Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * kexec.c - kexec_load system call
  4 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
 
 
 
  5 */
  6
  7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8
  9#include <linux/capability.h>
 10#include <linux/mm.h>
 11#include <linux/file.h>
 12#include <linux/security.h>
 13#include <linux/kexec.h>
 14#include <linux/mutex.h>
 15#include <linux/list.h>
 16#include <linux/syscalls.h>
 17#include <linux/vmalloc.h>
 18#include <linux/slab.h>
 19
 20#include "kexec_internal.h"
 21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 22static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
 23			     unsigned long nr_segments,
 24			     struct kexec_segment *segments,
 25			     unsigned long flags)
 26{
 27	int ret;
 28	struct kimage *image;
 29	bool kexec_on_panic = flags & KEXEC_ON_CRASH;
 30
 31	if (kexec_on_panic) {
 32		/* Verify we have a valid entry point */
 33		if ((entry < phys_to_boot_phys(crashk_res.start)) ||
 34		    (entry > phys_to_boot_phys(crashk_res.end)))
 35			return -EADDRNOTAVAIL;
 36	}
 37
 38	/* Allocate and initialize a controlling structure */
 39	image = do_kimage_alloc_init();
 40	if (!image)
 41		return -ENOMEM;
 42
 43	image->start = entry;
 44	image->nr_segments = nr_segments;
 45	memcpy(image->segment, segments, nr_segments * sizeof(*segments));
 
 
 46
 47	if (kexec_on_panic) {
 48		/* Enable special crash kernel control page alloc policy. */
 49		image->control_page = crashk_res.start;
 50		image->type = KEXEC_TYPE_CRASH;
 51	}
 52
 53	ret = sanity_check_segment_list(image);
 54	if (ret)
 55		goto out_free_image;
 56
 57	/*
 58	 * Find a location for the control code buffer, and add it
 59	 * the vector of segments so that it's pages will also be
 60	 * counted as destination pages.
 61	 */
 62	ret = -ENOMEM;
 63	image->control_code_page = kimage_alloc_control_pages(image,
 64					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 65	if (!image->control_code_page) {
 66		pr_err("Could not allocate control_code_buffer\n");
 67		goto out_free_image;
 68	}
 69
 70	if (!kexec_on_panic) {
 71		image->swap_page = kimage_alloc_control_pages(image, 0);
 72		if (!image->swap_page) {
 73			pr_err("Could not allocate swap buffer\n");
 74			goto out_free_control_pages;
 75		}
 76	}
 77
 78	*rimage = image;
 79	return 0;
 80out_free_control_pages:
 81	kimage_free_page_list(&image->control_pages);
 82out_free_image:
 83	kfree(image);
 84	return ret;
 85}
 86
 87static int do_kexec_load(unsigned long entry, unsigned long nr_segments,
 88		struct kexec_segment *segments, unsigned long flags)
 89{
 90	struct kimage **dest_image, *image;
 91	unsigned long i;
 92	int ret;
 93
 94	/*
 95	 * Because we write directly to the reserved memory region when loading
 96	 * crash kernels we need a serialization here to prevent multiple crash
 97	 * kernels from attempting to load simultaneously.
 98	 */
 99	if (!kexec_trylock())
100		return -EBUSY;
101
102	if (flags & KEXEC_ON_CRASH) {
103		dest_image = &kexec_crash_image;
104		if (kexec_crash_image)
105			arch_kexec_unprotect_crashkres();
106	} else {
107		dest_image = &kexec_image;
108	}
109
110	if (nr_segments == 0) {
111		/* Uninstall image */
112		kimage_free(xchg(dest_image, NULL));
113		ret = 0;
114		goto out_unlock;
115	}
116	if (flags & KEXEC_ON_CRASH) {
117		/*
118		 * Loading another kernel to switch to if this one
119		 * crashes.  Free any current crash dump kernel before
120		 * we corrupt it.
121		 */
122		kimage_free(xchg(&kexec_crash_image, NULL));
123	}
124
125	ret = kimage_alloc_init(&image, entry, nr_segments, segments, flags);
126	if (ret)
127		goto out_unlock;
128
129	if (flags & KEXEC_PRESERVE_CONTEXT)
130		image->preserve_context = 1;
131
132	ret = machine_kexec_prepare(image);
133	if (ret)
134		goto out;
135
136	/*
137	 * Some architecture(like S390) may touch the crash memory before
138	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
139	 */
140	ret = kimage_crash_copy_vmcoreinfo(image);
141	if (ret)
142		goto out;
143
144	for (i = 0; i < nr_segments; i++) {
145		ret = kimage_load_segment(image, &image->segment[i]);
146		if (ret)
147			goto out;
148	}
149
150	kimage_terminate(image);
151
152	ret = machine_kexec_post_load(image);
153	if (ret)
154		goto out;
155
156	/* Install the new kernel and uninstall the old */
157	image = xchg(dest_image, image);
158
159out:
160	if ((flags & KEXEC_ON_CRASH) && kexec_crash_image)
161		arch_kexec_protect_crashkres();
162
163	kimage_free(image);
164out_unlock:
165	kexec_unlock();
166	return ret;
167}
168
169/*
170 * Exec Kernel system call: for obvious reasons only root may call it.
171 *
172 * This call breaks up into three pieces.
173 * - A generic part which loads the new kernel from the current
174 *   address space, and very carefully places the data in the
175 *   allocated pages.
176 *
177 * - A generic part that interacts with the kernel and tells all of
178 *   the devices to shut down.  Preventing on-going dmas, and placing
179 *   the devices in a consistent state so a later kernel can
180 *   reinitialize them.
181 *
182 * - A machine specific part that includes the syscall number
183 *   and then copies the image to it's final destination.  And
184 *   jumps into the image at entry.
185 *
186 * kexec does not sync, or unmount filesystems so if you need
187 * that to happen you need to do that yourself.
188 */
189
190static inline int kexec_load_check(unsigned long nr_segments,
191				   unsigned long flags)
192{
 
193	int result;
194
195	/* We only trust the superuser with rebooting the system. */
196	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
197		return -EPERM;
198
199	/* Permit LSMs and IMA to fail the kexec */
200	result = security_kernel_load_data(LOADING_KEXEC_IMAGE, false);
201	if (result < 0)
202		return result;
203
204	/*
205	 * kexec can be used to circumvent module loading restrictions, so
206	 * prevent loading in that case
207	 */
208	result = security_locked_down(LOCKDOWN_KEXEC);
209	if (result)
210		return result;
211
212	/*
213	 * Verify we have a legal set of flags
214	 * This leaves us room for future extensions.
215	 */
216	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
217		return -EINVAL;
218
 
 
 
 
 
219	/* Put an artificial cap on the number
220	 * of segments passed to kexec_load.
221	 */
222	if (nr_segments > KEXEC_SEGMENT_MAX)
223		return -EINVAL;
224
225	return 0;
226}
227
228SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
229		struct kexec_segment __user *, segments, unsigned long, flags)
230{
231	struct kexec_segment *ksegments;
232	unsigned long result;
 
 
 
 
 
 
 
 
 
 
 
233
234	result = kexec_load_check(nr_segments, flags);
235	if (result)
236		return result;
 
 
 
 
 
 
 
 
 
 
237
238	/* Verify we are on the appropriate architecture */
239	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
240		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
241		return -EINVAL;
 
 
 
 
 
 
 
242
243	ksegments = memdup_user(segments, nr_segments * sizeof(ksegments[0]));
244	if (IS_ERR(ksegments))
245		return PTR_ERR(ksegments);
 
 
 
 
 
 
 
 
246
247	result = do_kexec_load(entry, nr_segments, ksegments, flags);
248	kfree(ksegments);
 
249
250	return result;
251}
252
253#ifdef CONFIG_COMPAT
254COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
255		       compat_ulong_t, nr_segments,
256		       struct compat_kexec_segment __user *, segments,
257		       compat_ulong_t, flags)
258{
259	struct compat_kexec_segment in;
260	struct kexec_segment *ksegments;
261	unsigned long i, result;
262
263	result = kexec_load_check(nr_segments, flags);
264	if (result)
265		return result;
266
267	/* Don't allow clients that don't understand the native
268	 * architecture to do anything.
269	 */
270	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
271		return -EINVAL;
272
273	ksegments = kmalloc_array(nr_segments, sizeof(ksegments[0]),
274			GFP_KERNEL);
275	if (!ksegments)
276		return -ENOMEM;
277
 
278	for (i = 0; i < nr_segments; i++) {
279		result = copy_from_user(&in, &segments[i], sizeof(in));
280		if (result)
281			goto fail;
282
283		ksegments[i].buf   = compat_ptr(in.buf);
284		ksegments[i].bufsz = in.bufsz;
285		ksegments[i].mem   = in.mem;
286		ksegments[i].memsz = in.memsz;
287	}
288
289	result = do_kexec_load(entry, nr_segments, ksegments, flags);
 
 
 
290
291fail:
292	kfree(ksegments);
293	return result;
294}
295#endif
v4.6
 
  1/*
  2 * kexec.c - kexec_load system call
  3 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
  4 *
  5 * This source code is licensed under the GNU General Public License,
  6 * Version 2.  See the file COPYING for more details.
  7 */
  8
  9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 10
 11#include <linux/capability.h>
 12#include <linux/mm.h>
 13#include <linux/file.h>
 
 14#include <linux/kexec.h>
 15#include <linux/mutex.h>
 16#include <linux/list.h>
 17#include <linux/syscalls.h>
 18#include <linux/vmalloc.h>
 19#include <linux/slab.h>
 20
 21#include "kexec_internal.h"
 22
 23static int copy_user_segment_list(struct kimage *image,
 24				  unsigned long nr_segments,
 25				  struct kexec_segment __user *segments)
 26{
 27	int ret;
 28	size_t segment_bytes;
 29
 30	/* Read in the segments */
 31	image->nr_segments = nr_segments;
 32	segment_bytes = nr_segments * sizeof(*segments);
 33	ret = copy_from_user(image->segment, segments, segment_bytes);
 34	if (ret)
 35		ret = -EFAULT;
 36
 37	return ret;
 38}
 39
 40static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
 41			     unsigned long nr_segments,
 42			     struct kexec_segment __user *segments,
 43			     unsigned long flags)
 44{
 45	int ret;
 46	struct kimage *image;
 47	bool kexec_on_panic = flags & KEXEC_ON_CRASH;
 48
 49	if (kexec_on_panic) {
 50		/* Verify we have a valid entry point */
 51		if ((entry < crashk_res.start) || (entry > crashk_res.end))
 
 52			return -EADDRNOTAVAIL;
 53	}
 54
 55	/* Allocate and initialize a controlling structure */
 56	image = do_kimage_alloc_init();
 57	if (!image)
 58		return -ENOMEM;
 59
 60	image->start = entry;
 61
 62	ret = copy_user_segment_list(image, nr_segments, segments);
 63	if (ret)
 64		goto out_free_image;
 65
 66	if (kexec_on_panic) {
 67		/* Enable special crash kernel control page alloc policy. */
 68		image->control_page = crashk_res.start;
 69		image->type = KEXEC_TYPE_CRASH;
 70	}
 71
 72	ret = sanity_check_segment_list(image);
 73	if (ret)
 74		goto out_free_image;
 75
 76	/*
 77	 * Find a location for the control code buffer, and add it
 78	 * the vector of segments so that it's pages will also be
 79	 * counted as destination pages.
 80	 */
 81	ret = -ENOMEM;
 82	image->control_code_page = kimage_alloc_control_pages(image,
 83					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 84	if (!image->control_code_page) {
 85		pr_err("Could not allocate control_code_buffer\n");
 86		goto out_free_image;
 87	}
 88
 89	if (!kexec_on_panic) {
 90		image->swap_page = kimage_alloc_control_pages(image, 0);
 91		if (!image->swap_page) {
 92			pr_err("Could not allocate swap buffer\n");
 93			goto out_free_control_pages;
 94		}
 95	}
 96
 97	*rimage = image;
 98	return 0;
 99out_free_control_pages:
100	kimage_free_page_list(&image->control_pages);
101out_free_image:
102	kfree(image);
103	return ret;
104}
105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106/*
107 * Exec Kernel system call: for obvious reasons only root may call it.
108 *
109 * This call breaks up into three pieces.
110 * - A generic part which loads the new kernel from the current
111 *   address space, and very carefully places the data in the
112 *   allocated pages.
113 *
114 * - A generic part that interacts with the kernel and tells all of
115 *   the devices to shut down.  Preventing on-going dmas, and placing
116 *   the devices in a consistent state so a later kernel can
117 *   reinitialize them.
118 *
119 * - A machine specific part that includes the syscall number
120 *   and then copies the image to it's final destination.  And
121 *   jumps into the image at entry.
122 *
123 * kexec does not sync, or unmount filesystems so if you need
124 * that to happen you need to do that yourself.
125 */
126
127SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
128		struct kexec_segment __user *, segments, unsigned long, flags)
129{
130	struct kimage **dest_image, *image;
131	int result;
132
133	/* We only trust the superuser with rebooting the system. */
134	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
135		return -EPERM;
136
 
 
 
 
 
 
 
 
 
 
 
 
 
137	/*
138	 * Verify we have a legal set of flags
139	 * This leaves us room for future extensions.
140	 */
141	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
142		return -EINVAL;
143
144	/* Verify we are on the appropriate architecture */
145	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
146		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
147		return -EINVAL;
148
149	/* Put an artificial cap on the number
150	 * of segments passed to kexec_load.
151	 */
152	if (nr_segments > KEXEC_SEGMENT_MAX)
153		return -EINVAL;
154
155	image = NULL;
156	result = 0;
157
158	/* Because we write directly to the reserved memory
159	 * region when loading crash kernels we need a mutex here to
160	 * prevent multiple crash  kernels from attempting to load
161	 * simultaneously, and to prevent a crash kernel from loading
162	 * over the top of a in use crash kernel.
163	 *
164	 * KISS: always take the mutex.
165	 */
166	if (!mutex_trylock(&kexec_mutex))
167		return -EBUSY;
168
169	dest_image = &kexec_image;
170	if (flags & KEXEC_ON_CRASH)
171		dest_image = &kexec_crash_image;
172	if (nr_segments > 0) {
173		unsigned long i;
174
175		if (flags & KEXEC_ON_CRASH) {
176			/*
177			 * Loading another kernel to switch to if this one
178			 * crashes.  Free any current crash dump kernel before
179			 * we corrupt it.
180			 */
181
182			kimage_free(xchg(&kexec_crash_image, NULL));
183			result = kimage_alloc_init(&image, entry, nr_segments,
184						   segments, flags);
185			crash_map_reserved_pages();
186		} else {
187			/* Loading another kernel to reboot into. */
188
189			result = kimage_alloc_init(&image, entry, nr_segments,
190						   segments, flags);
191		}
192		if (result)
193			goto out;
194
195		if (flags & KEXEC_PRESERVE_CONTEXT)
196			image->preserve_context = 1;
197		result = machine_kexec_prepare(image);
198		if (result)
199			goto out;
200
201		for (i = 0; i < nr_segments; i++) {
202			result = kimage_load_segment(image, &image->segment[i]);
203			if (result)
204				goto out;
205		}
206		kimage_terminate(image);
207		if (flags & KEXEC_ON_CRASH)
208			crash_unmap_reserved_pages();
209	}
210	/* Install the new kernel, and  Uninstall the old */
211	image = xchg(dest_image, image);
212
213out:
214	mutex_unlock(&kexec_mutex);
215	kimage_free(image);
216
217	return result;
218}
219
220#ifdef CONFIG_COMPAT
221COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
222		       compat_ulong_t, nr_segments,
223		       struct compat_kexec_segment __user *, segments,
224		       compat_ulong_t, flags)
225{
226	struct compat_kexec_segment in;
227	struct kexec_segment out, __user *ksegments;
228	unsigned long i, result;
229
 
 
 
 
230	/* Don't allow clients that don't understand the native
231	 * architecture to do anything.
232	 */
233	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
234		return -EINVAL;
235
236	if (nr_segments > KEXEC_SEGMENT_MAX)
237		return -EINVAL;
 
 
238
239	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
240	for (i = 0; i < nr_segments; i++) {
241		result = copy_from_user(&in, &segments[i], sizeof(in));
242		if (result)
243			return -EFAULT;
244
245		out.buf   = compat_ptr(in.buf);
246		out.bufsz = in.bufsz;
247		out.mem   = in.mem;
248		out.memsz = in.memsz;
 
249
250		result = copy_to_user(&ksegments[i], &out, sizeof(out));
251		if (result)
252			return -EFAULT;
253	}
254
255	return sys_kexec_load(entry, nr_segments, ksegments, flags);
 
 
256}
257#endif