Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/kernel/profile.c
  4 *  Simple profiling. Manages a direct-mapped profile hit count buffer,
  5 *  with configurable resolution, support for restricting the cpus on
  6 *  which profiling is done, and switching between cpu time and
  7 *  schedule() calls via kernel command line parameters passed at boot.
  8 *
  9 *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
 10 *	Red Hat, July 2004
 11 *  Consolidation of architecture support code for profiling,
 12 *	Nadia Yvette Chambers, Oracle, July 2004
 13 *  Amortized hit count accounting via per-cpu open-addressed hashtables
 14 *	to resolve timer interrupt livelocks, Nadia Yvette Chambers,
 15 *	Oracle, 2004
 16 */
 17
 18#include <linux/export.h>
 19#include <linux/profile.h>
 20#include <linux/memblock.h>
 21#include <linux/notifier.h>
 22#include <linux/mm.h>
 23#include <linux/cpumask.h>
 24#include <linux/cpu.h>
 25#include <linux/highmem.h>
 26#include <linux/mutex.h>
 27#include <linux/slab.h>
 28#include <linux/vmalloc.h>
 29#include <linux/sched/stat.h>
 30
 31#include <asm/sections.h>
 32#include <asm/irq_regs.h>
 33#include <asm/ptrace.h>
 34
 35struct profile_hit {
 36	u32 pc, hits;
 37};
 38#define PROFILE_GRPSHIFT	3
 39#define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
 40#define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
 41#define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
 42
 43static atomic_t *prof_buffer;
 44static unsigned long prof_len;
 45static unsigned short int prof_shift;
 46
 47int prof_on __read_mostly;
 48EXPORT_SYMBOL_GPL(prof_on);
 49
 50static cpumask_var_t prof_cpu_mask;
 51#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
 52static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
 53static DEFINE_PER_CPU(int, cpu_profile_flip);
 54static DEFINE_MUTEX(profile_flip_mutex);
 55#endif /* CONFIG_SMP */
 56
 57int profile_setup(char *str)
 58{
 59	static const char schedstr[] = "schedule";
 60	static const char sleepstr[] = "sleep";
 61	static const char kvmstr[] = "kvm";
 62	const char *select = NULL;
 63	int par;
 64
 65	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
 66#ifdef CONFIG_SCHEDSTATS
 67		force_schedstat_enabled();
 68		prof_on = SLEEP_PROFILING;
 69		select = sleepstr;
 
 
 
 
 
 70#else
 71		pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
 72#endif /* CONFIG_SCHEDSTATS */
 73	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
 74		prof_on = SCHED_PROFILING;
 75		select = schedstr;
 
 
 
 
 
 76	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
 77		prof_on = KVM_PROFILING;
 78		select = kvmstr;
 
 
 
 
 
 79	} else if (get_option(&str, &par)) {
 80		prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
 81		prof_on = CPU_PROFILING;
 82		pr_info("kernel profiling enabled (shift: %u)\n",
 83			prof_shift);
 84	}
 85
 86	if (select) {
 87		if (str[strlen(select)] == ',')
 88			str += strlen(select) + 1;
 89		if (get_option(&str, &par))
 90			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
 91		pr_info("kernel %s profiling enabled (shift: %u)\n",
 92			select, prof_shift);
 93	}
 94
 95	return 1;
 96}
 97__setup("profile=", profile_setup);
 98
 99
100int __ref profile_init(void)
101{
102	int buffer_bytes;
103	if (!prof_on)
104		return 0;
105
106	/* only text is profiled */
107	prof_len = (_etext - _stext) >> prof_shift;
108
109	if (!prof_len) {
110		pr_warn("profiling shift: %u too large\n", prof_shift);
111		prof_on = 0;
112		return -EINVAL;
113	}
114
115	buffer_bytes = prof_len*sizeof(atomic_t);
116
117	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
118		return -ENOMEM;
119
120	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
121
122	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
123	if (prof_buffer)
124		return 0;
125
126	prof_buffer = alloc_pages_exact(buffer_bytes,
127					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
128	if (prof_buffer)
129		return 0;
130
131	prof_buffer = vzalloc(buffer_bytes);
132	if (prof_buffer)
133		return 0;
134
135	free_cpumask_var(prof_cpu_mask);
136	return -ENOMEM;
137}
138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
140/*
141 * Each cpu has a pair of open-addressed hashtables for pending
142 * profile hits. read_profile() IPI's all cpus to request them
143 * to flip buffers and flushes their contents to prof_buffer itself.
144 * Flip requests are serialized by the profile_flip_mutex. The sole
145 * use of having a second hashtable is for avoiding cacheline
146 * contention that would otherwise happen during flushes of pending
147 * profile hits required for the accuracy of reported profile hits
148 * and so resurrect the interrupt livelock issue.
149 *
150 * The open-addressed hashtables are indexed by profile buffer slot
151 * and hold the number of pending hits to that profile buffer slot on
152 * a cpu in an entry. When the hashtable overflows, all pending hits
153 * are accounted to their corresponding profile buffer slots with
154 * atomic_add() and the hashtable emptied. As numerous pending hits
155 * may be accounted to a profile buffer slot in a hashtable entry,
156 * this amortizes a number of atomic profile buffer increments likely
157 * to be far larger than the number of entries in the hashtable,
158 * particularly given that the number of distinct profile buffer
159 * positions to which hits are accounted during short intervals (e.g.
160 * several seconds) is usually very small. Exclusion from buffer
161 * flipping is provided by interrupt disablement (note that for
162 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
163 * process context).
164 * The hash function is meant to be lightweight as opposed to strong,
165 * and was vaguely inspired by ppc64 firmware-supported inverted
166 * pagetable hash functions, but uses a full hashtable full of finite
167 * collision chains, not just pairs of them.
168 *
169 * -- nyc
170 */
171static void __profile_flip_buffers(void *unused)
172{
173	int cpu = smp_processor_id();
174
175	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
176}
177
178static void profile_flip_buffers(void)
179{
180	int i, j, cpu;
181
182	mutex_lock(&profile_flip_mutex);
183	j = per_cpu(cpu_profile_flip, get_cpu());
184	put_cpu();
185	on_each_cpu(__profile_flip_buffers, NULL, 1);
186	for_each_online_cpu(cpu) {
187		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
188		for (i = 0; i < NR_PROFILE_HIT; ++i) {
189			if (!hits[i].hits) {
190				if (hits[i].pc)
191					hits[i].pc = 0;
192				continue;
193			}
194			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
195			hits[i].hits = hits[i].pc = 0;
196		}
197	}
198	mutex_unlock(&profile_flip_mutex);
199}
200
201static void profile_discard_flip_buffers(void)
202{
203	int i, cpu;
204
205	mutex_lock(&profile_flip_mutex);
206	i = per_cpu(cpu_profile_flip, get_cpu());
207	put_cpu();
208	on_each_cpu(__profile_flip_buffers, NULL, 1);
209	for_each_online_cpu(cpu) {
210		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
211		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
212	}
213	mutex_unlock(&profile_flip_mutex);
214}
215
216static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
217{
218	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
219	int i, j, cpu;
220	struct profile_hit *hits;
221
222	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
223	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
224	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
225	cpu = get_cpu();
226	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
227	if (!hits) {
228		put_cpu();
229		return;
230	}
231	/*
232	 * We buffer the global profiler buffer into a per-CPU
233	 * queue and thus reduce the number of global (and possibly
234	 * NUMA-alien) accesses. The write-queue is self-coalescing:
235	 */
236	local_irq_save(flags);
237	do {
238		for (j = 0; j < PROFILE_GRPSZ; ++j) {
239			if (hits[i + j].pc == pc) {
240				hits[i + j].hits += nr_hits;
241				goto out;
242			} else if (!hits[i + j].hits) {
243				hits[i + j].pc = pc;
244				hits[i + j].hits = nr_hits;
245				goto out;
246			}
247		}
248		i = (i + secondary) & (NR_PROFILE_HIT - 1);
249	} while (i != primary);
250
251	/*
252	 * Add the current hit(s) and flush the write-queue out
253	 * to the global buffer:
254	 */
255	atomic_add(nr_hits, &prof_buffer[pc]);
256	for (i = 0; i < NR_PROFILE_HIT; ++i) {
257		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
258		hits[i].pc = hits[i].hits = 0;
259	}
260out:
261	local_irq_restore(flags);
262	put_cpu();
263}
264
265static int profile_dead_cpu(unsigned int cpu)
 
266{
 
267	struct page *page;
268	int i;
269
270	if (cpumask_available(prof_cpu_mask))
271		cpumask_clear_cpu(cpu, prof_cpu_mask);
272
273	for (i = 0; i < 2; i++) {
274		if (per_cpu(cpu_profile_hits, cpu)[i]) {
275			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]);
276			per_cpu(cpu_profile_hits, cpu)[i] = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277			__free_page(page);
278		}
279	}
280	return 0;
281}
282
283static int profile_prepare_cpu(unsigned int cpu)
284{
285	int i, node = cpu_to_mem(cpu);
286	struct page *page;
287
288	per_cpu(cpu_profile_flip, cpu) = 0;
289
290	for (i = 0; i < 2; i++) {
291		if (per_cpu(cpu_profile_hits, cpu)[i])
292			continue;
293
294		page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
295		if (!page) {
296			profile_dead_cpu(cpu);
297			return -ENOMEM;
298		}
299		per_cpu(cpu_profile_hits, cpu)[i] = page_address(page);
300
301	}
302	return 0;
303}
304
305static int profile_online_cpu(unsigned int cpu)
306{
307	if (cpumask_available(prof_cpu_mask))
308		cpumask_set_cpu(cpu, prof_cpu_mask);
309
310	return 0;
311}
312
313#else /* !CONFIG_SMP */
314#define profile_flip_buffers()		do { } while (0)
315#define profile_discard_flip_buffers()	do { } while (0)
 
316
317static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
318{
319	unsigned long pc;
320	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
321	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
322}
323#endif /* !CONFIG_SMP */
324
325void profile_hits(int type, void *__pc, unsigned int nr_hits)
326{
327	if (prof_on != type || !prof_buffer)
328		return;
329	do_profile_hits(type, __pc, nr_hits);
330}
331EXPORT_SYMBOL_GPL(profile_hits);
332
333void profile_tick(int type)
334{
335	struct pt_regs *regs = get_irq_regs();
336
337	if (!user_mode(regs) && cpumask_available(prof_cpu_mask) &&
338	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
339		profile_hit(type, (void *)profile_pc(regs));
340}
341
342#ifdef CONFIG_PROC_FS
343#include <linux/proc_fs.h>
344#include <linux/seq_file.h>
345#include <linux/uaccess.h>
346
347static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
348{
349	seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
350	return 0;
351}
352
353static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
354{
355	return single_open(file, prof_cpu_mask_proc_show, NULL);
356}
357
358static ssize_t prof_cpu_mask_proc_write(struct file *file,
359	const char __user *buffer, size_t count, loff_t *pos)
360{
361	cpumask_var_t new_value;
362	int err;
363
364	if (!zalloc_cpumask_var(&new_value, GFP_KERNEL))
365		return -ENOMEM;
366
367	err = cpumask_parse_user(buffer, count, new_value);
368	if (!err) {
369		cpumask_copy(prof_cpu_mask, new_value);
370		err = count;
371	}
372	free_cpumask_var(new_value);
373	return err;
374}
375
376static const struct proc_ops prof_cpu_mask_proc_ops = {
377	.proc_open	= prof_cpu_mask_proc_open,
378	.proc_read	= seq_read,
379	.proc_lseek	= seq_lseek,
380	.proc_release	= single_release,
381	.proc_write	= prof_cpu_mask_proc_write,
382};
383
384void create_prof_cpu_mask(void)
385{
386	/* create /proc/irq/prof_cpu_mask */
387	proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_ops);
388}
389
390/*
391 * This function accesses profiling information. The returned data is
392 * binary: the sampling step and the actual contents of the profile
393 * buffer. Use of the program readprofile is recommended in order to
394 * get meaningful info out of these data.
395 */
396static ssize_t
397read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
398{
399	unsigned long p = *ppos;
400	ssize_t read;
401	char *pnt;
402	unsigned long sample_step = 1UL << prof_shift;
403
404	profile_flip_buffers();
405	if (p >= (prof_len+1)*sizeof(unsigned int))
406		return 0;
407	if (count > (prof_len+1)*sizeof(unsigned int) - p)
408		count = (prof_len+1)*sizeof(unsigned int) - p;
409	read = 0;
410
411	while (p < sizeof(unsigned int) && count > 0) {
412		if (put_user(*((char *)(&sample_step)+p), buf))
413			return -EFAULT;
414		buf++; p++; count--; read++;
415	}
416	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
417	if (copy_to_user(buf, (void *)pnt, count))
418		return -EFAULT;
419	read += count;
420	*ppos += read;
421	return read;
422}
423
424/* default is to not implement this call */
425int __weak setup_profiling_timer(unsigned mult)
426{
427	return -EINVAL;
428}
429
430/*
431 * Writing to /proc/profile resets the counters
432 *
433 * Writing a 'profiling multiplier' value into it also re-sets the profiling
434 * interrupt frequency, on architectures that support this.
435 */
436static ssize_t write_profile(struct file *file, const char __user *buf,
437			     size_t count, loff_t *ppos)
438{
439#ifdef CONFIG_SMP
 
 
440	if (count == sizeof(int)) {
441		unsigned int multiplier;
442
443		if (copy_from_user(&multiplier, buf, sizeof(int)))
444			return -EFAULT;
445
446		if (setup_profiling_timer(multiplier))
447			return -EINVAL;
448	}
449#endif
450	profile_discard_flip_buffers();
451	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
452	return count;
453}
454
455static const struct proc_ops profile_proc_ops = {
456	.proc_read	= read_profile,
457	.proc_write	= write_profile,
458	.proc_lseek	= default_llseek,
459};
460
461int __ref create_proc_profile(void)
462{
463	struct proc_dir_entry *entry;
464#ifdef CONFIG_SMP
465	enum cpuhp_state online_state;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
466#endif
467
 
 
 
468	int err = 0;
469
470	if (!prof_on)
471		return 0;
472#ifdef CONFIG_SMP
473	err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE",
474				profile_prepare_cpu, profile_dead_cpu);
475	if (err)
476		return err;
477
478	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE",
479				profile_online_cpu, NULL);
480	if (err < 0)
481		goto err_state_prep;
482	online_state = err;
483	err = 0;
484#endif
485	entry = proc_create("profile", S_IWUSR | S_IRUGO,
486			    NULL, &profile_proc_ops);
487	if (!entry)
488		goto err_state_onl;
489	proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
 
490
491	return err;
492err_state_onl:
493#ifdef CONFIG_SMP
494	cpuhp_remove_state(online_state);
495err_state_prep:
496	cpuhp_remove_state(CPUHP_PROFILE_PREPARE);
497#endif
498	return err;
499}
500subsys_initcall(create_proc_profile);
501#endif /* CONFIG_PROC_FS */
v4.6
 
  1/*
  2 *  linux/kernel/profile.c
  3 *  Simple profiling. Manages a direct-mapped profile hit count buffer,
  4 *  with configurable resolution, support for restricting the cpus on
  5 *  which profiling is done, and switching between cpu time and
  6 *  schedule() calls via kernel command line parameters passed at boot.
  7 *
  8 *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
  9 *	Red Hat, July 2004
 10 *  Consolidation of architecture support code for profiling,
 11 *	Nadia Yvette Chambers, Oracle, July 2004
 12 *  Amortized hit count accounting via per-cpu open-addressed hashtables
 13 *	to resolve timer interrupt livelocks, Nadia Yvette Chambers,
 14 *	Oracle, 2004
 15 */
 16
 17#include <linux/export.h>
 18#include <linux/profile.h>
 19#include <linux/bootmem.h>
 20#include <linux/notifier.h>
 21#include <linux/mm.h>
 22#include <linux/cpumask.h>
 23#include <linux/cpu.h>
 24#include <linux/highmem.h>
 25#include <linux/mutex.h>
 26#include <linux/slab.h>
 27#include <linux/vmalloc.h>
 
 
 28#include <asm/sections.h>
 29#include <asm/irq_regs.h>
 30#include <asm/ptrace.h>
 31
 32struct profile_hit {
 33	u32 pc, hits;
 34};
 35#define PROFILE_GRPSHIFT	3
 36#define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
 37#define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
 38#define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
 39
 40static atomic_t *prof_buffer;
 41static unsigned long prof_len, prof_shift;
 
 42
 43int prof_on __read_mostly;
 44EXPORT_SYMBOL_GPL(prof_on);
 45
 46static cpumask_var_t prof_cpu_mask;
 47#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
 48static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
 49static DEFINE_PER_CPU(int, cpu_profile_flip);
 50static DEFINE_MUTEX(profile_flip_mutex);
 51#endif /* CONFIG_SMP */
 52
 53int profile_setup(char *str)
 54{
 55	static const char schedstr[] = "schedule";
 56	static const char sleepstr[] = "sleep";
 57	static const char kvmstr[] = "kvm";
 
 58	int par;
 59
 60	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
 61#ifdef CONFIG_SCHEDSTATS
 62		force_schedstat_enabled();
 63		prof_on = SLEEP_PROFILING;
 64		if (str[strlen(sleepstr)] == ',')
 65			str += strlen(sleepstr) + 1;
 66		if (get_option(&str, &par))
 67			prof_shift = par;
 68		pr_info("kernel sleep profiling enabled (shift: %ld)\n",
 69			prof_shift);
 70#else
 71		pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
 72#endif /* CONFIG_SCHEDSTATS */
 73	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
 74		prof_on = SCHED_PROFILING;
 75		if (str[strlen(schedstr)] == ',')
 76			str += strlen(schedstr) + 1;
 77		if (get_option(&str, &par))
 78			prof_shift = par;
 79		pr_info("kernel schedule profiling enabled (shift: %ld)\n",
 80			prof_shift);
 81	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
 82		prof_on = KVM_PROFILING;
 83		if (str[strlen(kvmstr)] == ',')
 84			str += strlen(kvmstr) + 1;
 85		if (get_option(&str, &par))
 86			prof_shift = par;
 87		pr_info("kernel KVM profiling enabled (shift: %ld)\n",
 88			prof_shift);
 89	} else if (get_option(&str, &par)) {
 90		prof_shift = par;
 91		prof_on = CPU_PROFILING;
 92		pr_info("kernel profiling enabled (shift: %ld)\n",
 93			prof_shift);
 94	}
 
 
 
 
 
 
 
 
 
 
 95	return 1;
 96}
 97__setup("profile=", profile_setup);
 98
 99
100int __ref profile_init(void)
101{
102	int buffer_bytes;
103	if (!prof_on)
104		return 0;
105
106	/* only text is profiled */
107	prof_len = (_etext - _stext) >> prof_shift;
 
 
 
 
 
 
 
108	buffer_bytes = prof_len*sizeof(atomic_t);
109
110	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
111		return -ENOMEM;
112
113	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
114
115	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
116	if (prof_buffer)
117		return 0;
118
119	prof_buffer = alloc_pages_exact(buffer_bytes,
120					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
121	if (prof_buffer)
122		return 0;
123
124	prof_buffer = vzalloc(buffer_bytes);
125	if (prof_buffer)
126		return 0;
127
128	free_cpumask_var(prof_cpu_mask);
129	return -ENOMEM;
130}
131
132/* Profile event notifications */
133
134static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
135static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
136static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
137
138void profile_task_exit(struct task_struct *task)
139{
140	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
141}
142
143int profile_handoff_task(struct task_struct *task)
144{
145	int ret;
146	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
147	return (ret == NOTIFY_OK) ? 1 : 0;
148}
149
150void profile_munmap(unsigned long addr)
151{
152	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
153}
154
155int task_handoff_register(struct notifier_block *n)
156{
157	return atomic_notifier_chain_register(&task_free_notifier, n);
158}
159EXPORT_SYMBOL_GPL(task_handoff_register);
160
161int task_handoff_unregister(struct notifier_block *n)
162{
163	return atomic_notifier_chain_unregister(&task_free_notifier, n);
164}
165EXPORT_SYMBOL_GPL(task_handoff_unregister);
166
167int profile_event_register(enum profile_type type, struct notifier_block *n)
168{
169	int err = -EINVAL;
170
171	switch (type) {
172	case PROFILE_TASK_EXIT:
173		err = blocking_notifier_chain_register(
174				&task_exit_notifier, n);
175		break;
176	case PROFILE_MUNMAP:
177		err = blocking_notifier_chain_register(
178				&munmap_notifier, n);
179		break;
180	}
181
182	return err;
183}
184EXPORT_SYMBOL_GPL(profile_event_register);
185
186int profile_event_unregister(enum profile_type type, struct notifier_block *n)
187{
188	int err = -EINVAL;
189
190	switch (type) {
191	case PROFILE_TASK_EXIT:
192		err = blocking_notifier_chain_unregister(
193				&task_exit_notifier, n);
194		break;
195	case PROFILE_MUNMAP:
196		err = blocking_notifier_chain_unregister(
197				&munmap_notifier, n);
198		break;
199	}
200
201	return err;
202}
203EXPORT_SYMBOL_GPL(profile_event_unregister);
204
205#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
206/*
207 * Each cpu has a pair of open-addressed hashtables for pending
208 * profile hits. read_profile() IPI's all cpus to request them
209 * to flip buffers and flushes their contents to prof_buffer itself.
210 * Flip requests are serialized by the profile_flip_mutex. The sole
211 * use of having a second hashtable is for avoiding cacheline
212 * contention that would otherwise happen during flushes of pending
213 * profile hits required for the accuracy of reported profile hits
214 * and so resurrect the interrupt livelock issue.
215 *
216 * The open-addressed hashtables are indexed by profile buffer slot
217 * and hold the number of pending hits to that profile buffer slot on
218 * a cpu in an entry. When the hashtable overflows, all pending hits
219 * are accounted to their corresponding profile buffer slots with
220 * atomic_add() and the hashtable emptied. As numerous pending hits
221 * may be accounted to a profile buffer slot in a hashtable entry,
222 * this amortizes a number of atomic profile buffer increments likely
223 * to be far larger than the number of entries in the hashtable,
224 * particularly given that the number of distinct profile buffer
225 * positions to which hits are accounted during short intervals (e.g.
226 * several seconds) is usually very small. Exclusion from buffer
227 * flipping is provided by interrupt disablement (note that for
228 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
229 * process context).
230 * The hash function is meant to be lightweight as opposed to strong,
231 * and was vaguely inspired by ppc64 firmware-supported inverted
232 * pagetable hash functions, but uses a full hashtable full of finite
233 * collision chains, not just pairs of them.
234 *
235 * -- nyc
236 */
237static void __profile_flip_buffers(void *unused)
238{
239	int cpu = smp_processor_id();
240
241	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
242}
243
244static void profile_flip_buffers(void)
245{
246	int i, j, cpu;
247
248	mutex_lock(&profile_flip_mutex);
249	j = per_cpu(cpu_profile_flip, get_cpu());
250	put_cpu();
251	on_each_cpu(__profile_flip_buffers, NULL, 1);
252	for_each_online_cpu(cpu) {
253		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
254		for (i = 0; i < NR_PROFILE_HIT; ++i) {
255			if (!hits[i].hits) {
256				if (hits[i].pc)
257					hits[i].pc = 0;
258				continue;
259			}
260			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
261			hits[i].hits = hits[i].pc = 0;
262		}
263	}
264	mutex_unlock(&profile_flip_mutex);
265}
266
267static void profile_discard_flip_buffers(void)
268{
269	int i, cpu;
270
271	mutex_lock(&profile_flip_mutex);
272	i = per_cpu(cpu_profile_flip, get_cpu());
273	put_cpu();
274	on_each_cpu(__profile_flip_buffers, NULL, 1);
275	for_each_online_cpu(cpu) {
276		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
277		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
278	}
279	mutex_unlock(&profile_flip_mutex);
280}
281
282static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
283{
284	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
285	int i, j, cpu;
286	struct profile_hit *hits;
287
288	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
289	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
290	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
291	cpu = get_cpu();
292	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
293	if (!hits) {
294		put_cpu();
295		return;
296	}
297	/*
298	 * We buffer the global profiler buffer into a per-CPU
299	 * queue and thus reduce the number of global (and possibly
300	 * NUMA-alien) accesses. The write-queue is self-coalescing:
301	 */
302	local_irq_save(flags);
303	do {
304		for (j = 0; j < PROFILE_GRPSZ; ++j) {
305			if (hits[i + j].pc == pc) {
306				hits[i + j].hits += nr_hits;
307				goto out;
308			} else if (!hits[i + j].hits) {
309				hits[i + j].pc = pc;
310				hits[i + j].hits = nr_hits;
311				goto out;
312			}
313		}
314		i = (i + secondary) & (NR_PROFILE_HIT - 1);
315	} while (i != primary);
316
317	/*
318	 * Add the current hit(s) and flush the write-queue out
319	 * to the global buffer:
320	 */
321	atomic_add(nr_hits, &prof_buffer[pc]);
322	for (i = 0; i < NR_PROFILE_HIT; ++i) {
323		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
324		hits[i].pc = hits[i].hits = 0;
325	}
326out:
327	local_irq_restore(flags);
328	put_cpu();
329}
330
331static int profile_cpu_callback(struct notifier_block *info,
332					unsigned long action, void *__cpu)
333{
334	int node, cpu = (unsigned long)__cpu;
335	struct page *page;
 
336
337	switch (action) {
338	case CPU_UP_PREPARE:
339	case CPU_UP_PREPARE_FROZEN:
340		node = cpu_to_mem(cpu);
341		per_cpu(cpu_profile_flip, cpu) = 0;
342		if (!per_cpu(cpu_profile_hits, cpu)[1]) {
343			page = __alloc_pages_node(node,
344					GFP_KERNEL | __GFP_ZERO,
345					0);
346			if (!page)
347				return notifier_from_errno(-ENOMEM);
348			per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
349		}
350		if (!per_cpu(cpu_profile_hits, cpu)[0]) {
351			page = __alloc_pages_node(node,
352					GFP_KERNEL | __GFP_ZERO,
353					0);
354			if (!page)
355				goto out_free;
356			per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
357		}
358		break;
359out_free:
360		page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
361		per_cpu(cpu_profile_hits, cpu)[1] = NULL;
362		__free_page(page);
363		return notifier_from_errno(-ENOMEM);
364	case CPU_ONLINE:
365	case CPU_ONLINE_FROZEN:
366		if (prof_cpu_mask != NULL)
367			cpumask_set_cpu(cpu, prof_cpu_mask);
368		break;
369	case CPU_UP_CANCELED:
370	case CPU_UP_CANCELED_FROZEN:
371	case CPU_DEAD:
372	case CPU_DEAD_FROZEN:
373		if (prof_cpu_mask != NULL)
374			cpumask_clear_cpu(cpu, prof_cpu_mask);
375		if (per_cpu(cpu_profile_hits, cpu)[0]) {
376			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
377			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
378			__free_page(page);
379		}
380		if (per_cpu(cpu_profile_hits, cpu)[1]) {
381			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
382			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
383			__free_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
384		}
385		break;
 
386	}
387	return NOTIFY_OK;
 
 
 
 
 
 
 
 
388}
 
389#else /* !CONFIG_SMP */
390#define profile_flip_buffers()		do { } while (0)
391#define profile_discard_flip_buffers()	do { } while (0)
392#define profile_cpu_callback		NULL
393
394static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
395{
396	unsigned long pc;
397	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
398	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
399}
400#endif /* !CONFIG_SMP */
401
402void profile_hits(int type, void *__pc, unsigned int nr_hits)
403{
404	if (prof_on != type || !prof_buffer)
405		return;
406	do_profile_hits(type, __pc, nr_hits);
407}
408EXPORT_SYMBOL_GPL(profile_hits);
409
410void profile_tick(int type)
411{
412	struct pt_regs *regs = get_irq_regs();
413
414	if (!user_mode(regs) && prof_cpu_mask != NULL &&
415	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
416		profile_hit(type, (void *)profile_pc(regs));
417}
418
419#ifdef CONFIG_PROC_FS
420#include <linux/proc_fs.h>
421#include <linux/seq_file.h>
422#include <asm/uaccess.h>
423
424static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
425{
426	seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
427	return 0;
428}
429
430static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
431{
432	return single_open(file, prof_cpu_mask_proc_show, NULL);
433}
434
435static ssize_t prof_cpu_mask_proc_write(struct file *file,
436	const char __user *buffer, size_t count, loff_t *pos)
437{
438	cpumask_var_t new_value;
439	int err;
440
441	if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
442		return -ENOMEM;
443
444	err = cpumask_parse_user(buffer, count, new_value);
445	if (!err) {
446		cpumask_copy(prof_cpu_mask, new_value);
447		err = count;
448	}
449	free_cpumask_var(new_value);
450	return err;
451}
452
453static const struct file_operations prof_cpu_mask_proc_fops = {
454	.open		= prof_cpu_mask_proc_open,
455	.read		= seq_read,
456	.llseek		= seq_lseek,
457	.release	= single_release,
458	.write		= prof_cpu_mask_proc_write,
459};
460
461void create_prof_cpu_mask(void)
462{
463	/* create /proc/irq/prof_cpu_mask */
464	proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_fops);
465}
466
467/*
468 * This function accesses profiling information. The returned data is
469 * binary: the sampling step and the actual contents of the profile
470 * buffer. Use of the program readprofile is recommended in order to
471 * get meaningful info out of these data.
472 */
473static ssize_t
474read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
475{
476	unsigned long p = *ppos;
477	ssize_t read;
478	char *pnt;
479	unsigned int sample_step = 1 << prof_shift;
480
481	profile_flip_buffers();
482	if (p >= (prof_len+1)*sizeof(unsigned int))
483		return 0;
484	if (count > (prof_len+1)*sizeof(unsigned int) - p)
485		count = (prof_len+1)*sizeof(unsigned int) - p;
486	read = 0;
487
488	while (p < sizeof(unsigned int) && count > 0) {
489		if (put_user(*((char *)(&sample_step)+p), buf))
490			return -EFAULT;
491		buf++; p++; count--; read++;
492	}
493	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
494	if (copy_to_user(buf, (void *)pnt, count))
495		return -EFAULT;
496	read += count;
497	*ppos += read;
498	return read;
499}
500
 
 
 
 
 
 
501/*
502 * Writing to /proc/profile resets the counters
503 *
504 * Writing a 'profiling multiplier' value into it also re-sets the profiling
505 * interrupt frequency, on architectures that support this.
506 */
507static ssize_t write_profile(struct file *file, const char __user *buf,
508			     size_t count, loff_t *ppos)
509{
510#ifdef CONFIG_SMP
511	extern int setup_profiling_timer(unsigned int multiplier);
512
513	if (count == sizeof(int)) {
514		unsigned int multiplier;
515
516		if (copy_from_user(&multiplier, buf, sizeof(int)))
517			return -EFAULT;
518
519		if (setup_profiling_timer(multiplier))
520			return -EINVAL;
521	}
522#endif
523	profile_discard_flip_buffers();
524	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
525	return count;
526}
527
528static const struct file_operations proc_profile_operations = {
529	.read		= read_profile,
530	.write		= write_profile,
531	.llseek		= default_llseek,
532};
533
 
 
 
534#ifdef CONFIG_SMP
535static void profile_nop(void *unused)
536{
537}
538
539static int create_hash_tables(void)
540{
541	int cpu;
542
543	for_each_online_cpu(cpu) {
544		int node = cpu_to_mem(cpu);
545		struct page *page;
546
547		page = __alloc_pages_node(node,
548				GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE,
549				0);
550		if (!page)
551			goto out_cleanup;
552		per_cpu(cpu_profile_hits, cpu)[1]
553				= (struct profile_hit *)page_address(page);
554		page = __alloc_pages_node(node,
555				GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE,
556				0);
557		if (!page)
558			goto out_cleanup;
559		per_cpu(cpu_profile_hits, cpu)[0]
560				= (struct profile_hit *)page_address(page);
561	}
562	return 0;
563out_cleanup:
564	prof_on = 0;
565	smp_mb();
566	on_each_cpu(profile_nop, NULL, 1);
567	for_each_online_cpu(cpu) {
568		struct page *page;
569
570		if (per_cpu(cpu_profile_hits, cpu)[0]) {
571			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
572			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
573			__free_page(page);
574		}
575		if (per_cpu(cpu_profile_hits, cpu)[1]) {
576			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
577			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
578			__free_page(page);
579		}
580	}
581	return -1;
582}
583#else
584#define create_hash_tables()			({ 0; })
585#endif
586
587int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
588{
589	struct proc_dir_entry *entry;
590	int err = 0;
591
592	if (!prof_on)
593		return 0;
594
595	cpu_notifier_register_begin();
596
597	if (create_hash_tables()) {
598		err = -ENOMEM;
599		goto out;
600	}
601
 
 
 
 
 
602	entry = proc_create("profile", S_IWUSR | S_IRUGO,
603			    NULL, &proc_profile_operations);
604	if (!entry)
605		goto out;
606	proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
607	__hotcpu_notifier(profile_cpu_callback, 0);
608
609out:
610	cpu_notifier_register_done();
 
 
 
 
 
611	return err;
612}
613subsys_initcall(create_proc_profile);
614#endif /* CONFIG_PROC_FS */