Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/vmstat.c
   4 *
   5 *  Manages VM statistics
   6 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   7 *
   8 *  zoned VM statistics
   9 *  Copyright (C) 2006 Silicon Graphics, Inc.,
  10 *		Christoph Lameter <christoph@lameter.com>
  11 *  Copyright (C) 2008-2014 Christoph Lameter
  12 */
  13#include <linux/fs.h>
  14#include <linux/mm.h>
  15#include <linux/err.h>
  16#include <linux/module.h>
  17#include <linux/slab.h>
  18#include <linux/cpu.h>
  19#include <linux/cpumask.h>
  20#include <linux/vmstat.h>
  21#include <linux/proc_fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/debugfs.h>
  24#include <linux/sched.h>
  25#include <linux/math64.h>
  26#include <linux/writeback.h>
  27#include <linux/compaction.h>
  28#include <linux/mm_inline.h>
  29#include <linux/page_ext.h>
  30#include <linux/page_owner.h>
  31
  32#include "internal.h"
  33
  34#ifdef CONFIG_NUMA
  35int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
  36
  37/* zero numa counters within a zone */
  38static void zero_zone_numa_counters(struct zone *zone)
  39{
  40	int item, cpu;
  41
  42	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
  43		atomic_long_set(&zone->vm_numa_event[item], 0);
  44		for_each_online_cpu(cpu) {
  45			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
  46						= 0;
  47		}
  48	}
  49}
  50
  51/* zero numa counters of all the populated zones */
  52static void zero_zones_numa_counters(void)
  53{
  54	struct zone *zone;
  55
  56	for_each_populated_zone(zone)
  57		zero_zone_numa_counters(zone);
  58}
  59
  60/* zero global numa counters */
  61static void zero_global_numa_counters(void)
  62{
  63	int item;
  64
  65	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
  66		atomic_long_set(&vm_numa_event[item], 0);
  67}
  68
  69static void invalid_numa_statistics(void)
  70{
  71	zero_zones_numa_counters();
  72	zero_global_numa_counters();
  73}
  74
  75static DEFINE_MUTEX(vm_numa_stat_lock);
  76
  77int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
  78		void *buffer, size_t *length, loff_t *ppos)
  79{
  80	int ret, oldval;
  81
  82	mutex_lock(&vm_numa_stat_lock);
  83	if (write)
  84		oldval = sysctl_vm_numa_stat;
  85	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  86	if (ret || !write)
  87		goto out;
  88
  89	if (oldval == sysctl_vm_numa_stat)
  90		goto out;
  91	else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
  92		static_branch_enable(&vm_numa_stat_key);
  93		pr_info("enable numa statistics\n");
  94	} else {
  95		static_branch_disable(&vm_numa_stat_key);
  96		invalid_numa_statistics();
  97		pr_info("disable numa statistics, and clear numa counters\n");
  98	}
  99
 100out:
 101	mutex_unlock(&vm_numa_stat_lock);
 102	return ret;
 103}
 104#endif
 105
 106#ifdef CONFIG_VM_EVENT_COUNTERS
 107DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
 108EXPORT_PER_CPU_SYMBOL(vm_event_states);
 109
 110static void sum_vm_events(unsigned long *ret)
 111{
 112	int cpu;
 113	int i;
 114
 115	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
 116
 117	for_each_online_cpu(cpu) {
 118		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
 119
 120		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
 121			ret[i] += this->event[i];
 122	}
 123}
 124
 125/*
 126 * Accumulate the vm event counters across all CPUs.
 127 * The result is unavoidably approximate - it can change
 128 * during and after execution of this function.
 129*/
 130void all_vm_events(unsigned long *ret)
 131{
 132	cpus_read_lock();
 133	sum_vm_events(ret);
 134	cpus_read_unlock();
 135}
 136EXPORT_SYMBOL_GPL(all_vm_events);
 137
 138/*
 139 * Fold the foreign cpu events into our own.
 140 *
 141 * This is adding to the events on one processor
 142 * but keeps the global counts constant.
 143 */
 144void vm_events_fold_cpu(int cpu)
 145{
 146	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
 147	int i;
 148
 149	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
 150		count_vm_events(i, fold_state->event[i]);
 151		fold_state->event[i] = 0;
 152	}
 153}
 154
 155#endif /* CONFIG_VM_EVENT_COUNTERS */
 156
 157/*
 158 * Manage combined zone based / global counters
 159 *
 160 * vm_stat contains the global counters
 161 */
 162atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
 163atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
 164atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
 165EXPORT_SYMBOL(vm_zone_stat);
 166EXPORT_SYMBOL(vm_node_stat);
 167
 168#ifdef CONFIG_NUMA
 169static void fold_vm_zone_numa_events(struct zone *zone)
 170{
 171	unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
 172	int cpu;
 173	enum numa_stat_item item;
 174
 175	for_each_online_cpu(cpu) {
 176		struct per_cpu_zonestat *pzstats;
 177
 178		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
 179		for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
 180			zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
 181	}
 182
 183	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
 184		zone_numa_event_add(zone_numa_events[item], zone, item);
 185}
 186
 187void fold_vm_numa_events(void)
 188{
 189	struct zone *zone;
 190
 191	for_each_populated_zone(zone)
 192		fold_vm_zone_numa_events(zone);
 193}
 194#endif
 195
 196#ifdef CONFIG_SMP
 197
 198int calculate_pressure_threshold(struct zone *zone)
 199{
 200	int threshold;
 201	int watermark_distance;
 202
 203	/*
 204	 * As vmstats are not up to date, there is drift between the estimated
 205	 * and real values. For high thresholds and a high number of CPUs, it
 206	 * is possible for the min watermark to be breached while the estimated
 207	 * value looks fine. The pressure threshold is a reduced value such
 208	 * that even the maximum amount of drift will not accidentally breach
 209	 * the min watermark
 210	 */
 211	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
 212	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
 213
 214	/*
 215	 * Maximum threshold is 125
 216	 */
 217	threshold = min(125, threshold);
 218
 219	return threshold;
 220}
 221
 222int calculate_normal_threshold(struct zone *zone)
 223{
 224	int threshold;
 225	int mem;	/* memory in 128 MB units */
 226
 227	/*
 228	 * The threshold scales with the number of processors and the amount
 229	 * of memory per zone. More memory means that we can defer updates for
 230	 * longer, more processors could lead to more contention.
 231 	 * fls() is used to have a cheap way of logarithmic scaling.
 232	 *
 233	 * Some sample thresholds:
 234	 *
 235	 * Threshold	Processors	(fls)	Zonesize	fls(mem)+1
 236	 * ------------------------------------------------------------------
 237	 * 8		1		1	0.9-1 GB	4
 238	 * 16		2		2	0.9-1 GB	4
 239	 * 20 		2		2	1-2 GB		5
 240	 * 24		2		2	2-4 GB		6
 241	 * 28		2		2	4-8 GB		7
 242	 * 32		2		2	8-16 GB		8
 243	 * 4		2		2	<128M		1
 244	 * 30		4		3	2-4 GB		5
 245	 * 48		4		3	8-16 GB		8
 246	 * 32		8		4	1-2 GB		4
 247	 * 32		8		4	0.9-1GB		4
 248	 * 10		16		5	<128M		1
 249	 * 40		16		5	900M		4
 250	 * 70		64		7	2-4 GB		5
 251	 * 84		64		7	4-8 GB		6
 252	 * 108		512		9	4-8 GB		6
 253	 * 125		1024		10	8-16 GB		8
 254	 * 125		1024		10	16-32 GB	9
 255	 */
 256
 257	mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
 258
 259	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
 260
 261	/*
 262	 * Maximum threshold is 125
 263	 */
 264	threshold = min(125, threshold);
 265
 266	return threshold;
 267}
 268
 269/*
 270 * Refresh the thresholds for each zone.
 271 */
 272void refresh_zone_stat_thresholds(void)
 273{
 274	struct pglist_data *pgdat;
 275	struct zone *zone;
 276	int cpu;
 277	int threshold;
 278
 279	/* Zero current pgdat thresholds */
 280	for_each_online_pgdat(pgdat) {
 281		for_each_online_cpu(cpu) {
 282			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
 283		}
 284	}
 285
 286	for_each_populated_zone(zone) {
 287		struct pglist_data *pgdat = zone->zone_pgdat;
 288		unsigned long max_drift, tolerate_drift;
 289
 290		threshold = calculate_normal_threshold(zone);
 291
 292		for_each_online_cpu(cpu) {
 293			int pgdat_threshold;
 294
 295			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
 296							= threshold;
 297
 298			/* Base nodestat threshold on the largest populated zone. */
 299			pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
 300			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
 301				= max(threshold, pgdat_threshold);
 302		}
 303
 304		/*
 305		 * Only set percpu_drift_mark if there is a danger that
 306		 * NR_FREE_PAGES reports the low watermark is ok when in fact
 307		 * the min watermark could be breached by an allocation
 308		 */
 309		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
 310		max_drift = num_online_cpus() * threshold;
 311		if (max_drift > tolerate_drift)
 312			zone->percpu_drift_mark = high_wmark_pages(zone) +
 313					max_drift;
 314	}
 315}
 316
 317void set_pgdat_percpu_threshold(pg_data_t *pgdat,
 318				int (*calculate_pressure)(struct zone *))
 319{
 320	struct zone *zone;
 321	int cpu;
 322	int threshold;
 323	int i;
 324
 325	for (i = 0; i < pgdat->nr_zones; i++) {
 326		zone = &pgdat->node_zones[i];
 327		if (!zone->percpu_drift_mark)
 328			continue;
 329
 330		threshold = (*calculate_pressure)(zone);
 331		for_each_online_cpu(cpu)
 332			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
 333							= threshold;
 334	}
 335}
 336
 337/*
 338 * For use when we know that interrupts are disabled,
 339 * or when we know that preemption is disabled and that
 340 * particular counter cannot be updated from interrupt context.
 341 */
 342void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 343			   long delta)
 344{
 345	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
 346	s8 __percpu *p = pcp->vm_stat_diff + item;
 347	long x;
 348	long t;
 349
 350	/*
 351	 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
 352	 * atomicity is provided by IRQs being disabled -- either explicitly
 353	 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
 354	 * CPU migrations and preemption potentially corrupts a counter so
 355	 * disable preemption.
 356	 */
 357	preempt_disable_nested();
 358
 359	x = delta + __this_cpu_read(*p);
 360
 361	t = __this_cpu_read(pcp->stat_threshold);
 362
 363	if (unlikely(abs(x) > t)) {
 364		zone_page_state_add(x, zone, item);
 365		x = 0;
 366	}
 367	__this_cpu_write(*p, x);
 368
 369	preempt_enable_nested();
 370}
 371EXPORT_SYMBOL(__mod_zone_page_state);
 372
 373void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
 374				long delta)
 375{
 376	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 377	s8 __percpu *p = pcp->vm_node_stat_diff + item;
 378	long x;
 379	long t;
 380
 381	if (vmstat_item_in_bytes(item)) {
 382		/*
 383		 * Only cgroups use subpage accounting right now; at
 384		 * the global level, these items still change in
 385		 * multiples of whole pages. Store them as pages
 386		 * internally to keep the per-cpu counters compact.
 387		 */
 388		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
 389		delta >>= PAGE_SHIFT;
 390	}
 391
 392	/* See __mod_node_page_state */
 393	preempt_disable_nested();
 394
 395	x = delta + __this_cpu_read(*p);
 396
 397	t = __this_cpu_read(pcp->stat_threshold);
 398
 399	if (unlikely(abs(x) > t)) {
 400		node_page_state_add(x, pgdat, item);
 401		x = 0;
 402	}
 403	__this_cpu_write(*p, x);
 404
 405	preempt_enable_nested();
 406}
 407EXPORT_SYMBOL(__mod_node_page_state);
 408
 409/*
 410 * Optimized increment and decrement functions.
 411 *
 412 * These are only for a single page and therefore can take a struct page *
 413 * argument instead of struct zone *. This allows the inclusion of the code
 414 * generated for page_zone(page) into the optimized functions.
 415 *
 416 * No overflow check is necessary and therefore the differential can be
 417 * incremented or decremented in place which may allow the compilers to
 418 * generate better code.
 419 * The increment or decrement is known and therefore one boundary check can
 420 * be omitted.
 421 *
 422 * NOTE: These functions are very performance sensitive. Change only
 423 * with care.
 424 *
 425 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 426 * However, the code must first determine the differential location in a zone
 427 * based on the processor number and then inc/dec the counter. There is no
 428 * guarantee without disabling preemption that the processor will not change
 429 * in between and therefore the atomicity vs. interrupt cannot be exploited
 430 * in a useful way here.
 431 */
 432void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
 433{
 434	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
 435	s8 __percpu *p = pcp->vm_stat_diff + item;
 436	s8 v, t;
 437
 438	/* See __mod_node_page_state */
 439	preempt_disable_nested();
 440
 441	v = __this_cpu_inc_return(*p);
 442	t = __this_cpu_read(pcp->stat_threshold);
 443	if (unlikely(v > t)) {
 444		s8 overstep = t >> 1;
 445
 446		zone_page_state_add(v + overstep, zone, item);
 447		__this_cpu_write(*p, -overstep);
 448	}
 449
 450	preempt_enable_nested();
 451}
 452
 453void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 454{
 455	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 456	s8 __percpu *p = pcp->vm_node_stat_diff + item;
 457	s8 v, t;
 458
 459	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
 460
 461	/* See __mod_node_page_state */
 462	preempt_disable_nested();
 463
 464	v = __this_cpu_inc_return(*p);
 465	t = __this_cpu_read(pcp->stat_threshold);
 466	if (unlikely(v > t)) {
 467		s8 overstep = t >> 1;
 468
 469		node_page_state_add(v + overstep, pgdat, item);
 470		__this_cpu_write(*p, -overstep);
 471	}
 472
 473	preempt_enable_nested();
 474}
 475
 476void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
 477{
 478	__inc_zone_state(page_zone(page), item);
 479}
 480EXPORT_SYMBOL(__inc_zone_page_state);
 481
 482void __inc_node_page_state(struct page *page, enum node_stat_item item)
 483{
 484	__inc_node_state(page_pgdat(page), item);
 485}
 486EXPORT_SYMBOL(__inc_node_page_state);
 487
 488void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
 489{
 490	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
 491	s8 __percpu *p = pcp->vm_stat_diff + item;
 492	s8 v, t;
 493
 494	/* See __mod_node_page_state */
 495	preempt_disable_nested();
 496
 497	v = __this_cpu_dec_return(*p);
 498	t = __this_cpu_read(pcp->stat_threshold);
 499	if (unlikely(v < - t)) {
 500		s8 overstep = t >> 1;
 501
 502		zone_page_state_add(v - overstep, zone, item);
 503		__this_cpu_write(*p, overstep);
 504	}
 505
 506	preempt_enable_nested();
 507}
 508
 509void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 510{
 511	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 512	s8 __percpu *p = pcp->vm_node_stat_diff + item;
 513	s8 v, t;
 514
 515	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
 516
 517	/* See __mod_node_page_state */
 518	preempt_disable_nested();
 519
 520	v = __this_cpu_dec_return(*p);
 521	t = __this_cpu_read(pcp->stat_threshold);
 522	if (unlikely(v < - t)) {
 523		s8 overstep = t >> 1;
 524
 525		node_page_state_add(v - overstep, pgdat, item);
 526		__this_cpu_write(*p, overstep);
 527	}
 528
 529	preempt_enable_nested();
 530}
 531
 532void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
 533{
 534	__dec_zone_state(page_zone(page), item);
 535}
 536EXPORT_SYMBOL(__dec_zone_page_state);
 537
 538void __dec_node_page_state(struct page *page, enum node_stat_item item)
 539{
 540	__dec_node_state(page_pgdat(page), item);
 541}
 542EXPORT_SYMBOL(__dec_node_page_state);
 543
 544#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
 545/*
 546 * If we have cmpxchg_local support then we do not need to incur the overhead
 547 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
 548 *
 549 * mod_state() modifies the zone counter state through atomic per cpu
 550 * operations.
 551 *
 552 * Overstep mode specifies how overstep should handled:
 553 *     0       No overstepping
 554 *     1       Overstepping half of threshold
 555 *     -1      Overstepping minus half of threshold
 556*/
 557static inline void mod_zone_state(struct zone *zone,
 558       enum zone_stat_item item, long delta, int overstep_mode)
 559{
 560	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
 561	s8 __percpu *p = pcp->vm_stat_diff + item;
 562	long o, n, t, z;
 563
 564	do {
 565		z = 0;  /* overflow to zone counters */
 566
 567		/*
 568		 * The fetching of the stat_threshold is racy. We may apply
 569		 * a counter threshold to the wrong the cpu if we get
 570		 * rescheduled while executing here. However, the next
 571		 * counter update will apply the threshold again and
 572		 * therefore bring the counter under the threshold again.
 573		 *
 574		 * Most of the time the thresholds are the same anyways
 575		 * for all cpus in a zone.
 576		 */
 577		t = this_cpu_read(pcp->stat_threshold);
 578
 579		o = this_cpu_read(*p);
 580		n = delta + o;
 581
 582		if (abs(n) > t) {
 583			int os = overstep_mode * (t >> 1) ;
 584
 585			/* Overflow must be added to zone counters */
 586			z = n + os;
 587			n = -os;
 588		}
 589	} while (this_cpu_cmpxchg(*p, o, n) != o);
 590
 591	if (z)
 592		zone_page_state_add(z, zone, item);
 593}
 594
 595void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 596			 long delta)
 597{
 598	mod_zone_state(zone, item, delta, 0);
 599}
 600EXPORT_SYMBOL(mod_zone_page_state);
 601
 
 
 
 
 
 602void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 603{
 604	mod_zone_state(page_zone(page), item, 1, 1);
 605}
 606EXPORT_SYMBOL(inc_zone_page_state);
 607
 608void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 609{
 610	mod_zone_state(page_zone(page), item, -1, -1);
 611}
 612EXPORT_SYMBOL(dec_zone_page_state);
 613
 614static inline void mod_node_state(struct pglist_data *pgdat,
 615       enum node_stat_item item, int delta, int overstep_mode)
 616{
 617	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 618	s8 __percpu *p = pcp->vm_node_stat_diff + item;
 619	long o, n, t, z;
 620
 621	if (vmstat_item_in_bytes(item)) {
 622		/*
 623		 * Only cgroups use subpage accounting right now; at
 624		 * the global level, these items still change in
 625		 * multiples of whole pages. Store them as pages
 626		 * internally to keep the per-cpu counters compact.
 627		 */
 628		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
 629		delta >>= PAGE_SHIFT;
 630	}
 631
 632	do {
 633		z = 0;  /* overflow to node counters */
 634
 635		/*
 636		 * The fetching of the stat_threshold is racy. We may apply
 637		 * a counter threshold to the wrong the cpu if we get
 638		 * rescheduled while executing here. However, the next
 639		 * counter update will apply the threshold again and
 640		 * therefore bring the counter under the threshold again.
 641		 *
 642		 * Most of the time the thresholds are the same anyways
 643		 * for all cpus in a node.
 644		 */
 645		t = this_cpu_read(pcp->stat_threshold);
 646
 647		o = this_cpu_read(*p);
 648		n = delta + o;
 649
 650		if (abs(n) > t) {
 651			int os = overstep_mode * (t >> 1) ;
 652
 653			/* Overflow must be added to node counters */
 654			z = n + os;
 655			n = -os;
 656		}
 657	} while (this_cpu_cmpxchg(*p, o, n) != o);
 658
 659	if (z)
 660		node_page_state_add(z, pgdat, item);
 661}
 662
 663void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
 664					long delta)
 665{
 666	mod_node_state(pgdat, item, delta, 0);
 667}
 668EXPORT_SYMBOL(mod_node_page_state);
 669
 670void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 671{
 672	mod_node_state(pgdat, item, 1, 1);
 673}
 674
 675void inc_node_page_state(struct page *page, enum node_stat_item item)
 676{
 677	mod_node_state(page_pgdat(page), item, 1, 1);
 678}
 679EXPORT_SYMBOL(inc_node_page_state);
 680
 681void dec_node_page_state(struct page *page, enum node_stat_item item)
 682{
 683	mod_node_state(page_pgdat(page), item, -1, -1);
 684}
 685EXPORT_SYMBOL(dec_node_page_state);
 686#else
 687/*
 688 * Use interrupt disable to serialize counter updates
 689 */
 690void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 691			 long delta)
 692{
 693	unsigned long flags;
 694
 695	local_irq_save(flags);
 696	__mod_zone_page_state(zone, item, delta);
 697	local_irq_restore(flags);
 698}
 699EXPORT_SYMBOL(mod_zone_page_state);
 700
 701void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 702{
 703	unsigned long flags;
 704	struct zone *zone;
 705
 706	zone = page_zone(page);
 707	local_irq_save(flags);
 708	__inc_zone_state(zone, item);
 709	local_irq_restore(flags);
 710}
 711EXPORT_SYMBOL(inc_zone_page_state);
 712
 713void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 714{
 715	unsigned long flags;
 716
 717	local_irq_save(flags);
 718	__dec_zone_page_state(page, item);
 719	local_irq_restore(flags);
 720}
 721EXPORT_SYMBOL(dec_zone_page_state);
 722
 723void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 724{
 725	unsigned long flags;
 726
 727	local_irq_save(flags);
 728	__inc_node_state(pgdat, item);
 729	local_irq_restore(flags);
 730}
 731EXPORT_SYMBOL(inc_node_state);
 732
 733void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
 734					long delta)
 735{
 736	unsigned long flags;
 737
 738	local_irq_save(flags);
 739	__mod_node_page_state(pgdat, item, delta);
 740	local_irq_restore(flags);
 741}
 742EXPORT_SYMBOL(mod_node_page_state);
 743
 744void inc_node_page_state(struct page *page, enum node_stat_item item)
 745{
 746	unsigned long flags;
 747	struct pglist_data *pgdat;
 748
 749	pgdat = page_pgdat(page);
 750	local_irq_save(flags);
 751	__inc_node_state(pgdat, item);
 752	local_irq_restore(flags);
 753}
 754EXPORT_SYMBOL(inc_node_page_state);
 755
 756void dec_node_page_state(struct page *page, enum node_stat_item item)
 757{
 758	unsigned long flags;
 759
 760	local_irq_save(flags);
 761	__dec_node_page_state(page, item);
 762	local_irq_restore(flags);
 763}
 764EXPORT_SYMBOL(dec_node_page_state);
 765#endif
 766
 
 767/*
 768 * Fold a differential into the global counters.
 769 * Returns the number of counters updated.
 770 */
 771static int fold_diff(int *zone_diff, int *node_diff)
 772{
 773	int i;
 774	int changes = 0;
 775
 776	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 777		if (zone_diff[i]) {
 778			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
 779			changes++;
 780	}
 781
 782	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
 783		if (node_diff[i]) {
 784			atomic_long_add(node_diff[i], &vm_node_stat[i]);
 785			changes++;
 786	}
 787	return changes;
 788}
 789
 790/*
 791 * Update the zone counters for the current cpu.
 792 *
 793 * Note that refresh_cpu_vm_stats strives to only access
 794 * node local memory. The per cpu pagesets on remote zones are placed
 795 * in the memory local to the processor using that pageset. So the
 796 * loop over all zones will access a series of cachelines local to
 797 * the processor.
 798 *
 799 * The call to zone_page_state_add updates the cachelines with the
 800 * statistics in the remote zone struct as well as the global cachelines
 801 * with the global counters. These could cause remote node cache line
 802 * bouncing and will have to be only done when necessary.
 803 *
 804 * The function returns the number of global counters updated.
 805 */
 806static int refresh_cpu_vm_stats(bool do_pagesets)
 807{
 808	struct pglist_data *pgdat;
 809	struct zone *zone;
 810	int i;
 811	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 812	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
 813	int changes = 0;
 814
 815	for_each_populated_zone(zone) {
 816		struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
 817#ifdef CONFIG_NUMA
 818		struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
 819#endif
 820
 821		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
 822			int v;
 823
 824			v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
 825			if (v) {
 826
 827				atomic_long_add(v, &zone->vm_stat[i]);
 828				global_zone_diff[i] += v;
 829#ifdef CONFIG_NUMA
 830				/* 3 seconds idle till flush */
 831				__this_cpu_write(pcp->expire, 3);
 832#endif
 833			}
 834		}
 835#ifdef CONFIG_NUMA
 836
 837		if (do_pagesets) {
 838			cond_resched();
 839			/*
 840			 * Deal with draining the remote pageset of this
 841			 * processor
 842			 *
 843			 * Check if there are pages remaining in this pageset
 844			 * if not then there is nothing to expire.
 845			 */
 846			if (!__this_cpu_read(pcp->expire) ||
 847			       !__this_cpu_read(pcp->count))
 848				continue;
 849
 850			/*
 851			 * We never drain zones local to this processor.
 852			 */
 853			if (zone_to_nid(zone) == numa_node_id()) {
 854				__this_cpu_write(pcp->expire, 0);
 855				continue;
 856			}
 857
 858			if (__this_cpu_dec_return(pcp->expire))
 859				continue;
 860
 861			if (__this_cpu_read(pcp->count)) {
 862				drain_zone_pages(zone, this_cpu_ptr(pcp));
 863				changes++;
 864			}
 865		}
 866#endif
 867	}
 868
 869	for_each_online_pgdat(pgdat) {
 870		struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
 871
 872		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
 873			int v;
 874
 875			v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
 876			if (v) {
 877				atomic_long_add(v, &pgdat->vm_stat[i]);
 878				global_node_diff[i] += v;
 879			}
 880		}
 881	}
 882
 883	changes += fold_diff(global_zone_diff, global_node_diff);
 884	return changes;
 885}
 886
 887/*
 888 * Fold the data for an offline cpu into the global array.
 889 * There cannot be any access by the offline cpu and therefore
 890 * synchronization is simplified.
 891 */
 892void cpu_vm_stats_fold(int cpu)
 893{
 894	struct pglist_data *pgdat;
 895	struct zone *zone;
 896	int i;
 897	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 898	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
 899
 900	for_each_populated_zone(zone) {
 901		struct per_cpu_zonestat *pzstats;
 902
 903		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
 904
 905		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
 906			if (pzstats->vm_stat_diff[i]) {
 907				int v;
 908
 909				v = pzstats->vm_stat_diff[i];
 910				pzstats->vm_stat_diff[i] = 0;
 911				atomic_long_add(v, &zone->vm_stat[i]);
 912				global_zone_diff[i] += v;
 913			}
 914		}
 915#ifdef CONFIG_NUMA
 916		for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
 917			if (pzstats->vm_numa_event[i]) {
 918				unsigned long v;
 919
 920				v = pzstats->vm_numa_event[i];
 921				pzstats->vm_numa_event[i] = 0;
 922				zone_numa_event_add(v, zone, i);
 923			}
 924		}
 925#endif
 926	}
 927
 928	for_each_online_pgdat(pgdat) {
 929		struct per_cpu_nodestat *p;
 930
 931		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
 932
 933		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
 934			if (p->vm_node_stat_diff[i]) {
 935				int v;
 936
 937				v = p->vm_node_stat_diff[i];
 938				p->vm_node_stat_diff[i] = 0;
 939				atomic_long_add(v, &pgdat->vm_stat[i]);
 940				global_node_diff[i] += v;
 941			}
 942	}
 943
 944	fold_diff(global_zone_diff, global_node_diff);
 945}
 946
 947/*
 948 * this is only called if !populated_zone(zone), which implies no other users of
 949 * pset->vm_stat_diff[] exist.
 950 */
 951void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
 952{
 953	unsigned long v;
 954	int i;
 955
 956	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
 957		if (pzstats->vm_stat_diff[i]) {
 958			v = pzstats->vm_stat_diff[i];
 959			pzstats->vm_stat_diff[i] = 0;
 960			zone_page_state_add(v, zone, i);
 961		}
 962	}
 963
 964#ifdef CONFIG_NUMA
 965	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
 966		if (pzstats->vm_numa_event[i]) {
 967			v = pzstats->vm_numa_event[i];
 968			pzstats->vm_numa_event[i] = 0;
 969			zone_numa_event_add(v, zone, i);
 970		}
 971	}
 972#endif
 973}
 974#endif
 975
 976#ifdef CONFIG_NUMA
 977/*
 978 * Determine the per node value of a stat item. This function
 979 * is called frequently in a NUMA machine, so try to be as
 980 * frugal as possible.
 
 
 
 
 
 981 */
 982unsigned long sum_zone_node_page_state(int node,
 983				 enum zone_stat_item item)
 984{
 985	struct zone *zones = NODE_DATA(node)->node_zones;
 986	int i;
 987	unsigned long count = 0;
 988
 989	for (i = 0; i < MAX_NR_ZONES; i++)
 990		count += zone_page_state(zones + i, item);
 991
 992	return count;
 993}
 994
 995/* Determine the per node value of a numa stat item. */
 996unsigned long sum_zone_numa_event_state(int node,
 997				 enum numa_stat_item item)
 998{
 999	struct zone *zones = NODE_DATA(node)->node_zones;
1000	unsigned long count = 0;
1001	int i;
1002
1003	for (i = 0; i < MAX_NR_ZONES; i++)
1004		count += zone_numa_event_state(zones + i, item);
1005
1006	return count;
 
 
 
1007}
1008
1009/*
1010 * Determine the per node value of a stat item.
1011 */
1012unsigned long node_page_state_pages(struct pglist_data *pgdat,
1013				    enum node_stat_item item)
1014{
1015	long x = atomic_long_read(&pgdat->vm_stat[item]);
1016#ifdef CONFIG_SMP
1017	if (x < 0)
1018		x = 0;
 
 
 
 
1019#endif
1020	return x;
 
 
 
 
1021}
1022
1023unsigned long node_page_state(struct pglist_data *pgdat,
1024			      enum node_stat_item item)
1025{
1026	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1027
1028	return node_page_state_pages(pgdat, item);
1029}
1030#endif
1031
1032#ifdef CONFIG_COMPACTION
1033
1034struct contig_page_info {
1035	unsigned long free_pages;
1036	unsigned long free_blocks_total;
1037	unsigned long free_blocks_suitable;
1038};
1039
1040/*
1041 * Calculate the number of free pages in a zone, how many contiguous
1042 * pages are free and how many are large enough to satisfy an allocation of
1043 * the target size. Note that this function makes no attempt to estimate
1044 * how many suitable free blocks there *might* be if MOVABLE pages were
1045 * migrated. Calculating that is possible, but expensive and can be
1046 * figured out from userspace
1047 */
1048static void fill_contig_page_info(struct zone *zone,
1049				unsigned int suitable_order,
1050				struct contig_page_info *info)
1051{
1052	unsigned int order;
1053
1054	info->free_pages = 0;
1055	info->free_blocks_total = 0;
1056	info->free_blocks_suitable = 0;
1057
1058	for (order = 0; order < MAX_ORDER; order++) {
1059		unsigned long blocks;
1060
1061		/*
1062		 * Count number of free blocks.
1063		 *
1064		 * Access to nr_free is lockless as nr_free is used only for
1065		 * diagnostic purposes. Use data_race to avoid KCSAN warning.
1066		 */
1067		blocks = data_race(zone->free_area[order].nr_free);
1068		info->free_blocks_total += blocks;
1069
1070		/* Count free base pages */
1071		info->free_pages += blocks << order;
1072
1073		/* Count the suitable free blocks */
1074		if (order >= suitable_order)
1075			info->free_blocks_suitable += blocks <<
1076						(order - suitable_order);
1077	}
1078}
1079
1080/*
1081 * A fragmentation index only makes sense if an allocation of a requested
1082 * size would fail. If that is true, the fragmentation index indicates
1083 * whether external fragmentation or a lack of memory was the problem.
1084 * The value can be used to determine if page reclaim or compaction
1085 * should be used
1086 */
1087static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1088{
1089	unsigned long requested = 1UL << order;
1090
1091	if (WARN_ON_ONCE(order >= MAX_ORDER))
1092		return 0;
1093
1094	if (!info->free_blocks_total)
1095		return 0;
1096
1097	/* Fragmentation index only makes sense when a request would fail */
1098	if (info->free_blocks_suitable)
1099		return -1000;
1100
1101	/*
1102	 * Index is between 0 and 1 so return within 3 decimal places
1103	 *
1104	 * 0 => allocation would fail due to lack of memory
1105	 * 1 => allocation would fail due to fragmentation
1106	 */
1107	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1108}
1109
1110/*
1111 * Calculates external fragmentation within a zone wrt the given order.
1112 * It is defined as the percentage of pages found in blocks of size
1113 * less than 1 << order. It returns values in range [0, 100].
1114 */
1115unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1116{
1117	struct contig_page_info info;
1118
1119	fill_contig_page_info(zone, order, &info);
1120	if (info.free_pages == 0)
1121		return 0;
1122
1123	return div_u64((info.free_pages -
1124			(info.free_blocks_suitable << order)) * 100,
1125			info.free_pages);
1126}
1127
1128/* Same as __fragmentation index but allocs contig_page_info on stack */
1129int fragmentation_index(struct zone *zone, unsigned int order)
1130{
1131	struct contig_page_info info;
1132
1133	fill_contig_page_info(zone, order, &info);
1134	return __fragmentation_index(order, &info);
1135}
1136#endif
1137
1138#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1139    defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1140#ifdef CONFIG_ZONE_DMA
1141#define TEXT_FOR_DMA(xx) xx "_dma",
1142#else
1143#define TEXT_FOR_DMA(xx)
1144#endif
1145
1146#ifdef CONFIG_ZONE_DMA32
1147#define TEXT_FOR_DMA32(xx) xx "_dma32",
1148#else
1149#define TEXT_FOR_DMA32(xx)
1150#endif
1151
1152#ifdef CONFIG_HIGHMEM
1153#define TEXT_FOR_HIGHMEM(xx) xx "_high",
1154#else
1155#define TEXT_FOR_HIGHMEM(xx)
1156#endif
1157
1158#ifdef CONFIG_ZONE_DEVICE
1159#define TEXT_FOR_DEVICE(xx) xx "_device",
1160#else
1161#define TEXT_FOR_DEVICE(xx)
1162#endif
1163
1164#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1165					TEXT_FOR_HIGHMEM(xx) xx "_movable", \
1166					TEXT_FOR_DEVICE(xx)
1167
1168const char * const vmstat_text[] = {
1169	/* enum zone_stat_item counters */
1170	"nr_free_pages",
1171	"nr_zone_inactive_anon",
1172	"nr_zone_active_anon",
1173	"nr_zone_inactive_file",
1174	"nr_zone_active_file",
1175	"nr_zone_unevictable",
1176	"nr_zone_write_pending",
1177	"nr_mlock",
1178	"nr_bounce",
1179#if IS_ENABLED(CONFIG_ZSMALLOC)
1180	"nr_zspages",
1181#endif
1182	"nr_free_cma",
1183
1184	/* enum numa_stat_item counters */
1185#ifdef CONFIG_NUMA
1186	"numa_hit",
1187	"numa_miss",
1188	"numa_foreign",
1189	"numa_interleave",
1190	"numa_local",
1191	"numa_other",
1192#endif
1193
1194	/* enum node_stat_item counters */
1195	"nr_inactive_anon",
1196	"nr_active_anon",
1197	"nr_inactive_file",
1198	"nr_active_file",
1199	"nr_unevictable",
1200	"nr_slab_reclaimable",
1201	"nr_slab_unreclaimable",
1202	"nr_isolated_anon",
1203	"nr_isolated_file",
1204	"workingset_nodes",
1205	"workingset_refault_anon",
1206	"workingset_refault_file",
1207	"workingset_activate_anon",
1208	"workingset_activate_file",
1209	"workingset_restore_anon",
1210	"workingset_restore_file",
1211	"workingset_nodereclaim",
1212	"nr_anon_pages",
1213	"nr_mapped",
1214	"nr_file_pages",
1215	"nr_dirty",
1216	"nr_writeback",
1217	"nr_writeback_temp",
1218	"nr_shmem",
1219	"nr_shmem_hugepages",
1220	"nr_shmem_pmdmapped",
1221	"nr_file_hugepages",
1222	"nr_file_pmdmapped",
1223	"nr_anon_transparent_hugepages",
1224	"nr_vmscan_write",
1225	"nr_vmscan_immediate_reclaim",
 
 
 
 
1226	"nr_dirtied",
1227	"nr_written",
1228	"nr_throttled_written",
1229	"nr_kernel_misc_reclaimable",
1230	"nr_foll_pin_acquired",
1231	"nr_foll_pin_released",
1232	"nr_kernel_stack",
1233#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1234	"nr_shadow_call_stack",
1235#endif
1236	"nr_page_table_pages",
1237	"nr_sec_page_table_pages",
1238#ifdef CONFIG_SWAP
1239	"nr_swapcached",
1240#endif
1241#ifdef CONFIG_NUMA_BALANCING
1242	"pgpromote_success",
1243	"pgpromote_candidate",
1244#endif
 
 
 
 
 
1245
1246	/* enum writeback_stat_item counters */
1247	"nr_dirty_threshold",
1248	"nr_dirty_background_threshold",
1249
1250#if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1251	/* enum vm_event_item counters */
1252	"pgpgin",
1253	"pgpgout",
1254	"pswpin",
1255	"pswpout",
1256
1257	TEXTS_FOR_ZONES("pgalloc")
1258	TEXTS_FOR_ZONES("allocstall")
1259	TEXTS_FOR_ZONES("pgskip")
1260
1261	"pgfree",
1262	"pgactivate",
1263	"pgdeactivate",
1264	"pglazyfree",
1265
1266	"pgfault",
1267	"pgmajfault",
1268	"pglazyfreed",
1269
1270	"pgrefill",
1271	"pgreuse",
1272	"pgsteal_kswapd",
1273	"pgsteal_direct",
1274	"pgsteal_khugepaged",
1275	"pgdemote_kswapd",
1276	"pgdemote_direct",
1277	"pgdemote_khugepaged",
1278	"pgscan_kswapd",
1279	"pgscan_direct",
1280	"pgscan_khugepaged",
1281	"pgscan_direct_throttle",
1282	"pgscan_anon",
1283	"pgscan_file",
1284	"pgsteal_anon",
1285	"pgsteal_file",
1286
1287#ifdef CONFIG_NUMA
1288	"zone_reclaim_failed",
1289#endif
1290	"pginodesteal",
1291	"slabs_scanned",
1292	"kswapd_inodesteal",
1293	"kswapd_low_wmark_hit_quickly",
1294	"kswapd_high_wmark_hit_quickly",
1295	"pageoutrun",
 
1296
1297	"pgrotated",
1298
1299	"drop_pagecache",
1300	"drop_slab",
1301	"oom_kill",
1302
1303#ifdef CONFIG_NUMA_BALANCING
1304	"numa_pte_updates",
1305	"numa_huge_pte_updates",
1306	"numa_hint_faults",
1307	"numa_hint_faults_local",
1308	"numa_pages_migrated",
1309#endif
1310#ifdef CONFIG_MIGRATION
1311	"pgmigrate_success",
1312	"pgmigrate_fail",
1313	"thp_migration_success",
1314	"thp_migration_fail",
1315	"thp_migration_split",
1316#endif
1317#ifdef CONFIG_COMPACTION
1318	"compact_migrate_scanned",
1319	"compact_free_scanned",
1320	"compact_isolated",
1321	"compact_stall",
1322	"compact_fail",
1323	"compact_success",
1324	"compact_daemon_wake",
1325	"compact_daemon_migrate_scanned",
1326	"compact_daemon_free_scanned",
1327#endif
1328
1329#ifdef CONFIG_HUGETLB_PAGE
1330	"htlb_buddy_alloc_success",
1331	"htlb_buddy_alloc_fail",
1332#endif
1333#ifdef CONFIG_CMA
1334	"cma_alloc_success",
1335	"cma_alloc_fail",
1336#endif
1337	"unevictable_pgs_culled",
1338	"unevictable_pgs_scanned",
1339	"unevictable_pgs_rescued",
1340	"unevictable_pgs_mlocked",
1341	"unevictable_pgs_munlocked",
1342	"unevictable_pgs_cleared",
1343	"unevictable_pgs_stranded",
1344
1345#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1346	"thp_fault_alloc",
1347	"thp_fault_fallback",
1348	"thp_fault_fallback_charge",
1349	"thp_collapse_alloc",
1350	"thp_collapse_alloc_failed",
1351	"thp_file_alloc",
1352	"thp_file_fallback",
1353	"thp_file_fallback_charge",
1354	"thp_file_mapped",
1355	"thp_split_page",
1356	"thp_split_page_failed",
1357	"thp_deferred_split_page",
1358	"thp_split_pmd",
1359	"thp_scan_exceed_none_pte",
1360	"thp_scan_exceed_swap_pte",
1361	"thp_scan_exceed_share_pte",
1362#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1363	"thp_split_pud",
1364#endif
1365	"thp_zero_page_alloc",
1366	"thp_zero_page_alloc_failed",
1367	"thp_swpout",
1368	"thp_swpout_fallback",
1369#endif
1370#ifdef CONFIG_MEMORY_BALLOON
1371	"balloon_inflate",
1372	"balloon_deflate",
1373#ifdef CONFIG_BALLOON_COMPACTION
1374	"balloon_migrate",
1375#endif
1376#endif /* CONFIG_MEMORY_BALLOON */
1377#ifdef CONFIG_DEBUG_TLBFLUSH
 
1378	"nr_tlb_remote_flush",
1379	"nr_tlb_remote_flush_received",
 
1380	"nr_tlb_local_flush_all",
1381	"nr_tlb_local_flush_one",
1382#endif /* CONFIG_DEBUG_TLBFLUSH */
1383
1384#ifdef CONFIG_SWAP
1385	"swap_ra",
1386	"swap_ra_hit",
1387#ifdef CONFIG_KSM
1388	"ksm_swpin_copy",
1389#endif
1390#endif
1391#ifdef CONFIG_KSM
1392	"cow_ksm",
1393#endif
1394#ifdef CONFIG_ZSWAP
1395	"zswpin",
1396	"zswpout",
1397#endif
1398#ifdef CONFIG_X86
1399	"direct_map_level2_splits",
1400	"direct_map_level3_splits",
1401#endif
1402#endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1403};
1404#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
 
1405
1406#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1407     defined(CONFIG_PROC_FS)
1408static void *frag_start(struct seq_file *m, loff_t *pos)
1409{
1410	pg_data_t *pgdat;
1411	loff_t node = *pos;
1412
1413	for (pgdat = first_online_pgdat();
1414	     pgdat && node;
1415	     pgdat = next_online_pgdat(pgdat))
1416		--node;
1417
1418	return pgdat;
1419}
1420
1421static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1422{
1423	pg_data_t *pgdat = (pg_data_t *)arg;
1424
1425	(*pos)++;
1426	return next_online_pgdat(pgdat);
1427}
1428
1429static void frag_stop(struct seq_file *m, void *arg)
1430{
1431}
1432
1433/*
1434 * Walk zones in a node and print using a callback.
1435 * If @assert_populated is true, only use callback for zones that are populated.
1436 */
1437static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1438		bool assert_populated, bool nolock,
1439		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1440{
1441	struct zone *zone;
1442	struct zone *node_zones = pgdat->node_zones;
1443	unsigned long flags;
1444
1445	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1446		if (assert_populated && !populated_zone(zone))
1447			continue;
1448
1449		if (!nolock)
1450			spin_lock_irqsave(&zone->lock, flags);
1451		print(m, pgdat, zone);
1452		if (!nolock)
1453			spin_unlock_irqrestore(&zone->lock, flags);
1454	}
1455}
1456#endif
1457
1458#ifdef CONFIG_PROC_FS
1459static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1460						struct zone *zone)
1461{
1462	int order;
1463
1464	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1465	for (order = 0; order < MAX_ORDER; ++order)
1466		/*
1467		 * Access to nr_free is lockless as nr_free is used only for
1468		 * printing purposes. Use data_race to avoid KCSAN warning.
1469		 */
1470		seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1471	seq_putc(m, '\n');
1472}
1473
1474/*
1475 * This walks the free areas for each zone.
1476 */
1477static int frag_show(struct seq_file *m, void *arg)
1478{
1479	pg_data_t *pgdat = (pg_data_t *)arg;
1480	walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1481	return 0;
1482}
1483
1484static void pagetypeinfo_showfree_print(struct seq_file *m,
1485					pg_data_t *pgdat, struct zone *zone)
1486{
1487	int order, mtype;
1488
1489	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1490		seq_printf(m, "Node %4d, zone %8s, type %12s ",
1491					pgdat->node_id,
1492					zone->name,
1493					migratetype_names[mtype]);
1494		for (order = 0; order < MAX_ORDER; ++order) {
1495			unsigned long freecount = 0;
1496			struct free_area *area;
1497			struct list_head *curr;
1498			bool overflow = false;
1499
1500			area = &(zone->free_area[order]);
1501
1502			list_for_each(curr, &area->free_list[mtype]) {
1503				/*
1504				 * Cap the free_list iteration because it might
1505				 * be really large and we are under a spinlock
1506				 * so a long time spent here could trigger a
1507				 * hard lockup detector. Anyway this is a
1508				 * debugging tool so knowing there is a handful
1509				 * of pages of this order should be more than
1510				 * sufficient.
1511				 */
1512				if (++freecount >= 100000) {
1513					overflow = true;
1514					break;
1515				}
1516			}
1517			seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1518			spin_unlock_irq(&zone->lock);
1519			cond_resched();
1520			spin_lock_irq(&zone->lock);
1521		}
1522		seq_putc(m, '\n');
1523	}
1524}
1525
1526/* Print out the free pages at each order for each migatetype */
1527static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1528{
1529	int order;
1530	pg_data_t *pgdat = (pg_data_t *)arg;
1531
1532	/* Print header */
1533	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1534	for (order = 0; order < MAX_ORDER; ++order)
1535		seq_printf(m, "%6d ", order);
1536	seq_putc(m, '\n');
1537
1538	walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
 
 
1539}
1540
1541static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1542					pg_data_t *pgdat, struct zone *zone)
1543{
1544	int mtype;
1545	unsigned long pfn;
1546	unsigned long start_pfn = zone->zone_start_pfn;
1547	unsigned long end_pfn = zone_end_pfn(zone);
1548	unsigned long count[MIGRATE_TYPES] = { 0, };
1549
1550	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1551		struct page *page;
1552
1553		page = pfn_to_online_page(pfn);
1554		if (!page)
1555			continue;
1556
1557		if (page_zone(page) != zone)
 
 
 
1558			continue;
1559
1560		mtype = get_pageblock_migratetype(page);
1561
1562		if (mtype < MIGRATE_TYPES)
1563			count[mtype]++;
1564	}
1565
1566	/* Print counts */
1567	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1568	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1569		seq_printf(m, "%12lu ", count[mtype]);
1570	seq_putc(m, '\n');
1571}
1572
1573/* Print out the number of pageblocks for each migratetype */
1574static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1575{
1576	int mtype;
1577	pg_data_t *pgdat = (pg_data_t *)arg;
1578
1579	seq_printf(m, "\n%-23s", "Number of blocks type ");
1580	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1581		seq_printf(m, "%12s ", migratetype_names[mtype]);
1582	seq_putc(m, '\n');
1583	walk_zones_in_node(m, pgdat, true, false,
1584		pagetypeinfo_showblockcount_print);
 
1585}
1586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1587/*
1588 * Print out the number of pageblocks for each migratetype that contain pages
1589 * of other types. This gives an indication of how well fallbacks are being
1590 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1591 * to determine what is going on
1592 */
1593static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1594{
1595#ifdef CONFIG_PAGE_OWNER
1596	int mtype;
1597
1598	if (!static_branch_unlikely(&page_owner_inited))
1599		return;
1600
1601	drain_all_pages(NULL);
1602
1603	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1604	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1605		seq_printf(m, "%12s ", migratetype_names[mtype]);
1606	seq_putc(m, '\n');
1607
1608	walk_zones_in_node(m, pgdat, true, true,
1609		pagetypeinfo_showmixedcount_print);
1610#endif /* CONFIG_PAGE_OWNER */
1611}
1612
1613/*
1614 * This prints out statistics in relation to grouping pages by mobility.
1615 * It is expensive to collect so do not constantly read the file.
1616 */
1617static int pagetypeinfo_show(struct seq_file *m, void *arg)
1618{
1619	pg_data_t *pgdat = (pg_data_t *)arg;
1620
1621	/* check memoryless node */
1622	if (!node_state(pgdat->node_id, N_MEMORY))
1623		return 0;
1624
1625	seq_printf(m, "Page block order: %d\n", pageblock_order);
1626	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1627	seq_putc(m, '\n');
1628	pagetypeinfo_showfree(m, pgdat);
1629	pagetypeinfo_showblockcount(m, pgdat);
1630	pagetypeinfo_showmixedcount(m, pgdat);
1631
1632	return 0;
1633}
1634
1635static const struct seq_operations fragmentation_op = {
1636	.start	= frag_start,
1637	.next	= frag_next,
1638	.stop	= frag_stop,
1639	.show	= frag_show,
1640};
1641
 
 
 
 
 
 
 
 
 
 
 
 
1642static const struct seq_operations pagetypeinfo_op = {
1643	.start	= frag_start,
1644	.next	= frag_next,
1645	.stop	= frag_stop,
1646	.show	= pagetypeinfo_show,
1647};
1648
1649static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1650{
1651	int zid;
1652
1653	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1654		struct zone *compare = &pgdat->node_zones[zid];
1655
1656		if (populated_zone(compare))
1657			return zone == compare;
1658	}
1659
1660	return false;
1661}
1662
 
 
 
 
 
 
 
1663static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1664							struct zone *zone)
1665{
1666	int i;
1667	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1668	if (is_zone_first_populated(pgdat, zone)) {
1669		seq_printf(m, "\n  per-node stats");
1670		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1671			unsigned long pages = node_page_state_pages(pgdat, i);
1672
1673			if (vmstat_item_print_in_thp(i))
1674				pages /= HPAGE_PMD_NR;
1675			seq_printf(m, "\n      %-12s %lu", node_stat_name(i),
1676				   pages);
1677		}
1678	}
1679	seq_printf(m,
1680		   "\n  pages free     %lu"
1681		   "\n        boost    %lu"
1682		   "\n        min      %lu"
1683		   "\n        low      %lu"
1684		   "\n        high     %lu"
 
1685		   "\n        spanned  %lu"
1686		   "\n        present  %lu"
1687		   "\n        managed  %lu"
1688		   "\n        cma      %lu",
1689		   zone_page_state(zone, NR_FREE_PAGES),
1690		   zone->watermark_boost,
1691		   min_wmark_pages(zone),
1692		   low_wmark_pages(zone),
1693		   high_wmark_pages(zone),
 
1694		   zone->spanned_pages,
1695		   zone->present_pages,
1696		   zone_managed_pages(zone),
1697		   zone_cma_pages(zone));
 
 
 
1698
1699	seq_printf(m,
1700		   "\n        protection: (%ld",
1701		   zone->lowmem_reserve[0]);
1702	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1703		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1704	seq_putc(m, ')');
1705
1706	/* If unpopulated, no other information is useful */
1707	if (!populated_zone(zone)) {
1708		seq_putc(m, '\n');
1709		return;
1710	}
1711
1712	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1713		seq_printf(m, "\n      %-12s %lu", zone_stat_name(i),
1714			   zone_page_state(zone, i));
1715
1716#ifdef CONFIG_NUMA
1717	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1718		seq_printf(m, "\n      %-12s %lu", numa_stat_name(i),
1719			   zone_numa_event_state(zone, i));
1720#endif
1721
1722	seq_printf(m, "\n  pagesets");
1723	for_each_online_cpu(i) {
1724		struct per_cpu_pages *pcp;
1725		struct per_cpu_zonestat __maybe_unused *pzstats;
1726
1727		pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1728		seq_printf(m,
1729			   "\n    cpu: %i"
1730			   "\n              count: %i"
1731			   "\n              high:  %i"
1732			   "\n              batch: %i",
1733			   i,
1734			   pcp->count,
1735			   pcp->high,
1736			   pcp->batch);
1737#ifdef CONFIG_SMP
1738		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1739		seq_printf(m, "\n  vm stats threshold: %d",
1740				pzstats->stat_threshold);
1741#endif
1742	}
1743	seq_printf(m,
1744		   "\n  node_unreclaimable:  %u"
1745		   "\n  start_pfn:           %lu",
1746		   pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1747		   zone->zone_start_pfn);
 
 
1748	seq_putc(m, '\n');
1749}
1750
1751/*
1752 * Output information about zones in @pgdat.  All zones are printed regardless
1753 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1754 * set of all zones and userspace would not be aware of such zones if they are
1755 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1756 */
1757static int zoneinfo_show(struct seq_file *m, void *arg)
1758{
1759	pg_data_t *pgdat = (pg_data_t *)arg;
1760	walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1761	return 0;
1762}
1763
1764static const struct seq_operations zoneinfo_op = {
1765	.start	= frag_start, /* iterate over all zones. The same as in
1766			       * fragmentation. */
1767	.next	= frag_next,
1768	.stop	= frag_stop,
1769	.show	= zoneinfo_show,
1770};
1771
1772#define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1773			 NR_VM_NUMA_EVENT_ITEMS + \
1774			 NR_VM_NODE_STAT_ITEMS + \
1775			 NR_VM_WRITEBACK_STAT_ITEMS + \
1776			 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1777			  NR_VM_EVENT_ITEMS : 0))
 
 
 
 
 
 
 
 
 
 
 
1778
1779static void *vmstat_start(struct seq_file *m, loff_t *pos)
1780{
1781	unsigned long *v;
1782	int i;
1783
1784	if (*pos >= NR_VMSTAT_ITEMS)
1785		return NULL;
 
 
1786
1787	BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1788	fold_vm_numa_events();
1789	v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
 
 
1790	m->private = v;
1791	if (!v)
1792		return ERR_PTR(-ENOMEM);
1793	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1794		v[i] = global_zone_page_state(i);
1795	v += NR_VM_ZONE_STAT_ITEMS;
1796
1797#ifdef CONFIG_NUMA
1798	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1799		v[i] = global_numa_event_state(i);
1800	v += NR_VM_NUMA_EVENT_ITEMS;
1801#endif
1802
1803	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1804		v[i] = global_node_page_state_pages(i);
1805		if (vmstat_item_print_in_thp(i))
1806			v[i] /= HPAGE_PMD_NR;
1807	}
1808	v += NR_VM_NODE_STAT_ITEMS;
1809
1810	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1811			    v + NR_DIRTY_THRESHOLD);
1812	v += NR_VM_WRITEBACK_STAT_ITEMS;
1813
1814#ifdef CONFIG_VM_EVENT_COUNTERS
1815	all_vm_events(v);
1816	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1817	v[PGPGOUT] /= 2;
1818#endif
1819	return (unsigned long *)m->private + *pos;
1820}
1821
1822static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1823{
1824	(*pos)++;
1825	if (*pos >= NR_VMSTAT_ITEMS)
1826		return NULL;
1827	return (unsigned long *)m->private + *pos;
1828}
1829
1830static int vmstat_show(struct seq_file *m, void *arg)
1831{
1832	unsigned long *l = arg;
1833	unsigned long off = l - (unsigned long *)m->private;
1834
1835	seq_puts(m, vmstat_text[off]);
1836	seq_put_decimal_ull(m, " ", *l);
1837	seq_putc(m, '\n');
1838
1839	if (off == NR_VMSTAT_ITEMS - 1) {
1840		/*
1841		 * We've come to the end - add any deprecated counters to avoid
1842		 * breaking userspace which might depend on them being present.
1843		 */
1844		seq_puts(m, "nr_unstable 0\n");
1845	}
1846	return 0;
1847}
1848
1849static void vmstat_stop(struct seq_file *m, void *arg)
1850{
1851	kfree(m->private);
1852	m->private = NULL;
1853}
1854
1855static const struct seq_operations vmstat_op = {
1856	.start	= vmstat_start,
1857	.next	= vmstat_next,
1858	.stop	= vmstat_stop,
1859	.show	= vmstat_show,
1860};
1861#endif /* CONFIG_PROC_FS */
1862
1863#ifdef CONFIG_SMP
1864static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1865int sysctl_stat_interval __read_mostly = HZ;
1866
1867#ifdef CONFIG_PROC_FS
1868static void refresh_vm_stats(struct work_struct *work)
1869{
1870	refresh_cpu_vm_stats(true);
1871}
1872
1873int vmstat_refresh(struct ctl_table *table, int write,
1874		   void *buffer, size_t *lenp, loff_t *ppos)
1875{
1876	long val;
1877	int err;
1878	int i;
1879
1880	/*
1881	 * The regular update, every sysctl_stat_interval, may come later
1882	 * than expected: leaving a significant amount in per_cpu buckets.
1883	 * This is particularly misleading when checking a quantity of HUGE
1884	 * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1885	 * which can equally be echo'ed to or cat'ted from (by root),
1886	 * can be used to update the stats just before reading them.
1887	 *
1888	 * Oh, and since global_zone_page_state() etc. are so careful to hide
1889	 * transiently negative values, report an error here if any of
1890	 * the stats is negative, so we know to go looking for imbalance.
1891	 */
1892	err = schedule_on_each_cpu(refresh_vm_stats);
1893	if (err)
1894		return err;
1895	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1896		/*
1897		 * Skip checking stats known to go negative occasionally.
1898		 */
1899		switch (i) {
1900		case NR_ZONE_WRITE_PENDING:
1901		case NR_FREE_CMA_PAGES:
1902			continue;
1903		}
1904		val = atomic_long_read(&vm_zone_stat[i]);
1905		if (val < 0) {
1906			pr_warn("%s: %s %ld\n",
1907				__func__, zone_stat_name(i), val);
1908		}
1909	}
1910	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1911		/*
1912		 * Skip checking stats known to go negative occasionally.
1913		 */
1914		switch (i) {
1915		case NR_WRITEBACK:
1916			continue;
1917		}
1918		val = atomic_long_read(&vm_node_stat[i]);
1919		if (val < 0) {
1920			pr_warn("%s: %s %ld\n",
1921				__func__, node_stat_name(i), val);
1922		}
1923	}
1924	if (write)
1925		*ppos += *lenp;
1926	else
1927		*lenp = 0;
1928	return 0;
1929}
1930#endif /* CONFIG_PROC_FS */
1931
 
 
 
 
 
 
1932static void vmstat_update(struct work_struct *w)
1933{
1934	if (refresh_cpu_vm_stats(true)) {
1935		/*
1936		 * Counters were updated so we expect more updates
1937		 * to occur in the future. Keep on running the
1938		 * update worker thread.
 
 
1939		 */
1940		queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
 
 
1941				this_cpu_ptr(&vmstat_work),
1942				round_jiffies_relative(sysctl_stat_interval));
 
 
 
 
 
 
 
 
 
 
1943	}
1944}
1945
1946/*
 
 
 
 
 
1947 * Check if the diffs for a certain cpu indicate that
1948 * an update is needed.
1949 */
1950static bool need_update(int cpu)
1951{
1952	pg_data_t *last_pgdat = NULL;
1953	struct zone *zone;
1954
1955	for_each_populated_zone(zone) {
1956		struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1957		struct per_cpu_nodestat *n;
1958
 
1959		/*
1960		 * The fast way of checking if there are any vmstat diffs.
 
1961		 */
1962		if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1963			return true;
1964
1965		if (last_pgdat == zone->zone_pgdat)
1966			continue;
1967		last_pgdat = zone->zone_pgdat;
1968		n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1969		if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1970			return true;
1971	}
1972	return false;
1973}
1974
1975/*
1976 * Switch off vmstat processing and then fold all the remaining differentials
1977 * until the diffs stay at zero. The function is used by NOHZ and can only be
1978 * invoked when tick processing is not active.
1979 */
1980void quiet_vmstat(void)
1981{
1982	if (system_state != SYSTEM_RUNNING)
1983		return;
1984
1985	if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
 
 
 
 
1986		return;
1987
1988	if (!need_update(smp_processor_id()))
1989		return;
1990
1991	/*
1992	 * Just refresh counters and do not care about the pending delayed
1993	 * vmstat_update. It doesn't fire that often to matter and canceling
1994	 * it would be too expensive from this path.
1995	 * vmstat_shepherd will take care about that for us.
1996	 */
1997	refresh_cpu_vm_stats(false);
1998}
1999
 
2000/*
2001 * Shepherd worker thread that checks the
2002 * differentials of processors that have their worker
2003 * threads for vm statistics updates disabled because of
2004 * inactivity.
2005 */
2006static void vmstat_shepherd(struct work_struct *w);
2007
2008static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2009
2010static void vmstat_shepherd(struct work_struct *w)
2011{
2012	int cpu;
2013
2014	cpus_read_lock();
2015	/* Check processors whose vmstat worker threads have been disabled */
2016	for_each_online_cpu(cpu) {
2017		struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2018
2019		if (!delayed_work_pending(dw) && need_update(cpu))
2020			queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2021
2022		cond_resched();
 
 
 
 
 
 
 
2023	}
2024	cpus_read_unlock();
2025
2026	schedule_delayed_work(&shepherd,
2027		round_jiffies_relative(sysctl_stat_interval));
2028}
2029
2030static void __init start_shepherd_timer(void)
2031{
2032	int cpu;
2033
2034	for_each_possible_cpu(cpu)
2035		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2036			vmstat_update);
2037
 
 
 
 
 
2038	schedule_delayed_work(&shepherd,
2039		round_jiffies_relative(sysctl_stat_interval));
2040}
2041
2042static void __init init_cpu_node_state(void)
2043{
2044	int node;
2045
2046	for_each_online_node(node) {
2047		if (!cpumask_empty(cpumask_of_node(node)))
2048			node_set_state(node, N_CPU);
2049	}
 
 
 
 
2050}
2051
2052static int vmstat_cpu_online(unsigned int cpu)
 
 
 
 
 
 
2053{
2054	refresh_zone_stat_thresholds();
2055
2056	if (!node_state(cpu_to_node(cpu), N_CPU)) {
 
 
 
2057		node_set_state(cpu_to_node(cpu), N_CPU);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2058	}
2059
2060	return 0;
2061}
2062
2063static int vmstat_cpu_down_prep(unsigned int cpu)
2064{
2065	cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2066	return 0;
2067}
2068
2069static int vmstat_cpu_dead(unsigned int cpu)
2070{
2071	const struct cpumask *node_cpus;
2072	int node;
2073
2074	node = cpu_to_node(cpu);
2075
2076	refresh_zone_stat_thresholds();
2077	node_cpus = cpumask_of_node(node);
2078	if (!cpumask_empty(node_cpus))
2079		return 0;
2080
2081	node_clear_state(node, N_CPU);
2082
2083	return 0;
2084}
2085
 
 
2086#endif
2087
2088struct workqueue_struct *mm_percpu_wq;
2089
2090void __init init_mm_internals(void)
2091{
2092	int ret __maybe_unused;
2093
2094	mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2095
2096#ifdef CONFIG_SMP
2097	ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2098					NULL, vmstat_cpu_dead);
2099	if (ret < 0)
2100		pr_err("vmstat: failed to register 'dead' hotplug state\n");
2101
2102	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2103					vmstat_cpu_online,
2104					vmstat_cpu_down_prep);
2105	if (ret < 0)
2106		pr_err("vmstat: failed to register 'online' hotplug state\n");
2107
2108	cpus_read_lock();
2109	init_cpu_node_state();
2110	cpus_read_unlock();
2111
2112	start_shepherd_timer();
 
2113#endif
2114#ifdef CONFIG_PROC_FS
2115	proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2116	proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2117	proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2118	proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2119#endif
 
2120}
 
2121
2122#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2123
2124/*
2125 * Return an index indicating how much of the available free memory is
2126 * unusable for an allocation of the requested size.
2127 */
2128static int unusable_free_index(unsigned int order,
2129				struct contig_page_info *info)
2130{
2131	/* No free memory is interpreted as all free memory is unusable */
2132	if (info->free_pages == 0)
2133		return 1000;
2134
2135	/*
2136	 * Index should be a value between 0 and 1. Return a value to 3
2137	 * decimal places.
2138	 *
2139	 * 0 => no fragmentation
2140	 * 1 => high fragmentation
2141	 */
2142	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2143
2144}
2145
2146static void unusable_show_print(struct seq_file *m,
2147					pg_data_t *pgdat, struct zone *zone)
2148{
2149	unsigned int order;
2150	int index;
2151	struct contig_page_info info;
2152
2153	seq_printf(m, "Node %d, zone %8s ",
2154				pgdat->node_id,
2155				zone->name);
2156	for (order = 0; order < MAX_ORDER; ++order) {
2157		fill_contig_page_info(zone, order, &info);
2158		index = unusable_free_index(order, &info);
2159		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2160	}
2161
2162	seq_putc(m, '\n');
2163}
2164
2165/*
2166 * Display unusable free space index
2167 *
2168 * The unusable free space index measures how much of the available free
2169 * memory cannot be used to satisfy an allocation of a given size and is a
2170 * value between 0 and 1. The higher the value, the more of free memory is
2171 * unusable and by implication, the worse the external fragmentation is. This
2172 * can be expressed as a percentage by multiplying by 100.
2173 */
2174static int unusable_show(struct seq_file *m, void *arg)
2175{
2176	pg_data_t *pgdat = (pg_data_t *)arg;
2177
2178	/* check memoryless node */
2179	if (!node_state(pgdat->node_id, N_MEMORY))
2180		return 0;
2181
2182	walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2183
2184	return 0;
2185}
2186
2187static const struct seq_operations unusable_sops = {
2188	.start	= frag_start,
2189	.next	= frag_next,
2190	.stop	= frag_stop,
2191	.show	= unusable_show,
2192};
2193
2194DEFINE_SEQ_ATTRIBUTE(unusable);
 
 
 
 
 
 
 
 
 
 
2195
2196static void extfrag_show_print(struct seq_file *m,
2197					pg_data_t *pgdat, struct zone *zone)
2198{
2199	unsigned int order;
2200	int index;
2201
2202	/* Alloc on stack as interrupts are disabled for zone walk */
2203	struct contig_page_info info;
2204
2205	seq_printf(m, "Node %d, zone %8s ",
2206				pgdat->node_id,
2207				zone->name);
2208	for (order = 0; order < MAX_ORDER; ++order) {
2209		fill_contig_page_info(zone, order, &info);
2210		index = __fragmentation_index(order, &info);
2211		seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2212	}
2213
2214	seq_putc(m, '\n');
2215}
2216
2217/*
2218 * Display fragmentation index for orders that allocations would fail for
2219 */
2220static int extfrag_show(struct seq_file *m, void *arg)
2221{
2222	pg_data_t *pgdat = (pg_data_t *)arg;
2223
2224	walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2225
2226	return 0;
2227}
2228
2229static const struct seq_operations extfrag_sops = {
2230	.start	= frag_start,
2231	.next	= frag_next,
2232	.stop	= frag_stop,
2233	.show	= extfrag_show,
2234};
2235
2236DEFINE_SEQ_ATTRIBUTE(extfrag);
 
 
 
 
 
 
 
 
 
 
2237
2238static int __init extfrag_debug_init(void)
2239{
2240	struct dentry *extfrag_debug_root;
2241
2242	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
 
 
2243
2244	debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2245			    &unusable_fops);
2246
2247	debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2248			    &extfrag_fops);
 
 
2249
2250	return 0;
 
 
 
2251}
2252
2253module_init(extfrag_debug_init);
2254#endif
v4.6
 
   1/*
   2 *  linux/mm/vmstat.c
   3 *
   4 *  Manages VM statistics
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *
   7 *  zoned VM statistics
   8 *  Copyright (C) 2006 Silicon Graphics, Inc.,
   9 *		Christoph Lameter <christoph@lameter.com>
  10 *  Copyright (C) 2008-2014 Christoph Lameter
  11 */
  12#include <linux/fs.h>
  13#include <linux/mm.h>
  14#include <linux/err.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/cpu.h>
  18#include <linux/cpumask.h>
  19#include <linux/vmstat.h>
  20#include <linux/proc_fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/debugfs.h>
  23#include <linux/sched.h>
  24#include <linux/math64.h>
  25#include <linux/writeback.h>
  26#include <linux/compaction.h>
  27#include <linux/mm_inline.h>
  28#include <linux/page_ext.h>
  29#include <linux/page_owner.h>
  30
  31#include "internal.h"
  32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  33#ifdef CONFIG_VM_EVENT_COUNTERS
  34DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
  35EXPORT_PER_CPU_SYMBOL(vm_event_states);
  36
  37static void sum_vm_events(unsigned long *ret)
  38{
  39	int cpu;
  40	int i;
  41
  42	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
  43
  44	for_each_online_cpu(cpu) {
  45		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
  46
  47		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
  48			ret[i] += this->event[i];
  49	}
  50}
  51
  52/*
  53 * Accumulate the vm event counters across all CPUs.
  54 * The result is unavoidably approximate - it can change
  55 * during and after execution of this function.
  56*/
  57void all_vm_events(unsigned long *ret)
  58{
  59	get_online_cpus();
  60	sum_vm_events(ret);
  61	put_online_cpus();
  62}
  63EXPORT_SYMBOL_GPL(all_vm_events);
  64
  65/*
  66 * Fold the foreign cpu events into our own.
  67 *
  68 * This is adding to the events on one processor
  69 * but keeps the global counts constant.
  70 */
  71void vm_events_fold_cpu(int cpu)
  72{
  73	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
  74	int i;
  75
  76	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
  77		count_vm_events(i, fold_state->event[i]);
  78		fold_state->event[i] = 0;
  79	}
  80}
  81
  82#endif /* CONFIG_VM_EVENT_COUNTERS */
  83
  84/*
  85 * Manage combined zone based / global counters
  86 *
  87 * vm_stat contains the global counters
  88 */
  89atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
  90EXPORT_SYMBOL(vm_stat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  91
  92#ifdef CONFIG_SMP
  93
  94int calculate_pressure_threshold(struct zone *zone)
  95{
  96	int threshold;
  97	int watermark_distance;
  98
  99	/*
 100	 * As vmstats are not up to date, there is drift between the estimated
 101	 * and real values. For high thresholds and a high number of CPUs, it
 102	 * is possible for the min watermark to be breached while the estimated
 103	 * value looks fine. The pressure threshold is a reduced value such
 104	 * that even the maximum amount of drift will not accidentally breach
 105	 * the min watermark
 106	 */
 107	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
 108	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
 109
 110	/*
 111	 * Maximum threshold is 125
 112	 */
 113	threshold = min(125, threshold);
 114
 115	return threshold;
 116}
 117
 118int calculate_normal_threshold(struct zone *zone)
 119{
 120	int threshold;
 121	int mem;	/* memory in 128 MB units */
 122
 123	/*
 124	 * The threshold scales with the number of processors and the amount
 125	 * of memory per zone. More memory means that we can defer updates for
 126	 * longer, more processors could lead to more contention.
 127 	 * fls() is used to have a cheap way of logarithmic scaling.
 128	 *
 129	 * Some sample thresholds:
 130	 *
 131	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
 132	 * ------------------------------------------------------------------
 133	 * 8		1		1	0.9-1 GB	4
 134	 * 16		2		2	0.9-1 GB	4
 135	 * 20 		2		2	1-2 GB		5
 136	 * 24		2		2	2-4 GB		6
 137	 * 28		2		2	4-8 GB		7
 138	 * 32		2		2	8-16 GB		8
 139	 * 4		2		2	<128M		1
 140	 * 30		4		3	2-4 GB		5
 141	 * 48		4		3	8-16 GB		8
 142	 * 32		8		4	1-2 GB		4
 143	 * 32		8		4	0.9-1GB		4
 144	 * 10		16		5	<128M		1
 145	 * 40		16		5	900M		4
 146	 * 70		64		7	2-4 GB		5
 147	 * 84		64		7	4-8 GB		6
 148	 * 108		512		9	4-8 GB		6
 149	 * 125		1024		10	8-16 GB		8
 150	 * 125		1024		10	16-32 GB	9
 151	 */
 152
 153	mem = zone->managed_pages >> (27 - PAGE_SHIFT);
 154
 155	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
 156
 157	/*
 158	 * Maximum threshold is 125
 159	 */
 160	threshold = min(125, threshold);
 161
 162	return threshold;
 163}
 164
 165/*
 166 * Refresh the thresholds for each zone.
 167 */
 168void refresh_zone_stat_thresholds(void)
 169{
 
 170	struct zone *zone;
 171	int cpu;
 172	int threshold;
 173
 
 
 
 
 
 
 
 174	for_each_populated_zone(zone) {
 
 175		unsigned long max_drift, tolerate_drift;
 176
 177		threshold = calculate_normal_threshold(zone);
 178
 179		for_each_online_cpu(cpu)
 180			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
 
 
 181							= threshold;
 182
 
 
 
 
 
 
 183		/*
 184		 * Only set percpu_drift_mark if there is a danger that
 185		 * NR_FREE_PAGES reports the low watermark is ok when in fact
 186		 * the min watermark could be breached by an allocation
 187		 */
 188		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
 189		max_drift = num_online_cpus() * threshold;
 190		if (max_drift > tolerate_drift)
 191			zone->percpu_drift_mark = high_wmark_pages(zone) +
 192					max_drift;
 193	}
 194}
 195
 196void set_pgdat_percpu_threshold(pg_data_t *pgdat,
 197				int (*calculate_pressure)(struct zone *))
 198{
 199	struct zone *zone;
 200	int cpu;
 201	int threshold;
 202	int i;
 203
 204	for (i = 0; i < pgdat->nr_zones; i++) {
 205		zone = &pgdat->node_zones[i];
 206		if (!zone->percpu_drift_mark)
 207			continue;
 208
 209		threshold = (*calculate_pressure)(zone);
 210		for_each_online_cpu(cpu)
 211			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
 212							= threshold;
 213	}
 214}
 215
 216/*
 217 * For use when we know that interrupts are disabled,
 218 * or when we know that preemption is disabled and that
 219 * particular counter cannot be updated from interrupt context.
 220 */
 221void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 222			   long delta)
 223{
 224	struct per_cpu_pageset __percpu *pcp = zone->pageset;
 225	s8 __percpu *p = pcp->vm_stat_diff + item;
 226	long x;
 227	long t;
 228
 
 
 
 
 
 
 
 
 
 229	x = delta + __this_cpu_read(*p);
 230
 231	t = __this_cpu_read(pcp->stat_threshold);
 232
 233	if (unlikely(x > t || x < -t)) {
 234		zone_page_state_add(x, zone, item);
 235		x = 0;
 236	}
 237	__this_cpu_write(*p, x);
 
 
 238}
 239EXPORT_SYMBOL(__mod_zone_page_state);
 240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 241/*
 242 * Optimized increment and decrement functions.
 243 *
 244 * These are only for a single page and therefore can take a struct page *
 245 * argument instead of struct zone *. This allows the inclusion of the code
 246 * generated for page_zone(page) into the optimized functions.
 247 *
 248 * No overflow check is necessary and therefore the differential can be
 249 * incremented or decremented in place which may allow the compilers to
 250 * generate better code.
 251 * The increment or decrement is known and therefore one boundary check can
 252 * be omitted.
 253 *
 254 * NOTE: These functions are very performance sensitive. Change only
 255 * with care.
 256 *
 257 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 258 * However, the code must first determine the differential location in a zone
 259 * based on the processor number and then inc/dec the counter. There is no
 260 * guarantee without disabling preemption that the processor will not change
 261 * in between and therefore the atomicity vs. interrupt cannot be exploited
 262 * in a useful way here.
 263 */
 264void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
 265{
 266	struct per_cpu_pageset __percpu *pcp = zone->pageset;
 267	s8 __percpu *p = pcp->vm_stat_diff + item;
 268	s8 v, t;
 269
 
 
 
 270	v = __this_cpu_inc_return(*p);
 271	t = __this_cpu_read(pcp->stat_threshold);
 272	if (unlikely(v > t)) {
 273		s8 overstep = t >> 1;
 274
 275		zone_page_state_add(v + overstep, zone, item);
 276		__this_cpu_write(*p, -overstep);
 277	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 278}
 279
 280void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
 281{
 282	__inc_zone_state(page_zone(page), item);
 283}
 284EXPORT_SYMBOL(__inc_zone_page_state);
 285
 
 
 
 
 
 
 286void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
 287{
 288	struct per_cpu_pageset __percpu *pcp = zone->pageset;
 289	s8 __percpu *p = pcp->vm_stat_diff + item;
 290	s8 v, t;
 291
 
 
 
 292	v = __this_cpu_dec_return(*p);
 293	t = __this_cpu_read(pcp->stat_threshold);
 294	if (unlikely(v < - t)) {
 295		s8 overstep = t >> 1;
 296
 297		zone_page_state_add(v - overstep, zone, item);
 298		__this_cpu_write(*p, overstep);
 299	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 300}
 301
 302void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
 303{
 304	__dec_zone_state(page_zone(page), item);
 305}
 306EXPORT_SYMBOL(__dec_zone_page_state);
 307
 
 
 
 
 
 
 308#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
 309/*
 310 * If we have cmpxchg_local support then we do not need to incur the overhead
 311 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
 312 *
 313 * mod_state() modifies the zone counter state through atomic per cpu
 314 * operations.
 315 *
 316 * Overstep mode specifies how overstep should handled:
 317 *     0       No overstepping
 318 *     1       Overstepping half of threshold
 319 *     -1      Overstepping minus half of threshold
 320*/
 321static inline void mod_state(struct zone *zone, enum zone_stat_item item,
 322			     long delta, int overstep_mode)
 323{
 324	struct per_cpu_pageset __percpu *pcp = zone->pageset;
 325	s8 __percpu *p = pcp->vm_stat_diff + item;
 326	long o, n, t, z;
 327
 328	do {
 329		z = 0;  /* overflow to zone counters */
 330
 331		/*
 332		 * The fetching of the stat_threshold is racy. We may apply
 333		 * a counter threshold to the wrong the cpu if we get
 334		 * rescheduled while executing here. However, the next
 335		 * counter update will apply the threshold again and
 336		 * therefore bring the counter under the threshold again.
 337		 *
 338		 * Most of the time the thresholds are the same anyways
 339		 * for all cpus in a zone.
 340		 */
 341		t = this_cpu_read(pcp->stat_threshold);
 342
 343		o = this_cpu_read(*p);
 344		n = delta + o;
 345
 346		if (n > t || n < -t) {
 347			int os = overstep_mode * (t >> 1) ;
 348
 349			/* Overflow must be added to zone counters */
 350			z = n + os;
 351			n = -os;
 352		}
 353	} while (this_cpu_cmpxchg(*p, o, n) != o);
 354
 355	if (z)
 356		zone_page_state_add(z, zone, item);
 357}
 358
 359void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 360			 long delta)
 361{
 362	mod_state(zone, item, delta, 0);
 363}
 364EXPORT_SYMBOL(mod_zone_page_state);
 365
 366void inc_zone_state(struct zone *zone, enum zone_stat_item item)
 367{
 368	mod_state(zone, item, 1, 1);
 369}
 370
 371void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 372{
 373	mod_state(page_zone(page), item, 1, 1);
 374}
 375EXPORT_SYMBOL(inc_zone_page_state);
 376
 377void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 378{
 379	mod_state(page_zone(page), item, -1, -1);
 380}
 381EXPORT_SYMBOL(dec_zone_page_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 382#else
 383/*
 384 * Use interrupt disable to serialize counter updates
 385 */
 386void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 387			 long delta)
 388{
 389	unsigned long flags;
 390
 391	local_irq_save(flags);
 392	__mod_zone_page_state(zone, item, delta);
 393	local_irq_restore(flags);
 394}
 395EXPORT_SYMBOL(mod_zone_page_state);
 396
 397void inc_zone_state(struct zone *zone, enum zone_stat_item item)
 398{
 399	unsigned long flags;
 
 400
 
 401	local_irq_save(flags);
 402	__inc_zone_state(zone, item);
 403	local_irq_restore(flags);
 404}
 
 405
 406void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 407{
 408	unsigned long flags;
 409	struct zone *zone;
 410
 411	zone = page_zone(page);
 412	local_irq_save(flags);
 413	__inc_zone_state(zone, item);
 414	local_irq_restore(flags);
 415}
 416EXPORT_SYMBOL(inc_zone_page_state);
 417
 418void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 419{
 420	unsigned long flags;
 421
 422	local_irq_save(flags);
 423	__dec_zone_page_state(page, item);
 424	local_irq_restore(flags);
 425}
 426EXPORT_SYMBOL(dec_zone_page_state);
 427#endif
 428
 429
 430/*
 431 * Fold a differential into the global counters.
 432 * Returns the number of counters updated.
 433 */
 434static int fold_diff(int *diff)
 435{
 436	int i;
 437	int changes = 0;
 438
 439	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 440		if (diff[i]) {
 441			atomic_long_add(diff[i], &vm_stat[i]);
 
 
 
 
 
 
 442			changes++;
 443	}
 444	return changes;
 445}
 446
 447/*
 448 * Update the zone counters for the current cpu.
 449 *
 450 * Note that refresh_cpu_vm_stats strives to only access
 451 * node local memory. The per cpu pagesets on remote zones are placed
 452 * in the memory local to the processor using that pageset. So the
 453 * loop over all zones will access a series of cachelines local to
 454 * the processor.
 455 *
 456 * The call to zone_page_state_add updates the cachelines with the
 457 * statistics in the remote zone struct as well as the global cachelines
 458 * with the global counters. These could cause remote node cache line
 459 * bouncing and will have to be only done when necessary.
 460 *
 461 * The function returns the number of global counters updated.
 462 */
 463static int refresh_cpu_vm_stats(bool do_pagesets)
 464{
 
 465	struct zone *zone;
 466	int i;
 467	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 
 468	int changes = 0;
 469
 470	for_each_populated_zone(zone) {
 471		struct per_cpu_pageset __percpu *p = zone->pageset;
 
 
 
 472
 473		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
 474			int v;
 475
 476			v = this_cpu_xchg(p->vm_stat_diff[i], 0);
 477			if (v) {
 478
 479				atomic_long_add(v, &zone->vm_stat[i]);
 480				global_diff[i] += v;
 481#ifdef CONFIG_NUMA
 482				/* 3 seconds idle till flush */
 483				__this_cpu_write(p->expire, 3);
 484#endif
 485			}
 486		}
 487#ifdef CONFIG_NUMA
 
 488		if (do_pagesets) {
 489			cond_resched();
 490			/*
 491			 * Deal with draining the remote pageset of this
 492			 * processor
 493			 *
 494			 * Check if there are pages remaining in this pageset
 495			 * if not then there is nothing to expire.
 496			 */
 497			if (!__this_cpu_read(p->expire) ||
 498			       !__this_cpu_read(p->pcp.count))
 499				continue;
 500
 501			/*
 502			 * We never drain zones local to this processor.
 503			 */
 504			if (zone_to_nid(zone) == numa_node_id()) {
 505				__this_cpu_write(p->expire, 0);
 506				continue;
 507			}
 508
 509			if (__this_cpu_dec_return(p->expire))
 510				continue;
 511
 512			if (__this_cpu_read(p->pcp.count)) {
 513				drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
 514				changes++;
 515			}
 516		}
 517#endif
 518	}
 519	changes += fold_diff(global_diff);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 520	return changes;
 521}
 522
 523/*
 524 * Fold the data for an offline cpu into the global array.
 525 * There cannot be any access by the offline cpu and therefore
 526 * synchronization is simplified.
 527 */
 528void cpu_vm_stats_fold(int cpu)
 529{
 
 530	struct zone *zone;
 531	int i;
 532	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 
 533
 534	for_each_populated_zone(zone) {
 535		struct per_cpu_pageset *p;
 536
 537		p = per_cpu_ptr(zone->pageset, cpu);
 538
 539		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 540			if (p->vm_stat_diff[i]) {
 541				int v;
 542
 543				v = p->vm_stat_diff[i];
 544				p->vm_stat_diff[i] = 0;
 545				atomic_long_add(v, &zone->vm_stat[i]);
 546				global_diff[i] += v;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547			}
 548	}
 549
 550	fold_diff(global_diff);
 551}
 552
 553/*
 554 * this is only called if !populated_zone(zone), which implies no other users of
 555 * pset->vm_stat_diff[] exsist.
 556 */
 557void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
 558{
 
 559	int i;
 560
 561	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 562		if (pset->vm_stat_diff[i]) {
 563			int v = pset->vm_stat_diff[i];
 564			pset->vm_stat_diff[i] = 0;
 565			atomic_long_add(v, &zone->vm_stat[i]);
 566			atomic_long_add(v, &vm_stat[i]);
 
 
 
 
 
 
 
 
 567		}
 
 
 568}
 569#endif
 570
 571#ifdef CONFIG_NUMA
 572/*
 573 * zonelist = the list of zones passed to the allocator
 574 * z 	    = the zone from which the allocation occurred.
 575 *
 576 * Must be called with interrupts disabled.
 577 *
 578 * When __GFP_OTHER_NODE is set assume the node of the preferred
 579 * zone is the local node. This is useful for daemons who allocate
 580 * memory on behalf of other processes.
 581 */
 582void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 583{
 584	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
 585		__inc_zone_state(z, NUMA_HIT);
 586	} else {
 587		__inc_zone_state(z, NUMA_MISS);
 588		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
 589	}
 590	if (z->node == ((flags & __GFP_OTHER_NODE) ?
 591			preferred_zone->node : numa_node_id()))
 592		__inc_zone_state(z, NUMA_LOCAL);
 593	else
 594		__inc_zone_state(z, NUMA_OTHER);
 595}
 596
 597/*
 598 * Determine the per node value of a stat item.
 599 */
 600unsigned long node_page_state(int node, enum zone_stat_item item)
 
 601{
 602	struct zone *zones = NODE_DATA(node)->node_zones;
 603
 604	return
 605#ifdef CONFIG_ZONE_DMA
 606		zone_page_state(&zones[ZONE_DMA], item) +
 607#endif
 608#ifdef CONFIG_ZONE_DMA32
 609		zone_page_state(&zones[ZONE_DMA32], item) +
 610#endif
 611#ifdef CONFIG_HIGHMEM
 612		zone_page_state(&zones[ZONE_HIGHMEM], item) +
 613#endif
 614		zone_page_state(&zones[ZONE_NORMAL], item) +
 615		zone_page_state(&zones[ZONE_MOVABLE], item);
 616}
 617
 
 
 
 
 
 
 
 618#endif
 619
 620#ifdef CONFIG_COMPACTION
 621
 622struct contig_page_info {
 623	unsigned long free_pages;
 624	unsigned long free_blocks_total;
 625	unsigned long free_blocks_suitable;
 626};
 627
 628/*
 629 * Calculate the number of free pages in a zone, how many contiguous
 630 * pages are free and how many are large enough to satisfy an allocation of
 631 * the target size. Note that this function makes no attempt to estimate
 632 * how many suitable free blocks there *might* be if MOVABLE pages were
 633 * migrated. Calculating that is possible, but expensive and can be
 634 * figured out from userspace
 635 */
 636static void fill_contig_page_info(struct zone *zone,
 637				unsigned int suitable_order,
 638				struct contig_page_info *info)
 639{
 640	unsigned int order;
 641
 642	info->free_pages = 0;
 643	info->free_blocks_total = 0;
 644	info->free_blocks_suitable = 0;
 645
 646	for (order = 0; order < MAX_ORDER; order++) {
 647		unsigned long blocks;
 648
 649		/* Count number of free blocks */
 650		blocks = zone->free_area[order].nr_free;
 
 
 
 
 
 651		info->free_blocks_total += blocks;
 652
 653		/* Count free base pages */
 654		info->free_pages += blocks << order;
 655
 656		/* Count the suitable free blocks */
 657		if (order >= suitable_order)
 658			info->free_blocks_suitable += blocks <<
 659						(order - suitable_order);
 660	}
 661}
 662
 663/*
 664 * A fragmentation index only makes sense if an allocation of a requested
 665 * size would fail. If that is true, the fragmentation index indicates
 666 * whether external fragmentation or a lack of memory was the problem.
 667 * The value can be used to determine if page reclaim or compaction
 668 * should be used
 669 */
 670static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
 671{
 672	unsigned long requested = 1UL << order;
 673
 
 
 
 674	if (!info->free_blocks_total)
 675		return 0;
 676
 677	/* Fragmentation index only makes sense when a request would fail */
 678	if (info->free_blocks_suitable)
 679		return -1000;
 680
 681	/*
 682	 * Index is between 0 and 1 so return within 3 decimal places
 683	 *
 684	 * 0 => allocation would fail due to lack of memory
 685	 * 1 => allocation would fail due to fragmentation
 686	 */
 687	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
 688}
 689
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 690/* Same as __fragmentation index but allocs contig_page_info on stack */
 691int fragmentation_index(struct zone *zone, unsigned int order)
 692{
 693	struct contig_page_info info;
 694
 695	fill_contig_page_info(zone, order, &info);
 696	return __fragmentation_index(order, &info);
 697}
 698#endif
 699
 700#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
 
 701#ifdef CONFIG_ZONE_DMA
 702#define TEXT_FOR_DMA(xx) xx "_dma",
 703#else
 704#define TEXT_FOR_DMA(xx)
 705#endif
 706
 707#ifdef CONFIG_ZONE_DMA32
 708#define TEXT_FOR_DMA32(xx) xx "_dma32",
 709#else
 710#define TEXT_FOR_DMA32(xx)
 711#endif
 712
 713#ifdef CONFIG_HIGHMEM
 714#define TEXT_FOR_HIGHMEM(xx) xx "_high",
 715#else
 716#define TEXT_FOR_HIGHMEM(xx)
 717#endif
 718
 
 
 
 
 
 
 719#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
 720					TEXT_FOR_HIGHMEM(xx) xx "_movable",
 
 721
 722const char * const vmstat_text[] = {
 723	/* enum zone_stat_item countes */
 724	"nr_free_pages",
 725	"nr_alloc_batch",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 726	"nr_inactive_anon",
 727	"nr_active_anon",
 728	"nr_inactive_file",
 729	"nr_active_file",
 730	"nr_unevictable",
 731	"nr_mlock",
 
 
 
 
 
 
 
 
 
 
 
 732	"nr_anon_pages",
 733	"nr_mapped",
 734	"nr_file_pages",
 735	"nr_dirty",
 736	"nr_writeback",
 737	"nr_slab_reclaimable",
 738	"nr_slab_unreclaimable",
 739	"nr_page_table_pages",
 740	"nr_kernel_stack",
 741	"nr_unstable",
 742	"nr_bounce",
 
 743	"nr_vmscan_write",
 744	"nr_vmscan_immediate_reclaim",
 745	"nr_writeback_temp",
 746	"nr_isolated_anon",
 747	"nr_isolated_file",
 748	"nr_shmem",
 749	"nr_dirtied",
 750	"nr_written",
 751	"nr_pages_scanned",
 752
 753#ifdef CONFIG_NUMA
 754	"numa_hit",
 755	"numa_miss",
 756	"numa_foreign",
 757	"numa_interleave",
 758	"numa_local",
 759	"numa_other",
 
 
 
 
 
 
 
 760#endif
 761	"workingset_refault",
 762	"workingset_activate",
 763	"workingset_nodereclaim",
 764	"nr_anon_transparent_hugepages",
 765	"nr_free_cma",
 766
 767	/* enum writeback_stat_item counters */
 768	"nr_dirty_threshold",
 769	"nr_dirty_background_threshold",
 770
 771#ifdef CONFIG_VM_EVENT_COUNTERS
 772	/* enum vm_event_item counters */
 773	"pgpgin",
 774	"pgpgout",
 775	"pswpin",
 776	"pswpout",
 777
 778	TEXTS_FOR_ZONES("pgalloc")
 
 
 779
 780	"pgfree",
 781	"pgactivate",
 782	"pgdeactivate",
 
 783
 784	"pgfault",
 785	"pgmajfault",
 786	"pglazyfreed",
 787
 788	TEXTS_FOR_ZONES("pgrefill")
 789	TEXTS_FOR_ZONES("pgsteal_kswapd")
 790	TEXTS_FOR_ZONES("pgsteal_direct")
 791	TEXTS_FOR_ZONES("pgscan_kswapd")
 792	TEXTS_FOR_ZONES("pgscan_direct")
 
 
 
 
 
 
 793	"pgscan_direct_throttle",
 
 
 
 
 794
 795#ifdef CONFIG_NUMA
 796	"zone_reclaim_failed",
 797#endif
 798	"pginodesteal",
 799	"slabs_scanned",
 800	"kswapd_inodesteal",
 801	"kswapd_low_wmark_hit_quickly",
 802	"kswapd_high_wmark_hit_quickly",
 803	"pageoutrun",
 804	"allocstall",
 805
 806	"pgrotated",
 807
 808	"drop_pagecache",
 809	"drop_slab",
 
 810
 811#ifdef CONFIG_NUMA_BALANCING
 812	"numa_pte_updates",
 813	"numa_huge_pte_updates",
 814	"numa_hint_faults",
 815	"numa_hint_faults_local",
 816	"numa_pages_migrated",
 817#endif
 818#ifdef CONFIG_MIGRATION
 819	"pgmigrate_success",
 820	"pgmigrate_fail",
 
 
 
 821#endif
 822#ifdef CONFIG_COMPACTION
 823	"compact_migrate_scanned",
 824	"compact_free_scanned",
 825	"compact_isolated",
 826	"compact_stall",
 827	"compact_fail",
 828	"compact_success",
 829	"compact_daemon_wake",
 
 
 830#endif
 831
 832#ifdef CONFIG_HUGETLB_PAGE
 833	"htlb_buddy_alloc_success",
 834	"htlb_buddy_alloc_fail",
 835#endif
 
 
 
 
 836	"unevictable_pgs_culled",
 837	"unevictable_pgs_scanned",
 838	"unevictable_pgs_rescued",
 839	"unevictable_pgs_mlocked",
 840	"unevictable_pgs_munlocked",
 841	"unevictable_pgs_cleared",
 842	"unevictable_pgs_stranded",
 843
 844#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 845	"thp_fault_alloc",
 846	"thp_fault_fallback",
 
 847	"thp_collapse_alloc",
 848	"thp_collapse_alloc_failed",
 
 
 
 
 849	"thp_split_page",
 850	"thp_split_page_failed",
 851	"thp_deferred_split_page",
 852	"thp_split_pmd",
 
 
 
 
 
 
 853	"thp_zero_page_alloc",
 854	"thp_zero_page_alloc_failed",
 
 
 855#endif
 856#ifdef CONFIG_MEMORY_BALLOON
 857	"balloon_inflate",
 858	"balloon_deflate",
 859#ifdef CONFIG_BALLOON_COMPACTION
 860	"balloon_migrate",
 861#endif
 862#endif /* CONFIG_MEMORY_BALLOON */
 863#ifdef CONFIG_DEBUG_TLBFLUSH
 864#ifdef CONFIG_SMP
 865	"nr_tlb_remote_flush",
 866	"nr_tlb_remote_flush_received",
 867#endif /* CONFIG_SMP */
 868	"nr_tlb_local_flush_all",
 869	"nr_tlb_local_flush_one",
 870#endif /* CONFIG_DEBUG_TLBFLUSH */
 871
 872#ifdef CONFIG_DEBUG_VM_VMACACHE
 873	"vmacache_find_calls",
 874	"vmacache_find_hits",
 875	"vmacache_full_flushes",
 
 
 
 
 
 
 
 
 
 
 
 
 
 876#endif
 877#endif /* CONFIG_VM_EVENTS_COUNTERS */
 878};
 879#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
 880
 881
 882#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
 883     defined(CONFIG_PROC_FS)
 884static void *frag_start(struct seq_file *m, loff_t *pos)
 885{
 886	pg_data_t *pgdat;
 887	loff_t node = *pos;
 888
 889	for (pgdat = first_online_pgdat();
 890	     pgdat && node;
 891	     pgdat = next_online_pgdat(pgdat))
 892		--node;
 893
 894	return pgdat;
 895}
 896
 897static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
 898{
 899	pg_data_t *pgdat = (pg_data_t *)arg;
 900
 901	(*pos)++;
 902	return next_online_pgdat(pgdat);
 903}
 904
 905static void frag_stop(struct seq_file *m, void *arg)
 906{
 907}
 908
 909/* Walk all the zones in a node and print using a callback */
 
 
 
 910static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
 
 911		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
 912{
 913	struct zone *zone;
 914	struct zone *node_zones = pgdat->node_zones;
 915	unsigned long flags;
 916
 917	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
 918		if (!populated_zone(zone))
 919			continue;
 920
 921		spin_lock_irqsave(&zone->lock, flags);
 
 922		print(m, pgdat, zone);
 923		spin_unlock_irqrestore(&zone->lock, flags);
 
 924	}
 925}
 926#endif
 927
 928#ifdef CONFIG_PROC_FS
 929static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
 930						struct zone *zone)
 931{
 932	int order;
 933
 934	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
 935	for (order = 0; order < MAX_ORDER; ++order)
 936		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
 
 
 
 
 937	seq_putc(m, '\n');
 938}
 939
 940/*
 941 * This walks the free areas for each zone.
 942 */
 943static int frag_show(struct seq_file *m, void *arg)
 944{
 945	pg_data_t *pgdat = (pg_data_t *)arg;
 946	walk_zones_in_node(m, pgdat, frag_show_print);
 947	return 0;
 948}
 949
 950static void pagetypeinfo_showfree_print(struct seq_file *m,
 951					pg_data_t *pgdat, struct zone *zone)
 952{
 953	int order, mtype;
 954
 955	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
 956		seq_printf(m, "Node %4d, zone %8s, type %12s ",
 957					pgdat->node_id,
 958					zone->name,
 959					migratetype_names[mtype]);
 960		for (order = 0; order < MAX_ORDER; ++order) {
 961			unsigned long freecount = 0;
 962			struct free_area *area;
 963			struct list_head *curr;
 
 964
 965			area = &(zone->free_area[order]);
 966
 967			list_for_each(curr, &area->free_list[mtype])
 968				freecount++;
 969			seq_printf(m, "%6lu ", freecount);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 970		}
 971		seq_putc(m, '\n');
 972	}
 973}
 974
 975/* Print out the free pages at each order for each migatetype */
 976static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
 977{
 978	int order;
 979	pg_data_t *pgdat = (pg_data_t *)arg;
 980
 981	/* Print header */
 982	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
 983	for (order = 0; order < MAX_ORDER; ++order)
 984		seq_printf(m, "%6d ", order);
 985	seq_putc(m, '\n');
 986
 987	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
 988
 989	return 0;
 990}
 991
 992static void pagetypeinfo_showblockcount_print(struct seq_file *m,
 993					pg_data_t *pgdat, struct zone *zone)
 994{
 995	int mtype;
 996	unsigned long pfn;
 997	unsigned long start_pfn = zone->zone_start_pfn;
 998	unsigned long end_pfn = zone_end_pfn(zone);
 999	unsigned long count[MIGRATE_TYPES] = { 0, };
1000
1001	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1002		struct page *page;
1003
1004		if (!pfn_valid(pfn))
 
1005			continue;
1006
1007		page = pfn_to_page(pfn);
1008
1009		/* Watch for unexpected holes punched in the memmap */
1010		if (!memmap_valid_within(pfn, page, zone))
1011			continue;
1012
1013		mtype = get_pageblock_migratetype(page);
1014
1015		if (mtype < MIGRATE_TYPES)
1016			count[mtype]++;
1017	}
1018
1019	/* Print counts */
1020	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1021	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1022		seq_printf(m, "%12lu ", count[mtype]);
1023	seq_putc(m, '\n');
1024}
1025
1026/* Print out the free pages at each order for each migratetype */
1027static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1028{
1029	int mtype;
1030	pg_data_t *pgdat = (pg_data_t *)arg;
1031
1032	seq_printf(m, "\n%-23s", "Number of blocks type ");
1033	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1034		seq_printf(m, "%12s ", migratetype_names[mtype]);
1035	seq_putc(m, '\n');
1036	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1037
1038	return 0;
1039}
1040
1041#ifdef CONFIG_PAGE_OWNER
1042static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1043							pg_data_t *pgdat,
1044							struct zone *zone)
1045{
1046	struct page *page;
1047	struct page_ext *page_ext;
1048	unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1049	unsigned long end_pfn = pfn + zone->spanned_pages;
1050	unsigned long count[MIGRATE_TYPES] = { 0, };
1051	int pageblock_mt, page_mt;
1052	int i;
1053
1054	/* Scan block by block. First and last block may be incomplete */
1055	pfn = zone->zone_start_pfn;
1056
1057	/*
1058	 * Walk the zone in pageblock_nr_pages steps. If a page block spans
1059	 * a zone boundary, it will be double counted between zones. This does
1060	 * not matter as the mixed block count will still be correct
1061	 */
1062	for (; pfn < end_pfn; ) {
1063		if (!pfn_valid(pfn)) {
1064			pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1065			continue;
1066		}
1067
1068		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1069		block_end_pfn = min(block_end_pfn, end_pfn);
1070
1071		page = pfn_to_page(pfn);
1072		pageblock_mt = get_pfnblock_migratetype(page, pfn);
1073
1074		for (; pfn < block_end_pfn; pfn++) {
1075			if (!pfn_valid_within(pfn))
1076				continue;
1077
1078			page = pfn_to_page(pfn);
1079			if (PageBuddy(page)) {
1080				pfn += (1UL << page_order(page)) - 1;
1081				continue;
1082			}
1083
1084			if (PageReserved(page))
1085				continue;
1086
1087			page_ext = lookup_page_ext(page);
1088
1089			if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1090				continue;
1091
1092			page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1093			if (pageblock_mt != page_mt) {
1094				if (is_migrate_cma(pageblock_mt))
1095					count[MIGRATE_MOVABLE]++;
1096				else
1097					count[pageblock_mt]++;
1098
1099				pfn = block_end_pfn;
1100				break;
1101			}
1102			pfn += (1UL << page_ext->order) - 1;
1103		}
1104	}
1105
1106	/* Print counts */
1107	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1108	for (i = 0; i < MIGRATE_TYPES; i++)
1109		seq_printf(m, "%12lu ", count[i]);
1110	seq_putc(m, '\n');
1111}
1112#endif /* CONFIG_PAGE_OWNER */
1113
1114/*
1115 * Print out the number of pageblocks for each migratetype that contain pages
1116 * of other types. This gives an indication of how well fallbacks are being
1117 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1118 * to determine what is going on
1119 */
1120static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1121{
1122#ifdef CONFIG_PAGE_OWNER
1123	int mtype;
1124
1125	if (!static_branch_unlikely(&page_owner_inited))
1126		return;
1127
1128	drain_all_pages(NULL);
1129
1130	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1131	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1132		seq_printf(m, "%12s ", migratetype_names[mtype]);
1133	seq_putc(m, '\n');
1134
1135	walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
 
1136#endif /* CONFIG_PAGE_OWNER */
1137}
1138
1139/*
1140 * This prints out statistics in relation to grouping pages by mobility.
1141 * It is expensive to collect so do not constantly read the file.
1142 */
1143static int pagetypeinfo_show(struct seq_file *m, void *arg)
1144{
1145	pg_data_t *pgdat = (pg_data_t *)arg;
1146
1147	/* check memoryless node */
1148	if (!node_state(pgdat->node_id, N_MEMORY))
1149		return 0;
1150
1151	seq_printf(m, "Page block order: %d\n", pageblock_order);
1152	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1153	seq_putc(m, '\n');
1154	pagetypeinfo_showfree(m, pgdat);
1155	pagetypeinfo_showblockcount(m, pgdat);
1156	pagetypeinfo_showmixedcount(m, pgdat);
1157
1158	return 0;
1159}
1160
1161static const struct seq_operations fragmentation_op = {
1162	.start	= frag_start,
1163	.next	= frag_next,
1164	.stop	= frag_stop,
1165	.show	= frag_show,
1166};
1167
1168static int fragmentation_open(struct inode *inode, struct file *file)
1169{
1170	return seq_open(file, &fragmentation_op);
1171}
1172
1173static const struct file_operations fragmentation_file_operations = {
1174	.open		= fragmentation_open,
1175	.read		= seq_read,
1176	.llseek		= seq_lseek,
1177	.release	= seq_release,
1178};
1179
1180static const struct seq_operations pagetypeinfo_op = {
1181	.start	= frag_start,
1182	.next	= frag_next,
1183	.stop	= frag_stop,
1184	.show	= pagetypeinfo_show,
1185};
1186
1187static int pagetypeinfo_open(struct inode *inode, struct file *file)
1188{
1189	return seq_open(file, &pagetypeinfo_op);
 
 
 
 
 
 
 
 
 
1190}
1191
1192static const struct file_operations pagetypeinfo_file_ops = {
1193	.open		= pagetypeinfo_open,
1194	.read		= seq_read,
1195	.llseek		= seq_lseek,
1196	.release	= seq_release,
1197};
1198
1199static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1200							struct zone *zone)
1201{
1202	int i;
1203	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
 
 
 
 
 
 
 
 
 
 
 
1204	seq_printf(m,
1205		   "\n  pages free     %lu"
 
1206		   "\n        min      %lu"
1207		   "\n        low      %lu"
1208		   "\n        high     %lu"
1209		   "\n        scanned  %lu"
1210		   "\n        spanned  %lu"
1211		   "\n        present  %lu"
1212		   "\n        managed  %lu",
 
1213		   zone_page_state(zone, NR_FREE_PAGES),
 
1214		   min_wmark_pages(zone),
1215		   low_wmark_pages(zone),
1216		   high_wmark_pages(zone),
1217		   zone_page_state(zone, NR_PAGES_SCANNED),
1218		   zone->spanned_pages,
1219		   zone->present_pages,
1220		   zone->managed_pages);
1221
1222	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1223		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
1224				zone_page_state(zone, i));
1225
1226	seq_printf(m,
1227		   "\n        protection: (%ld",
1228		   zone->lowmem_reserve[0]);
1229	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1230		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1231	seq_printf(m,
1232		   ")"
1233		   "\n  pagesets");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1234	for_each_online_cpu(i) {
1235		struct per_cpu_pageset *pageset;
 
1236
1237		pageset = per_cpu_ptr(zone->pageset, i);
1238		seq_printf(m,
1239			   "\n    cpu: %i"
1240			   "\n              count: %i"
1241			   "\n              high:  %i"
1242			   "\n              batch: %i",
1243			   i,
1244			   pageset->pcp.count,
1245			   pageset->pcp.high,
1246			   pageset->pcp.batch);
1247#ifdef CONFIG_SMP
 
1248		seq_printf(m, "\n  vm stats threshold: %d",
1249				pageset->stat_threshold);
1250#endif
1251	}
1252	seq_printf(m,
1253		   "\n  all_unreclaimable: %u"
1254		   "\n  start_pfn:         %lu"
1255		   "\n  inactive_ratio:    %u",
1256		   !zone_reclaimable(zone),
1257		   zone->zone_start_pfn,
1258		   zone->inactive_ratio);
1259	seq_putc(m, '\n');
1260}
1261
1262/*
1263 * Output information about zones in @pgdat.
 
 
 
1264 */
1265static int zoneinfo_show(struct seq_file *m, void *arg)
1266{
1267	pg_data_t *pgdat = (pg_data_t *)arg;
1268	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1269	return 0;
1270}
1271
1272static const struct seq_operations zoneinfo_op = {
1273	.start	= frag_start, /* iterate over all zones. The same as in
1274			       * fragmentation. */
1275	.next	= frag_next,
1276	.stop	= frag_stop,
1277	.show	= zoneinfo_show,
1278};
1279
1280static int zoneinfo_open(struct inode *inode, struct file *file)
1281{
1282	return seq_open(file, &zoneinfo_op);
1283}
1284
1285static const struct file_operations proc_zoneinfo_file_operations = {
1286	.open		= zoneinfo_open,
1287	.read		= seq_read,
1288	.llseek		= seq_lseek,
1289	.release	= seq_release,
1290};
1291
1292enum writeback_stat_item {
1293	NR_DIRTY_THRESHOLD,
1294	NR_DIRTY_BG_THRESHOLD,
1295	NR_VM_WRITEBACK_STAT_ITEMS,
1296};
1297
1298static void *vmstat_start(struct seq_file *m, loff_t *pos)
1299{
1300	unsigned long *v;
1301	int i, stat_items_size;
1302
1303	if (*pos >= ARRAY_SIZE(vmstat_text))
1304		return NULL;
1305	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1306			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1307
1308#ifdef CONFIG_VM_EVENT_COUNTERS
1309	stat_items_size += sizeof(struct vm_event_state);
1310#endif
1311
1312	v = kmalloc(stat_items_size, GFP_KERNEL);
1313	m->private = v;
1314	if (!v)
1315		return ERR_PTR(-ENOMEM);
1316	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1317		v[i] = global_page_state(i);
1318	v += NR_VM_ZONE_STAT_ITEMS;
1319
 
 
 
 
 
 
 
 
 
 
 
 
 
1320	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1321			    v + NR_DIRTY_THRESHOLD);
1322	v += NR_VM_WRITEBACK_STAT_ITEMS;
1323
1324#ifdef CONFIG_VM_EVENT_COUNTERS
1325	all_vm_events(v);
1326	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1327	v[PGPGOUT] /= 2;
1328#endif
1329	return (unsigned long *)m->private + *pos;
1330}
1331
1332static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1333{
1334	(*pos)++;
1335	if (*pos >= ARRAY_SIZE(vmstat_text))
1336		return NULL;
1337	return (unsigned long *)m->private + *pos;
1338}
1339
1340static int vmstat_show(struct seq_file *m, void *arg)
1341{
1342	unsigned long *l = arg;
1343	unsigned long off = l - (unsigned long *)m->private;
1344
1345	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
 
 
 
 
 
 
 
 
 
 
1346	return 0;
1347}
1348
1349static void vmstat_stop(struct seq_file *m, void *arg)
1350{
1351	kfree(m->private);
1352	m->private = NULL;
1353}
1354
1355static const struct seq_operations vmstat_op = {
1356	.start	= vmstat_start,
1357	.next	= vmstat_next,
1358	.stop	= vmstat_stop,
1359	.show	= vmstat_show,
1360};
 
1361
1362static int vmstat_open(struct inode *inode, struct file *file)
 
 
 
 
 
1363{
1364	return seq_open(file, &vmstat_op);
1365}
1366
1367static const struct file_operations proc_vmstat_file_operations = {
1368	.open		= vmstat_open,
1369	.read		= seq_read,
1370	.llseek		= seq_lseek,
1371	.release	= seq_release,
1372};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1373#endif /* CONFIG_PROC_FS */
1374
1375#ifdef CONFIG_SMP
1376static struct workqueue_struct *vmstat_wq;
1377static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1378int sysctl_stat_interval __read_mostly = HZ;
1379static cpumask_var_t cpu_stat_off;
1380
1381static void vmstat_update(struct work_struct *w)
1382{
1383	if (refresh_cpu_vm_stats(true)) {
1384		/*
1385		 * Counters were updated so we expect more updates
1386		 * to occur in the future. Keep on running the
1387		 * update worker thread.
1388		 * If we were marked on cpu_stat_off clear the flag
1389		 * so that vmstat_shepherd doesn't schedule us again.
1390		 */
1391		if (!cpumask_test_and_clear_cpu(smp_processor_id(),
1392						cpu_stat_off)) {
1393			queue_delayed_work_on(smp_processor_id(), vmstat_wq,
1394				this_cpu_ptr(&vmstat_work),
1395				round_jiffies_relative(sysctl_stat_interval));
1396		}
1397	} else {
1398		/*
1399		 * We did not update any counters so the app may be in
1400		 * a mode where it does not cause counter updates.
1401		 * We may be uselessly running vmstat_update.
1402		 * Defer the checking for differentials to the
1403		 * shepherd thread on a different processor.
1404		 */
1405		cpumask_set_cpu(smp_processor_id(), cpu_stat_off);
1406	}
1407}
1408
1409/*
1410 * Switch off vmstat processing and then fold all the remaining differentials
1411 * until the diffs stay at zero. The function is used by NOHZ and can only be
1412 * invoked when tick processing is not active.
1413 */
1414/*
1415 * Check if the diffs for a certain cpu indicate that
1416 * an update is needed.
1417 */
1418static bool need_update(int cpu)
1419{
 
1420	struct zone *zone;
1421
1422	for_each_populated_zone(zone) {
1423		struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
 
1424
1425		BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1426		/*
1427		 * The fast way of checking if there are any vmstat diffs.
1428		 * This works because the diffs are byte sized items.
1429		 */
1430		if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1431			return true;
1432
 
 
 
 
 
 
1433	}
1434	return false;
1435}
1436
 
 
 
 
 
1437void quiet_vmstat(void)
1438{
1439	if (system_state != SYSTEM_RUNNING)
1440		return;
1441
1442	/*
1443	 * If we are already in hands of the shepherd then there
1444	 * is nothing for us to do here.
1445	 */
1446	if (cpumask_test_and_set_cpu(smp_processor_id(), cpu_stat_off))
1447		return;
1448
1449	if (!need_update(smp_processor_id()))
1450		return;
1451
1452	/*
1453	 * Just refresh counters and do not care about the pending delayed
1454	 * vmstat_update. It doesn't fire that often to matter and canceling
1455	 * it would be too expensive from this path.
1456	 * vmstat_shepherd will take care about that for us.
1457	 */
1458	refresh_cpu_vm_stats(false);
1459}
1460
1461
1462/*
1463 * Shepherd worker thread that checks the
1464 * differentials of processors that have their worker
1465 * threads for vm statistics updates disabled because of
1466 * inactivity.
1467 */
1468static void vmstat_shepherd(struct work_struct *w);
1469
1470static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1471
1472static void vmstat_shepherd(struct work_struct *w)
1473{
1474	int cpu;
1475
1476	get_online_cpus();
1477	/* Check processors whose vmstat worker threads have been disabled */
1478	for_each_cpu(cpu, cpu_stat_off) {
1479		struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1480
1481		if (need_update(cpu)) {
1482			if (cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1483				queue_delayed_work_on(cpu, vmstat_wq, dw, 0);
1484		} else {
1485			/*
1486			 * Cancel the work if quiet_vmstat has put this
1487			 * cpu on cpu_stat_off because the work item might
1488			 * be still scheduled
1489			 */
1490			cancel_delayed_work(dw);
1491		}
1492	}
1493	put_online_cpus();
1494
1495	schedule_delayed_work(&shepherd,
1496		round_jiffies_relative(sysctl_stat_interval));
1497}
1498
1499static void __init start_shepherd_timer(void)
1500{
1501	int cpu;
1502
1503	for_each_possible_cpu(cpu)
1504		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1505			vmstat_update);
1506
1507	if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1508		BUG();
1509	cpumask_copy(cpu_stat_off, cpu_online_mask);
1510
1511	vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
1512	schedule_delayed_work(&shepherd,
1513		round_jiffies_relative(sysctl_stat_interval));
1514}
1515
1516static void vmstat_cpu_dead(int node)
1517{
1518	int cpu;
1519
1520	get_online_cpus();
1521	for_each_online_cpu(cpu)
1522		if (cpu_to_node(cpu) == node)
1523			goto end;
1524
1525	node_clear_state(node, N_CPU);
1526end:
1527	put_online_cpus();
1528}
1529
1530/*
1531 * Use the cpu notifier to insure that the thresholds are recalculated
1532 * when necessary.
1533 */
1534static int vmstat_cpuup_callback(struct notifier_block *nfb,
1535		unsigned long action,
1536		void *hcpu)
1537{
1538	long cpu = (long)hcpu;
1539
1540	switch (action) {
1541	case CPU_ONLINE:
1542	case CPU_ONLINE_FROZEN:
1543		refresh_zone_stat_thresholds();
1544		node_set_state(cpu_to_node(cpu), N_CPU);
1545		cpumask_set_cpu(cpu, cpu_stat_off);
1546		break;
1547	case CPU_DOWN_PREPARE:
1548	case CPU_DOWN_PREPARE_FROZEN:
1549		cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1550		cpumask_clear_cpu(cpu, cpu_stat_off);
1551		break;
1552	case CPU_DOWN_FAILED:
1553	case CPU_DOWN_FAILED_FROZEN:
1554		cpumask_set_cpu(cpu, cpu_stat_off);
1555		break;
1556	case CPU_DEAD:
1557	case CPU_DEAD_FROZEN:
1558		refresh_zone_stat_thresholds();
1559		vmstat_cpu_dead(cpu_to_node(cpu));
1560		break;
1561	default:
1562		break;
1563	}
1564	return NOTIFY_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1565}
1566
1567static struct notifier_block vmstat_notifier =
1568	{ &vmstat_cpuup_callback, NULL, 0 };
1569#endif
1570
1571static int __init setup_vmstat(void)
 
 
1572{
 
 
 
 
1573#ifdef CONFIG_SMP
1574	cpu_notifier_register_begin();
1575	__register_cpu_notifier(&vmstat_notifier);
 
 
 
 
 
 
 
 
 
 
 
 
1576
1577	start_shepherd_timer();
1578	cpu_notifier_register_done();
1579#endif
1580#ifdef CONFIG_PROC_FS
1581	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1582	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1583	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1584	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1585#endif
1586	return 0;
1587}
1588module_init(setup_vmstat)
1589
1590#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1591
1592/*
1593 * Return an index indicating how much of the available free memory is
1594 * unusable for an allocation of the requested size.
1595 */
1596static int unusable_free_index(unsigned int order,
1597				struct contig_page_info *info)
1598{
1599	/* No free memory is interpreted as all free memory is unusable */
1600	if (info->free_pages == 0)
1601		return 1000;
1602
1603	/*
1604	 * Index should be a value between 0 and 1. Return a value to 3
1605	 * decimal places.
1606	 *
1607	 * 0 => no fragmentation
1608	 * 1 => high fragmentation
1609	 */
1610	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1611
1612}
1613
1614static void unusable_show_print(struct seq_file *m,
1615					pg_data_t *pgdat, struct zone *zone)
1616{
1617	unsigned int order;
1618	int index;
1619	struct contig_page_info info;
1620
1621	seq_printf(m, "Node %d, zone %8s ",
1622				pgdat->node_id,
1623				zone->name);
1624	for (order = 0; order < MAX_ORDER; ++order) {
1625		fill_contig_page_info(zone, order, &info);
1626		index = unusable_free_index(order, &info);
1627		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1628	}
1629
1630	seq_putc(m, '\n');
1631}
1632
1633/*
1634 * Display unusable free space index
1635 *
1636 * The unusable free space index measures how much of the available free
1637 * memory cannot be used to satisfy an allocation of a given size and is a
1638 * value between 0 and 1. The higher the value, the more of free memory is
1639 * unusable and by implication, the worse the external fragmentation is. This
1640 * can be expressed as a percentage by multiplying by 100.
1641 */
1642static int unusable_show(struct seq_file *m, void *arg)
1643{
1644	pg_data_t *pgdat = (pg_data_t *)arg;
1645
1646	/* check memoryless node */
1647	if (!node_state(pgdat->node_id, N_MEMORY))
1648		return 0;
1649
1650	walk_zones_in_node(m, pgdat, unusable_show_print);
1651
1652	return 0;
1653}
1654
1655static const struct seq_operations unusable_op = {
1656	.start	= frag_start,
1657	.next	= frag_next,
1658	.stop	= frag_stop,
1659	.show	= unusable_show,
1660};
1661
1662static int unusable_open(struct inode *inode, struct file *file)
1663{
1664	return seq_open(file, &unusable_op);
1665}
1666
1667static const struct file_operations unusable_file_ops = {
1668	.open		= unusable_open,
1669	.read		= seq_read,
1670	.llseek		= seq_lseek,
1671	.release	= seq_release,
1672};
1673
1674static void extfrag_show_print(struct seq_file *m,
1675					pg_data_t *pgdat, struct zone *zone)
1676{
1677	unsigned int order;
1678	int index;
1679
1680	/* Alloc on stack as interrupts are disabled for zone walk */
1681	struct contig_page_info info;
1682
1683	seq_printf(m, "Node %d, zone %8s ",
1684				pgdat->node_id,
1685				zone->name);
1686	for (order = 0; order < MAX_ORDER; ++order) {
1687		fill_contig_page_info(zone, order, &info);
1688		index = __fragmentation_index(order, &info);
1689		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1690	}
1691
1692	seq_putc(m, '\n');
1693}
1694
1695/*
1696 * Display fragmentation index for orders that allocations would fail for
1697 */
1698static int extfrag_show(struct seq_file *m, void *arg)
1699{
1700	pg_data_t *pgdat = (pg_data_t *)arg;
1701
1702	walk_zones_in_node(m, pgdat, extfrag_show_print);
1703
1704	return 0;
1705}
1706
1707static const struct seq_operations extfrag_op = {
1708	.start	= frag_start,
1709	.next	= frag_next,
1710	.stop	= frag_stop,
1711	.show	= extfrag_show,
1712};
1713
1714static int extfrag_open(struct inode *inode, struct file *file)
1715{
1716	return seq_open(file, &extfrag_op);
1717}
1718
1719static const struct file_operations extfrag_file_ops = {
1720	.open		= extfrag_open,
1721	.read		= seq_read,
1722	.llseek		= seq_lseek,
1723	.release	= seq_release,
1724};
1725
1726static int __init extfrag_debug_init(void)
1727{
1728	struct dentry *extfrag_debug_root;
1729
1730	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1731	if (!extfrag_debug_root)
1732		return -ENOMEM;
1733
1734	if (!debugfs_create_file("unusable_index", 0444,
1735			extfrag_debug_root, NULL, &unusable_file_ops))
1736		goto fail;
1737
1738	if (!debugfs_create_file("extfrag_index", 0444,
1739			extfrag_debug_root, NULL, &extfrag_file_ops))
1740		goto fail;
1741
1742	return 0;
1743fail:
1744	debugfs_remove_recursive(extfrag_debug_root);
1745	return -ENOMEM;
1746}
1747
1748module_init(extfrag_debug_init);
1749#endif