bpf_program *prog;
7146 size_t i;
7147 int err;
7148
7149 for (i = 0; i < obj->nr_programs; i++) {
7150 prog = &obj->programs[i];
7151 err = bpf_object__sanitize_prog(obj, prog);
7152 if (err)
7153 return err;
7154 }
7155
7156 for (i = 0; i < obj->nr_programs; i++) {
7157 prog = &obj->programs[i];
7158 if (prog_is_subprog(obj, prog))
7159 continue;
7160 if (!prog->autoload) {
7161 pr_debug("prog '%s': skipped loading\n", prog->name);
7162 continue;
7163 }
7164 prog->log_level |= log_level;
7165
7166 if (obj->gen_loader)
7167 bpf_program_record_relos(prog);
7168
7169 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7170 obj->license, obj->kern_version, &prog->fd);
7171 if (err) {
7172 pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7173 return err;
7174 }
7175 }
7176
7177 bpf_object__free_relocs(obj);
7178 return 0;
7179}
7180
7181static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7182
7183static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7184{
7185 struct bpf_program *prog;
7186 int err;
7187
7188 bpf_object__for_each_program(prog, obj) {
7189 prog->sec_def = find_sec_def(prog->sec_name);
7190 if (!prog->sec_def) {
7191 /* couldn't guess, but user might manually specify */
7192 pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7193 prog->name, prog->sec_name);
7194 continue;
7195 }
7196
7197 prog->type = prog->sec_def->prog_type;
7198 prog->expected_attach_type = prog->sec_def->expected_attach_type;
7199
7200 /* sec_def can have custom callback which should be called
7201 * after bpf_program is initialized to adjust its properties
7202 */
7203 if (prog->sec_def->prog_setup_fn) {
7204 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7205 if (err < 0) {
7206 pr_warn("prog '%s': failed to initialize: %d\n",
7207 prog->name, err);
7208 return err;
7209 }
7210 }
7211 }
7212
7213 return 0;
7214}
7215
7216static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7217 const struct bpf_object_open_opts *opts)
7218{
7219 const char *obj_name, *kconfig, *btf_tmp_path;
7220 struct bpf_object *obj;
7221 char tmp_name[64];
7222 int err;
7223 char *log_buf;
7224 size_t log_size;
7225 __u32 log_level;
7226
7227 if (elf_version(EV_CURRENT) == EV_NONE) {
7228 pr_warn("failed to init libelf for %s\n",
7229 path ? : "(mem buf)");
7230 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7231 }
7232
7233 if (!OPTS_VALID(opts, bpf_object_open_opts))
7234 return ERR_PTR(-EINVAL);
7235
7236 obj_name = OPTS_GET(opts, object_name, NULL);
7237 if (obj_buf) {
7238 if (!obj_name) {
7239 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7240 (unsigned long)obj_buf,
7241 (unsigned long)obj_buf_sz);
7242 obj_name = tmp_name;
7243 }
7244 path = obj_name;
7245 pr_debug("loading object '%s' from buffer\n", obj_name);
7246 }
7247
7248 log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7249 log_size = OPTS_GET(opts, kernel_log_size, 0);
7250 log_level = OPTS_GET(opts, kernel_log_level, 0);
7251 if (log_size > UINT_MAX)
7252 return ERR_PTR(-EINVAL);
7253 if (log_size && !log_buf)
7254 return ERR_PTR(-EINVAL);
7255
7256 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7257 if (IS_ERR(obj))
7258 return obj;
7259
7260 obj->log_buf = log_buf;
7261 obj->log_size = log_size;
7262 obj->log_level = log_level;
7263
7264 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7265 if (btf_tmp_path) {
7266 if (strlen(btf_tmp_path) >= PATH_MAX) {
7267 err = -ENAMETOOLONG;
7268 goto out;
7269 }
7270 obj->btf_custom_path = strdup(btf_tmp_path);
7271 if (!obj->btf_custom_path) {
7272 err = -ENOMEM;
7273 goto out;
7274 }
7275 }
7276
7277 kconfig = OPTS_GET(opts, kconfig, NULL);
7278 if (kconfig) {
7279 obj->kconfig = strdup(kconfig);
7280 if (!obj->kconfig) {
7281 err = -ENOMEM;
7282 goto out;
7283 }
7284 }
7285
7286 err = bpf_object__elf_init(obj);
7287 err = err ? : bpf_object__check_endianness(obj);
7288 err = err ? : bpf_object__elf_collect(obj);
7289 err = err ? : bpf_object__collect_externs(obj);
7290 err = err ? : bpf_object_fixup_btf(obj);
7291 err = err ? : bpf_object__init_maps(obj, opts);
7292 err = err ? : bpf_object_init_progs(obj, opts);
7293 err = err ? : bpf_object__collect_relos(obj);
7294 if (err)
7295 goto out;
7296
7297 bpf_object__elf_finish(obj);
7298
7299 return obj;
7300out:
7301 bpf_object__close(obj);
7302 return ERR_PTR(err);
7303}
7304
7305struct bpf_object *
7306bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7307{
7308 if (!path)
7309 return libbpf_err_ptr(-EINVAL);
7310
7311 pr_debug("loading %s\n", path);
7312
7313 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7314}
7315
7316struct bpf_object *bpf_object__open(const char *path)
7317{
7318 return bpf_object__open_file(path, NULL);
7319}
7320
7321struct bpf_object *
7322bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7323 const struct bpf_object_open_opts *opts)
7324{
7325 if (!obj_buf || obj_buf_sz == 0)
7326 return libbpf_err_ptr(-EINVAL);
7327
7328 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7329}
7330
7331static int bpf_object_unload(struct bpf_object *obj)
7332{
7333 size_t i;
7334
7335 if (!obj)
7336 return libbpf_err(-EINVAL);
7337
7338 for (i = 0; i < obj->nr_maps; i++) {
7339 zclose(obj->maps[i].fd);
7340 if (obj->maps[i].st_ops)
7341 zfree(&obj->maps[i].st_ops->kern_vdata);
7342 }
7343
7344 for (i = 0; i < obj->nr_programs; i++)
7345 bpf_program__unload(&obj->programs[i]);
7346
7347 return 0;
7348}
7349
7350static int bpf_object__sanitize_maps(struct bpf_object *obj)
7351{
7352 struct bpf_map *m;
7353
7354 bpf_object__for_each_map(m, obj) {
7355 if (!bpf_map__is_internal(m))
7356 continue;
7357 if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7358 m->def.map_flags ^= BPF_F_MMAPABLE;
7359 }
7360
7361 return 0;
7362}
7363
7364int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7365{
7366 char sym_type, sym_name[500];
7367 unsigned long long sym_addr;
7368 int ret, err = 0;
7369 FILE *f;
7370
7371 f = fopen("/proc/kallsyms", "r");
7372 if (!f) {
7373 err = -errno;
7374 pr_warn("failed to open /proc/kallsyms: %d\n", err);
7375 return err;
7376 }
7377
7378 while (true) {
7379 ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7380 &sym_addr, &sym_type, sym_name);
7381 if (ret == EOF && feof(f))
7382 break;
7383 if (ret != 3) {
7384 pr_warn("failed to read kallsyms entry: %d\n", ret);
7385 err = -EINVAL;
7386 break;
7387 }
7388
7389 err = cb(sym_addr, sym_type, sym_name, ctx);
7390 if (err)
7391 break;
7392 }
7393
7394 fclose(f);
7395 return err;
7396}
7397
7398static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
7399 const char *sym_name, void *ctx)
7400{
7401 struct bpf_object *obj = ctx;
7402 const struct btf_type *t;
7403 struct extern_desc *ext;
7404
7405 ext = find_extern_by_name(obj, sym_name);
7406 if (!ext || ext->type != EXT_KSYM)
7407 return 0;
7408
7409 t = btf__type_by_id(obj->btf, ext->btf_id);
7410 if (!btf_is_var(t))
7411 return 0;
7412
7413 if (ext->is_set && ext->ksym.addr != sym_addr) {
7414 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
7415 sym_name, ext->ksym.addr, sym_addr);
7416 return -EINVAL;
7417 }
7418 if (!ext->is_set) {
7419 ext->is_set = true;
7420 ext->ksym.addr = sym_addr;
7421 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
7422 }
7423 return 0;
7424}
7425
7426static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7427{
7428 return libbpf_kallsyms_parse(kallsyms_cb, obj);
7429}
7430
7431static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7432 __u16 kind, struct btf **res_btf,
7433 struct module_btf **res_mod_btf)
7434{
7435 struct module_btf *mod_btf;
7436 struct btf *btf;
7437 int i, id, err;
7438
7439 btf = obj->btf_vmlinux;
7440 mod_btf = NULL;
7441 id = btf__find_by_name_kind(btf, ksym_name, kind);
7442
7443 if (id == -ENOENT) {
7444 err = load_module_btfs(obj);
7445 if (err)
7446 return err;
7447
7448 for (i = 0; i < obj->btf_module_cnt; i++) {
7449 /* we assume module_btf's BTF FD is always >0 */
7450 mod_btf = &obj->btf_modules[i];
7451 btf = mod_btf->btf;
7452 id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7453 if (id != -ENOENT)
7454 break;
7455 }
7456 }
7457 if (id <= 0)
7458 return -ESRCH;
7459
7460 *res_btf = btf;
7461 *res_mod_btf = mod_btf;
7462 return id;
7463}
7464
7465static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7466 struct extern_desc *ext)
7467{
7468 const struct btf_type *targ_var, *targ_type;
7469 __u32 targ_type_id, local_type_id;
7470 struct module_btf *mod_btf = NULL;
7471 const char *targ_var_name;
7472 struct btf *btf = NULL;
7473 int id, err;
7474
7475 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7476 if (id < 0) {
7477 if (id == -ESRCH && ext->is_weak)
7478 return 0;
7479 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7480 ext->name);
7481 return id;
7482 }
7483
7484 /* find local type_id */
7485 local_type_id = ext->ksym.type_id;
7486
7487 /* find target type_id */
7488 targ_var = btf__type_by_id(btf, id);
7489 targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7490 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7491
7492 err = bpf_core_types_are_compat(obj->btf, local_type_id,
7493 btf, targ_type_id);
7494 if (err <= 0) {
7495 const struct btf_type *local_type;
7496 const char *targ_name, *local_name;
7497
7498 local_type = btf__type_by_id(obj->btf, local_type_id);
7499 local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7500 targ_name = btf__name_by_offset(btf, targ_type->name_off);
7501
7502 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7503 ext->name, local_type_id,
7504 btf_kind_str(local_type), local_name, targ_type_id,
7505 btf_kind_str(targ_type), targ_name);
7506 return -EINVAL;
7507 }
7508
7509 ext->is_set = true;
7510 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7511 ext->ksym.kernel_btf_id = id;
7512 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7513 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7514
7515 return 0;
7516}
7517
7518static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7519 struct extern_desc *ext)
7520{
7521 int local_func_proto_id, kfunc_proto_id, kfunc_id;
7522 struct module_btf *mod_btf = NULL;
7523 const struct btf_type *kern_func;
7524 struct btf *kern_btf = NULL;
7525 int ret;
7526
7527 local_func_proto_id = ext->ksym.type_id;
7528
7529 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf);
7530 if (kfunc_id < 0) {
7531 if (kfunc_id == -ESRCH && ext->is_weak)
7532 return 0;
7533 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7534 ext->name);
7535 return kfunc_id;
7536 }
7537
7538 kern_func = btf__type_by_id(kern_btf, kfunc_id);
7539 kfunc_proto_id = kern_func->type;
7540
7541 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7542 kern_btf, kfunc_proto_id);
7543 if (ret <= 0) {
7544 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n",
7545 ext->name, local_func_proto_id, kfunc_proto_id);
7546 return -EINVAL;
7547 }
7548
7549 /* set index for module BTF fd in fd_array, if unset */
7550 if (mod_btf && !mod_btf->fd_array_idx) {
7551 /* insn->off is s16 */
7552 if (obj->fd_array_cnt == INT16_MAX) {
7553 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7554 ext->name, mod_btf->fd_array_idx);
7555 return -E2BIG;
7556 }
7557 /* Cannot use index 0 for module BTF fd */
7558 if (!obj->fd_array_cnt)
7559 obj->fd_array_cnt = 1;
7560
7561 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7562 obj->fd_array_cnt + 1);
7563 if (ret)
7564 return ret;
7565 mod_btf->fd_array_idx = obj->fd_array_cnt;
7566 /* we assume module BTF FD is always >0 */
7567 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7568 }
7569
7570 ext->is_set = true;
7571 ext->ksym.kernel_btf_id = kfunc_id;
7572 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7573 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n",
7574 ext->name, kfunc_id);
7575
7576 return 0;
7577}
7578
7579static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7580{
7581 const struct btf_type *t;
7582 struct extern_desc *ext;
7583 int i, err;
7584
7585 for (i = 0; i < obj->nr_extern; i++) {
7586 ext = &obj->externs[i];
7587 if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7588 continue;
7589
7590 if (obj->gen_loader) {
7591 ext->is_set = true;
7592 ext->ksym.kernel_btf_obj_fd = 0;
7593 ext->ksym.kernel_btf_id = 0;
7594 continue;
7595 }
7596 t = btf__type_by_id(obj->btf, ext->btf_id);
7597 if (btf_is_var(t))
7598 err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7599 else
7600 err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7601 if (err)
7602 return err;
7603 }
7604 return 0;
7605}
7606
7607static int bpf_object__resolve_externs(struct bpf_object *obj,
7608 const char *extra_kconfig)
7609{
7610 bool need_config = false, need_kallsyms = false;
7611 bool need_vmlinux_btf = false;
7612 struct extern_desc *ext;
7613 void *kcfg_data = NULL;
7614 int err, i;
7615
7616 if (obj->nr_extern == 0)
7617 return 0;
7618
7619 if (obj->kconfig_map_idx >= 0)
7620 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7621
7622 for (i = 0; i < obj->nr_extern; i++) {
7623 ext = &obj->externs[i];
7624
7625 if (ext->type == EXT_KSYM) {
7626 if (ext->ksym.type_id)
7627 need_vmlinux_btf = true;
7628 else
7629 need_kallsyms = true;
7630 continue;
7631 } else if (ext->type == EXT_KCFG) {
7632 void *ext_ptr = kcfg_data + ext->kcfg.data_off;
7633 __u64 value = 0;
7634
7635 /* Kconfig externs need actual /proc/config.gz */
7636 if (str_has_pfx(ext->name, "CONFIG_")) {
7637 need_config = true;
7638 continue;
7639 }
7640
7641 /* Virtual kcfg externs are customly handled by libbpf */
7642 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7643 value = get_kernel_version();
7644 if (!value) {
7645 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
7646 return -EINVAL;
7647 }
7648 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
7649 value = kernel_supports(obj, FEAT_BPF_COOKIE);
7650 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
7651 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
7652 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
7653 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
7654 * __kconfig externs, where LINUX_ ones are virtual and filled out
7655 * customly by libbpf (their values don't come from Kconfig).
7656 * If LINUX_xxx variable is not recognized by libbpf, but is marked
7657 * __weak, it defaults to zero value, just like for CONFIG_xxx
7658 * externs.
7659 */
7660 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
7661 return -EINVAL;
7662 }
7663
7664 err = set_kcfg_value_num(ext, ext_ptr, value);
7665 if (err)
7666 return err;
7667 pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
7668 ext->name, (long long)value);
7669 } else {
7670 pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
7671 return -EINVAL;
7672 }
7673 }
7674 if (need_config && extra_kconfig) {
7675 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7676 if (err)
7677 return -EINVAL;
7678 need_config = false;
7679 for (i = 0; i < obj->nr_extern; i++) {
7680 ext = &obj->externs[i];
7681 if (ext->type == EXT_KCFG && !ext->is_set) {
7682 need_config = true;
7683 break;
7684 }
7685 }
7686 }
7687 if (need_config) {
7688 err = bpf_object__read_kconfig_file(obj, kcfg_data);
7689 if (err)
7690 return -EINVAL;
7691 }
7692 if (need_kallsyms) {
7693 err = bpf_object__read_kallsyms_file(obj);
7694 if (err)
7695 return -EINVAL;
7696 }
7697 if (need_vmlinux_btf) {
7698 err = bpf_object__resolve_ksyms_btf_id(obj);
7699 if (err)
7700 return -EINVAL;
7701 }
7702 for (i = 0; i < obj->nr_extern; i++) {
7703 ext = &obj->externs[i];
7704
7705 if (!ext->is_set && !ext->is_weak) {
7706 pr_warn("extern '%s' (strong): not resolved\n", ext->name);
7707 return -ESRCH;
7708 } else if (!ext->is_set) {
7709 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
7710 ext->name);
7711 }
7712 }
7713
7714 return 0;
7715}
7716
7717static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
7718{
7719 int err, i;
7720
7721 if (!obj)
7722 return libbpf_err(-EINVAL);
7723
7724 if (obj->loaded) {
7725 pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7726 return libbpf_err(-EINVAL);
7727 }
7728
7729 if (obj->gen_loader)
7730 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
7731
7732 err = bpf_object__probe_loading(obj);
7733 err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7734 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7735 err = err ? : bpf_object__sanitize_and_load_btf(obj);
7736 err = err ? : bpf_object__sanitize_maps(obj);
7737 err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7738 err = err ? : bpf_object__create_maps(obj);
7739 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
7740 err = err ? : bpf_object__load_progs(obj, extra_log_level);
7741 err = err ? : bpf_object_init_prog_arrays(obj);
7742
7743 if (obj->gen_loader) {
7744 /* reset FDs */
7745 if (obj->btf)
7746 btf__set_fd(obj->btf, -1);
7747 for (i = 0; i < obj->nr_maps; i++)
7748 obj->maps[i].fd = -1;
7749 if (!err)
7750 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
7751 }
7752
7753 /* clean up fd_array */
7754 zfree(&obj->fd_array);
7755
7756 /* clean up module BTFs */
7757 for (i = 0; i < obj->btf_module_cnt; i++) {
7758 close(obj->btf_modules[i].fd);
7759 btf__free(obj->btf_modules[i].btf);
7760 free(obj->btf_modules[i].name);
7761 }
7762 free(obj->btf_modules);
7763
7764 /* clean up vmlinux BTF */
7765 btf__free(obj->btf_vmlinux);
7766 obj->btf_vmlinux = NULL;
7767
7768 obj->loaded = true; /* doesn't matter if successfully or not */
7769
7770 if (err)
7771 goto out;
7772
7773 return 0;
7774out:
7775 /* unpin any maps that were auto-pinned during load */
7776 for (i = 0; i < obj->nr_maps; i++)
7777 if (obj->maps[i].pinned && !obj->maps[i].reused)
7778 bpf_map__unpin(&obj->maps[i], NULL);
7779
7780 bpf_object_unload(obj);
7781 pr_warn("failed to load object '%s'\n", obj->path);
7782 return libbpf_err(err);
7783}
7784
7785int bpf_object__load(struct bpf_object *obj)
7786{
7787 return bpf_object_load(obj, 0, NULL);
7788}
7789
7790static int make_parent_dir(const char *path)
7791{
7792 char *cp, errmsg[STRERR_BUFSIZE];
7793 char *dname, *dir;
7794 int err = 0;
7795
7796 dname = strdup(path);
7797 if (dname == NULL)
7798 return -ENOMEM;
7799
7800 dir = dirname(dname);
7801 if (mkdir(dir, 0700) && errno != EEXIST)
7802 err = -errno;
7803
7804 free(dname);
7805 if (err) {
7806 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7807 pr_warn("failed to mkdir %s: %s\n", path, cp);
7808 }
7809 return err;
7810}
7811
7812static int check_path(const char *path)
7813{
7814 char *cp, errmsg[STRERR_BUFSIZE];
7815 struct statfs st_fs;
7816 char *dname, *dir;
7817 int err = 0;
7818
7819 if (path == NULL)
7820 return -EINVAL;
7821
7822 dname = strdup(path);
7823 if (dname == NULL)
7824 return -ENOMEM;
7825
7826 dir = dirname(dname);
7827 if (statfs(dir, &st_fs)) {
7828 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7829 pr_warn("failed to statfs %s: %s\n", dir, cp);
7830 err = -errno;
7831 }
7832 free(dname);
7833
7834 if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7835 pr_warn("specified path %s is not on BPF FS\n", path);
7836 err = -EINVAL;
7837 }
7838
7839 return err;
7840}
7841
7842int bpf_program__pin(struct bpf_program *prog, const char *path)
7843{
7844 char *cp, errmsg[STRERR_BUFSIZE];
7845 int err;
7846
7847 if (prog->fd < 0) {
7848 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
7849 return libbpf_err(-EINVAL);
7850 }
7851
7852 err = make_parent_dir(path);
7853 if (err)
7854 return libbpf_err(err);
7855
7856 err = check_path(path);
7857 if (err)
7858 return libbpf_err(err);
7859
7860 if (bpf_obj_pin(prog->fd, path)) {
7861 err = -errno;
7862 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7863 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
7864 return libbpf_err(err);
7865 }
7866
7867 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
7868 return 0;
7869}
7870
7871int bpf_program__unpin(struct bpf_program *prog, const char *path)
7872{
7873 int err;
7874
7875 if (prog->fd < 0) {
7876 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
7877 return libbpf_err(-EINVAL);
7878 }
7879
7880 err = check_path(path);
7881 if (err)
7882 return libbpf_err(err);
7883
7884 err = unlink(path);
7885 if (err)
7886 return libbpf_err(-errno);
7887
7888 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
7889 return 0;
7890}
7891
7892int bpf_map__pin(struct bpf_map *map, const char *path)
7893{
7894 char *cp, errmsg[STRERR_BUFSIZE];
7895 int err;
7896
7897 if (map == NULL) {
7898 pr_warn("invalid map pointer\n");
7899 return libbpf_err(-EINVAL);
7900 }
7901
7902 if (map->pin_path) {
7903 if (path && strcmp(path, map->pin_path)) {
7904 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7905 bpf_map__name(map), map->pin_path, path);
7906 return libbpf_err(-EINVAL);
7907 } else if (map->pinned) {
7908 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
7909 bpf_map__name(map), map->pin_path);
7910 return 0;
7911 }
7912 } else {
7913 if (!path) {
7914 pr_warn("missing a path to pin map '%s' at\n",
7915 bpf_map__name(map));
7916 return libbpf_err(-EINVAL);
7917 } else if (map->pinned) {
7918 pr_warn("map '%s' already pinned\n", bpf_map__name(map));
7919 return libbpf_err(-EEXIST);
7920 }
7921
7922 map->pin_path = strdup(path);
7923 if (!map->pin_path) {
7924 err = -errno;
7925 goto out_err;
7926 }
7927 }
7928
7929 err = make_parent_dir(map->pin_path);
7930 if (err)
7931 return libbpf_err(err);
7932
7933 err = check_path(map->pin_path);
7934 if (err)
7935 return libbpf_err(err);
7936
7937 if (bpf_obj_pin(map->fd, map->pin_path)) {
7938 err = -errno;
7939 goto out_err;
7940 }
7941
7942 map->pinned = true;
7943 pr_debug("pinned map '%s'\n", map->pin_path);
7944
7945 return 0;
7946
7947out_err:
7948 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7949 pr_warn("failed to pin map: %s\n", cp);
7950 return libbpf_err(err);
7951}
7952
7953int bpf_map__unpin(struct bpf_map *map, const char *path)
7954{
7955 int err;
7956
7957 if (map == NULL) {
7958 pr_warn("invalid map pointer\n");
7959 return libbpf_err(-EINVAL);
7960 }
7961
7962 if (map->pin_path) {
7963 if (path && strcmp(path, map->pin_path)) {
7964 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7965 bpf_map__name(map), map->pin_path, path);
7966 return libbpf_err(-EINVAL);
7967 }
7968 path = map->pin_path;
7969 } else if (!path) {
7970 pr_warn("no path to unpin map '%s' from\n",
7971 bpf_map__name(map));
7972 return libbpf_err(-EINVAL);
7973 }
7974
7975 err = check_path(path);
7976 if (err)
7977 return libbpf_err(err);
7978
7979 err = unlink(path);
7980 if (err != 0)
7981 return libbpf_err(-errno);
7982
7983 map->pinned = false;
7984 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
7985
7986 return 0;
7987}
7988
7989int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
7990{
7991 char *new = NULL;
7992
7993 if (path) {
7994 new = strdup(path);
7995 if (!new)
7996 return libbpf_err(-errno);
7997 }
7998
7999 free(map->pin_path);
8000 map->pin_path = new;
8001 return 0;
8002}
8003
8004__alias(bpf_map__pin_path)
8005const char *bpf_map__get_pin_path(const struct bpf_map *map);
8006
8007const char *bpf_map__pin_path(const struct bpf_map *map)
8008{
8009 return map->pin_path;
8010}
8011
8012bool bpf_map__is_pinned(const struct bpf_map *map)
8013{
8014 return map->pinned;
8015}
8016
8017static void sanitize_pin_path(char *s)
8018{
8019 /* bpffs disallows periods in path names */
8020 while (*s) {
8021 if (*s == '.')
8022 *s = '_';
8023 s++;
8024 }
8025}
8026
8027int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8028{
8029 struct bpf_map *map;
8030 int err;
8031
8032 if (!obj)
8033 return libbpf_err(-ENOENT);
8034
8035 if (!obj->loaded) {
8036 pr_warn("object not yet loaded; load it first\n");
8037 return libbpf_err(-ENOENT);
8038 }
8039
8040 bpf_object__for_each_map(map, obj) {
8041 char *pin_path = NULL;
8042 char buf[PATH_MAX];
8043
8044 if (!map->autocreate)
8045 continue;
8046
8047 if (path) {
8048 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8049 if (err)
8050 goto err_unpin_maps;
8051 sanitize_pin_path(buf);
8052 pin_path = buf;
8053 } else if (!map->pin_path) {
8054 continue;
8055 }
8056
8057 err = bpf_map__pin(map, pin_path);
8058 if (err)
8059 goto err_unpin_maps;
8060 }
8061
8062 return 0;
8063
8064err_unpin_maps:
8065 while ((map = bpf_object__prev_map(obj, map))) {
8066 if (!map->pin_path)
8067 continue;
8068
8069 bpf_map__unpin(map, NULL);
8070 }
8071
8072 return libbpf_err(err);
8073}
8074
8075int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8076{
8077 struct bpf_map *map;
8078 int err;
8079
8080 if (!obj)
8081 return libbpf_err(-ENOENT);
8082
8083 bpf_object__for_each_map(map, obj) {
8084 char *pin_path = NULL;
8085 char buf[PATH_MAX];
8086
8087 if (path) {
8088 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8089 if (err)
8090 return libbpf_err(err);
8091 sanitize_pin_path(buf);
8092 pin_path = buf;
8093 } else if (!map->pin_path) {
8094 continue;
8095 }
8096
8097 err = bpf_map__unpin(map, pin_path);
8098 if (err)
8099 return libbpf_err(err);
8100 }
8101
8102 return 0;
8103}
8104
8105int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8106{
8107 struct bpf_program *prog;
8108 char buf[PATH_MAX];
8109 int err;
8110
8111 if (!obj)
8112 return libbpf_err(-ENOENT);
8113
8114 if (!obj->loaded) {
8115 pr_warn("object not yet loaded; load it first\n");
8116 return libbpf_err(-ENOENT);
8117 }
8118
8119 bpf_object__for_each_program(prog, obj) {
8120 err = pathname_concat(buf, sizeof(buf), path, prog->name);
8121 if (err)
8122 goto err_unpin_programs;
8123
8124 err = bpf_program__pin(prog, buf);
8125 if (err)
8126 goto err_unpin_programs;
8127 }
8128
8129 return 0;
8130
8131err_unpin_programs:
8132 while ((prog = bpf_object__prev_program(obj, prog))) {
8133 if (pathname_concat(buf, sizeof(buf), path, prog->name))
8134 continue;
8135
8136 bpf_program__unpin(prog, buf);
8137 }
8138
8139 return libbpf_err(err);
8140}
8141
8142int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8143{
8144 struct bpf_program *prog;
8145 int err;
8146
8147 if (!obj)
8148 return libbpf_err(-ENOENT);
8149
8150 bpf_object__for_each_program(prog, obj) {
8151 char buf[PATH_MAX];
8152
8153 err = pathname_concat(buf, sizeof(buf), path, prog->name);
8154 if (err)
8155 return libbpf_err(err);
8156
8157 err = bpf_program__unpin(prog, buf);
8158 if (err)
8159 return libbpf_err(err);
8160 }
8161
8162 return 0;
8163}
8164
8165int bpf_object__pin(struct bpf_object *obj, const char *path)
8166{
8167 int err;
8168
8169 err = bpf_object__pin_maps(obj, path);
8170 if (err)
8171 return libbpf_err(err);
8172
8173 err = bpf_object__pin_programs(obj, path);
8174 if (err) {
8175 bpf_object__unpin_maps(obj, path);
8176 return libbpf_err(err);
8177 }
8178
8179 return 0;
8180}
8181
8182static void bpf_map__destroy(struct bpf_map *map)
8183{
8184 if (map->inner_map) {
8185 bpf_map__destroy(map->inner_map);
8186 zfree(&map->inner_map);
8187 }
8188
8189 zfree(&map->init_slots);
8190 map->init_slots_sz = 0;
8191
8192 if (map->mmaped) {
8193 munmap(map->mmaped, bpf_map_mmap_sz(map));
8194 map->mmaped = NULL;
8195 }
8196
8197 if (map->st_ops) {
8198 zfree(&map->st_ops->data);
8199 zfree(&map->st_ops->progs);
8200 zfree(&map->st_ops->kern_func_off);
8201 zfree(&map->st_ops);
8202 }
8203
8204 zfree(&map->name);
8205 zfree(&map->real_name);
8206 zfree(&map->pin_path);
8207
8208 if (map->fd >= 0)
8209 zclose(map->fd);
8210}
8211
8212void bpf_object__close(struct bpf_object *obj)
8213{
8214 size_t i;
8215
8216 if (IS_ERR_OR_NULL(obj))
8217 return;
8218
8219 usdt_manager_free(obj->usdt_man);
8220 obj->usdt_man = NULL;
8221
8222 bpf_gen__free(obj->gen_loader);
8223 bpf_object__elf_finish(obj);
8224 bpf_object_unload(obj);
8225 btf__free(obj->btf);
8226 btf_ext__free(obj->btf_ext);
8227
8228 for (i = 0; i < obj->nr_maps; i++)
8229 bpf_map__destroy(&obj->maps[i]);
8230
8231 zfree(&obj->btf_custom_path);
8232 zfree(&obj->kconfig);
8233 zfree(&obj->externs);
8234 obj->nr_extern = 0;
8235
8236 zfree(&obj->maps);
8237 obj->nr_maps = 0;
8238
8239 if (obj->programs && obj->nr_programs) {
8240 for (i = 0; i < obj->nr_programs; i++)
8241 bpf_program__exit(&obj->programs[i]);
8242 }
8243 zfree(&obj->programs);
8244
8245 free(obj);
8246}
8247
8248const char *bpf_object__name(const struct bpf_object *obj)
8249{
8250 return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8251}
8252
8253unsigned int bpf_object__kversion(const struct bpf_object *obj)
8254{
8255 return obj ? obj->kern_version : 0;
8256}
8257
8258struct btf *bpf_object__btf(const struct bpf_object *obj)
8259{
8260 return obj ? obj->btf : NULL;
8261}
8262
8263int bpf_object__btf_fd(const struct bpf_object *obj)
8264{
8265 return obj->btf ? btf__fd(obj->btf) : -1;
8266}
8267
8268int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8269{
8270 if (obj->loaded)
8271 return libbpf_err(-EINVAL);
8272
8273 obj->kern_version = kern_version;
8274
8275 return 0;
8276}
8277
8278int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8279{
8280 struct bpf_gen *gen;
8281
8282 if (!opts)
8283 return -EFAULT;
8284 if (!OPTS_VALID(opts, gen_loader_opts))
8285 return -EINVAL;
8286 gen = calloc(sizeof(*gen), 1);
8287 if (!gen)
8288 return -ENOMEM;
8289 gen->opts = opts;
8290 obj->gen_loader = gen;
8291 return 0;
8292}
8293
8294static struct bpf_program *
8295__bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8296 bool forward)
8297{
8298 size_t nr_programs = obj->nr_programs;
8299 ssize_t idx;
8300
8301 if (!nr_programs)
8302 return NULL;
8303
8304 if (!p)
8305 /* Iter from the beginning */
8306 return forward ? &obj->programs[0] :
8307 &obj->programs[nr_programs - 1];
8308
8309 if (p->obj != obj) {
8310 pr_warn("error: program handler doesn't match object\n");
8311 return errno = EINVAL, NULL;
8312 }
8313
8314 idx = (p - obj->programs) + (forward ? 1 : -1);
8315 if (idx >= obj->nr_programs || idx < 0)
8316 return NULL;
8317 return &obj->programs[idx];
8318}
8319
8320struct bpf_program *
8321bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8322{
8323 struct bpf_program *prog = prev;
8324
8325 do {
8326 prog = __bpf_program__iter(prog, obj, true);
8327 } while (prog && prog_is_subprog(obj, prog));
8328
8329 return prog;
8330}
8331
8332struct bpf_program *
8333bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8334{
8335 struct bpf_program *prog = next;
8336
8337 do {
8338 prog = __bpf_program__iter(prog, obj, false);
8339 } while (prog && prog_is_subprog(obj, prog));
8340
8341 return prog;
8342}
8343
8344void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8345{
8346 prog->prog_ifindex = ifindex;
8347}
8348
8349const char *bpf_program__name(const struct bpf_program *prog)
8350{
8351 return prog->name;
8352}
8353
8354const char *bpf_program__section_name(const struct bpf_program *prog)
8355{
8356 return prog->sec_name;
8357}
8358
8359bool bpf_program__autoload(const struct bpf_program *prog)
8360{
8361 return prog->autoload;
8362}
8363
8364int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8365{
8366 if (prog->obj->loaded)
8367 return libbpf_err(-EINVAL);
8368
8369 prog->autoload = autoload;
8370 return 0;
8371}
8372
8373bool bpf_program__autoattach(const struct bpf_program *prog)
8374{
8375 return prog->autoattach;
8376}
8377
8378void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
8379{
8380 prog->autoattach = autoattach;
8381}
8382
8383const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8384{
8385 return prog->insns;
8386}
8387
8388size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8389{
8390 return prog->insns_cnt;
8391}
8392
8393int bpf_program__set_insns(struct bpf_program *prog,
8394 struct bpf_insn *new_insns, size_t new_insn_cnt)
8395{
8396 struct bpf_insn *insns;
8397
8398 if (prog->obj->loaded)
8399 return -EBUSY;
8400
8401 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
8402 if (!insns) {
8403 pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
8404 return -ENOMEM;
8405 }
8406 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
8407
8408 prog->insns = insns;
8409 prog->insns_cnt = new_insn_cnt;
8410 return 0;
8411}
8412
8413int bpf_program__fd(const struct bpf_program *prog)
8414{
8415 if (!prog)
8416 return libbpf_err(-EINVAL);
8417
8418 if (prog->fd < 0)
8419 return libbpf_err(-ENOENT);
8420
8421 return prog->fd;
8422}
8423
8424__alias(bpf_program__type)
8425enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
8426
8427enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
8428{
8429 return prog->type;
8430}
8431
8432int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8433{
8434 if (prog->obj->loaded)
8435 return libbpf_err(-EBUSY);
8436
8437 prog->type = type;
8438 return 0;
8439}
8440
8441__alias(bpf_program__expected_attach_type)
8442enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
8443
8444enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
8445{
8446 return prog->expected_attach_type;
8447}
8448
8449int bpf_program__set_expected_attach_type(struct bpf_program *prog,
8450 enum bpf_attach_type type)
8451{
8452 if (prog->obj->loaded)
8453 return libbpf_err(-EBUSY);
8454
8455 prog->expected_attach_type = type;
8456 return 0;
8457}
8458
8459__u32 bpf_program__flags(const struct bpf_program *prog)
8460{
8461 return prog->prog_flags;
8462}
8463
8464int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
8465{
8466 if (prog->obj->loaded)
8467 return libbpf_err(-EBUSY);
8468
8469 prog->prog_flags = flags;
8470 return 0;
8471}
8472
8473__u32 bpf_program__log_level(const struct bpf_program *prog)
8474{
8475 return prog->log_level;
8476}
8477
8478int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
8479{
8480 if (prog->obj->loaded)
8481 return libbpf_err(-EBUSY);
8482
8483 prog->log_level = log_level;
8484 return 0;
8485}
8486
8487const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
8488{
8489 *log_size = prog->log_size;
8490 return prog->log_buf;
8491}
8492
8493int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
8494{
8495 if (log_size && !log_buf)
8496 return -EINVAL;
8497 if (prog->log_size > UINT_MAX)
8498 return -EINVAL;
8499 if (prog->obj->loaded)
8500 return -EBUSY;
8501
8502 prog->log_buf = log_buf;
8503 prog->log_size = log_size;
8504 return 0;
8505}
8506
8507#define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \
8508 .sec = (char *)sec_pfx, \
8509 .prog_type = BPF_PROG_TYPE_##ptype, \
8510 .expected_attach_type = atype, \
8511 .cookie = (long)(flags), \
8512 .prog_prepare_load_fn = libbpf_prepare_prog_load, \
8513 __VA_ARGS__ \
8514}
8515
8516static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8517static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8518static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8519static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8520static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8521static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8522static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8523static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8524static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8525static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8526
8527static const struct bpf_sec_def section_defs[] = {
8528 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE),
8529 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
8530 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
8531 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
8532 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
8533 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8534 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
8535 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
8536 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8537 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8538 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8539 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
8540 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
8541 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt),
8542 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE),
8543 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE),
8544 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE),
8545 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp),
8546 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp),
8547 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8548 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8549 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8550 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8551 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
8552 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
8553 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
8554 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
8555 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8556 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8557 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8558 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace),
8559 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
8560 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
8561 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
8562 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
8563 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
8564 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE),
8565 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
8566 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
8567 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
8568 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
8569 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS),
8570 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
8571 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE),
8572 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE),
8573 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE),
8574 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE),
8575 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE),
8576 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
8577 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
8578 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
8579 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE),
8580 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
8581 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
8582 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
8583 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
8584 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
8585 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE),
8586 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
8587 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
8588 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
8589 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
8590 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
8591 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
8592 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
8593 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
8594 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
8595 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
8596 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
8597 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
8598 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
8599 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
8600 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
8601 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
8602 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
8603 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
8604 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
8605 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
8606 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
8607 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE),
8608 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
8609};
8610
8611static size_t custom_sec_def_cnt;
8612static struct bpf_sec_def *custom_sec_defs;
8613static struct bpf_sec_def custom_fallback_def;
8614static bool has_custom_fallback_def;
8615
8616static int last_custom_sec_def_handler_id;
8617
8618int libbpf_register_prog_handler(const char *sec,
8619 enum bpf_prog_type prog_type,
8620 enum bpf_attach_type exp_attach_type,
8621 const struct libbpf_prog_handler_opts *opts)
8622{
8623 struct bpf_sec_def *sec_def;
8624
8625 if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
8626 return libbpf_err(-EINVAL);
8627
8628 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
8629 return libbpf_err(-E2BIG);
8630
8631 if (sec) {
8632 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
8633 sizeof(*sec_def));
8634 if (!sec_def)
8635 return libbpf_err(-ENOMEM);
8636
8637 custom_sec_defs = sec_def;
8638 sec_def = &custom_sec_defs[custom_sec_def_cnt];
8639 } else {
8640 if (has_custom_fallback_def)
8641 return libbpf_err(-EBUSY);
8642
8643 sec_def = &custom_fallback_def;
8644 }
8645
8646 sec_def->sec = sec ? strdup(sec) : NULL;
8647 if (sec && !sec_def->sec)
8648 return libbpf_err(-ENOMEM);
8649
8650 sec_def->prog_type = prog_type;
8651 sec_def->expected_attach_type = exp_attach_type;
8652 sec_def->cookie = OPTS_GET(opts, cookie, 0);
8653
8654 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
8655 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
8656 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
8657
8658 sec_def->handler_id = ++last_custom_sec_def_handler_id;
8659
8660 if (sec)
8661 custom_sec_def_cnt++;
8662 else
8663 has_custom_fallback_def = true;
8664
8665 return sec_def->handler_id;
8666}
8667
8668int libbpf_unregister_prog_handler(int handler_id)
8669{
8670 struct bpf_sec_def *sec_defs;
8671 int i;
8672
8673 if (handler_id <= 0)
8674 return libbpf_err(-EINVAL);
8675
8676 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
8677 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
8678 has_custom_fallback_def = false;
8679 return 0;
8680 }
8681
8682 for (i = 0; i < custom_sec_def_cnt; i++) {
8683 if (custom_sec_defs[i].handler_id == handler_id)
8684 break;
8685 }
8686
8687 if (i == custom_sec_def_cnt)
8688 return libbpf_err(-ENOENT);
8689
8690 free(custom_sec_defs[i].sec);
8691 for (i = i + 1; i < custom_sec_def_cnt; i++)
8692 custom_sec_defs[i - 1] = custom_sec_defs[i];
8693 custom_sec_def_cnt--;
8694
8695 /* try to shrink the array, but it's ok if we couldn't */
8696 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
8697 if (sec_defs)
8698 custom_sec_defs = sec_defs;
8699
8700 return 0;
8701}
8702
8703static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
8704{
8705 size_t len = strlen(sec_def->sec);
8706
8707 /* "type/" always has to have proper SEC("type/extras") form */
8708 if (sec_def->sec[len - 1] == '/') {
8709 if (str_has_pfx(sec_name, sec_def->sec))
8710 return true;
8711 return false;
8712 }
8713
8714 /* "type+" means it can be either exact SEC("type") or
8715 * well-formed SEC("type/extras") with proper '/' separator
8716 */
8717 if (sec_def->sec[len - 1] == '+') {
8718 len--;
8719 /* not even a prefix */
8720 if (strncmp(sec_name, sec_def->sec, len) != 0)
8721 return false;
8722 /* exact match or has '/' separator */
8723 if (sec_name[len] == '\0' || sec_name[len] == '/')
8724 return true;
8725 return false;
8726 }
8727
8728 return strcmp(sec_name, sec_def->sec) == 0;
8729}
8730
8731static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8732{
8733 const struct bpf_sec_def *sec_def;
8734 int i, n;
8735
8736 n = custom_sec_def_cnt;
8737 for (i = 0; i < n; i++) {
8738 sec_def = &custom_sec_defs[i];
8739 if (sec_def_matches(sec_def, sec_name))
8740 return sec_def;
8741 }
8742
8743 n = ARRAY_SIZE(section_defs);
8744 for (i = 0; i < n; i++) {
8745 sec_def = §ion_defs[i];
8746 if (sec_def_matches(sec_def, sec_name))
8747 return sec_def;
8748 }
8749
8750 if (has_custom_fallback_def)
8751 return &custom_fallback_def;
8752
8753 return NULL;
8754}
8755
8756#define MAX_TYPE_NAME_SIZE 32
8757
8758static char *libbpf_get_type_names(bool attach_type)
8759{
8760 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8761 char *buf;
8762
8763 buf = malloc(len);
8764 if (!buf)
8765 return NULL;
8766
8767 buf[0] = '\0';
8768 /* Forge string buf with all available names */
8769 for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8770 const struct bpf_sec_def *sec_def = §ion_defs[i];
8771
8772 if (attach_type) {
8773 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
8774 continue;
8775
8776 if (!(sec_def->cookie & SEC_ATTACHABLE))
8777 continue;
8778 }
8779
8780 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
8781 free(buf);
8782 return NULL;
8783 }
8784 strcat(buf, " ");
8785 strcat(buf, section_defs[i].sec);
8786 }
8787
8788 return buf;
8789}
8790
8791int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
8792 enum bpf_attach_type *expected_attach_type)
8793{
8794 const struct bpf_sec_def *sec_def;
8795 char *type_names;
8796
8797 if (!name)
8798 return libbpf_err(-EINVAL);
8799
8800 sec_def = find_sec_def(name);
8801 if (sec_def) {
8802 *prog_type = sec_def->prog_type;
8803 *expected_attach_type = sec_def->expected_attach_type;
8804 return 0;
8805 }
8806
8807 pr_debug("failed to guess program type from ELF section '%s'\n", name);
8808 type_names = libbpf_get_type_names(false);
8809 if (type_names != NULL) {
8810 pr_debug("supported section(type) names are:%s\n", type_names);
8811 free(type_names);
8812 }
8813
8814 return libbpf_err(-ESRCH);
8815}
8816
8817const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
8818{
8819 if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
8820 return NULL;
8821
8822 return attach_type_name[t];
8823}
8824
8825const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
8826{
8827 if (t < 0 || t >= ARRAY_SIZE(link_type_name))
8828 return NULL;
8829
8830 return link_type_name[t];
8831}
8832
8833const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
8834{
8835 if (t < 0 || t >= ARRAY_SIZE(map_type_name))
8836 return NULL;
8837
8838 return map_type_name[t];
8839}
8840
8841const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
8842{
8843 if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
8844 return NULL;
8845
8846 return prog_type_name[t];
8847}
8848
8849static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
8850 size_t offset)
8851{
8852 struct bpf_map *map;
8853 size_t i;
8854
8855 for (i = 0; i < obj->nr_maps; i++) {
8856 map = &obj->maps[i];
8857 if (!bpf_map__is_struct_ops(map))
8858 continue;
8859 if (map->sec_offset <= offset &&
8860 offset - map->sec_offset < map->def.value_size)
8861 return map;
8862 }
8863
8864 return NULL;
8865}
8866
8867/* Collect the reloc from ELF and populate the st_ops->progs[] */
8868static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
8869 Elf64_Shdr *shdr, Elf_Data *data)
8870{
8871 const struct btf_member *member;
8872 struct bpf_struct_ops *st_ops;
8873 struct bpf_program *prog;
8874 unsigned int shdr_idx;
8875 const struct btf *btf;
8876 struct bpf_map *map;
8877 unsigned int moff, insn_idx;
8878 const char *name;
8879 __u32 member_idx;
8880 Elf64_Sym *sym;
8881 Elf64_Rel *rel;
8882 int i, nrels;
8883
8884 btf = obj->btf;
8885 nrels = shdr->sh_size / shdr->sh_entsize;
8886 for (i = 0; i < nrels; i++) {
8887 rel = elf_rel_by_idx(data, i);
8888 if (!rel) {
8889 pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
8890 return -LIBBPF_ERRNO__FORMAT;
8891 }
8892
8893 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
8894 if (!sym) {
8895 pr_warn("struct_ops reloc: symbol %zx not found\n",
8896 (size_t)ELF64_R_SYM(rel->r_info));
8897 return -LIBBPF_ERRNO__FORMAT;
8898 }
8899
8900 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
8901 map = find_struct_ops_map_by_offset(obj, rel->r_offset);
8902 if (!map) {
8903 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
8904 (size_t)rel->r_offset);
8905 return -EINVAL;
8906 }
8907
8908 moff = rel->r_offset - map->sec_offset;
8909 shdr_idx = sym->st_shndx;
8910 st_ops = map->st_ops;
8911 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
8912 map->name,
8913 (long long)(rel->r_info >> 32),
8914 (long long)sym->st_value,
8915 shdr_idx, (size_t)rel->r_offset,
8916 map->sec_offset, sym->st_name, name);
8917
8918 if (shdr_idx >= SHN_LORESERVE) {
8919 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
8920 map->name, (size_t)rel->r_offset, shdr_idx);
8921 return -LIBBPF_ERRNO__RELOC;
8922 }
8923 if (sym->st_value % BPF_INSN_SZ) {
8924 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
8925 map->name, (unsigned long long)sym->st_value);
8926 return -LIBBPF_ERRNO__FORMAT;
8927 }
8928 insn_idx = sym->st_value / BPF_INSN_SZ;
8929
8930 member = find_member_by_offset(st_ops->type, moff * 8);
8931 if (!member) {
8932 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
8933 map->name, moff);
8934 return -EINVAL;
8935 }
8936 member_idx = member - btf_members(st_ops->type);
8937 name = btf__name_by_offset(btf, member->name_off);
8938
8939 if (!resolve_func_ptr(btf, member->type, NULL)) {
8940 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
8941 map->name, name);
8942 return -EINVAL;
8943 }
8944
8945 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
8946 if (!prog) {
8947 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
8948 map->name, shdr_idx, name);
8949 return -EINVAL;
8950 }
8951
8952 /* prevent the use of BPF prog with invalid type */
8953 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
8954 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
8955 map->name, prog->name);
8956 return -EINVAL;
8957 }
8958
8959 /* if we haven't yet processed this BPF program, record proper
8960 * attach_btf_id and member_idx
8961 */
8962 if (!prog->attach_btf_id) {
8963 prog->attach_btf_id = st_ops->type_id;
8964 prog->expected_attach_type = member_idx;
8965 }
8966
8967 /* struct_ops BPF prog can be re-used between multiple
8968 * .struct_ops as long as it's the same struct_ops struct
8969 * definition and the same function pointer field
8970 */
8971 if (prog->attach_btf_id != st_ops->type_id ||
8972 prog->expected_attach_type != member_idx) {
8973 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
8974 map->name, prog->name, prog->sec_name, prog->type,
8975 prog->attach_btf_id, prog->expected_attach_type, name);
8976 return -EINVAL;
8977 }
8978
8979 st_ops->progs[member_idx] = prog;
8980 }
8981
8982 return 0;
8983}
8984
8985#define BTF_TRACE_PREFIX "btf_trace_"
8986#define BTF_LSM_PREFIX "bpf_lsm_"
8987#define BTF_ITER_PREFIX "bpf_iter_"
8988#define BTF_MAX_NAME_SIZE 128
8989
8990void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
8991 const char **prefix, int *kind)
8992{
8993 switch (attach_type) {
8994 case BPF_TRACE_RAW_TP:
8995 *prefix = BTF_TRACE_PREFIX;
8996 *kind = BTF_KIND_TYPEDEF;
8997 break;
8998 case BPF_LSM_MAC:
8999 case BPF_LSM_CGROUP:
9000 *prefix = BTF_LSM_PREFIX;
9001 *kind = BTF_KIND_FUNC;
9002 break;
9003 case BPF_TRACE_ITER:
9004 *prefix = BTF_ITER_PREFIX;
9005 *kind = BTF_KIND_FUNC;
9006 break;
9007 default:
9008 *prefix = "";
9009 *kind = BTF_KIND_FUNC;
9010 }
9011}
9012
9013static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9014 const char *name, __u32 kind)
9015{
9016 char btf_type_name[BTF_MAX_NAME_SIZE];
9017 int ret;
9018
9019 ret = snprintf(btf_type_name, sizeof(btf_type_name),
9020 "%s%s", prefix, name);
9021 /* snprintf returns the number of characters written excluding the
9022 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9023 * indicates truncation.
9024 */
9025 if (ret < 0 || ret >= sizeof(btf_type_name))
9026 return -ENAMETOOLONG;
9027 return btf__find_by_name_kind(btf, btf_type_name, kind);
9028}
9029
9030static inline int find_attach_btf_id(struct btf *btf, const char *name,
9031 enum bpf_attach_type attach_type)
9032{
9033 const char *prefix;
9034 int kind;
9035
9036 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9037 return find_btf_by_prefix_kind(btf, prefix, name, kind);
9038}
9039
9040int libbpf_find_vmlinux_btf_id(const char *name,
9041 enum bpf_attach_type attach_type)
9042{
9043 struct btf *btf;
9044 int err;
9045
9046 btf = btf__load_vmlinux_btf();
9047 err = libbpf_get_error(btf);
9048 if (err) {
9049 pr_warn("vmlinux BTF is not found\n");
9050 return libbpf_err(err);
9051 }
9052
9053 err = find_attach_btf_id(btf, name, attach_type);
9054 if (err <= 0)
9055 pr_warn("%s is not found in vmlinux BTF\n", name);
9056
9057 btf__free(btf);
9058 return libbpf_err(err);
9059}
9060
9061static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9062{
9063 struct bpf_prog_info info;
9064 __u32 info_len = sizeof(info);
9065 struct btf *btf;
9066 int err;
9067
9068 memset(&info, 0, info_len);
9069 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len);
9070 if (err) {
9071 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n",
9072 attach_prog_fd, err);
9073 return err;
9074 }
9075
9076 err = -EINVAL;
9077 if (!info.btf_id) {
9078 pr_warn("The target program doesn't have BTF\n");
9079 goto out;
9080 }
9081 btf = btf__load_from_kernel_by_id(info.btf_id);
9082 err = libbpf_get_error(btf);
9083 if (err) {
9084 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9085 goto out;
9086 }
9087 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9088 btf__free(btf);
9089 if (err <= 0) {
9090 pr_warn("%s is not found in prog's BTF\n", name);
9091 goto out;
9092 }
9093out:
9094 return err;
9095}
9096
9097static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9098 enum bpf_attach_type attach_type,
9099 int *btf_obj_fd, int *btf_type_id)
9100{
9101 int ret, i;
9102
9103 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9104 if (ret > 0) {
9105 *btf_obj_fd = 0; /* vmlinux BTF */
9106 *btf_type_id = ret;
9107 return 0;
9108 }
9109 if (ret != -ENOENT)
9110 return ret;
9111
9112 ret = load_module_btfs(obj);
9113 if (ret)
9114 return ret;
9115
9116 for (i = 0; i < obj->btf_module_cnt; i++) {
9117 const struct module_btf *mod = &obj->btf_modules[i];
9118
9119 ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9120 if (ret > 0) {
9121 *btf_obj_fd = mod->fd;
9122 *btf_type_id = ret;
9123 return 0;
9124 }
9125 if (ret == -ENOENT)
9126 continue;
9127
9128 return ret;
9129 }
9130
9131 return -ESRCH;
9132}
9133
9134static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9135 int *btf_obj_fd, int *btf_type_id)
9136{
9137 enum bpf_attach_type attach_type = prog->expected_attach_type;
9138 __u32 attach_prog_fd = prog->attach_prog_fd;
9139 int err = 0;
9140
9141 /* BPF program's BTF ID */
9142 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9143 if (!attach_prog_fd) {
9144 pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9145 return -EINVAL;
9146 }
9147 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9148 if (err < 0) {
9149 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9150 prog->name, attach_prog_fd, attach_name, err);
9151 return err;
9152 }
9153 *btf_obj_fd = 0;
9154 *btf_type_id = err;
9155 return 0;
9156 }
9157
9158 /* kernel/module BTF ID */
9159 if (prog->obj->gen_loader) {
9160 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9161 *btf_obj_fd = 0;
9162 *btf_type_id = 1;
9163 } else {
9164 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9165 }
9166 if (err) {
9167 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9168 prog->name, attach_name, err);
9169 return err;
9170 }
9171 return 0;
9172}
9173
9174int libbpf_attach_type_by_name(const char *name,
9175 enum bpf_attach_type *attach_type)
9176{
9177 char *type_names;
9178 const struct bpf_sec_def *sec_def;
9179
9180 if (!name)
9181 return libbpf_err(-EINVAL);
9182
9183 sec_def = find_sec_def(name);
9184 if (!sec_def) {
9185 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9186 type_names = libbpf_get_type_names(true);
9187 if (type_names != NULL) {
9188 pr_debug("attachable section(type) names are:%s\n", type_names);
9189 free(type_names);
9190 }
9191
9192 return libbpf_err(-EINVAL);
9193 }
9194
9195 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9196 return libbpf_err(-EINVAL);
9197 if (!(sec_def->cookie & SEC_ATTACHABLE))
9198 return libbpf_err(-EINVAL);
9199
9200 *attach_type = sec_def->expected_attach_type;
9201 return 0;
9202}
9203
9204int bpf_map__fd(const struct bpf_map *map)
9205{
9206 return map ? map->fd : libbpf_err(-EINVAL);
9207}
9208
9209static bool map_uses_real_name(const struct bpf_map *map)
9210{
9211 /* Since libbpf started to support custom .data.* and .rodata.* maps,
9212 * their user-visible name differs from kernel-visible name. Users see
9213 * such map's corresponding ELF section name as a map name.
9214 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9215 * maps to know which name has to be returned to the user.
9216 */
9217 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9218 return true;
9219 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9220 return true;
9221 return false;
9222}
9223
9224const char *bpf_map__name(const struct bpf_map *map)
9225{
9226 if (!map)
9227 return NULL;
9228
9229 if (map_uses_real_name(map))
9230 return map->real_name;
9231
9232 return map->name;
9233}
9234
9235enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9236{
9237 return map->def.type;
9238}
9239
9240int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9241{
9242 if (map->fd >= 0)
9243 return libbpf_err(-EBUSY);
9244 map->def.type = type;
9245 return 0;
9246}
9247
9248__u32 bpf_map__map_flags(const struct bpf_map *map)
9249{
9250 return map->def.map_flags;
9251}
9252
9253int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9254{
9255 if (map->fd >= 0)
9256 return libbpf_err(-EBUSY);
9257 map->def.map_flags = flags;
9258 return 0;
9259}
9260
9261__u64 bpf_map__map_extra(const struct bpf_map *map)
9262{
9263 return map->map_extra;
9264}
9265
9266int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9267{
9268 if (map->fd >= 0)
9269 return libbpf_err(-EBUSY);
9270 map->map_extra = map_extra;
9271 return 0;
9272}
9273
9274__u32 bpf_map__numa_node(const struct bpf_map *map)
9275{
9276 return map->numa_node;
9277}
9278
9279int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9280{
9281 if (map->fd >= 0)
9282 return libbpf_err(-EBUSY);
9283 map->numa_node = numa_node;
9284 return 0;
9285}
9286
9287__u32 bpf_map__key_size(const struct bpf_map *map)
9288{
9289 return map->def.key_size;
9290}
9291
9292int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9293{
9294 if (map->fd >= 0)
9295 return libbpf_err(-EBUSY);
9296 map->def.key_size = size;
9297 return 0;
9298}
9299
9300__u32 bpf_map__value_size(const struct bpf_map *map)
9301{
9302 return map->def.value_size;
9303}
9304
9305int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9306{
9307 if (map->fd >= 0)
9308 return libbpf_err(-EBUSY);
9309 map->def.value_size = size;
9310 return 0;
9311}
9312
9313__u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9314{
9315 return map ? map->btf_key_type_id : 0;
9316}
9317
9318__u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9319{
9320 return map ? map->btf_value_type_id : 0;
9321}
9322
9323int bpf_map__set_initial_value(struct bpf_map *map,
9324 const void *data, size_t size)
9325{
9326 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9327 size != map->def.value_size || map->fd >= 0)
9328 return libbpf_err(-EINVAL);
9329
9330 memcpy(map->mmaped, data, size);
9331 return 0;
9332}
9333
9334const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9335{
9336 if (!map->mmaped)
9337 return NULL;
9338 *psize = map->def.value_size;
9339 return map->mmaped;
9340}
9341
9342bool bpf_map__is_internal(const struct bpf_map *map)
9343{
9344 return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9345}
9346
9347__u32 bpf_map__ifindex(const struct bpf_map *map)
9348{
9349 return map->map_ifindex;
9350}
9351
9352int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9353{
9354 if (map->fd >= 0)
9355 return libbpf_err(-EBUSY);
9356 map->map_ifindex = ifindex;
9357 return 0;
9358}
9359
9360int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9361{
9362 if (!bpf_map_type__is_map_in_map(map->def.type)) {
9363 pr_warn("error: unsupported map type\n");
9364 return libbpf_err(-EINVAL);
9365 }
9366 if (map->inner_map_fd != -1) {
9367 pr_warn("error: inner_map_fd already specified\n");
9368 return libbpf_err(-EINVAL);
9369 }
9370 if (map->inner_map) {
9371 bpf_map__destroy(map->inner_map);
9372 zfree(&map->inner_map);
9373 }
9374 map->inner_map_fd = fd;
9375 return 0;
9376}
9377
9378static struct bpf_map *
9379__bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9380{
9381 ssize_t idx;
9382 struct bpf_map *s, *e;
9383
9384 if (!obj || !obj->maps)
9385 return errno = EINVAL, NULL;
9386
9387 s = obj->maps;
9388 e = obj->maps + obj->nr_maps;
9389
9390 if ((m < s) || (m >= e)) {
9391 pr_warn("error in %s: map handler doesn't belong to object\n",
9392 __func__);
9393 return errno = EINVAL, NULL;
9394 }
9395
9396 idx = (m - obj->maps) + i;
9397 if (idx >= obj->nr_maps || idx < 0)
9398 return NULL;
9399 return &obj->maps[idx];
9400}
9401
9402struct bpf_map *
9403bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9404{
9405 if (prev == NULL)
9406 return obj->maps;
9407
9408 return __bpf_map__iter(prev, obj, 1);
9409}
9410
9411struct bpf_map *
9412bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9413{
9414 if (next == NULL) {
9415 if (!obj->nr_maps)
9416 return NULL;
9417 return obj->maps + obj->nr_maps - 1;
9418 }
9419
9420 return __bpf_map__iter(next, obj, -1);
9421}
9422
9423struct bpf_map *
9424bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9425{
9426 struct bpf_map *pos;
9427
9428 bpf_object__for_each_map(pos, obj) {
9429 /* if it's a special internal map name (which always starts
9430 * with dot) then check if that special name matches the
9431 * real map name (ELF section name)
9432 */
9433 if (name[0] == '.') {
9434 if (pos->real_name && strcmp(pos->real_name, name) == 0)
9435 return pos;
9436 continue;
9437 }
9438 /* otherwise map name has to be an exact match */
9439 if (map_uses_real_name(pos)) {
9440 if (strcmp(pos->real_name, name) == 0)
9441 return pos;
9442 continue;
9443 }
9444 if (strcmp(pos->name, name) == 0)
9445 return pos;
9446 }
9447 return errno = ENOENT, NULL;
9448}
9449
9450int
9451bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9452{
9453 return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9454}
9455
9456static int validate_map_op(const struct bpf_map *map, size_t key_sz,
9457 size_t value_sz, bool check_value_sz)
9458{
9459 if (map->fd <= 0)
9460 return -ENOENT;
9461
9462 if (map->def.key_size != key_sz) {
9463 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
9464 map->name, key_sz, map->def.key_size);
9465 return -EINVAL;
9466 }
9467
9468 if (!check_value_sz)
9469 return 0;
9470
9471 switch (map->def.type) {
9472 case BPF_MAP_TYPE_PERCPU_ARRAY:
9473 case BPF_MAP_TYPE_PERCPU_HASH:
9474 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
9475 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
9476 int num_cpu = libbpf_num_possible_cpus();
9477 size_t elem_sz = roundup(map->def.value_size, 8);
9478
9479 if (value_sz != num_cpu * elem_sz) {
9480 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
9481 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
9482 return -EINVAL;
9483 }
9484 break;
9485 }
9486 default:
9487 if (map->def.value_size != value_sz) {
9488 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
9489 map->name, value_sz, map->def.value_size);
9490 return -EINVAL;
9491 }
9492 break;
9493 }
9494 return 0;
9495}
9496
9497int bpf_map__lookup_elem(const struct bpf_map *map,
9498 const void *key, size_t key_sz,
9499 void *value, size_t value_sz, __u64 flags)
9500{
9501 int err;
9502
9503 err = validate_map_op(map, key_sz, value_sz, true);
9504 if (err)
9505 return libbpf_err(err);
9506
9507 return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
9508}
9509
9510int bpf_map__update_elem(const struct bpf_map *map,
9511 const void *key, size_t key_sz,
9512 const void *value, size_t value_sz, __u64 flags)
9513{
9514 int err;
9515
9516 err = validate_map_op(map, key_sz, value_sz, true);
9517 if (err)
9518 return libbpf_err(err);
9519
9520 return bpf_map_update_elem(map->fd, key, value, flags);
9521}
9522
9523int bpf_map__delete_elem(const struct bpf_map *map,
9524 const void *key, size_t key_sz, __u64 flags)
9525{
9526 int err;
9527
9528 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9529 if (err)
9530 return libbpf_err(err);
9531
9532 return bpf_map_delete_elem_flags(map->fd, key, flags);
9533}
9534
9535int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
9536 const void *key, size_t key_sz,
9537 void *value, size_t value_sz, __u64 flags)
9538{
9539 int err;
9540
9541 err = validate_map_op(map, key_sz, value_sz, true);
9542 if (err)
9543 return libbpf_err(err);
9544
9545 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
9546}
9547
9548int bpf_map__get_next_key(const struct bpf_map *map,
9549 const void *cur_key, void *next_key, size_t key_sz)
9550{
9551 int err;
9552
9553 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9554 if (err)
9555 return libbpf_err(err);
9556
9557 return bpf_map_get_next_key(map->fd, cur_key, next_key);
9558}
9559
9560long libbpf_get_error(const void *ptr)
9561{
9562 if (!IS_ERR_OR_NULL(ptr))
9563 return 0;
9564
9565 if (IS_ERR(ptr))
9566 errno = -PTR_ERR(ptr);
9567
9568 /* If ptr == NULL, then errno should be already set by the failing
9569 * API, because libbpf never returns NULL on success and it now always
9570 * sets errno on error. So no extra errno handling for ptr == NULL
9571 * case.
9572 */
9573 return -errno;
9574}
9575
9576/* Replace link's underlying BPF program with the new one */
9577int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9578{
9579 int ret;
9580
9581 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9582 return libbpf_err_errno(ret);
9583}
9584
9585/* Release "ownership" of underlying BPF resource (typically, BPF program
9586 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9587 * link, when destructed through bpf_link__destroy() call won't attempt to
9588 * detach/unregisted that BPF resource. This is useful in situations where,
9589 * say, attached BPF program has to outlive userspace program that attached it
9590 * in the system. Depending on type of BPF program, though, there might be
9591 * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9592 * exit of userspace program doesn't trigger automatic detachment and clean up
9593 * inside the kernel.
9594 */
9595void bpf_link__disconnect(struct bpf_link *link)
9596{
9597 link->disconnected = true;
9598}
9599
9600int bpf_link__destroy(struct bpf_link *link)
9601{
9602 int err = 0;
9603
9604 if (IS_ERR_OR_NULL(link))
9605 return 0;
9606
9607 if (!link->disconnected && link->detach)
9608 err = link->detach(link);
9609 if (link->pin_path)
9610 free(link->pin_path);
9611 if (link->dealloc)
9612 link->dealloc(link);
9613 else
9614 free(link);
9615
9616 return libbpf_err(err);
9617}
9618
9619int bpf_link__fd(const struct bpf_link *link)
9620{
9621 return link->fd;
9622}
9623
9624const char *bpf_link__pin_path(const struct bpf_link *link)
9625{
9626 return link->pin_path;
9627}
9628
9629static int bpf_link__detach_fd(struct bpf_link *link)
9630{
9631 return libbpf_err_errno(close(link->fd));
9632}
9633
9634struct bpf_link *bpf_link__open(const char *path)
9635{
9636 struct bpf_link *link;
9637 int fd;
9638
9639 fd = bpf_obj_get(path);
9640 if (fd < 0) {
9641 fd = -errno;
9642 pr_warn("failed to open link at %s: %d\n", path, fd);
9643 return libbpf_err_ptr(fd);
9644 }
9645
9646 link = calloc(1, sizeof(*link));
9647 if (!link) {
9648 close(fd);
9649 return libbpf_err_ptr(-ENOMEM);
9650 }
9651 link->detach = &bpf_link__detach_fd;
9652 link->fd = fd;
9653
9654 link->pin_path = strdup(path);
9655 if (!link->pin_path) {
9656 bpf_link__destroy(link);
9657 return libbpf_err_ptr(-ENOMEM);
9658 }
9659
9660 return link;
9661}
9662
9663int bpf_link__detach(struct bpf_link *link)
9664{
9665 return bpf_link_detach(link->fd) ? -errno : 0;
9666}
9667
9668int bpf_link__pin(struct bpf_link *link, const char *path)
9669{
9670 int err;
9671
9672 if (link->pin_path)
9673 return libbpf_err(-EBUSY);
9674 err = make_parent_dir(path);
9675 if (err)
9676 return libbpf_err(err);
9677 err = check_path(path);
9678 if (err)
9679 return libbpf_err(err);
9680
9681 link->pin_path = strdup(path);
9682 if (!link->pin_path)
9683 return libbpf_err(-ENOMEM);
9684
9685 if (bpf_obj_pin(link->fd, link->pin_path)) {
9686 err = -errno;
9687 zfree(&link->pin_path);
9688 return libbpf_err(err);
9689 }
9690
9691 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
9692 return 0;
9693}
9694
9695int bpf_link__unpin(struct bpf_link *link)
9696{
9697 int err;
9698
9699 if (!link->pin_path)
9700 return libbpf_err(-EINVAL);
9701
9702 err = unlink(link->pin_path);
9703 if (err != 0)
9704 return -errno;
9705
9706 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
9707 zfree(&link->pin_path);
9708 return 0;
9709}
9710
9711struct bpf_link_perf {
9712 struct bpf_link link;
9713 int perf_event_fd;
9714 /* legacy kprobe support: keep track of probe identifier and type */
9715 char *legacy_probe_name;
9716 bool legacy_is_kprobe;
9717 bool legacy_is_retprobe;
9718};
9719
9720static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
9721static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
9722
9723static int bpf_link_perf_detach(struct bpf_link *link)
9724{
9725 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9726 int err = 0;
9727
9728 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
9729 err = -errno;
9730
9731 if (perf_link->perf_event_fd != link->fd)
9732 close(perf_link->perf_event_fd);
9733 close(link->fd);
9734
9735 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */
9736 if (perf_link->legacy_probe_name) {
9737 if (perf_link->legacy_is_kprobe) {
9738 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
9739 perf_link->legacy_is_retprobe);
9740 } else {
9741 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
9742 perf_link->legacy_is_retprobe);
9743 }
9744 }
9745
9746 return err;
9747}
9748
9749static void bpf_link_perf_dealloc(struct bpf_link *link)
9750{
9751 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9752
9753 free(perf_link->legacy_probe_name);
9754 free(perf_link);
9755}
9756
9757struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
9758 const struct bpf_perf_event_opts *opts)
9759{
9760 char errmsg[STRERR_BUFSIZE];
9761 struct bpf_link_perf *link;
9762 int prog_fd, link_fd = -1, err;
9763
9764 if (!OPTS_VALID(opts, bpf_perf_event_opts))
9765 return libbpf_err_ptr(-EINVAL);
9766
9767 if (pfd < 0) {
9768 pr_warn("prog '%s': invalid perf event FD %d\n",
9769 prog->name, pfd);
9770 return libbpf_err_ptr(-EINVAL);
9771 }
9772 prog_fd = bpf_program__fd(prog);
9773 if (prog_fd < 0) {
9774 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
9775 prog->name);
9776 return libbpf_err_ptr(-EINVAL);
9777 }
9778
9779 link = calloc(1, sizeof(*link));
9780 if (!link)
9781 return libbpf_err_ptr(-ENOMEM);
9782 link->link.detach = &bpf_link_perf_detach;
9783 link->link.dealloc = &bpf_link_perf_dealloc;
9784 link->perf_event_fd = pfd;
9785
9786 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) {
9787 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
9788 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
9789
9790 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
9791 if (link_fd < 0) {
9792 err = -errno;
9793 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
9794 prog->name, pfd,
9795 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9796 goto err_out;
9797 }
9798 link->link.fd = link_fd;
9799 } else {
9800 if (OPTS_GET(opts, bpf_cookie, 0)) {
9801 pr_warn("prog '%s': user context value is not supported\n", prog->name);
9802 err = -EOPNOTSUPP;
9803 goto err_out;
9804 }
9805
9806 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
9807 err = -errno;
9808 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
9809 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9810 if (err == -EPROTO)
9811 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
9812 prog->name, pfd);
9813 goto err_out;
9814 }
9815 link->link.fd = pfd;
9816 }
9817 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9818 err = -errno;
9819 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
9820 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9821 goto err_out;
9822 }
9823
9824 return &link->link;
9825err_out:
9826 if (link_fd >= 0)
9827 close(link_fd);
9828 free(link);
9829 return libbpf_err_ptr(err);
9830}
9831
9832struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
9833{
9834 return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
9835}
9836
9837/*
9838 * this function is expected to parse integer in the range of [0, 2^31-1] from
9839 * given file using scanf format string fmt. If actual parsed value is
9840 * negative, the result might be indistinguishable from error
9841 */
9842static int parse_uint_from_file(const char *file, const char *fmt)
9843{
9844 char buf[STRERR_BUFSIZE];
9845 int err, ret;
9846 FILE *f;
9847
9848 f = fopen(file, "r");
9849 if (!f) {
9850 err = -errno;
9851 pr_debug("failed to open '%s': %s\n", file,
9852 libbpf_strerror_r(err, buf, sizeof(buf)));
9853 return err;
9854 }
9855 err = fscanf(f, fmt, &ret);
9856 if (err != 1) {
9857 err = err == EOF ? -EIO : -errno;
9858 pr_debug("failed to parse '%s': %s\n", file,
9859 libbpf_strerror_r(err, buf, sizeof(buf)));
9860 fclose(f);
9861 return err;
9862 }
9863 fclose(f);
9864 return ret;
9865}
9866
9867static int determine_kprobe_perf_type(void)
9868{
9869 const char *file = "/sys/bus/event_source/devices/kprobe/type";
9870
9871 return parse_uint_from_file(file, "%d\n");
9872}
9873
9874static int determine_uprobe_perf_type(void)
9875{
9876 const char *file = "/sys/bus/event_source/devices/uprobe/type";
9877
9878 return parse_uint_from_file(file, "%d\n");
9879}
9880
9881static int determine_kprobe_retprobe_bit(void)
9882{
9883 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
9884
9885 return parse_uint_from_file(file, "config:%d\n");
9886}
9887
9888static int determine_uprobe_retprobe_bit(void)
9889{
9890 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
9891
9892 return parse_uint_from_file(file, "config:%d\n");
9893}
9894
9895#define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
9896#define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
9897
9898static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
9899 uint64_t offset, int pid, size_t ref_ctr_off)
9900{
9901 const size_t attr_sz = sizeof(struct perf_event_attr);
9902 struct perf_event_attr attr;
9903 char errmsg[STRERR_BUFSIZE];
9904 int type, pfd;
9905
9906 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
9907 return -EINVAL;
9908
9909 memset(&attr, 0, attr_sz);
9910
9911 type = uprobe ? determine_uprobe_perf_type()
9912 : determine_kprobe_perf_type();
9913 if (type < 0) {
9914 pr_warn("failed to determine %s perf type: %s\n",
9915 uprobe ? "uprobe" : "kprobe",
9916 libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
9917 return type;
9918 }
9919 if (retprobe) {
9920 int bit = uprobe ? determine_uprobe_retprobe_bit()
9921 : determine_kprobe_retprobe_bit();
9922
9923 if (bit < 0) {
9924 pr_warn("failed to determine %s retprobe bit: %s\n",
9925 uprobe ? "uprobe" : "kprobe",
9926 libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
9927 return bit;
9928 }
9929 attr.config |= 1 << bit;
9930 }
9931 attr.size = attr_sz;
9932 attr.type = type;
9933 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9934 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
9935 attr.config2 = offset; /* kprobe_addr or probe_offset */
9936
9937 /* pid filter is meaningful only for uprobes */
9938 pfd = syscall(__NR_perf_event_open, &attr,
9939 pid < 0 ? -1 : pid /* pid */,
9940 pid == -1 ? 0 : -1 /* cpu */,
9941 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9942 return pfd >= 0 ? pfd : -errno;
9943}
9944
9945static int append_to_file(const char *file, const char *fmt, ...)
9946{
9947 int fd, n, err = 0;
9948 va_list ap;
9949
9950 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
9951 if (fd < 0)
9952 return -errno;
9953
9954 va_start(ap, fmt);
9955 n = vdprintf(fd, fmt, ap);
9956 va_end(ap);
9957
9958 if (n < 0)
9959 err = -errno;
9960
9961 close(fd);
9962 return err;
9963}
9964
9965#define DEBUGFS "/sys/kernel/debug/tracing"
9966#define TRACEFS "/sys/kernel/tracing"
9967
9968static bool use_debugfs(void)
9969{
9970 static int has_debugfs = -1;
9971
9972 if (has_debugfs < 0)
9973 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
9974
9975 return has_debugfs == 1;
9976}
9977
9978static const char *tracefs_path(void)
9979{
9980 return use_debugfs() ? DEBUGFS : TRACEFS;
9981}
9982
9983static const char *tracefs_kprobe_events(void)
9984{
9985 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
9986}
9987
9988static const char *tracefs_uprobe_events(void)
9989{
9990 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
9991}
9992
9993static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
9994 const char *kfunc_name, size_t offset)
9995{
9996 static int index = 0;
9997
9998 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
9999 __sync_fetch_and_add(&index, 1));
10000}
10001
10002static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10003 const char *kfunc_name, size_t offset)
10004{
10005 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
10006 retprobe ? 'r' : 'p',
10007 retprobe ? "kretprobes" : "kprobes",
10008 probe_name, kfunc_name, offset);
10009}
10010
10011static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10012{
10013 return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
10014 retprobe ? "kretprobes" : "kprobes", probe_name);
10015}
10016
10017static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10018{
10019 char file[256];
10020
10021 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10022 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
10023
10024 return parse_uint_from_file(file, "%d\n");
10025}
10026
10027static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10028 const char *kfunc_name, size_t offset, int pid)
10029{
10030 const size_t attr_sz = sizeof(struct perf_event_attr);
10031 struct perf_event_attr attr;
10032 char errmsg[STRERR_BUFSIZE];
10033 int type, pfd, err;
10034
10035 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10036 if (err < 0) {
10037 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10038 kfunc_name, offset,
10039 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10040 return err;
10041 }
10042 type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10043 if (type < 0) {
10044 err = type;
10045 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10046 kfunc_name, offset,
10047 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10048 goto err_clean_legacy;
10049 }
10050
10051 memset(&attr, 0, attr_sz);
10052 attr.size = attr_sz;
10053 attr.config = type;
10054 attr.type = PERF_TYPE_TRACEPOINT;
10055
10056 pfd = syscall(__NR_perf_event_open, &attr,
10057 pid < 0 ? -1 : pid, /* pid */
10058 pid == -1 ? 0 : -1, /* cpu */
10059 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10060 if (pfd < 0) {
10061 err = -errno;
10062 pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10063 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10064 goto err_clean_legacy;
10065 }
10066 return pfd;
10067
10068err_clean_legacy:
10069 /* Clear the newly added legacy kprobe_event */
10070 remove_kprobe_event_legacy(probe_name, retprobe);
10071 return err;
10072}
10073
10074static const char *arch_specific_syscall_pfx(void)
10075{
10076#if defined(__x86_64__)
10077 return "x64";
10078#elif defined(__i386__)
10079 return "ia32";
10080#elif defined(__s390x__)
10081 return "s390x";
10082#elif defined(__s390__)
10083 return "s390";
10084#elif defined(__arm__)
10085 return "arm";
10086#elif defined(__aarch64__)
10087 return "arm64";
10088#elif defined(__mips__)
10089 return "mips";
10090#elif defined(__riscv)
10091 return "riscv";
10092#elif defined(__powerpc__)
10093 return "powerpc";
10094#elif defined(__powerpc64__)
10095 return "powerpc64";
10096#else
10097 return NULL;
10098#endif
10099}
10100
10101static int probe_kern_syscall_wrapper(void)
10102{
10103 char syscall_name[64];
10104 const char *ksys_pfx;
10105
10106 ksys_pfx = arch_specific_syscall_pfx();
10107 if (!ksys_pfx)
10108 return 0;
10109
10110 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
10111
10112 if (determine_kprobe_perf_type() >= 0) {
10113 int pfd;
10114
10115 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
10116 if (pfd >= 0)
10117 close(pfd);
10118
10119 return pfd >= 0 ? 1 : 0;
10120 } else { /* legacy mode */
10121 char probe_name[128];
10122
10123 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
10124 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
10125 return 0;
10126
10127 (void)remove_kprobe_event_legacy(probe_name, false);
10128 return 1;
10129 }
10130}
10131
10132struct bpf_link *
10133bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10134 const char *func_name,
10135 const struct bpf_kprobe_opts *opts)
10136{
10137 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10138 char errmsg[STRERR_BUFSIZE];
10139 char *legacy_probe = NULL;
10140 struct bpf_link *link;
10141 size_t offset;
10142 bool retprobe, legacy;
10143 int pfd, err;
10144
10145 if (!OPTS_VALID(opts, bpf_kprobe_opts))
10146 return libbpf_err_ptr(-EINVAL);
10147
10148 retprobe = OPTS_GET(opts, retprobe, false);
10149 offset = OPTS_GET(opts, offset, 0);
10150 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10151
10152 legacy = determine_kprobe_perf_type() < 0;
10153 if (!legacy) {
10154 pfd = perf_event_open_probe(false /* uprobe */, retprobe,
10155 func_name, offset,
10156 -1 /* pid */, 0 /* ref_ctr_off */);
10157 } else {
10158 char probe_name[256];
10159
10160 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
10161 func_name, offset);
10162
10163 legacy_probe = strdup(probe_name);
10164 if (!legacy_probe)
10165 return libbpf_err_ptr(-ENOMEM);
10166
10167 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
10168 offset, -1 /* pid */);
10169 }
10170 if (pfd < 0) {
10171 err = -errno;
10172 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
10173 prog->name, retprobe ? "kretprobe" : "kprobe",
10174 func_name, offset,
10175 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10176 goto err_out;
10177 }
10178 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10179 err = libbpf_get_error(link);
10180 if (err) {
10181 close(pfd);
10182 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
10183 prog->name, retprobe ? "kretprobe" : "kprobe",
10184 func_name, offset,
10185 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10186 goto err_clean_legacy;
10187 }
10188 if (legacy) {
10189 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10190
10191 perf_link->legacy_probe_name = legacy_probe;
10192 perf_link->legacy_is_kprobe = true;
10193 perf_link->legacy_is_retprobe = retprobe;
10194 }
10195
10196 return link;
10197
10198err_clean_legacy:
10199 if (legacy)
10200 remove_kprobe_event_legacy(legacy_probe, retprobe);
10201err_out:
10202 free(legacy_probe);
10203 return libbpf_err_ptr(err);
10204}
10205
10206struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
10207 bool retprobe,
10208 const char *func_name)
10209{
10210 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
10211 .retprobe = retprobe,
10212 );
10213
10214 return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
10215}
10216
10217struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
10218 const char *syscall_name,
10219 const struct bpf_ksyscall_opts *opts)
10220{
10221 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
10222 char func_name[128];
10223
10224 if (!OPTS_VALID(opts, bpf_ksyscall_opts))
10225 return libbpf_err_ptr(-EINVAL);
10226
10227 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
10228 /* arch_specific_syscall_pfx() should never return NULL here
10229 * because it is guarded by kernel_supports(). However, since
10230 * compiler does not know that we have an explicit conditional
10231 * as well.
10232 */
10233 snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
10234 arch_specific_syscall_pfx() ? : "", syscall_name);
10235 } else {
10236 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
10237 }
10238
10239 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
10240 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10241
10242 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
10243}
10244
10245/* Adapted from perf/util/string.c */
10246static bool glob_match(const char *str, const char *pat)
10247{
10248 while (*str && *pat && *pat != '*') {
10249 if (*pat == '?') { /* Matches any single character */
10250 str++;
10251 pat++;
10252 continue;
10253 }
10254 if (*str != *pat)
10255 return false;
10256 str++;
10257 pat++;
10258 }
10259 /* Check wild card */
10260 if (*pat == '*') {
10261 while (*pat == '*')
10262 pat++;
10263 if (!*pat) /* Tail wild card matches all */
10264 return true;
10265 while (*str)
10266 if (glob_match(str++, pat))
10267 return true;
10268 }
10269 return !*str && !*pat;
10270}
10271
10272struct kprobe_multi_resolve {
10273 const char *pattern;
10274 unsigned long *addrs;
10275 size_t cap;
10276 size_t cnt;
10277};
10278
10279static int
10280resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type,
10281 const char *sym_name, void *ctx)
10282{
10283 struct kprobe_multi_resolve *res = ctx;
10284 int err;
10285
10286 if (!glob_match(sym_name, res->pattern))
10287 return 0;
10288
10289 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long),
10290 res->cnt + 1);
10291 if (err)
10292 return err;
10293
10294 res->addrs[res->cnt++] = (unsigned long) sym_addr;
10295 return 0;
10296}
10297
10298struct bpf_link *
10299bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
10300 const char *pattern,
10301 const struct bpf_kprobe_multi_opts *opts)
10302{
10303 LIBBPF_OPTS(bpf_link_create_opts, lopts);
10304 struct kprobe_multi_resolve res = {
10305 .pattern = pattern,
10306 };
10307 struct bpf_link *link = NULL;
10308 char errmsg[STRERR_BUFSIZE];
10309 const unsigned long *addrs;
10310 int err, link_fd, prog_fd;
10311 const __u64 *cookies;
10312 const char **syms;
10313 bool retprobe;
10314 size_t cnt;
10315
10316 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
10317 return libbpf_err_ptr(-EINVAL);
10318
10319 syms = OPTS_GET(opts, syms, false);
10320 addrs = OPTS_GET(opts, addrs, false);
10321 cnt = OPTS_GET(opts, cnt, false);
10322 cookies = OPTS_GET(opts, cookies, false);
10323
10324 if (!pattern && !addrs && !syms)
10325 return libbpf_err_ptr(-EINVAL);
10326 if (pattern && (addrs || syms || cookies || cnt))
10327 return libbpf_err_ptr(-EINVAL);
10328 if (!pattern && !cnt)
10329 return libbpf_err_ptr(-EINVAL);
10330 if (addrs && syms)
10331 return libbpf_err_ptr(-EINVAL);
10332
10333 if (pattern) {
10334 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res);
10335 if (err)
10336 goto error;
10337 if (!res.cnt) {
10338 err = -ENOENT;
10339 goto error;
10340 }
10341 addrs = res.addrs;
10342 cnt = res.cnt;
10343 }
10344
10345 retprobe = OPTS_GET(opts, retprobe, false);
10346
10347 lopts.kprobe_multi.syms = syms;
10348 lopts.kprobe_multi.addrs = addrs;
10349 lopts.kprobe_multi.cookies = cookies;
10350 lopts.kprobe_multi.cnt = cnt;
10351 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
10352
10353 link = calloc(1, sizeof(*link));
10354 if (!link) {
10355 err = -ENOMEM;
10356 goto error;
10357 }
10358 link->detach = &bpf_link__detach_fd;
10359
10360 prog_fd = bpf_program__fd(prog);
10361 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
10362 if (link_fd < 0) {
10363 err = -errno;
10364 pr_warn("prog '%s': failed to attach: %s\n",
10365 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10366 goto error;
10367 }
10368 link->fd = link_fd;
10369 free(res.addrs);
10370 return link;
10371
10372error:
10373 free(link);
10374 free(res.addrs);
10375 return libbpf_err_ptr(err);
10376}
10377
10378static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10379{
10380 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
10381 unsigned long offset = 0;
10382 const char *func_name;
10383 char *func;
10384 int n;
10385
10386 *link = NULL;
10387
10388 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
10389 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
10390 return 0;
10391
10392 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
10393 if (opts.retprobe)
10394 func_name = prog->sec_name + sizeof("kretprobe/") - 1;
10395 else
10396 func_name = prog->sec_name + sizeof("kprobe/") - 1;
10397
10398 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
10399 if (n < 1) {
10400 pr_warn("kprobe name is invalid: %s\n", func_name);
10401 return -EINVAL;
10402 }
10403 if (opts.retprobe && offset != 0) {
10404 free(func);
10405 pr_warn("kretprobes do not support offset specification\n");
10406 return -EINVAL;
10407 }
10408
10409 opts.offset = offset;
10410 *link = bpf_program__attach_kprobe_opts(prog, func, &opts);
10411 free(func);
10412 return libbpf_get_error(*link);
10413}
10414
10415static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10416{
10417 LIBBPF_OPTS(bpf_ksyscall_opts, opts);
10418 const char *syscall_name;
10419
10420 *link = NULL;
10421
10422 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
10423 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
10424 return 0;
10425
10426 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
10427 if (opts.retprobe)
10428 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
10429 else
10430 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
10431
10432 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
10433 return *link ? 0 : -errno;
10434}
10435
10436static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10437{
10438 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
10439 const char *spec;
10440 char *pattern;
10441 int n;
10442
10443 *link = NULL;
10444
10445 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
10446 if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
10447 strcmp(prog->sec_name, "kretprobe.multi") == 0)
10448 return 0;
10449
10450 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
10451 if (opts.retprobe)
10452 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
10453 else
10454 spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
10455
10456 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
10457 if (n < 1) {
10458 pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
10459 return -EINVAL;
10460 }
10461
10462 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
10463 free(pattern);
10464 return libbpf_get_error(*link);
10465}
10466
10467static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
10468 const char *binary_path, uint64_t offset)
10469{
10470 int i;
10471
10472 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
10473
10474 /* sanitize binary_path in the probe name */
10475 for (i = 0; buf[i]; i++) {
10476 if (!isalnum(buf[i]))
10477 buf[i] = '_';
10478 }
10479}
10480
10481static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
10482 const char *binary_path, size_t offset)
10483{
10484 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
10485 retprobe ? 'r' : 'p',
10486 retprobe ? "uretprobes" : "uprobes",
10487 probe_name, binary_path, offset);
10488}
10489
10490static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
10491{
10492 return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
10493 retprobe ? "uretprobes" : "uprobes", probe_name);
10494}
10495
10496static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10497{
10498 char file[512];
10499
10500 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10501 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
10502
10503 return parse_uint_from_file(file, "%d\n");
10504}
10505
10506static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
10507 const char *binary_path, size_t offset, int pid)
10508{
10509 const size_t attr_sz = sizeof(struct perf_event_attr);
10510 struct perf_event_attr attr;
10511 int type, pfd, err;
10512
10513 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
10514 if (err < 0) {
10515 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
10516 binary_path, (size_t)offset, err);
10517 return err;
10518 }
10519 type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
10520 if (type < 0) {
10521 err = type;
10522 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
10523 binary_path, offset, err);
10524 goto err_clean_legacy;
10525 }
10526
10527 memset(&attr, 0, attr_sz);
10528 attr.size = attr_sz;
10529 attr.config = type;
10530 attr.type = PERF_TYPE_TRACEPOINT;
10531
10532 pfd = syscall(__NR_perf_event_open, &attr,
10533 pid < 0 ? -1 : pid, /* pid */
10534 pid == -1 ? 0 : -1, /* cpu */
10535 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10536 if (pfd < 0) {
10537 err = -errno;
10538 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
10539 goto err_clean_legacy;
10540 }
10541 return pfd;
10542
10543err_clean_legacy:
10544 /* Clear the newly added legacy uprobe_event */
10545 remove_uprobe_event_legacy(probe_name, retprobe);
10546 return err;
10547}
10548
10549/* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */
10550static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn)
10551{
10552 while ((scn = elf_nextscn(elf, scn)) != NULL) {
10553 GElf_Shdr sh;
10554
10555 if (!gelf_getshdr(scn, &sh))
10556 continue;
10557 if (sh.sh_type == sh_type)
10558 return scn;
10559 }
10560 return NULL;
10561}
10562
10563/* Find offset of function name in object specified by path. "name" matches
10564 * symbol name or name@@LIB for library functions.
10565 */
10566static long elf_find_func_offset(const char *binary_path, const char *name)
10567{
10568 int fd, i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB };
10569 bool is_shared_lib, is_name_qualified;
10570 char errmsg[STRERR_BUFSIZE];
10571 long ret = -ENOENT;
10572 size_t name_len;
10573 GElf_Ehdr ehdr;
10574 Elf *elf;
10575
10576 fd = open(binary_path, O_RDONLY | O_CLOEXEC);
10577 if (fd < 0) {
10578 ret = -errno;
10579 pr_warn("failed to open %s: %s\n", binary_path,
10580 libbpf_strerror_r(ret, errmsg, sizeof(errmsg)));
10581 return ret;
10582 }
10583 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL);
10584 if (!elf) {
10585 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1));
10586 close(fd);
10587 return -LIBBPF_ERRNO__FORMAT;
10588 }
10589 if (!gelf_getehdr(elf, &ehdr)) {
10590 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1));
10591 ret = -LIBBPF_ERRNO__FORMAT;
10592 goto out;
10593 }
10594 /* for shared lib case, we do not need to calculate relative offset */
10595 is_shared_lib = ehdr.e_type == ET_DYN;
10596
10597 name_len = strlen(name);
10598 /* Does name specify "@@LIB"? */
10599 is_name_qualified = strstr(name, "@@") != NULL;
10600
10601 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if
10602 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically
10603 * linked binary may not have SHT_DYMSYM, so absence of a section should not be
10604 * reported as a warning/error.
10605 */
10606 for (i = 0; i < ARRAY_SIZE(sh_types); i++) {
10607 size_t nr_syms, strtabidx, idx;
10608 Elf_Data *symbols = NULL;
10609 Elf_Scn *scn = NULL;
10610 int last_bind = -1;
10611 const char *sname;
10612 GElf_Shdr sh;
10613
10614 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL);
10615 if (!scn) {
10616 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n",
10617 binary_path);
10618 continue;
10619 }
10620 if (!gelf_getshdr(scn, &sh))
10621 continue;
10622 strtabidx = sh.sh_link;
10623 symbols = elf_getdata(scn, 0);
10624 if (!symbols) {
10625 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n",
10626 binary_path, elf_errmsg(-1));
10627 ret = -LIBBPF_ERRNO__FORMAT;
10628 goto out;
10629 }
10630 nr_syms = symbols->d_size / sh.sh_entsize;
10631
10632 for (idx = 0; idx < nr_syms; idx++) {
10633 int curr_bind;
10634 GElf_Sym sym;
10635 Elf_Scn *sym_scn;
10636 GElf_Shdr sym_sh;
10637
10638 if (!gelf_getsym(symbols, idx, &sym))
10639 continue;
10640
10641 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC)
10642 continue;
10643
10644 sname = elf_strptr(elf, strtabidx, sym.st_name);
10645 if (!sname)
10646 continue;
10647
10648 curr_bind = GELF_ST_BIND(sym.st_info);
10649
10650 /* User can specify func, func@@LIB or func@@LIB_VERSION. */
10651 if (strncmp(sname, name, name_len) != 0)
10652 continue;
10653 /* ...but we don't want a search for "foo" to match 'foo2" also, so any
10654 * additional characters in sname should be of the form "@@LIB".
10655 */
10656 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@')
10657 continue;
10658
10659 if (ret >= 0) {
10660 /* handle multiple matches */
10661 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) {
10662 /* Only accept one non-weak bind. */
10663 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n",
10664 sname, name, binary_path);
10665 ret = -LIBBPF_ERRNO__FORMAT;
10666 goto out;
10667 } else if (curr_bind == STB_WEAK) {
10668 /* already have a non-weak bind, and
10669 * this is a weak bind, so ignore.
10670 */
10671 continue;
10672 }
10673 }
10674
10675 /* Transform symbol's virtual address (absolute for
10676 * binaries and relative for shared libs) into file
10677 * offset, which is what kernel is expecting for
10678 * uprobe/uretprobe attachment.
10679 * See Documentation/trace/uprobetracer.rst for more
10680 * details.
10681 * This is done by looking up symbol's containing
10682 * section's header and using it's virtual address
10683 * (sh_addr) and corresponding file offset (sh_offset)
10684 * to transform sym.st_value (virtual address) into
10685 * desired final file offset.
10686 */
10687 sym_scn = elf_getscn(elf, sym.st_shndx);
10688 if (!sym_scn)
10689 continue;
10690 if (!gelf_getshdr(sym_scn, &sym_sh))
10691 continue;
10692
10693 ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset;
10694 last_bind = curr_bind;
10695 }
10696 if (ret > 0)
10697 break;
10698 }
10699
10700 if (ret > 0) {
10701 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path,
10702 ret);
10703 } else {
10704 if (ret == 0) {
10705 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path,
10706 is_shared_lib ? "should not be 0 in a shared library" :
10707 "try using shared library path instead");
10708 ret = -ENOENT;
10709 } else {
10710 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path);
10711 }
10712 }
10713out:
10714 elf_end(elf);
10715 close(fd);
10716 return ret;
10717}
10718
10719static const char *arch_specific_lib_paths(void)
10720{
10721 /*
10722 * Based on https://packages.debian.org/sid/libc6.
10723 *
10724 * Assume that the traced program is built for the same architecture
10725 * as libbpf, which should cover the vast majority of cases.
10726 */
10727#if defined(__x86_64__)
10728 return "/lib/x86_64-linux-gnu";
10729#elif defined(__i386__)
10730 return "/lib/i386-linux-gnu";
10731#elif defined(__s390x__)
10732 return "/lib/s390x-linux-gnu";
10733#elif defined(__s390__)
10734 return "/lib/s390-linux-gnu";
10735#elif defined(__arm__) && defined(__SOFTFP__)
10736 return "/lib/arm-linux-gnueabi";
10737#elif defined(__arm__) && !defined(__SOFTFP__)
10738 return "/lib/arm-linux-gnueabihf";
10739#elif defined(__aarch64__)
10740 return "/lib/aarch64-linux-gnu";
10741#elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
10742 return "/lib/mips64el-linux-gnuabi64";
10743#elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
10744 return "/lib/mipsel-linux-gnu";
10745#elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
10746 return "/lib/powerpc64le-linux-gnu";
10747#elif defined(__sparc__) && defined(__arch64__)
10748 return "/lib/sparc64-linux-gnu";
10749#elif defined(__riscv) && __riscv_xlen == 64
10750 return "/lib/riscv64-linux-gnu";
10751#else
10752 return NULL;
10753#endif
10754}
10755
10756/* Get full path to program/shared library. */
10757static int resolve_full_path(const char *file, char *result, size_t result_sz)
10758{
10759 const char *search_paths[3] = {};
10760 int i, perm;
10761
10762 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
10763 search_paths[0] = getenv("LD_LIBRARY_PATH");
10764 search_paths[1] = "/usr/lib64:/usr/lib";
10765 search_paths[2] = arch_specific_lib_paths();
10766 perm = R_OK;
10767 } else {
10768 search_paths[0] = getenv("PATH");
10769 search_paths[1] = "/usr/bin:/usr/sbin";
10770 perm = R_OK | X_OK;
10771 }
10772
10773 for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
10774 const char *s;
10775
10776 if (!search_paths[i])
10777 continue;
10778 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
10779 char *next_path;
10780 int seg_len;
10781
10782 if (s[0] == ':')
10783 s++;
10784 next_path = strchr(s, ':');
10785 seg_len = next_path ? next_path - s : strlen(s);
10786 if (!seg_len)
10787 continue;
10788 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
10789 /* ensure it has required permissions */
10790 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
10791 continue;
10792 pr_debug("resolved '%s' to '%s'\n", file, result);
10793 return 0;
10794 }
10795 }
10796 return -ENOENT;
10797}
10798
10799LIBBPF_API struct bpf_link *
10800bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
10801 const char *binary_path, size_t func_offset,
10802 const struct bpf_uprobe_opts *opts)
10803{
10804 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10805 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
10806 char full_binary_path[PATH_MAX];
10807 struct bpf_link *link;
10808 size_t ref_ctr_off;
10809 int pfd, err;
10810 bool retprobe, legacy;
10811 const char *func_name;
10812
10813 if (!OPTS_VALID(opts, bpf_uprobe_opts))
10814 return libbpf_err_ptr(-EINVAL);
10815
10816 retprobe = OPTS_GET(opts, retprobe, false);
10817 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
10818 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10819
10820 if (!binary_path)
10821 return libbpf_err_ptr(-EINVAL);
10822
10823 if (!strchr(binary_path, '/')) {
10824 err = resolve_full_path(binary_path, full_binary_path,
10825 sizeof(full_binary_path));
10826 if (err) {
10827 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
10828 prog->name, binary_path, err);
10829 return libbpf_err_ptr(err);
10830 }
10831 binary_path = full_binary_path;
10832 }
10833 func_name = OPTS_GET(opts, func_name, NULL);
10834 if (func_name) {
10835 long sym_off;
10836
10837 sym_off = elf_find_func_offset(binary_path, func_name);
10838 if (sym_off < 0)
10839 return libbpf_err_ptr(sym_off);
10840 func_offset += sym_off;
10841 }
10842
10843 legacy = determine_uprobe_perf_type() < 0;
10844 if (!legacy) {
10845 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
10846 func_offset, pid, ref_ctr_off);
10847 } else {
10848 char probe_name[PATH_MAX + 64];
10849
10850 if (ref_ctr_off)
10851 return libbpf_err_ptr(-EINVAL);
10852
10853 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
10854 binary_path, func_offset);
10855
10856 legacy_probe = strdup(probe_name);
10857 if (!legacy_probe)
10858 return libbpf_err_ptr(-ENOMEM);
10859
10860 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
10861 binary_path, func_offset, pid);
10862 }
10863 if (pfd < 0) {
10864 err = -errno;
10865 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
10866 prog->name, retprobe ? "uretprobe" : "uprobe",
10867 binary_path, func_offset,
10868 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10869 goto err_out;
10870 }
10871
10872 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10873 err = libbpf_get_error(link);
10874 if (err) {
10875 close(pfd);
10876 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
10877 prog->name, retprobe ? "uretprobe" : "uprobe",
10878 binary_path, func_offset,
10879 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10880 goto err_clean_legacy;
10881 }
10882 if (legacy) {
10883 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10884
10885 perf_link->legacy_probe_name = legacy_probe;
10886 perf_link->legacy_is_kprobe = false;
10887 perf_link->legacy_is_retprobe = retprobe;
10888 }
10889 return link;
10890
10891err_clean_legacy:
10892 if (legacy)
10893 remove_uprobe_event_legacy(legacy_probe, retprobe);
10894err_out:
10895 free(legacy_probe);
10896 return libbpf_err_ptr(err);
10897}
10898
10899/* Format of u[ret]probe section definition supporting auto-attach:
10900 * u[ret]probe/binary:function[+offset]
10901 *
10902 * binary can be an absolute/relative path or a filename; the latter is resolved to a
10903 * full binary path via bpf_program__attach_uprobe_opts.
10904 *
10905 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
10906 * specified (and auto-attach is not possible) or the above format is specified for
10907 * auto-attach.
10908 */
10909static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10910{
10911 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
10912 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
10913 int n, ret = -EINVAL;
10914 long offset = 0;
10915
10916 *link = NULL;
10917
10918 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li",
10919 &probe_type, &binary_path, &func_name, &offset);
10920 switch (n) {
10921 case 1:
10922 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
10923 ret = 0;
10924 break;
10925 case 2:
10926 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
10927 prog->name, prog->sec_name);
10928 break;
10929 case 3:
10930 case 4:
10931 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
10932 strcmp(probe_type, "uretprobe.s") == 0;
10933 if (opts.retprobe && offset != 0) {
10934 pr_warn("prog '%s': uretprobes do not support offset specification\n",
10935 prog->name);
10936 break;
10937 }
10938 opts.func_name = func_name;
10939 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
10940 ret = libbpf_get_error(*link);
10941 break;
10942 default:
10943 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
10944 prog->sec_name);
10945 break;
10946 }
10947 free(probe_type);
10948 free(binary_path);
10949 free(func_name);
10950
10951 return ret;
10952}
10953
10954struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
10955 bool retprobe, pid_t pid,
10956 const char *binary_path,
10957 size_t func_offset)
10958{
10959 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
10960
10961 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
10962}
10963
10964struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
10965 pid_t pid, const char *binary_path,
10966 const char *usdt_provider, const char *usdt_name,
10967 const struct bpf_usdt_opts *opts)
10968{
10969 char resolved_path[512];
10970 struct bpf_object *obj = prog->obj;
10971 struct bpf_link *link;
10972 __u64 usdt_cookie;
10973 int err;
10974
10975 if (!OPTS_VALID(opts, bpf_uprobe_opts))
10976 return libbpf_err_ptr(-EINVAL);
10977
10978 if (bpf_program__fd(prog) < 0) {
10979 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10980 prog->name);
10981 return libbpf_err_ptr(-EINVAL);
10982 }
10983
10984 if (!binary_path)
10985 return libbpf_err_ptr(-EINVAL);
10986
10987 if (!strchr(binary_path, '/')) {
10988 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
10989 if (err) {
10990 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
10991 prog->name, binary_path, err);
10992 return libbpf_err_ptr(err);
10993 }
10994 binary_path = resolved_path;
10995 }
10996
10997 /* USDT manager is instantiated lazily on first USDT attach. It will
10998 * be destroyed together with BPF object in bpf_object__close().
10999 */
11000 if (IS_ERR(obj->usdt_man))
11001 return libbpf_ptr(obj->usdt_man);
11002 if (!obj->usdt_man) {
11003 obj->usdt_man = usdt_manager_new(obj);
11004 if (IS_ERR(obj->usdt_man))
11005 return libbpf_ptr(obj->usdt_man);
11006 }
11007
11008 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
11009 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
11010 usdt_provider, usdt_name, usdt_cookie);
11011 err = libbpf_get_error(link);
11012 if (err)
11013 return libbpf_err_ptr(err);
11014 return link;
11015}
11016
11017static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11018{
11019 char *path = NULL, *provider = NULL, *name = NULL;
11020 const char *sec_name;
11021 int n, err;
11022
11023 sec_name = bpf_program__section_name(prog);
11024 if (strcmp(sec_name, "usdt") == 0) {
11025 /* no auto-attach for just SEC("usdt") */
11026 *link = NULL;
11027 return 0;
11028 }
11029
11030 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
11031 if (n != 3) {
11032 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
11033 sec_name);
11034 err = -EINVAL;
11035 } else {
11036 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
11037 provider, name, NULL);
11038 err = libbpf_get_error(*link);
11039 }
11040 free(path);
11041 free(provider);
11042 free(name);
11043 return err;
11044}
11045
11046static int determine_tracepoint_id(const char *tp_category,
11047 const char *tp_name)
11048{
11049 char file[PATH_MAX];
11050 int ret;
11051
11052 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11053 tracefs_path(), tp_category, tp_name);
11054 if (ret < 0)
11055 return -errno;
11056 if (ret >= sizeof(file)) {
11057 pr_debug("tracepoint %s/%s path is too long\n",
11058 tp_category, tp_name);
11059 return -E2BIG;
11060 }
11061 return parse_uint_from_file(file, "%d\n");
11062}
11063
11064static int perf_event_open_tracepoint(const char *tp_category,
11065 const char *tp_name)
11066{
11067 const size_t attr_sz = sizeof(struct perf_event_attr);
11068 struct perf_event_attr attr;
11069 char errmsg[STRERR_BUFSIZE];
11070 int tp_id, pfd, err;
11071
11072 tp_id = determine_tracepoint_id(tp_category, tp_name);
11073 if (tp_id < 0) {
11074 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
11075 tp_category, tp_name,
11076 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
11077 return tp_id;
11078 }
11079
11080 memset(&attr, 0, attr_sz);
11081 attr.type = PERF_TYPE_TRACEPOINT;
11082 attr.size = attr_sz;
11083 attr.config = tp_id;
11084
11085 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
11086 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11087 if (pfd < 0) {
11088 err = -errno;
11089 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
11090 tp_category, tp_name,
11091 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11092 return err;
11093 }
11094 return pfd;
11095}
11096
11097struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
11098 const char *tp_category,
11099 const char *tp_name,
11100 const struct bpf_tracepoint_opts *opts)
11101{
11102 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11103 char errmsg[STRERR_BUFSIZE];
11104 struct bpf_link *link;
11105 int pfd, err;
11106
11107 if (!OPTS_VALID(opts, bpf_tracepoint_opts))
11108 return libbpf_err_ptr(-EINVAL);
11109
11110 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11111
11112 pfd = perf_event_open_tracepoint(tp_category, tp_name);
11113 if (pfd < 0) {
11114 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
11115 prog->name, tp_category, tp_name,
11116 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11117 return libbpf_err_ptr(pfd);
11118 }
11119 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11120 err = libbpf_get_error(link);
11121 if (err) {
11122 close(pfd);
11123 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
11124 prog->name, tp_category, tp_name,
11125 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11126 return libbpf_err_ptr(err);
11127 }
11128 return link;
11129}
11130
11131struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
11132 const char *tp_category,
11133 const char *tp_name)
11134{
11135 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
11136}
11137
11138static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11139{
11140 char *sec_name, *tp_cat, *tp_name;
11141
11142 *link = NULL;
11143
11144 /* no auto-attach for SEC("tp") or SEC("tracepoint") */
11145 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
11146 return 0;
11147
11148 sec_name = strdup(prog->sec_name);
11149 if (!sec_name)
11150 return -ENOMEM;
11151
11152 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
11153 if (str_has_pfx(prog->sec_name, "tp/"))
11154 tp_cat = sec_name + sizeof("tp/") - 1;
11155 else
11156 tp_cat = sec_name + sizeof("tracepoint/") - 1;
11157 tp_name = strchr(tp_cat, '/');
11158 if (!tp_name) {
11159 free(sec_name);
11160 return -EINVAL;
11161 }
11162 *tp_name = '\0';
11163 tp_name++;
11164
11165 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
11166 free(sec_name);
11167 return libbpf_get_error(*link);
11168}
11169
11170struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
11171 const char *tp_name)
11172{
11173 char errmsg[STRERR_BUFSIZE];
11174 struct bpf_link *link;
11175 int prog_fd, pfd;
11176
11177 prog_fd = bpf_program__fd(prog);
11178 if (prog_fd < 0) {
11179 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11180 return libbpf_err_ptr(-EINVAL);
11181 }
11182
11183 link = calloc(1, sizeof(*link));
11184 if (!link)
11185 return libbpf_err_ptr(-ENOMEM);
11186 link->detach = &bpf_link__detach_fd;
11187
11188 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
11189 if (pfd < 0) {
11190 pfd = -errno;
11191 free(link);
11192 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
11193 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11194 return libbpf_err_ptr(pfd);
11195 }
11196 link->fd = pfd;
11197 return link;
11198}
11199
11200static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11201{
11202 static const char *const prefixes[] = {
11203 "raw_tp",
11204 "raw_tracepoint",
11205 "raw_tp.w",
11206 "raw_tracepoint.w",
11207 };
11208 size_t i;
11209 const char *tp_name = NULL;
11210
11211 *link = NULL;
11212
11213 for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
11214 size_t pfx_len;
11215
11216 if (!str_has_pfx(prog->sec_name, prefixes[i]))
11217 continue;
11218
11219 pfx_len = strlen(prefixes[i]);
11220 /* no auto-attach case of, e.g., SEC("raw_tp") */
11221 if (prog->sec_name[pfx_len] == '\0')
11222 return 0;
11223
11224 if (prog->sec_name[pfx_len] != '/')
11225 continue;
11226
11227 tp_name = prog->sec_name + pfx_len + 1;
11228 break;
11229 }
11230
11231 if (!tp_name) {
11232 pr_warn("prog '%s': invalid section name '%s'\n",
11233 prog->name, prog->sec_name);
11234 return -EINVAL;
11235 }
11236
11237 *link = bpf_program__attach_raw_tracepoint(prog, tp_name);
11238 return libbpf_get_error(*link);
11239}
11240
11241/* Common logic for all BPF program types that attach to a btf_id */
11242static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
11243 const struct bpf_trace_opts *opts)
11244{
11245 LIBBPF_OPTS(bpf_link_create_opts, link_opts);
11246 char errmsg[STRERR_BUFSIZE];
11247 struct bpf_link *link;
11248 int prog_fd, pfd;
11249
11250 if (!OPTS_VALID(opts, bpf_trace_opts))
11251 return libbpf_err_ptr(-EINVAL);
11252
11253 prog_fd = bpf_program__fd(prog);
11254 if (prog_fd < 0) {
11255 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11256 return libbpf_err_ptr(-EINVAL);
11257 }
11258
11259 link = calloc(1, sizeof(*link));
11260 if (!link)
11261 return libbpf_err_ptr(-ENOMEM);
11262 link->detach = &bpf_link__detach_fd;
11263
11264 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
11265 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
11266 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
11267 if (pfd < 0) {
11268 pfd = -errno;
11269 free(link);
11270 pr_warn("prog '%s': failed to attach: %s\n",
11271 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11272 return libbpf_err_ptr(pfd);
11273 }
11274 link->fd = pfd;
11275 return link;
11276}
11277
11278struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
11279{
11280 return bpf_program__attach_btf_id(prog, NULL);
11281}
11282
11283struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
11284 const struct bpf_trace_opts *opts)
11285{
11286 return bpf_program__attach_btf_id(prog, opts);
11287}
11288
11289struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
11290{
11291 return bpf_program__attach_btf_id(prog, NULL);
11292}
11293
11294static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11295{
11296 *link = bpf_program__attach_trace(prog);
11297 return libbpf_get_error(*link);
11298}
11299
11300static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11301{
11302 *link = bpf_program__attach_lsm(prog);
11303 return libbpf_get_error(*link);
11304}
11305
11306static struct bpf_link *
11307bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id,
11308 const char *target_name)
11309{
11310 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
11311 .target_btf_id = btf_id);
11312 enum bpf_attach_type attach_type;
11313 char errmsg[STRERR_BUFSIZE];
11314 struct bpf_link *link;
11315 int prog_fd, link_fd;
11316
11317 prog_fd = bpf_program__fd(prog);
11318 if (prog_fd < 0) {
11319 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11320 return libbpf_err_ptr(-EINVAL);
11321 }
11322
11323 link = calloc(1, sizeof(*link));
11324 if (!link)
11325 return libbpf_err_ptr(-ENOMEM);
11326 link->detach = &bpf_link__detach_fd;
11327
11328 attach_type = bpf_program__expected_attach_type(prog);
11329 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
11330 if (link_fd < 0) {
11331 link_fd = -errno;
11332 free(link);
11333 pr_warn("prog '%s': failed to attach to %s: %s\n",
11334 prog->name, target_name,
11335 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11336 return libbpf_err_ptr(link_fd);
11337 }
11338 link->fd = link_fd;
11339 return link;
11340}
11341
11342struct bpf_link *
11343bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
11344{
11345 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
11346}
11347
11348struct bpf_link *
11349bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
11350{
11351 return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
11352}
11353
11354struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
11355{
11356 /* target_fd/target_ifindex use the same field in LINK_CREATE */
11357 return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
11358}
11359
11360struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
11361 int target_fd,
11362 const char *attach_func_name)
11363{
11364 int btf_id;
11365
11366 if (!!target_fd != !!attach_func_name) {
11367 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
11368 prog->name);
11369 return libbpf_err_ptr(-EINVAL);
11370 }
11371
11372 if (prog->type != BPF_PROG_TYPE_EXT) {
11373 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
11374 prog->name);
11375 return libbpf_err_ptr(-EINVAL);
11376 }
11377
11378 if (target_fd) {
11379 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
11380 if (btf_id < 0)
11381 return libbpf_err_ptr(btf_id);
11382
11383 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
11384 } else {
11385 /* no target, so use raw_tracepoint_open for compatibility
11386 * with old kernels
11387 */
11388 return bpf_program__attach_trace(prog);
11389 }
11390}
11391
11392struct bpf_link *
11393bpf_program__attach_iter(const struct bpf_program *prog,
11394 const struct bpf_iter_attach_opts *opts)
11395{
11396 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
11397 char errmsg[STRERR_BUFSIZE];
11398 struct bpf_link *link;
11399 int prog_fd, link_fd;
11400 __u32 target_fd = 0;
11401
11402 if (!OPTS_VALID(opts, bpf_iter_attach_opts))
11403 return libbpf_err_ptr(-EINVAL);
11404
11405 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
11406 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
11407
11408 prog_fd = bpf_program__fd(prog);
11409 if (prog_fd < 0) {
11410 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11411 return libbpf_err_ptr(-EINVAL);
11412 }
11413
11414 link = calloc(1, sizeof(*link));
11415 if (!link)
11416 return libbpf_err_ptr(-ENOMEM);
11417 link->detach = &bpf_link__detach_fd;
11418
11419 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
11420 &link_create_opts);
11421 if (link_fd < 0) {
11422 link_fd = -errno;
11423 free(link);
11424 pr_warn("prog '%s': failed to attach to iterator: %s\n",
11425 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11426 return libbpf_err_ptr(link_fd);
11427 }
11428 link->fd = link_fd;
11429 return link;
11430}
11431
11432static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11433{
11434 *link = bpf_program__attach_iter(prog, NULL);
11435 return libbpf_get_error(*link);
11436}
11437
11438struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
11439{
11440 struct bpf_link *link = NULL;
11441 int err;
11442
11443 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
11444 return libbpf_err_ptr(-EOPNOTSUPP);
11445
11446 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
11447 if (err)
11448 return libbpf_err_ptr(err);
11449
11450 /* When calling bpf_program__attach() explicitly, auto-attach support
11451 * is expected to work, so NULL returned link is considered an error.
11452 * This is different for skeleton's attach, see comment in
11453 * bpf_object__attach_skeleton().
11454 */
11455 if (!link)
11456 return libbpf_err_ptr(-EOPNOTSUPP);
11457
11458 return link;
11459}
11460
11461static int bpf_link__detach_struct_ops(struct bpf_link *link)
11462{
11463 __u32 zero = 0;
11464
11465 if (bpf_map_delete_elem(link->fd, &zero))
11466 return -errno;
11467
11468 return 0;
11469}
11470
11471struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
11472{
11473 struct bpf_struct_ops *st_ops;
11474 struct bpf_link *link;
11475 __u32 i, zero = 0;
11476 int err;
11477
11478 if (!bpf_map__is_struct_ops(map) || map->fd == -1)
11479 return libbpf_err_ptr(-EINVAL);
11480
11481 link = calloc(1, sizeof(*link));
11482 if (!link)
11483 return libbpf_err_ptr(-EINVAL);
11484
11485 st_ops = map->st_ops;
11486 for (i = 0; i < btf_vlen(st_ops->type); i++) {
11487 struct bpf_program *prog = st_ops->progs[i];
11488 void *kern_data;
11489 int prog_fd;
11490
11491 if (!prog)
11492 continue;
11493
11494 prog_fd = bpf_program__fd(prog);
11495 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
11496 *(unsigned long *)kern_data = prog_fd;
11497 }
11498
11499 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
11500 if (err) {
11501 err = -errno;
11502 free(link);
11503 return libbpf_err_ptr(err);
11504 }
11505
11506 link->detach = bpf_link__detach_struct_ops;
11507 link->fd = map->fd;
11508
11509 return link;
11510}
11511
11512typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
11513 void *private_data);
11514
11515static enum bpf_perf_event_ret
11516perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
11517 void **copy_mem, size_t *copy_size,
11518 bpf_perf_event_print_t fn, void *private_data)
11519{
11520 struct perf_event_mmap_page *header = mmap_mem;
11521 __u64 data_head = ring_buffer_read_head(header);
11522 __u64 data_tail = header->data_tail;
11523 void *base = ((__u8 *)header) + page_size;
11524 int ret = LIBBPF_PERF_EVENT_CONT;
11525 struct perf_event_header *ehdr;
11526 size_t ehdr_size;
11527
11528 while (data_head != data_tail) {
11529 ehdr = base + (data_tail & (mmap_size - 1));
11530 ehdr_size = ehdr->size;
11531
11532 if (((void *)ehdr) + ehdr_size > base + mmap_size) {
11533 void *copy_start = ehdr;
11534 size_t len_first = base + mmap_size - copy_start;
11535 size_t len_secnd = ehdr_size - len_first;
11536
11537 if (*copy_size < ehdr_size) {
11538 free(*copy_mem);
11539 *copy_mem = malloc(ehdr_size);
11540 if (!*copy_mem) {
11541 *copy_size = 0;
11542 ret = LIBBPF_PERF_EVENT_ERROR;
11543 break;
11544 }
11545 *copy_size = ehdr_size;
11546 }
11547
11548 memcpy(*copy_mem, copy_start, len_first);
11549 memcpy(*copy_mem + len_first, base, len_secnd);
11550 ehdr = *copy_mem;
11551 }
11552
11553 ret = fn(ehdr, private_data);
11554 data_tail += ehdr_size;
11555 if (ret != LIBBPF_PERF_EVENT_CONT)
11556 break;
11557 }
11558
11559 ring_buffer_write_tail(header, data_tail);
11560 return libbpf_err(ret);
11561}
11562
11563struct perf_buffer;
11564
11565struct perf_buffer_params {
11566 struct perf_event_attr *attr;
11567 /* if event_cb is specified, it takes precendence */
11568 perf_buffer_event_fn event_cb;
11569 /* sample_cb and lost_cb are higher-level common-case callbacks */
11570 perf_buffer_sample_fn sample_cb;
11571 perf_buffer_lost_fn lost_cb;
11572 void *ctx;
11573 int cpu_cnt;
11574 int *cpus;
11575 int *map_keys;
11576};
11577
11578struct perf_cpu_buf {
11579 struct perf_buffer *pb;
11580 void *base; /* mmap()'ed memory */
11581 void *buf; /* for reconstructing segmented data */
11582 size_t buf_size;
11583 int fd;
11584 int cpu;
11585 int map_key;
11586};
11587
11588struct perf_buffer {
11589 perf_buffer_event_fn event_cb;
11590 perf_buffer_sample_fn sample_cb;
11591 perf_buffer_lost_fn lost_cb;
11592 void *ctx; /* passed into callbacks */
11593
11594 size_t page_size;
11595 size_t mmap_size;
11596 struct perf_cpu_buf **cpu_bufs;
11597 struct epoll_event *events;
11598 int cpu_cnt; /* number of allocated CPU buffers */
11599 int epoll_fd; /* perf event FD */
11600 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
11601};
11602
11603static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
11604 struct perf_cpu_buf *cpu_buf)
11605{
11606 if (!cpu_buf)
11607 return;
11608 if (cpu_buf->base &&
11609 munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
11610 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
11611 if (cpu_buf->fd >= 0) {
11612 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
11613 close(cpu_buf->fd);
11614 }
11615 free(cpu_buf->buf);
11616 free(cpu_buf);
11617}
11618
11619void perf_buffer__free(struct perf_buffer *pb)
11620{
11621 int i;
11622
11623 if (IS_ERR_OR_NULL(pb))
11624 return;
11625 if (pb->cpu_bufs) {
11626 for (i = 0; i < pb->cpu_cnt; i++) {
11627 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
11628
11629 if (!cpu_buf)
11630 continue;
11631
11632 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
11633 perf_buffer__free_cpu_buf(pb, cpu_buf);
11634 }
11635 free(pb->cpu_bufs);
11636 }
11637 if (pb->epoll_fd >= 0)
11638 close(pb->epoll_fd);
11639 free(pb->events);
11640 free(pb);
11641}
11642
11643static struct perf_cpu_buf *
11644perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
11645 int cpu, int map_key)
11646{
11647 struct perf_cpu_buf *cpu_buf;
11648 char msg[STRERR_BUFSIZE];
11649 int err;
11650
11651 cpu_buf = calloc(1, sizeof(*cpu_buf));
11652 if (!cpu_buf)
11653 return ERR_PTR(-ENOMEM);
11654
11655 cpu_buf->pb = pb;
11656 cpu_buf->cpu = cpu;
11657 cpu_buf->map_key = map_key;
11658
11659 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
11660 -1, PERF_FLAG_FD_CLOEXEC);
11661 if (cpu_buf->fd < 0) {
11662 err = -errno;
11663 pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
11664 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11665 goto error;
11666 }
11667
11668 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
11669 PROT_READ | PROT_WRITE, MAP_SHARED,
11670 cpu_buf->fd, 0);
11671 if (cpu_buf->base == MAP_FAILED) {
11672 cpu_buf->base = NULL;
11673 err = -errno;
11674 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
11675 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11676 goto error;
11677 }
11678
11679 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
11680 err = -errno;
11681 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
11682 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11683 goto error;
11684 }
11685
11686 return cpu_buf;
11687
11688error:
11689 perf_buffer__free_cpu_buf(pb, cpu_buf);
11690 return (struct perf_cpu_buf *)ERR_PTR(err);
11691}
11692
11693static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
11694 struct perf_buffer_params *p);
11695
11696struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
11697 perf_buffer_sample_fn sample_cb,
11698 perf_buffer_lost_fn lost_cb,
11699 void *ctx,
11700 const struct perf_buffer_opts *opts)
11701{
11702 const size_t attr_sz = sizeof(struct perf_event_attr);
11703 struct perf_buffer_params p = {};
11704 struct perf_event_attr attr;
11705
11706 if (!OPTS_VALID(opts, perf_buffer_opts))
11707 return libbpf_err_ptr(-EINVAL);
11708
11709 memset(&attr, 0, attr_sz);
11710 attr.size = attr_sz;
11711 attr.config = PERF_COUNT_SW_BPF_OUTPUT;
11712 attr.type = PERF_TYPE_SOFTWARE;
11713 attr.sample_type = PERF_SAMPLE_RAW;
11714 attr.sample_period = 1;
11715 attr.wakeup_events = 1;
11716
11717 p.attr = &attr;
11718 p.sample_cb = sample_cb;
11719 p.lost_cb = lost_cb;
11720 p.ctx = ctx;
11721
11722 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
11723}
11724
11725struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
11726 struct perf_event_attr *attr,
11727 perf_buffer_event_fn event_cb, void *ctx,
11728 const struct perf_buffer_raw_opts *opts)
11729{
11730 struct perf_buffer_params p = {};
11731
11732 if (!attr)
11733 return libbpf_err_ptr(-EINVAL);
11734
11735 if (!OPTS_VALID(opts, perf_buffer_raw_opts))
11736 return libbpf_err_ptr(-EINVAL);
11737
11738 p.attr = attr;
11739 p.event_cb = event_cb;
11740 p.ctx = ctx;
11741 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
11742 p.cpus = OPTS_GET(opts, cpus, NULL);
11743 p.map_keys = OPTS_GET(opts, map_keys, NULL);
11744
11745 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
11746}
11747
11748static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
11749 struct perf_buffer_params *p)
11750{
11751 const char *online_cpus_file = "/sys/devices/system/cpu/online";
11752 struct bpf_map_info map;
11753 char msg[STRERR_BUFSIZE];
11754 struct perf_buffer *pb;
11755 bool *online = NULL;
11756 __u32 map_info_len;
11757 int err, i, j, n;
11758
11759 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
11760 pr_warn("page count should be power of two, but is %zu\n",
11761 page_cnt);
11762 return ERR_PTR(-EINVAL);
11763 }
11764
11765 /* best-effort sanity checks */
11766 memset(&map, 0, sizeof(map));
11767 map_info_len = sizeof(map);
11768 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
11769 if (err) {
11770 err = -errno;
11771 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
11772 * -EBADFD, -EFAULT, or -E2BIG on real error
11773 */
11774 if (err != -EINVAL) {
11775 pr_warn("failed to get map info for map FD %d: %s\n",
11776 map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
11777 return ERR_PTR(err);
11778 }
11779 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
11780 map_fd);
11781 } else {
11782 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
11783 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
11784 map.name);
11785 return ERR_PTR(-EINVAL);
11786 }
11787 }
11788
11789 pb = calloc(1, sizeof(*pb));
11790 if (!pb)
11791 return ERR_PTR(-ENOMEM);
11792
11793 pb->event_cb = p->event_cb;
11794 pb->sample_cb = p->sample_cb;
11795 pb->lost_cb = p->lost_cb;
11796 pb->ctx = p->ctx;
11797
11798 pb->page_size = getpagesize();
11799 pb->mmap_size = pb->page_size * page_cnt;
11800 pb->map_fd = map_fd;
11801
11802 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
11803 if (pb->epoll_fd < 0) {
11804 err = -errno;
11805 pr_warn("failed to create epoll instance: %s\n",
11806 libbpf_strerror_r(err, msg, sizeof(msg)));
11807 goto error;
11808 }
11809
11810 if (p->cpu_cnt > 0) {
11811 pb->cpu_cnt = p->cpu_cnt;
11812 } else {
11813 pb->cpu_cnt = libbpf_num_possible_cpus();
11814 if (pb->cpu_cnt < 0) {
11815 err = pb->cpu_cnt;
11816 goto error;
11817 }
11818 if (map.max_entries && map.max_entries < pb->cpu_cnt)
11819 pb->cpu_cnt = map.max_entries;
11820 }
11821
11822 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
11823 if (!pb->events) {
11824 err = -ENOMEM;
11825 pr_warn("failed to allocate events: out of memory\n");
11826 goto error;
11827 }
11828 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
11829 if (!pb->cpu_bufs) {
11830 err = -ENOMEM;
11831 pr_warn("failed to allocate buffers: out of memory\n");
11832 goto error;
11833 }
11834
11835 err = parse_cpu_mask_file(online_cpus_file, &online, &n);
11836 if (err) {
11837 pr_warn("failed to get online CPU mask: %d\n", err);
11838 goto error;
11839 }
11840
11841 for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
11842 struct perf_cpu_buf *cpu_buf;
11843 int cpu, map_key;
11844
11845 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
11846 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
11847
11848 /* in case user didn't explicitly requested particular CPUs to
11849 * be attached to, skip offline/not present CPUs
11850 */
11851 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
11852 continue;
11853
11854 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
11855 if (IS_ERR(cpu_buf)) {
11856 err = PTR_ERR(cpu_buf);
11857 goto error;
11858 }
11859
11860 pb->cpu_bufs[j] = cpu_buf;
11861
11862 err = bpf_map_update_elem(pb->map_fd, &map_key,
11863 &cpu_buf->fd, 0);
11864 if (err) {
11865 err = -errno;
11866 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
11867 cpu, map_key, cpu_buf->fd,
11868 libbpf_strerror_r(err, msg, sizeof(msg)));
11869 goto error;
11870 }
11871
11872 pb->events[j].events = EPOLLIN;
11873 pb->events[j].data.ptr = cpu_buf;
11874 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
11875 &pb->events[j]) < 0) {
11876 err = -errno;
11877 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
11878 cpu, cpu_buf->fd,
11879 libbpf_strerror_r(err, msg, sizeof(msg)));
11880 goto error;
11881 }
11882 j++;
11883 }
11884 pb->cpu_cnt = j;
11885 free(online);
11886
11887 return pb;
11888
11889error:
11890 free(online);
11891 if (pb)
11892 perf_buffer__free(pb);
11893 return ERR_PTR(err);
11894}
11895
11896struct perf_sample_raw {
11897 struct perf_event_header header;
11898 uint32_t size;
11899 char data[];
11900};
11901
11902struct perf_sample_lost {
11903 struct perf_event_header header;
11904 uint64_t id;
11905 uint64_t lost;
11906 uint64_t sample_id;
11907};
11908
11909static enum bpf_perf_event_ret
11910perf_buffer__process_record(struct perf_event_header *e, void *ctx)
11911{
11912 struct perf_cpu_buf *cpu_buf = ctx;
11913 struct perf_buffer *pb = cpu_buf->pb;
11914 void *data = e;
11915
11916 /* user wants full control over parsing perf event */
11917 if (pb->event_cb)
11918 return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
11919
11920 switch (e->type) {
11921 case PERF_RECORD_SAMPLE: {
11922 struct perf_sample_raw *s = data;
11923
11924 if (pb->sample_cb)
11925 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
11926 break;
11927 }
11928 case PERF_RECORD_LOST: {
11929 struct perf_sample_lost *s = data;
11930
11931 if (pb->lost_cb)
11932 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
11933 break;
11934 }
11935 default:
11936 pr_warn("unknown perf sample type %d\n", e->type);
11937 return LIBBPF_PERF_EVENT_ERROR;
11938 }
11939 return LIBBPF_PERF_EVENT_CONT;
11940}
11941
11942static int perf_buffer__process_records(struct perf_buffer *pb,
11943 struct perf_cpu_buf *cpu_buf)
11944{
11945 enum bpf_perf_event_ret ret;
11946
11947 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
11948 pb->page_size, &cpu_buf->buf,
11949 &cpu_buf->buf_size,
11950 perf_buffer__process_record, cpu_buf);
11951 if (ret != LIBBPF_PERF_EVENT_CONT)
11952 return ret;
11953 return 0;
11954}
11955
11956int perf_buffer__epoll_fd(const struct perf_buffer *pb)
11957{
11958 return pb->epoll_fd;
11959}
11960
11961int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
11962{
11963 int i, cnt, err;
11964
11965 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
11966 if (cnt < 0)
11967 return -errno;
11968
11969 for (i = 0; i < cnt; i++) {
11970 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
11971
11972 err = perf_buffer__process_records(pb, cpu_buf);
11973 if (err) {
11974 pr_warn("error while processing records: %d\n", err);
11975 return libbpf_err(err);
11976 }
11977 }
11978 return cnt;
11979}
11980
11981/* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
11982 * manager.
11983 */
11984size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
11985{
11986 return pb->cpu_cnt;
11987}
11988
11989/*
11990 * Return perf_event FD of a ring buffer in *buf_idx* slot of
11991 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
11992 * select()/poll()/epoll() Linux syscalls.
11993 */
11994int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
11995{
11996 struct perf_cpu_buf *cpu_buf;
11997
11998 if (buf_idx >= pb->cpu_cnt)
11999 return libbpf_err(-EINVAL);
12000
12001 cpu_buf = pb->cpu_bufs[buf_idx];
12002 if (!cpu_buf)
12003 return libbpf_err(-ENOENT);
12004
12005 return cpu_buf->fd;
12006}
12007
12008int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
12009{
12010 struct perf_cpu_buf *cpu_buf;
12011
12012 if (buf_idx >= pb->cpu_cnt)
12013 return libbpf_err(-EINVAL);
12014
12015 cpu_buf = pb->cpu_bufs[buf_idx];
12016 if (!cpu_buf)
12017 return libbpf_err(-ENOENT);
12018
12019 *buf = cpu_buf->base;
12020 *buf_size = pb->mmap_size;
12021 return 0;
12022}
12023
12024/*
12025 * Consume data from perf ring buffer corresponding to slot *buf_idx* in
12026 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
12027 * consume, do nothing and return success.
12028 * Returns:
12029 * - 0 on success;
12030 * - <0 on failure.
12031 */
12032int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
12033{
12034 struct perf_cpu_buf *cpu_buf;
12035
12036 if (buf_idx >= pb->cpu_cnt)
12037 return libbpf_err(-EINVAL);
12038
12039 cpu_buf = pb->cpu_bufs[buf_idx];
12040 if (!cpu_buf)
12041 return libbpf_err(-ENOENT);
12042
12043 return perf_buffer__process_records(pb, cpu_buf);
12044}
12045
12046int perf_buffer__consume(struct perf_buffer *pb)
12047{
12048 int i, err;
12049
12050 for (i = 0; i < pb->cpu_cnt; i++) {
12051 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12052
12053 if (!cpu_buf)
12054 continue;
12055
12056 err = perf_buffer__process_records(pb, cpu_buf);
12057 if (err) {
12058 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
12059 return libbpf_err(err);
12060 }
12061 }
12062 return 0;
12063}
12064
12065int bpf_program__set_attach_target(struct bpf_program *prog,
12066 int attach_prog_fd,
12067 const char *attach_func_name)
12068{
12069 int btf_obj_fd = 0, btf_id = 0, err;
12070
12071 if (!prog || attach_prog_fd < 0)
12072 return libbpf_err(-EINVAL);
12073
12074 if (prog->obj->loaded)
12075 return libbpf_err(-EINVAL);
12076
12077 if (attach_prog_fd && !attach_func_name) {
12078 /* remember attach_prog_fd and let bpf_program__load() find
12079 * BTF ID during the program load
12080 */
12081 prog->attach_prog_fd = attach_prog_fd;
12082 return 0;
12083 }
12084
12085 if (attach_prog_fd) {
12086 btf_id = libbpf_find_prog_btf_id(attach_func_name,
12087 attach_prog_fd);
12088 if (btf_id < 0)
12089 return libbpf_err(btf_id);
12090 } else {
12091 if (!attach_func_name)
12092 return libbpf_err(-EINVAL);
12093
12094 /* load btf_vmlinux, if not yet */
12095 err = bpf_object__load_vmlinux_btf(prog->obj, true);
12096 if (err)
12097 return libbpf_err(err);
12098 err = find_kernel_btf_id(prog->obj, attach_func_name,
12099 prog->expected_attach_type,
12100 &btf_obj_fd, &btf_id);
12101 if (err)
12102 return libbpf_err(err);
12103 }
12104
12105 prog->attach_btf_id = btf_id;
12106 prog->attach_btf_obj_fd = btf_obj_fd;
12107 prog->attach_prog_fd = attach_prog_fd;
12108 return 0;
12109}
12110
12111int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
12112{
12113 int err = 0, n, len, start, end = -1;
12114 bool *tmp;
12115
12116 *mask = NULL;
12117 *mask_sz = 0;
12118
12119 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
12120 while (*s) {
12121 if (*s == ',' || *s == '\n') {
12122 s++;
12123 continue;
12124 }
12125 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
12126 if (n <= 0 || n > 2) {
12127 pr_warn("Failed to get CPU range %s: %d\n", s, n);
12128 err = -EINVAL;
12129 goto cleanup;
12130 } else if (n == 1) {
12131 end = start;
12132 }
12133 if (start < 0 || start > end) {
12134 pr_warn("Invalid CPU range [%d,%d] in %s\n",
12135 start, end, s);
12136 err = -EINVAL;
12137 goto cleanup;
12138 }
12139 tmp = realloc(*mask, end + 1);
12140 if (!tmp) {
12141 err = -ENOMEM;
12142 goto cleanup;
12143 }
12144 *mask = tmp;
12145 memset(tmp + *mask_sz, 0, start - *mask_sz);
12146 memset(tmp + start, 1, end - start + 1);
12147 *mask_sz = end + 1;
12148 s += len;
12149 }
12150 if (!*mask_sz) {
12151 pr_warn("Empty CPU range\n");
12152 return -EINVAL;
12153 }
12154 return 0;
12155cleanup:
12156 free(*mask);
12157 *mask = NULL;
12158 return err;
12159}
12160
12161int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
12162{
12163 int fd, err = 0, len;
12164 char buf[128];
12165
12166 fd = open(fcpu, O_RDONLY | O_CLOEXEC);
12167 if (fd < 0) {
12168 err = -errno;
12169 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
12170 return err;
12171 }
12172 len = read(fd, buf, sizeof(buf));
12173 close(fd);
12174 if (len <= 0) {
12175 err = len ? -errno : -EINVAL;
12176 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
12177 return err;
12178 }
12179 if (len >= sizeof(buf)) {
12180 pr_warn("CPU mask is too big in file %s\n", fcpu);
12181 return -E2BIG;
12182 }
12183 buf[len] = '\0';
12184
12185 return parse_cpu_mask_str(buf, mask, mask_sz);
12186}
12187
12188int libbpf_num_possible_cpus(void)
12189{
12190 static const char *fcpu = "/sys/devices/system/cpu/possible";
12191 static int cpus;
12192 int err, n, i, tmp_cpus;
12193 bool *mask;
12194
12195 tmp_cpus = READ_ONCE(cpus);
12196 if (tmp_cpus > 0)
12197 return tmp_cpus;
12198
12199 err = parse_cpu_mask_file(fcpu, &mask, &n);
12200 if (err)
12201 return libbpf_err(err);
12202
12203 tmp_cpus = 0;
12204 for (i = 0; i < n; i++) {
12205 if (mask[i])
12206 tmp_cpus++;
12207 }
12208 free(mask);
12209
12210 WRITE_ONCE(cpus, tmp_cpus);
12211 return tmp_cpus;
12212}
12213
12214static int populate_skeleton_maps(const struct bpf_object *obj,
12215 struct bpf_map_skeleton *maps,
12216 size_t map_cnt)
12217{
12218 int i;
12219
12220 for (i = 0; i < map_cnt; i++) {
12221 struct bpf_map **map = maps[i].map;
12222 const char *name = maps[i].name;
12223 void **mmaped = maps[i].mmaped;
12224
12225 *map = bpf_object__find_map_by_name(obj, name);
12226 if (!*map) {
12227 pr_warn("failed to find skeleton map '%s'\n", name);
12228 return -ESRCH;
12229 }
12230
12231 /* externs shouldn't be pre-setup from user code */
12232 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
12233 *mmaped = (*map)->mmaped;
12234 }
12235 return 0;
12236}
12237
12238static int populate_skeleton_progs(const struct bpf_object *obj,
12239 struct bpf_prog_skeleton *progs,
12240 size_t prog_cnt)
12241{
12242 int i;
12243
12244 for (i = 0; i < prog_cnt; i++) {
12245 struct bpf_program **prog = progs[i].prog;
12246 const char *name = progs[i].name;
12247
12248 *prog = bpf_object__find_program_by_name(obj, name);
12249 if (!*prog) {
12250 pr_warn("failed to find skeleton program '%s'\n", name);
12251 return -ESRCH;
12252 }
12253 }
12254 return 0;
12255}
12256
12257int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
12258 const struct bpf_object_open_opts *opts)
12259{
12260 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
12261 .object_name = s->name,
12262 );
12263 struct bpf_object *obj;
12264 int err;
12265
12266 /* Attempt to preserve opts->object_name, unless overriden by user
12267 * explicitly. Overwriting object name for skeletons is discouraged,
12268 * as it breaks global data maps, because they contain object name
12269 * prefix as their own map name prefix. When skeleton is generated,
12270 * bpftool is making an assumption that this name will stay the same.
12271 */
12272 if (opts) {
12273 memcpy(&skel_opts, opts, sizeof(*opts));
12274 if (!opts->object_name)
12275 skel_opts.object_name = s->name;
12276 }
12277
12278 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
12279 err = libbpf_get_error(obj);
12280 if (err) {
12281 pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
12282 s->name, err);
12283 return libbpf_err(err);
12284 }
12285
12286 *s->obj = obj;
12287 err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
12288 if (err) {
12289 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
12290 return libbpf_err(err);
12291 }
12292
12293 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
12294 if (err) {
12295 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
12296 return libbpf_err(err);
12297 }
12298
12299 return 0;
12300}
12301
12302int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
12303{
12304 int err, len, var_idx, i;
12305 const char *var_name;
12306 const struct bpf_map *map;
12307 struct btf *btf;
12308 __u32 map_type_id;
12309 const struct btf_type *map_type, *var_type;
12310 const struct bpf_var_skeleton *var_skel;
12311 struct btf_var_secinfo *var;
12312
12313 if (!s->obj)
12314 return libbpf_err(-EINVAL);
12315
12316 btf = bpf_object__btf(s->obj);
12317 if (!btf) {
12318 pr_warn("subskeletons require BTF at runtime (object %s)\n",
12319 bpf_object__name(s->obj));
12320 return libbpf_err(-errno);
12321 }
12322
12323 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
12324 if (err) {
12325 pr_warn("failed to populate subskeleton maps: %d\n", err);
12326 return libbpf_err(err);
12327 }
12328
12329 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
12330 if (err) {
12331 pr_warn("failed to populate subskeleton maps: %d\n", err);
12332 return libbpf_err(err);
12333 }
12334
12335 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
12336 var_skel = &s->vars[var_idx];
12337 map = *var_skel->map;
12338 map_type_id = bpf_map__btf_value_type_id(map);
12339 map_type = btf__type_by_id(btf, map_type_id);
12340
12341 if (!btf_is_datasec(map_type)) {
12342 pr_warn("type for map '%1$s' is not a datasec: %2$s",
12343 bpf_map__name(map),
12344 __btf_kind_str(btf_kind(map_type)));
12345 return libbpf_err(-EINVAL);
12346 }
12347
12348 len = btf_vlen(map_type);
12349 var = btf_var_secinfos(map_type);
12350 for (i = 0; i < len; i++, var++) {
12351 var_type = btf__type_by_id(btf, var->type);
12352 var_name = btf__name_by_offset(btf, var_type->name_off);
12353 if (strcmp(var_name, var_skel->name) == 0) {
12354 *var_skel->addr = map->mmaped + var->offset;
12355 break;
12356 }
12357 }
12358 }
12359 return 0;
12360}
12361
12362void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
12363{
12364 if (!s)
12365 return;
12366 free(s->maps);
12367 free(s->progs);
12368 free(s->vars);
12369 free(s);
12370}
12371
12372int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
12373{
12374 int i, err;
12375
12376 err = bpf_object__load(*s->obj);
12377 if (err) {
12378 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
12379 return libbpf_err(err);
12380 }
12381
12382 for (i = 0; i < s->map_cnt; i++) {
12383 struct bpf_map *map = *s->maps[i].map;
12384 size_t mmap_sz = bpf_map_mmap_sz(map);
12385 int prot, map_fd = bpf_map__fd(map);
12386 void **mmaped = s->maps[i].mmaped;
12387
12388 if (!mmaped)
12389 continue;
12390
12391 if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
12392 *mmaped = NULL;
12393 continue;
12394 }
12395
12396 if (map->def.map_flags & BPF_F_RDONLY_PROG)
12397 prot = PROT_READ;
12398 else
12399 prot = PROT_READ | PROT_WRITE;
12400
12401 /* Remap anonymous mmap()-ed "map initialization image" as
12402 * a BPF map-backed mmap()-ed memory, but preserving the same
12403 * memory address. This will cause kernel to change process'
12404 * page table to point to a different piece of kernel memory,
12405 * but from userspace point of view memory address (and its
12406 * contents, being identical at this point) will stay the
12407 * same. This mapping will be released by bpf_object__close()
12408 * as per normal clean up procedure, so we don't need to worry
12409 * about it from skeleton's clean up perspective.
12410 */
12411 *mmaped = mmap(map->mmaped, mmap_sz, prot,
12412 MAP_SHARED | MAP_FIXED, map_fd, 0);
12413 if (*mmaped == MAP_FAILED) {
12414 err = -errno;
12415 *mmaped = NULL;
12416 pr_warn("failed to re-mmap() map '%s': %d\n",
12417 bpf_map__name(map), err);
12418 return libbpf_err(err);
12419 }
12420 }
12421
12422 return 0;
12423}
12424
12425int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
12426{
12427 int i, err;
12428
12429 for (i = 0; i < s->prog_cnt; i++) {
12430 struct bpf_program *prog = *s->progs[i].prog;
12431 struct bpf_link **link = s->progs[i].link;
12432
12433 if (!prog->autoload || !prog->autoattach)
12434 continue;
12435
12436 /* auto-attaching not supported for this program */
12437 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12438 continue;
12439
12440 /* if user already set the link manually, don't attempt auto-attach */
12441 if (*link)
12442 continue;
12443
12444 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
12445 if (err) {
12446 pr_warn("prog '%s': failed to auto-attach: %d\n",
12447 bpf_program__name(prog), err);
12448 return libbpf_err(err);
12449 }
12450
12451 /* It's possible that for some SEC() definitions auto-attach
12452 * is supported in some cases (e.g., if definition completely
12453 * specifies target information), but is not in other cases.
12454 * SEC("uprobe") is one such case. If user specified target
12455 * binary and function name, such BPF program can be
12456 * auto-attached. But if not, it shouldn't trigger skeleton's
12457 * attach to fail. It should just be skipped.
12458 * attach_fn signals such case with returning 0 (no error) and
12459 * setting link to NULL.
12460 */
12461 }
12462
12463 return 0;
12464}
12465
12466void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
12467{
12468 int i;
12469
12470 for (i = 0; i < s->prog_cnt; i++) {
12471 struct bpf_link **link = s->progs[i].link;
12472
12473 bpf_link__destroy(*link);
12474 *link = NULL;
12475 }
12476}
12477
12478void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
12479{
12480 if (!s)
12481 return;
12482
12483 if (s->progs)
12484 bpf_object__detach_skeleton(s);
12485 if (s->obj)
12486 bpf_object__close(*s->obj);
12487 free(s->maps);
12488 free(s->progs);
12489 free(s);
12490}
1/*
2 * Common eBPF ELF object loading operations.
3 *
4 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
5 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
6 * Copyright (C) 2015 Huawei Inc.
7 */
8
9#include <stdlib.h>
10#include <stdio.h>
11#include <stdarg.h>
12#include <inttypes.h>
13#include <string.h>
14#include <unistd.h>
15#include <fcntl.h>
16#include <errno.h>
17#include <asm/unistd.h>
18#include <linux/kernel.h>
19#include <linux/bpf.h>
20#include <linux/list.h>
21#include <libelf.h>
22#include <gelf.h>
23
24#include "libbpf.h"
25#include "bpf.h"
26
27#define __printf(a, b) __attribute__((format(printf, a, b)))
28
29__printf(1, 2)
30static int __base_pr(const char *format, ...)
31{
32 va_list args;
33 int err;
34
35 va_start(args, format);
36 err = vfprintf(stderr, format, args);
37 va_end(args);
38 return err;
39}
40
41static __printf(1, 2) libbpf_print_fn_t __pr_warning = __base_pr;
42static __printf(1, 2) libbpf_print_fn_t __pr_info = __base_pr;
43static __printf(1, 2) libbpf_print_fn_t __pr_debug;
44
45#define __pr(func, fmt, ...) \
46do { \
47 if ((func)) \
48 (func)("libbpf: " fmt, ##__VA_ARGS__); \
49} while (0)
50
51#define pr_warning(fmt, ...) __pr(__pr_warning, fmt, ##__VA_ARGS__)
52#define pr_info(fmt, ...) __pr(__pr_info, fmt, ##__VA_ARGS__)
53#define pr_debug(fmt, ...) __pr(__pr_debug, fmt, ##__VA_ARGS__)
54
55void libbpf_set_print(libbpf_print_fn_t warn,
56 libbpf_print_fn_t info,
57 libbpf_print_fn_t debug)
58{
59 __pr_warning = warn;
60 __pr_info = info;
61 __pr_debug = debug;
62}
63
64#define STRERR_BUFSIZE 128
65
66#define ERRNO_OFFSET(e) ((e) - __LIBBPF_ERRNO__START)
67#define ERRCODE_OFFSET(c) ERRNO_OFFSET(LIBBPF_ERRNO__##c)
68#define NR_ERRNO (__LIBBPF_ERRNO__END - __LIBBPF_ERRNO__START)
69
70static const char *libbpf_strerror_table[NR_ERRNO] = {
71 [ERRCODE_OFFSET(LIBELF)] = "Something wrong in libelf",
72 [ERRCODE_OFFSET(FORMAT)] = "BPF object format invalid",
73 [ERRCODE_OFFSET(KVERSION)] = "'version' section incorrect or lost",
74 [ERRCODE_OFFSET(ENDIAN)] = "Endian missmatch",
75 [ERRCODE_OFFSET(INTERNAL)] = "Internal error in libbpf",
76 [ERRCODE_OFFSET(RELOC)] = "Relocation failed",
77 [ERRCODE_OFFSET(VERIFY)] = "Kernel verifier blocks program loading",
78 [ERRCODE_OFFSET(PROG2BIG)] = "Program too big",
79 [ERRCODE_OFFSET(KVER)] = "Incorrect kernel version",
80};
81
82int libbpf_strerror(int err, char *buf, size_t size)
83{
84 if (!buf || !size)
85 return -1;
86
87 err = err > 0 ? err : -err;
88
89 if (err < __LIBBPF_ERRNO__START) {
90 int ret;
91
92 ret = strerror_r(err, buf, size);
93 buf[size - 1] = '\0';
94 return ret;
95 }
96
97 if (err < __LIBBPF_ERRNO__END) {
98 const char *msg;
99
100 msg = libbpf_strerror_table[ERRNO_OFFSET(err)];
101 snprintf(buf, size, "%s", msg);
102 buf[size - 1] = '\0';
103 return 0;
104 }
105
106 snprintf(buf, size, "Unknown libbpf error %d", err);
107 buf[size - 1] = '\0';
108 return -1;
109}
110
111#define CHECK_ERR(action, err, out) do { \
112 err = action; \
113 if (err) \
114 goto out; \
115} while(0)
116
117
118/* Copied from tools/perf/util/util.h */
119#ifndef zfree
120# define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
121#endif
122
123#ifndef zclose
124# define zclose(fd) ({ \
125 int ___err = 0; \
126 if ((fd) >= 0) \
127 ___err = close((fd)); \
128 fd = -1; \
129 ___err; })
130#endif
131
132#ifdef HAVE_LIBELF_MMAP_SUPPORT
133# define LIBBPF_ELF_C_READ_MMAP ELF_C_READ_MMAP
134#else
135# define LIBBPF_ELF_C_READ_MMAP ELF_C_READ
136#endif
137
138/*
139 * bpf_prog should be a better name but it has been used in
140 * linux/filter.h.
141 */
142struct bpf_program {
143 /* Index in elf obj file, for relocation use. */
144 int idx;
145 char *section_name;
146 struct bpf_insn *insns;
147 size_t insns_cnt;
148
149 struct {
150 int insn_idx;
151 int map_idx;
152 } *reloc_desc;
153 int nr_reloc;
154
155 struct {
156 int nr;
157 int *fds;
158 } instances;
159 bpf_program_prep_t preprocessor;
160
161 struct bpf_object *obj;
162 void *priv;
163 bpf_program_clear_priv_t clear_priv;
164};
165
166struct bpf_map {
167 int fd;
168 char *name;
169 struct bpf_map_def def;
170 void *priv;
171 bpf_map_clear_priv_t clear_priv;
172};
173
174static LIST_HEAD(bpf_objects_list);
175
176struct bpf_object {
177 char license[64];
178 u32 kern_version;
179
180 struct bpf_program *programs;
181 size_t nr_programs;
182 struct bpf_map *maps;
183 size_t nr_maps;
184
185 bool loaded;
186
187 /*
188 * Information when doing elf related work. Only valid if fd
189 * is valid.
190 */
191 struct {
192 int fd;
193 void *obj_buf;
194 size_t obj_buf_sz;
195 Elf *elf;
196 GElf_Ehdr ehdr;
197 Elf_Data *symbols;
198 size_t strtabidx;
199 struct {
200 GElf_Shdr shdr;
201 Elf_Data *data;
202 } *reloc;
203 int nr_reloc;
204 int maps_shndx;
205 } efile;
206 /*
207 * All loaded bpf_object is linked in a list, which is
208 * hidden to caller. bpf_objects__<func> handlers deal with
209 * all objects.
210 */
211 struct list_head list;
212 char path[];
213};
214#define obj_elf_valid(o) ((o)->efile.elf)
215
216static void bpf_program__unload(struct bpf_program *prog)
217{
218 int i;
219
220 if (!prog)
221 return;
222
223 /*
224 * If the object is opened but the program was never loaded,
225 * it is possible that prog->instances.nr == -1.
226 */
227 if (prog->instances.nr > 0) {
228 for (i = 0; i < prog->instances.nr; i++)
229 zclose(prog->instances.fds[i]);
230 } else if (prog->instances.nr != -1) {
231 pr_warning("Internal error: instances.nr is %d\n",
232 prog->instances.nr);
233 }
234
235 prog->instances.nr = -1;
236 zfree(&prog->instances.fds);
237}
238
239static void bpf_program__exit(struct bpf_program *prog)
240{
241 if (!prog)
242 return;
243
244 if (prog->clear_priv)
245 prog->clear_priv(prog, prog->priv);
246
247 prog->priv = NULL;
248 prog->clear_priv = NULL;
249
250 bpf_program__unload(prog);
251 zfree(&prog->section_name);
252 zfree(&prog->insns);
253 zfree(&prog->reloc_desc);
254
255 prog->nr_reloc = 0;
256 prog->insns_cnt = 0;
257 prog->idx = -1;
258}
259
260static int
261bpf_program__init(void *data, size_t size, char *name, int idx,
262 struct bpf_program *prog)
263{
264 if (size < sizeof(struct bpf_insn)) {
265 pr_warning("corrupted section '%s'\n", name);
266 return -EINVAL;
267 }
268
269 bzero(prog, sizeof(*prog));
270
271 prog->section_name = strdup(name);
272 if (!prog->section_name) {
273 pr_warning("failed to alloc name for prog %s\n",
274 name);
275 goto errout;
276 }
277
278 prog->insns = malloc(size);
279 if (!prog->insns) {
280 pr_warning("failed to alloc insns for %s\n", name);
281 goto errout;
282 }
283 prog->insns_cnt = size / sizeof(struct bpf_insn);
284 memcpy(prog->insns, data,
285 prog->insns_cnt * sizeof(struct bpf_insn));
286 prog->idx = idx;
287 prog->instances.fds = NULL;
288 prog->instances.nr = -1;
289
290 return 0;
291errout:
292 bpf_program__exit(prog);
293 return -ENOMEM;
294}
295
296static int
297bpf_object__add_program(struct bpf_object *obj, void *data, size_t size,
298 char *name, int idx)
299{
300 struct bpf_program prog, *progs;
301 int nr_progs, err;
302
303 err = bpf_program__init(data, size, name, idx, &prog);
304 if (err)
305 return err;
306
307 progs = obj->programs;
308 nr_progs = obj->nr_programs;
309
310 progs = realloc(progs, sizeof(progs[0]) * (nr_progs + 1));
311 if (!progs) {
312 /*
313 * In this case the original obj->programs
314 * is still valid, so don't need special treat for
315 * bpf_close_object().
316 */
317 pr_warning("failed to alloc a new program '%s'\n",
318 name);
319 bpf_program__exit(&prog);
320 return -ENOMEM;
321 }
322
323 pr_debug("found program %s\n", prog.section_name);
324 obj->programs = progs;
325 obj->nr_programs = nr_progs + 1;
326 prog.obj = obj;
327 progs[nr_progs] = prog;
328 return 0;
329}
330
331static struct bpf_object *bpf_object__new(const char *path,
332 void *obj_buf,
333 size_t obj_buf_sz)
334{
335 struct bpf_object *obj;
336
337 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
338 if (!obj) {
339 pr_warning("alloc memory failed for %s\n", path);
340 return ERR_PTR(-ENOMEM);
341 }
342
343 strcpy(obj->path, path);
344 obj->efile.fd = -1;
345
346 /*
347 * Caller of this function should also calls
348 * bpf_object__elf_finish() after data collection to return
349 * obj_buf to user. If not, we should duplicate the buffer to
350 * avoid user freeing them before elf finish.
351 */
352 obj->efile.obj_buf = obj_buf;
353 obj->efile.obj_buf_sz = obj_buf_sz;
354 obj->efile.maps_shndx = -1;
355
356 obj->loaded = false;
357
358 INIT_LIST_HEAD(&obj->list);
359 list_add(&obj->list, &bpf_objects_list);
360 return obj;
361}
362
363static void bpf_object__elf_finish(struct bpf_object *obj)
364{
365 if (!obj_elf_valid(obj))
366 return;
367
368 if (obj->efile.elf) {
369 elf_end(obj->efile.elf);
370 obj->efile.elf = NULL;
371 }
372 obj->efile.symbols = NULL;
373
374 zfree(&obj->efile.reloc);
375 obj->efile.nr_reloc = 0;
376 zclose(obj->efile.fd);
377 obj->efile.obj_buf = NULL;
378 obj->efile.obj_buf_sz = 0;
379}
380
381static int bpf_object__elf_init(struct bpf_object *obj)
382{
383 int err = 0;
384 GElf_Ehdr *ep;
385
386 if (obj_elf_valid(obj)) {
387 pr_warning("elf init: internal error\n");
388 return -LIBBPF_ERRNO__LIBELF;
389 }
390
391 if (obj->efile.obj_buf_sz > 0) {
392 /*
393 * obj_buf should have been validated by
394 * bpf_object__open_buffer().
395 */
396 obj->efile.elf = elf_memory(obj->efile.obj_buf,
397 obj->efile.obj_buf_sz);
398 } else {
399 obj->efile.fd = open(obj->path, O_RDONLY);
400 if (obj->efile.fd < 0) {
401 pr_warning("failed to open %s: %s\n", obj->path,
402 strerror(errno));
403 return -errno;
404 }
405
406 obj->efile.elf = elf_begin(obj->efile.fd,
407 LIBBPF_ELF_C_READ_MMAP,
408 NULL);
409 }
410
411 if (!obj->efile.elf) {
412 pr_warning("failed to open %s as ELF file\n",
413 obj->path);
414 err = -LIBBPF_ERRNO__LIBELF;
415 goto errout;
416 }
417
418 if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) {
419 pr_warning("failed to get EHDR from %s\n",
420 obj->path);
421 err = -LIBBPF_ERRNO__FORMAT;
422 goto errout;
423 }
424 ep = &obj->efile.ehdr;
425
426 if ((ep->e_type != ET_REL) || (ep->e_machine != 0)) {
427 pr_warning("%s is not an eBPF object file\n",
428 obj->path);
429 err = -LIBBPF_ERRNO__FORMAT;
430 goto errout;
431 }
432
433 return 0;
434errout:
435 bpf_object__elf_finish(obj);
436 return err;
437}
438
439static int
440bpf_object__check_endianness(struct bpf_object *obj)
441{
442 static unsigned int const endian = 1;
443
444 switch (obj->efile.ehdr.e_ident[EI_DATA]) {
445 case ELFDATA2LSB:
446 /* We are big endian, BPF obj is little endian. */
447 if (*(unsigned char const *)&endian != 1)
448 goto mismatch;
449 break;
450
451 case ELFDATA2MSB:
452 /* We are little endian, BPF obj is big endian. */
453 if (*(unsigned char const *)&endian != 0)
454 goto mismatch;
455 break;
456 default:
457 return -LIBBPF_ERRNO__ENDIAN;
458 }
459
460 return 0;
461
462mismatch:
463 pr_warning("Error: endianness mismatch.\n");
464 return -LIBBPF_ERRNO__ENDIAN;
465}
466
467static int
468bpf_object__init_license(struct bpf_object *obj,
469 void *data, size_t size)
470{
471 memcpy(obj->license, data,
472 min(size, sizeof(obj->license) - 1));
473 pr_debug("license of %s is %s\n", obj->path, obj->license);
474 return 0;
475}
476
477static int
478bpf_object__init_kversion(struct bpf_object *obj,
479 void *data, size_t size)
480{
481 u32 kver;
482
483 if (size != sizeof(kver)) {
484 pr_warning("invalid kver section in %s\n", obj->path);
485 return -LIBBPF_ERRNO__FORMAT;
486 }
487 memcpy(&kver, data, sizeof(kver));
488 obj->kern_version = kver;
489 pr_debug("kernel version of %s is %x\n", obj->path,
490 obj->kern_version);
491 return 0;
492}
493
494static int
495bpf_object__init_maps(struct bpf_object *obj, void *data,
496 size_t size)
497{
498 size_t nr_maps;
499 int i;
500
501 nr_maps = size / sizeof(struct bpf_map_def);
502 if (!data || !nr_maps) {
503 pr_debug("%s doesn't need map definition\n",
504 obj->path);
505 return 0;
506 }
507
508 pr_debug("maps in %s: %zd bytes\n", obj->path, size);
509
510 obj->maps = calloc(nr_maps, sizeof(obj->maps[0]));
511 if (!obj->maps) {
512 pr_warning("alloc maps for object failed\n");
513 return -ENOMEM;
514 }
515 obj->nr_maps = nr_maps;
516
517 for (i = 0; i < nr_maps; i++) {
518 struct bpf_map_def *def = &obj->maps[i].def;
519
520 /*
521 * fill all fd with -1 so won't close incorrect
522 * fd (fd=0 is stdin) when failure (zclose won't close
523 * negative fd)).
524 */
525 obj->maps[i].fd = -1;
526
527 /* Save map definition into obj->maps */
528 *def = ((struct bpf_map_def *)data)[i];
529 }
530 return 0;
531}
532
533static int
534bpf_object__init_maps_name(struct bpf_object *obj)
535{
536 int i;
537 Elf_Data *symbols = obj->efile.symbols;
538
539 if (!symbols || obj->efile.maps_shndx < 0)
540 return -EINVAL;
541
542 for (i = 0; i < symbols->d_size / sizeof(GElf_Sym); i++) {
543 GElf_Sym sym;
544 size_t map_idx;
545 const char *map_name;
546
547 if (!gelf_getsym(symbols, i, &sym))
548 continue;
549 if (sym.st_shndx != obj->efile.maps_shndx)
550 continue;
551
552 map_name = elf_strptr(obj->efile.elf,
553 obj->efile.strtabidx,
554 sym.st_name);
555 map_idx = sym.st_value / sizeof(struct bpf_map_def);
556 if (map_idx >= obj->nr_maps) {
557 pr_warning("index of map \"%s\" is buggy: %zu > %zu\n",
558 map_name, map_idx, obj->nr_maps);
559 continue;
560 }
561 obj->maps[map_idx].name = strdup(map_name);
562 if (!obj->maps[map_idx].name) {
563 pr_warning("failed to alloc map name\n");
564 return -ENOMEM;
565 }
566 pr_debug("map %zu is \"%s\"\n", map_idx,
567 obj->maps[map_idx].name);
568 }
569 return 0;
570}
571
572static int bpf_object__elf_collect(struct bpf_object *obj)
573{
574 Elf *elf = obj->efile.elf;
575 GElf_Ehdr *ep = &obj->efile.ehdr;
576 Elf_Scn *scn = NULL;
577 int idx = 0, err = 0;
578
579 /* Elf is corrupted/truncated, avoid calling elf_strptr. */
580 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL)) {
581 pr_warning("failed to get e_shstrndx from %s\n",
582 obj->path);
583 return -LIBBPF_ERRNO__FORMAT;
584 }
585
586 while ((scn = elf_nextscn(elf, scn)) != NULL) {
587 char *name;
588 GElf_Shdr sh;
589 Elf_Data *data;
590
591 idx++;
592 if (gelf_getshdr(scn, &sh) != &sh) {
593 pr_warning("failed to get section header from %s\n",
594 obj->path);
595 err = -LIBBPF_ERRNO__FORMAT;
596 goto out;
597 }
598
599 name = elf_strptr(elf, ep->e_shstrndx, sh.sh_name);
600 if (!name) {
601 pr_warning("failed to get section name from %s\n",
602 obj->path);
603 err = -LIBBPF_ERRNO__FORMAT;
604 goto out;
605 }
606
607 data = elf_getdata(scn, 0);
608 if (!data) {
609 pr_warning("failed to get section data from %s(%s)\n",
610 name, obj->path);
611 err = -LIBBPF_ERRNO__FORMAT;
612 goto out;
613 }
614 pr_debug("section %s, size %ld, link %d, flags %lx, type=%d\n",
615 name, (unsigned long)data->d_size,
616 (int)sh.sh_link, (unsigned long)sh.sh_flags,
617 (int)sh.sh_type);
618
619 if (strcmp(name, "license") == 0)
620 err = bpf_object__init_license(obj,
621 data->d_buf,
622 data->d_size);
623 else if (strcmp(name, "version") == 0)
624 err = bpf_object__init_kversion(obj,
625 data->d_buf,
626 data->d_size);
627 else if (strcmp(name, "maps") == 0) {
628 err = bpf_object__init_maps(obj, data->d_buf,
629 data->d_size);
630 obj->efile.maps_shndx = idx;
631 } else if (sh.sh_type == SHT_SYMTAB) {
632 if (obj->efile.symbols) {
633 pr_warning("bpf: multiple SYMTAB in %s\n",
634 obj->path);
635 err = -LIBBPF_ERRNO__FORMAT;
636 } else {
637 obj->efile.symbols = data;
638 obj->efile.strtabidx = sh.sh_link;
639 }
640 } else if ((sh.sh_type == SHT_PROGBITS) &&
641 (sh.sh_flags & SHF_EXECINSTR) &&
642 (data->d_size > 0)) {
643 err = bpf_object__add_program(obj, data->d_buf,
644 data->d_size, name, idx);
645 if (err) {
646 char errmsg[STRERR_BUFSIZE];
647
648 strerror_r(-err, errmsg, sizeof(errmsg));
649 pr_warning("failed to alloc program %s (%s): %s",
650 name, obj->path, errmsg);
651 }
652 } else if (sh.sh_type == SHT_REL) {
653 void *reloc = obj->efile.reloc;
654 int nr_reloc = obj->efile.nr_reloc + 1;
655
656 reloc = realloc(reloc,
657 sizeof(*obj->efile.reloc) * nr_reloc);
658 if (!reloc) {
659 pr_warning("realloc failed\n");
660 err = -ENOMEM;
661 } else {
662 int n = nr_reloc - 1;
663
664 obj->efile.reloc = reloc;
665 obj->efile.nr_reloc = nr_reloc;
666
667 obj->efile.reloc[n].shdr = sh;
668 obj->efile.reloc[n].data = data;
669 }
670 }
671 if (err)
672 goto out;
673 }
674
675 if (!obj->efile.strtabidx || obj->efile.strtabidx >= idx) {
676 pr_warning("Corrupted ELF file: index of strtab invalid\n");
677 return LIBBPF_ERRNO__FORMAT;
678 }
679 if (obj->efile.maps_shndx >= 0)
680 err = bpf_object__init_maps_name(obj);
681out:
682 return err;
683}
684
685static struct bpf_program *
686bpf_object__find_prog_by_idx(struct bpf_object *obj, int idx)
687{
688 struct bpf_program *prog;
689 size_t i;
690
691 for (i = 0; i < obj->nr_programs; i++) {
692 prog = &obj->programs[i];
693 if (prog->idx == idx)
694 return prog;
695 }
696 return NULL;
697}
698
699static int
700bpf_program__collect_reloc(struct bpf_program *prog,
701 size_t nr_maps, GElf_Shdr *shdr,
702 Elf_Data *data, Elf_Data *symbols,
703 int maps_shndx)
704{
705 int i, nrels;
706
707 pr_debug("collecting relocating info for: '%s'\n",
708 prog->section_name);
709 nrels = shdr->sh_size / shdr->sh_entsize;
710
711 prog->reloc_desc = malloc(sizeof(*prog->reloc_desc) * nrels);
712 if (!prog->reloc_desc) {
713 pr_warning("failed to alloc memory in relocation\n");
714 return -ENOMEM;
715 }
716 prog->nr_reloc = nrels;
717
718 for (i = 0; i < nrels; i++) {
719 GElf_Sym sym;
720 GElf_Rel rel;
721 unsigned int insn_idx;
722 struct bpf_insn *insns = prog->insns;
723 size_t map_idx;
724
725 if (!gelf_getrel(data, i, &rel)) {
726 pr_warning("relocation: failed to get %d reloc\n", i);
727 return -LIBBPF_ERRNO__FORMAT;
728 }
729
730 if (!gelf_getsym(symbols,
731 GELF_R_SYM(rel.r_info),
732 &sym)) {
733 pr_warning("relocation: symbol %"PRIx64" not found\n",
734 GELF_R_SYM(rel.r_info));
735 return -LIBBPF_ERRNO__FORMAT;
736 }
737
738 if (sym.st_shndx != maps_shndx) {
739 pr_warning("Program '%s' contains non-map related relo data pointing to section %u\n",
740 prog->section_name, sym.st_shndx);
741 return -LIBBPF_ERRNO__RELOC;
742 }
743
744 insn_idx = rel.r_offset / sizeof(struct bpf_insn);
745 pr_debug("relocation: insn_idx=%u\n", insn_idx);
746
747 if (insns[insn_idx].code != (BPF_LD | BPF_IMM | BPF_DW)) {
748 pr_warning("bpf: relocation: invalid relo for insns[%d].code 0x%x\n",
749 insn_idx, insns[insn_idx].code);
750 return -LIBBPF_ERRNO__RELOC;
751 }
752
753 map_idx = sym.st_value / sizeof(struct bpf_map_def);
754 if (map_idx >= nr_maps) {
755 pr_warning("bpf relocation: map_idx %d large than %d\n",
756 (int)map_idx, (int)nr_maps - 1);
757 return -LIBBPF_ERRNO__RELOC;
758 }
759
760 prog->reloc_desc[i].insn_idx = insn_idx;
761 prog->reloc_desc[i].map_idx = map_idx;
762 }
763 return 0;
764}
765
766static int
767bpf_object__create_maps(struct bpf_object *obj)
768{
769 unsigned int i;
770
771 for (i = 0; i < obj->nr_maps; i++) {
772 struct bpf_map_def *def = &obj->maps[i].def;
773 int *pfd = &obj->maps[i].fd;
774
775 *pfd = bpf_create_map(def->type,
776 def->key_size,
777 def->value_size,
778 def->max_entries);
779 if (*pfd < 0) {
780 size_t j;
781 int err = *pfd;
782
783 pr_warning("failed to create map: %s\n",
784 strerror(errno));
785 for (j = 0; j < i; j++)
786 zclose(obj->maps[j].fd);
787 return err;
788 }
789 pr_debug("create map: fd=%d\n", *pfd);
790 }
791
792 return 0;
793}
794
795static int
796bpf_program__relocate(struct bpf_program *prog, struct bpf_object *obj)
797{
798 int i;
799
800 if (!prog || !prog->reloc_desc)
801 return 0;
802
803 for (i = 0; i < prog->nr_reloc; i++) {
804 int insn_idx, map_idx;
805 struct bpf_insn *insns = prog->insns;
806
807 insn_idx = prog->reloc_desc[i].insn_idx;
808 map_idx = prog->reloc_desc[i].map_idx;
809
810 if (insn_idx >= (int)prog->insns_cnt) {
811 pr_warning("relocation out of range: '%s'\n",
812 prog->section_name);
813 return -LIBBPF_ERRNO__RELOC;
814 }
815 insns[insn_idx].src_reg = BPF_PSEUDO_MAP_FD;
816 insns[insn_idx].imm = obj->maps[map_idx].fd;
817 }
818
819 zfree(&prog->reloc_desc);
820 prog->nr_reloc = 0;
821 return 0;
822}
823
824
825static int
826bpf_object__relocate(struct bpf_object *obj)
827{
828 struct bpf_program *prog;
829 size_t i;
830 int err;
831
832 for (i = 0; i < obj->nr_programs; i++) {
833 prog = &obj->programs[i];
834
835 err = bpf_program__relocate(prog, obj);
836 if (err) {
837 pr_warning("failed to relocate '%s'\n",
838 prog->section_name);
839 return err;
840 }
841 }
842 return 0;
843}
844
845static int bpf_object__collect_reloc(struct bpf_object *obj)
846{
847 int i, err;
848
849 if (!obj_elf_valid(obj)) {
850 pr_warning("Internal error: elf object is closed\n");
851 return -LIBBPF_ERRNO__INTERNAL;
852 }
853
854 for (i = 0; i < obj->efile.nr_reloc; i++) {
855 GElf_Shdr *shdr = &obj->efile.reloc[i].shdr;
856 Elf_Data *data = obj->efile.reloc[i].data;
857 int idx = shdr->sh_info;
858 struct bpf_program *prog;
859 size_t nr_maps = obj->nr_maps;
860
861 if (shdr->sh_type != SHT_REL) {
862 pr_warning("internal error at %d\n", __LINE__);
863 return -LIBBPF_ERRNO__INTERNAL;
864 }
865
866 prog = bpf_object__find_prog_by_idx(obj, idx);
867 if (!prog) {
868 pr_warning("relocation failed: no %d section\n",
869 idx);
870 return -LIBBPF_ERRNO__RELOC;
871 }
872
873 err = bpf_program__collect_reloc(prog, nr_maps,
874 shdr, data,
875 obj->efile.symbols,
876 obj->efile.maps_shndx);
877 if (err)
878 return err;
879 }
880 return 0;
881}
882
883static int
884load_program(struct bpf_insn *insns, int insns_cnt,
885 char *license, u32 kern_version, int *pfd)
886{
887 int ret;
888 char *log_buf;
889
890 if (!insns || !insns_cnt)
891 return -EINVAL;
892
893 log_buf = malloc(BPF_LOG_BUF_SIZE);
894 if (!log_buf)
895 pr_warning("Alloc log buffer for bpf loader error, continue without log\n");
896
897 ret = bpf_load_program(BPF_PROG_TYPE_KPROBE, insns,
898 insns_cnt, license, kern_version,
899 log_buf, BPF_LOG_BUF_SIZE);
900
901 if (ret >= 0) {
902 *pfd = ret;
903 ret = 0;
904 goto out;
905 }
906
907 ret = -LIBBPF_ERRNO__LOAD;
908 pr_warning("load bpf program failed: %s\n", strerror(errno));
909
910 if (log_buf && log_buf[0] != '\0') {
911 ret = -LIBBPF_ERRNO__VERIFY;
912 pr_warning("-- BEGIN DUMP LOG ---\n");
913 pr_warning("\n%s\n", log_buf);
914 pr_warning("-- END LOG --\n");
915 } else {
916 if (insns_cnt >= BPF_MAXINSNS) {
917 pr_warning("Program too large (%d insns), at most %d insns\n",
918 insns_cnt, BPF_MAXINSNS);
919 ret = -LIBBPF_ERRNO__PROG2BIG;
920 } else if (log_buf) {
921 pr_warning("log buffer is empty\n");
922 ret = -LIBBPF_ERRNO__KVER;
923 }
924 }
925
926out:
927 free(log_buf);
928 return ret;
929}
930
931static int
932bpf_program__load(struct bpf_program *prog,
933 char *license, u32 kern_version)
934{
935 int err = 0, fd, i;
936
937 if (prog->instances.nr < 0 || !prog->instances.fds) {
938 if (prog->preprocessor) {
939 pr_warning("Internal error: can't load program '%s'\n",
940 prog->section_name);
941 return -LIBBPF_ERRNO__INTERNAL;
942 }
943
944 prog->instances.fds = malloc(sizeof(int));
945 if (!prog->instances.fds) {
946 pr_warning("Not enough memory for BPF fds\n");
947 return -ENOMEM;
948 }
949 prog->instances.nr = 1;
950 prog->instances.fds[0] = -1;
951 }
952
953 if (!prog->preprocessor) {
954 if (prog->instances.nr != 1) {
955 pr_warning("Program '%s' is inconsistent: nr(%d) != 1\n",
956 prog->section_name, prog->instances.nr);
957 }
958 err = load_program(prog->insns, prog->insns_cnt,
959 license, kern_version, &fd);
960 if (!err)
961 prog->instances.fds[0] = fd;
962 goto out;
963 }
964
965 for (i = 0; i < prog->instances.nr; i++) {
966 struct bpf_prog_prep_result result;
967 bpf_program_prep_t preprocessor = prog->preprocessor;
968
969 bzero(&result, sizeof(result));
970 err = preprocessor(prog, i, prog->insns,
971 prog->insns_cnt, &result);
972 if (err) {
973 pr_warning("Preprocessing the %dth instance of program '%s' failed\n",
974 i, prog->section_name);
975 goto out;
976 }
977
978 if (!result.new_insn_ptr || !result.new_insn_cnt) {
979 pr_debug("Skip loading the %dth instance of program '%s'\n",
980 i, prog->section_name);
981 prog->instances.fds[i] = -1;
982 if (result.pfd)
983 *result.pfd = -1;
984 continue;
985 }
986
987 err = load_program(result.new_insn_ptr,
988 result.new_insn_cnt,
989 license, kern_version, &fd);
990
991 if (err) {
992 pr_warning("Loading the %dth instance of program '%s' failed\n",
993 i, prog->section_name);
994 goto out;
995 }
996
997 if (result.pfd)
998 *result.pfd = fd;
999 prog->instances.fds[i] = fd;
1000 }
1001out:
1002 if (err)
1003 pr_warning("failed to load program '%s'\n",
1004 prog->section_name);
1005 zfree(&prog->insns);
1006 prog->insns_cnt = 0;
1007 return err;
1008}
1009
1010static int
1011bpf_object__load_progs(struct bpf_object *obj)
1012{
1013 size_t i;
1014 int err;
1015
1016 for (i = 0; i < obj->nr_programs; i++) {
1017 err = bpf_program__load(&obj->programs[i],
1018 obj->license,
1019 obj->kern_version);
1020 if (err)
1021 return err;
1022 }
1023 return 0;
1024}
1025
1026static int bpf_object__validate(struct bpf_object *obj)
1027{
1028 if (obj->kern_version == 0) {
1029 pr_warning("%s doesn't provide kernel version\n",
1030 obj->path);
1031 return -LIBBPF_ERRNO__KVERSION;
1032 }
1033 return 0;
1034}
1035
1036static struct bpf_object *
1037__bpf_object__open(const char *path, void *obj_buf, size_t obj_buf_sz)
1038{
1039 struct bpf_object *obj;
1040 int err;
1041
1042 if (elf_version(EV_CURRENT) == EV_NONE) {
1043 pr_warning("failed to init libelf for %s\n", path);
1044 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
1045 }
1046
1047 obj = bpf_object__new(path, obj_buf, obj_buf_sz);
1048 if (IS_ERR(obj))
1049 return obj;
1050
1051 CHECK_ERR(bpf_object__elf_init(obj), err, out);
1052 CHECK_ERR(bpf_object__check_endianness(obj), err, out);
1053 CHECK_ERR(bpf_object__elf_collect(obj), err, out);
1054 CHECK_ERR(bpf_object__collect_reloc(obj), err, out);
1055 CHECK_ERR(bpf_object__validate(obj), err, out);
1056
1057 bpf_object__elf_finish(obj);
1058 return obj;
1059out:
1060 bpf_object__close(obj);
1061 return ERR_PTR(err);
1062}
1063
1064struct bpf_object *bpf_object__open(const char *path)
1065{
1066 /* param validation */
1067 if (!path)
1068 return NULL;
1069
1070 pr_debug("loading %s\n", path);
1071
1072 return __bpf_object__open(path, NULL, 0);
1073}
1074
1075struct bpf_object *bpf_object__open_buffer(void *obj_buf,
1076 size_t obj_buf_sz,
1077 const char *name)
1078{
1079 char tmp_name[64];
1080
1081 /* param validation */
1082 if (!obj_buf || obj_buf_sz <= 0)
1083 return NULL;
1084
1085 if (!name) {
1086 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
1087 (unsigned long)obj_buf,
1088 (unsigned long)obj_buf_sz);
1089 tmp_name[sizeof(tmp_name) - 1] = '\0';
1090 name = tmp_name;
1091 }
1092 pr_debug("loading object '%s' from buffer\n",
1093 name);
1094
1095 return __bpf_object__open(name, obj_buf, obj_buf_sz);
1096}
1097
1098int bpf_object__unload(struct bpf_object *obj)
1099{
1100 size_t i;
1101
1102 if (!obj)
1103 return -EINVAL;
1104
1105 for (i = 0; i < obj->nr_maps; i++)
1106 zclose(obj->maps[i].fd);
1107
1108 for (i = 0; i < obj->nr_programs; i++)
1109 bpf_program__unload(&obj->programs[i]);
1110
1111 return 0;
1112}
1113
1114int bpf_object__load(struct bpf_object *obj)
1115{
1116 int err;
1117
1118 if (!obj)
1119 return -EINVAL;
1120
1121 if (obj->loaded) {
1122 pr_warning("object should not be loaded twice\n");
1123 return -EINVAL;
1124 }
1125
1126 obj->loaded = true;
1127
1128 CHECK_ERR(bpf_object__create_maps(obj), err, out);
1129 CHECK_ERR(bpf_object__relocate(obj), err, out);
1130 CHECK_ERR(bpf_object__load_progs(obj), err, out);
1131
1132 return 0;
1133out:
1134 bpf_object__unload(obj);
1135 pr_warning("failed to load object '%s'\n", obj->path);
1136 return err;
1137}
1138
1139void bpf_object__close(struct bpf_object *obj)
1140{
1141 size_t i;
1142
1143 if (!obj)
1144 return;
1145
1146 bpf_object__elf_finish(obj);
1147 bpf_object__unload(obj);
1148
1149 for (i = 0; i < obj->nr_maps; i++) {
1150 zfree(&obj->maps[i].name);
1151 if (obj->maps[i].clear_priv)
1152 obj->maps[i].clear_priv(&obj->maps[i],
1153 obj->maps[i].priv);
1154 obj->maps[i].priv = NULL;
1155 obj->maps[i].clear_priv = NULL;
1156 }
1157 zfree(&obj->maps);
1158 obj->nr_maps = 0;
1159
1160 if (obj->programs && obj->nr_programs) {
1161 for (i = 0; i < obj->nr_programs; i++)
1162 bpf_program__exit(&obj->programs[i]);
1163 }
1164 zfree(&obj->programs);
1165
1166 list_del(&obj->list);
1167 free(obj);
1168}
1169
1170struct bpf_object *
1171bpf_object__next(struct bpf_object *prev)
1172{
1173 struct bpf_object *next;
1174
1175 if (!prev)
1176 next = list_first_entry(&bpf_objects_list,
1177 struct bpf_object,
1178 list);
1179 else
1180 next = list_next_entry(prev, list);
1181
1182 /* Empty list is noticed here so don't need checking on entry. */
1183 if (&next->list == &bpf_objects_list)
1184 return NULL;
1185
1186 return next;
1187}
1188
1189const char *
1190bpf_object__get_name(struct bpf_object *obj)
1191{
1192 if (!obj)
1193 return ERR_PTR(-EINVAL);
1194 return obj->path;
1195}
1196
1197unsigned int
1198bpf_object__get_kversion(struct bpf_object *obj)
1199{
1200 if (!obj)
1201 return 0;
1202 return obj->kern_version;
1203}
1204
1205struct bpf_program *
1206bpf_program__next(struct bpf_program *prev, struct bpf_object *obj)
1207{
1208 size_t idx;
1209
1210 if (!obj->programs)
1211 return NULL;
1212 /* First handler */
1213 if (prev == NULL)
1214 return &obj->programs[0];
1215
1216 if (prev->obj != obj) {
1217 pr_warning("error: program handler doesn't match object\n");
1218 return NULL;
1219 }
1220
1221 idx = (prev - obj->programs) + 1;
1222 if (idx >= obj->nr_programs)
1223 return NULL;
1224 return &obj->programs[idx];
1225}
1226
1227int bpf_program__set_private(struct bpf_program *prog,
1228 void *priv,
1229 bpf_program_clear_priv_t clear_priv)
1230{
1231 if (prog->priv && prog->clear_priv)
1232 prog->clear_priv(prog, prog->priv);
1233
1234 prog->priv = priv;
1235 prog->clear_priv = clear_priv;
1236 return 0;
1237}
1238
1239int bpf_program__get_private(struct bpf_program *prog, void **ppriv)
1240{
1241 *ppriv = prog->priv;
1242 return 0;
1243}
1244
1245const char *bpf_program__title(struct bpf_program *prog, bool needs_copy)
1246{
1247 const char *title;
1248
1249 title = prog->section_name;
1250 if (needs_copy) {
1251 title = strdup(title);
1252 if (!title) {
1253 pr_warning("failed to strdup program title\n");
1254 return ERR_PTR(-ENOMEM);
1255 }
1256 }
1257
1258 return title;
1259}
1260
1261int bpf_program__fd(struct bpf_program *prog)
1262{
1263 return bpf_program__nth_fd(prog, 0);
1264}
1265
1266int bpf_program__set_prep(struct bpf_program *prog, int nr_instances,
1267 bpf_program_prep_t prep)
1268{
1269 int *instances_fds;
1270
1271 if (nr_instances <= 0 || !prep)
1272 return -EINVAL;
1273
1274 if (prog->instances.nr > 0 || prog->instances.fds) {
1275 pr_warning("Can't set pre-processor after loading\n");
1276 return -EINVAL;
1277 }
1278
1279 instances_fds = malloc(sizeof(int) * nr_instances);
1280 if (!instances_fds) {
1281 pr_warning("alloc memory failed for fds\n");
1282 return -ENOMEM;
1283 }
1284
1285 /* fill all fd with -1 */
1286 memset(instances_fds, -1, sizeof(int) * nr_instances);
1287
1288 prog->instances.nr = nr_instances;
1289 prog->instances.fds = instances_fds;
1290 prog->preprocessor = prep;
1291 return 0;
1292}
1293
1294int bpf_program__nth_fd(struct bpf_program *prog, int n)
1295{
1296 int fd;
1297
1298 if (n >= prog->instances.nr || n < 0) {
1299 pr_warning("Can't get the %dth fd from program %s: only %d instances\n",
1300 n, prog->section_name, prog->instances.nr);
1301 return -EINVAL;
1302 }
1303
1304 fd = prog->instances.fds[n];
1305 if (fd < 0) {
1306 pr_warning("%dth instance of program '%s' is invalid\n",
1307 n, prog->section_name);
1308 return -ENOENT;
1309 }
1310
1311 return fd;
1312}
1313
1314int bpf_map__get_fd(struct bpf_map *map)
1315{
1316 if (!map)
1317 return -EINVAL;
1318
1319 return map->fd;
1320}
1321
1322int bpf_map__get_def(struct bpf_map *map, struct bpf_map_def *pdef)
1323{
1324 if (!map || !pdef)
1325 return -EINVAL;
1326
1327 *pdef = map->def;
1328 return 0;
1329}
1330
1331const char *bpf_map__get_name(struct bpf_map *map)
1332{
1333 if (!map)
1334 return NULL;
1335 return map->name;
1336}
1337
1338int bpf_map__set_private(struct bpf_map *map, void *priv,
1339 bpf_map_clear_priv_t clear_priv)
1340{
1341 if (!map)
1342 return -EINVAL;
1343
1344 if (map->priv) {
1345 if (map->clear_priv)
1346 map->clear_priv(map, map->priv);
1347 }
1348
1349 map->priv = priv;
1350 map->clear_priv = clear_priv;
1351 return 0;
1352}
1353
1354int bpf_map__get_private(struct bpf_map *map, void **ppriv)
1355{
1356 if (!map)
1357 return -EINVAL;
1358
1359 if (ppriv)
1360 *ppriv = map->priv;
1361 return 0;
1362}
1363
1364struct bpf_map *
1365bpf_map__next(struct bpf_map *prev, struct bpf_object *obj)
1366{
1367 size_t idx;
1368 struct bpf_map *s, *e;
1369
1370 if (!obj || !obj->maps)
1371 return NULL;
1372
1373 s = obj->maps;
1374 e = obj->maps + obj->nr_maps;
1375
1376 if (prev == NULL)
1377 return s;
1378
1379 if ((prev < s) || (prev >= e)) {
1380 pr_warning("error in %s: map handler doesn't belong to object\n",
1381 __func__);
1382 return NULL;
1383 }
1384
1385 idx = (prev - obj->maps) + 1;
1386 if (idx >= obj->nr_maps)
1387 return NULL;
1388 return &obj->maps[idx];
1389}
1390
1391struct bpf_map *
1392bpf_object__get_map_by_name(struct bpf_object *obj, const char *name)
1393{
1394 struct bpf_map *pos;
1395
1396 bpf_map__for_each(pos, obj) {
1397 if (pos->name && !strcmp(pos->name, name))
1398 return pos;
1399 }
1400 return NULL;
1401}