Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for DBRI sound chip found on Sparcs.
   4 * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
   5 *
   6 * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
   7 *
   8 * Based entirely upon drivers/sbus/audio/dbri.c which is:
   9 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
  10 * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
  11 *
  12 * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
  13 * on Sun SPARCStation 10, 20, LX and Voyager models.
  14 *
  15 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
  16 *   data time multiplexer with ISDN support (aka T7259)
  17 *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
  18 *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
  19 *   Documentation:
  20 *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
  21 *     Sparc Technology Business (courtesy of Sun Support)
  22 *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
  23 *     available from the Lucent (formerly AT&T microelectronics) home
  24 *     page.
  25 *   - https://www.freesoft.org/Linux/DBRI/
  26 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
  27 *   Interfaces: CHI, Audio In & Out, 2 bits parallel
  28 *   Documentation: from the Crystal Semiconductor home page.
  29 *
  30 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
  31 * memory and a serial device (long pipes, no. 0-15) or between two serial
  32 * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
  33 * device (short pipes).
  34 * A timeslot defines the bit-offset and no. of bits read from a serial device.
  35 * The timeslots are linked to 6 circular lists, one for each direction for
  36 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
  37 * (the second one is a monitor/tee pipe, valid only for serial input).
  38 *
  39 * The mmcodec is connected via the CHI bus and needs the data & some
  40 * parameters (volume, output selection) time multiplexed in 8 byte
  41 * chunks. It also has a control mode, which serves for audio format setting.
  42 *
  43 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
  44 * the same CHI bus, so I thought perhaps it is possible to use the on-board
  45 * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
  46 * audio devices. But the SUN HW group decided against it, at least on my
  47 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
  48 * connected.
  49 *
  50 * I've tried to stick to the following function naming conventions:
  51 * snd_*	ALSA stuff
  52 * cs4215_*	CS4215 codec specific stuff
  53 * dbri_*	DBRI high-level stuff
  54 * other	DBRI low-level stuff
  55 */
  56
  57#include <linux/interrupt.h>
  58#include <linux/delay.h>
  59#include <linux/irq.h>
  60#include <linux/io.h>
  61#include <linux/dma-mapping.h>
  62#include <linux/gfp.h>
  63
  64#include <sound/core.h>
  65#include <sound/pcm.h>
  66#include <sound/pcm_params.h>
  67#include <sound/info.h>
  68#include <sound/control.h>
  69#include <sound/initval.h>
  70
  71#include <linux/of.h>
  72#include <linux/of_device.h>
  73#include <linux/atomic.h>
  74#include <linux/module.h>
  75
  76MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
  77MODULE_DESCRIPTION("Sun DBRI");
  78MODULE_LICENSE("GPL");
 
  79
  80static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
  81static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
  82/* Enable this card */
  83static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
  84
  85module_param_array(index, int, NULL, 0444);
  86MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
  87module_param_array(id, charp, NULL, 0444);
  88MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
  89module_param_array(enable, bool, NULL, 0444);
  90MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
  91
  92#undef DBRI_DEBUG
  93
  94#define D_INT	(1<<0)
  95#define D_GEN	(1<<1)
  96#define D_CMD	(1<<2)
  97#define D_MM	(1<<3)
  98#define D_USR	(1<<4)
  99#define D_DESC	(1<<5)
 100
 101static int dbri_debug;
 102module_param(dbri_debug, int, 0644);
 103MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
 104
 105#ifdef DBRI_DEBUG
 106static const char * const cmds[] = {
 107	"WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
 108	"SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
 109};
 110
 111#define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
 112
 113#else
 114#define dprintk(a, x...) do { } while (0)
 115
 116#endif				/* DBRI_DEBUG */
 117
 118#define DBRI_CMD(cmd, intr, value) ((cmd << 28) |	\
 119				    (intr << 27) |	\
 120				    value)
 121
 122/***************************************************************************
 123	CS4215 specific definitions and structures
 124****************************************************************************/
 125
 126struct cs4215 {
 127	__u8 data[4];		/* Data mode: Time slots 5-8 */
 128	__u8 ctrl[4];		/* Ctrl mode: Time slots 1-4 */
 129	__u8 onboard;
 130	__u8 offset;		/* Bit offset from frame sync to time slot 1 */
 131	volatile __u32 status;
 132	volatile __u32 version;
 133	__u8 precision;		/* In bits, either 8 or 16 */
 134	__u8 channels;		/* 1 or 2 */
 135};
 136
 137/*
 138 * Control mode first
 139 */
 140
 141/* Time Slot 1, Status register */
 142#define CS4215_CLB	(1<<2)	/* Control Latch Bit */
 143#define CS4215_OLB	(1<<3)	/* 1: line: 2.0V, speaker 4V */
 144				/* 0: line: 2.8V, speaker 8V */
 145#define CS4215_MLB	(1<<4)	/* 1: Microphone: 20dB gain disabled */
 146#define CS4215_RSRVD_1  (1<<5)
 147
 148/* Time Slot 2, Data Format Register */
 149#define CS4215_DFR_LINEAR16	0
 150#define CS4215_DFR_ULAW		1
 151#define CS4215_DFR_ALAW		2
 152#define CS4215_DFR_LINEAR8	3
 153#define CS4215_DFR_STEREO	(1<<2)
 154static struct {
 155	unsigned short freq;
 156	unsigned char xtal;
 157	unsigned char csval;
 158} CS4215_FREQ[] = {
 159	{  8000, (1 << 4), (0 << 3) },
 160	{ 16000, (1 << 4), (1 << 3) },
 161	{ 27429, (1 << 4), (2 << 3) },	/* Actually 24428.57 */
 162	{ 32000, (1 << 4), (3 << 3) },
 163     /* {    NA, (1 << 4), (4 << 3) }, */
 164     /* {    NA, (1 << 4), (5 << 3) }, */
 165	{ 48000, (1 << 4), (6 << 3) },
 166	{  9600, (1 << 4), (7 << 3) },
 167	{  5512, (2 << 4), (0 << 3) },	/* Actually 5512.5 */
 168	{ 11025, (2 << 4), (1 << 3) },
 169	{ 18900, (2 << 4), (2 << 3) },
 170	{ 22050, (2 << 4), (3 << 3) },
 171	{ 37800, (2 << 4), (4 << 3) },
 172	{ 44100, (2 << 4), (5 << 3) },
 173	{ 33075, (2 << 4), (6 << 3) },
 174	{  6615, (2 << 4), (7 << 3) },
 175	{ 0, 0, 0}
 176};
 177
 178#define CS4215_HPF	(1<<7)	/* High Pass Filter, 1: Enabled */
 179
 180#define CS4215_12_MASK	0xfcbf	/* Mask off reserved bits in slot 1 & 2 */
 181
 182/* Time Slot 3, Serial Port Control register */
 183#define CS4215_XEN	(1<<0)	/* 0: Enable serial output */
 184#define CS4215_XCLK	(1<<1)	/* 1: Master mode: Generate SCLK */
 185#define CS4215_BSEL_64	(0<<2)	/* Bitrate: 64 bits per frame */
 186#define CS4215_BSEL_128	(1<<2)
 187#define CS4215_BSEL_256	(2<<2)
 188#define CS4215_MCK_MAST (0<<4)	/* Master clock */
 189#define CS4215_MCK_XTL1 (1<<4)	/* 24.576 MHz clock source */
 190#define CS4215_MCK_XTL2 (2<<4)	/* 16.9344 MHz clock source */
 191#define CS4215_MCK_CLK1 (3<<4)	/* Clockin, 256 x Fs */
 192#define CS4215_MCK_CLK2 (4<<4)	/* Clockin, see DFR */
 193
 194/* Time Slot 4, Test Register */
 195#define CS4215_DAD	(1<<0)	/* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
 196#define CS4215_ENL	(1<<1)	/* Enable Loopback Testing */
 197
 198/* Time Slot 5, Parallel Port Register */
 199/* Read only here and the same as the in data mode */
 200
 201/* Time Slot 6, Reserved  */
 202
 203/* Time Slot 7, Version Register  */
 204#define CS4215_VERSION_MASK 0xf	/* Known versions 0/C, 1/D, 2/E */
 205
 206/* Time Slot 8, Reserved  */
 207
 208/*
 209 * Data mode
 210 */
 211/* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
 212
 213/* Time Slot 5, Output Setting  */
 214#define CS4215_LO(v)	v	/* Left Output Attenuation 0x3f: -94.5 dB */
 215#define CS4215_LE	(1<<6)	/* Line Out Enable */
 216#define CS4215_HE	(1<<7)	/* Headphone Enable */
 217
 218/* Time Slot 6, Output Setting  */
 219#define CS4215_RO(v)	v	/* Right Output Attenuation 0x3f: -94.5 dB */
 220#define CS4215_SE	(1<<6)	/* Speaker Enable */
 221#define CS4215_ADI	(1<<7)	/* A/D Data Invalid: Busy in calibration */
 222
 223/* Time Slot 7, Input Setting */
 224#define CS4215_LG(v)	v	/* Left Gain Setting 0xf: 22.5 dB */
 225#define CS4215_IS	(1<<4)	/* Input Select: 1=Microphone, 0=Line */
 226#define CS4215_OVR	(1<<5)	/* 1: Over range condition occurred */
 227#define CS4215_PIO0	(1<<6)	/* Parallel I/O 0 */
 228#define CS4215_PIO1	(1<<7)
 229
 230/* Time Slot 8, Input Setting */
 231#define CS4215_RG(v)	v	/* Right Gain Setting 0xf: 22.5 dB */
 232#define CS4215_MA(v)	(v<<4)	/* Monitor Path Attenuation 0xf: mute */
 233
 234/***************************************************************************
 235		DBRI specific definitions and structures
 236****************************************************************************/
 237
 238/* DBRI main registers */
 239#define REG0	0x00		/* Status and Control */
 240#define REG1	0x04		/* Mode and Interrupt */
 241#define REG2	0x08		/* Parallel IO */
 242#define REG3	0x0c		/* Test */
 243#define REG8	0x20		/* Command Queue Pointer */
 244#define REG9	0x24		/* Interrupt Queue Pointer */
 245
 246#define DBRI_NO_CMDS	64
 247#define DBRI_INT_BLK	64
 248#define DBRI_NO_DESCS	64
 249#define DBRI_NO_PIPES	32
 250#define DBRI_MAX_PIPE	(DBRI_NO_PIPES - 1)
 251
 252#define DBRI_REC	0
 253#define DBRI_PLAY	1
 254#define DBRI_NO_STREAMS	2
 255
 256/* One transmit/receive descriptor */
 257/* When ba != 0 descriptor is used */
 258struct dbri_mem {
 259	volatile __u32 word1;
 260	__u32 ba;	/* Transmit/Receive Buffer Address */
 261	__u32 nda;	/* Next Descriptor Address */
 262	volatile __u32 word4;
 263};
 264
 265/* This structure is in a DMA region where it can accessed by both
 266 * the CPU and the DBRI
 267 */
 268struct dbri_dma {
 269	s32 cmd[DBRI_NO_CMDS];			/* Place for commands */
 270	volatile s32 intr[DBRI_INT_BLK];	/* Interrupt field  */
 271	struct dbri_mem desc[DBRI_NO_DESCS];	/* Xmit/receive descriptors */
 272};
 273
 274#define dbri_dma_off(member, elem)	\
 275	((u32)(unsigned long)		\
 276	 (&(((struct dbri_dma *)0)->member[elem])))
 277
 278enum in_or_out { PIPEinput, PIPEoutput };
 279
 280struct dbri_pipe {
 281	u32 sdp;		/* SDP command word */
 282	int nextpipe;		/* Next pipe in linked list */
 283	int length;		/* Length of timeslot (bits) */
 284	int first_desc;		/* Index of first descriptor */
 285	int desc;		/* Index of active descriptor */
 286	volatile __u32 *recv_fixed_ptr;	/* Ptr to receive fixed data */
 287};
 288
 289/* Per stream (playback or record) information */
 290struct dbri_streaminfo {
 291	struct snd_pcm_substream *substream;
 292	u32 dvma_buffer;	/* Device view of ALSA DMA buffer */
 293	int size;		/* Size of DMA buffer             */
 294	size_t offset;		/* offset in user buffer          */
 295	int pipe;		/* Data pipe used                 */
 296	int left_gain;		/* mixer elements                 */
 297	int right_gain;
 298};
 299
 300/* This structure holds the information for both chips (DBRI & CS4215) */
 301struct snd_dbri {
 302	int regs_size, irq;	/* Needed for unload */
 303	struct platform_device *op;	/* OF device info */
 304	spinlock_t lock;
 305
 306	struct dbri_dma *dma;	/* Pointer to our DMA block */
 307	dma_addr_t dma_dvma;	/* DBRI visible DMA address */
 308
 309	void __iomem *regs;	/* dbri HW regs */
 310	int dbri_irqp;		/* intr queue pointer */
 311
 312	struct dbri_pipe pipes[DBRI_NO_PIPES];	/* DBRI's 32 data pipes */
 313	int next_desc[DBRI_NO_DESCS];		/* Index of next desc, or -1 */
 314	spinlock_t cmdlock;	/* Protects cmd queue accesses */
 315	s32 *cmdptr;		/* Pointer to the last queued cmd */
 316
 317	int chi_bpf;
 318
 319	struct cs4215 mm;	/* mmcodec special info */
 320				/* per stream (playback/record) info */
 321	struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
 322};
 323
 324#define DBRI_MAX_VOLUME		63	/* Output volume */
 325#define DBRI_MAX_GAIN		15	/* Input gain */
 326
 327/* DBRI Reg0 - Status Control Register - defines. (Page 17) */
 328#define D_P		(1<<15)	/* Program command & queue pointer valid */
 329#define D_G		(1<<14)	/* Allow 4-Word SBus Burst */
 330#define D_S		(1<<13)	/* Allow 16-Word SBus Burst */
 331#define D_E		(1<<12)	/* Allow 8-Word SBus Burst */
 332#define D_X		(1<<7)	/* Sanity Timer Disable */
 333#define D_T		(1<<6)	/* Permit activation of the TE interface */
 334#define D_N		(1<<5)	/* Permit activation of the NT interface */
 335#define D_C		(1<<4)	/* Permit activation of the CHI interface */
 336#define D_F		(1<<3)	/* Force Sanity Timer Time-Out */
 337#define D_D		(1<<2)	/* Disable Master Mode */
 338#define D_H		(1<<1)	/* Halt for Analysis */
 339#define D_R		(1<<0)	/* Soft Reset */
 340
 341/* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
 342#define D_LITTLE_END	(1<<8)	/* Byte Order */
 343#define D_BIG_END	(0<<8)	/* Byte Order */
 344#define D_MRR		(1<<4)	/* Multiple Error Ack on SBus (read only) */
 345#define D_MLE		(1<<3)	/* Multiple Late Error on SBus (read only) */
 346#define D_LBG		(1<<2)	/* Lost Bus Grant on SBus (read only) */
 347#define D_MBE		(1<<1)	/* Burst Error on SBus (read only) */
 348#define D_IR		(1<<0)	/* Interrupt Indicator (read only) */
 349
 350/* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
 351#define D_ENPIO3	(1<<7)	/* Enable Pin 3 */
 352#define D_ENPIO2	(1<<6)	/* Enable Pin 2 */
 353#define D_ENPIO1	(1<<5)	/* Enable Pin 1 */
 354#define D_ENPIO0	(1<<4)	/* Enable Pin 0 */
 355#define D_ENPIO		(0xf0)	/* Enable all the pins */
 356#define D_PIO3		(1<<3)	/* Pin 3: 1: Data mode, 0: Ctrl mode */
 357#define D_PIO2		(1<<2)	/* Pin 2: 1: Onboard PDN */
 358#define D_PIO1		(1<<1)	/* Pin 1: 0: Reset */
 359#define D_PIO0		(1<<0)	/* Pin 0: 1: Speakerbox PDN */
 360
 361/* DBRI Commands (Page 20) */
 362#define D_WAIT		0x0	/* Stop execution */
 363#define D_PAUSE		0x1	/* Flush long pipes */
 364#define D_JUMP		0x2	/* New command queue */
 365#define D_IIQ		0x3	/* Initialize Interrupt Queue */
 366#define D_REX		0x4	/* Report command execution via interrupt */
 367#define D_SDP		0x5	/* Setup Data Pipe */
 368#define D_CDP		0x6	/* Continue Data Pipe (reread NULL Pointer) */
 369#define D_DTS		0x7	/* Define Time Slot */
 370#define D_SSP		0x8	/* Set short Data Pipe */
 371#define D_CHI		0x9	/* Set CHI Global Mode */
 372#define D_NT		0xa	/* NT Command */
 373#define D_TE		0xb	/* TE Command */
 374#define D_CDEC		0xc	/* Codec setup */
 375#define D_TEST		0xd	/* No comment */
 376#define D_CDM		0xe	/* CHI Data mode command */
 377
 378/* Special bits for some commands */
 379#define D_PIPE(v)      ((v)<<0)	/* Pipe No.: 0-15 long, 16-21 short */
 380
 381/* Setup Data Pipe */
 382/* IRM */
 383#define D_SDP_2SAME	(1<<18)	/* Report 2nd time in a row value received */
 384#define D_SDP_CHANGE	(2<<18)	/* Report any changes */
 385#define D_SDP_EVERY	(3<<18)	/* Report any changes */
 386#define D_SDP_EOL	(1<<17)	/* EOL interrupt enable */
 387#define D_SDP_IDLE	(1<<16)	/* HDLC idle interrupt enable */
 388
 389/* Pipe data MODE */
 390#define D_SDP_MEM	(0<<13)	/* To/from memory */
 391#define D_SDP_HDLC	(2<<13)
 392#define D_SDP_HDLC_D	(3<<13)	/* D Channel (prio control) */
 393#define D_SDP_SER	(4<<13)	/* Serial to serial */
 394#define D_SDP_FIXED	(6<<13)	/* Short only */
 395#define D_SDP_MODE(v)	((v)&(7<<13))
 396
 397#define D_SDP_TO_SER	(1<<12)	/* Direction */
 398#define D_SDP_FROM_SER	(0<<12)	/* Direction */
 399#define D_SDP_MSB	(1<<11)	/* Bit order within Byte */
 400#define D_SDP_LSB	(0<<11)	/* Bit order within Byte */
 401#define D_SDP_P		(1<<10)	/* Pointer Valid */
 402#define D_SDP_A		(1<<8)	/* Abort */
 403#define D_SDP_C		(1<<7)	/* Clear */
 404
 405/* Define Time Slot */
 406#define D_DTS_VI	(1<<17)	/* Valid Input Time-Slot Descriptor */
 407#define D_DTS_VO	(1<<16)	/* Valid Output Time-Slot Descriptor */
 408#define D_DTS_INS	(1<<15)	/* Insert Time Slot */
 409#define D_DTS_DEL	(0<<15)	/* Delete Time Slot */
 410#define D_DTS_PRVIN(v) ((v)<<10)	/* Previous In Pipe */
 411#define D_DTS_PRVOUT(v)        ((v)<<5)	/* Previous Out Pipe */
 412
 413/* Time Slot defines */
 414#define D_TS_LEN(v)	((v)<<24)	/* Number of bits in this time slot */
 415#define D_TS_CYCLE(v)	((v)<<14)	/* Bit Count at start of TS */
 416#define D_TS_DI		(1<<13)	/* Data Invert */
 417#define D_TS_1CHANNEL	(0<<10)	/* Single Channel / Normal mode */
 418#define D_TS_MONITOR	(2<<10)	/* Monitor pipe */
 419#define D_TS_NONCONTIG	(3<<10)	/* Non contiguous mode */
 420#define D_TS_ANCHOR	(7<<10)	/* Starting short pipes */
 421#define D_TS_MON(v)    ((v)<<5)	/* Monitor Pipe */
 422#define D_TS_NEXT(v)   ((v)<<0)	/* Pipe no.: 0-15 long, 16-21 short */
 423
 424/* Concentration Highway Interface Modes */
 425#define D_CHI_CHICM(v)	((v)<<16)	/* Clock mode */
 426#define D_CHI_IR	(1<<15)	/* Immediate Interrupt Report */
 427#define D_CHI_EN	(1<<14)	/* CHIL Interrupt enabled */
 428#define D_CHI_OD	(1<<13)	/* Open Drain Enable */
 429#define D_CHI_FE	(1<<12)	/* Sample CHIFS on Rising Frame Edge */
 430#define D_CHI_FD	(1<<11)	/* Frame Drive */
 431#define D_CHI_BPF(v)	((v)<<0)	/* Bits per Frame */
 432
 433/* NT: These are here for completeness */
 434#define D_NT_FBIT	(1<<17)	/* Frame Bit */
 435#define D_NT_NBF	(1<<16)	/* Number of bad frames to loose framing */
 436#define D_NT_IRM_IMM	(1<<15)	/* Interrupt Report & Mask: Immediate */
 437#define D_NT_IRM_EN	(1<<14)	/* Interrupt Report & Mask: Enable */
 438#define D_NT_ISNT	(1<<13)	/* Configure interface as NT */
 439#define D_NT_FT		(1<<12)	/* Fixed Timing */
 440#define D_NT_EZ		(1<<11)	/* Echo Channel is Zeros */
 441#define D_NT_IFA	(1<<10)	/* Inhibit Final Activation */
 442#define D_NT_ACT	(1<<9)	/* Activate Interface */
 443#define D_NT_MFE	(1<<8)	/* Multiframe Enable */
 444#define D_NT_RLB(v)	((v)<<5)	/* Remote Loopback */
 445#define D_NT_LLB(v)	((v)<<2)	/* Local Loopback */
 446#define D_NT_FACT	(1<<1)	/* Force Activation */
 447#define D_NT_ABV	(1<<0)	/* Activate Bipolar Violation */
 448
 449/* Codec Setup */
 450#define D_CDEC_CK(v)	((v)<<24)	/* Clock Select */
 451#define D_CDEC_FED(v)	((v)<<12)	/* FSCOD Falling Edge Delay */
 452#define D_CDEC_RED(v)	((v)<<0)	/* FSCOD Rising Edge Delay */
 453
 454/* Test */
 455#define D_TEST_RAM(v)	((v)<<16)	/* RAM Pointer */
 456#define D_TEST_SIZE(v)	((v)<<11)	/* */
 457#define D_TEST_ROMONOFF	0x5	/* Toggle ROM opcode monitor on/off */
 458#define D_TEST_PROC	0x6	/* Microprocessor test */
 459#define D_TEST_SER	0x7	/* Serial-Controller test */
 460#define D_TEST_RAMREAD	0x8	/* Copy from Ram to system memory */
 461#define D_TEST_RAMWRITE	0x9	/* Copy into Ram from system memory */
 462#define D_TEST_RAMBIST	0xa	/* RAM Built-In Self Test */
 463#define D_TEST_MCBIST	0xb	/* Microcontroller Built-In Self Test */
 464#define D_TEST_DUMP	0xe	/* ROM Dump */
 465
 466/* CHI Data Mode */
 467#define D_CDM_THI	(1 << 8)	/* Transmit Data on CHIDR Pin */
 468#define D_CDM_RHI	(1 << 7)	/* Receive Data on CHIDX Pin */
 469#define D_CDM_RCE	(1 << 6)	/* Receive on Rising Edge of CHICK */
 470#define D_CDM_XCE	(1 << 2) /* Transmit Data on Rising Edge of CHICK */
 471#define D_CDM_XEN	(1 << 1)	/* Transmit Highway Enable */
 472#define D_CDM_REN	(1 << 0)	/* Receive Highway Enable */
 473
 474/* The Interrupts */
 475#define D_INTR_BRDY	1	/* Buffer Ready for processing */
 476#define D_INTR_MINT	2	/* Marked Interrupt in RD/TD */
 477#define D_INTR_IBEG	3	/* Flag to idle transition detected (HDLC) */
 478#define D_INTR_IEND	4	/* Idle to flag transition detected (HDLC) */
 479#define D_INTR_EOL	5	/* End of List */
 480#define D_INTR_CMDI	6	/* Command has bean read */
 481#define D_INTR_XCMP	8	/* Transmission of frame complete */
 482#define D_INTR_SBRI	9	/* BRI status change info */
 483#define D_INTR_FXDT	10	/* Fixed data change */
 484#define D_INTR_CHIL	11	/* CHI lost frame sync (channel 36 only) */
 485#define D_INTR_COLL	11	/* Unrecoverable D-Channel collision */
 486#define D_INTR_DBYT	12	/* Dropped by frame slip */
 487#define D_INTR_RBYT	13	/* Repeated by frame slip */
 488#define D_INTR_LINT	14	/* Lost Interrupt */
 489#define D_INTR_UNDR	15	/* DMA underrun */
 490
 491#define D_INTR_TE	32
 492#define D_INTR_NT	34
 493#define D_INTR_CHI	36
 494#define D_INTR_CMD	38
 495
 496#define D_INTR_GETCHAN(v)	(((v) >> 24) & 0x3f)
 497#define D_INTR_GETCODE(v)	(((v) >> 20) & 0xf)
 498#define D_INTR_GETCMD(v)	(((v) >> 16) & 0xf)
 499#define D_INTR_GETVAL(v)	((v) & 0xffff)
 500#define D_INTR_GETRVAL(v)	((v) & 0xfffff)
 501
 502#define D_P_0		0	/* TE receive anchor */
 503#define D_P_1		1	/* TE transmit anchor */
 504#define D_P_2		2	/* NT transmit anchor */
 505#define D_P_3		3	/* NT receive anchor */
 506#define D_P_4		4	/* CHI send data */
 507#define D_P_5		5	/* CHI receive data */
 508#define D_P_6		6	/* */
 509#define D_P_7		7	/* */
 510#define D_P_8		8	/* */
 511#define D_P_9		9	/* */
 512#define D_P_10		10	/* */
 513#define D_P_11		11	/* */
 514#define D_P_12		12	/* */
 515#define D_P_13		13	/* */
 516#define D_P_14		14	/* */
 517#define D_P_15		15	/* */
 518#define D_P_16		16	/* CHI anchor pipe */
 519#define D_P_17		17	/* CHI send */
 520#define D_P_18		18	/* CHI receive */
 521#define D_P_19		19	/* CHI receive */
 522#define D_P_20		20	/* CHI receive */
 523#define D_P_21		21	/* */
 524#define D_P_22		22	/* */
 525#define D_P_23		23	/* */
 526#define D_P_24		24	/* */
 527#define D_P_25		25	/* */
 528#define D_P_26		26	/* */
 529#define D_P_27		27	/* */
 530#define D_P_28		28	/* */
 531#define D_P_29		29	/* */
 532#define D_P_30		30	/* */
 533#define D_P_31		31	/* */
 534
 535/* Transmit descriptor defines */
 536#define DBRI_TD_F	(1 << 31)	/* End of Frame */
 537#define DBRI_TD_D	(1 << 30)	/* Do not append CRC */
 538#define DBRI_TD_CNT(v)	((v) << 16) /* Number of valid bytes in the buffer */
 539#define DBRI_TD_B	(1 << 15)	/* Final interrupt */
 540#define DBRI_TD_M	(1 << 14)	/* Marker interrupt */
 541#define DBRI_TD_I	(1 << 13)	/* Transmit Idle Characters */
 542#define DBRI_TD_FCNT(v)	(v)		/* Flag Count */
 543#define DBRI_TD_UNR	(1 << 3) /* Underrun: transmitter is out of data */
 544#define DBRI_TD_ABT	(1 << 2)	/* Abort: frame aborted */
 545#define DBRI_TD_TBC	(1 << 0)	/* Transmit buffer Complete */
 546#define DBRI_TD_STATUS(v)       ((v) & 0xff)	/* Transmit status */
 547			/* Maximum buffer size per TD: almost 8KB */
 548#define DBRI_TD_MAXCNT	((1 << 13) - 4)
 549
 550/* Receive descriptor defines */
 551#define DBRI_RD_F	(1 << 31)	/* End of Frame */
 552#define DBRI_RD_C	(1 << 30)	/* Completed buffer */
 553#define DBRI_RD_B	(1 << 15)	/* Final interrupt */
 554#define DBRI_RD_M	(1 << 14)	/* Marker interrupt */
 555#define DBRI_RD_BCNT(v)	(v)		/* Buffer size */
 556#define DBRI_RD_CRC	(1 << 7)	/* 0: CRC is correct */
 557#define DBRI_RD_BBC	(1 << 6)	/* 1: Bad Byte received */
 558#define DBRI_RD_ABT	(1 << 5)	/* Abort: frame aborted */
 559#define DBRI_RD_OVRN	(1 << 3)	/* Overrun: data lost */
 560#define DBRI_RD_STATUS(v)      ((v) & 0xff)	/* Receive status */
 561#define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)	/* Valid bytes in the buffer */
 562
 563/* stream_info[] access */
 564/* Translate the ALSA direction into the array index */
 565#define DBRI_STREAMNO(substream)				\
 566		(substream->stream ==				\
 567		 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
 568
 569/* Return a pointer to dbri_streaminfo */
 570#define DBRI_STREAM(dbri, substream)	\
 571		&dbri->stream_info[DBRI_STREAMNO(substream)]
 572
 573/*
 574 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
 575 * So we have to reverse the bits. Note: not all bit lengths are supported
 576 */
 577static __u32 reverse_bytes(__u32 b, int len)
 578{
 579	switch (len) {
 580	case 32:
 581		b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
 582		fallthrough;
 583	case 16:
 584		b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
 585		fallthrough;
 586	case 8:
 587		b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
 588		fallthrough;
 589	case 4:
 590		b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
 591		fallthrough;
 592	case 2:
 593		b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
 594	case 1:
 595	case 0:
 596		break;
 597	default:
 598		printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
 599	}
 600
 601	return b;
 602}
 603
 604/*
 605****************************************************************************
 606************** DBRI initialization and command synchronization *************
 607****************************************************************************
 608
 609Commands are sent to the DBRI by building a list of them in memory,
 610then writing the address of the first list item to DBRI register 8.
 611The list is terminated with a WAIT command, which generates a
 612CPU interrupt to signal completion.
 613
 614Since the DBRI can run in parallel with the CPU, several means of
 615synchronization present themselves. The method implemented here uses
 616the dbri_cmdwait() to wait for execution of batch of sent commands.
 617
 618A circular command buffer is used here. A new command is being added
 619while another can be executed. The scheme works by adding two WAIT commands
 620after each sent batch of commands. When the next batch is prepared it is
 621added after the WAIT commands then the WAITs are replaced with single JUMP
 622command to the new batch. Then the DBRI is forced to reread the last WAIT
 623command (replaced by the JUMP by then). If the DBRI is still executing
 624previous commands the request to reread the WAIT command is ignored.
 625
 626Every time a routine wants to write commands to the DBRI, it must
 627first call dbri_cmdlock() and get pointer to a free space in
 628dbri->dma->cmd buffer. After this, the commands can be written to
 629the buffer, and dbri_cmdsend() is called with the final pointer value
 630to send them to the DBRI.
 631
 632*/
 633
 634#define MAXLOOPS 20
 635/*
 636 * Wait for the current command string to execute
 637 */
 638static void dbri_cmdwait(struct snd_dbri *dbri)
 639{
 640	int maxloops = MAXLOOPS;
 641	unsigned long flags;
 642
 643	/* Delay if previous commands are still being processed */
 644	spin_lock_irqsave(&dbri->lock, flags);
 645	while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
 646		spin_unlock_irqrestore(&dbri->lock, flags);
 647		msleep_interruptible(1);
 648		spin_lock_irqsave(&dbri->lock, flags);
 649	}
 650	spin_unlock_irqrestore(&dbri->lock, flags);
 651
 652	if (maxloops == 0)
 653		printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
 654	else
 655		dprintk(D_CMD, "Chip completed command buffer (%d)\n",
 656			MAXLOOPS - maxloops - 1);
 657}
 658/*
 659 * Lock the command queue and return pointer to space for len cmd words
 660 * It locks the cmdlock spinlock.
 661 */
 662static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
 663{
 664	u32 dvma_addr = (u32)dbri->dma_dvma;
 665
 666	/* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
 667	len += 2;
 668	spin_lock(&dbri->cmdlock);
 669	if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
 670		return dbri->cmdptr + 2;
 671	else if (len < sbus_readl(dbri->regs + REG8) - dvma_addr)
 672		return dbri->dma->cmd;
 673	else
 674		printk(KERN_ERR "DBRI: no space for commands.");
 675
 676	return NULL;
 677}
 678
 679/*
 680 * Send prepared cmd string. It works by writing a JUMP cmd into
 681 * the last WAIT cmd and force DBRI to reread the cmd.
 682 * The JUMP cmd points to the new cmd string.
 683 * It also releases the cmdlock spinlock.
 684 *
 685 * Lock must be held before calling this.
 686 */
 687static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
 688{
 689	u32 dvma_addr = (u32)dbri->dma_dvma;
 690	s32 tmp, addr;
 691	static int wait_id;
 692
 693	wait_id++;
 694	wait_id &= 0xffff;	/* restrict it to a 16 bit counter. */
 695	*(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
 696	*(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
 697
 698	/* Replace the last command with JUMP */
 699	addr = dvma_addr + (cmd - len - dbri->dma->cmd) * sizeof(s32);
 700	*(dbri->cmdptr+1) = addr;
 701	*(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
 702
 703#ifdef DBRI_DEBUG
 704	if (cmd > dbri->cmdptr) {
 705		s32 *ptr;
 706
 707		for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
 708			dprintk(D_CMD, "cmd: %lx:%08x\n",
 709				(unsigned long)ptr, *ptr);
 710	} else {
 711		s32 *ptr = dbri->cmdptr;
 712
 713		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
 714		ptr++;
 715		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
 716		for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
 717			dprintk(D_CMD, "cmd: %lx:%08x\n",
 718				(unsigned long)ptr, *ptr);
 719	}
 720#endif
 721
 722	/* Reread the last command */
 723	tmp = sbus_readl(dbri->regs + REG0);
 724	tmp |= D_P;
 725	sbus_writel(tmp, dbri->regs + REG0);
 726
 727	dbri->cmdptr = cmd;
 728	spin_unlock(&dbri->cmdlock);
 729}
 730
 731/* Lock must be held when calling this */
 732static void dbri_reset(struct snd_dbri *dbri)
 733{
 734	int i;
 735	u32 tmp;
 736
 737	dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
 738		sbus_readl(dbri->regs + REG0),
 739		sbus_readl(dbri->regs + REG2),
 740		sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
 741
 742	sbus_writel(D_R, dbri->regs + REG0);	/* Soft Reset */
 743	for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
 744		udelay(10);
 745
 746	/* A brute approach - DBRI falls back to working burst size by itself
 747	 * On SS20 D_S does not work, so do not try so high. */
 748	tmp = sbus_readl(dbri->regs + REG0);
 749	tmp |= D_G | D_E;
 750	tmp &= ~D_S;
 751	sbus_writel(tmp, dbri->regs + REG0);
 752}
 753
 754/* Lock must not be held before calling this */
 755static void dbri_initialize(struct snd_dbri *dbri)
 756{
 757	u32 dvma_addr = (u32)dbri->dma_dvma;
 758	s32 *cmd;
 759	u32 dma_addr;
 760	unsigned long flags;
 761	int n;
 762
 763	spin_lock_irqsave(&dbri->lock, flags);
 764
 765	dbri_reset(dbri);
 766
 767	/* Initialize pipes */
 768	for (n = 0; n < DBRI_NO_PIPES; n++)
 769		dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
 770
 771	spin_lock_init(&dbri->cmdlock);
 772	/*
 773	 * Initialize the interrupt ring buffer.
 774	 */
 775	dma_addr = dvma_addr + dbri_dma_off(intr, 0);
 776	dbri->dma->intr[0] = dma_addr;
 777	dbri->dbri_irqp = 1;
 778	/*
 779	 * Set up the interrupt queue
 780	 */
 781	spin_lock(&dbri->cmdlock);
 782	cmd = dbri->cmdptr = dbri->dma->cmd;
 783	*(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
 784	*(cmd++) = dma_addr;
 785	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 786	dbri->cmdptr = cmd;
 787	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
 788	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
 789	dma_addr = dvma_addr + dbri_dma_off(cmd, 0);
 790	sbus_writel(dma_addr, dbri->regs + REG8);
 791	spin_unlock(&dbri->cmdlock);
 792
 793	spin_unlock_irqrestore(&dbri->lock, flags);
 794	dbri_cmdwait(dbri);
 795}
 796
 797/*
 798****************************************************************************
 799************************** DBRI data pipe management ***********************
 800****************************************************************************
 801
 802While DBRI control functions use the command and interrupt buffers, the
 803main data path takes the form of data pipes, which can be short (command
 804and interrupt driven), or long (attached to DMA buffers).  These functions
 805provide a rudimentary means of setting up and managing the DBRI's pipes,
 806but the calling functions have to make sure they respect the pipes' linked
 807list ordering, among other things.  The transmit and receive functions
 808here interface closely with the transmit and receive interrupt code.
 809
 810*/
 811static inline int pipe_active(struct snd_dbri *dbri, int pipe)
 812{
 813	return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
 814}
 815
 816/* reset_pipe(dbri, pipe)
 817 *
 818 * Called on an in-use pipe to clear anything being transmitted or received
 819 * Lock must be held before calling this.
 820 */
 821static void reset_pipe(struct snd_dbri *dbri, int pipe)
 822{
 823	int sdp;
 824	int desc;
 825	s32 *cmd;
 826
 827	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
 828		printk(KERN_ERR "DBRI: reset_pipe called with "
 829			"illegal pipe number\n");
 830		return;
 831	}
 832
 833	sdp = dbri->pipes[pipe].sdp;
 834	if (sdp == 0) {
 835		printk(KERN_ERR "DBRI: reset_pipe called "
 836			"on uninitialized pipe\n");
 837		return;
 838	}
 839
 840	cmd = dbri_cmdlock(dbri, 3);
 841	*(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
 842	*(cmd++) = 0;
 843	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 844	dbri_cmdsend(dbri, cmd, 3);
 845
 846	desc = dbri->pipes[pipe].first_desc;
 847	if (desc >= 0)
 848		do {
 849			dbri->dma->desc[desc].ba = 0;
 850			dbri->dma->desc[desc].nda = 0;
 851			desc = dbri->next_desc[desc];
 852		} while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
 853
 854	dbri->pipes[pipe].desc = -1;
 855	dbri->pipes[pipe].first_desc = -1;
 856}
 857
 858/*
 859 * Lock must be held before calling this.
 860 */
 861static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
 862{
 863	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
 864		printk(KERN_ERR "DBRI: setup_pipe called "
 865			"with illegal pipe number\n");
 866		return;
 867	}
 868
 869	if ((sdp & 0xf800) != sdp) {
 870		printk(KERN_ERR "DBRI: setup_pipe called "
 871			"with strange SDP value\n");
 872		/* sdp &= 0xf800; */
 873	}
 874
 875	/* If this is a fixed receive pipe, arrange for an interrupt
 876	 * every time its data changes
 877	 */
 878	if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
 879		sdp |= D_SDP_CHANGE;
 880
 881	sdp |= D_PIPE(pipe);
 882	dbri->pipes[pipe].sdp = sdp;
 883	dbri->pipes[pipe].desc = -1;
 884	dbri->pipes[pipe].first_desc = -1;
 885
 886	reset_pipe(dbri, pipe);
 887}
 888
 889/*
 890 * Lock must be held before calling this.
 891 */
 892static void link_time_slot(struct snd_dbri *dbri, int pipe,
 893			   int prevpipe, int nextpipe,
 894			   int length, int cycle)
 895{
 896	s32 *cmd;
 897	int val;
 898
 899	if (pipe < 0 || pipe > DBRI_MAX_PIPE
 900			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
 901			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
 902		printk(KERN_ERR
 903		    "DBRI: link_time_slot called with illegal pipe number\n");
 904		return;
 905	}
 906
 907	if (dbri->pipes[pipe].sdp == 0
 908			|| dbri->pipes[prevpipe].sdp == 0
 909			|| dbri->pipes[nextpipe].sdp == 0) {
 910		printk(KERN_ERR "DBRI: link_time_slot called "
 911			"on uninitialized pipe\n");
 912		return;
 913	}
 914
 915	dbri->pipes[prevpipe].nextpipe = pipe;
 916	dbri->pipes[pipe].nextpipe = nextpipe;
 917	dbri->pipes[pipe].length = length;
 918
 919	cmd = dbri_cmdlock(dbri, 4);
 920
 921	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
 922		/* Deal with CHI special case:
 923		 * "If transmission on edges 0 or 1 is desired, then cycle n
 924		 *  (where n = # of bit times per frame...) must be used."
 925		 *                  - DBRI data sheet, page 11
 926		 */
 927		if (prevpipe == 16 && cycle == 0)
 928			cycle = dbri->chi_bpf;
 929
 930		val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
 931		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
 932		*(cmd++) = 0;
 933		*(cmd++) =
 934		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
 935	} else {
 936		val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
 937		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
 938		*(cmd++) =
 939		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
 940		*(cmd++) = 0;
 941	}
 942	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 943
 944	dbri_cmdsend(dbri, cmd, 4);
 945}
 946
 947#if 0
 948/*
 949 * Lock must be held before calling this.
 950 */
 951static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
 952			     enum in_or_out direction, int prevpipe,
 953			     int nextpipe)
 954{
 955	s32 *cmd;
 956	int val;
 957
 958	if (pipe < 0 || pipe > DBRI_MAX_PIPE
 959			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
 960			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
 961		printk(KERN_ERR
 962		    "DBRI: unlink_time_slot called with illegal pipe number\n");
 963		return;
 964	}
 965
 966	cmd = dbri_cmdlock(dbri, 4);
 967
 968	if (direction == PIPEinput) {
 969		val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
 970		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
 971		*(cmd++) = D_TS_NEXT(nextpipe);
 972		*(cmd++) = 0;
 973	} else {
 974		val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
 975		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
 976		*(cmd++) = 0;
 977		*(cmd++) = D_TS_NEXT(nextpipe);
 978	}
 979	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 980
 981	dbri_cmdsend(dbri, cmd, 4);
 982}
 983#endif
 984
 985/* xmit_fixed() / recv_fixed()
 986 *
 987 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
 988 * expected to change much, and which we don't need to buffer.
 989 * The DBRI only interrupts us when the data changes (receive pipes),
 990 * or only changes the data when this function is called (transmit pipes).
 991 * Only short pipes (numbers 16-31) can be used in fixed data mode.
 992 *
 993 * These function operate on a 32-bit field, no matter how large
 994 * the actual time slot is.  The interrupt handler takes care of bit
 995 * ordering and alignment.  An 8-bit time slot will always end up
 996 * in the low-order 8 bits, filled either MSB-first or LSB-first,
 997 * depending on the settings passed to setup_pipe().
 998 *
 999 * Lock must not be held before calling it.
1000 */
1001static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
1002{
1003	s32 *cmd;
1004	unsigned long flags;
1005
1006	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1007		printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1008		return;
1009	}
1010
1011	if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1012		printk(KERN_ERR "DBRI: xmit_fixed: "
1013			"Uninitialized pipe %d\n", pipe);
1014		return;
1015	}
1016
1017	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1018		printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1019		return;
1020	}
1021
1022	if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1023		printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1024			pipe);
1025		return;
1026	}
1027
1028	/* DBRI short pipes always transmit LSB first */
1029
1030	if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1031		data = reverse_bytes(data, dbri->pipes[pipe].length);
1032
1033	cmd = dbri_cmdlock(dbri, 3);
1034
1035	*(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1036	*(cmd++) = data;
1037	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1038
1039	spin_lock_irqsave(&dbri->lock, flags);
1040	dbri_cmdsend(dbri, cmd, 3);
1041	spin_unlock_irqrestore(&dbri->lock, flags);
1042	dbri_cmdwait(dbri);
1043
1044}
1045
1046static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1047{
1048	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1049		printk(KERN_ERR "DBRI: recv_fixed called with "
1050			"illegal pipe number\n");
1051		return;
1052	}
1053
1054	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1055		printk(KERN_ERR "DBRI: recv_fixed called on "
1056			"non-fixed pipe %d\n", pipe);
1057		return;
1058	}
1059
1060	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1061		printk(KERN_ERR "DBRI: recv_fixed called on "
1062			"transmit pipe %d\n", pipe);
1063		return;
1064	}
1065
1066	dbri->pipes[pipe].recv_fixed_ptr = ptr;
1067}
1068
1069/* setup_descs()
1070 *
1071 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1072 * with a DMA buffer.
1073 *
1074 * Only pipe numbers 0-15 can be used in this mode.
1075 *
1076 * This function takes a stream number pointing to a data buffer,
1077 * and work by building chains of descriptors which identify the
1078 * data buffers.  Buffers too large for a single descriptor will
1079 * be spread across multiple descriptors.
1080 *
1081 * All descriptors create a ring buffer.
1082 *
1083 * Lock must be held before calling this.
1084 */
1085static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1086{
1087	struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1088	u32 dvma_addr = (u32)dbri->dma_dvma;
1089	__u32 dvma_buffer;
1090	int desc;
1091	int len;
1092	int first_desc = -1;
1093	int last_desc = -1;
1094
1095	if (info->pipe < 0 || info->pipe > 15) {
1096		printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1097		return -2;
1098	}
1099
1100	if (dbri->pipes[info->pipe].sdp == 0) {
1101		printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1102		       info->pipe);
1103		return -2;
1104	}
1105
1106	dvma_buffer = info->dvma_buffer;
1107	len = info->size;
1108
1109	if (streamno == DBRI_PLAY) {
1110		if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1111			printk(KERN_ERR "DBRI: setup_descs: "
1112				"Called on receive pipe %d\n", info->pipe);
1113			return -2;
1114		}
1115	} else {
1116		if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1117			printk(KERN_ERR
1118			    "DBRI: setup_descs: Called on transmit pipe %d\n",
1119			     info->pipe);
1120			return -2;
1121		}
1122		/* Should be able to queue multiple buffers
1123		 * to receive on a pipe
1124		 */
1125		if (pipe_active(dbri, info->pipe)) {
1126			printk(KERN_ERR "DBRI: recv_on_pipe: "
1127				"Called on active pipe %d\n", info->pipe);
1128			return -2;
1129		}
1130
1131		/* Make sure buffer size is multiple of four */
1132		len &= ~3;
1133	}
1134
1135	/* Free descriptors if pipe has any */
1136	desc = dbri->pipes[info->pipe].first_desc;
1137	if (desc >= 0)
1138		do {
1139			dbri->dma->desc[desc].ba = 0;
1140			dbri->dma->desc[desc].nda = 0;
1141			desc = dbri->next_desc[desc];
1142		} while (desc != -1 &&
1143			 desc != dbri->pipes[info->pipe].first_desc);
1144
1145	dbri->pipes[info->pipe].desc = -1;
1146	dbri->pipes[info->pipe].first_desc = -1;
1147
1148	desc = 0;
1149	while (len > 0) {
1150		int mylen;
1151
1152		for (; desc < DBRI_NO_DESCS; desc++) {
1153			if (!dbri->dma->desc[desc].ba)
1154				break;
1155		}
1156
1157		if (desc == DBRI_NO_DESCS) {
1158			printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1159			return -1;
1160		}
1161
1162		if (len > DBRI_TD_MAXCNT)
1163			mylen = DBRI_TD_MAXCNT;	/* 8KB - 4 */
1164		else
1165			mylen = len;
1166
1167		if (mylen > period)
1168			mylen = period;
1169
1170		dbri->next_desc[desc] = -1;
1171		dbri->dma->desc[desc].ba = dvma_buffer;
1172		dbri->dma->desc[desc].nda = 0;
1173
1174		if (streamno == DBRI_PLAY) {
1175			dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1176			dbri->dma->desc[desc].word4 = 0;
1177			dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1178		} else {
1179			dbri->dma->desc[desc].word1 = 0;
1180			dbri->dma->desc[desc].word4 =
1181			    DBRI_RD_B | DBRI_RD_BCNT(mylen);
1182		}
1183
1184		if (first_desc == -1)
1185			first_desc = desc;
1186		else {
1187			dbri->next_desc[last_desc] = desc;
1188			dbri->dma->desc[last_desc].nda =
1189			    dvma_addr + dbri_dma_off(desc, desc);
1190		}
1191
1192		last_desc = desc;
1193		dvma_buffer += mylen;
1194		len -= mylen;
1195	}
1196
1197	if (first_desc == -1 || last_desc == -1) {
1198		printk(KERN_ERR "DBRI: setup_descs: "
1199			" Not enough descriptors available\n");
1200		return -1;
1201	}
1202
1203	dbri->dma->desc[last_desc].nda =
1204	    dvma_addr + dbri_dma_off(desc, first_desc);
1205	dbri->next_desc[last_desc] = first_desc;
1206	dbri->pipes[info->pipe].first_desc = first_desc;
1207	dbri->pipes[info->pipe].desc = first_desc;
1208
1209#ifdef DBRI_DEBUG
1210	for (desc = first_desc; desc != -1;) {
1211		dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1212			desc,
1213			dbri->dma->desc[desc].word1,
1214			dbri->dma->desc[desc].ba,
1215			dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1216			desc = dbri->next_desc[desc];
1217			if (desc == first_desc)
1218				break;
1219	}
1220#endif
1221	return 0;
1222}
1223
1224/*
1225****************************************************************************
1226************************** DBRI - CHI interface ****************************
1227****************************************************************************
1228
1229The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1230multiplexed serial interface which the DBRI can operate in either master
1231(give clock/frame sync) or slave (take clock/frame sync) mode.
1232
1233*/
1234
1235enum master_or_slave { CHImaster, CHIslave };
1236
1237/*
1238 * Lock must not be held before calling it.
1239 */
1240static void reset_chi(struct snd_dbri *dbri,
1241		      enum master_or_slave master_or_slave,
1242		      int bits_per_frame)
1243{
1244	s32 *cmd;
1245	int val;
1246
1247	/* Set CHI Anchor: Pipe 16 */
1248
1249	cmd = dbri_cmdlock(dbri, 4);
1250	val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1251		| D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1252	*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1253	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1254	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1255	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1256	dbri_cmdsend(dbri, cmd, 4);
1257
1258	dbri->pipes[16].sdp = 1;
1259	dbri->pipes[16].nextpipe = 16;
1260
1261	cmd = dbri_cmdlock(dbri, 4);
1262
1263	if (master_or_slave == CHIslave) {
1264		/* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1265		 *
1266		 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1267		 * IR     = give immediate CHI status interrupt
1268		 * EN     = give CHI status interrupt upon change
1269		 */
1270		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1271	} else {
1272		/* Setup DBRI for CHI Master - generate clock, FS
1273		 *
1274		 * BPF				=  bits per 8 kHz frame
1275		 * 12.288 MHz / CHICM_divisor	= clock rate
1276		 * FD = 1 - drive CHIFS on rising edge of CHICK
1277		 */
1278		int clockrate = bits_per_frame * 8;
1279		int divisor = 12288 / clockrate;
1280
1281		if (divisor > 255 || divisor * clockrate != 12288)
1282			printk(KERN_ERR "DBRI: illegal bits_per_frame "
1283				"in setup_chi\n");
1284
1285		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1286				    | D_CHI_BPF(bits_per_frame));
1287	}
1288
1289	dbri->chi_bpf = bits_per_frame;
1290
1291	/* CHI Data Mode
1292	 *
1293	 * RCE   =  0 - receive on falling edge of CHICK
1294	 * XCE   =  1 - transmit on rising edge of CHICK
1295	 * XEN   =  1 - enable transmitter
1296	 * REN   =  1 - enable receiver
1297	 */
1298
1299	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1300	*(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1301	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1302
1303	dbri_cmdsend(dbri, cmd, 4);
1304}
1305
1306/*
1307****************************************************************************
1308*********************** CS4215 audio codec management **********************
1309****************************************************************************
1310
1311In the standard SPARC audio configuration, the CS4215 codec is attached
1312to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1313
1314 * Lock must not be held before calling it.
1315
1316*/
1317static void cs4215_setup_pipes(struct snd_dbri *dbri)
1318{
1319	unsigned long flags;
1320
1321	spin_lock_irqsave(&dbri->lock, flags);
1322	/*
1323	 * Data mode:
1324	 * Pipe  4: Send timeslots 1-4 (audio data)
1325	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1326	 * Pipe  6: Receive timeslots 1-4 (audio data)
1327	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1328	 *          interrupt, and the rest of the data (slot 5 and 8) is
1329	 *          not relevant for us (only for doublechecking).
1330	 *
1331	 * Control mode:
1332	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1333	 * Pipe 18: Receive timeslot 1 (clb).
1334	 * Pipe 19: Receive timeslot 7 (version).
1335	 */
1336
1337	setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1338	setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1339	setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1340	setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1341
1342	setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1343	setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1344	setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1345	spin_unlock_irqrestore(&dbri->lock, flags);
1346
1347	dbri_cmdwait(dbri);
1348}
1349
1350static int cs4215_init_data(struct cs4215 *mm)
1351{
1352	/*
1353	 * No action, memory resetting only.
1354	 *
1355	 * Data Time Slot 5-8
1356	 * Speaker,Line and Headphone enable. Gain set to the half.
1357	 * Input is mike.
1358	 */
1359	mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1360	mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1361	mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1362	mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1363
1364	/*
1365	 * Control Time Slot 1-4
1366	 * 0: Default I/O voltage scale
1367	 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1368	 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1369	 * 3: Tests disabled
1370	 */
1371	mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1372	mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1373	mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1374	mm->ctrl[3] = 0;
1375
1376	mm->status = 0;
1377	mm->version = 0xff;
1378	mm->precision = 8;	/* For ULAW */
1379	mm->channels = 1;
1380
1381	return 0;
1382}
1383
1384static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1385{
1386	if (muted) {
1387		dbri->mm.data[0] |= 63;
1388		dbri->mm.data[1] |= 63;
1389		dbri->mm.data[2] &= ~15;
1390		dbri->mm.data[3] &= ~15;
1391	} else {
1392		/* Start by setting the playback attenuation. */
1393		struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1394		int left_gain = info->left_gain & 0x3f;
1395		int right_gain = info->right_gain & 0x3f;
1396
1397		dbri->mm.data[0] &= ~0x3f;	/* Reset the volume bits */
1398		dbri->mm.data[1] &= ~0x3f;
1399		dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1400		dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1401
1402		/* Now set the recording gain. */
1403		info = &dbri->stream_info[DBRI_REC];
1404		left_gain = info->left_gain & 0xf;
1405		right_gain = info->right_gain & 0xf;
1406		dbri->mm.data[2] |= CS4215_LG(left_gain);
1407		dbri->mm.data[3] |= CS4215_RG(right_gain);
1408	}
1409
1410	xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1411}
1412
1413/*
1414 * Set the CS4215 to data mode.
1415 */
1416static void cs4215_open(struct snd_dbri *dbri)
1417{
1418	int data_width;
1419	u32 tmp;
1420	unsigned long flags;
1421
1422	dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1423		dbri->mm.channels, dbri->mm.precision);
1424
1425	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1426	 * to make sure this takes.  This avoids clicking noises.
1427	 */
1428
1429	cs4215_setdata(dbri, 1);
1430	udelay(125);
1431
1432	/*
1433	 * Data mode:
1434	 * Pipe  4: Send timeslots 1-4 (audio data)
1435	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1436	 * Pipe  6: Receive timeslots 1-4 (audio data)
1437	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1438	 *          interrupt, and the rest of the data (slot 5 and 8) is
1439	 *          not relevant for us (only for doublechecking).
1440	 *
1441	 * Just like in control mode, the time slots are all offset by eight
1442	 * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1443	 * even if it's the CHI master.  Don't ask me...
1444	 */
1445	spin_lock_irqsave(&dbri->lock, flags);
1446	tmp = sbus_readl(dbri->regs + REG0);
1447	tmp &= ~(D_C);		/* Disable CHI */
1448	sbus_writel(tmp, dbri->regs + REG0);
1449
1450	/* Switch CS4215 to data mode - set PIO3 to 1 */
1451	sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1452		    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1453
1454	reset_chi(dbri, CHIslave, 128);
1455
1456	/* Note: this next doesn't work for 8-bit stereo, because the two
1457	 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1458	 * (See CS4215 datasheet Fig 15)
1459	 *
1460	 * DBRI non-contiguous mode would be required to make this work.
1461	 */
1462	data_width = dbri->mm.channels * dbri->mm.precision;
1463
1464	link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1465	link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1466	link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1467	link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1468
1469	/* FIXME: enable CHI after _setdata? */
1470	tmp = sbus_readl(dbri->regs + REG0);
1471	tmp |= D_C;		/* Enable CHI */
1472	sbus_writel(tmp, dbri->regs + REG0);
1473	spin_unlock_irqrestore(&dbri->lock, flags);
1474
1475	cs4215_setdata(dbri, 0);
1476}
1477
1478/*
1479 * Send the control information (i.e. audio format)
1480 */
1481static int cs4215_setctrl(struct snd_dbri *dbri)
1482{
1483	int i, val;
1484	u32 tmp;
1485	unsigned long flags;
1486
1487	/* FIXME - let the CPU do something useful during these delays */
1488
1489	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1490	 * to make sure this takes.  This avoids clicking noises.
1491	 */
1492	cs4215_setdata(dbri, 1);
1493	udelay(125);
1494
1495	/*
1496	 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1497	 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1498	 */
1499	val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1500	sbus_writel(val, dbri->regs + REG2);
1501	dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1502	udelay(34);
1503
1504	/* In Control mode, the CS4215 is a slave device, so the DBRI must
1505	 * operate as CHI master, supplying clocking and frame synchronization.
1506	 *
1507	 * In Data mode, however, the CS4215 must be CHI master to insure
1508	 * that its data stream is synchronous with its codec.
1509	 *
1510	 * The upshot of all this?  We start by putting the DBRI into master
1511	 * mode, program the CS4215 in Control mode, then switch the CS4215
1512	 * into Data mode and put the DBRI into slave mode.  Various timing
1513	 * requirements must be observed along the way.
1514	 *
1515	 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1516	 * others?), the addressing of the CS4215's time slots is
1517	 * offset by eight bits, so we add eight to all the "cycle"
1518	 * values in the Define Time Slot (DTS) commands.  This is
1519	 * done in hardware by a TI 248 that delays the DBRI->4215
1520	 * frame sync signal by eight clock cycles.  Anybody know why?
1521	 */
1522	spin_lock_irqsave(&dbri->lock, flags);
1523	tmp = sbus_readl(dbri->regs + REG0);
1524	tmp &= ~D_C;		/* Disable CHI */
1525	sbus_writel(tmp, dbri->regs + REG0);
1526
1527	reset_chi(dbri, CHImaster, 128);
1528
1529	/*
1530	 * Control mode:
1531	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1532	 * Pipe 18: Receive timeslot 1 (clb).
1533	 * Pipe 19: Receive timeslot 7 (version).
1534	 */
1535
1536	link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1537	link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1538	link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1539	spin_unlock_irqrestore(&dbri->lock, flags);
1540
1541	/* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1542	dbri->mm.ctrl[0] &= ~CS4215_CLB;
1543	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1544
1545	spin_lock_irqsave(&dbri->lock, flags);
1546	tmp = sbus_readl(dbri->regs + REG0);
1547	tmp |= D_C;		/* Enable CHI */
1548	sbus_writel(tmp, dbri->regs + REG0);
1549	spin_unlock_irqrestore(&dbri->lock, flags);
1550
1551	for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1552		msleep_interruptible(1);
1553
1554	if (i == 0) {
1555		dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1556			dbri->mm.status);
1557		return -1;
1558	}
1559
1560	/* Disable changes to our copy of the version number, as we are about
1561	 * to leave control mode.
1562	 */
1563	recv_fixed(dbri, 19, NULL);
1564
1565	/* Terminate CS4215 control mode - data sheet says
1566	 * "Set CLB=1 and send two more frames of valid control info"
1567	 */
1568	dbri->mm.ctrl[0] |= CS4215_CLB;
1569	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1570
1571	/* Two frames of control info @ 8kHz frame rate = 250 us delay */
1572	udelay(250);
1573
1574	cs4215_setdata(dbri, 0);
1575
1576	return 0;
1577}
1578
1579/*
1580 * Setup the codec with the sampling rate, audio format and number of
1581 * channels.
1582 * As part of the process we resend the settings for the data
1583 * timeslots as well.
1584 */
1585static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1586			  snd_pcm_format_t format, unsigned int channels)
1587{
1588	int freq_idx;
1589	int ret = 0;
1590
1591	/* Lookup index for this rate */
1592	for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1593		if (CS4215_FREQ[freq_idx].freq == rate)
1594			break;
1595	}
1596	if (CS4215_FREQ[freq_idx].freq != rate) {
1597		printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1598		return -1;
1599	}
1600
1601	switch (format) {
1602	case SNDRV_PCM_FORMAT_MU_LAW:
1603		dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1604		dbri->mm.precision = 8;
1605		break;
1606	case SNDRV_PCM_FORMAT_A_LAW:
1607		dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1608		dbri->mm.precision = 8;
1609		break;
1610	case SNDRV_PCM_FORMAT_U8:
1611		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1612		dbri->mm.precision = 8;
1613		break;
1614	case SNDRV_PCM_FORMAT_S16_BE:
1615		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1616		dbri->mm.precision = 16;
1617		break;
1618	default:
1619		printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1620		return -1;
1621	}
1622
1623	/* Add rate parameters */
1624	dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1625	dbri->mm.ctrl[2] = CS4215_XCLK |
1626	    CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1627
1628	dbri->mm.channels = channels;
1629	if (channels == 2)
1630		dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1631
1632	ret = cs4215_setctrl(dbri);
1633	if (ret == 0)
1634		cs4215_open(dbri);	/* set codec to data mode */
1635
1636	return ret;
1637}
1638
1639/*
1640 *
1641 */
1642static int cs4215_init(struct snd_dbri *dbri)
1643{
1644	u32 reg2 = sbus_readl(dbri->regs + REG2);
1645	dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1646
1647	/* Look for the cs4215 chips */
1648	if (reg2 & D_PIO2) {
1649		dprintk(D_MM, "Onboard CS4215 detected\n");
1650		dbri->mm.onboard = 1;
1651	}
1652	if (reg2 & D_PIO0) {
1653		dprintk(D_MM, "Speakerbox detected\n");
1654		dbri->mm.onboard = 0;
1655
1656		if (reg2 & D_PIO2) {
1657			printk(KERN_INFO "DBRI: Using speakerbox / "
1658			       "ignoring onboard mmcodec.\n");
1659			sbus_writel(D_ENPIO2, dbri->regs + REG2);
1660		}
1661	}
1662
1663	if (!(reg2 & (D_PIO0 | D_PIO2))) {
1664		printk(KERN_ERR "DBRI: no mmcodec found.\n");
1665		return -EIO;
1666	}
1667
1668	cs4215_setup_pipes(dbri);
1669	cs4215_init_data(&dbri->mm);
1670
1671	/* Enable capture of the status & version timeslots. */
1672	recv_fixed(dbri, 18, &dbri->mm.status);
1673	recv_fixed(dbri, 19, &dbri->mm.version);
1674
1675	dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1676	if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1677		dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1678			dbri->mm.offset);
1679		return -EIO;
1680	}
1681	dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1682
1683	return 0;
1684}
1685
1686/*
1687****************************************************************************
1688*************************** DBRI interrupt handler *************************
1689****************************************************************************
1690
1691The DBRI communicates with the CPU mainly via a circular interrupt
1692buffer.  When an interrupt is signaled, the CPU walks through the
1693buffer and calls dbri_process_one_interrupt() for each interrupt word.
1694Complicated interrupts are handled by dedicated functions (which
1695appear first in this file).  Any pending interrupts can be serviced by
1696calling dbri_process_interrupt_buffer(), which works even if the CPU's
1697interrupts are disabled.
1698
1699*/
1700
1701/* xmit_descs()
1702 *
1703 * Starts transmitting the current TD's for recording/playing.
1704 * For playback, ALSA has filled the DMA memory with new data (we hope).
1705 */
1706static void xmit_descs(struct snd_dbri *dbri)
1707{
1708	struct dbri_streaminfo *info;
1709	u32 dvma_addr;
1710	s32 *cmd;
1711	unsigned long flags;
1712	int first_td;
1713
1714	if (dbri == NULL)
1715		return;		/* Disabled */
1716
1717	dvma_addr = (u32)dbri->dma_dvma;
1718	info = &dbri->stream_info[DBRI_REC];
1719	spin_lock_irqsave(&dbri->lock, flags);
1720
1721	if (info->pipe >= 0) {
1722		first_td = dbri->pipes[info->pipe].first_desc;
1723
1724		dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1725
1726		/* Stream could be closed by the time we run. */
1727		if (first_td >= 0) {
1728			cmd = dbri_cmdlock(dbri, 2);
1729			*(cmd++) = DBRI_CMD(D_SDP, 0,
1730					    dbri->pipes[info->pipe].sdp
1731					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1732			*(cmd++) = dvma_addr +
1733				   dbri_dma_off(desc, first_td);
1734			dbri_cmdsend(dbri, cmd, 2);
1735
1736			/* Reset our admin of the pipe. */
1737			dbri->pipes[info->pipe].desc = first_td;
1738		}
1739	}
1740
1741	info = &dbri->stream_info[DBRI_PLAY];
1742
1743	if (info->pipe >= 0) {
1744		first_td = dbri->pipes[info->pipe].first_desc;
1745
1746		dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1747
1748		/* Stream could be closed by the time we run. */
1749		if (first_td >= 0) {
1750			cmd = dbri_cmdlock(dbri, 2);
1751			*(cmd++) = DBRI_CMD(D_SDP, 0,
1752					    dbri->pipes[info->pipe].sdp
1753					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1754			*(cmd++) = dvma_addr +
1755				   dbri_dma_off(desc, first_td);
1756			dbri_cmdsend(dbri, cmd, 2);
1757
1758			/* Reset our admin of the pipe. */
1759			dbri->pipes[info->pipe].desc = first_td;
1760		}
1761	}
1762
1763	spin_unlock_irqrestore(&dbri->lock, flags);
1764}
1765
1766/* transmission_complete_intr()
1767 *
1768 * Called by main interrupt handler when DBRI signals transmission complete
1769 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1770 *
1771 * Walks through the pipe's list of transmit buffer descriptors and marks
1772 * them as available. Stops when the first descriptor is found without
1773 * TBC (Transmit Buffer Complete) set, or we've run through them all.
1774 *
1775 * The DMA buffers are not released. They form a ring buffer and
1776 * they are filled by ALSA while others are transmitted by DMA.
1777 *
1778 */
1779
1780static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1781{
1782	struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1783	int td = dbri->pipes[pipe].desc;
1784	int status;
1785
1786	while (td >= 0) {
1787		if (td >= DBRI_NO_DESCS) {
1788			printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1789			return;
1790		}
1791
1792		status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1793		if (!(status & DBRI_TD_TBC))
1794			break;
1795
1796		dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1797
1798		dbri->dma->desc[td].word4 = 0;	/* Reset it for next time. */
1799		info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1800
1801		td = dbri->next_desc[td];
1802		dbri->pipes[pipe].desc = td;
1803	}
1804
1805	/* Notify ALSA */
1806	spin_unlock(&dbri->lock);
1807	snd_pcm_period_elapsed(info->substream);
1808	spin_lock(&dbri->lock);
1809}
1810
1811static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1812{
1813	struct dbri_streaminfo *info;
1814	int rd = dbri->pipes[pipe].desc;
1815	s32 status;
1816
1817	if (rd < 0 || rd >= DBRI_NO_DESCS) {
1818		printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1819		return;
1820	}
1821
1822	dbri->pipes[pipe].desc = dbri->next_desc[rd];
1823	status = dbri->dma->desc[rd].word1;
1824	dbri->dma->desc[rd].word1 = 0;	/* Reset it for next time. */
1825
1826	info = &dbri->stream_info[DBRI_REC];
1827	info->offset += DBRI_RD_CNT(status);
1828
1829	/* FIXME: Check status */
1830
1831	dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1832		rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1833
1834	/* Notify ALSA */
1835	spin_unlock(&dbri->lock);
1836	snd_pcm_period_elapsed(info->substream);
1837	spin_lock(&dbri->lock);
1838}
1839
1840static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1841{
1842	int val = D_INTR_GETVAL(x);
1843	int channel = D_INTR_GETCHAN(x);
1844	int command = D_INTR_GETCMD(x);
1845	int code = D_INTR_GETCODE(x);
1846#ifdef DBRI_DEBUG
1847	int rval = D_INTR_GETRVAL(x);
1848#endif
1849
1850	if (channel == D_INTR_CMD) {
1851		dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1852			cmds[command], val);
1853	} else {
1854		dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1855			channel, code, rval);
1856	}
1857
1858	switch (code) {
1859	case D_INTR_CMDI:
1860		if (command != D_WAIT)
1861			printk(KERN_ERR "DBRI: Command read interrupt\n");
1862		break;
1863	case D_INTR_BRDY:
1864		reception_complete_intr(dbri, channel);
1865		break;
1866	case D_INTR_XCMP:
1867	case D_INTR_MINT:
1868		transmission_complete_intr(dbri, channel);
1869		break;
1870	case D_INTR_UNDR:
1871		/* UNDR - Transmission underrun
1872		 * resend SDP command with clear pipe bit (C) set
1873		 */
1874		{
1875	/* FIXME: do something useful in case of underrun */
1876			printk(KERN_ERR "DBRI: Underrun error\n");
1877#if 0
1878			s32 *cmd;
1879			int pipe = channel;
1880			int td = dbri->pipes[pipe].desc;
1881
1882			dbri->dma->desc[td].word4 = 0;
1883			cmd = dbri_cmdlock(dbri, NoGetLock);
1884			*(cmd++) = DBRI_CMD(D_SDP, 0,
1885					    dbri->pipes[pipe].sdp
1886					    | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1887			*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1888			dbri_cmdsend(dbri, cmd);
1889#endif
1890		}
1891		break;
1892	case D_INTR_FXDT:
1893		/* FXDT - Fixed data change */
1894		if (dbri->pipes[channel].sdp & D_SDP_MSB)
1895			val = reverse_bytes(val, dbri->pipes[channel].length);
1896
1897		if (dbri->pipes[channel].recv_fixed_ptr)
1898			*(dbri->pipes[channel].recv_fixed_ptr) = val;
1899		break;
1900	default:
1901		if (channel != D_INTR_CMD)
1902			printk(KERN_WARNING
1903			       "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1904	}
1905}
1906
1907/* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1908 * buffer until it finds a zero word (indicating nothing more to do
1909 * right now).  Non-zero words require processing and are handed off
1910 * to dbri_process_one_interrupt AFTER advancing the pointer.
1911 */
1912static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1913{
1914	s32 x;
1915
1916	while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1917		dbri->dma->intr[dbri->dbri_irqp] = 0;
1918		dbri->dbri_irqp++;
1919		if (dbri->dbri_irqp == DBRI_INT_BLK)
1920			dbri->dbri_irqp = 1;
1921
1922		dbri_process_one_interrupt(dbri, x);
1923	}
1924}
1925
1926static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1927{
1928	struct snd_dbri *dbri = dev_id;
1929	static int errcnt;
1930	int x;
1931
1932	if (dbri == NULL)
1933		return IRQ_NONE;
1934	spin_lock(&dbri->lock);
1935
1936	/*
1937	 * Read it, so the interrupt goes away.
1938	 */
1939	x = sbus_readl(dbri->regs + REG1);
1940
1941	if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1942		u32 tmp;
1943
1944		if (x & D_MRR)
1945			printk(KERN_ERR
1946			       "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1947			       x);
1948		if (x & D_MLE)
1949			printk(KERN_ERR
1950			       "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1951			       x);
1952		if (x & D_LBG)
1953			printk(KERN_ERR
1954			       "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1955		if (x & D_MBE)
1956			printk(KERN_ERR
1957			       "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1958
1959		/* Some of these SBus errors cause the chip's SBus circuitry
1960		 * to be disabled, so just re-enable and try to keep going.
1961		 *
1962		 * The only one I've seen is MRR, which will be triggered
1963		 * if you let a transmit pipe underrun, then try to CDP it.
1964		 *
1965		 * If these things persist, we reset the chip.
1966		 */
1967		if ((++errcnt) % 10 == 0) {
1968			dprintk(D_INT, "Interrupt errors exceeded.\n");
1969			dbri_reset(dbri);
1970		} else {
1971			tmp = sbus_readl(dbri->regs + REG0);
1972			tmp &= ~(D_D);
1973			sbus_writel(tmp, dbri->regs + REG0);
1974		}
1975	}
1976
1977	dbri_process_interrupt_buffer(dbri);
1978
1979	spin_unlock(&dbri->lock);
1980
1981	return IRQ_HANDLED;
1982}
1983
1984/****************************************************************************
1985		PCM Interface
1986****************************************************************************/
1987static const struct snd_pcm_hardware snd_dbri_pcm_hw = {
1988	.info		= SNDRV_PCM_INFO_MMAP |
1989			  SNDRV_PCM_INFO_INTERLEAVED |
1990			  SNDRV_PCM_INFO_BLOCK_TRANSFER |
1991			  SNDRV_PCM_INFO_MMAP_VALID |
1992			  SNDRV_PCM_INFO_BATCH,
1993	.formats	= SNDRV_PCM_FMTBIT_MU_LAW |
1994			  SNDRV_PCM_FMTBIT_A_LAW |
1995			  SNDRV_PCM_FMTBIT_U8 |
1996			  SNDRV_PCM_FMTBIT_S16_BE,
1997	.rates		= SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1998	.rate_min		= 5512,
1999	.rate_max		= 48000,
2000	.channels_min		= 1,
2001	.channels_max		= 2,
2002	.buffer_bytes_max	= 64 * 1024,
2003	.period_bytes_min	= 1,
2004	.period_bytes_max	= DBRI_TD_MAXCNT,
2005	.periods_min		= 1,
2006	.periods_max		= 1024,
2007};
2008
2009static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
2010			      struct snd_pcm_hw_rule *rule)
2011{
2012	struct snd_interval *c = hw_param_interval(params,
2013				SNDRV_PCM_HW_PARAM_CHANNELS);
2014	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2015	struct snd_mask fmt;
2016
2017	snd_mask_any(&fmt);
2018	if (c->min > 1) {
2019		fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2020		return snd_mask_refine(f, &fmt);
2021	}
2022	return 0;
2023}
2024
2025static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2026				struct snd_pcm_hw_rule *rule)
2027{
2028	struct snd_interval *c = hw_param_interval(params,
2029				SNDRV_PCM_HW_PARAM_CHANNELS);
2030	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2031	struct snd_interval ch;
2032
2033	snd_interval_any(&ch);
2034	if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2035		ch.min = 1;
2036		ch.max = 1;
2037		ch.integer = 1;
2038		return snd_interval_refine(c, &ch);
2039	}
2040	return 0;
2041}
2042
2043static int snd_dbri_open(struct snd_pcm_substream *substream)
2044{
2045	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2046	struct snd_pcm_runtime *runtime = substream->runtime;
2047	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2048	unsigned long flags;
2049
2050	dprintk(D_USR, "open audio output.\n");
2051	runtime->hw = snd_dbri_pcm_hw;
2052
2053	spin_lock_irqsave(&dbri->lock, flags);
2054	info->substream = substream;
2055	info->offset = 0;
2056	info->dvma_buffer = 0;
2057	info->pipe = -1;
2058	spin_unlock_irqrestore(&dbri->lock, flags);
2059
2060	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2061			    snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2062			    -1);
2063	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2064			    snd_hw_rule_channels, NULL,
2065			    SNDRV_PCM_HW_PARAM_CHANNELS,
2066			    -1);
2067
2068	cs4215_open(dbri);
2069
2070	return 0;
2071}
2072
2073static int snd_dbri_close(struct snd_pcm_substream *substream)
2074{
2075	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2076	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2077
2078	dprintk(D_USR, "close audio output.\n");
2079	info->substream = NULL;
2080	info->offset = 0;
2081
2082	return 0;
2083}
2084
2085static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2086			      struct snd_pcm_hw_params *hw_params)
2087{
2088	struct snd_pcm_runtime *runtime = substream->runtime;
2089	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2090	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2091	int direction;
2092	int ret;
2093
2094	/* set sampling rate, audio format and number of channels */
2095	ret = cs4215_prepare(dbri, params_rate(hw_params),
2096			     params_format(hw_params),
2097			     params_channels(hw_params));
2098	if (ret != 0)
2099		return ret;
2100
 
 
 
 
 
 
2101	/* hw_params can get called multiple times. Only map the DMA once.
2102	 */
2103	if (info->dvma_buffer == 0) {
2104		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2105			direction = DMA_TO_DEVICE;
2106		else
2107			direction = DMA_FROM_DEVICE;
2108
2109		info->dvma_buffer =
2110			dma_map_single(&dbri->op->dev,
2111				       runtime->dma_area,
2112				       params_buffer_bytes(hw_params),
2113				       direction);
2114	}
2115
2116	direction = params_buffer_bytes(hw_params);
2117	dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2118		direction, info->dvma_buffer);
2119	return 0;
2120}
2121
2122static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2123{
2124	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2125	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2126	int direction;
2127
2128	dprintk(D_USR, "hw_free.\n");
2129
2130	/* hw_free can get called multiple times. Only unmap the DMA once.
2131	 */
2132	if (info->dvma_buffer) {
2133		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2134			direction = DMA_TO_DEVICE;
2135		else
2136			direction = DMA_FROM_DEVICE;
2137
2138		dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2139				 substream->runtime->buffer_size, direction);
2140		info->dvma_buffer = 0;
2141	}
2142	if (info->pipe != -1) {
2143		reset_pipe(dbri, info->pipe);
2144		info->pipe = -1;
2145	}
2146
2147	return 0;
2148}
2149
2150static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2151{
2152	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2153	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2154	int ret;
2155
2156	info->size = snd_pcm_lib_buffer_bytes(substream);
2157	if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2158		info->pipe = 4;	/* Send pipe */
2159	else
2160		info->pipe = 6;	/* Receive pipe */
2161
2162	spin_lock_irq(&dbri->lock);
2163	info->offset = 0;
2164
2165	/* Setup the all the transmit/receive descriptors to cover the
2166	 * whole DMA buffer.
2167	 */
2168	ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2169			  snd_pcm_lib_period_bytes(substream));
2170
2171	spin_unlock_irq(&dbri->lock);
2172
2173	dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2174	return ret;
2175}
2176
2177static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2178{
2179	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2180	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2181	int ret = 0;
2182
2183	switch (cmd) {
2184	case SNDRV_PCM_TRIGGER_START:
2185		dprintk(D_USR, "start audio, period is %d bytes\n",
2186			(int)snd_pcm_lib_period_bytes(substream));
2187		/* Re-submit the TDs. */
2188		xmit_descs(dbri);
2189		break;
2190	case SNDRV_PCM_TRIGGER_STOP:
2191		dprintk(D_USR, "stop audio.\n");
2192		reset_pipe(dbri, info->pipe);
2193		break;
2194	default:
2195		ret = -EINVAL;
2196	}
2197
2198	return ret;
2199}
2200
2201static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2202{
2203	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2204	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2205	snd_pcm_uframes_t ret;
2206
2207	ret = bytes_to_frames(substream->runtime, info->offset)
2208		% substream->runtime->buffer_size;
2209	dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2210		ret, substream->runtime->buffer_size);
2211	return ret;
2212}
2213
2214static const struct snd_pcm_ops snd_dbri_ops = {
2215	.open = snd_dbri_open,
2216	.close = snd_dbri_close,
 
2217	.hw_params = snd_dbri_hw_params,
2218	.hw_free = snd_dbri_hw_free,
2219	.prepare = snd_dbri_prepare,
2220	.trigger = snd_dbri_trigger,
2221	.pointer = snd_dbri_pointer,
2222};
2223
2224static int snd_dbri_pcm(struct snd_card *card)
2225{
2226	struct snd_pcm *pcm;
2227	int err;
2228
2229	err = snd_pcm_new(card,
2230			  /* ID */	    "sun_dbri",
2231			  /* device */	    0,
2232			  /* playback count */ 1,
2233			  /* capture count */  1, &pcm);
2234	if (err < 0)
2235		return err;
2236
2237	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2238	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2239
2240	pcm->private_data = card->private_data;
2241	pcm->info_flags = 0;
2242	strcpy(pcm->name, card->shortname);
2243
2244	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
2245				       NULL, 64 * 1024, 64 * 1024);
 
 
 
 
2246	return 0;
2247}
2248
2249/*****************************************************************************
2250			Mixer interface
2251*****************************************************************************/
2252
2253static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2254				  struct snd_ctl_elem_info *uinfo)
2255{
2256	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2257	uinfo->count = 2;
2258	uinfo->value.integer.min = 0;
2259	if (kcontrol->private_value == DBRI_PLAY)
2260		uinfo->value.integer.max = DBRI_MAX_VOLUME;
2261	else
2262		uinfo->value.integer.max = DBRI_MAX_GAIN;
2263	return 0;
2264}
2265
2266static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2267				 struct snd_ctl_elem_value *ucontrol)
2268{
2269	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2270	struct dbri_streaminfo *info;
2271
2272	if (snd_BUG_ON(!dbri))
2273		return -EINVAL;
2274	info = &dbri->stream_info[kcontrol->private_value];
2275
2276	ucontrol->value.integer.value[0] = info->left_gain;
2277	ucontrol->value.integer.value[1] = info->right_gain;
2278	return 0;
2279}
2280
2281static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2282				 struct snd_ctl_elem_value *ucontrol)
2283{
2284	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2285	struct dbri_streaminfo *info =
2286				&dbri->stream_info[kcontrol->private_value];
2287	unsigned int vol[2];
2288	int changed = 0;
2289
2290	vol[0] = ucontrol->value.integer.value[0];
2291	vol[1] = ucontrol->value.integer.value[1];
2292	if (kcontrol->private_value == DBRI_PLAY) {
2293		if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2294			return -EINVAL;
2295	} else {
2296		if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2297			return -EINVAL;
2298	}
2299
2300	if (info->left_gain != vol[0]) {
2301		info->left_gain = vol[0];
2302		changed = 1;
2303	}
2304	if (info->right_gain != vol[1]) {
2305		info->right_gain = vol[1];
2306		changed = 1;
2307	}
2308	if (changed) {
2309		/* First mute outputs, and wait 1/8000 sec (125 us)
2310		 * to make sure this takes.  This avoids clicking noises.
2311		 */
2312		cs4215_setdata(dbri, 1);
2313		udelay(125);
2314		cs4215_setdata(dbri, 0);
2315	}
2316	return changed;
2317}
2318
2319static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2320				  struct snd_ctl_elem_info *uinfo)
2321{
2322	int mask = (kcontrol->private_value >> 16) & 0xff;
2323
2324	uinfo->type = (mask == 1) ?
2325	    SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2326	uinfo->count = 1;
2327	uinfo->value.integer.min = 0;
2328	uinfo->value.integer.max = mask;
2329	return 0;
2330}
2331
2332static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2333				 struct snd_ctl_elem_value *ucontrol)
2334{
2335	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2336	int elem = kcontrol->private_value & 0xff;
2337	int shift = (kcontrol->private_value >> 8) & 0xff;
2338	int mask = (kcontrol->private_value >> 16) & 0xff;
2339	int invert = (kcontrol->private_value >> 24) & 1;
2340
2341	if (snd_BUG_ON(!dbri))
2342		return -EINVAL;
2343
2344	if (elem < 4)
2345		ucontrol->value.integer.value[0] =
2346		    (dbri->mm.data[elem] >> shift) & mask;
2347	else
2348		ucontrol->value.integer.value[0] =
2349		    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2350
2351	if (invert == 1)
2352		ucontrol->value.integer.value[0] =
2353		    mask - ucontrol->value.integer.value[0];
2354	return 0;
2355}
2356
2357static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2358				 struct snd_ctl_elem_value *ucontrol)
2359{
2360	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2361	int elem = kcontrol->private_value & 0xff;
2362	int shift = (kcontrol->private_value >> 8) & 0xff;
2363	int mask = (kcontrol->private_value >> 16) & 0xff;
2364	int invert = (kcontrol->private_value >> 24) & 1;
2365	int changed = 0;
2366	unsigned short val;
2367
2368	if (snd_BUG_ON(!dbri))
2369		return -EINVAL;
2370
2371	val = (ucontrol->value.integer.value[0] & mask);
2372	if (invert == 1)
2373		val = mask - val;
2374	val <<= shift;
2375
2376	if (elem < 4) {
2377		dbri->mm.data[elem] = (dbri->mm.data[elem] &
2378				       ~(mask << shift)) | val;
2379		changed = (val != dbri->mm.data[elem]);
2380	} else {
2381		dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2382					   ~(mask << shift)) | val;
2383		changed = (val != dbri->mm.ctrl[elem - 4]);
2384	}
2385
2386	dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2387		"mixer-value=%ld, mm-value=0x%x\n",
2388		mask, changed, ucontrol->value.integer.value[0],
2389		dbri->mm.data[elem & 3]);
2390
2391	if (changed) {
2392		/* First mute outputs, and wait 1/8000 sec (125 us)
2393		 * to make sure this takes.  This avoids clicking noises.
2394		 */
2395		cs4215_setdata(dbri, 1);
2396		udelay(125);
2397		cs4215_setdata(dbri, 0);
2398	}
2399	return changed;
2400}
2401
2402/* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2403   timeslots. Shift is the bit offset in the timeslot, mask defines the
2404   number of bits. invert is a boolean for use with attenuation.
2405 */
2406#define CS4215_SINGLE(xname, entry, shift, mask, invert)	\
2407{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),		\
2408  .info = snd_cs4215_info_single,				\
2409  .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,	\
2410  .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |	\
2411			((invert) << 24) },
2412
2413static const struct snd_kcontrol_new dbri_controls[] = {
2414	{
2415	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2416	 .name  = "Playback Volume",
2417	 .info  = snd_cs4215_info_volume,
2418	 .get   = snd_cs4215_get_volume,
2419	 .put   = snd_cs4215_put_volume,
2420	 .private_value = DBRI_PLAY,
2421	 },
2422	CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2423	CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2424	CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2425	{
2426	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2427	 .name  = "Capture Volume",
2428	 .info  = snd_cs4215_info_volume,
2429	 .get   = snd_cs4215_get_volume,
2430	 .put   = snd_cs4215_put_volume,
2431	 .private_value = DBRI_REC,
2432	 },
2433	/* FIXME: mic/line switch */
2434	CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2435	CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2436	CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2437	CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2438};
2439
2440static int snd_dbri_mixer(struct snd_card *card)
2441{
2442	int idx, err;
2443	struct snd_dbri *dbri;
2444
2445	if (snd_BUG_ON(!card || !card->private_data))
2446		return -EINVAL;
2447	dbri = card->private_data;
2448
2449	strcpy(card->mixername, card->shortname);
2450
2451	for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2452		err = snd_ctl_add(card,
2453				snd_ctl_new1(&dbri_controls[idx], dbri));
2454		if (err < 0)
2455			return err;
2456	}
2457
2458	for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2459		dbri->stream_info[idx].left_gain = 0;
2460		dbri->stream_info[idx].right_gain = 0;
2461	}
2462
2463	return 0;
2464}
2465
2466/****************************************************************************
2467			/proc interface
2468****************************************************************************/
2469static void dbri_regs_read(struct snd_info_entry *entry,
2470			   struct snd_info_buffer *buffer)
2471{
2472	struct snd_dbri *dbri = entry->private_data;
2473
2474	snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2475	snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2476	snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2477	snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2478}
2479
2480#ifdef DBRI_DEBUG
2481static void dbri_debug_read(struct snd_info_entry *entry,
2482			    struct snd_info_buffer *buffer)
2483{
2484	struct snd_dbri *dbri = entry->private_data;
2485	int pipe;
2486	snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2487
2488	for (pipe = 0; pipe < 32; pipe++) {
2489		if (pipe_active(dbri, pipe)) {
2490			struct dbri_pipe *pptr = &dbri->pipes[pipe];
2491			snd_iprintf(buffer,
2492				    "Pipe %d: %s SDP=0x%x desc=%d, "
2493				    "len=%d next %d\n",
2494				    pipe,
2495				   (pptr->sdp & D_SDP_TO_SER) ? "output" :
2496								 "input",
2497				    pptr->sdp, pptr->desc,
2498				    pptr->length, pptr->nextpipe);
2499		}
2500	}
2501}
2502#endif
2503
2504static void snd_dbri_proc(struct snd_card *card)
2505{
2506	struct snd_dbri *dbri = card->private_data;
 
 
 
 
2507
2508	snd_card_ro_proc_new(card, "regs", dbri, dbri_regs_read);
2509#ifdef DBRI_DEBUG
2510	snd_card_ro_proc_new(card, "debug", dbri, dbri_debug_read);
 
 
 
2511#endif
2512}
2513
2514/*
2515****************************************************************************
2516**************************** Initialization ********************************
2517****************************************************************************
2518*/
2519static void snd_dbri_free(struct snd_dbri *dbri);
2520
2521static int snd_dbri_create(struct snd_card *card,
2522			   struct platform_device *op,
2523			   int irq, int dev)
2524{
2525	struct snd_dbri *dbri = card->private_data;
2526	int err;
2527
2528	spin_lock_init(&dbri->lock);
2529	dbri->op = op;
2530	dbri->irq = irq;
2531
2532	dbri->dma = dma_alloc_coherent(&op->dev, sizeof(struct dbri_dma),
2533				       &dbri->dma_dvma, GFP_KERNEL);
2534	if (!dbri->dma)
2535		return -ENOMEM;
2536
2537	dprintk(D_GEN, "DMA Cmd Block 0x%p (%pad)\n",
2538		dbri->dma, dbri->dma_dvma);
2539
2540	/* Map the registers into memory. */
2541	dbri->regs_size = resource_size(&op->resource[0]);
2542	dbri->regs = of_ioremap(&op->resource[0], 0,
2543				dbri->regs_size, "DBRI Registers");
2544	if (!dbri->regs) {
2545		printk(KERN_ERR "DBRI: could not allocate registers\n");
2546		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2547				  (void *)dbri->dma, dbri->dma_dvma);
2548		return -EIO;
2549	}
2550
2551	err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2552			  "DBRI audio", dbri);
2553	if (err) {
2554		printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2555		of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2556		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2557				  (void *)dbri->dma, dbri->dma_dvma);
2558		return err;
2559	}
2560
2561	/* Do low level initialization of the DBRI and CS4215 chips */
2562	dbri_initialize(dbri);
2563	err = cs4215_init(dbri);
2564	if (err) {
2565		snd_dbri_free(dbri);
2566		return err;
2567	}
2568
2569	return 0;
2570}
2571
2572static void snd_dbri_free(struct snd_dbri *dbri)
2573{
2574	dprintk(D_GEN, "snd_dbri_free\n");
2575	dbri_reset(dbri);
2576
2577	if (dbri->irq)
2578		free_irq(dbri->irq, dbri);
2579
2580	if (dbri->regs)
2581		of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2582
2583	if (dbri->dma)
2584		dma_free_coherent(&dbri->op->dev,
2585				  sizeof(struct dbri_dma),
2586				  (void *)dbri->dma, dbri->dma_dvma);
2587}
2588
2589static int dbri_probe(struct platform_device *op)
2590{
2591	struct snd_dbri *dbri;
2592	struct resource *rp;
2593	struct snd_card *card;
2594	static int dev;
2595	int irq;
2596	int err;
2597
2598	if (dev >= SNDRV_CARDS)
2599		return -ENODEV;
2600	if (!enable[dev]) {
2601		dev++;
2602		return -ENOENT;
2603	}
2604
2605	irq = op->archdata.irqs[0];
2606	if (irq <= 0) {
2607		printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2608		return -ENODEV;
2609	}
2610
2611	err = snd_card_new(&op->dev, index[dev], id[dev], THIS_MODULE,
2612			   sizeof(struct snd_dbri), &card);
2613	if (err < 0)
2614		return err;
2615
2616	strcpy(card->driver, "DBRI");
2617	strcpy(card->shortname, "Sun DBRI");
2618	rp = &op->resource[0];
2619	sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2620		card->shortname,
2621		rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2622
2623	err = snd_dbri_create(card, op, irq, dev);
2624	if (err < 0) {
2625		snd_card_free(card);
2626		return err;
2627	}
2628
2629	dbri = card->private_data;
2630	err = snd_dbri_pcm(card);
2631	if (err < 0)
2632		goto _err;
2633
2634	err = snd_dbri_mixer(card);
2635	if (err < 0)
2636		goto _err;
2637
2638	/* /proc file handling */
2639	snd_dbri_proc(card);
2640	dev_set_drvdata(&op->dev, card);
2641
2642	err = snd_card_register(card);
2643	if (err < 0)
2644		goto _err;
2645
2646	printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2647	       dev, dbri->regs,
2648	       dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2649	dev++;
2650
2651	return 0;
2652
2653_err:
2654	snd_dbri_free(dbri);
2655	snd_card_free(card);
2656	return err;
2657}
2658
2659static int dbri_remove(struct platform_device *op)
2660{
2661	struct snd_card *card = dev_get_drvdata(&op->dev);
2662
2663	snd_dbri_free(card->private_data);
2664	snd_card_free(card);
2665
2666	return 0;
2667}
2668
2669static const struct of_device_id dbri_match[] = {
2670	{
2671		.name = "SUNW,DBRIe",
2672	},
2673	{
2674		.name = "SUNW,DBRIf",
2675	},
2676	{},
2677};
2678
2679MODULE_DEVICE_TABLE(of, dbri_match);
2680
2681static struct platform_driver dbri_sbus_driver = {
2682	.driver = {
2683		.name = "dbri",
2684		.of_match_table = dbri_match,
2685	},
2686	.probe		= dbri_probe,
2687	.remove		= dbri_remove,
2688};
2689
2690module_platform_driver(dbri_sbus_driver);
v4.6
 
   1/*
   2 * Driver for DBRI sound chip found on Sparcs.
   3 * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
   4 *
   5 * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
   6 *
   7 * Based entirely upon drivers/sbus/audio/dbri.c which is:
   8 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
   9 * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
  10 *
  11 * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
  12 * on Sun SPARCStation 10, 20, LX and Voyager models.
  13 *
  14 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
  15 *   data time multiplexer with ISDN support (aka T7259)
  16 *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
  17 *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
  18 *   Documentation:
  19 *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
  20 *     Sparc Technology Business (courtesy of Sun Support)
  21 *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
  22 *     available from the Lucent (formerly AT&T microelectronics) home
  23 *     page.
  24 *   - http://www.freesoft.org/Linux/DBRI/
  25 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
  26 *   Interfaces: CHI, Audio In & Out, 2 bits parallel
  27 *   Documentation: from the Crystal Semiconductor home page.
  28 *
  29 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
  30 * memory and a serial device (long pipes, no. 0-15) or between two serial
  31 * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
  32 * device (short pipes).
  33 * A timeslot defines the bit-offset and no. of bits read from a serial device.
  34 * The timeslots are linked to 6 circular lists, one for each direction for
  35 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
  36 * (the second one is a monitor/tee pipe, valid only for serial input).
  37 *
  38 * The mmcodec is connected via the CHI bus and needs the data & some
  39 * parameters (volume, output selection) time multiplexed in 8 byte
  40 * chunks. It also has a control mode, which serves for audio format setting.
  41 *
  42 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
  43 * the same CHI bus, so I thought perhaps it is possible to use the on-board
  44 * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
  45 * audio devices. But the SUN HW group decided against it, at least on my
  46 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
  47 * connected.
  48 *
  49 * I've tried to stick to the following function naming conventions:
  50 * snd_*	ALSA stuff
  51 * cs4215_*	CS4215 codec specific stuff
  52 * dbri_*	DBRI high-level stuff
  53 * other	DBRI low-level stuff
  54 */
  55
  56#include <linux/interrupt.h>
  57#include <linux/delay.h>
  58#include <linux/irq.h>
  59#include <linux/io.h>
  60#include <linux/dma-mapping.h>
  61#include <linux/gfp.h>
  62
  63#include <sound/core.h>
  64#include <sound/pcm.h>
  65#include <sound/pcm_params.h>
  66#include <sound/info.h>
  67#include <sound/control.h>
  68#include <sound/initval.h>
  69
  70#include <linux/of.h>
  71#include <linux/of_device.h>
  72#include <linux/atomic.h>
  73#include <linux/module.h>
  74
  75MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
  76MODULE_DESCRIPTION("Sun DBRI");
  77MODULE_LICENSE("GPL");
  78MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
  79
  80static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
  81static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
  82/* Enable this card */
  83static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
  84
  85module_param_array(index, int, NULL, 0444);
  86MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
  87module_param_array(id, charp, NULL, 0444);
  88MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
  89module_param_array(enable, bool, NULL, 0444);
  90MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
  91
  92#undef DBRI_DEBUG
  93
  94#define D_INT	(1<<0)
  95#define D_GEN	(1<<1)
  96#define D_CMD	(1<<2)
  97#define D_MM	(1<<3)
  98#define D_USR	(1<<4)
  99#define D_DESC	(1<<5)
 100
 101static int dbri_debug;
 102module_param(dbri_debug, int, 0644);
 103MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
 104
 105#ifdef DBRI_DEBUG
 106static char *cmds[] = {
 107	"WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
 108	"SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
 109};
 110
 111#define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
 112
 113#else
 114#define dprintk(a, x...) do { } while (0)
 115
 116#endif				/* DBRI_DEBUG */
 117
 118#define DBRI_CMD(cmd, intr, value) ((cmd << 28) |	\
 119				    (intr << 27) |	\
 120				    value)
 121
 122/***************************************************************************
 123	CS4215 specific definitions and structures
 124****************************************************************************/
 125
 126struct cs4215 {
 127	__u8 data[4];		/* Data mode: Time slots 5-8 */
 128	__u8 ctrl[4];		/* Ctrl mode: Time slots 1-4 */
 129	__u8 onboard;
 130	__u8 offset;		/* Bit offset from frame sync to time slot 1 */
 131	volatile __u32 status;
 132	volatile __u32 version;
 133	__u8 precision;		/* In bits, either 8 or 16 */
 134	__u8 channels;		/* 1 or 2 */
 135};
 136
 137/*
 138 * Control mode first
 139 */
 140
 141/* Time Slot 1, Status register */
 142#define CS4215_CLB	(1<<2)	/* Control Latch Bit */
 143#define CS4215_OLB	(1<<3)	/* 1: line: 2.0V, speaker 4V */
 144				/* 0: line: 2.8V, speaker 8V */
 145#define CS4215_MLB	(1<<4)	/* 1: Microphone: 20dB gain disabled */
 146#define CS4215_RSRVD_1  (1<<5)
 147
 148/* Time Slot 2, Data Format Register */
 149#define CS4215_DFR_LINEAR16	0
 150#define CS4215_DFR_ULAW		1
 151#define CS4215_DFR_ALAW		2
 152#define CS4215_DFR_LINEAR8	3
 153#define CS4215_DFR_STEREO	(1<<2)
 154static struct {
 155	unsigned short freq;
 156	unsigned char xtal;
 157	unsigned char csval;
 158} CS4215_FREQ[] = {
 159	{  8000, (1 << 4), (0 << 3) },
 160	{ 16000, (1 << 4), (1 << 3) },
 161	{ 27429, (1 << 4), (2 << 3) },	/* Actually 24428.57 */
 162	{ 32000, (1 << 4), (3 << 3) },
 163     /* {    NA, (1 << 4), (4 << 3) }, */
 164     /* {    NA, (1 << 4), (5 << 3) }, */
 165	{ 48000, (1 << 4), (6 << 3) },
 166	{  9600, (1 << 4), (7 << 3) },
 167	{  5512, (2 << 4), (0 << 3) },	/* Actually 5512.5 */
 168	{ 11025, (2 << 4), (1 << 3) },
 169	{ 18900, (2 << 4), (2 << 3) },
 170	{ 22050, (2 << 4), (3 << 3) },
 171	{ 37800, (2 << 4), (4 << 3) },
 172	{ 44100, (2 << 4), (5 << 3) },
 173	{ 33075, (2 << 4), (6 << 3) },
 174	{  6615, (2 << 4), (7 << 3) },
 175	{ 0, 0, 0}
 176};
 177
 178#define CS4215_HPF	(1<<7)	/* High Pass Filter, 1: Enabled */
 179
 180#define CS4215_12_MASK	0xfcbf	/* Mask off reserved bits in slot 1 & 2 */
 181
 182/* Time Slot 3, Serial Port Control register */
 183#define CS4215_XEN	(1<<0)	/* 0: Enable serial output */
 184#define CS4215_XCLK	(1<<1)	/* 1: Master mode: Generate SCLK */
 185#define CS4215_BSEL_64	(0<<2)	/* Bitrate: 64 bits per frame */
 186#define CS4215_BSEL_128	(1<<2)
 187#define CS4215_BSEL_256	(2<<2)
 188#define CS4215_MCK_MAST (0<<4)	/* Master clock */
 189#define CS4215_MCK_XTL1 (1<<4)	/* 24.576 MHz clock source */
 190#define CS4215_MCK_XTL2 (2<<4)	/* 16.9344 MHz clock source */
 191#define CS4215_MCK_CLK1 (3<<4)	/* Clockin, 256 x Fs */
 192#define CS4215_MCK_CLK2 (4<<4)	/* Clockin, see DFR */
 193
 194/* Time Slot 4, Test Register */
 195#define CS4215_DAD	(1<<0)	/* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
 196#define CS4215_ENL	(1<<1)	/* Enable Loopback Testing */
 197
 198/* Time Slot 5, Parallel Port Register */
 199/* Read only here and the same as the in data mode */
 200
 201/* Time Slot 6, Reserved  */
 202
 203/* Time Slot 7, Version Register  */
 204#define CS4215_VERSION_MASK 0xf	/* Known versions 0/C, 1/D, 2/E */
 205
 206/* Time Slot 8, Reserved  */
 207
 208/*
 209 * Data mode
 210 */
 211/* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
 212
 213/* Time Slot 5, Output Setting  */
 214#define CS4215_LO(v)	v	/* Left Output Attenuation 0x3f: -94.5 dB */
 215#define CS4215_LE	(1<<6)	/* Line Out Enable */
 216#define CS4215_HE	(1<<7)	/* Headphone Enable */
 217
 218/* Time Slot 6, Output Setting  */
 219#define CS4215_RO(v)	v	/* Right Output Attenuation 0x3f: -94.5 dB */
 220#define CS4215_SE	(1<<6)	/* Speaker Enable */
 221#define CS4215_ADI	(1<<7)	/* A/D Data Invalid: Busy in calibration */
 222
 223/* Time Slot 7, Input Setting */
 224#define CS4215_LG(v)	v	/* Left Gain Setting 0xf: 22.5 dB */
 225#define CS4215_IS	(1<<4)	/* Input Select: 1=Microphone, 0=Line */
 226#define CS4215_OVR	(1<<5)	/* 1: Over range condition occurred */
 227#define CS4215_PIO0	(1<<6)	/* Parallel I/O 0 */
 228#define CS4215_PIO1	(1<<7)
 229
 230/* Time Slot 8, Input Setting */
 231#define CS4215_RG(v)	v	/* Right Gain Setting 0xf: 22.5 dB */
 232#define CS4215_MA(v)	(v<<4)	/* Monitor Path Attenuation 0xf: mute */
 233
 234/***************************************************************************
 235		DBRI specific definitions and structures
 236****************************************************************************/
 237
 238/* DBRI main registers */
 239#define REG0	0x00		/* Status and Control */
 240#define REG1	0x04		/* Mode and Interrupt */
 241#define REG2	0x08		/* Parallel IO */
 242#define REG3	0x0c		/* Test */
 243#define REG8	0x20		/* Command Queue Pointer */
 244#define REG9	0x24		/* Interrupt Queue Pointer */
 245
 246#define DBRI_NO_CMDS	64
 247#define DBRI_INT_BLK	64
 248#define DBRI_NO_DESCS	64
 249#define DBRI_NO_PIPES	32
 250#define DBRI_MAX_PIPE	(DBRI_NO_PIPES - 1)
 251
 252#define DBRI_REC	0
 253#define DBRI_PLAY	1
 254#define DBRI_NO_STREAMS	2
 255
 256/* One transmit/receive descriptor */
 257/* When ba != 0 descriptor is used */
 258struct dbri_mem {
 259	volatile __u32 word1;
 260	__u32 ba;	/* Transmit/Receive Buffer Address */
 261	__u32 nda;	/* Next Descriptor Address */
 262	volatile __u32 word4;
 263};
 264
 265/* This structure is in a DMA region where it can accessed by both
 266 * the CPU and the DBRI
 267 */
 268struct dbri_dma {
 269	s32 cmd[DBRI_NO_CMDS];			/* Place for commands */
 270	volatile s32 intr[DBRI_INT_BLK];	/* Interrupt field  */
 271	struct dbri_mem desc[DBRI_NO_DESCS];	/* Xmit/receive descriptors */
 272};
 273
 274#define dbri_dma_off(member, elem)	\
 275	((u32)(unsigned long)		\
 276	 (&(((struct dbri_dma *)0)->member[elem])))
 277
 278enum in_or_out { PIPEinput, PIPEoutput };
 279
 280struct dbri_pipe {
 281	u32 sdp;		/* SDP command word */
 282	int nextpipe;		/* Next pipe in linked list */
 283	int length;		/* Length of timeslot (bits) */
 284	int first_desc;		/* Index of first descriptor */
 285	int desc;		/* Index of active descriptor */
 286	volatile __u32 *recv_fixed_ptr;	/* Ptr to receive fixed data */
 287};
 288
 289/* Per stream (playback or record) information */
 290struct dbri_streaminfo {
 291	struct snd_pcm_substream *substream;
 292	u32 dvma_buffer;	/* Device view of ALSA DMA buffer */
 293	int size;		/* Size of DMA buffer             */
 294	size_t offset;		/* offset in user buffer          */
 295	int pipe;		/* Data pipe used                 */
 296	int left_gain;		/* mixer elements                 */
 297	int right_gain;
 298};
 299
 300/* This structure holds the information for both chips (DBRI & CS4215) */
 301struct snd_dbri {
 302	int regs_size, irq;	/* Needed for unload */
 303	struct platform_device *op;	/* OF device info */
 304	spinlock_t lock;
 305
 306	struct dbri_dma *dma;	/* Pointer to our DMA block */
 307	u32 dma_dvma;		/* DBRI visible DMA address */
 308
 309	void __iomem *regs;	/* dbri HW regs */
 310	int dbri_irqp;		/* intr queue pointer */
 311
 312	struct dbri_pipe pipes[DBRI_NO_PIPES];	/* DBRI's 32 data pipes */
 313	int next_desc[DBRI_NO_DESCS];		/* Index of next desc, or -1 */
 314	spinlock_t cmdlock;	/* Protects cmd queue accesses */
 315	s32 *cmdptr;		/* Pointer to the last queued cmd */
 316
 317	int chi_bpf;
 318
 319	struct cs4215 mm;	/* mmcodec special info */
 320				/* per stream (playback/record) info */
 321	struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
 322};
 323
 324#define DBRI_MAX_VOLUME		63	/* Output volume */
 325#define DBRI_MAX_GAIN		15	/* Input gain */
 326
 327/* DBRI Reg0 - Status Control Register - defines. (Page 17) */
 328#define D_P		(1<<15)	/* Program command & queue pointer valid */
 329#define D_G		(1<<14)	/* Allow 4-Word SBus Burst */
 330#define D_S		(1<<13)	/* Allow 16-Word SBus Burst */
 331#define D_E		(1<<12)	/* Allow 8-Word SBus Burst */
 332#define D_X		(1<<7)	/* Sanity Timer Disable */
 333#define D_T		(1<<6)	/* Permit activation of the TE interface */
 334#define D_N		(1<<5)	/* Permit activation of the NT interface */
 335#define D_C		(1<<4)	/* Permit activation of the CHI interface */
 336#define D_F		(1<<3)	/* Force Sanity Timer Time-Out */
 337#define D_D		(1<<2)	/* Disable Master Mode */
 338#define D_H		(1<<1)	/* Halt for Analysis */
 339#define D_R		(1<<0)	/* Soft Reset */
 340
 341/* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
 342#define D_LITTLE_END	(1<<8)	/* Byte Order */
 343#define D_BIG_END	(0<<8)	/* Byte Order */
 344#define D_MRR		(1<<4)	/* Multiple Error Ack on SBus (read only) */
 345#define D_MLE		(1<<3)	/* Multiple Late Error on SBus (read only) */
 346#define D_LBG		(1<<2)	/* Lost Bus Grant on SBus (read only) */
 347#define D_MBE		(1<<1)	/* Burst Error on SBus (read only) */
 348#define D_IR		(1<<0)	/* Interrupt Indicator (read only) */
 349
 350/* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
 351#define D_ENPIO3	(1<<7)	/* Enable Pin 3 */
 352#define D_ENPIO2	(1<<6)	/* Enable Pin 2 */
 353#define D_ENPIO1	(1<<5)	/* Enable Pin 1 */
 354#define D_ENPIO0	(1<<4)	/* Enable Pin 0 */
 355#define D_ENPIO		(0xf0)	/* Enable all the pins */
 356#define D_PIO3		(1<<3)	/* Pin 3: 1: Data mode, 0: Ctrl mode */
 357#define D_PIO2		(1<<2)	/* Pin 2: 1: Onboard PDN */
 358#define D_PIO1		(1<<1)	/* Pin 1: 0: Reset */
 359#define D_PIO0		(1<<0)	/* Pin 0: 1: Speakerbox PDN */
 360
 361/* DBRI Commands (Page 20) */
 362#define D_WAIT		0x0	/* Stop execution */
 363#define D_PAUSE		0x1	/* Flush long pipes */
 364#define D_JUMP		0x2	/* New command queue */
 365#define D_IIQ		0x3	/* Initialize Interrupt Queue */
 366#define D_REX		0x4	/* Report command execution via interrupt */
 367#define D_SDP		0x5	/* Setup Data Pipe */
 368#define D_CDP		0x6	/* Continue Data Pipe (reread NULL Pointer) */
 369#define D_DTS		0x7	/* Define Time Slot */
 370#define D_SSP		0x8	/* Set short Data Pipe */
 371#define D_CHI		0x9	/* Set CHI Global Mode */
 372#define D_NT		0xa	/* NT Command */
 373#define D_TE		0xb	/* TE Command */
 374#define D_CDEC		0xc	/* Codec setup */
 375#define D_TEST		0xd	/* No comment */
 376#define D_CDM		0xe	/* CHI Data mode command */
 377
 378/* Special bits for some commands */
 379#define D_PIPE(v)      ((v)<<0)	/* Pipe No.: 0-15 long, 16-21 short */
 380
 381/* Setup Data Pipe */
 382/* IRM */
 383#define D_SDP_2SAME	(1<<18)	/* Report 2nd time in a row value received */
 384#define D_SDP_CHANGE	(2<<18)	/* Report any changes */
 385#define D_SDP_EVERY	(3<<18)	/* Report any changes */
 386#define D_SDP_EOL	(1<<17)	/* EOL interrupt enable */
 387#define D_SDP_IDLE	(1<<16)	/* HDLC idle interrupt enable */
 388
 389/* Pipe data MODE */
 390#define D_SDP_MEM	(0<<13)	/* To/from memory */
 391#define D_SDP_HDLC	(2<<13)
 392#define D_SDP_HDLC_D	(3<<13)	/* D Channel (prio control) */
 393#define D_SDP_SER	(4<<13)	/* Serial to serial */
 394#define D_SDP_FIXED	(6<<13)	/* Short only */
 395#define D_SDP_MODE(v)	((v)&(7<<13))
 396
 397#define D_SDP_TO_SER	(1<<12)	/* Direction */
 398#define D_SDP_FROM_SER	(0<<12)	/* Direction */
 399#define D_SDP_MSB	(1<<11)	/* Bit order within Byte */
 400#define D_SDP_LSB	(0<<11)	/* Bit order within Byte */
 401#define D_SDP_P		(1<<10)	/* Pointer Valid */
 402#define D_SDP_A		(1<<8)	/* Abort */
 403#define D_SDP_C		(1<<7)	/* Clear */
 404
 405/* Define Time Slot */
 406#define D_DTS_VI	(1<<17)	/* Valid Input Time-Slot Descriptor */
 407#define D_DTS_VO	(1<<16)	/* Valid Output Time-Slot Descriptor */
 408#define D_DTS_INS	(1<<15)	/* Insert Time Slot */
 409#define D_DTS_DEL	(0<<15)	/* Delete Time Slot */
 410#define D_DTS_PRVIN(v) ((v)<<10)	/* Previous In Pipe */
 411#define D_DTS_PRVOUT(v)        ((v)<<5)	/* Previous Out Pipe */
 412
 413/* Time Slot defines */
 414#define D_TS_LEN(v)	((v)<<24)	/* Number of bits in this time slot */
 415#define D_TS_CYCLE(v)	((v)<<14)	/* Bit Count at start of TS */
 416#define D_TS_DI		(1<<13)	/* Data Invert */
 417#define D_TS_1CHANNEL	(0<<10)	/* Single Channel / Normal mode */
 418#define D_TS_MONITOR	(2<<10)	/* Monitor pipe */
 419#define D_TS_NONCONTIG	(3<<10)	/* Non contiguous mode */
 420#define D_TS_ANCHOR	(7<<10)	/* Starting short pipes */
 421#define D_TS_MON(v)    ((v)<<5)	/* Monitor Pipe */
 422#define D_TS_NEXT(v)   ((v)<<0)	/* Pipe no.: 0-15 long, 16-21 short */
 423
 424/* Concentration Highway Interface Modes */
 425#define D_CHI_CHICM(v)	((v)<<16)	/* Clock mode */
 426#define D_CHI_IR	(1<<15)	/* Immediate Interrupt Report */
 427#define D_CHI_EN	(1<<14)	/* CHIL Interrupt enabled */
 428#define D_CHI_OD	(1<<13)	/* Open Drain Enable */
 429#define D_CHI_FE	(1<<12)	/* Sample CHIFS on Rising Frame Edge */
 430#define D_CHI_FD	(1<<11)	/* Frame Drive */
 431#define D_CHI_BPF(v)	((v)<<0)	/* Bits per Frame */
 432
 433/* NT: These are here for completeness */
 434#define D_NT_FBIT	(1<<17)	/* Frame Bit */
 435#define D_NT_NBF	(1<<16)	/* Number of bad frames to loose framing */
 436#define D_NT_IRM_IMM	(1<<15)	/* Interrupt Report & Mask: Immediate */
 437#define D_NT_IRM_EN	(1<<14)	/* Interrupt Report & Mask: Enable */
 438#define D_NT_ISNT	(1<<13)	/* Configure interface as NT */
 439#define D_NT_FT		(1<<12)	/* Fixed Timing */
 440#define D_NT_EZ		(1<<11)	/* Echo Channel is Zeros */
 441#define D_NT_IFA	(1<<10)	/* Inhibit Final Activation */
 442#define D_NT_ACT	(1<<9)	/* Activate Interface */
 443#define D_NT_MFE	(1<<8)	/* Multiframe Enable */
 444#define D_NT_RLB(v)	((v)<<5)	/* Remote Loopback */
 445#define D_NT_LLB(v)	((v)<<2)	/* Local Loopback */
 446#define D_NT_FACT	(1<<1)	/* Force Activation */
 447#define D_NT_ABV	(1<<0)	/* Activate Bipolar Violation */
 448
 449/* Codec Setup */
 450#define D_CDEC_CK(v)	((v)<<24)	/* Clock Select */
 451#define D_CDEC_FED(v)	((v)<<12)	/* FSCOD Falling Edge Delay */
 452#define D_CDEC_RED(v)	((v)<<0)	/* FSCOD Rising Edge Delay */
 453
 454/* Test */
 455#define D_TEST_RAM(v)	((v)<<16)	/* RAM Pointer */
 456#define D_TEST_SIZE(v)	((v)<<11)	/* */
 457#define D_TEST_ROMONOFF	0x5	/* Toggle ROM opcode monitor on/off */
 458#define D_TEST_PROC	0x6	/* Microprocessor test */
 459#define D_TEST_SER	0x7	/* Serial-Controller test */
 460#define D_TEST_RAMREAD	0x8	/* Copy from Ram to system memory */
 461#define D_TEST_RAMWRITE	0x9	/* Copy into Ram from system memory */
 462#define D_TEST_RAMBIST	0xa	/* RAM Built-In Self Test */
 463#define D_TEST_MCBIST	0xb	/* Microcontroller Built-In Self Test */
 464#define D_TEST_DUMP	0xe	/* ROM Dump */
 465
 466/* CHI Data Mode */
 467#define D_CDM_THI	(1 << 8)	/* Transmit Data on CHIDR Pin */
 468#define D_CDM_RHI	(1 << 7)	/* Receive Data on CHIDX Pin */
 469#define D_CDM_RCE	(1 << 6)	/* Receive on Rising Edge of CHICK */
 470#define D_CDM_XCE	(1 << 2) /* Transmit Data on Rising Edge of CHICK */
 471#define D_CDM_XEN	(1 << 1)	/* Transmit Highway Enable */
 472#define D_CDM_REN	(1 << 0)	/* Receive Highway Enable */
 473
 474/* The Interrupts */
 475#define D_INTR_BRDY	1	/* Buffer Ready for processing */
 476#define D_INTR_MINT	2	/* Marked Interrupt in RD/TD */
 477#define D_INTR_IBEG	3	/* Flag to idle transition detected (HDLC) */
 478#define D_INTR_IEND	4	/* Idle to flag transition detected (HDLC) */
 479#define D_INTR_EOL	5	/* End of List */
 480#define D_INTR_CMDI	6	/* Command has bean read */
 481#define D_INTR_XCMP	8	/* Transmission of frame complete */
 482#define D_INTR_SBRI	9	/* BRI status change info */
 483#define D_INTR_FXDT	10	/* Fixed data change */
 484#define D_INTR_CHIL	11	/* CHI lost frame sync (channel 36 only) */
 485#define D_INTR_COLL	11	/* Unrecoverable D-Channel collision */
 486#define D_INTR_DBYT	12	/* Dropped by frame slip */
 487#define D_INTR_RBYT	13	/* Repeated by frame slip */
 488#define D_INTR_LINT	14	/* Lost Interrupt */
 489#define D_INTR_UNDR	15	/* DMA underrun */
 490
 491#define D_INTR_TE	32
 492#define D_INTR_NT	34
 493#define D_INTR_CHI	36
 494#define D_INTR_CMD	38
 495
 496#define D_INTR_GETCHAN(v)	(((v) >> 24) & 0x3f)
 497#define D_INTR_GETCODE(v)	(((v) >> 20) & 0xf)
 498#define D_INTR_GETCMD(v)	(((v) >> 16) & 0xf)
 499#define D_INTR_GETVAL(v)	((v) & 0xffff)
 500#define D_INTR_GETRVAL(v)	((v) & 0xfffff)
 501
 502#define D_P_0		0	/* TE receive anchor */
 503#define D_P_1		1	/* TE transmit anchor */
 504#define D_P_2		2	/* NT transmit anchor */
 505#define D_P_3		3	/* NT receive anchor */
 506#define D_P_4		4	/* CHI send data */
 507#define D_P_5		5	/* CHI receive data */
 508#define D_P_6		6	/* */
 509#define D_P_7		7	/* */
 510#define D_P_8		8	/* */
 511#define D_P_9		9	/* */
 512#define D_P_10		10	/* */
 513#define D_P_11		11	/* */
 514#define D_P_12		12	/* */
 515#define D_P_13		13	/* */
 516#define D_P_14		14	/* */
 517#define D_P_15		15	/* */
 518#define D_P_16		16	/* CHI anchor pipe */
 519#define D_P_17		17	/* CHI send */
 520#define D_P_18		18	/* CHI receive */
 521#define D_P_19		19	/* CHI receive */
 522#define D_P_20		20	/* CHI receive */
 523#define D_P_21		21	/* */
 524#define D_P_22		22	/* */
 525#define D_P_23		23	/* */
 526#define D_P_24		24	/* */
 527#define D_P_25		25	/* */
 528#define D_P_26		26	/* */
 529#define D_P_27		27	/* */
 530#define D_P_28		28	/* */
 531#define D_P_29		29	/* */
 532#define D_P_30		30	/* */
 533#define D_P_31		31	/* */
 534
 535/* Transmit descriptor defines */
 536#define DBRI_TD_F	(1 << 31)	/* End of Frame */
 537#define DBRI_TD_D	(1 << 30)	/* Do not append CRC */
 538#define DBRI_TD_CNT(v)	((v) << 16) /* Number of valid bytes in the buffer */
 539#define DBRI_TD_B	(1 << 15)	/* Final interrupt */
 540#define DBRI_TD_M	(1 << 14)	/* Marker interrupt */
 541#define DBRI_TD_I	(1 << 13)	/* Transmit Idle Characters */
 542#define DBRI_TD_FCNT(v)	(v)		/* Flag Count */
 543#define DBRI_TD_UNR	(1 << 3) /* Underrun: transmitter is out of data */
 544#define DBRI_TD_ABT	(1 << 2)	/* Abort: frame aborted */
 545#define DBRI_TD_TBC	(1 << 0)	/* Transmit buffer Complete */
 546#define DBRI_TD_STATUS(v)       ((v) & 0xff)	/* Transmit status */
 547			/* Maximum buffer size per TD: almost 8KB */
 548#define DBRI_TD_MAXCNT	((1 << 13) - 4)
 549
 550/* Receive descriptor defines */
 551#define DBRI_RD_F	(1 << 31)	/* End of Frame */
 552#define DBRI_RD_C	(1 << 30)	/* Completed buffer */
 553#define DBRI_RD_B	(1 << 15)	/* Final interrupt */
 554#define DBRI_RD_M	(1 << 14)	/* Marker interrupt */
 555#define DBRI_RD_BCNT(v)	(v)		/* Buffer size */
 556#define DBRI_RD_CRC	(1 << 7)	/* 0: CRC is correct */
 557#define DBRI_RD_BBC	(1 << 6)	/* 1: Bad Byte received */
 558#define DBRI_RD_ABT	(1 << 5)	/* Abort: frame aborted */
 559#define DBRI_RD_OVRN	(1 << 3)	/* Overrun: data lost */
 560#define DBRI_RD_STATUS(v)      ((v) & 0xff)	/* Receive status */
 561#define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)	/* Valid bytes in the buffer */
 562
 563/* stream_info[] access */
 564/* Translate the ALSA direction into the array index */
 565#define DBRI_STREAMNO(substream)				\
 566		(substream->stream ==				\
 567		 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
 568
 569/* Return a pointer to dbri_streaminfo */
 570#define DBRI_STREAM(dbri, substream)	\
 571		&dbri->stream_info[DBRI_STREAMNO(substream)]
 572
 573/*
 574 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
 575 * So we have to reverse the bits. Note: not all bit lengths are supported
 576 */
 577static __u32 reverse_bytes(__u32 b, int len)
 578{
 579	switch (len) {
 580	case 32:
 581		b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
 
 582	case 16:
 583		b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
 
 584	case 8:
 585		b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
 
 586	case 4:
 587		b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
 
 588	case 2:
 589		b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
 590	case 1:
 591	case 0:
 592		break;
 593	default:
 594		printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
 595	}
 596
 597	return b;
 598}
 599
 600/*
 601****************************************************************************
 602************** DBRI initialization and command synchronization *************
 603****************************************************************************
 604
 605Commands are sent to the DBRI by building a list of them in memory,
 606then writing the address of the first list item to DBRI register 8.
 607The list is terminated with a WAIT command, which generates a
 608CPU interrupt to signal completion.
 609
 610Since the DBRI can run in parallel with the CPU, several means of
 611synchronization present themselves. The method implemented here uses
 612the dbri_cmdwait() to wait for execution of batch of sent commands.
 613
 614A circular command buffer is used here. A new command is being added
 615while another can be executed. The scheme works by adding two WAIT commands
 616after each sent batch of commands. When the next batch is prepared it is
 617added after the WAIT commands then the WAITs are replaced with single JUMP
 618command to the new batch. The the DBRI is forced to reread the last WAIT
 619command (replaced by the JUMP by then). If the DBRI is still executing
 620previous commands the request to reread the WAIT command is ignored.
 621
 622Every time a routine wants to write commands to the DBRI, it must
 623first call dbri_cmdlock() and get pointer to a free space in
 624dbri->dma->cmd buffer. After this, the commands can be written to
 625the buffer, and dbri_cmdsend() is called with the final pointer value
 626to send them to the DBRI.
 627
 628*/
 629
 630#define MAXLOOPS 20
 631/*
 632 * Wait for the current command string to execute
 633 */
 634static void dbri_cmdwait(struct snd_dbri *dbri)
 635{
 636	int maxloops = MAXLOOPS;
 637	unsigned long flags;
 638
 639	/* Delay if previous commands are still being processed */
 640	spin_lock_irqsave(&dbri->lock, flags);
 641	while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
 642		spin_unlock_irqrestore(&dbri->lock, flags);
 643		msleep_interruptible(1);
 644		spin_lock_irqsave(&dbri->lock, flags);
 645	}
 646	spin_unlock_irqrestore(&dbri->lock, flags);
 647
 648	if (maxloops == 0)
 649		printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
 650	else
 651		dprintk(D_CMD, "Chip completed command buffer (%d)\n",
 652			MAXLOOPS - maxloops - 1);
 653}
 654/*
 655 * Lock the command queue and return pointer to space for len cmd words
 656 * It locks the cmdlock spinlock.
 657 */
 658static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
 659{
 
 
 660	/* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
 661	len += 2;
 662	spin_lock(&dbri->cmdlock);
 663	if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
 664		return dbri->cmdptr + 2;
 665	else if (len < sbus_readl(dbri->regs + REG8) - dbri->dma_dvma)
 666		return dbri->dma->cmd;
 667	else
 668		printk(KERN_ERR "DBRI: no space for commands.");
 669
 670	return NULL;
 671}
 672
 673/*
 674 * Send prepared cmd string. It works by writing a JUMP cmd into
 675 * the last WAIT cmd and force DBRI to reread the cmd.
 676 * The JUMP cmd points to the new cmd string.
 677 * It also releases the cmdlock spinlock.
 678 *
 679 * Lock must be held before calling this.
 680 */
 681static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
 682{
 
 683	s32 tmp, addr;
 684	static int wait_id = 0;
 685
 686	wait_id++;
 687	wait_id &= 0xffff;	/* restrict it to a 16 bit counter. */
 688	*(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
 689	*(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
 690
 691	/* Replace the last command with JUMP */
 692	addr = dbri->dma_dvma + (cmd - len - dbri->dma->cmd) * sizeof(s32);
 693	*(dbri->cmdptr+1) = addr;
 694	*(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
 695
 696#ifdef DBRI_DEBUG
 697	if (cmd > dbri->cmdptr) {
 698		s32 *ptr;
 699
 700		for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
 701			dprintk(D_CMD, "cmd: %lx:%08x\n",
 702				(unsigned long)ptr, *ptr);
 703	} else {
 704		s32 *ptr = dbri->cmdptr;
 705
 706		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
 707		ptr++;
 708		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
 709		for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
 710			dprintk(D_CMD, "cmd: %lx:%08x\n",
 711				(unsigned long)ptr, *ptr);
 712	}
 713#endif
 714
 715	/* Reread the last command */
 716	tmp = sbus_readl(dbri->regs + REG0);
 717	tmp |= D_P;
 718	sbus_writel(tmp, dbri->regs + REG0);
 719
 720	dbri->cmdptr = cmd;
 721	spin_unlock(&dbri->cmdlock);
 722}
 723
 724/* Lock must be held when calling this */
 725static void dbri_reset(struct snd_dbri *dbri)
 726{
 727	int i;
 728	u32 tmp;
 729
 730	dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
 731		sbus_readl(dbri->regs + REG0),
 732		sbus_readl(dbri->regs + REG2),
 733		sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
 734
 735	sbus_writel(D_R, dbri->regs + REG0);	/* Soft Reset */
 736	for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
 737		udelay(10);
 738
 739	/* A brute approach - DBRI falls back to working burst size by itself
 740	 * On SS20 D_S does not work, so do not try so high. */
 741	tmp = sbus_readl(dbri->regs + REG0);
 742	tmp |= D_G | D_E;
 743	tmp &= ~D_S;
 744	sbus_writel(tmp, dbri->regs + REG0);
 745}
 746
 747/* Lock must not be held before calling this */
 748static void dbri_initialize(struct snd_dbri *dbri)
 749{
 
 750	s32 *cmd;
 751	u32 dma_addr;
 752	unsigned long flags;
 753	int n;
 754
 755	spin_lock_irqsave(&dbri->lock, flags);
 756
 757	dbri_reset(dbri);
 758
 759	/* Initialize pipes */
 760	for (n = 0; n < DBRI_NO_PIPES; n++)
 761		dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
 762
 763	spin_lock_init(&dbri->cmdlock);
 764	/*
 765	 * Initialize the interrupt ring buffer.
 766	 */
 767	dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
 768	dbri->dma->intr[0] = dma_addr;
 769	dbri->dbri_irqp = 1;
 770	/*
 771	 * Set up the interrupt queue
 772	 */
 773	spin_lock(&dbri->cmdlock);
 774	cmd = dbri->cmdptr = dbri->dma->cmd;
 775	*(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
 776	*(cmd++) = dma_addr;
 777	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 778	dbri->cmdptr = cmd;
 779	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
 780	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
 781	dma_addr = dbri->dma_dvma + dbri_dma_off(cmd, 0);
 782	sbus_writel(dma_addr, dbri->regs + REG8);
 783	spin_unlock(&dbri->cmdlock);
 784
 785	spin_unlock_irqrestore(&dbri->lock, flags);
 786	dbri_cmdwait(dbri);
 787}
 788
 789/*
 790****************************************************************************
 791************************** DBRI data pipe management ***********************
 792****************************************************************************
 793
 794While DBRI control functions use the command and interrupt buffers, the
 795main data path takes the form of data pipes, which can be short (command
 796and interrupt driven), or long (attached to DMA buffers).  These functions
 797provide a rudimentary means of setting up and managing the DBRI's pipes,
 798but the calling functions have to make sure they respect the pipes' linked
 799list ordering, among other things.  The transmit and receive functions
 800here interface closely with the transmit and receive interrupt code.
 801
 802*/
 803static inline int pipe_active(struct snd_dbri *dbri, int pipe)
 804{
 805	return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
 806}
 807
 808/* reset_pipe(dbri, pipe)
 809 *
 810 * Called on an in-use pipe to clear anything being transmitted or received
 811 * Lock must be held before calling this.
 812 */
 813static void reset_pipe(struct snd_dbri *dbri, int pipe)
 814{
 815	int sdp;
 816	int desc;
 817	s32 *cmd;
 818
 819	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
 820		printk(KERN_ERR "DBRI: reset_pipe called with "
 821			"illegal pipe number\n");
 822		return;
 823	}
 824
 825	sdp = dbri->pipes[pipe].sdp;
 826	if (sdp == 0) {
 827		printk(KERN_ERR "DBRI: reset_pipe called "
 828			"on uninitialized pipe\n");
 829		return;
 830	}
 831
 832	cmd = dbri_cmdlock(dbri, 3);
 833	*(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
 834	*(cmd++) = 0;
 835	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 836	dbri_cmdsend(dbri, cmd, 3);
 837
 838	desc = dbri->pipes[pipe].first_desc;
 839	if (desc >= 0)
 840		do {
 841			dbri->dma->desc[desc].ba = 0;
 842			dbri->dma->desc[desc].nda = 0;
 843			desc = dbri->next_desc[desc];
 844		} while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
 845
 846	dbri->pipes[pipe].desc = -1;
 847	dbri->pipes[pipe].first_desc = -1;
 848}
 849
 850/*
 851 * Lock must be held before calling this.
 852 */
 853static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
 854{
 855	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
 856		printk(KERN_ERR "DBRI: setup_pipe called "
 857			"with illegal pipe number\n");
 858		return;
 859	}
 860
 861	if ((sdp & 0xf800) != sdp) {
 862		printk(KERN_ERR "DBRI: setup_pipe called "
 863			"with strange SDP value\n");
 864		/* sdp &= 0xf800; */
 865	}
 866
 867	/* If this is a fixed receive pipe, arrange for an interrupt
 868	 * every time its data changes
 869	 */
 870	if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
 871		sdp |= D_SDP_CHANGE;
 872
 873	sdp |= D_PIPE(pipe);
 874	dbri->pipes[pipe].sdp = sdp;
 875	dbri->pipes[pipe].desc = -1;
 876	dbri->pipes[pipe].first_desc = -1;
 877
 878	reset_pipe(dbri, pipe);
 879}
 880
 881/*
 882 * Lock must be held before calling this.
 883 */
 884static void link_time_slot(struct snd_dbri *dbri, int pipe,
 885			   int prevpipe, int nextpipe,
 886			   int length, int cycle)
 887{
 888	s32 *cmd;
 889	int val;
 890
 891	if (pipe < 0 || pipe > DBRI_MAX_PIPE
 892			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
 893			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
 894		printk(KERN_ERR
 895		    "DBRI: link_time_slot called with illegal pipe number\n");
 896		return;
 897	}
 898
 899	if (dbri->pipes[pipe].sdp == 0
 900			|| dbri->pipes[prevpipe].sdp == 0
 901			|| dbri->pipes[nextpipe].sdp == 0) {
 902		printk(KERN_ERR "DBRI: link_time_slot called "
 903			"on uninitialized pipe\n");
 904		return;
 905	}
 906
 907	dbri->pipes[prevpipe].nextpipe = pipe;
 908	dbri->pipes[pipe].nextpipe = nextpipe;
 909	dbri->pipes[pipe].length = length;
 910
 911	cmd = dbri_cmdlock(dbri, 4);
 912
 913	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
 914		/* Deal with CHI special case:
 915		 * "If transmission on edges 0 or 1 is desired, then cycle n
 916		 *  (where n = # of bit times per frame...) must be used."
 917		 *                  - DBRI data sheet, page 11
 918		 */
 919		if (prevpipe == 16 && cycle == 0)
 920			cycle = dbri->chi_bpf;
 921
 922		val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
 923		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
 924		*(cmd++) = 0;
 925		*(cmd++) =
 926		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
 927	} else {
 928		val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
 929		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
 930		*(cmd++) =
 931		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
 932		*(cmd++) = 0;
 933	}
 934	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 935
 936	dbri_cmdsend(dbri, cmd, 4);
 937}
 938
 939#if 0
 940/*
 941 * Lock must be held before calling this.
 942 */
 943static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
 944			     enum in_or_out direction, int prevpipe,
 945			     int nextpipe)
 946{
 947	s32 *cmd;
 948	int val;
 949
 950	if (pipe < 0 || pipe > DBRI_MAX_PIPE
 951			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
 952			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
 953		printk(KERN_ERR
 954		    "DBRI: unlink_time_slot called with illegal pipe number\n");
 955		return;
 956	}
 957
 958	cmd = dbri_cmdlock(dbri, 4);
 959
 960	if (direction == PIPEinput) {
 961		val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
 962		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
 963		*(cmd++) = D_TS_NEXT(nextpipe);
 964		*(cmd++) = 0;
 965	} else {
 966		val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
 967		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
 968		*(cmd++) = 0;
 969		*(cmd++) = D_TS_NEXT(nextpipe);
 970	}
 971	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 972
 973	dbri_cmdsend(dbri, cmd, 4);
 974}
 975#endif
 976
 977/* xmit_fixed() / recv_fixed()
 978 *
 979 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
 980 * expected to change much, and which we don't need to buffer.
 981 * The DBRI only interrupts us when the data changes (receive pipes),
 982 * or only changes the data when this function is called (transmit pipes).
 983 * Only short pipes (numbers 16-31) can be used in fixed data mode.
 984 *
 985 * These function operate on a 32-bit field, no matter how large
 986 * the actual time slot is.  The interrupt handler takes care of bit
 987 * ordering and alignment.  An 8-bit time slot will always end up
 988 * in the low-order 8 bits, filled either MSB-first or LSB-first,
 989 * depending on the settings passed to setup_pipe().
 990 *
 991 * Lock must not be held before calling it.
 992 */
 993static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
 994{
 995	s32 *cmd;
 996	unsigned long flags;
 997
 998	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
 999		printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1000		return;
1001	}
1002
1003	if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1004		printk(KERN_ERR "DBRI: xmit_fixed: "
1005			"Uninitialized pipe %d\n", pipe);
1006		return;
1007	}
1008
1009	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1010		printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1011		return;
1012	}
1013
1014	if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1015		printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1016			pipe);
1017		return;
1018	}
1019
1020	/* DBRI short pipes always transmit LSB first */
1021
1022	if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1023		data = reverse_bytes(data, dbri->pipes[pipe].length);
1024
1025	cmd = dbri_cmdlock(dbri, 3);
1026
1027	*(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1028	*(cmd++) = data;
1029	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1030
1031	spin_lock_irqsave(&dbri->lock, flags);
1032	dbri_cmdsend(dbri, cmd, 3);
1033	spin_unlock_irqrestore(&dbri->lock, flags);
1034	dbri_cmdwait(dbri);
1035
1036}
1037
1038static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1039{
1040	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1041		printk(KERN_ERR "DBRI: recv_fixed called with "
1042			"illegal pipe number\n");
1043		return;
1044	}
1045
1046	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1047		printk(KERN_ERR "DBRI: recv_fixed called on "
1048			"non-fixed pipe %d\n", pipe);
1049		return;
1050	}
1051
1052	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1053		printk(KERN_ERR "DBRI: recv_fixed called on "
1054			"transmit pipe %d\n", pipe);
1055		return;
1056	}
1057
1058	dbri->pipes[pipe].recv_fixed_ptr = ptr;
1059}
1060
1061/* setup_descs()
1062 *
1063 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1064 * with a DMA buffer.
1065 *
1066 * Only pipe numbers 0-15 can be used in this mode.
1067 *
1068 * This function takes a stream number pointing to a data buffer,
1069 * and work by building chains of descriptors which identify the
1070 * data buffers.  Buffers too large for a single descriptor will
1071 * be spread across multiple descriptors.
1072 *
1073 * All descriptors create a ring buffer.
1074 *
1075 * Lock must be held before calling this.
1076 */
1077static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1078{
1079	struct dbri_streaminfo *info = &dbri->stream_info[streamno];
 
1080	__u32 dvma_buffer;
1081	int desc;
1082	int len;
1083	int first_desc = -1;
1084	int last_desc = -1;
1085
1086	if (info->pipe < 0 || info->pipe > 15) {
1087		printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1088		return -2;
1089	}
1090
1091	if (dbri->pipes[info->pipe].sdp == 0) {
1092		printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1093		       info->pipe);
1094		return -2;
1095	}
1096
1097	dvma_buffer = info->dvma_buffer;
1098	len = info->size;
1099
1100	if (streamno == DBRI_PLAY) {
1101		if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1102			printk(KERN_ERR "DBRI: setup_descs: "
1103				"Called on receive pipe %d\n", info->pipe);
1104			return -2;
1105		}
1106	} else {
1107		if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1108			printk(KERN_ERR
1109			    "DBRI: setup_descs: Called on transmit pipe %d\n",
1110			     info->pipe);
1111			return -2;
1112		}
1113		/* Should be able to queue multiple buffers
1114		 * to receive on a pipe
1115		 */
1116		if (pipe_active(dbri, info->pipe)) {
1117			printk(KERN_ERR "DBRI: recv_on_pipe: "
1118				"Called on active pipe %d\n", info->pipe);
1119			return -2;
1120		}
1121
1122		/* Make sure buffer size is multiple of four */
1123		len &= ~3;
1124	}
1125
1126	/* Free descriptors if pipe has any */
1127	desc = dbri->pipes[info->pipe].first_desc;
1128	if (desc >= 0)
1129		do {
1130			dbri->dma->desc[desc].ba = 0;
1131			dbri->dma->desc[desc].nda = 0;
1132			desc = dbri->next_desc[desc];
1133		} while (desc != -1 &&
1134			 desc != dbri->pipes[info->pipe].first_desc);
1135
1136	dbri->pipes[info->pipe].desc = -1;
1137	dbri->pipes[info->pipe].first_desc = -1;
1138
1139	desc = 0;
1140	while (len > 0) {
1141		int mylen;
1142
1143		for (; desc < DBRI_NO_DESCS; desc++) {
1144			if (!dbri->dma->desc[desc].ba)
1145				break;
1146		}
1147
1148		if (desc == DBRI_NO_DESCS) {
1149			printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1150			return -1;
1151		}
1152
1153		if (len > DBRI_TD_MAXCNT)
1154			mylen = DBRI_TD_MAXCNT;	/* 8KB - 4 */
1155		else
1156			mylen = len;
1157
1158		if (mylen > period)
1159			mylen = period;
1160
1161		dbri->next_desc[desc] = -1;
1162		dbri->dma->desc[desc].ba = dvma_buffer;
1163		dbri->dma->desc[desc].nda = 0;
1164
1165		if (streamno == DBRI_PLAY) {
1166			dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1167			dbri->dma->desc[desc].word4 = 0;
1168			dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1169		} else {
1170			dbri->dma->desc[desc].word1 = 0;
1171			dbri->dma->desc[desc].word4 =
1172			    DBRI_RD_B | DBRI_RD_BCNT(mylen);
1173		}
1174
1175		if (first_desc == -1)
1176			first_desc = desc;
1177		else {
1178			dbri->next_desc[last_desc] = desc;
1179			dbri->dma->desc[last_desc].nda =
1180			    dbri->dma_dvma + dbri_dma_off(desc, desc);
1181		}
1182
1183		last_desc = desc;
1184		dvma_buffer += mylen;
1185		len -= mylen;
1186	}
1187
1188	if (first_desc == -1 || last_desc == -1) {
1189		printk(KERN_ERR "DBRI: setup_descs: "
1190			" Not enough descriptors available\n");
1191		return -1;
1192	}
1193
1194	dbri->dma->desc[last_desc].nda =
1195	    dbri->dma_dvma + dbri_dma_off(desc, first_desc);
1196	dbri->next_desc[last_desc] = first_desc;
1197	dbri->pipes[info->pipe].first_desc = first_desc;
1198	dbri->pipes[info->pipe].desc = first_desc;
1199
1200#ifdef DBRI_DEBUG
1201	for (desc = first_desc; desc != -1;) {
1202		dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1203			desc,
1204			dbri->dma->desc[desc].word1,
1205			dbri->dma->desc[desc].ba,
1206			dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1207			desc = dbri->next_desc[desc];
1208			if (desc == first_desc)
1209				break;
1210	}
1211#endif
1212	return 0;
1213}
1214
1215/*
1216****************************************************************************
1217************************** DBRI - CHI interface ****************************
1218****************************************************************************
1219
1220The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1221multiplexed serial interface which the DBRI can operate in either master
1222(give clock/frame sync) or slave (take clock/frame sync) mode.
1223
1224*/
1225
1226enum master_or_slave { CHImaster, CHIslave };
1227
1228/*
1229 * Lock must not be held before calling it.
1230 */
1231static void reset_chi(struct snd_dbri *dbri,
1232		      enum master_or_slave master_or_slave,
1233		      int bits_per_frame)
1234{
1235	s32 *cmd;
1236	int val;
1237
1238	/* Set CHI Anchor: Pipe 16 */
1239
1240	cmd = dbri_cmdlock(dbri, 4);
1241	val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1242		| D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1243	*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1244	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1245	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1246	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1247	dbri_cmdsend(dbri, cmd, 4);
1248
1249	dbri->pipes[16].sdp = 1;
1250	dbri->pipes[16].nextpipe = 16;
1251
1252	cmd = dbri_cmdlock(dbri, 4);
1253
1254	if (master_or_slave == CHIslave) {
1255		/* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1256		 *
1257		 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1258		 * IR     = give immediate CHI status interrupt
1259		 * EN     = give CHI status interrupt upon change
1260		 */
1261		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1262	} else {
1263		/* Setup DBRI for CHI Master - generate clock, FS
1264		 *
1265		 * BPF				=  bits per 8 kHz frame
1266		 * 12.288 MHz / CHICM_divisor	= clock rate
1267		 * FD = 1 - drive CHIFS on rising edge of CHICK
1268		 */
1269		int clockrate = bits_per_frame * 8;
1270		int divisor = 12288 / clockrate;
1271
1272		if (divisor > 255 || divisor * clockrate != 12288)
1273			printk(KERN_ERR "DBRI: illegal bits_per_frame "
1274				"in setup_chi\n");
1275
1276		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1277				    | D_CHI_BPF(bits_per_frame));
1278	}
1279
1280	dbri->chi_bpf = bits_per_frame;
1281
1282	/* CHI Data Mode
1283	 *
1284	 * RCE   =  0 - receive on falling edge of CHICK
1285	 * XCE   =  1 - transmit on rising edge of CHICK
1286	 * XEN   =  1 - enable transmitter
1287	 * REN   =  1 - enable receiver
1288	 */
1289
1290	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1291	*(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1292	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1293
1294	dbri_cmdsend(dbri, cmd, 4);
1295}
1296
1297/*
1298****************************************************************************
1299*********************** CS4215 audio codec management **********************
1300****************************************************************************
1301
1302In the standard SPARC audio configuration, the CS4215 codec is attached
1303to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1304
1305 * Lock must not be held before calling it.
1306
1307*/
1308static void cs4215_setup_pipes(struct snd_dbri *dbri)
1309{
1310	unsigned long flags;
1311
1312	spin_lock_irqsave(&dbri->lock, flags);
1313	/*
1314	 * Data mode:
1315	 * Pipe  4: Send timeslots 1-4 (audio data)
1316	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1317	 * Pipe  6: Receive timeslots 1-4 (audio data)
1318	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1319	 *          interrupt, and the rest of the data (slot 5 and 8) is
1320	 *          not relevant for us (only for doublechecking).
1321	 *
1322	 * Control mode:
1323	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1324	 * Pipe 18: Receive timeslot 1 (clb).
1325	 * Pipe 19: Receive timeslot 7 (version).
1326	 */
1327
1328	setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1329	setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1330	setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1331	setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1332
1333	setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1334	setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1335	setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1336	spin_unlock_irqrestore(&dbri->lock, flags);
1337
1338	dbri_cmdwait(dbri);
1339}
1340
1341static int cs4215_init_data(struct cs4215 *mm)
1342{
1343	/*
1344	 * No action, memory resetting only.
1345	 *
1346	 * Data Time Slot 5-8
1347	 * Speaker,Line and Headphone enable. Gain set to the half.
1348	 * Input is mike.
1349	 */
1350	mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1351	mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1352	mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1353	mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1354
1355	/*
1356	 * Control Time Slot 1-4
1357	 * 0: Default I/O voltage scale
1358	 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1359	 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1360	 * 3: Tests disabled
1361	 */
1362	mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1363	mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1364	mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1365	mm->ctrl[3] = 0;
1366
1367	mm->status = 0;
1368	mm->version = 0xff;
1369	mm->precision = 8;	/* For ULAW */
1370	mm->channels = 1;
1371
1372	return 0;
1373}
1374
1375static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1376{
1377	if (muted) {
1378		dbri->mm.data[0] |= 63;
1379		dbri->mm.data[1] |= 63;
1380		dbri->mm.data[2] &= ~15;
1381		dbri->mm.data[3] &= ~15;
1382	} else {
1383		/* Start by setting the playback attenuation. */
1384		struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1385		int left_gain = info->left_gain & 0x3f;
1386		int right_gain = info->right_gain & 0x3f;
1387
1388		dbri->mm.data[0] &= ~0x3f;	/* Reset the volume bits */
1389		dbri->mm.data[1] &= ~0x3f;
1390		dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1391		dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1392
1393		/* Now set the recording gain. */
1394		info = &dbri->stream_info[DBRI_REC];
1395		left_gain = info->left_gain & 0xf;
1396		right_gain = info->right_gain & 0xf;
1397		dbri->mm.data[2] |= CS4215_LG(left_gain);
1398		dbri->mm.data[3] |= CS4215_RG(right_gain);
1399	}
1400
1401	xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1402}
1403
1404/*
1405 * Set the CS4215 to data mode.
1406 */
1407static void cs4215_open(struct snd_dbri *dbri)
1408{
1409	int data_width;
1410	u32 tmp;
1411	unsigned long flags;
1412
1413	dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1414		dbri->mm.channels, dbri->mm.precision);
1415
1416	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1417	 * to make sure this takes.  This avoids clicking noises.
1418	 */
1419
1420	cs4215_setdata(dbri, 1);
1421	udelay(125);
1422
1423	/*
1424	 * Data mode:
1425	 * Pipe  4: Send timeslots 1-4 (audio data)
1426	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1427	 * Pipe  6: Receive timeslots 1-4 (audio data)
1428	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1429	 *          interrupt, and the rest of the data (slot 5 and 8) is
1430	 *          not relevant for us (only for doublechecking).
1431	 *
1432	 * Just like in control mode, the time slots are all offset by eight
1433	 * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1434	 * even if it's the CHI master.  Don't ask me...
1435	 */
1436	spin_lock_irqsave(&dbri->lock, flags);
1437	tmp = sbus_readl(dbri->regs + REG0);
1438	tmp &= ~(D_C);		/* Disable CHI */
1439	sbus_writel(tmp, dbri->regs + REG0);
1440
1441	/* Switch CS4215 to data mode - set PIO3 to 1 */
1442	sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1443		    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1444
1445	reset_chi(dbri, CHIslave, 128);
1446
1447	/* Note: this next doesn't work for 8-bit stereo, because the two
1448	 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1449	 * (See CS4215 datasheet Fig 15)
1450	 *
1451	 * DBRI non-contiguous mode would be required to make this work.
1452	 */
1453	data_width = dbri->mm.channels * dbri->mm.precision;
1454
1455	link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1456	link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1457	link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1458	link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1459
1460	/* FIXME: enable CHI after _setdata? */
1461	tmp = sbus_readl(dbri->regs + REG0);
1462	tmp |= D_C;		/* Enable CHI */
1463	sbus_writel(tmp, dbri->regs + REG0);
1464	spin_unlock_irqrestore(&dbri->lock, flags);
1465
1466	cs4215_setdata(dbri, 0);
1467}
1468
1469/*
1470 * Send the control information (i.e. audio format)
1471 */
1472static int cs4215_setctrl(struct snd_dbri *dbri)
1473{
1474	int i, val;
1475	u32 tmp;
1476	unsigned long flags;
1477
1478	/* FIXME - let the CPU do something useful during these delays */
1479
1480	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1481	 * to make sure this takes.  This avoids clicking noises.
1482	 */
1483	cs4215_setdata(dbri, 1);
1484	udelay(125);
1485
1486	/*
1487	 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1488	 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1489	 */
1490	val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1491	sbus_writel(val, dbri->regs + REG2);
1492	dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1493	udelay(34);
1494
1495	/* In Control mode, the CS4215 is a slave device, so the DBRI must
1496	 * operate as CHI master, supplying clocking and frame synchronization.
1497	 *
1498	 * In Data mode, however, the CS4215 must be CHI master to insure
1499	 * that its data stream is synchronous with its codec.
1500	 *
1501	 * The upshot of all this?  We start by putting the DBRI into master
1502	 * mode, program the CS4215 in Control mode, then switch the CS4215
1503	 * into Data mode and put the DBRI into slave mode.  Various timing
1504	 * requirements must be observed along the way.
1505	 *
1506	 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1507	 * others?), the addressing of the CS4215's time slots is
1508	 * offset by eight bits, so we add eight to all the "cycle"
1509	 * values in the Define Time Slot (DTS) commands.  This is
1510	 * done in hardware by a TI 248 that delays the DBRI->4215
1511	 * frame sync signal by eight clock cycles.  Anybody know why?
1512	 */
1513	spin_lock_irqsave(&dbri->lock, flags);
1514	tmp = sbus_readl(dbri->regs + REG0);
1515	tmp &= ~D_C;		/* Disable CHI */
1516	sbus_writel(tmp, dbri->regs + REG0);
1517
1518	reset_chi(dbri, CHImaster, 128);
1519
1520	/*
1521	 * Control mode:
1522	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1523	 * Pipe 18: Receive timeslot 1 (clb).
1524	 * Pipe 19: Receive timeslot 7 (version).
1525	 */
1526
1527	link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1528	link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1529	link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1530	spin_unlock_irqrestore(&dbri->lock, flags);
1531
1532	/* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1533	dbri->mm.ctrl[0] &= ~CS4215_CLB;
1534	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1535
1536	spin_lock_irqsave(&dbri->lock, flags);
1537	tmp = sbus_readl(dbri->regs + REG0);
1538	tmp |= D_C;		/* Enable CHI */
1539	sbus_writel(tmp, dbri->regs + REG0);
1540	spin_unlock_irqrestore(&dbri->lock, flags);
1541
1542	for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1543		msleep_interruptible(1);
1544
1545	if (i == 0) {
1546		dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1547			dbri->mm.status);
1548		return -1;
1549	}
1550
1551	/* Disable changes to our copy of the version number, as we are about
1552	 * to leave control mode.
1553	 */
1554	recv_fixed(dbri, 19, NULL);
1555
1556	/* Terminate CS4215 control mode - data sheet says
1557	 * "Set CLB=1 and send two more frames of valid control info"
1558	 */
1559	dbri->mm.ctrl[0] |= CS4215_CLB;
1560	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1561
1562	/* Two frames of control info @ 8kHz frame rate = 250 us delay */
1563	udelay(250);
1564
1565	cs4215_setdata(dbri, 0);
1566
1567	return 0;
1568}
1569
1570/*
1571 * Setup the codec with the sampling rate, audio format and number of
1572 * channels.
1573 * As part of the process we resend the settings for the data
1574 * timeslots as well.
1575 */
1576static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1577			  snd_pcm_format_t format, unsigned int channels)
1578{
1579	int freq_idx;
1580	int ret = 0;
1581
1582	/* Lookup index for this rate */
1583	for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1584		if (CS4215_FREQ[freq_idx].freq == rate)
1585			break;
1586	}
1587	if (CS4215_FREQ[freq_idx].freq != rate) {
1588		printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1589		return -1;
1590	}
1591
1592	switch (format) {
1593	case SNDRV_PCM_FORMAT_MU_LAW:
1594		dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1595		dbri->mm.precision = 8;
1596		break;
1597	case SNDRV_PCM_FORMAT_A_LAW:
1598		dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1599		dbri->mm.precision = 8;
1600		break;
1601	case SNDRV_PCM_FORMAT_U8:
1602		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1603		dbri->mm.precision = 8;
1604		break;
1605	case SNDRV_PCM_FORMAT_S16_BE:
1606		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1607		dbri->mm.precision = 16;
1608		break;
1609	default:
1610		printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1611		return -1;
1612	}
1613
1614	/* Add rate parameters */
1615	dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1616	dbri->mm.ctrl[2] = CS4215_XCLK |
1617	    CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1618
1619	dbri->mm.channels = channels;
1620	if (channels == 2)
1621		dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1622
1623	ret = cs4215_setctrl(dbri);
1624	if (ret == 0)
1625		cs4215_open(dbri);	/* set codec to data mode */
1626
1627	return ret;
1628}
1629
1630/*
1631 *
1632 */
1633static int cs4215_init(struct snd_dbri *dbri)
1634{
1635	u32 reg2 = sbus_readl(dbri->regs + REG2);
1636	dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1637
1638	/* Look for the cs4215 chips */
1639	if (reg2 & D_PIO2) {
1640		dprintk(D_MM, "Onboard CS4215 detected\n");
1641		dbri->mm.onboard = 1;
1642	}
1643	if (reg2 & D_PIO0) {
1644		dprintk(D_MM, "Speakerbox detected\n");
1645		dbri->mm.onboard = 0;
1646
1647		if (reg2 & D_PIO2) {
1648			printk(KERN_INFO "DBRI: Using speakerbox / "
1649			       "ignoring onboard mmcodec.\n");
1650			sbus_writel(D_ENPIO2, dbri->regs + REG2);
1651		}
1652	}
1653
1654	if (!(reg2 & (D_PIO0 | D_PIO2))) {
1655		printk(KERN_ERR "DBRI: no mmcodec found.\n");
1656		return -EIO;
1657	}
1658
1659	cs4215_setup_pipes(dbri);
1660	cs4215_init_data(&dbri->mm);
1661
1662	/* Enable capture of the status & version timeslots. */
1663	recv_fixed(dbri, 18, &dbri->mm.status);
1664	recv_fixed(dbri, 19, &dbri->mm.version);
1665
1666	dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1667	if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1668		dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1669			dbri->mm.offset);
1670		return -EIO;
1671	}
1672	dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1673
1674	return 0;
1675}
1676
1677/*
1678****************************************************************************
1679*************************** DBRI interrupt handler *************************
1680****************************************************************************
1681
1682The DBRI communicates with the CPU mainly via a circular interrupt
1683buffer.  When an interrupt is signaled, the CPU walks through the
1684buffer and calls dbri_process_one_interrupt() for each interrupt word.
1685Complicated interrupts are handled by dedicated functions (which
1686appear first in this file).  Any pending interrupts can be serviced by
1687calling dbri_process_interrupt_buffer(), which works even if the CPU's
1688interrupts are disabled.
1689
1690*/
1691
1692/* xmit_descs()
1693 *
1694 * Starts transmitting the current TD's for recording/playing.
1695 * For playback, ALSA has filled the DMA memory with new data (we hope).
1696 */
1697static void xmit_descs(struct snd_dbri *dbri)
1698{
1699	struct dbri_streaminfo *info;
 
1700	s32 *cmd;
1701	unsigned long flags;
1702	int first_td;
1703
1704	if (dbri == NULL)
1705		return;		/* Disabled */
1706
 
1707	info = &dbri->stream_info[DBRI_REC];
1708	spin_lock_irqsave(&dbri->lock, flags);
1709
1710	if (info->pipe >= 0) {
1711		first_td = dbri->pipes[info->pipe].first_desc;
1712
1713		dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1714
1715		/* Stream could be closed by the time we run. */
1716		if (first_td >= 0) {
1717			cmd = dbri_cmdlock(dbri, 2);
1718			*(cmd++) = DBRI_CMD(D_SDP, 0,
1719					    dbri->pipes[info->pipe].sdp
1720					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1721			*(cmd++) = dbri->dma_dvma +
1722				   dbri_dma_off(desc, first_td);
1723			dbri_cmdsend(dbri, cmd, 2);
1724
1725			/* Reset our admin of the pipe. */
1726			dbri->pipes[info->pipe].desc = first_td;
1727		}
1728	}
1729
1730	info = &dbri->stream_info[DBRI_PLAY];
1731
1732	if (info->pipe >= 0) {
1733		first_td = dbri->pipes[info->pipe].first_desc;
1734
1735		dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1736
1737		/* Stream could be closed by the time we run. */
1738		if (first_td >= 0) {
1739			cmd = dbri_cmdlock(dbri, 2);
1740			*(cmd++) = DBRI_CMD(D_SDP, 0,
1741					    dbri->pipes[info->pipe].sdp
1742					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1743			*(cmd++) = dbri->dma_dvma +
1744				   dbri_dma_off(desc, first_td);
1745			dbri_cmdsend(dbri, cmd, 2);
1746
1747			/* Reset our admin of the pipe. */
1748			dbri->pipes[info->pipe].desc = first_td;
1749		}
1750	}
1751
1752	spin_unlock_irqrestore(&dbri->lock, flags);
1753}
1754
1755/* transmission_complete_intr()
1756 *
1757 * Called by main interrupt handler when DBRI signals transmission complete
1758 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1759 *
1760 * Walks through the pipe's list of transmit buffer descriptors and marks
1761 * them as available. Stops when the first descriptor is found without
1762 * TBC (Transmit Buffer Complete) set, or we've run through them all.
1763 *
1764 * The DMA buffers are not released. They form a ring buffer and
1765 * they are filled by ALSA while others are transmitted by DMA.
1766 *
1767 */
1768
1769static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1770{
1771	struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1772	int td = dbri->pipes[pipe].desc;
1773	int status;
1774
1775	while (td >= 0) {
1776		if (td >= DBRI_NO_DESCS) {
1777			printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1778			return;
1779		}
1780
1781		status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1782		if (!(status & DBRI_TD_TBC))
1783			break;
1784
1785		dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1786
1787		dbri->dma->desc[td].word4 = 0;	/* Reset it for next time. */
1788		info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1789
1790		td = dbri->next_desc[td];
1791		dbri->pipes[pipe].desc = td;
1792	}
1793
1794	/* Notify ALSA */
1795	spin_unlock(&dbri->lock);
1796	snd_pcm_period_elapsed(info->substream);
1797	spin_lock(&dbri->lock);
1798}
1799
1800static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1801{
1802	struct dbri_streaminfo *info;
1803	int rd = dbri->pipes[pipe].desc;
1804	s32 status;
1805
1806	if (rd < 0 || rd >= DBRI_NO_DESCS) {
1807		printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1808		return;
1809	}
1810
1811	dbri->pipes[pipe].desc = dbri->next_desc[rd];
1812	status = dbri->dma->desc[rd].word1;
1813	dbri->dma->desc[rd].word1 = 0;	/* Reset it for next time. */
1814
1815	info = &dbri->stream_info[DBRI_REC];
1816	info->offset += DBRI_RD_CNT(status);
1817
1818	/* FIXME: Check status */
1819
1820	dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1821		rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1822
1823	/* Notify ALSA */
1824	spin_unlock(&dbri->lock);
1825	snd_pcm_period_elapsed(info->substream);
1826	spin_lock(&dbri->lock);
1827}
1828
1829static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1830{
1831	int val = D_INTR_GETVAL(x);
1832	int channel = D_INTR_GETCHAN(x);
1833	int command = D_INTR_GETCMD(x);
1834	int code = D_INTR_GETCODE(x);
1835#ifdef DBRI_DEBUG
1836	int rval = D_INTR_GETRVAL(x);
1837#endif
1838
1839	if (channel == D_INTR_CMD) {
1840		dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1841			cmds[command], val);
1842	} else {
1843		dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1844			channel, code, rval);
1845	}
1846
1847	switch (code) {
1848	case D_INTR_CMDI:
1849		if (command != D_WAIT)
1850			printk(KERN_ERR "DBRI: Command read interrupt\n");
1851		break;
1852	case D_INTR_BRDY:
1853		reception_complete_intr(dbri, channel);
1854		break;
1855	case D_INTR_XCMP:
1856	case D_INTR_MINT:
1857		transmission_complete_intr(dbri, channel);
1858		break;
1859	case D_INTR_UNDR:
1860		/* UNDR - Transmission underrun
1861		 * resend SDP command with clear pipe bit (C) set
1862		 */
1863		{
1864	/* FIXME: do something useful in case of underrun */
1865			printk(KERN_ERR "DBRI: Underrun error\n");
1866#if 0
1867			s32 *cmd;
1868			int pipe = channel;
1869			int td = dbri->pipes[pipe].desc;
1870
1871			dbri->dma->desc[td].word4 = 0;
1872			cmd = dbri_cmdlock(dbri, NoGetLock);
1873			*(cmd++) = DBRI_CMD(D_SDP, 0,
1874					    dbri->pipes[pipe].sdp
1875					    | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1876			*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1877			dbri_cmdsend(dbri, cmd);
1878#endif
1879		}
1880		break;
1881	case D_INTR_FXDT:
1882		/* FXDT - Fixed data change */
1883		if (dbri->pipes[channel].sdp & D_SDP_MSB)
1884			val = reverse_bytes(val, dbri->pipes[channel].length);
1885
1886		if (dbri->pipes[channel].recv_fixed_ptr)
1887			*(dbri->pipes[channel].recv_fixed_ptr) = val;
1888		break;
1889	default:
1890		if (channel != D_INTR_CMD)
1891			printk(KERN_WARNING
1892			       "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1893	}
1894}
1895
1896/* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1897 * buffer until it finds a zero word (indicating nothing more to do
1898 * right now).  Non-zero words require processing and are handed off
1899 * to dbri_process_one_interrupt AFTER advancing the pointer.
1900 */
1901static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1902{
1903	s32 x;
1904
1905	while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1906		dbri->dma->intr[dbri->dbri_irqp] = 0;
1907		dbri->dbri_irqp++;
1908		if (dbri->dbri_irqp == DBRI_INT_BLK)
1909			dbri->dbri_irqp = 1;
1910
1911		dbri_process_one_interrupt(dbri, x);
1912	}
1913}
1914
1915static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1916{
1917	struct snd_dbri *dbri = dev_id;
1918	static int errcnt = 0;
1919	int x;
1920
1921	if (dbri == NULL)
1922		return IRQ_NONE;
1923	spin_lock(&dbri->lock);
1924
1925	/*
1926	 * Read it, so the interrupt goes away.
1927	 */
1928	x = sbus_readl(dbri->regs + REG1);
1929
1930	if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1931		u32 tmp;
1932
1933		if (x & D_MRR)
1934			printk(KERN_ERR
1935			       "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1936			       x);
1937		if (x & D_MLE)
1938			printk(KERN_ERR
1939			       "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1940			       x);
1941		if (x & D_LBG)
1942			printk(KERN_ERR
1943			       "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1944		if (x & D_MBE)
1945			printk(KERN_ERR
1946			       "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1947
1948		/* Some of these SBus errors cause the chip's SBus circuitry
1949		 * to be disabled, so just re-enable and try to keep going.
1950		 *
1951		 * The only one I've seen is MRR, which will be triggered
1952		 * if you let a transmit pipe underrun, then try to CDP it.
1953		 *
1954		 * If these things persist, we reset the chip.
1955		 */
1956		if ((++errcnt) % 10 == 0) {
1957			dprintk(D_INT, "Interrupt errors exceeded.\n");
1958			dbri_reset(dbri);
1959		} else {
1960			tmp = sbus_readl(dbri->regs + REG0);
1961			tmp &= ~(D_D);
1962			sbus_writel(tmp, dbri->regs + REG0);
1963		}
1964	}
1965
1966	dbri_process_interrupt_buffer(dbri);
1967
1968	spin_unlock(&dbri->lock);
1969
1970	return IRQ_HANDLED;
1971}
1972
1973/****************************************************************************
1974		PCM Interface
1975****************************************************************************/
1976static struct snd_pcm_hardware snd_dbri_pcm_hw = {
1977	.info		= SNDRV_PCM_INFO_MMAP |
1978			  SNDRV_PCM_INFO_INTERLEAVED |
1979			  SNDRV_PCM_INFO_BLOCK_TRANSFER |
1980			  SNDRV_PCM_INFO_MMAP_VALID |
1981			  SNDRV_PCM_INFO_BATCH,
1982	.formats	= SNDRV_PCM_FMTBIT_MU_LAW |
1983			  SNDRV_PCM_FMTBIT_A_LAW |
1984			  SNDRV_PCM_FMTBIT_U8 |
1985			  SNDRV_PCM_FMTBIT_S16_BE,
1986	.rates		= SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1987	.rate_min		= 5512,
1988	.rate_max		= 48000,
1989	.channels_min		= 1,
1990	.channels_max		= 2,
1991	.buffer_bytes_max	= 64 * 1024,
1992	.period_bytes_min	= 1,
1993	.period_bytes_max	= DBRI_TD_MAXCNT,
1994	.periods_min		= 1,
1995	.periods_max		= 1024,
1996};
1997
1998static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
1999			      struct snd_pcm_hw_rule *rule)
2000{
2001	struct snd_interval *c = hw_param_interval(params,
2002				SNDRV_PCM_HW_PARAM_CHANNELS);
2003	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2004	struct snd_mask fmt;
2005
2006	snd_mask_any(&fmt);
2007	if (c->min > 1) {
2008		fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2009		return snd_mask_refine(f, &fmt);
2010	}
2011	return 0;
2012}
2013
2014static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2015				struct snd_pcm_hw_rule *rule)
2016{
2017	struct snd_interval *c = hw_param_interval(params,
2018				SNDRV_PCM_HW_PARAM_CHANNELS);
2019	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2020	struct snd_interval ch;
2021
2022	snd_interval_any(&ch);
2023	if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2024		ch.min = 1;
2025		ch.max = 1;
2026		ch.integer = 1;
2027		return snd_interval_refine(c, &ch);
2028	}
2029	return 0;
2030}
2031
2032static int snd_dbri_open(struct snd_pcm_substream *substream)
2033{
2034	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2035	struct snd_pcm_runtime *runtime = substream->runtime;
2036	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2037	unsigned long flags;
2038
2039	dprintk(D_USR, "open audio output.\n");
2040	runtime->hw = snd_dbri_pcm_hw;
2041
2042	spin_lock_irqsave(&dbri->lock, flags);
2043	info->substream = substream;
2044	info->offset = 0;
2045	info->dvma_buffer = 0;
2046	info->pipe = -1;
2047	spin_unlock_irqrestore(&dbri->lock, flags);
2048
2049	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2050			    snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2051			    -1);
2052	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2053			    snd_hw_rule_channels, NULL,
2054			    SNDRV_PCM_HW_PARAM_CHANNELS,
2055			    -1);
2056
2057	cs4215_open(dbri);
2058
2059	return 0;
2060}
2061
2062static int snd_dbri_close(struct snd_pcm_substream *substream)
2063{
2064	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2065	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2066
2067	dprintk(D_USR, "close audio output.\n");
2068	info->substream = NULL;
2069	info->offset = 0;
2070
2071	return 0;
2072}
2073
2074static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2075			      struct snd_pcm_hw_params *hw_params)
2076{
2077	struct snd_pcm_runtime *runtime = substream->runtime;
2078	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2079	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2080	int direction;
2081	int ret;
2082
2083	/* set sampling rate, audio format and number of channels */
2084	ret = cs4215_prepare(dbri, params_rate(hw_params),
2085			     params_format(hw_params),
2086			     params_channels(hw_params));
2087	if (ret != 0)
2088		return ret;
2089
2090	if ((ret = snd_pcm_lib_malloc_pages(substream,
2091				params_buffer_bytes(hw_params))) < 0) {
2092		printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2093		return ret;
2094	}
2095
2096	/* hw_params can get called multiple times. Only map the DMA once.
2097	 */
2098	if (info->dvma_buffer == 0) {
2099		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2100			direction = DMA_TO_DEVICE;
2101		else
2102			direction = DMA_FROM_DEVICE;
2103
2104		info->dvma_buffer =
2105			dma_map_single(&dbri->op->dev,
2106				       runtime->dma_area,
2107				       params_buffer_bytes(hw_params),
2108				       direction);
2109	}
2110
2111	direction = params_buffer_bytes(hw_params);
2112	dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2113		direction, info->dvma_buffer);
2114	return 0;
2115}
2116
2117static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2118{
2119	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2120	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2121	int direction;
2122
2123	dprintk(D_USR, "hw_free.\n");
2124
2125	/* hw_free can get called multiple times. Only unmap the DMA once.
2126	 */
2127	if (info->dvma_buffer) {
2128		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2129			direction = DMA_TO_DEVICE;
2130		else
2131			direction = DMA_FROM_DEVICE;
2132
2133		dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2134				 substream->runtime->buffer_size, direction);
2135		info->dvma_buffer = 0;
2136	}
2137	if (info->pipe != -1) {
2138		reset_pipe(dbri, info->pipe);
2139		info->pipe = -1;
2140	}
2141
2142	return snd_pcm_lib_free_pages(substream);
2143}
2144
2145static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2146{
2147	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2148	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2149	int ret;
2150
2151	info->size = snd_pcm_lib_buffer_bytes(substream);
2152	if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2153		info->pipe = 4;	/* Send pipe */
2154	else
2155		info->pipe = 6;	/* Receive pipe */
2156
2157	spin_lock_irq(&dbri->lock);
2158	info->offset = 0;
2159
2160	/* Setup the all the transmit/receive descriptors to cover the
2161	 * whole DMA buffer.
2162	 */
2163	ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2164			  snd_pcm_lib_period_bytes(substream));
2165
2166	spin_unlock_irq(&dbri->lock);
2167
2168	dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2169	return ret;
2170}
2171
2172static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2173{
2174	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2175	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2176	int ret = 0;
2177
2178	switch (cmd) {
2179	case SNDRV_PCM_TRIGGER_START:
2180		dprintk(D_USR, "start audio, period is %d bytes\n",
2181			(int)snd_pcm_lib_period_bytes(substream));
2182		/* Re-submit the TDs. */
2183		xmit_descs(dbri);
2184		break;
2185	case SNDRV_PCM_TRIGGER_STOP:
2186		dprintk(D_USR, "stop audio.\n");
2187		reset_pipe(dbri, info->pipe);
2188		break;
2189	default:
2190		ret = -EINVAL;
2191	}
2192
2193	return ret;
2194}
2195
2196static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2197{
2198	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2199	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2200	snd_pcm_uframes_t ret;
2201
2202	ret = bytes_to_frames(substream->runtime, info->offset)
2203		% substream->runtime->buffer_size;
2204	dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2205		ret, substream->runtime->buffer_size);
2206	return ret;
2207}
2208
2209static struct snd_pcm_ops snd_dbri_ops = {
2210	.open = snd_dbri_open,
2211	.close = snd_dbri_close,
2212	.ioctl = snd_pcm_lib_ioctl,
2213	.hw_params = snd_dbri_hw_params,
2214	.hw_free = snd_dbri_hw_free,
2215	.prepare = snd_dbri_prepare,
2216	.trigger = snd_dbri_trigger,
2217	.pointer = snd_dbri_pointer,
2218};
2219
2220static int snd_dbri_pcm(struct snd_card *card)
2221{
2222	struct snd_pcm *pcm;
2223	int err;
2224
2225	if ((err = snd_pcm_new(card,
2226			       /* ID */		    "sun_dbri",
2227			       /* device */	    0,
2228			       /* playback count */ 1,
2229			       /* capture count */  1, &pcm)) < 0)
 
2230		return err;
2231
2232	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2233	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2234
2235	pcm->private_data = card->private_data;
2236	pcm->info_flags = 0;
2237	strcpy(pcm->name, card->shortname);
2238
2239	if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2240			SNDRV_DMA_TYPE_CONTINUOUS,
2241			snd_dma_continuous_data(GFP_KERNEL),
2242			64 * 1024, 64 * 1024)) < 0)
2243		return err;
2244
2245	return 0;
2246}
2247
2248/*****************************************************************************
2249			Mixer interface
2250*****************************************************************************/
2251
2252static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2253				  struct snd_ctl_elem_info *uinfo)
2254{
2255	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2256	uinfo->count = 2;
2257	uinfo->value.integer.min = 0;
2258	if (kcontrol->private_value == DBRI_PLAY)
2259		uinfo->value.integer.max = DBRI_MAX_VOLUME;
2260	else
2261		uinfo->value.integer.max = DBRI_MAX_GAIN;
2262	return 0;
2263}
2264
2265static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2266				 struct snd_ctl_elem_value *ucontrol)
2267{
2268	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2269	struct dbri_streaminfo *info;
2270
2271	if (snd_BUG_ON(!dbri))
2272		return -EINVAL;
2273	info = &dbri->stream_info[kcontrol->private_value];
2274
2275	ucontrol->value.integer.value[0] = info->left_gain;
2276	ucontrol->value.integer.value[1] = info->right_gain;
2277	return 0;
2278}
2279
2280static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2281				 struct snd_ctl_elem_value *ucontrol)
2282{
2283	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2284	struct dbri_streaminfo *info =
2285				&dbri->stream_info[kcontrol->private_value];
2286	unsigned int vol[2];
2287	int changed = 0;
2288
2289	vol[0] = ucontrol->value.integer.value[0];
2290	vol[1] = ucontrol->value.integer.value[1];
2291	if (kcontrol->private_value == DBRI_PLAY) {
2292		if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2293			return -EINVAL;
2294	} else {
2295		if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2296			return -EINVAL;
2297	}
2298
2299	if (info->left_gain != vol[0]) {
2300		info->left_gain = vol[0];
2301		changed = 1;
2302	}
2303	if (info->right_gain != vol[1]) {
2304		info->right_gain = vol[1];
2305		changed = 1;
2306	}
2307	if (changed) {
2308		/* First mute outputs, and wait 1/8000 sec (125 us)
2309		 * to make sure this takes.  This avoids clicking noises.
2310		 */
2311		cs4215_setdata(dbri, 1);
2312		udelay(125);
2313		cs4215_setdata(dbri, 0);
2314	}
2315	return changed;
2316}
2317
2318static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2319				  struct snd_ctl_elem_info *uinfo)
2320{
2321	int mask = (kcontrol->private_value >> 16) & 0xff;
2322
2323	uinfo->type = (mask == 1) ?
2324	    SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2325	uinfo->count = 1;
2326	uinfo->value.integer.min = 0;
2327	uinfo->value.integer.max = mask;
2328	return 0;
2329}
2330
2331static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2332				 struct snd_ctl_elem_value *ucontrol)
2333{
2334	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2335	int elem = kcontrol->private_value & 0xff;
2336	int shift = (kcontrol->private_value >> 8) & 0xff;
2337	int mask = (kcontrol->private_value >> 16) & 0xff;
2338	int invert = (kcontrol->private_value >> 24) & 1;
2339
2340	if (snd_BUG_ON(!dbri))
2341		return -EINVAL;
2342
2343	if (elem < 4)
2344		ucontrol->value.integer.value[0] =
2345		    (dbri->mm.data[elem] >> shift) & mask;
2346	else
2347		ucontrol->value.integer.value[0] =
2348		    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2349
2350	if (invert == 1)
2351		ucontrol->value.integer.value[0] =
2352		    mask - ucontrol->value.integer.value[0];
2353	return 0;
2354}
2355
2356static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2357				 struct snd_ctl_elem_value *ucontrol)
2358{
2359	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2360	int elem = kcontrol->private_value & 0xff;
2361	int shift = (kcontrol->private_value >> 8) & 0xff;
2362	int mask = (kcontrol->private_value >> 16) & 0xff;
2363	int invert = (kcontrol->private_value >> 24) & 1;
2364	int changed = 0;
2365	unsigned short val;
2366
2367	if (snd_BUG_ON(!dbri))
2368		return -EINVAL;
2369
2370	val = (ucontrol->value.integer.value[0] & mask);
2371	if (invert == 1)
2372		val = mask - val;
2373	val <<= shift;
2374
2375	if (elem < 4) {
2376		dbri->mm.data[elem] = (dbri->mm.data[elem] &
2377				       ~(mask << shift)) | val;
2378		changed = (val != dbri->mm.data[elem]);
2379	} else {
2380		dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2381					   ~(mask << shift)) | val;
2382		changed = (val != dbri->mm.ctrl[elem - 4]);
2383	}
2384
2385	dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2386		"mixer-value=%ld, mm-value=0x%x\n",
2387		mask, changed, ucontrol->value.integer.value[0],
2388		dbri->mm.data[elem & 3]);
2389
2390	if (changed) {
2391		/* First mute outputs, and wait 1/8000 sec (125 us)
2392		 * to make sure this takes.  This avoids clicking noises.
2393		 */
2394		cs4215_setdata(dbri, 1);
2395		udelay(125);
2396		cs4215_setdata(dbri, 0);
2397	}
2398	return changed;
2399}
2400
2401/* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2402   timeslots. Shift is the bit offset in the timeslot, mask defines the
2403   number of bits. invert is a boolean for use with attenuation.
2404 */
2405#define CS4215_SINGLE(xname, entry, shift, mask, invert)	\
2406{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),		\
2407  .info = snd_cs4215_info_single,				\
2408  .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,	\
2409  .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |	\
2410			((invert) << 24) },
2411
2412static struct snd_kcontrol_new dbri_controls[] = {
2413	{
2414	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2415	 .name  = "Playback Volume",
2416	 .info  = snd_cs4215_info_volume,
2417	 .get   = snd_cs4215_get_volume,
2418	 .put   = snd_cs4215_put_volume,
2419	 .private_value = DBRI_PLAY,
2420	 },
2421	CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2422	CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2423	CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2424	{
2425	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2426	 .name  = "Capture Volume",
2427	 .info  = snd_cs4215_info_volume,
2428	 .get   = snd_cs4215_get_volume,
2429	 .put   = snd_cs4215_put_volume,
2430	 .private_value = DBRI_REC,
2431	 },
2432	/* FIXME: mic/line switch */
2433	CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2434	CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2435	CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2436	CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2437};
2438
2439static int snd_dbri_mixer(struct snd_card *card)
2440{
2441	int idx, err;
2442	struct snd_dbri *dbri;
2443
2444	if (snd_BUG_ON(!card || !card->private_data))
2445		return -EINVAL;
2446	dbri = card->private_data;
2447
2448	strcpy(card->mixername, card->shortname);
2449
2450	for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2451		err = snd_ctl_add(card,
2452				snd_ctl_new1(&dbri_controls[idx], dbri));
2453		if (err < 0)
2454			return err;
2455	}
2456
2457	for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2458		dbri->stream_info[idx].left_gain = 0;
2459		dbri->stream_info[idx].right_gain = 0;
2460	}
2461
2462	return 0;
2463}
2464
2465/****************************************************************************
2466			/proc interface
2467****************************************************************************/
2468static void dbri_regs_read(struct snd_info_entry *entry,
2469			   struct snd_info_buffer *buffer)
2470{
2471	struct snd_dbri *dbri = entry->private_data;
2472
2473	snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2474	snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2475	snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2476	snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2477}
2478
2479#ifdef DBRI_DEBUG
2480static void dbri_debug_read(struct snd_info_entry *entry,
2481			    struct snd_info_buffer *buffer)
2482{
2483	struct snd_dbri *dbri = entry->private_data;
2484	int pipe;
2485	snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2486
2487	for (pipe = 0; pipe < 32; pipe++) {
2488		if (pipe_active(dbri, pipe)) {
2489			struct dbri_pipe *pptr = &dbri->pipes[pipe];
2490			snd_iprintf(buffer,
2491				    "Pipe %d: %s SDP=0x%x desc=%d, "
2492				    "len=%d next %d\n",
2493				    pipe,
2494				   (pptr->sdp & D_SDP_TO_SER) ? "output" :
2495								 "input",
2496				    pptr->sdp, pptr->desc,
2497				    pptr->length, pptr->nextpipe);
2498		}
2499	}
2500}
2501#endif
2502
2503static void snd_dbri_proc(struct snd_card *card)
2504{
2505	struct snd_dbri *dbri = card->private_data;
2506	struct snd_info_entry *entry;
2507
2508	if (!snd_card_proc_new(card, "regs", &entry))
2509		snd_info_set_text_ops(entry, dbri, dbri_regs_read);
2510
 
2511#ifdef DBRI_DEBUG
2512	if (!snd_card_proc_new(card, "debug", &entry)) {
2513		snd_info_set_text_ops(entry, dbri, dbri_debug_read);
2514		entry->mode = S_IFREG | S_IRUGO;	/* Readable only. */
2515	}
2516#endif
2517}
2518
2519/*
2520****************************************************************************
2521**************************** Initialization ********************************
2522****************************************************************************
2523*/
2524static void snd_dbri_free(struct snd_dbri *dbri);
2525
2526static int snd_dbri_create(struct snd_card *card,
2527			   struct platform_device *op,
2528			   int irq, int dev)
2529{
2530	struct snd_dbri *dbri = card->private_data;
2531	int err;
2532
2533	spin_lock_init(&dbri->lock);
2534	dbri->op = op;
2535	dbri->irq = irq;
2536
2537	dbri->dma = dma_zalloc_coherent(&op->dev, sizeof(struct dbri_dma),
2538					&dbri->dma_dvma, GFP_ATOMIC);
2539	if (!dbri->dma)
2540		return -ENOMEM;
2541
2542	dprintk(D_GEN, "DMA Cmd Block 0x%p (0x%08x)\n",
2543		dbri->dma, dbri->dma_dvma);
2544
2545	/* Map the registers into memory. */
2546	dbri->regs_size = resource_size(&op->resource[0]);
2547	dbri->regs = of_ioremap(&op->resource[0], 0,
2548				dbri->regs_size, "DBRI Registers");
2549	if (!dbri->regs) {
2550		printk(KERN_ERR "DBRI: could not allocate registers\n");
2551		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2552				  (void *)dbri->dma, dbri->dma_dvma);
2553		return -EIO;
2554	}
2555
2556	err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2557			  "DBRI audio", dbri);
2558	if (err) {
2559		printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2560		of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2561		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2562				  (void *)dbri->dma, dbri->dma_dvma);
2563		return err;
2564	}
2565
2566	/* Do low level initialization of the DBRI and CS4215 chips */
2567	dbri_initialize(dbri);
2568	err = cs4215_init(dbri);
2569	if (err) {
2570		snd_dbri_free(dbri);
2571		return err;
2572	}
2573
2574	return 0;
2575}
2576
2577static void snd_dbri_free(struct snd_dbri *dbri)
2578{
2579	dprintk(D_GEN, "snd_dbri_free\n");
2580	dbri_reset(dbri);
2581
2582	if (dbri->irq)
2583		free_irq(dbri->irq, dbri);
2584
2585	if (dbri->regs)
2586		of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2587
2588	if (dbri->dma)
2589		dma_free_coherent(&dbri->op->dev,
2590				  sizeof(struct dbri_dma),
2591				  (void *)dbri->dma, dbri->dma_dvma);
2592}
2593
2594static int dbri_probe(struct platform_device *op)
2595{
2596	struct snd_dbri *dbri;
2597	struct resource *rp;
2598	struct snd_card *card;
2599	static int dev = 0;
2600	int irq;
2601	int err;
2602
2603	if (dev >= SNDRV_CARDS)
2604		return -ENODEV;
2605	if (!enable[dev]) {
2606		dev++;
2607		return -ENOENT;
2608	}
2609
2610	irq = op->archdata.irqs[0];
2611	if (irq <= 0) {
2612		printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2613		return -ENODEV;
2614	}
2615
2616	err = snd_card_new(&op->dev, index[dev], id[dev], THIS_MODULE,
2617			   sizeof(struct snd_dbri), &card);
2618	if (err < 0)
2619		return err;
2620
2621	strcpy(card->driver, "DBRI");
2622	strcpy(card->shortname, "Sun DBRI");
2623	rp = &op->resource[0];
2624	sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2625		card->shortname,
2626		rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2627
2628	err = snd_dbri_create(card, op, irq, dev);
2629	if (err < 0) {
2630		snd_card_free(card);
2631		return err;
2632	}
2633
2634	dbri = card->private_data;
2635	err = snd_dbri_pcm(card);
2636	if (err < 0)
2637		goto _err;
2638
2639	err = snd_dbri_mixer(card);
2640	if (err < 0)
2641		goto _err;
2642
2643	/* /proc file handling */
2644	snd_dbri_proc(card);
2645	dev_set_drvdata(&op->dev, card);
2646
2647	err = snd_card_register(card);
2648	if (err < 0)
2649		goto _err;
2650
2651	printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2652	       dev, dbri->regs,
2653	       dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2654	dev++;
2655
2656	return 0;
2657
2658_err:
2659	snd_dbri_free(dbri);
2660	snd_card_free(card);
2661	return err;
2662}
2663
2664static int dbri_remove(struct platform_device *op)
2665{
2666	struct snd_card *card = dev_get_drvdata(&op->dev);
2667
2668	snd_dbri_free(card->private_data);
2669	snd_card_free(card);
2670
2671	return 0;
2672}
2673
2674static const struct of_device_id dbri_match[] = {
2675	{
2676		.name = "SUNW,DBRIe",
2677	},
2678	{
2679		.name = "SUNW,DBRIf",
2680	},
2681	{},
2682};
2683
2684MODULE_DEVICE_TABLE(of, dbri_match);
2685
2686static struct platform_driver dbri_sbus_driver = {
2687	.driver = {
2688		.name = "dbri",
2689		.of_match_table = dbri_match,
2690	},
2691	.probe		= dbri_probe,
2692	.remove		= dbri_remove,
2693};
2694
2695module_platform_driver(dbri_sbus_driver);