Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/vmstat.c
4 *
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * zoned VM statistics
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <christoph@lameter.com>
11 * Copyright (C) 2008-2014 Christoph Lameter
12 */
13#include <linux/fs.h>
14#include <linux/mm.h>
15#include <linux/err.h>
16#include <linux/module.h>
17#include <linux/slab.h>
18#include <linux/cpu.h>
19#include <linux/cpumask.h>
20#include <linux/vmstat.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/debugfs.h>
24#include <linux/sched.h>
25#include <linux/math64.h>
26#include <linux/writeback.h>
27#include <linux/compaction.h>
28#include <linux/mm_inline.h>
29#include <linux/page_ext.h>
30#include <linux/page_owner.h>
31
32#include "internal.h"
33
34#ifdef CONFIG_NUMA
35int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
36
37/* zero numa counters within a zone */
38static void zero_zone_numa_counters(struct zone *zone)
39{
40 int item, cpu;
41
42 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
43 atomic_long_set(&zone->vm_numa_event[item], 0);
44 for_each_online_cpu(cpu) {
45 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
46 = 0;
47 }
48 }
49}
50
51/* zero numa counters of all the populated zones */
52static void zero_zones_numa_counters(void)
53{
54 struct zone *zone;
55
56 for_each_populated_zone(zone)
57 zero_zone_numa_counters(zone);
58}
59
60/* zero global numa counters */
61static void zero_global_numa_counters(void)
62{
63 int item;
64
65 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
66 atomic_long_set(&vm_numa_event[item], 0);
67}
68
69static void invalid_numa_statistics(void)
70{
71 zero_zones_numa_counters();
72 zero_global_numa_counters();
73}
74
75static DEFINE_MUTEX(vm_numa_stat_lock);
76
77int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
78 void *buffer, size_t *length, loff_t *ppos)
79{
80 int ret, oldval;
81
82 mutex_lock(&vm_numa_stat_lock);
83 if (write)
84 oldval = sysctl_vm_numa_stat;
85 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
86 if (ret || !write)
87 goto out;
88
89 if (oldval == sysctl_vm_numa_stat)
90 goto out;
91 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
92 static_branch_enable(&vm_numa_stat_key);
93 pr_info("enable numa statistics\n");
94 } else {
95 static_branch_disable(&vm_numa_stat_key);
96 invalid_numa_statistics();
97 pr_info("disable numa statistics, and clear numa counters\n");
98 }
99
100out:
101 mutex_unlock(&vm_numa_stat_lock);
102 return ret;
103}
104#endif
105
106#ifdef CONFIG_VM_EVENT_COUNTERS
107DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
108EXPORT_PER_CPU_SYMBOL(vm_event_states);
109
110static void sum_vm_events(unsigned long *ret)
111{
112 int cpu;
113 int i;
114
115 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
116
117 for_each_online_cpu(cpu) {
118 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
119
120 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
121 ret[i] += this->event[i];
122 }
123}
124
125/*
126 * Accumulate the vm event counters across all CPUs.
127 * The result is unavoidably approximate - it can change
128 * during and after execution of this function.
129*/
130void all_vm_events(unsigned long *ret)
131{
132 cpus_read_lock();
133 sum_vm_events(ret);
134 cpus_read_unlock();
135}
136EXPORT_SYMBOL_GPL(all_vm_events);
137
138/*
139 * Fold the foreign cpu events into our own.
140 *
141 * This is adding to the events on one processor
142 * but keeps the global counts constant.
143 */
144void vm_events_fold_cpu(int cpu)
145{
146 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
147 int i;
148
149 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
150 count_vm_events(i, fold_state->event[i]);
151 fold_state->event[i] = 0;
152 }
153}
154
155#endif /* CONFIG_VM_EVENT_COUNTERS */
156
157/*
158 * Manage combined zone based / global counters
159 *
160 * vm_stat contains the global counters
161 */
162atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
163atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
164atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
165EXPORT_SYMBOL(vm_zone_stat);
166EXPORT_SYMBOL(vm_node_stat);
167
168#ifdef CONFIG_NUMA
169static void fold_vm_zone_numa_events(struct zone *zone)
170{
171 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
172 int cpu;
173 enum numa_stat_item item;
174
175 for_each_online_cpu(cpu) {
176 struct per_cpu_zonestat *pzstats;
177
178 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
179 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
180 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
181 }
182
183 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
184 zone_numa_event_add(zone_numa_events[item], zone, item);
185}
186
187void fold_vm_numa_events(void)
188{
189 struct zone *zone;
190
191 for_each_populated_zone(zone)
192 fold_vm_zone_numa_events(zone);
193}
194#endif
195
196#ifdef CONFIG_SMP
197
198int calculate_pressure_threshold(struct zone *zone)
199{
200 int threshold;
201 int watermark_distance;
202
203 /*
204 * As vmstats are not up to date, there is drift between the estimated
205 * and real values. For high thresholds and a high number of CPUs, it
206 * is possible for the min watermark to be breached while the estimated
207 * value looks fine. The pressure threshold is a reduced value such
208 * that even the maximum amount of drift will not accidentally breach
209 * the min watermark
210 */
211 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
212 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
213
214 /*
215 * Maximum threshold is 125
216 */
217 threshold = min(125, threshold);
218
219 return threshold;
220}
221
222int calculate_normal_threshold(struct zone *zone)
223{
224 int threshold;
225 int mem; /* memory in 128 MB units */
226
227 /*
228 * The threshold scales with the number of processors and the amount
229 * of memory per zone. More memory means that we can defer updates for
230 * longer, more processors could lead to more contention.
231 * fls() is used to have a cheap way of logarithmic scaling.
232 *
233 * Some sample thresholds:
234 *
235 * Threshold Processors (fls) Zonesize fls(mem)+1
236 * ------------------------------------------------------------------
237 * 8 1 1 0.9-1 GB 4
238 * 16 2 2 0.9-1 GB 4
239 * 20 2 2 1-2 GB 5
240 * 24 2 2 2-4 GB 6
241 * 28 2 2 4-8 GB 7
242 * 32 2 2 8-16 GB 8
243 * 4 2 2 <128M 1
244 * 30 4 3 2-4 GB 5
245 * 48 4 3 8-16 GB 8
246 * 32 8 4 1-2 GB 4
247 * 32 8 4 0.9-1GB 4
248 * 10 16 5 <128M 1
249 * 40 16 5 900M 4
250 * 70 64 7 2-4 GB 5
251 * 84 64 7 4-8 GB 6
252 * 108 512 9 4-8 GB 6
253 * 125 1024 10 8-16 GB 8
254 * 125 1024 10 16-32 GB 9
255 */
256
257 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
258
259 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
260
261 /*
262 * Maximum threshold is 125
263 */
264 threshold = min(125, threshold);
265
266 return threshold;
267}
268
269/*
270 * Refresh the thresholds for each zone.
271 */
272void refresh_zone_stat_thresholds(void)
273{
274 struct pglist_data *pgdat;
275 struct zone *zone;
276 int cpu;
277 int threshold;
278
279 /* Zero current pgdat thresholds */
280 for_each_online_pgdat(pgdat) {
281 for_each_online_cpu(cpu) {
282 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
283 }
284 }
285
286 for_each_populated_zone(zone) {
287 struct pglist_data *pgdat = zone->zone_pgdat;
288 unsigned long max_drift, tolerate_drift;
289
290 threshold = calculate_normal_threshold(zone);
291
292 for_each_online_cpu(cpu) {
293 int pgdat_threshold;
294
295 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
296 = threshold;
297
298 /* Base nodestat threshold on the largest populated zone. */
299 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
300 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
301 = max(threshold, pgdat_threshold);
302 }
303
304 /*
305 * Only set percpu_drift_mark if there is a danger that
306 * NR_FREE_PAGES reports the low watermark is ok when in fact
307 * the min watermark could be breached by an allocation
308 */
309 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
310 max_drift = num_online_cpus() * threshold;
311 if (max_drift > tolerate_drift)
312 zone->percpu_drift_mark = high_wmark_pages(zone) +
313 max_drift;
314 }
315}
316
317void set_pgdat_percpu_threshold(pg_data_t *pgdat,
318 int (*calculate_pressure)(struct zone *))
319{
320 struct zone *zone;
321 int cpu;
322 int threshold;
323 int i;
324
325 for (i = 0; i < pgdat->nr_zones; i++) {
326 zone = &pgdat->node_zones[i];
327 if (!zone->percpu_drift_mark)
328 continue;
329
330 threshold = (*calculate_pressure)(zone);
331 for_each_online_cpu(cpu)
332 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
333 = threshold;
334 }
335}
336
337/*
338 * For use when we know that interrupts are disabled,
339 * or when we know that preemption is disabled and that
340 * particular counter cannot be updated from interrupt context.
341 */
342void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
343 long delta)
344{
345 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
346 s8 __percpu *p = pcp->vm_stat_diff + item;
347 long x;
348 long t;
349
350 /*
351 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
352 * atomicity is provided by IRQs being disabled -- either explicitly
353 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
354 * CPU migrations and preemption potentially corrupts a counter so
355 * disable preemption.
356 */
357 preempt_disable_nested();
358
359 x = delta + __this_cpu_read(*p);
360
361 t = __this_cpu_read(pcp->stat_threshold);
362
363 if (unlikely(abs(x) > t)) {
364 zone_page_state_add(x, zone, item);
365 x = 0;
366 }
367 __this_cpu_write(*p, x);
368
369 preempt_enable_nested();
370}
371EXPORT_SYMBOL(__mod_zone_page_state);
372
373void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
374 long delta)
375{
376 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
377 s8 __percpu *p = pcp->vm_node_stat_diff + item;
378 long x;
379 long t;
380
381 if (vmstat_item_in_bytes(item)) {
382 /*
383 * Only cgroups use subpage accounting right now; at
384 * the global level, these items still change in
385 * multiples of whole pages. Store them as pages
386 * internally to keep the per-cpu counters compact.
387 */
388 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
389 delta >>= PAGE_SHIFT;
390 }
391
392 /* See __mod_node_page_state */
393 preempt_disable_nested();
394
395 x = delta + __this_cpu_read(*p);
396
397 t = __this_cpu_read(pcp->stat_threshold);
398
399 if (unlikely(abs(x) > t)) {
400 node_page_state_add(x, pgdat, item);
401 x = 0;
402 }
403 __this_cpu_write(*p, x);
404
405 preempt_enable_nested();
406}
407EXPORT_SYMBOL(__mod_node_page_state);
408
409/*
410 * Optimized increment and decrement functions.
411 *
412 * These are only for a single page and therefore can take a struct page *
413 * argument instead of struct zone *. This allows the inclusion of the code
414 * generated for page_zone(page) into the optimized functions.
415 *
416 * No overflow check is necessary and therefore the differential can be
417 * incremented or decremented in place which may allow the compilers to
418 * generate better code.
419 * The increment or decrement is known and therefore one boundary check can
420 * be omitted.
421 *
422 * NOTE: These functions are very performance sensitive. Change only
423 * with care.
424 *
425 * Some processors have inc/dec instructions that are atomic vs an interrupt.
426 * However, the code must first determine the differential location in a zone
427 * based on the processor number and then inc/dec the counter. There is no
428 * guarantee without disabling preemption that the processor will not change
429 * in between and therefore the atomicity vs. interrupt cannot be exploited
430 * in a useful way here.
431 */
432void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
433{
434 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
435 s8 __percpu *p = pcp->vm_stat_diff + item;
436 s8 v, t;
437
438 /* See __mod_node_page_state */
439 preempt_disable_nested();
440
441 v = __this_cpu_inc_return(*p);
442 t = __this_cpu_read(pcp->stat_threshold);
443 if (unlikely(v > t)) {
444 s8 overstep = t >> 1;
445
446 zone_page_state_add(v + overstep, zone, item);
447 __this_cpu_write(*p, -overstep);
448 }
449
450 preempt_enable_nested();
451}
452
453void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
454{
455 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
456 s8 __percpu *p = pcp->vm_node_stat_diff + item;
457 s8 v, t;
458
459 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
460
461 /* See __mod_node_page_state */
462 preempt_disable_nested();
463
464 v = __this_cpu_inc_return(*p);
465 t = __this_cpu_read(pcp->stat_threshold);
466 if (unlikely(v > t)) {
467 s8 overstep = t >> 1;
468
469 node_page_state_add(v + overstep, pgdat, item);
470 __this_cpu_write(*p, -overstep);
471 }
472
473 preempt_enable_nested();
474}
475
476void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
477{
478 __inc_zone_state(page_zone(page), item);
479}
480EXPORT_SYMBOL(__inc_zone_page_state);
481
482void __inc_node_page_state(struct page *page, enum node_stat_item item)
483{
484 __inc_node_state(page_pgdat(page), item);
485}
486EXPORT_SYMBOL(__inc_node_page_state);
487
488void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
489{
490 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
491 s8 __percpu *p = pcp->vm_stat_diff + item;
492 s8 v, t;
493
494 /* See __mod_node_page_state */
495 preempt_disable_nested();
496
497 v = __this_cpu_dec_return(*p);
498 t = __this_cpu_read(pcp->stat_threshold);
499 if (unlikely(v < - t)) {
500 s8 overstep = t >> 1;
501
502 zone_page_state_add(v - overstep, zone, item);
503 __this_cpu_write(*p, overstep);
504 }
505
506 preempt_enable_nested();
507}
508
509void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
510{
511 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
512 s8 __percpu *p = pcp->vm_node_stat_diff + item;
513 s8 v, t;
514
515 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
516
517 /* See __mod_node_page_state */
518 preempt_disable_nested();
519
520 v = __this_cpu_dec_return(*p);
521 t = __this_cpu_read(pcp->stat_threshold);
522 if (unlikely(v < - t)) {
523 s8 overstep = t >> 1;
524
525 node_page_state_add(v - overstep, pgdat, item);
526 __this_cpu_write(*p, overstep);
527 }
528
529 preempt_enable_nested();
530}
531
532void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
533{
534 __dec_zone_state(page_zone(page), item);
535}
536EXPORT_SYMBOL(__dec_zone_page_state);
537
538void __dec_node_page_state(struct page *page, enum node_stat_item item)
539{
540 __dec_node_state(page_pgdat(page), item);
541}
542EXPORT_SYMBOL(__dec_node_page_state);
543
544#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
545/*
546 * If we have cmpxchg_local support then we do not need to incur the overhead
547 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
548 *
549 * mod_state() modifies the zone counter state through atomic per cpu
550 * operations.
551 *
552 * Overstep mode specifies how overstep should handled:
553 * 0 No overstepping
554 * 1 Overstepping half of threshold
555 * -1 Overstepping minus half of threshold
556*/
557static inline void mod_zone_state(struct zone *zone,
558 enum zone_stat_item item, long delta, int overstep_mode)
559{
560 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
561 s8 __percpu *p = pcp->vm_stat_diff + item;
562 long o, n, t, z;
563
564 do {
565 z = 0; /* overflow to zone counters */
566
567 /*
568 * The fetching of the stat_threshold is racy. We may apply
569 * a counter threshold to the wrong the cpu if we get
570 * rescheduled while executing here. However, the next
571 * counter update will apply the threshold again and
572 * therefore bring the counter under the threshold again.
573 *
574 * Most of the time the thresholds are the same anyways
575 * for all cpus in a zone.
576 */
577 t = this_cpu_read(pcp->stat_threshold);
578
579 o = this_cpu_read(*p);
580 n = delta + o;
581
582 if (abs(n) > t) {
583 int os = overstep_mode * (t >> 1) ;
584
585 /* Overflow must be added to zone counters */
586 z = n + os;
587 n = -os;
588 }
589 } while (this_cpu_cmpxchg(*p, o, n) != o);
590
591 if (z)
592 zone_page_state_add(z, zone, item);
593}
594
595void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
596 long delta)
597{
598 mod_zone_state(zone, item, delta, 0);
599}
600EXPORT_SYMBOL(mod_zone_page_state);
601
602void inc_zone_page_state(struct page *page, enum zone_stat_item item)
603{
604 mod_zone_state(page_zone(page), item, 1, 1);
605}
606EXPORT_SYMBOL(inc_zone_page_state);
607
608void dec_zone_page_state(struct page *page, enum zone_stat_item item)
609{
610 mod_zone_state(page_zone(page), item, -1, -1);
611}
612EXPORT_SYMBOL(dec_zone_page_state);
613
614static inline void mod_node_state(struct pglist_data *pgdat,
615 enum node_stat_item item, int delta, int overstep_mode)
616{
617 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
618 s8 __percpu *p = pcp->vm_node_stat_diff + item;
619 long o, n, t, z;
620
621 if (vmstat_item_in_bytes(item)) {
622 /*
623 * Only cgroups use subpage accounting right now; at
624 * the global level, these items still change in
625 * multiples of whole pages. Store them as pages
626 * internally to keep the per-cpu counters compact.
627 */
628 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
629 delta >>= PAGE_SHIFT;
630 }
631
632 do {
633 z = 0; /* overflow to node counters */
634
635 /*
636 * The fetching of the stat_threshold is racy. We may apply
637 * a counter threshold to the wrong the cpu if we get
638 * rescheduled while executing here. However, the next
639 * counter update will apply the threshold again and
640 * therefore bring the counter under the threshold again.
641 *
642 * Most of the time the thresholds are the same anyways
643 * for all cpus in a node.
644 */
645 t = this_cpu_read(pcp->stat_threshold);
646
647 o = this_cpu_read(*p);
648 n = delta + o;
649
650 if (abs(n) > t) {
651 int os = overstep_mode * (t >> 1) ;
652
653 /* Overflow must be added to node counters */
654 z = n + os;
655 n = -os;
656 }
657 } while (this_cpu_cmpxchg(*p, o, n) != o);
658
659 if (z)
660 node_page_state_add(z, pgdat, item);
661}
662
663void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
664 long delta)
665{
666 mod_node_state(pgdat, item, delta, 0);
667}
668EXPORT_SYMBOL(mod_node_page_state);
669
670void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
671{
672 mod_node_state(pgdat, item, 1, 1);
673}
674
675void inc_node_page_state(struct page *page, enum node_stat_item item)
676{
677 mod_node_state(page_pgdat(page), item, 1, 1);
678}
679EXPORT_SYMBOL(inc_node_page_state);
680
681void dec_node_page_state(struct page *page, enum node_stat_item item)
682{
683 mod_node_state(page_pgdat(page), item, -1, -1);
684}
685EXPORT_SYMBOL(dec_node_page_state);
686#else
687/*
688 * Use interrupt disable to serialize counter updates
689 */
690void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
691 long delta)
692{
693 unsigned long flags;
694
695 local_irq_save(flags);
696 __mod_zone_page_state(zone, item, delta);
697 local_irq_restore(flags);
698}
699EXPORT_SYMBOL(mod_zone_page_state);
700
701void inc_zone_page_state(struct page *page, enum zone_stat_item item)
702{
703 unsigned long flags;
704 struct zone *zone;
705
706 zone = page_zone(page);
707 local_irq_save(flags);
708 __inc_zone_state(zone, item);
709 local_irq_restore(flags);
710}
711EXPORT_SYMBOL(inc_zone_page_state);
712
713void dec_zone_page_state(struct page *page, enum zone_stat_item item)
714{
715 unsigned long flags;
716
717 local_irq_save(flags);
718 __dec_zone_page_state(page, item);
719 local_irq_restore(flags);
720}
721EXPORT_SYMBOL(dec_zone_page_state);
722
723void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
724{
725 unsigned long flags;
726
727 local_irq_save(flags);
728 __inc_node_state(pgdat, item);
729 local_irq_restore(flags);
730}
731EXPORT_SYMBOL(inc_node_state);
732
733void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
734 long delta)
735{
736 unsigned long flags;
737
738 local_irq_save(flags);
739 __mod_node_page_state(pgdat, item, delta);
740 local_irq_restore(flags);
741}
742EXPORT_SYMBOL(mod_node_page_state);
743
744void inc_node_page_state(struct page *page, enum node_stat_item item)
745{
746 unsigned long flags;
747 struct pglist_data *pgdat;
748
749 pgdat = page_pgdat(page);
750 local_irq_save(flags);
751 __inc_node_state(pgdat, item);
752 local_irq_restore(flags);
753}
754EXPORT_SYMBOL(inc_node_page_state);
755
756void dec_node_page_state(struct page *page, enum node_stat_item item)
757{
758 unsigned long flags;
759
760 local_irq_save(flags);
761 __dec_node_page_state(page, item);
762 local_irq_restore(flags);
763}
764EXPORT_SYMBOL(dec_node_page_state);
765#endif
766
767/*
768 * Fold a differential into the global counters.
769 * Returns the number of counters updated.
770 */
771static int fold_diff(int *zone_diff, int *node_diff)
772{
773 int i;
774 int changes = 0;
775
776 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
777 if (zone_diff[i]) {
778 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
779 changes++;
780 }
781
782 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
783 if (node_diff[i]) {
784 atomic_long_add(node_diff[i], &vm_node_stat[i]);
785 changes++;
786 }
787 return changes;
788}
789
790/*
791 * Update the zone counters for the current cpu.
792 *
793 * Note that refresh_cpu_vm_stats strives to only access
794 * node local memory. The per cpu pagesets on remote zones are placed
795 * in the memory local to the processor using that pageset. So the
796 * loop over all zones will access a series of cachelines local to
797 * the processor.
798 *
799 * The call to zone_page_state_add updates the cachelines with the
800 * statistics in the remote zone struct as well as the global cachelines
801 * with the global counters. These could cause remote node cache line
802 * bouncing and will have to be only done when necessary.
803 *
804 * The function returns the number of global counters updated.
805 */
806static int refresh_cpu_vm_stats(bool do_pagesets)
807{
808 struct pglist_data *pgdat;
809 struct zone *zone;
810 int i;
811 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
812 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
813 int changes = 0;
814
815 for_each_populated_zone(zone) {
816 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
817#ifdef CONFIG_NUMA
818 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
819#endif
820
821 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
822 int v;
823
824 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
825 if (v) {
826
827 atomic_long_add(v, &zone->vm_stat[i]);
828 global_zone_diff[i] += v;
829#ifdef CONFIG_NUMA
830 /* 3 seconds idle till flush */
831 __this_cpu_write(pcp->expire, 3);
832#endif
833 }
834 }
835#ifdef CONFIG_NUMA
836
837 if (do_pagesets) {
838 cond_resched();
839 /*
840 * Deal with draining the remote pageset of this
841 * processor
842 *
843 * Check if there are pages remaining in this pageset
844 * if not then there is nothing to expire.
845 */
846 if (!__this_cpu_read(pcp->expire) ||
847 !__this_cpu_read(pcp->count))
848 continue;
849
850 /*
851 * We never drain zones local to this processor.
852 */
853 if (zone_to_nid(zone) == numa_node_id()) {
854 __this_cpu_write(pcp->expire, 0);
855 continue;
856 }
857
858 if (__this_cpu_dec_return(pcp->expire))
859 continue;
860
861 if (__this_cpu_read(pcp->count)) {
862 drain_zone_pages(zone, this_cpu_ptr(pcp));
863 changes++;
864 }
865 }
866#endif
867 }
868
869 for_each_online_pgdat(pgdat) {
870 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
871
872 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
873 int v;
874
875 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
876 if (v) {
877 atomic_long_add(v, &pgdat->vm_stat[i]);
878 global_node_diff[i] += v;
879 }
880 }
881 }
882
883 changes += fold_diff(global_zone_diff, global_node_diff);
884 return changes;
885}
886
887/*
888 * Fold the data for an offline cpu into the global array.
889 * There cannot be any access by the offline cpu and therefore
890 * synchronization is simplified.
891 */
892void cpu_vm_stats_fold(int cpu)
893{
894 struct pglist_data *pgdat;
895 struct zone *zone;
896 int i;
897 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
898 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
899
900 for_each_populated_zone(zone) {
901 struct per_cpu_zonestat *pzstats;
902
903 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
904
905 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
906 if (pzstats->vm_stat_diff[i]) {
907 int v;
908
909 v = pzstats->vm_stat_diff[i];
910 pzstats->vm_stat_diff[i] = 0;
911 atomic_long_add(v, &zone->vm_stat[i]);
912 global_zone_diff[i] += v;
913 }
914 }
915#ifdef CONFIG_NUMA
916 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
917 if (pzstats->vm_numa_event[i]) {
918 unsigned long v;
919
920 v = pzstats->vm_numa_event[i];
921 pzstats->vm_numa_event[i] = 0;
922 zone_numa_event_add(v, zone, i);
923 }
924 }
925#endif
926 }
927
928 for_each_online_pgdat(pgdat) {
929 struct per_cpu_nodestat *p;
930
931 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
932
933 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
934 if (p->vm_node_stat_diff[i]) {
935 int v;
936
937 v = p->vm_node_stat_diff[i];
938 p->vm_node_stat_diff[i] = 0;
939 atomic_long_add(v, &pgdat->vm_stat[i]);
940 global_node_diff[i] += v;
941 }
942 }
943
944 fold_diff(global_zone_diff, global_node_diff);
945}
946
947/*
948 * this is only called if !populated_zone(zone), which implies no other users of
949 * pset->vm_stat_diff[] exist.
950 */
951void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
952{
953 unsigned long v;
954 int i;
955
956 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
957 if (pzstats->vm_stat_diff[i]) {
958 v = pzstats->vm_stat_diff[i];
959 pzstats->vm_stat_diff[i] = 0;
960 zone_page_state_add(v, zone, i);
961 }
962 }
963
964#ifdef CONFIG_NUMA
965 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
966 if (pzstats->vm_numa_event[i]) {
967 v = pzstats->vm_numa_event[i];
968 pzstats->vm_numa_event[i] = 0;
969 zone_numa_event_add(v, zone, i);
970 }
971 }
972#endif
973}
974#endif
975
976#ifdef CONFIG_NUMA
977/*
978 * Determine the per node value of a stat item. This function
979 * is called frequently in a NUMA machine, so try to be as
980 * frugal as possible.
981 */
982unsigned long sum_zone_node_page_state(int node,
983 enum zone_stat_item item)
984{
985 struct zone *zones = NODE_DATA(node)->node_zones;
986 int i;
987 unsigned long count = 0;
988
989 for (i = 0; i < MAX_NR_ZONES; i++)
990 count += zone_page_state(zones + i, item);
991
992 return count;
993}
994
995/* Determine the per node value of a numa stat item. */
996unsigned long sum_zone_numa_event_state(int node,
997 enum numa_stat_item item)
998{
999 struct zone *zones = NODE_DATA(node)->node_zones;
1000 unsigned long count = 0;
1001 int i;
1002
1003 for (i = 0; i < MAX_NR_ZONES; i++)
1004 count += zone_numa_event_state(zones + i, item);
1005
1006 return count;
1007}
1008
1009/*
1010 * Determine the per node value of a stat item.
1011 */
1012unsigned long node_page_state_pages(struct pglist_data *pgdat,
1013 enum node_stat_item item)
1014{
1015 long x = atomic_long_read(&pgdat->vm_stat[item]);
1016#ifdef CONFIG_SMP
1017 if (x < 0)
1018 x = 0;
1019#endif
1020 return x;
1021}
1022
1023unsigned long node_page_state(struct pglist_data *pgdat,
1024 enum node_stat_item item)
1025{
1026 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1027
1028 return node_page_state_pages(pgdat, item);
1029}
1030#endif
1031
1032#ifdef CONFIG_COMPACTION
1033
1034struct contig_page_info {
1035 unsigned long free_pages;
1036 unsigned long free_blocks_total;
1037 unsigned long free_blocks_suitable;
1038};
1039
1040/*
1041 * Calculate the number of free pages in a zone, how many contiguous
1042 * pages are free and how many are large enough to satisfy an allocation of
1043 * the target size. Note that this function makes no attempt to estimate
1044 * how many suitable free blocks there *might* be if MOVABLE pages were
1045 * migrated. Calculating that is possible, but expensive and can be
1046 * figured out from userspace
1047 */
1048static void fill_contig_page_info(struct zone *zone,
1049 unsigned int suitable_order,
1050 struct contig_page_info *info)
1051{
1052 unsigned int order;
1053
1054 info->free_pages = 0;
1055 info->free_blocks_total = 0;
1056 info->free_blocks_suitable = 0;
1057
1058 for (order = 0; order < MAX_ORDER; order++) {
1059 unsigned long blocks;
1060
1061 /*
1062 * Count number of free blocks.
1063 *
1064 * Access to nr_free is lockless as nr_free is used only for
1065 * diagnostic purposes. Use data_race to avoid KCSAN warning.
1066 */
1067 blocks = data_race(zone->free_area[order].nr_free);
1068 info->free_blocks_total += blocks;
1069
1070 /* Count free base pages */
1071 info->free_pages += blocks << order;
1072
1073 /* Count the suitable free blocks */
1074 if (order >= suitable_order)
1075 info->free_blocks_suitable += blocks <<
1076 (order - suitable_order);
1077 }
1078}
1079
1080/*
1081 * A fragmentation index only makes sense if an allocation of a requested
1082 * size would fail. If that is true, the fragmentation index indicates
1083 * whether external fragmentation or a lack of memory was the problem.
1084 * The value can be used to determine if page reclaim or compaction
1085 * should be used
1086 */
1087static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1088{
1089 unsigned long requested = 1UL << order;
1090
1091 if (WARN_ON_ONCE(order >= MAX_ORDER))
1092 return 0;
1093
1094 if (!info->free_blocks_total)
1095 return 0;
1096
1097 /* Fragmentation index only makes sense when a request would fail */
1098 if (info->free_blocks_suitable)
1099 return -1000;
1100
1101 /*
1102 * Index is between 0 and 1 so return within 3 decimal places
1103 *
1104 * 0 => allocation would fail due to lack of memory
1105 * 1 => allocation would fail due to fragmentation
1106 */
1107 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1108}
1109
1110/*
1111 * Calculates external fragmentation within a zone wrt the given order.
1112 * It is defined as the percentage of pages found in blocks of size
1113 * less than 1 << order. It returns values in range [0, 100].
1114 */
1115unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1116{
1117 struct contig_page_info info;
1118
1119 fill_contig_page_info(zone, order, &info);
1120 if (info.free_pages == 0)
1121 return 0;
1122
1123 return div_u64((info.free_pages -
1124 (info.free_blocks_suitable << order)) * 100,
1125 info.free_pages);
1126}
1127
1128/* Same as __fragmentation index but allocs contig_page_info on stack */
1129int fragmentation_index(struct zone *zone, unsigned int order)
1130{
1131 struct contig_page_info info;
1132
1133 fill_contig_page_info(zone, order, &info);
1134 return __fragmentation_index(order, &info);
1135}
1136#endif
1137
1138#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1139 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1140#ifdef CONFIG_ZONE_DMA
1141#define TEXT_FOR_DMA(xx) xx "_dma",
1142#else
1143#define TEXT_FOR_DMA(xx)
1144#endif
1145
1146#ifdef CONFIG_ZONE_DMA32
1147#define TEXT_FOR_DMA32(xx) xx "_dma32",
1148#else
1149#define TEXT_FOR_DMA32(xx)
1150#endif
1151
1152#ifdef CONFIG_HIGHMEM
1153#define TEXT_FOR_HIGHMEM(xx) xx "_high",
1154#else
1155#define TEXT_FOR_HIGHMEM(xx)
1156#endif
1157
1158#ifdef CONFIG_ZONE_DEVICE
1159#define TEXT_FOR_DEVICE(xx) xx "_device",
1160#else
1161#define TEXT_FOR_DEVICE(xx)
1162#endif
1163
1164#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1165 TEXT_FOR_HIGHMEM(xx) xx "_movable", \
1166 TEXT_FOR_DEVICE(xx)
1167
1168const char * const vmstat_text[] = {
1169 /* enum zone_stat_item counters */
1170 "nr_free_pages",
1171 "nr_zone_inactive_anon",
1172 "nr_zone_active_anon",
1173 "nr_zone_inactive_file",
1174 "nr_zone_active_file",
1175 "nr_zone_unevictable",
1176 "nr_zone_write_pending",
1177 "nr_mlock",
1178 "nr_bounce",
1179#if IS_ENABLED(CONFIG_ZSMALLOC)
1180 "nr_zspages",
1181#endif
1182 "nr_free_cma",
1183
1184 /* enum numa_stat_item counters */
1185#ifdef CONFIG_NUMA
1186 "numa_hit",
1187 "numa_miss",
1188 "numa_foreign",
1189 "numa_interleave",
1190 "numa_local",
1191 "numa_other",
1192#endif
1193
1194 /* enum node_stat_item counters */
1195 "nr_inactive_anon",
1196 "nr_active_anon",
1197 "nr_inactive_file",
1198 "nr_active_file",
1199 "nr_unevictable",
1200 "nr_slab_reclaimable",
1201 "nr_slab_unreclaimable",
1202 "nr_isolated_anon",
1203 "nr_isolated_file",
1204 "workingset_nodes",
1205 "workingset_refault_anon",
1206 "workingset_refault_file",
1207 "workingset_activate_anon",
1208 "workingset_activate_file",
1209 "workingset_restore_anon",
1210 "workingset_restore_file",
1211 "workingset_nodereclaim",
1212 "nr_anon_pages",
1213 "nr_mapped",
1214 "nr_file_pages",
1215 "nr_dirty",
1216 "nr_writeback",
1217 "nr_writeback_temp",
1218 "nr_shmem",
1219 "nr_shmem_hugepages",
1220 "nr_shmem_pmdmapped",
1221 "nr_file_hugepages",
1222 "nr_file_pmdmapped",
1223 "nr_anon_transparent_hugepages",
1224 "nr_vmscan_write",
1225 "nr_vmscan_immediate_reclaim",
1226 "nr_dirtied",
1227 "nr_written",
1228 "nr_throttled_written",
1229 "nr_kernel_misc_reclaimable",
1230 "nr_foll_pin_acquired",
1231 "nr_foll_pin_released",
1232 "nr_kernel_stack",
1233#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1234 "nr_shadow_call_stack",
1235#endif
1236 "nr_page_table_pages",
1237 "nr_sec_page_table_pages",
1238#ifdef CONFIG_SWAP
1239 "nr_swapcached",
1240#endif
1241#ifdef CONFIG_NUMA_BALANCING
1242 "pgpromote_success",
1243 "pgpromote_candidate",
1244#endif
1245
1246 /* enum writeback_stat_item counters */
1247 "nr_dirty_threshold",
1248 "nr_dirty_background_threshold",
1249
1250#if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1251 /* enum vm_event_item counters */
1252 "pgpgin",
1253 "pgpgout",
1254 "pswpin",
1255 "pswpout",
1256
1257 TEXTS_FOR_ZONES("pgalloc")
1258 TEXTS_FOR_ZONES("allocstall")
1259 TEXTS_FOR_ZONES("pgskip")
1260
1261 "pgfree",
1262 "pgactivate",
1263 "pgdeactivate",
1264 "pglazyfree",
1265
1266 "pgfault",
1267 "pgmajfault",
1268 "pglazyfreed",
1269
1270 "pgrefill",
1271 "pgreuse",
1272 "pgsteal_kswapd",
1273 "pgsteal_direct",
1274 "pgsteal_khugepaged",
1275 "pgdemote_kswapd",
1276 "pgdemote_direct",
1277 "pgdemote_khugepaged",
1278 "pgscan_kswapd",
1279 "pgscan_direct",
1280 "pgscan_khugepaged",
1281 "pgscan_direct_throttle",
1282 "pgscan_anon",
1283 "pgscan_file",
1284 "pgsteal_anon",
1285 "pgsteal_file",
1286
1287#ifdef CONFIG_NUMA
1288 "zone_reclaim_failed",
1289#endif
1290 "pginodesteal",
1291 "slabs_scanned",
1292 "kswapd_inodesteal",
1293 "kswapd_low_wmark_hit_quickly",
1294 "kswapd_high_wmark_hit_quickly",
1295 "pageoutrun",
1296
1297 "pgrotated",
1298
1299 "drop_pagecache",
1300 "drop_slab",
1301 "oom_kill",
1302
1303#ifdef CONFIG_NUMA_BALANCING
1304 "numa_pte_updates",
1305 "numa_huge_pte_updates",
1306 "numa_hint_faults",
1307 "numa_hint_faults_local",
1308 "numa_pages_migrated",
1309#endif
1310#ifdef CONFIG_MIGRATION
1311 "pgmigrate_success",
1312 "pgmigrate_fail",
1313 "thp_migration_success",
1314 "thp_migration_fail",
1315 "thp_migration_split",
1316#endif
1317#ifdef CONFIG_COMPACTION
1318 "compact_migrate_scanned",
1319 "compact_free_scanned",
1320 "compact_isolated",
1321 "compact_stall",
1322 "compact_fail",
1323 "compact_success",
1324 "compact_daemon_wake",
1325 "compact_daemon_migrate_scanned",
1326 "compact_daemon_free_scanned",
1327#endif
1328
1329#ifdef CONFIG_HUGETLB_PAGE
1330 "htlb_buddy_alloc_success",
1331 "htlb_buddy_alloc_fail",
1332#endif
1333#ifdef CONFIG_CMA
1334 "cma_alloc_success",
1335 "cma_alloc_fail",
1336#endif
1337 "unevictable_pgs_culled",
1338 "unevictable_pgs_scanned",
1339 "unevictable_pgs_rescued",
1340 "unevictable_pgs_mlocked",
1341 "unevictable_pgs_munlocked",
1342 "unevictable_pgs_cleared",
1343 "unevictable_pgs_stranded",
1344
1345#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1346 "thp_fault_alloc",
1347 "thp_fault_fallback",
1348 "thp_fault_fallback_charge",
1349 "thp_collapse_alloc",
1350 "thp_collapse_alloc_failed",
1351 "thp_file_alloc",
1352 "thp_file_fallback",
1353 "thp_file_fallback_charge",
1354 "thp_file_mapped",
1355 "thp_split_page",
1356 "thp_split_page_failed",
1357 "thp_deferred_split_page",
1358 "thp_split_pmd",
1359 "thp_scan_exceed_none_pte",
1360 "thp_scan_exceed_swap_pte",
1361 "thp_scan_exceed_share_pte",
1362#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1363 "thp_split_pud",
1364#endif
1365 "thp_zero_page_alloc",
1366 "thp_zero_page_alloc_failed",
1367 "thp_swpout",
1368 "thp_swpout_fallback",
1369#endif
1370#ifdef CONFIG_MEMORY_BALLOON
1371 "balloon_inflate",
1372 "balloon_deflate",
1373#ifdef CONFIG_BALLOON_COMPACTION
1374 "balloon_migrate",
1375#endif
1376#endif /* CONFIG_MEMORY_BALLOON */
1377#ifdef CONFIG_DEBUG_TLBFLUSH
1378 "nr_tlb_remote_flush",
1379 "nr_tlb_remote_flush_received",
1380 "nr_tlb_local_flush_all",
1381 "nr_tlb_local_flush_one",
1382#endif /* CONFIG_DEBUG_TLBFLUSH */
1383
1384#ifdef CONFIG_SWAP
1385 "swap_ra",
1386 "swap_ra_hit",
1387#ifdef CONFIG_KSM
1388 "ksm_swpin_copy",
1389#endif
1390#endif
1391#ifdef CONFIG_KSM
1392 "cow_ksm",
1393#endif
1394#ifdef CONFIG_ZSWAP
1395 "zswpin",
1396 "zswpout",
1397#endif
1398#ifdef CONFIG_X86
1399 "direct_map_level2_splits",
1400 "direct_map_level3_splits",
1401#endif
1402#endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1403};
1404#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1405
1406#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1407 defined(CONFIG_PROC_FS)
1408static void *frag_start(struct seq_file *m, loff_t *pos)
1409{
1410 pg_data_t *pgdat;
1411 loff_t node = *pos;
1412
1413 for (pgdat = first_online_pgdat();
1414 pgdat && node;
1415 pgdat = next_online_pgdat(pgdat))
1416 --node;
1417
1418 return pgdat;
1419}
1420
1421static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1422{
1423 pg_data_t *pgdat = (pg_data_t *)arg;
1424
1425 (*pos)++;
1426 return next_online_pgdat(pgdat);
1427}
1428
1429static void frag_stop(struct seq_file *m, void *arg)
1430{
1431}
1432
1433/*
1434 * Walk zones in a node and print using a callback.
1435 * If @assert_populated is true, only use callback for zones that are populated.
1436 */
1437static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1438 bool assert_populated, bool nolock,
1439 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1440{
1441 struct zone *zone;
1442 struct zone *node_zones = pgdat->node_zones;
1443 unsigned long flags;
1444
1445 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1446 if (assert_populated && !populated_zone(zone))
1447 continue;
1448
1449 if (!nolock)
1450 spin_lock_irqsave(&zone->lock, flags);
1451 print(m, pgdat, zone);
1452 if (!nolock)
1453 spin_unlock_irqrestore(&zone->lock, flags);
1454 }
1455}
1456#endif
1457
1458#ifdef CONFIG_PROC_FS
1459static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1460 struct zone *zone)
1461{
1462 int order;
1463
1464 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1465 for (order = 0; order < MAX_ORDER; ++order)
1466 /*
1467 * Access to nr_free is lockless as nr_free is used only for
1468 * printing purposes. Use data_race to avoid KCSAN warning.
1469 */
1470 seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1471 seq_putc(m, '\n');
1472}
1473
1474/*
1475 * This walks the free areas for each zone.
1476 */
1477static int frag_show(struct seq_file *m, void *arg)
1478{
1479 pg_data_t *pgdat = (pg_data_t *)arg;
1480 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1481 return 0;
1482}
1483
1484static void pagetypeinfo_showfree_print(struct seq_file *m,
1485 pg_data_t *pgdat, struct zone *zone)
1486{
1487 int order, mtype;
1488
1489 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1490 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1491 pgdat->node_id,
1492 zone->name,
1493 migratetype_names[mtype]);
1494 for (order = 0; order < MAX_ORDER; ++order) {
1495 unsigned long freecount = 0;
1496 struct free_area *area;
1497 struct list_head *curr;
1498 bool overflow = false;
1499
1500 area = &(zone->free_area[order]);
1501
1502 list_for_each(curr, &area->free_list[mtype]) {
1503 /*
1504 * Cap the free_list iteration because it might
1505 * be really large and we are under a spinlock
1506 * so a long time spent here could trigger a
1507 * hard lockup detector. Anyway this is a
1508 * debugging tool so knowing there is a handful
1509 * of pages of this order should be more than
1510 * sufficient.
1511 */
1512 if (++freecount >= 100000) {
1513 overflow = true;
1514 break;
1515 }
1516 }
1517 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1518 spin_unlock_irq(&zone->lock);
1519 cond_resched();
1520 spin_lock_irq(&zone->lock);
1521 }
1522 seq_putc(m, '\n');
1523 }
1524}
1525
1526/* Print out the free pages at each order for each migatetype */
1527static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1528{
1529 int order;
1530 pg_data_t *pgdat = (pg_data_t *)arg;
1531
1532 /* Print header */
1533 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1534 for (order = 0; order < MAX_ORDER; ++order)
1535 seq_printf(m, "%6d ", order);
1536 seq_putc(m, '\n');
1537
1538 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1539}
1540
1541static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1542 pg_data_t *pgdat, struct zone *zone)
1543{
1544 int mtype;
1545 unsigned long pfn;
1546 unsigned long start_pfn = zone->zone_start_pfn;
1547 unsigned long end_pfn = zone_end_pfn(zone);
1548 unsigned long count[MIGRATE_TYPES] = { 0, };
1549
1550 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1551 struct page *page;
1552
1553 page = pfn_to_online_page(pfn);
1554 if (!page)
1555 continue;
1556
1557 if (page_zone(page) != zone)
1558 continue;
1559
1560 mtype = get_pageblock_migratetype(page);
1561
1562 if (mtype < MIGRATE_TYPES)
1563 count[mtype]++;
1564 }
1565
1566 /* Print counts */
1567 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1568 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1569 seq_printf(m, "%12lu ", count[mtype]);
1570 seq_putc(m, '\n');
1571}
1572
1573/* Print out the number of pageblocks for each migratetype */
1574static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1575{
1576 int mtype;
1577 pg_data_t *pgdat = (pg_data_t *)arg;
1578
1579 seq_printf(m, "\n%-23s", "Number of blocks type ");
1580 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1581 seq_printf(m, "%12s ", migratetype_names[mtype]);
1582 seq_putc(m, '\n');
1583 walk_zones_in_node(m, pgdat, true, false,
1584 pagetypeinfo_showblockcount_print);
1585}
1586
1587/*
1588 * Print out the number of pageblocks for each migratetype that contain pages
1589 * of other types. This gives an indication of how well fallbacks are being
1590 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1591 * to determine what is going on
1592 */
1593static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1594{
1595#ifdef CONFIG_PAGE_OWNER
1596 int mtype;
1597
1598 if (!static_branch_unlikely(&page_owner_inited))
1599 return;
1600
1601 drain_all_pages(NULL);
1602
1603 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1604 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1605 seq_printf(m, "%12s ", migratetype_names[mtype]);
1606 seq_putc(m, '\n');
1607
1608 walk_zones_in_node(m, pgdat, true, true,
1609 pagetypeinfo_showmixedcount_print);
1610#endif /* CONFIG_PAGE_OWNER */
1611}
1612
1613/*
1614 * This prints out statistics in relation to grouping pages by mobility.
1615 * It is expensive to collect so do not constantly read the file.
1616 */
1617static int pagetypeinfo_show(struct seq_file *m, void *arg)
1618{
1619 pg_data_t *pgdat = (pg_data_t *)arg;
1620
1621 /* check memoryless node */
1622 if (!node_state(pgdat->node_id, N_MEMORY))
1623 return 0;
1624
1625 seq_printf(m, "Page block order: %d\n", pageblock_order);
1626 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1627 seq_putc(m, '\n');
1628 pagetypeinfo_showfree(m, pgdat);
1629 pagetypeinfo_showblockcount(m, pgdat);
1630 pagetypeinfo_showmixedcount(m, pgdat);
1631
1632 return 0;
1633}
1634
1635static const struct seq_operations fragmentation_op = {
1636 .start = frag_start,
1637 .next = frag_next,
1638 .stop = frag_stop,
1639 .show = frag_show,
1640};
1641
1642static const struct seq_operations pagetypeinfo_op = {
1643 .start = frag_start,
1644 .next = frag_next,
1645 .stop = frag_stop,
1646 .show = pagetypeinfo_show,
1647};
1648
1649static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1650{
1651 int zid;
1652
1653 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1654 struct zone *compare = &pgdat->node_zones[zid];
1655
1656 if (populated_zone(compare))
1657 return zone == compare;
1658 }
1659
1660 return false;
1661}
1662
1663static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1664 struct zone *zone)
1665{
1666 int i;
1667 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1668 if (is_zone_first_populated(pgdat, zone)) {
1669 seq_printf(m, "\n per-node stats");
1670 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1671 unsigned long pages = node_page_state_pages(pgdat, i);
1672
1673 if (vmstat_item_print_in_thp(i))
1674 pages /= HPAGE_PMD_NR;
1675 seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1676 pages);
1677 }
1678 }
1679 seq_printf(m,
1680 "\n pages free %lu"
1681 "\n boost %lu"
1682 "\n min %lu"
1683 "\n low %lu"
1684 "\n high %lu"
1685 "\n spanned %lu"
1686 "\n present %lu"
1687 "\n managed %lu"
1688 "\n cma %lu",
1689 zone_page_state(zone, NR_FREE_PAGES),
1690 zone->watermark_boost,
1691 min_wmark_pages(zone),
1692 low_wmark_pages(zone),
1693 high_wmark_pages(zone),
1694 zone->spanned_pages,
1695 zone->present_pages,
1696 zone_managed_pages(zone),
1697 zone_cma_pages(zone));
1698
1699 seq_printf(m,
1700 "\n protection: (%ld",
1701 zone->lowmem_reserve[0]);
1702 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1703 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1704 seq_putc(m, ')');
1705
1706 /* If unpopulated, no other information is useful */
1707 if (!populated_zone(zone)) {
1708 seq_putc(m, '\n');
1709 return;
1710 }
1711
1712 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1713 seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1714 zone_page_state(zone, i));
1715
1716#ifdef CONFIG_NUMA
1717 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1718 seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1719 zone_numa_event_state(zone, i));
1720#endif
1721
1722 seq_printf(m, "\n pagesets");
1723 for_each_online_cpu(i) {
1724 struct per_cpu_pages *pcp;
1725 struct per_cpu_zonestat __maybe_unused *pzstats;
1726
1727 pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1728 seq_printf(m,
1729 "\n cpu: %i"
1730 "\n count: %i"
1731 "\n high: %i"
1732 "\n batch: %i",
1733 i,
1734 pcp->count,
1735 pcp->high,
1736 pcp->batch);
1737#ifdef CONFIG_SMP
1738 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1739 seq_printf(m, "\n vm stats threshold: %d",
1740 pzstats->stat_threshold);
1741#endif
1742 }
1743 seq_printf(m,
1744 "\n node_unreclaimable: %u"
1745 "\n start_pfn: %lu",
1746 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1747 zone->zone_start_pfn);
1748 seq_putc(m, '\n');
1749}
1750
1751/*
1752 * Output information about zones in @pgdat. All zones are printed regardless
1753 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1754 * set of all zones and userspace would not be aware of such zones if they are
1755 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1756 */
1757static int zoneinfo_show(struct seq_file *m, void *arg)
1758{
1759 pg_data_t *pgdat = (pg_data_t *)arg;
1760 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1761 return 0;
1762}
1763
1764static const struct seq_operations zoneinfo_op = {
1765 .start = frag_start, /* iterate over all zones. The same as in
1766 * fragmentation. */
1767 .next = frag_next,
1768 .stop = frag_stop,
1769 .show = zoneinfo_show,
1770};
1771
1772#define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1773 NR_VM_NUMA_EVENT_ITEMS + \
1774 NR_VM_NODE_STAT_ITEMS + \
1775 NR_VM_WRITEBACK_STAT_ITEMS + \
1776 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1777 NR_VM_EVENT_ITEMS : 0))
1778
1779static void *vmstat_start(struct seq_file *m, loff_t *pos)
1780{
1781 unsigned long *v;
1782 int i;
1783
1784 if (*pos >= NR_VMSTAT_ITEMS)
1785 return NULL;
1786
1787 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1788 fold_vm_numa_events();
1789 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1790 m->private = v;
1791 if (!v)
1792 return ERR_PTR(-ENOMEM);
1793 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1794 v[i] = global_zone_page_state(i);
1795 v += NR_VM_ZONE_STAT_ITEMS;
1796
1797#ifdef CONFIG_NUMA
1798 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1799 v[i] = global_numa_event_state(i);
1800 v += NR_VM_NUMA_EVENT_ITEMS;
1801#endif
1802
1803 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1804 v[i] = global_node_page_state_pages(i);
1805 if (vmstat_item_print_in_thp(i))
1806 v[i] /= HPAGE_PMD_NR;
1807 }
1808 v += NR_VM_NODE_STAT_ITEMS;
1809
1810 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1811 v + NR_DIRTY_THRESHOLD);
1812 v += NR_VM_WRITEBACK_STAT_ITEMS;
1813
1814#ifdef CONFIG_VM_EVENT_COUNTERS
1815 all_vm_events(v);
1816 v[PGPGIN] /= 2; /* sectors -> kbytes */
1817 v[PGPGOUT] /= 2;
1818#endif
1819 return (unsigned long *)m->private + *pos;
1820}
1821
1822static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1823{
1824 (*pos)++;
1825 if (*pos >= NR_VMSTAT_ITEMS)
1826 return NULL;
1827 return (unsigned long *)m->private + *pos;
1828}
1829
1830static int vmstat_show(struct seq_file *m, void *arg)
1831{
1832 unsigned long *l = arg;
1833 unsigned long off = l - (unsigned long *)m->private;
1834
1835 seq_puts(m, vmstat_text[off]);
1836 seq_put_decimal_ull(m, " ", *l);
1837 seq_putc(m, '\n');
1838
1839 if (off == NR_VMSTAT_ITEMS - 1) {
1840 /*
1841 * We've come to the end - add any deprecated counters to avoid
1842 * breaking userspace which might depend on them being present.
1843 */
1844 seq_puts(m, "nr_unstable 0\n");
1845 }
1846 return 0;
1847}
1848
1849static void vmstat_stop(struct seq_file *m, void *arg)
1850{
1851 kfree(m->private);
1852 m->private = NULL;
1853}
1854
1855static const struct seq_operations vmstat_op = {
1856 .start = vmstat_start,
1857 .next = vmstat_next,
1858 .stop = vmstat_stop,
1859 .show = vmstat_show,
1860};
1861#endif /* CONFIG_PROC_FS */
1862
1863#ifdef CONFIG_SMP
1864static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1865int sysctl_stat_interval __read_mostly = HZ;
1866
1867#ifdef CONFIG_PROC_FS
1868static void refresh_vm_stats(struct work_struct *work)
1869{
1870 refresh_cpu_vm_stats(true);
1871}
1872
1873int vmstat_refresh(struct ctl_table *table, int write,
1874 void *buffer, size_t *lenp, loff_t *ppos)
1875{
1876 long val;
1877 int err;
1878 int i;
1879
1880 /*
1881 * The regular update, every sysctl_stat_interval, may come later
1882 * than expected: leaving a significant amount in per_cpu buckets.
1883 * This is particularly misleading when checking a quantity of HUGE
1884 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1885 * which can equally be echo'ed to or cat'ted from (by root),
1886 * can be used to update the stats just before reading them.
1887 *
1888 * Oh, and since global_zone_page_state() etc. are so careful to hide
1889 * transiently negative values, report an error here if any of
1890 * the stats is negative, so we know to go looking for imbalance.
1891 */
1892 err = schedule_on_each_cpu(refresh_vm_stats);
1893 if (err)
1894 return err;
1895 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1896 /*
1897 * Skip checking stats known to go negative occasionally.
1898 */
1899 switch (i) {
1900 case NR_ZONE_WRITE_PENDING:
1901 case NR_FREE_CMA_PAGES:
1902 continue;
1903 }
1904 val = atomic_long_read(&vm_zone_stat[i]);
1905 if (val < 0) {
1906 pr_warn("%s: %s %ld\n",
1907 __func__, zone_stat_name(i), val);
1908 }
1909 }
1910 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1911 /*
1912 * Skip checking stats known to go negative occasionally.
1913 */
1914 switch (i) {
1915 case NR_WRITEBACK:
1916 continue;
1917 }
1918 val = atomic_long_read(&vm_node_stat[i]);
1919 if (val < 0) {
1920 pr_warn("%s: %s %ld\n",
1921 __func__, node_stat_name(i), val);
1922 }
1923 }
1924 if (write)
1925 *ppos += *lenp;
1926 else
1927 *lenp = 0;
1928 return 0;
1929}
1930#endif /* CONFIG_PROC_FS */
1931
1932static void vmstat_update(struct work_struct *w)
1933{
1934 if (refresh_cpu_vm_stats(true)) {
1935 /*
1936 * Counters were updated so we expect more updates
1937 * to occur in the future. Keep on running the
1938 * update worker thread.
1939 */
1940 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1941 this_cpu_ptr(&vmstat_work),
1942 round_jiffies_relative(sysctl_stat_interval));
1943 }
1944}
1945
1946/*
1947 * Check if the diffs for a certain cpu indicate that
1948 * an update is needed.
1949 */
1950static bool need_update(int cpu)
1951{
1952 pg_data_t *last_pgdat = NULL;
1953 struct zone *zone;
1954
1955 for_each_populated_zone(zone) {
1956 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1957 struct per_cpu_nodestat *n;
1958
1959 /*
1960 * The fast way of checking if there are any vmstat diffs.
1961 */
1962 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1963 return true;
1964
1965 if (last_pgdat == zone->zone_pgdat)
1966 continue;
1967 last_pgdat = zone->zone_pgdat;
1968 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1969 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1970 return true;
1971 }
1972 return false;
1973}
1974
1975/*
1976 * Switch off vmstat processing and then fold all the remaining differentials
1977 * until the diffs stay at zero. The function is used by NOHZ and can only be
1978 * invoked when tick processing is not active.
1979 */
1980void quiet_vmstat(void)
1981{
1982 if (system_state != SYSTEM_RUNNING)
1983 return;
1984
1985 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1986 return;
1987
1988 if (!need_update(smp_processor_id()))
1989 return;
1990
1991 /*
1992 * Just refresh counters and do not care about the pending delayed
1993 * vmstat_update. It doesn't fire that often to matter and canceling
1994 * it would be too expensive from this path.
1995 * vmstat_shepherd will take care about that for us.
1996 */
1997 refresh_cpu_vm_stats(false);
1998}
1999
2000/*
2001 * Shepherd worker thread that checks the
2002 * differentials of processors that have their worker
2003 * threads for vm statistics updates disabled because of
2004 * inactivity.
2005 */
2006static void vmstat_shepherd(struct work_struct *w);
2007
2008static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2009
2010static void vmstat_shepherd(struct work_struct *w)
2011{
2012 int cpu;
2013
2014 cpus_read_lock();
2015 /* Check processors whose vmstat worker threads have been disabled */
2016 for_each_online_cpu(cpu) {
2017 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2018
2019 if (!delayed_work_pending(dw) && need_update(cpu))
2020 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2021
2022 cond_resched();
2023 }
2024 cpus_read_unlock();
2025
2026 schedule_delayed_work(&shepherd,
2027 round_jiffies_relative(sysctl_stat_interval));
2028}
2029
2030static void __init start_shepherd_timer(void)
2031{
2032 int cpu;
2033
2034 for_each_possible_cpu(cpu)
2035 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2036 vmstat_update);
2037
2038 schedule_delayed_work(&shepherd,
2039 round_jiffies_relative(sysctl_stat_interval));
2040}
2041
2042static void __init init_cpu_node_state(void)
2043{
2044 int node;
2045
2046 for_each_online_node(node) {
2047 if (!cpumask_empty(cpumask_of_node(node)))
2048 node_set_state(node, N_CPU);
2049 }
2050}
2051
2052static int vmstat_cpu_online(unsigned int cpu)
2053{
2054 refresh_zone_stat_thresholds();
2055
2056 if (!node_state(cpu_to_node(cpu), N_CPU)) {
2057 node_set_state(cpu_to_node(cpu), N_CPU);
2058 }
2059
2060 return 0;
2061}
2062
2063static int vmstat_cpu_down_prep(unsigned int cpu)
2064{
2065 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2066 return 0;
2067}
2068
2069static int vmstat_cpu_dead(unsigned int cpu)
2070{
2071 const struct cpumask *node_cpus;
2072 int node;
2073
2074 node = cpu_to_node(cpu);
2075
2076 refresh_zone_stat_thresholds();
2077 node_cpus = cpumask_of_node(node);
2078 if (!cpumask_empty(node_cpus))
2079 return 0;
2080
2081 node_clear_state(node, N_CPU);
2082
2083 return 0;
2084}
2085
2086#endif
2087
2088struct workqueue_struct *mm_percpu_wq;
2089
2090void __init init_mm_internals(void)
2091{
2092 int ret __maybe_unused;
2093
2094 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2095
2096#ifdef CONFIG_SMP
2097 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2098 NULL, vmstat_cpu_dead);
2099 if (ret < 0)
2100 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2101
2102 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2103 vmstat_cpu_online,
2104 vmstat_cpu_down_prep);
2105 if (ret < 0)
2106 pr_err("vmstat: failed to register 'online' hotplug state\n");
2107
2108 cpus_read_lock();
2109 init_cpu_node_state();
2110 cpus_read_unlock();
2111
2112 start_shepherd_timer();
2113#endif
2114#ifdef CONFIG_PROC_FS
2115 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2116 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2117 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2118 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2119#endif
2120}
2121
2122#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2123
2124/*
2125 * Return an index indicating how much of the available free memory is
2126 * unusable for an allocation of the requested size.
2127 */
2128static int unusable_free_index(unsigned int order,
2129 struct contig_page_info *info)
2130{
2131 /* No free memory is interpreted as all free memory is unusable */
2132 if (info->free_pages == 0)
2133 return 1000;
2134
2135 /*
2136 * Index should be a value between 0 and 1. Return a value to 3
2137 * decimal places.
2138 *
2139 * 0 => no fragmentation
2140 * 1 => high fragmentation
2141 */
2142 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2143
2144}
2145
2146static void unusable_show_print(struct seq_file *m,
2147 pg_data_t *pgdat, struct zone *zone)
2148{
2149 unsigned int order;
2150 int index;
2151 struct contig_page_info info;
2152
2153 seq_printf(m, "Node %d, zone %8s ",
2154 pgdat->node_id,
2155 zone->name);
2156 for (order = 0; order < MAX_ORDER; ++order) {
2157 fill_contig_page_info(zone, order, &info);
2158 index = unusable_free_index(order, &info);
2159 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2160 }
2161
2162 seq_putc(m, '\n');
2163}
2164
2165/*
2166 * Display unusable free space index
2167 *
2168 * The unusable free space index measures how much of the available free
2169 * memory cannot be used to satisfy an allocation of a given size and is a
2170 * value between 0 and 1. The higher the value, the more of free memory is
2171 * unusable and by implication, the worse the external fragmentation is. This
2172 * can be expressed as a percentage by multiplying by 100.
2173 */
2174static int unusable_show(struct seq_file *m, void *arg)
2175{
2176 pg_data_t *pgdat = (pg_data_t *)arg;
2177
2178 /* check memoryless node */
2179 if (!node_state(pgdat->node_id, N_MEMORY))
2180 return 0;
2181
2182 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2183
2184 return 0;
2185}
2186
2187static const struct seq_operations unusable_sops = {
2188 .start = frag_start,
2189 .next = frag_next,
2190 .stop = frag_stop,
2191 .show = unusable_show,
2192};
2193
2194DEFINE_SEQ_ATTRIBUTE(unusable);
2195
2196static void extfrag_show_print(struct seq_file *m,
2197 pg_data_t *pgdat, struct zone *zone)
2198{
2199 unsigned int order;
2200 int index;
2201
2202 /* Alloc on stack as interrupts are disabled for zone walk */
2203 struct contig_page_info info;
2204
2205 seq_printf(m, "Node %d, zone %8s ",
2206 pgdat->node_id,
2207 zone->name);
2208 for (order = 0; order < MAX_ORDER; ++order) {
2209 fill_contig_page_info(zone, order, &info);
2210 index = __fragmentation_index(order, &info);
2211 seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2212 }
2213
2214 seq_putc(m, '\n');
2215}
2216
2217/*
2218 * Display fragmentation index for orders that allocations would fail for
2219 */
2220static int extfrag_show(struct seq_file *m, void *arg)
2221{
2222 pg_data_t *pgdat = (pg_data_t *)arg;
2223
2224 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2225
2226 return 0;
2227}
2228
2229static const struct seq_operations extfrag_sops = {
2230 .start = frag_start,
2231 .next = frag_next,
2232 .stop = frag_stop,
2233 .show = extfrag_show,
2234};
2235
2236DEFINE_SEQ_ATTRIBUTE(extfrag);
2237
2238static int __init extfrag_debug_init(void)
2239{
2240 struct dentry *extfrag_debug_root;
2241
2242 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2243
2244 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2245 &unusable_fops);
2246
2247 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2248 &extfrag_fops);
2249
2250 return 0;
2251}
2252
2253module_init(extfrag_debug_init);
2254#endif
1/*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 * Copyright (C) 2008-2014 Christoph Lameter
11 */
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/err.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/cpu.h>
18#include <linux/cpumask.h>
19#include <linux/vmstat.h>
20#include <linux/proc_fs.h>
21#include <linux/seq_file.h>
22#include <linux/debugfs.h>
23#include <linux/sched.h>
24#include <linux/math64.h>
25#include <linux/writeback.h>
26#include <linux/compaction.h>
27#include <linux/mm_inline.h>
28#include <linux/page_ext.h>
29#include <linux/page_owner.h>
30
31#include "internal.h"
32
33#ifdef CONFIG_VM_EVENT_COUNTERS
34DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35EXPORT_PER_CPU_SYMBOL(vm_event_states);
36
37static void sum_vm_events(unsigned long *ret)
38{
39 int cpu;
40 int i;
41
42 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
43
44 for_each_online_cpu(cpu) {
45 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
46
47 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48 ret[i] += this->event[i];
49 }
50}
51
52/*
53 * Accumulate the vm event counters across all CPUs.
54 * The result is unavoidably approximate - it can change
55 * during and after execution of this function.
56*/
57void all_vm_events(unsigned long *ret)
58{
59 get_online_cpus();
60 sum_vm_events(ret);
61 put_online_cpus();
62}
63EXPORT_SYMBOL_GPL(all_vm_events);
64
65/*
66 * Fold the foreign cpu events into our own.
67 *
68 * This is adding to the events on one processor
69 * but keeps the global counts constant.
70 */
71void vm_events_fold_cpu(int cpu)
72{
73 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74 int i;
75
76 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77 count_vm_events(i, fold_state->event[i]);
78 fold_state->event[i] = 0;
79 }
80}
81
82#endif /* CONFIG_VM_EVENT_COUNTERS */
83
84/*
85 * Manage combined zone based / global counters
86 *
87 * vm_stat contains the global counters
88 */
89atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90EXPORT_SYMBOL(vm_stat);
91
92#ifdef CONFIG_SMP
93
94int calculate_pressure_threshold(struct zone *zone)
95{
96 int threshold;
97 int watermark_distance;
98
99 /*
100 * As vmstats are not up to date, there is drift between the estimated
101 * and real values. For high thresholds and a high number of CPUs, it
102 * is possible for the min watermark to be breached while the estimated
103 * value looks fine. The pressure threshold is a reduced value such
104 * that even the maximum amount of drift will not accidentally breach
105 * the min watermark
106 */
107 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
108 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
109
110 /*
111 * Maximum threshold is 125
112 */
113 threshold = min(125, threshold);
114
115 return threshold;
116}
117
118int calculate_normal_threshold(struct zone *zone)
119{
120 int threshold;
121 int mem; /* memory in 128 MB units */
122
123 /*
124 * The threshold scales with the number of processors and the amount
125 * of memory per zone. More memory means that we can defer updates for
126 * longer, more processors could lead to more contention.
127 * fls() is used to have a cheap way of logarithmic scaling.
128 *
129 * Some sample thresholds:
130 *
131 * Threshold Processors (fls) Zonesize fls(mem+1)
132 * ------------------------------------------------------------------
133 * 8 1 1 0.9-1 GB 4
134 * 16 2 2 0.9-1 GB 4
135 * 20 2 2 1-2 GB 5
136 * 24 2 2 2-4 GB 6
137 * 28 2 2 4-8 GB 7
138 * 32 2 2 8-16 GB 8
139 * 4 2 2 <128M 1
140 * 30 4 3 2-4 GB 5
141 * 48 4 3 8-16 GB 8
142 * 32 8 4 1-2 GB 4
143 * 32 8 4 0.9-1GB 4
144 * 10 16 5 <128M 1
145 * 40 16 5 900M 4
146 * 70 64 7 2-4 GB 5
147 * 84 64 7 4-8 GB 6
148 * 108 512 9 4-8 GB 6
149 * 125 1024 10 8-16 GB 8
150 * 125 1024 10 16-32 GB 9
151 */
152
153 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
154
155 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
156
157 /*
158 * Maximum threshold is 125
159 */
160 threshold = min(125, threshold);
161
162 return threshold;
163}
164
165/*
166 * Refresh the thresholds for each zone.
167 */
168void refresh_zone_stat_thresholds(void)
169{
170 struct zone *zone;
171 int cpu;
172 int threshold;
173
174 for_each_populated_zone(zone) {
175 unsigned long max_drift, tolerate_drift;
176
177 threshold = calculate_normal_threshold(zone);
178
179 for_each_online_cpu(cpu)
180 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
181 = threshold;
182
183 /*
184 * Only set percpu_drift_mark if there is a danger that
185 * NR_FREE_PAGES reports the low watermark is ok when in fact
186 * the min watermark could be breached by an allocation
187 */
188 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
189 max_drift = num_online_cpus() * threshold;
190 if (max_drift > tolerate_drift)
191 zone->percpu_drift_mark = high_wmark_pages(zone) +
192 max_drift;
193 }
194}
195
196void set_pgdat_percpu_threshold(pg_data_t *pgdat,
197 int (*calculate_pressure)(struct zone *))
198{
199 struct zone *zone;
200 int cpu;
201 int threshold;
202 int i;
203
204 for (i = 0; i < pgdat->nr_zones; i++) {
205 zone = &pgdat->node_zones[i];
206 if (!zone->percpu_drift_mark)
207 continue;
208
209 threshold = (*calculate_pressure)(zone);
210 for_each_online_cpu(cpu)
211 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
212 = threshold;
213 }
214}
215
216/*
217 * For use when we know that interrupts are disabled,
218 * or when we know that preemption is disabled and that
219 * particular counter cannot be updated from interrupt context.
220 */
221void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
222 long delta)
223{
224 struct per_cpu_pageset __percpu *pcp = zone->pageset;
225 s8 __percpu *p = pcp->vm_stat_diff + item;
226 long x;
227 long t;
228
229 x = delta + __this_cpu_read(*p);
230
231 t = __this_cpu_read(pcp->stat_threshold);
232
233 if (unlikely(x > t || x < -t)) {
234 zone_page_state_add(x, zone, item);
235 x = 0;
236 }
237 __this_cpu_write(*p, x);
238}
239EXPORT_SYMBOL(__mod_zone_page_state);
240
241/*
242 * Optimized increment and decrement functions.
243 *
244 * These are only for a single page and therefore can take a struct page *
245 * argument instead of struct zone *. This allows the inclusion of the code
246 * generated for page_zone(page) into the optimized functions.
247 *
248 * No overflow check is necessary and therefore the differential can be
249 * incremented or decremented in place which may allow the compilers to
250 * generate better code.
251 * The increment or decrement is known and therefore one boundary check can
252 * be omitted.
253 *
254 * NOTE: These functions are very performance sensitive. Change only
255 * with care.
256 *
257 * Some processors have inc/dec instructions that are atomic vs an interrupt.
258 * However, the code must first determine the differential location in a zone
259 * based on the processor number and then inc/dec the counter. There is no
260 * guarantee without disabling preemption that the processor will not change
261 * in between and therefore the atomicity vs. interrupt cannot be exploited
262 * in a useful way here.
263 */
264void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
265{
266 struct per_cpu_pageset __percpu *pcp = zone->pageset;
267 s8 __percpu *p = pcp->vm_stat_diff + item;
268 s8 v, t;
269
270 v = __this_cpu_inc_return(*p);
271 t = __this_cpu_read(pcp->stat_threshold);
272 if (unlikely(v > t)) {
273 s8 overstep = t >> 1;
274
275 zone_page_state_add(v + overstep, zone, item);
276 __this_cpu_write(*p, -overstep);
277 }
278}
279
280void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
281{
282 __inc_zone_state(page_zone(page), item);
283}
284EXPORT_SYMBOL(__inc_zone_page_state);
285
286void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
287{
288 struct per_cpu_pageset __percpu *pcp = zone->pageset;
289 s8 __percpu *p = pcp->vm_stat_diff + item;
290 s8 v, t;
291
292 v = __this_cpu_dec_return(*p);
293 t = __this_cpu_read(pcp->stat_threshold);
294 if (unlikely(v < - t)) {
295 s8 overstep = t >> 1;
296
297 zone_page_state_add(v - overstep, zone, item);
298 __this_cpu_write(*p, overstep);
299 }
300}
301
302void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
303{
304 __dec_zone_state(page_zone(page), item);
305}
306EXPORT_SYMBOL(__dec_zone_page_state);
307
308#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
309/*
310 * If we have cmpxchg_local support then we do not need to incur the overhead
311 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
312 *
313 * mod_state() modifies the zone counter state through atomic per cpu
314 * operations.
315 *
316 * Overstep mode specifies how overstep should handled:
317 * 0 No overstepping
318 * 1 Overstepping half of threshold
319 * -1 Overstepping minus half of threshold
320*/
321static inline void mod_state(struct zone *zone, enum zone_stat_item item,
322 long delta, int overstep_mode)
323{
324 struct per_cpu_pageset __percpu *pcp = zone->pageset;
325 s8 __percpu *p = pcp->vm_stat_diff + item;
326 long o, n, t, z;
327
328 do {
329 z = 0; /* overflow to zone counters */
330
331 /*
332 * The fetching of the stat_threshold is racy. We may apply
333 * a counter threshold to the wrong the cpu if we get
334 * rescheduled while executing here. However, the next
335 * counter update will apply the threshold again and
336 * therefore bring the counter under the threshold again.
337 *
338 * Most of the time the thresholds are the same anyways
339 * for all cpus in a zone.
340 */
341 t = this_cpu_read(pcp->stat_threshold);
342
343 o = this_cpu_read(*p);
344 n = delta + o;
345
346 if (n > t || n < -t) {
347 int os = overstep_mode * (t >> 1) ;
348
349 /* Overflow must be added to zone counters */
350 z = n + os;
351 n = -os;
352 }
353 } while (this_cpu_cmpxchg(*p, o, n) != o);
354
355 if (z)
356 zone_page_state_add(z, zone, item);
357}
358
359void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
360 long delta)
361{
362 mod_state(zone, item, delta, 0);
363}
364EXPORT_SYMBOL(mod_zone_page_state);
365
366void inc_zone_state(struct zone *zone, enum zone_stat_item item)
367{
368 mod_state(zone, item, 1, 1);
369}
370
371void inc_zone_page_state(struct page *page, enum zone_stat_item item)
372{
373 mod_state(page_zone(page), item, 1, 1);
374}
375EXPORT_SYMBOL(inc_zone_page_state);
376
377void dec_zone_page_state(struct page *page, enum zone_stat_item item)
378{
379 mod_state(page_zone(page), item, -1, -1);
380}
381EXPORT_SYMBOL(dec_zone_page_state);
382#else
383/*
384 * Use interrupt disable to serialize counter updates
385 */
386void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
387 long delta)
388{
389 unsigned long flags;
390
391 local_irq_save(flags);
392 __mod_zone_page_state(zone, item, delta);
393 local_irq_restore(flags);
394}
395EXPORT_SYMBOL(mod_zone_page_state);
396
397void inc_zone_state(struct zone *zone, enum zone_stat_item item)
398{
399 unsigned long flags;
400
401 local_irq_save(flags);
402 __inc_zone_state(zone, item);
403 local_irq_restore(flags);
404}
405
406void inc_zone_page_state(struct page *page, enum zone_stat_item item)
407{
408 unsigned long flags;
409 struct zone *zone;
410
411 zone = page_zone(page);
412 local_irq_save(flags);
413 __inc_zone_state(zone, item);
414 local_irq_restore(flags);
415}
416EXPORT_SYMBOL(inc_zone_page_state);
417
418void dec_zone_page_state(struct page *page, enum zone_stat_item item)
419{
420 unsigned long flags;
421
422 local_irq_save(flags);
423 __dec_zone_page_state(page, item);
424 local_irq_restore(flags);
425}
426EXPORT_SYMBOL(dec_zone_page_state);
427#endif
428
429
430/*
431 * Fold a differential into the global counters.
432 * Returns the number of counters updated.
433 */
434static int fold_diff(int *diff)
435{
436 int i;
437 int changes = 0;
438
439 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
440 if (diff[i]) {
441 atomic_long_add(diff[i], &vm_stat[i]);
442 changes++;
443 }
444 return changes;
445}
446
447/*
448 * Update the zone counters for the current cpu.
449 *
450 * Note that refresh_cpu_vm_stats strives to only access
451 * node local memory. The per cpu pagesets on remote zones are placed
452 * in the memory local to the processor using that pageset. So the
453 * loop over all zones will access a series of cachelines local to
454 * the processor.
455 *
456 * The call to zone_page_state_add updates the cachelines with the
457 * statistics in the remote zone struct as well as the global cachelines
458 * with the global counters. These could cause remote node cache line
459 * bouncing and will have to be only done when necessary.
460 *
461 * The function returns the number of global counters updated.
462 */
463static int refresh_cpu_vm_stats(bool do_pagesets)
464{
465 struct zone *zone;
466 int i;
467 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
468 int changes = 0;
469
470 for_each_populated_zone(zone) {
471 struct per_cpu_pageset __percpu *p = zone->pageset;
472
473 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
474 int v;
475
476 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
477 if (v) {
478
479 atomic_long_add(v, &zone->vm_stat[i]);
480 global_diff[i] += v;
481#ifdef CONFIG_NUMA
482 /* 3 seconds idle till flush */
483 __this_cpu_write(p->expire, 3);
484#endif
485 }
486 }
487#ifdef CONFIG_NUMA
488 if (do_pagesets) {
489 cond_resched();
490 /*
491 * Deal with draining the remote pageset of this
492 * processor
493 *
494 * Check if there are pages remaining in this pageset
495 * if not then there is nothing to expire.
496 */
497 if (!__this_cpu_read(p->expire) ||
498 !__this_cpu_read(p->pcp.count))
499 continue;
500
501 /*
502 * We never drain zones local to this processor.
503 */
504 if (zone_to_nid(zone) == numa_node_id()) {
505 __this_cpu_write(p->expire, 0);
506 continue;
507 }
508
509 if (__this_cpu_dec_return(p->expire))
510 continue;
511
512 if (__this_cpu_read(p->pcp.count)) {
513 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
514 changes++;
515 }
516 }
517#endif
518 }
519 changes += fold_diff(global_diff);
520 return changes;
521}
522
523/*
524 * Fold the data for an offline cpu into the global array.
525 * There cannot be any access by the offline cpu and therefore
526 * synchronization is simplified.
527 */
528void cpu_vm_stats_fold(int cpu)
529{
530 struct zone *zone;
531 int i;
532 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
533
534 for_each_populated_zone(zone) {
535 struct per_cpu_pageset *p;
536
537 p = per_cpu_ptr(zone->pageset, cpu);
538
539 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
540 if (p->vm_stat_diff[i]) {
541 int v;
542
543 v = p->vm_stat_diff[i];
544 p->vm_stat_diff[i] = 0;
545 atomic_long_add(v, &zone->vm_stat[i]);
546 global_diff[i] += v;
547 }
548 }
549
550 fold_diff(global_diff);
551}
552
553/*
554 * this is only called if !populated_zone(zone), which implies no other users of
555 * pset->vm_stat_diff[] exsist.
556 */
557void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
558{
559 int i;
560
561 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
562 if (pset->vm_stat_diff[i]) {
563 int v = pset->vm_stat_diff[i];
564 pset->vm_stat_diff[i] = 0;
565 atomic_long_add(v, &zone->vm_stat[i]);
566 atomic_long_add(v, &vm_stat[i]);
567 }
568}
569#endif
570
571#ifdef CONFIG_NUMA
572/*
573 * zonelist = the list of zones passed to the allocator
574 * z = the zone from which the allocation occurred.
575 *
576 * Must be called with interrupts disabled.
577 *
578 * When __GFP_OTHER_NODE is set assume the node of the preferred
579 * zone is the local node. This is useful for daemons who allocate
580 * memory on behalf of other processes.
581 */
582void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
583{
584 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
585 __inc_zone_state(z, NUMA_HIT);
586 } else {
587 __inc_zone_state(z, NUMA_MISS);
588 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
589 }
590 if (z->node == ((flags & __GFP_OTHER_NODE) ?
591 preferred_zone->node : numa_node_id()))
592 __inc_zone_state(z, NUMA_LOCAL);
593 else
594 __inc_zone_state(z, NUMA_OTHER);
595}
596
597/*
598 * Determine the per node value of a stat item.
599 */
600unsigned long node_page_state(int node, enum zone_stat_item item)
601{
602 struct zone *zones = NODE_DATA(node)->node_zones;
603
604 return
605#ifdef CONFIG_ZONE_DMA
606 zone_page_state(&zones[ZONE_DMA], item) +
607#endif
608#ifdef CONFIG_ZONE_DMA32
609 zone_page_state(&zones[ZONE_DMA32], item) +
610#endif
611#ifdef CONFIG_HIGHMEM
612 zone_page_state(&zones[ZONE_HIGHMEM], item) +
613#endif
614 zone_page_state(&zones[ZONE_NORMAL], item) +
615 zone_page_state(&zones[ZONE_MOVABLE], item);
616}
617
618#endif
619
620#ifdef CONFIG_COMPACTION
621
622struct contig_page_info {
623 unsigned long free_pages;
624 unsigned long free_blocks_total;
625 unsigned long free_blocks_suitable;
626};
627
628/*
629 * Calculate the number of free pages in a zone, how many contiguous
630 * pages are free and how many are large enough to satisfy an allocation of
631 * the target size. Note that this function makes no attempt to estimate
632 * how many suitable free blocks there *might* be if MOVABLE pages were
633 * migrated. Calculating that is possible, but expensive and can be
634 * figured out from userspace
635 */
636static void fill_contig_page_info(struct zone *zone,
637 unsigned int suitable_order,
638 struct contig_page_info *info)
639{
640 unsigned int order;
641
642 info->free_pages = 0;
643 info->free_blocks_total = 0;
644 info->free_blocks_suitable = 0;
645
646 for (order = 0; order < MAX_ORDER; order++) {
647 unsigned long blocks;
648
649 /* Count number of free blocks */
650 blocks = zone->free_area[order].nr_free;
651 info->free_blocks_total += blocks;
652
653 /* Count free base pages */
654 info->free_pages += blocks << order;
655
656 /* Count the suitable free blocks */
657 if (order >= suitable_order)
658 info->free_blocks_suitable += blocks <<
659 (order - suitable_order);
660 }
661}
662
663/*
664 * A fragmentation index only makes sense if an allocation of a requested
665 * size would fail. If that is true, the fragmentation index indicates
666 * whether external fragmentation or a lack of memory was the problem.
667 * The value can be used to determine if page reclaim or compaction
668 * should be used
669 */
670static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
671{
672 unsigned long requested = 1UL << order;
673
674 if (!info->free_blocks_total)
675 return 0;
676
677 /* Fragmentation index only makes sense when a request would fail */
678 if (info->free_blocks_suitable)
679 return -1000;
680
681 /*
682 * Index is between 0 and 1 so return within 3 decimal places
683 *
684 * 0 => allocation would fail due to lack of memory
685 * 1 => allocation would fail due to fragmentation
686 */
687 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
688}
689
690/* Same as __fragmentation index but allocs contig_page_info on stack */
691int fragmentation_index(struct zone *zone, unsigned int order)
692{
693 struct contig_page_info info;
694
695 fill_contig_page_info(zone, order, &info);
696 return __fragmentation_index(order, &info);
697}
698#endif
699
700#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
701#ifdef CONFIG_ZONE_DMA
702#define TEXT_FOR_DMA(xx) xx "_dma",
703#else
704#define TEXT_FOR_DMA(xx)
705#endif
706
707#ifdef CONFIG_ZONE_DMA32
708#define TEXT_FOR_DMA32(xx) xx "_dma32",
709#else
710#define TEXT_FOR_DMA32(xx)
711#endif
712
713#ifdef CONFIG_HIGHMEM
714#define TEXT_FOR_HIGHMEM(xx) xx "_high",
715#else
716#define TEXT_FOR_HIGHMEM(xx)
717#endif
718
719#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
720 TEXT_FOR_HIGHMEM(xx) xx "_movable",
721
722const char * const vmstat_text[] = {
723 /* enum zone_stat_item countes */
724 "nr_free_pages",
725 "nr_alloc_batch",
726 "nr_inactive_anon",
727 "nr_active_anon",
728 "nr_inactive_file",
729 "nr_active_file",
730 "nr_unevictable",
731 "nr_mlock",
732 "nr_anon_pages",
733 "nr_mapped",
734 "nr_file_pages",
735 "nr_dirty",
736 "nr_writeback",
737 "nr_slab_reclaimable",
738 "nr_slab_unreclaimable",
739 "nr_page_table_pages",
740 "nr_kernel_stack",
741 "nr_unstable",
742 "nr_bounce",
743 "nr_vmscan_write",
744 "nr_vmscan_immediate_reclaim",
745 "nr_writeback_temp",
746 "nr_isolated_anon",
747 "nr_isolated_file",
748 "nr_shmem",
749 "nr_dirtied",
750 "nr_written",
751 "nr_pages_scanned",
752
753#ifdef CONFIG_NUMA
754 "numa_hit",
755 "numa_miss",
756 "numa_foreign",
757 "numa_interleave",
758 "numa_local",
759 "numa_other",
760#endif
761 "workingset_refault",
762 "workingset_activate",
763 "workingset_nodereclaim",
764 "nr_anon_transparent_hugepages",
765 "nr_free_cma",
766
767 /* enum writeback_stat_item counters */
768 "nr_dirty_threshold",
769 "nr_dirty_background_threshold",
770
771#ifdef CONFIG_VM_EVENT_COUNTERS
772 /* enum vm_event_item counters */
773 "pgpgin",
774 "pgpgout",
775 "pswpin",
776 "pswpout",
777
778 TEXTS_FOR_ZONES("pgalloc")
779
780 "pgfree",
781 "pgactivate",
782 "pgdeactivate",
783
784 "pgfault",
785 "pgmajfault",
786 "pglazyfreed",
787
788 TEXTS_FOR_ZONES("pgrefill")
789 TEXTS_FOR_ZONES("pgsteal_kswapd")
790 TEXTS_FOR_ZONES("pgsteal_direct")
791 TEXTS_FOR_ZONES("pgscan_kswapd")
792 TEXTS_FOR_ZONES("pgscan_direct")
793 "pgscan_direct_throttle",
794
795#ifdef CONFIG_NUMA
796 "zone_reclaim_failed",
797#endif
798 "pginodesteal",
799 "slabs_scanned",
800 "kswapd_inodesteal",
801 "kswapd_low_wmark_hit_quickly",
802 "kswapd_high_wmark_hit_quickly",
803 "pageoutrun",
804 "allocstall",
805
806 "pgrotated",
807
808 "drop_pagecache",
809 "drop_slab",
810
811#ifdef CONFIG_NUMA_BALANCING
812 "numa_pte_updates",
813 "numa_huge_pte_updates",
814 "numa_hint_faults",
815 "numa_hint_faults_local",
816 "numa_pages_migrated",
817#endif
818#ifdef CONFIG_MIGRATION
819 "pgmigrate_success",
820 "pgmigrate_fail",
821#endif
822#ifdef CONFIG_COMPACTION
823 "compact_migrate_scanned",
824 "compact_free_scanned",
825 "compact_isolated",
826 "compact_stall",
827 "compact_fail",
828 "compact_success",
829 "compact_daemon_wake",
830#endif
831
832#ifdef CONFIG_HUGETLB_PAGE
833 "htlb_buddy_alloc_success",
834 "htlb_buddy_alloc_fail",
835#endif
836 "unevictable_pgs_culled",
837 "unevictable_pgs_scanned",
838 "unevictable_pgs_rescued",
839 "unevictable_pgs_mlocked",
840 "unevictable_pgs_munlocked",
841 "unevictable_pgs_cleared",
842 "unevictable_pgs_stranded",
843
844#ifdef CONFIG_TRANSPARENT_HUGEPAGE
845 "thp_fault_alloc",
846 "thp_fault_fallback",
847 "thp_collapse_alloc",
848 "thp_collapse_alloc_failed",
849 "thp_split_page",
850 "thp_split_page_failed",
851 "thp_deferred_split_page",
852 "thp_split_pmd",
853 "thp_zero_page_alloc",
854 "thp_zero_page_alloc_failed",
855#endif
856#ifdef CONFIG_MEMORY_BALLOON
857 "balloon_inflate",
858 "balloon_deflate",
859#ifdef CONFIG_BALLOON_COMPACTION
860 "balloon_migrate",
861#endif
862#endif /* CONFIG_MEMORY_BALLOON */
863#ifdef CONFIG_DEBUG_TLBFLUSH
864#ifdef CONFIG_SMP
865 "nr_tlb_remote_flush",
866 "nr_tlb_remote_flush_received",
867#endif /* CONFIG_SMP */
868 "nr_tlb_local_flush_all",
869 "nr_tlb_local_flush_one",
870#endif /* CONFIG_DEBUG_TLBFLUSH */
871
872#ifdef CONFIG_DEBUG_VM_VMACACHE
873 "vmacache_find_calls",
874 "vmacache_find_hits",
875 "vmacache_full_flushes",
876#endif
877#endif /* CONFIG_VM_EVENTS_COUNTERS */
878};
879#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
880
881
882#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
883 defined(CONFIG_PROC_FS)
884static void *frag_start(struct seq_file *m, loff_t *pos)
885{
886 pg_data_t *pgdat;
887 loff_t node = *pos;
888
889 for (pgdat = first_online_pgdat();
890 pgdat && node;
891 pgdat = next_online_pgdat(pgdat))
892 --node;
893
894 return pgdat;
895}
896
897static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
898{
899 pg_data_t *pgdat = (pg_data_t *)arg;
900
901 (*pos)++;
902 return next_online_pgdat(pgdat);
903}
904
905static void frag_stop(struct seq_file *m, void *arg)
906{
907}
908
909/* Walk all the zones in a node and print using a callback */
910static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
911 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
912{
913 struct zone *zone;
914 struct zone *node_zones = pgdat->node_zones;
915 unsigned long flags;
916
917 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
918 if (!populated_zone(zone))
919 continue;
920
921 spin_lock_irqsave(&zone->lock, flags);
922 print(m, pgdat, zone);
923 spin_unlock_irqrestore(&zone->lock, flags);
924 }
925}
926#endif
927
928#ifdef CONFIG_PROC_FS
929static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
930 struct zone *zone)
931{
932 int order;
933
934 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
935 for (order = 0; order < MAX_ORDER; ++order)
936 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
937 seq_putc(m, '\n');
938}
939
940/*
941 * This walks the free areas for each zone.
942 */
943static int frag_show(struct seq_file *m, void *arg)
944{
945 pg_data_t *pgdat = (pg_data_t *)arg;
946 walk_zones_in_node(m, pgdat, frag_show_print);
947 return 0;
948}
949
950static void pagetypeinfo_showfree_print(struct seq_file *m,
951 pg_data_t *pgdat, struct zone *zone)
952{
953 int order, mtype;
954
955 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
956 seq_printf(m, "Node %4d, zone %8s, type %12s ",
957 pgdat->node_id,
958 zone->name,
959 migratetype_names[mtype]);
960 for (order = 0; order < MAX_ORDER; ++order) {
961 unsigned long freecount = 0;
962 struct free_area *area;
963 struct list_head *curr;
964
965 area = &(zone->free_area[order]);
966
967 list_for_each(curr, &area->free_list[mtype])
968 freecount++;
969 seq_printf(m, "%6lu ", freecount);
970 }
971 seq_putc(m, '\n');
972 }
973}
974
975/* Print out the free pages at each order for each migatetype */
976static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
977{
978 int order;
979 pg_data_t *pgdat = (pg_data_t *)arg;
980
981 /* Print header */
982 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
983 for (order = 0; order < MAX_ORDER; ++order)
984 seq_printf(m, "%6d ", order);
985 seq_putc(m, '\n');
986
987 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
988
989 return 0;
990}
991
992static void pagetypeinfo_showblockcount_print(struct seq_file *m,
993 pg_data_t *pgdat, struct zone *zone)
994{
995 int mtype;
996 unsigned long pfn;
997 unsigned long start_pfn = zone->zone_start_pfn;
998 unsigned long end_pfn = zone_end_pfn(zone);
999 unsigned long count[MIGRATE_TYPES] = { 0, };
1000
1001 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1002 struct page *page;
1003
1004 if (!pfn_valid(pfn))
1005 continue;
1006
1007 page = pfn_to_page(pfn);
1008
1009 /* Watch for unexpected holes punched in the memmap */
1010 if (!memmap_valid_within(pfn, page, zone))
1011 continue;
1012
1013 mtype = get_pageblock_migratetype(page);
1014
1015 if (mtype < MIGRATE_TYPES)
1016 count[mtype]++;
1017 }
1018
1019 /* Print counts */
1020 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1021 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1022 seq_printf(m, "%12lu ", count[mtype]);
1023 seq_putc(m, '\n');
1024}
1025
1026/* Print out the free pages at each order for each migratetype */
1027static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1028{
1029 int mtype;
1030 pg_data_t *pgdat = (pg_data_t *)arg;
1031
1032 seq_printf(m, "\n%-23s", "Number of blocks type ");
1033 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1034 seq_printf(m, "%12s ", migratetype_names[mtype]);
1035 seq_putc(m, '\n');
1036 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1037
1038 return 0;
1039}
1040
1041#ifdef CONFIG_PAGE_OWNER
1042static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1043 pg_data_t *pgdat,
1044 struct zone *zone)
1045{
1046 struct page *page;
1047 struct page_ext *page_ext;
1048 unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1049 unsigned long end_pfn = pfn + zone->spanned_pages;
1050 unsigned long count[MIGRATE_TYPES] = { 0, };
1051 int pageblock_mt, page_mt;
1052 int i;
1053
1054 /* Scan block by block. First and last block may be incomplete */
1055 pfn = zone->zone_start_pfn;
1056
1057 /*
1058 * Walk the zone in pageblock_nr_pages steps. If a page block spans
1059 * a zone boundary, it will be double counted between zones. This does
1060 * not matter as the mixed block count will still be correct
1061 */
1062 for (; pfn < end_pfn; ) {
1063 if (!pfn_valid(pfn)) {
1064 pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1065 continue;
1066 }
1067
1068 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1069 block_end_pfn = min(block_end_pfn, end_pfn);
1070
1071 page = pfn_to_page(pfn);
1072 pageblock_mt = get_pfnblock_migratetype(page, pfn);
1073
1074 for (; pfn < block_end_pfn; pfn++) {
1075 if (!pfn_valid_within(pfn))
1076 continue;
1077
1078 page = pfn_to_page(pfn);
1079 if (PageBuddy(page)) {
1080 pfn += (1UL << page_order(page)) - 1;
1081 continue;
1082 }
1083
1084 if (PageReserved(page))
1085 continue;
1086
1087 page_ext = lookup_page_ext(page);
1088
1089 if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1090 continue;
1091
1092 page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1093 if (pageblock_mt != page_mt) {
1094 if (is_migrate_cma(pageblock_mt))
1095 count[MIGRATE_MOVABLE]++;
1096 else
1097 count[pageblock_mt]++;
1098
1099 pfn = block_end_pfn;
1100 break;
1101 }
1102 pfn += (1UL << page_ext->order) - 1;
1103 }
1104 }
1105
1106 /* Print counts */
1107 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1108 for (i = 0; i < MIGRATE_TYPES; i++)
1109 seq_printf(m, "%12lu ", count[i]);
1110 seq_putc(m, '\n');
1111}
1112#endif /* CONFIG_PAGE_OWNER */
1113
1114/*
1115 * Print out the number of pageblocks for each migratetype that contain pages
1116 * of other types. This gives an indication of how well fallbacks are being
1117 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1118 * to determine what is going on
1119 */
1120static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1121{
1122#ifdef CONFIG_PAGE_OWNER
1123 int mtype;
1124
1125 if (!static_branch_unlikely(&page_owner_inited))
1126 return;
1127
1128 drain_all_pages(NULL);
1129
1130 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1131 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1132 seq_printf(m, "%12s ", migratetype_names[mtype]);
1133 seq_putc(m, '\n');
1134
1135 walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1136#endif /* CONFIG_PAGE_OWNER */
1137}
1138
1139/*
1140 * This prints out statistics in relation to grouping pages by mobility.
1141 * It is expensive to collect so do not constantly read the file.
1142 */
1143static int pagetypeinfo_show(struct seq_file *m, void *arg)
1144{
1145 pg_data_t *pgdat = (pg_data_t *)arg;
1146
1147 /* check memoryless node */
1148 if (!node_state(pgdat->node_id, N_MEMORY))
1149 return 0;
1150
1151 seq_printf(m, "Page block order: %d\n", pageblock_order);
1152 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1153 seq_putc(m, '\n');
1154 pagetypeinfo_showfree(m, pgdat);
1155 pagetypeinfo_showblockcount(m, pgdat);
1156 pagetypeinfo_showmixedcount(m, pgdat);
1157
1158 return 0;
1159}
1160
1161static const struct seq_operations fragmentation_op = {
1162 .start = frag_start,
1163 .next = frag_next,
1164 .stop = frag_stop,
1165 .show = frag_show,
1166};
1167
1168static int fragmentation_open(struct inode *inode, struct file *file)
1169{
1170 return seq_open(file, &fragmentation_op);
1171}
1172
1173static const struct file_operations fragmentation_file_operations = {
1174 .open = fragmentation_open,
1175 .read = seq_read,
1176 .llseek = seq_lseek,
1177 .release = seq_release,
1178};
1179
1180static const struct seq_operations pagetypeinfo_op = {
1181 .start = frag_start,
1182 .next = frag_next,
1183 .stop = frag_stop,
1184 .show = pagetypeinfo_show,
1185};
1186
1187static int pagetypeinfo_open(struct inode *inode, struct file *file)
1188{
1189 return seq_open(file, &pagetypeinfo_op);
1190}
1191
1192static const struct file_operations pagetypeinfo_file_ops = {
1193 .open = pagetypeinfo_open,
1194 .read = seq_read,
1195 .llseek = seq_lseek,
1196 .release = seq_release,
1197};
1198
1199static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1200 struct zone *zone)
1201{
1202 int i;
1203 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1204 seq_printf(m,
1205 "\n pages free %lu"
1206 "\n min %lu"
1207 "\n low %lu"
1208 "\n high %lu"
1209 "\n scanned %lu"
1210 "\n spanned %lu"
1211 "\n present %lu"
1212 "\n managed %lu",
1213 zone_page_state(zone, NR_FREE_PAGES),
1214 min_wmark_pages(zone),
1215 low_wmark_pages(zone),
1216 high_wmark_pages(zone),
1217 zone_page_state(zone, NR_PAGES_SCANNED),
1218 zone->spanned_pages,
1219 zone->present_pages,
1220 zone->managed_pages);
1221
1222 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1223 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1224 zone_page_state(zone, i));
1225
1226 seq_printf(m,
1227 "\n protection: (%ld",
1228 zone->lowmem_reserve[0]);
1229 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1230 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1231 seq_printf(m,
1232 ")"
1233 "\n pagesets");
1234 for_each_online_cpu(i) {
1235 struct per_cpu_pageset *pageset;
1236
1237 pageset = per_cpu_ptr(zone->pageset, i);
1238 seq_printf(m,
1239 "\n cpu: %i"
1240 "\n count: %i"
1241 "\n high: %i"
1242 "\n batch: %i",
1243 i,
1244 pageset->pcp.count,
1245 pageset->pcp.high,
1246 pageset->pcp.batch);
1247#ifdef CONFIG_SMP
1248 seq_printf(m, "\n vm stats threshold: %d",
1249 pageset->stat_threshold);
1250#endif
1251 }
1252 seq_printf(m,
1253 "\n all_unreclaimable: %u"
1254 "\n start_pfn: %lu"
1255 "\n inactive_ratio: %u",
1256 !zone_reclaimable(zone),
1257 zone->zone_start_pfn,
1258 zone->inactive_ratio);
1259 seq_putc(m, '\n');
1260}
1261
1262/*
1263 * Output information about zones in @pgdat.
1264 */
1265static int zoneinfo_show(struct seq_file *m, void *arg)
1266{
1267 pg_data_t *pgdat = (pg_data_t *)arg;
1268 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1269 return 0;
1270}
1271
1272static const struct seq_operations zoneinfo_op = {
1273 .start = frag_start, /* iterate over all zones. The same as in
1274 * fragmentation. */
1275 .next = frag_next,
1276 .stop = frag_stop,
1277 .show = zoneinfo_show,
1278};
1279
1280static int zoneinfo_open(struct inode *inode, struct file *file)
1281{
1282 return seq_open(file, &zoneinfo_op);
1283}
1284
1285static const struct file_operations proc_zoneinfo_file_operations = {
1286 .open = zoneinfo_open,
1287 .read = seq_read,
1288 .llseek = seq_lseek,
1289 .release = seq_release,
1290};
1291
1292enum writeback_stat_item {
1293 NR_DIRTY_THRESHOLD,
1294 NR_DIRTY_BG_THRESHOLD,
1295 NR_VM_WRITEBACK_STAT_ITEMS,
1296};
1297
1298static void *vmstat_start(struct seq_file *m, loff_t *pos)
1299{
1300 unsigned long *v;
1301 int i, stat_items_size;
1302
1303 if (*pos >= ARRAY_SIZE(vmstat_text))
1304 return NULL;
1305 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1306 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1307
1308#ifdef CONFIG_VM_EVENT_COUNTERS
1309 stat_items_size += sizeof(struct vm_event_state);
1310#endif
1311
1312 v = kmalloc(stat_items_size, GFP_KERNEL);
1313 m->private = v;
1314 if (!v)
1315 return ERR_PTR(-ENOMEM);
1316 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1317 v[i] = global_page_state(i);
1318 v += NR_VM_ZONE_STAT_ITEMS;
1319
1320 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1321 v + NR_DIRTY_THRESHOLD);
1322 v += NR_VM_WRITEBACK_STAT_ITEMS;
1323
1324#ifdef CONFIG_VM_EVENT_COUNTERS
1325 all_vm_events(v);
1326 v[PGPGIN] /= 2; /* sectors -> kbytes */
1327 v[PGPGOUT] /= 2;
1328#endif
1329 return (unsigned long *)m->private + *pos;
1330}
1331
1332static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1333{
1334 (*pos)++;
1335 if (*pos >= ARRAY_SIZE(vmstat_text))
1336 return NULL;
1337 return (unsigned long *)m->private + *pos;
1338}
1339
1340static int vmstat_show(struct seq_file *m, void *arg)
1341{
1342 unsigned long *l = arg;
1343 unsigned long off = l - (unsigned long *)m->private;
1344
1345 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1346 return 0;
1347}
1348
1349static void vmstat_stop(struct seq_file *m, void *arg)
1350{
1351 kfree(m->private);
1352 m->private = NULL;
1353}
1354
1355static const struct seq_operations vmstat_op = {
1356 .start = vmstat_start,
1357 .next = vmstat_next,
1358 .stop = vmstat_stop,
1359 .show = vmstat_show,
1360};
1361
1362static int vmstat_open(struct inode *inode, struct file *file)
1363{
1364 return seq_open(file, &vmstat_op);
1365}
1366
1367static const struct file_operations proc_vmstat_file_operations = {
1368 .open = vmstat_open,
1369 .read = seq_read,
1370 .llseek = seq_lseek,
1371 .release = seq_release,
1372};
1373#endif /* CONFIG_PROC_FS */
1374
1375#ifdef CONFIG_SMP
1376static struct workqueue_struct *vmstat_wq;
1377static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1378int sysctl_stat_interval __read_mostly = HZ;
1379static cpumask_var_t cpu_stat_off;
1380
1381static void vmstat_update(struct work_struct *w)
1382{
1383 if (refresh_cpu_vm_stats(true)) {
1384 /*
1385 * Counters were updated so we expect more updates
1386 * to occur in the future. Keep on running the
1387 * update worker thread.
1388 * If we were marked on cpu_stat_off clear the flag
1389 * so that vmstat_shepherd doesn't schedule us again.
1390 */
1391 if (!cpumask_test_and_clear_cpu(smp_processor_id(),
1392 cpu_stat_off)) {
1393 queue_delayed_work_on(smp_processor_id(), vmstat_wq,
1394 this_cpu_ptr(&vmstat_work),
1395 round_jiffies_relative(sysctl_stat_interval));
1396 }
1397 } else {
1398 /*
1399 * We did not update any counters so the app may be in
1400 * a mode where it does not cause counter updates.
1401 * We may be uselessly running vmstat_update.
1402 * Defer the checking for differentials to the
1403 * shepherd thread on a different processor.
1404 */
1405 cpumask_set_cpu(smp_processor_id(), cpu_stat_off);
1406 }
1407}
1408
1409/*
1410 * Switch off vmstat processing and then fold all the remaining differentials
1411 * until the diffs stay at zero. The function is used by NOHZ and can only be
1412 * invoked when tick processing is not active.
1413 */
1414/*
1415 * Check if the diffs for a certain cpu indicate that
1416 * an update is needed.
1417 */
1418static bool need_update(int cpu)
1419{
1420 struct zone *zone;
1421
1422 for_each_populated_zone(zone) {
1423 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1424
1425 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1426 /*
1427 * The fast way of checking if there are any vmstat diffs.
1428 * This works because the diffs are byte sized items.
1429 */
1430 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1431 return true;
1432
1433 }
1434 return false;
1435}
1436
1437void quiet_vmstat(void)
1438{
1439 if (system_state != SYSTEM_RUNNING)
1440 return;
1441
1442 /*
1443 * If we are already in hands of the shepherd then there
1444 * is nothing for us to do here.
1445 */
1446 if (cpumask_test_and_set_cpu(smp_processor_id(), cpu_stat_off))
1447 return;
1448
1449 if (!need_update(smp_processor_id()))
1450 return;
1451
1452 /*
1453 * Just refresh counters and do not care about the pending delayed
1454 * vmstat_update. It doesn't fire that often to matter and canceling
1455 * it would be too expensive from this path.
1456 * vmstat_shepherd will take care about that for us.
1457 */
1458 refresh_cpu_vm_stats(false);
1459}
1460
1461
1462/*
1463 * Shepherd worker thread that checks the
1464 * differentials of processors that have their worker
1465 * threads for vm statistics updates disabled because of
1466 * inactivity.
1467 */
1468static void vmstat_shepherd(struct work_struct *w);
1469
1470static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1471
1472static void vmstat_shepherd(struct work_struct *w)
1473{
1474 int cpu;
1475
1476 get_online_cpus();
1477 /* Check processors whose vmstat worker threads have been disabled */
1478 for_each_cpu(cpu, cpu_stat_off) {
1479 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1480
1481 if (need_update(cpu)) {
1482 if (cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1483 queue_delayed_work_on(cpu, vmstat_wq, dw, 0);
1484 } else {
1485 /*
1486 * Cancel the work if quiet_vmstat has put this
1487 * cpu on cpu_stat_off because the work item might
1488 * be still scheduled
1489 */
1490 cancel_delayed_work(dw);
1491 }
1492 }
1493 put_online_cpus();
1494
1495 schedule_delayed_work(&shepherd,
1496 round_jiffies_relative(sysctl_stat_interval));
1497}
1498
1499static void __init start_shepherd_timer(void)
1500{
1501 int cpu;
1502
1503 for_each_possible_cpu(cpu)
1504 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1505 vmstat_update);
1506
1507 if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1508 BUG();
1509 cpumask_copy(cpu_stat_off, cpu_online_mask);
1510
1511 vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
1512 schedule_delayed_work(&shepherd,
1513 round_jiffies_relative(sysctl_stat_interval));
1514}
1515
1516static void vmstat_cpu_dead(int node)
1517{
1518 int cpu;
1519
1520 get_online_cpus();
1521 for_each_online_cpu(cpu)
1522 if (cpu_to_node(cpu) == node)
1523 goto end;
1524
1525 node_clear_state(node, N_CPU);
1526end:
1527 put_online_cpus();
1528}
1529
1530/*
1531 * Use the cpu notifier to insure that the thresholds are recalculated
1532 * when necessary.
1533 */
1534static int vmstat_cpuup_callback(struct notifier_block *nfb,
1535 unsigned long action,
1536 void *hcpu)
1537{
1538 long cpu = (long)hcpu;
1539
1540 switch (action) {
1541 case CPU_ONLINE:
1542 case CPU_ONLINE_FROZEN:
1543 refresh_zone_stat_thresholds();
1544 node_set_state(cpu_to_node(cpu), N_CPU);
1545 cpumask_set_cpu(cpu, cpu_stat_off);
1546 break;
1547 case CPU_DOWN_PREPARE:
1548 case CPU_DOWN_PREPARE_FROZEN:
1549 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1550 cpumask_clear_cpu(cpu, cpu_stat_off);
1551 break;
1552 case CPU_DOWN_FAILED:
1553 case CPU_DOWN_FAILED_FROZEN:
1554 cpumask_set_cpu(cpu, cpu_stat_off);
1555 break;
1556 case CPU_DEAD:
1557 case CPU_DEAD_FROZEN:
1558 refresh_zone_stat_thresholds();
1559 vmstat_cpu_dead(cpu_to_node(cpu));
1560 break;
1561 default:
1562 break;
1563 }
1564 return NOTIFY_OK;
1565}
1566
1567static struct notifier_block vmstat_notifier =
1568 { &vmstat_cpuup_callback, NULL, 0 };
1569#endif
1570
1571static int __init setup_vmstat(void)
1572{
1573#ifdef CONFIG_SMP
1574 cpu_notifier_register_begin();
1575 __register_cpu_notifier(&vmstat_notifier);
1576
1577 start_shepherd_timer();
1578 cpu_notifier_register_done();
1579#endif
1580#ifdef CONFIG_PROC_FS
1581 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1582 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1583 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1584 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1585#endif
1586 return 0;
1587}
1588module_init(setup_vmstat)
1589
1590#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1591
1592/*
1593 * Return an index indicating how much of the available free memory is
1594 * unusable for an allocation of the requested size.
1595 */
1596static int unusable_free_index(unsigned int order,
1597 struct contig_page_info *info)
1598{
1599 /* No free memory is interpreted as all free memory is unusable */
1600 if (info->free_pages == 0)
1601 return 1000;
1602
1603 /*
1604 * Index should be a value between 0 and 1. Return a value to 3
1605 * decimal places.
1606 *
1607 * 0 => no fragmentation
1608 * 1 => high fragmentation
1609 */
1610 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1611
1612}
1613
1614static void unusable_show_print(struct seq_file *m,
1615 pg_data_t *pgdat, struct zone *zone)
1616{
1617 unsigned int order;
1618 int index;
1619 struct contig_page_info info;
1620
1621 seq_printf(m, "Node %d, zone %8s ",
1622 pgdat->node_id,
1623 zone->name);
1624 for (order = 0; order < MAX_ORDER; ++order) {
1625 fill_contig_page_info(zone, order, &info);
1626 index = unusable_free_index(order, &info);
1627 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1628 }
1629
1630 seq_putc(m, '\n');
1631}
1632
1633/*
1634 * Display unusable free space index
1635 *
1636 * The unusable free space index measures how much of the available free
1637 * memory cannot be used to satisfy an allocation of a given size and is a
1638 * value between 0 and 1. The higher the value, the more of free memory is
1639 * unusable and by implication, the worse the external fragmentation is. This
1640 * can be expressed as a percentage by multiplying by 100.
1641 */
1642static int unusable_show(struct seq_file *m, void *arg)
1643{
1644 pg_data_t *pgdat = (pg_data_t *)arg;
1645
1646 /* check memoryless node */
1647 if (!node_state(pgdat->node_id, N_MEMORY))
1648 return 0;
1649
1650 walk_zones_in_node(m, pgdat, unusable_show_print);
1651
1652 return 0;
1653}
1654
1655static const struct seq_operations unusable_op = {
1656 .start = frag_start,
1657 .next = frag_next,
1658 .stop = frag_stop,
1659 .show = unusable_show,
1660};
1661
1662static int unusable_open(struct inode *inode, struct file *file)
1663{
1664 return seq_open(file, &unusable_op);
1665}
1666
1667static const struct file_operations unusable_file_ops = {
1668 .open = unusable_open,
1669 .read = seq_read,
1670 .llseek = seq_lseek,
1671 .release = seq_release,
1672};
1673
1674static void extfrag_show_print(struct seq_file *m,
1675 pg_data_t *pgdat, struct zone *zone)
1676{
1677 unsigned int order;
1678 int index;
1679
1680 /* Alloc on stack as interrupts are disabled for zone walk */
1681 struct contig_page_info info;
1682
1683 seq_printf(m, "Node %d, zone %8s ",
1684 pgdat->node_id,
1685 zone->name);
1686 for (order = 0; order < MAX_ORDER; ++order) {
1687 fill_contig_page_info(zone, order, &info);
1688 index = __fragmentation_index(order, &info);
1689 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1690 }
1691
1692 seq_putc(m, '\n');
1693}
1694
1695/*
1696 * Display fragmentation index for orders that allocations would fail for
1697 */
1698static int extfrag_show(struct seq_file *m, void *arg)
1699{
1700 pg_data_t *pgdat = (pg_data_t *)arg;
1701
1702 walk_zones_in_node(m, pgdat, extfrag_show_print);
1703
1704 return 0;
1705}
1706
1707static const struct seq_operations extfrag_op = {
1708 .start = frag_start,
1709 .next = frag_next,
1710 .stop = frag_stop,
1711 .show = extfrag_show,
1712};
1713
1714static int extfrag_open(struct inode *inode, struct file *file)
1715{
1716 return seq_open(file, &extfrag_op);
1717}
1718
1719static const struct file_operations extfrag_file_ops = {
1720 .open = extfrag_open,
1721 .read = seq_read,
1722 .llseek = seq_lseek,
1723 .release = seq_release,
1724};
1725
1726static int __init extfrag_debug_init(void)
1727{
1728 struct dentry *extfrag_debug_root;
1729
1730 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1731 if (!extfrag_debug_root)
1732 return -ENOMEM;
1733
1734 if (!debugfs_create_file("unusable_index", 0444,
1735 extfrag_debug_root, NULL, &unusable_file_ops))
1736 goto fail;
1737
1738 if (!debugfs_create_file("extfrag_index", 0444,
1739 extfrag_debug_root, NULL, &extfrag_file_ops))
1740 goto fail;
1741
1742 return 0;
1743fail:
1744 debugfs_remove_recursive(extfrag_debug_root);
1745 return -ENOMEM;
1746}
1747
1748module_init(extfrag_debug_init);
1749#endif