Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 * Octeon Watchdog driver
  4 *
  5 * Copyright (C) 2007-2017 Cavium, Inc.
  6 *
  7 * Converted to use WATCHDOG_CORE by Aaro Koskinen <aaro.koskinen@iki.fi>.
  8 *
  9 * Some parts derived from wdt.c
 10 *
 11 *	(c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
 12 *						All Rights Reserved.
 13 *
 
 
 
 
 
 14 *	Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
 15 *	warranty for any of this software. This material is provided
 16 *	"AS-IS" and at no charge.
 17 *
 18 *	(c) Copyright 1995    Alan Cox <alan@lxorguk.ukuu.org.uk>
 19 *
 
 
 
 
 
 20 * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
 21 * For most systems this is less than 10 seconds, so to allow for
 22 * software to request longer watchdog heartbeats, we maintain software
 23 * counters to count multiples of the base rate.  If the system locks
 24 * up in such a manner that we can not run the software counters, the
 25 * only result is a watchdog reset sooner than was requested.  But
 26 * that is OK, because in this case userspace would likely not be able
 27 * to do anything anyhow.
 28 *
 29 * The hardware watchdog interval we call the period.  The OCTEON
 30 * watchdog goes through several stages, after the first period an
 31 * irq is asserted, then if it is not reset, after the next period NMI
 32 * is asserted, then after an additional period a chip wide soft reset.
 33 * So for the software counters, we reset watchdog after each period
 34 * and decrement the counter.  But for the last two periods we need to
 35 * let the watchdog progress to the NMI stage so we disable the irq
 36 * and let it proceed.  Once in the NMI, we print the register state
 37 * to the serial port and then wait for the reset.
 38 *
 39 * A watchdog is maintained for each CPU in the system, that way if
 40 * one CPU suffers a lockup, we also get a register dump and reset.
 41 * The userspace ping resets the watchdog on all CPUs.
 42 *
 43 * Before userspace opens the watchdog device, we still run the
 44 * watchdogs to catch any lockups that may be kernel related.
 45 *
 46 */
 47
 48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 49
 
 50#include <linux/interrupt.h>
 51#include <linux/watchdog.h>
 52#include <linux/cpumask.h>
 
 
 53#include <linux/module.h>
 
 54#include <linux/delay.h>
 55#include <linux/cpu.h>
 
 
 56#include <linux/irq.h>
 57#include <linux/irqdomain.h>
 58
 59#include <asm/mipsregs.h>
 60#include <asm/uasm.h>
 61
 62#include <asm/octeon/octeon.h>
 63#include <asm/octeon/cvmx-boot-vector.h>
 64#include <asm/octeon/cvmx-ciu2-defs.h>
 65#include <asm/octeon/cvmx-rst-defs.h>
 66
 67/* Watchdog interrupt major block number (8 MSBs of intsn) */
 68#define WD_BLOCK_NUMBER		0x01
 69
 70static int divisor;
 71
 72/* The count needed to achieve timeout_sec. */
 73static unsigned int timeout_cnt;
 74
 75/* The maximum period supported. */
 76static unsigned int max_timeout_sec;
 77
 78/* The current period.  */
 79static unsigned int timeout_sec;
 80
 81/* Set to non-zero when userspace countdown mode active */
 82static bool do_countdown;
 83static unsigned int countdown_reset;
 84static unsigned int per_cpu_countdown[NR_CPUS];
 85
 86static cpumask_t irq_enabled_cpus;
 87
 88#define WD_TIMO 60			/* Default heartbeat = 60 seconds */
 89
 90#define CVMX_GSERX_SCRATCH(offset) (CVMX_ADD_IO_SEG(0x0001180090000020ull) + ((offset) & 15) * 0x1000000ull)
 91
 92static int heartbeat = WD_TIMO;
 93module_param(heartbeat, int, 0444);
 94MODULE_PARM_DESC(heartbeat,
 95	"Watchdog heartbeat in seconds. (0 < heartbeat, default="
 96				__MODULE_STRING(WD_TIMO) ")");
 97
 98static bool nowayout = WATCHDOG_NOWAYOUT;
 99module_param(nowayout, bool, 0444);
100MODULE_PARM_DESC(nowayout,
101	"Watchdog cannot be stopped once started (default="
102				__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
103
104static int disable;
105module_param(disable, int, 0444);
106MODULE_PARM_DESC(disable,
107	"Disable the watchdog entirely (default=0)");
108
109static struct cvmx_boot_vector_element *octeon_wdt_bootvector;
 
 
 
 
 
 
 
 
 
110
111void octeon_wdt_nmi_stage2(void);
112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113static int cpu2core(int cpu)
114{
115#ifdef CONFIG_SMP
116	return cpu_logical_map(cpu) & 0x3f;
117#else
118	return cvmx_get_core_num();
119#endif
120}
121
 
 
 
 
 
 
 
 
 
122/**
123 * octeon_wdt_poke_irq - Poke the watchdog when an interrupt is received
124 *
125 * @cpl:
126 * @dev_id:
127 *
128 * Returns
129 */
130static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
131{
132	int cpu = raw_smp_processor_id();
133	unsigned int core = cpu2core(cpu);
134	int node = cpu_to_node(cpu);
135
136	if (do_countdown) {
137		if (per_cpu_countdown[cpu] > 0) {
138			/* We're alive, poke the watchdog */
139			cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
140			per_cpu_countdown[cpu]--;
141		} else {
142			/* Bad news, you are about to reboot. */
143			disable_irq_nosync(cpl);
144			cpumask_clear_cpu(cpu, &irq_enabled_cpus);
145		}
146	} else {
147		/* Not open, just ping away... */
148		cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
149	}
150	return IRQ_HANDLED;
151}
152
153/* From setup.c */
154extern int prom_putchar(char c);
155
156/**
157 * octeon_wdt_write_string - Write a string to the uart
158 *
159 * @str:        String to write
160 */
161static void octeon_wdt_write_string(const char *str)
162{
163	/* Just loop writing one byte at a time */
164	while (*str)
165		prom_putchar(*str++);
166}
167
168/**
169 * octeon_wdt_write_hex() - Write a hex number out of the uart
170 *
171 * @value:      Number to display
172 * @digits:     Number of digits to print (1 to 16)
173 */
174static void octeon_wdt_write_hex(u64 value, int digits)
175{
176	int d;
177	int v;
178
179	for (d = 0; d < digits; d++) {
180		v = (value >> ((digits - d - 1) * 4)) & 0xf;
181		if (v >= 10)
182			prom_putchar('a' + v - 10);
183		else
184			prom_putchar('0' + v);
185	}
186}
187
188static const char reg_name[][3] = {
189	"$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
190	"a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
191	"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
192	"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
193};
194
195/**
196 * octeon_wdt_nmi_stage3:
197 *
198 * NMI stage 3 handler. NMIs are handled in the following manner:
199 * 1) The first NMI handler enables CVMSEG and transfers from
200 * the bootbus region into normal memory. It is careful to not
201 * destroy any registers.
202 * 2) The second stage handler uses CVMSEG to save the registers
203 * and create a stack for C code. It then calls the third level
204 * handler with one argument, a pointer to the register values.
205 * 3) The third, and final, level handler is the following C
206 * function that prints out some useful infomration.
207 *
208 * @reg:    Pointer to register state before the NMI
209 */
210void octeon_wdt_nmi_stage3(u64 reg[32])
211{
212	u64 i;
213
214	unsigned int coreid = cvmx_get_core_num();
215	/*
216	 * Save status and cause early to get them before any changes
217	 * might happen.
218	 */
219	u64 cp0_cause = read_c0_cause();
220	u64 cp0_status = read_c0_status();
221	u64 cp0_error_epc = read_c0_errorepc();
222	u64 cp0_epc = read_c0_epc();
223
224	/* Delay so output from all cores output is not jumbled together. */
225	udelay(85000 * coreid);
226
227	octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
228	octeon_wdt_write_hex(coreid, 2);
229	octeon_wdt_write_string(" ***\r\n");
230	for (i = 0; i < 32; i++) {
231		octeon_wdt_write_string("\t");
232		octeon_wdt_write_string(reg_name[i]);
233		octeon_wdt_write_string("\t0x");
234		octeon_wdt_write_hex(reg[i], 16);
235		if (i & 1)
236			octeon_wdt_write_string("\r\n");
237	}
238	octeon_wdt_write_string("\terr_epc\t0x");
239	octeon_wdt_write_hex(cp0_error_epc, 16);
240
241	octeon_wdt_write_string("\tepc\t0x");
242	octeon_wdt_write_hex(cp0_epc, 16);
243	octeon_wdt_write_string("\r\n");
244
245	octeon_wdt_write_string("\tstatus\t0x");
246	octeon_wdt_write_hex(cp0_status, 16);
247	octeon_wdt_write_string("\tcause\t0x");
248	octeon_wdt_write_hex(cp0_cause, 16);
249	octeon_wdt_write_string("\r\n");
250
251	/* The CIU register is different for each Octeon model. */
252	if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
253		octeon_wdt_write_string("\tsrc_wd\t0x");
254		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_WDOG(coreid)), 16);
255		octeon_wdt_write_string("\ten_wd\t0x");
256		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_WDOG(coreid)), 16);
257		octeon_wdt_write_string("\r\n");
258		octeon_wdt_write_string("\tsrc_rml\t0x");
259		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_RML(coreid)), 16);
260		octeon_wdt_write_string("\ten_rml\t0x");
261		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_RML(coreid)), 16);
262		octeon_wdt_write_string("\r\n");
263		octeon_wdt_write_string("\tsum\t0x");
264		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SUM_PPX_IP2(coreid)), 16);
265		octeon_wdt_write_string("\r\n");
266	} else if (!octeon_has_feature(OCTEON_FEATURE_CIU3)) {
267		octeon_wdt_write_string("\tsum0\t0x");
268		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
269		octeon_wdt_write_string("\ten0\t0x");
270		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
271		octeon_wdt_write_string("\r\n");
272	}
273
274	octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
275
276	/*
277	 * G-30204: We must trigger a soft reset before watchdog
278	 * does an incomplete job of doing it.
279	 */
280	if (OCTEON_IS_OCTEON3() && !OCTEON_IS_MODEL(OCTEON_CN70XX)) {
281		u64 scr;
282		unsigned int node = cvmx_get_node_num();
283		unsigned int lcore = cvmx_get_local_core_num();
284		union cvmx_ciu_wdogx ciu_wdog;
285
286		/*
287		 * Wait for other cores to print out information, but
288		 * not too long.  Do the soft reset before watchdog
289		 * can trigger it.
290		 */
291		do {
292			ciu_wdog.u64 = cvmx_read_csr_node(node, CVMX_CIU_WDOGX(lcore));
293		} while (ciu_wdog.s.cnt > 0x10000);
294
295		scr = cvmx_read_csr_node(0, CVMX_GSERX_SCRATCH(0));
296		scr |= 1 << 11; /* Indicate watchdog in bit 11 */
297		cvmx_write_csr_node(0, CVMX_GSERX_SCRATCH(0), scr);
298		cvmx_write_csr_node(0, CVMX_RST_SOFT_RST, 1);
299	}
300}
301
302static int octeon_wdt_cpu_to_irq(int cpu)
303{
304	unsigned int coreid;
305	int node;
306	int irq;
307
308	coreid = cpu2core(cpu);
309	node = cpu_to_node(cpu);
310
311	if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
312		struct irq_domain *domain;
313		int hwirq;
314
315		domain = octeon_irq_get_block_domain(node,
316						     WD_BLOCK_NUMBER);
317		hwirq = WD_BLOCK_NUMBER << 12 | 0x200 | coreid;
318		irq = irq_find_mapping(domain, hwirq);
319	} else {
320		irq = OCTEON_IRQ_WDOG0 + coreid;
321	}
322	return irq;
323}
324
325static int octeon_wdt_cpu_pre_down(unsigned int cpu)
326{
327	unsigned int core;
328	int node;
329	union cvmx_ciu_wdogx ciu_wdog;
330
331	core = cpu2core(cpu);
332
333	node = cpu_to_node(cpu);
334
335	/* Poke the watchdog to clear out its state */
336	cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
337
338	/* Disable the hardware. */
339	ciu_wdog.u64 = 0;
340	cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
341
342	free_irq(octeon_wdt_cpu_to_irq(cpu), octeon_wdt_poke_irq);
343	return 0;
344}
345
346static int octeon_wdt_cpu_online(unsigned int cpu)
347{
348	unsigned int core;
349	unsigned int irq;
350	union cvmx_ciu_wdogx ciu_wdog;
351	int node;
352	struct irq_domain *domain;
353	int hwirq;
354
355	core = cpu2core(cpu);
356	node = cpu_to_node(cpu);
357
358	octeon_wdt_bootvector[core].target_ptr = (u64)octeon_wdt_nmi_stage2;
359
360	/* Disable it before doing anything with the interrupts. */
361	ciu_wdog.u64 = 0;
362	cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
363
364	per_cpu_countdown[cpu] = countdown_reset;
365
366	if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
367		/* Must get the domain for the watchdog block */
368		domain = octeon_irq_get_block_domain(node, WD_BLOCK_NUMBER);
369
370		/* Get a irq for the wd intsn (hardware interrupt) */
371		hwirq = WD_BLOCK_NUMBER << 12 | 0x200 | core;
372		irq = irq_create_mapping(domain, hwirq);
373		irqd_set_trigger_type(irq_get_irq_data(irq),
374				      IRQ_TYPE_EDGE_RISING);
375	} else
376		irq = OCTEON_IRQ_WDOG0 + core;
377
378	if (request_irq(irq, octeon_wdt_poke_irq,
379			IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq))
380		panic("octeon_wdt: Couldn't obtain irq %d", irq);
381
382	/* Must set the irq affinity here */
383	if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
384		cpumask_t mask;
385
386		cpumask_clear(&mask);
387		cpumask_set_cpu(cpu, &mask);
388		irq_set_affinity(irq, &mask);
389	}
390
391	cpumask_set_cpu(cpu, &irq_enabled_cpus);
392
393	/* Poke the watchdog to clear out its state */
394	cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
395
396	/* Finally enable the watchdog now that all handlers are installed */
397	ciu_wdog.u64 = 0;
398	ciu_wdog.s.len = timeout_cnt;
399	ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
400	cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
 
401
402	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
403}
404
405static int octeon_wdt_ping(struct watchdog_device __always_unused *wdog)
406{
407	int cpu;
408	int coreid;
409	int node;
410
411	if (disable)
412		return 0;
413
414	for_each_online_cpu(cpu) {
415		coreid = cpu2core(cpu);
416		node = cpu_to_node(cpu);
417		cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
418		per_cpu_countdown[cpu] = countdown_reset;
419		if ((countdown_reset || !do_countdown) &&
420		    !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
421			/* We have to enable the irq */
422			enable_irq(octeon_wdt_cpu_to_irq(cpu));
 
 
423			cpumask_set_cpu(cpu, &irq_enabled_cpus);
424		}
425	}
426	return 0;
427}
428
429static void octeon_wdt_calc_parameters(int t)
430{
431	unsigned int periods;
432
433	timeout_sec = max_timeout_sec;
434
435
436	/*
437	 * Find the largest interrupt period, that can evenly divide
438	 * the requested heartbeat time.
439	 */
440	while ((t % timeout_sec) != 0)
441		timeout_sec--;
442
443	periods = t / timeout_sec;
444
445	/*
446	 * The last two periods are after the irq is disabled, and
447	 * then to the nmi, so we subtract them off.
448	 */
449
450	countdown_reset = periods > 2 ? periods - 2 : 0;
451	heartbeat = t;
452	timeout_cnt = ((octeon_get_io_clock_rate() / divisor) * timeout_sec) >> 8;
453}
454
455static int octeon_wdt_set_timeout(struct watchdog_device *wdog,
456				  unsigned int t)
457{
458	int cpu;
459	int coreid;
460	union cvmx_ciu_wdogx ciu_wdog;
461	int node;
462
463	if (t <= 0)
464		return -1;
465
466	octeon_wdt_calc_parameters(t);
467
468	if (disable)
469		return 0;
470
471	for_each_online_cpu(cpu) {
472		coreid = cpu2core(cpu);
473		node = cpu_to_node(cpu);
474		cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
475		ciu_wdog.u64 = 0;
476		ciu_wdog.s.len = timeout_cnt;
477		ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
478		cvmx_write_csr_node(node, CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
479		cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
480	}
481	octeon_wdt_ping(wdog); /* Get the irqs back on. */
482	return 0;
483}
484
485static int octeon_wdt_start(struct watchdog_device *wdog)
486{
487	octeon_wdt_ping(wdog);
488	do_countdown = 1;
489	return 0;
490}
491
492static int octeon_wdt_stop(struct watchdog_device *wdog)
493{
494	do_countdown = 0;
495	octeon_wdt_ping(wdog);
496	return 0;
497}
498
 
 
 
 
499static const struct watchdog_info octeon_wdt_info = {
500	.options = WDIOF_SETTIMEOUT | WDIOF_MAGICCLOSE | WDIOF_KEEPALIVEPING,
501	.identity = "OCTEON",
502};
503
504static const struct watchdog_ops octeon_wdt_ops = {
505	.owner		= THIS_MODULE,
506	.start		= octeon_wdt_start,
507	.stop		= octeon_wdt_stop,
508	.ping		= octeon_wdt_ping,
509	.set_timeout	= octeon_wdt_set_timeout,
510};
511
512static struct watchdog_device octeon_wdt = {
513	.info	= &octeon_wdt_info,
514	.ops	= &octeon_wdt_ops,
515};
516
517static enum cpuhp_state octeon_wdt_online;
518/**
519 * octeon_wdt_init - Module/ driver initialization.
520 *
521 * Returns Zero on success
522 */
523static int __init octeon_wdt_init(void)
524{
 
525	int ret;
526
527	octeon_wdt_bootvector = cvmx_boot_vector_get();
528	if (!octeon_wdt_bootvector) {
529		pr_err("Error: Cannot allocate boot vector.\n");
530		return -ENOMEM;
531	}
532
533	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
534		divisor = 0x200;
535	else if (OCTEON_IS_MODEL(OCTEON_CN78XX))
536		divisor = 0x400;
537	else
538		divisor = 0x100;
539
540	/*
541	 * Watchdog time expiration length = The 16 bits of LEN
542	 * represent the most significant bits of a 24 bit decrementer
543	 * that decrements every divisor cycle.
544	 *
545	 * Try for a timeout of 5 sec, if that fails a smaller number
546	 * of even seconds,
547	 */
548	max_timeout_sec = 6;
549	do {
550		max_timeout_sec--;
551		timeout_cnt = ((octeon_get_io_clock_rate() / divisor) * max_timeout_sec) >> 8;
 
552	} while (timeout_cnt > 65535);
553
554	BUG_ON(timeout_cnt == 0);
555
556	octeon_wdt_calc_parameters(heartbeat);
557
558	pr_info("Initial granularity %d Sec\n", timeout_sec);
559
560	octeon_wdt.timeout	= timeout_sec;
561	octeon_wdt.max_timeout	= UINT_MAX;
562
563	watchdog_set_nowayout(&octeon_wdt, nowayout);
564
565	ret = watchdog_register_device(&octeon_wdt);
566	if (ret) {
567		pr_err("watchdog_register_device() failed: %d\n", ret);
568		return ret;
569	}
570
571	if (disable) {
572		pr_notice("disabled\n");
573		return 0;
 
 
 
 
 
574	}
 
575
576	cpumask_clear(&irq_enabled_cpus);
577
578	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "watchdog/octeon:online",
579				octeon_wdt_cpu_online, octeon_wdt_cpu_pre_down);
580	if (ret < 0)
581		goto err;
582	octeon_wdt_online = ret;
 
 
583	return 0;
584err:
585	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
586	watchdog_unregister_device(&octeon_wdt);
587	return ret;
588}
589
590/**
591 * octeon_wdt_cleanup - Module / driver shutdown
592 */
593static void __exit octeon_wdt_cleanup(void)
594{
 
 
595	watchdog_unregister_device(&octeon_wdt);
596
597	if (disable)
598		return;
 
 
 
 
 
 
 
 
599
600	cpuhp_remove_state(octeon_wdt_online);
601
602	/*
603	 * Disable the boot-bus memory, the code it points to is soon
604	 * to go missing.
605	 */
606	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
607}
608
609MODULE_LICENSE("GPL");
610MODULE_AUTHOR("Cavium Inc. <support@cavium.com>");
611MODULE_DESCRIPTION("Cavium Inc. OCTEON Watchdog driver.");
612module_init(octeon_wdt_init);
613module_exit(octeon_wdt_cleanup);
v4.6
 
  1/*
  2 * Octeon Watchdog driver
  3 *
  4 * Copyright (C) 2007, 2008, 2009, 2010 Cavium Networks
  5 *
  6 * Converted to use WATCHDOG_CORE by Aaro Koskinen <aaro.koskinen@iki.fi>.
  7 *
  8 * Some parts derived from wdt.c
  9 *
 10 *	(c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
 11 *						All Rights Reserved.
 12 *
 13 *	This program is free software; you can redistribute it and/or
 14 *	modify it under the terms of the GNU General Public License
 15 *	as published by the Free Software Foundation; either version
 16 *	2 of the License, or (at your option) any later version.
 17 *
 18 *	Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
 19 *	warranty for any of this software. This material is provided
 20 *	"AS-IS" and at no charge.
 21 *
 22 *	(c) Copyright 1995    Alan Cox <alan@lxorguk.ukuu.org.uk>
 23 *
 24 * This file is subject to the terms and conditions of the GNU General Public
 25 * License.  See the file "COPYING" in the main directory of this archive
 26 * for more details.
 27 *
 28 *
 29 * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
 30 * For most systems this is less than 10 seconds, so to allow for
 31 * software to request longer watchdog heartbeats, we maintain software
 32 * counters to count multiples of the base rate.  If the system locks
 33 * up in such a manner that we can not run the software counters, the
 34 * only result is a watchdog reset sooner than was requested.  But
 35 * that is OK, because in this case userspace would likely not be able
 36 * to do anything anyhow.
 37 *
 38 * The hardware watchdog interval we call the period.  The OCTEON
 39 * watchdog goes through several stages, after the first period an
 40 * irq is asserted, then if it is not reset, after the next period NMI
 41 * is asserted, then after an additional period a chip wide soft reset.
 42 * So for the software counters, we reset watchdog after each period
 43 * and decrement the counter.  But for the last two periods we need to
 44 * let the watchdog progress to the NMI stage so we disable the irq
 45 * and let it proceed.  Once in the NMI, we print the register state
 46 * to the serial port and then wait for the reset.
 47 *
 48 * A watchdog is maintained for each CPU in the system, that way if
 49 * one CPU suffers a lockup, we also get a register dump and reset.
 50 * The userspace ping resets the watchdog on all CPUs.
 51 *
 52 * Before userspace opens the watchdog device, we still run the
 53 * watchdogs to catch any lockups that may be kernel related.
 54 *
 55 */
 56
 57#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 58
 59#include <linux/miscdevice.h>
 60#include <linux/interrupt.h>
 61#include <linux/watchdog.h>
 62#include <linux/cpumask.h>
 63#include <linux/bitops.h>
 64#include <linux/kernel.h>
 65#include <linux/module.h>
 66#include <linux/string.h>
 67#include <linux/delay.h>
 68#include <linux/cpu.h>
 69#include <linux/smp.h>
 70#include <linux/fs.h>
 71#include <linux/irq.h>
 
 72
 73#include <asm/mipsregs.h>
 74#include <asm/uasm.h>
 75
 76#include <asm/octeon/octeon.h>
 
 
 
 
 
 
 
 
 77
 78/* The count needed to achieve timeout_sec. */
 79static unsigned int timeout_cnt;
 80
 81/* The maximum period supported. */
 82static unsigned int max_timeout_sec;
 83
 84/* The current period.  */
 85static unsigned int timeout_sec;
 86
 87/* Set to non-zero when userspace countdown mode active */
 88static int do_coundown;
 89static unsigned int countdown_reset;
 90static unsigned int per_cpu_countdown[NR_CPUS];
 91
 92static cpumask_t irq_enabled_cpus;
 93
 94#define WD_TIMO 60			/* Default heartbeat = 60 seconds */
 95
 
 
 96static int heartbeat = WD_TIMO;
 97module_param(heartbeat, int, S_IRUGO);
 98MODULE_PARM_DESC(heartbeat,
 99	"Watchdog heartbeat in seconds. (0 < heartbeat, default="
100				__MODULE_STRING(WD_TIMO) ")");
101
102static bool nowayout = WATCHDOG_NOWAYOUT;
103module_param(nowayout, bool, S_IRUGO);
104MODULE_PARM_DESC(nowayout,
105	"Watchdog cannot be stopped once started (default="
106				__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
107
108static u32 nmi_stage1_insns[64] __initdata;
109/* We need one branch and therefore one relocation per target label. */
110static struct uasm_label labels[5] __initdata;
111static struct uasm_reloc relocs[5] __initdata;
112
113enum lable_id {
114	label_enter_bootloader = 1
115};
116
117/* Some CP0 registers */
118#define K0		26
119#define C0_CVMMEMCTL 11, 7
120#define C0_STATUS 12, 0
121#define C0_EBASE 15, 1
122#define C0_DESAVE 31, 0
123
124void octeon_wdt_nmi_stage2(void);
125
126static void __init octeon_wdt_build_stage1(void)
127{
128	int i;
129	int len;
130	u32 *p = nmi_stage1_insns;
131#ifdef CONFIG_HOTPLUG_CPU
132	struct uasm_label *l = labels;
133	struct uasm_reloc *r = relocs;
134#endif
135
136	/*
137	 * For the next few instructions running the debugger may
138	 * cause corruption of k0 in the saved registers. Since we're
139	 * about to crash, nobody probably cares.
140	 *
141	 * Save K0 into the debug scratch register
142	 */
143	uasm_i_dmtc0(&p, K0, C0_DESAVE);
144
145	uasm_i_mfc0(&p, K0, C0_STATUS);
146#ifdef CONFIG_HOTPLUG_CPU
147	if (octeon_bootloader_entry_addr)
148		uasm_il_bbit0(&p, &r, K0, ilog2(ST0_NMI),
149			      label_enter_bootloader);
150#endif
151	/* Force 64-bit addressing enabled */
152	uasm_i_ori(&p, K0, K0, ST0_UX | ST0_SX | ST0_KX);
153	uasm_i_mtc0(&p, K0, C0_STATUS);
154
155#ifdef CONFIG_HOTPLUG_CPU
156	if (octeon_bootloader_entry_addr) {
157		uasm_i_mfc0(&p, K0, C0_EBASE);
158		/* Coreid number in K0 */
159		uasm_i_andi(&p, K0, K0, 0xf);
160		/* 8 * coreid in bits 16-31 */
161		uasm_i_dsll_safe(&p, K0, K0, 3 + 16);
162		uasm_i_ori(&p, K0, K0, 0x8001);
163		uasm_i_dsll_safe(&p, K0, K0, 16);
164		uasm_i_ori(&p, K0, K0, 0x0700);
165		uasm_i_drotr_safe(&p, K0, K0, 32);
166		/*
167		 * Should result in: 0x8001,0700,0000,8*coreid which is
168		 * CVMX_CIU_WDOGX(coreid) - 0x0500
169		 *
170		 * Now ld K0, CVMX_CIU_WDOGX(coreid)
171		 */
172		uasm_i_ld(&p, K0, 0x500, K0);
173		/*
174		 * If bit one set handle the NMI as a watchdog event.
175		 * otherwise transfer control to bootloader.
176		 */
177		uasm_il_bbit0(&p, &r, K0, 1, label_enter_bootloader);
178		uasm_i_nop(&p);
179	}
180#endif
181
182	/* Clear Dcache so cvmseg works right. */
183	uasm_i_cache(&p, 1, 0, 0);
184
185	/* Use K0 to do a read/modify/write of CVMMEMCTL */
186	uasm_i_dmfc0(&p, K0, C0_CVMMEMCTL);
187	/* Clear out the size of CVMSEG	*/
188	uasm_i_dins(&p, K0, 0, 0, 6);
189	/* Set CVMSEG to its largest value */
190	uasm_i_ori(&p, K0, K0, 0x1c0 | 54);
191	/* Store the CVMMEMCTL value */
192	uasm_i_dmtc0(&p, K0, C0_CVMMEMCTL);
193
194	/* Load the address of the second stage handler */
195	UASM_i_LA(&p, K0, (long)octeon_wdt_nmi_stage2);
196	uasm_i_jr(&p, K0);
197	uasm_i_dmfc0(&p, K0, C0_DESAVE);
198
199#ifdef CONFIG_HOTPLUG_CPU
200	if (octeon_bootloader_entry_addr) {
201		uasm_build_label(&l, p, label_enter_bootloader);
202		/* Jump to the bootloader and restore K0 */
203		UASM_i_LA(&p, K0, (long)octeon_bootloader_entry_addr);
204		uasm_i_jr(&p, K0);
205		uasm_i_dmfc0(&p, K0, C0_DESAVE);
206	}
207#endif
208	uasm_resolve_relocs(relocs, labels);
209
210	len = (int)(p - nmi_stage1_insns);
211	pr_debug("Synthesized NMI stage 1 handler (%d instructions)\n", len);
212
213	pr_debug("\t.set push\n");
214	pr_debug("\t.set noreorder\n");
215	for (i = 0; i < len; i++)
216		pr_debug("\t.word 0x%08x\n", nmi_stage1_insns[i]);
217	pr_debug("\t.set pop\n");
218
219	if (len > 32)
220		panic("NMI stage 1 handler exceeds 32 instructions, was %d\n",
221		      len);
222}
223
224static int cpu2core(int cpu)
225{
226#ifdef CONFIG_SMP
227	return cpu_logical_map(cpu);
228#else
229	return cvmx_get_core_num();
230#endif
231}
232
233static int core2cpu(int coreid)
234{
235#ifdef CONFIG_SMP
236	return cpu_number_map(coreid);
237#else
238	return 0;
239#endif
240}
241
242/**
243 * Poke the watchdog when an interrupt is received
244 *
245 * @cpl:
246 * @dev_id:
247 *
248 * Returns
249 */
250static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
251{
252	unsigned int core = cvmx_get_core_num();
253	int cpu = core2cpu(core);
 
254
255	if (do_coundown) {
256		if (per_cpu_countdown[cpu] > 0) {
257			/* We're alive, poke the watchdog */
258			cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
259			per_cpu_countdown[cpu]--;
260		} else {
261			/* Bad news, you are about to reboot. */
262			disable_irq_nosync(cpl);
263			cpumask_clear_cpu(cpu, &irq_enabled_cpus);
264		}
265	} else {
266		/* Not open, just ping away... */
267		cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
268	}
269	return IRQ_HANDLED;
270}
271
272/* From setup.c */
273extern int prom_putchar(char c);
274
275/**
276 * Write a string to the uart
277 *
278 * @str:        String to write
279 */
280static void octeon_wdt_write_string(const char *str)
281{
282	/* Just loop writing one byte at a time */
283	while (*str)
284		prom_putchar(*str++);
285}
286
287/**
288 * Write a hex number out of the uart
289 *
290 * @value:      Number to display
291 * @digits:     Number of digits to print (1 to 16)
292 */
293static void octeon_wdt_write_hex(u64 value, int digits)
294{
295	int d;
296	int v;
297
298	for (d = 0; d < digits; d++) {
299		v = (value >> ((digits - d - 1) * 4)) & 0xf;
300		if (v >= 10)
301			prom_putchar('a' + v - 10);
302		else
303			prom_putchar('0' + v);
304	}
305}
306
307static const char reg_name[][3] = {
308	"$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
309	"a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
310	"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
311	"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
312};
313
314/**
 
 
315 * NMI stage 3 handler. NMIs are handled in the following manner:
316 * 1) The first NMI handler enables CVMSEG and transfers from
317 * the bootbus region into normal memory. It is careful to not
318 * destroy any registers.
319 * 2) The second stage handler uses CVMSEG to save the registers
320 * and create a stack for C code. It then calls the third level
321 * handler with one argument, a pointer to the register values.
322 * 3) The third, and final, level handler is the following C
323 * function that prints out some useful infomration.
324 *
325 * @reg:    Pointer to register state before the NMI
326 */
327void octeon_wdt_nmi_stage3(u64 reg[32])
328{
329	u64 i;
330
331	unsigned int coreid = cvmx_get_core_num();
332	/*
333	 * Save status and cause early to get them before any changes
334	 * might happen.
335	 */
336	u64 cp0_cause = read_c0_cause();
337	u64 cp0_status = read_c0_status();
338	u64 cp0_error_epc = read_c0_errorepc();
339	u64 cp0_epc = read_c0_epc();
340
341	/* Delay so output from all cores output is not jumbled together. */
342	__delay(100000000ull * coreid);
343
344	octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
345	octeon_wdt_write_hex(coreid, 1);
346	octeon_wdt_write_string(" ***\r\n");
347	for (i = 0; i < 32; i++) {
348		octeon_wdt_write_string("\t");
349		octeon_wdt_write_string(reg_name[i]);
350		octeon_wdt_write_string("\t0x");
351		octeon_wdt_write_hex(reg[i], 16);
352		if (i & 1)
353			octeon_wdt_write_string("\r\n");
354	}
355	octeon_wdt_write_string("\terr_epc\t0x");
356	octeon_wdt_write_hex(cp0_error_epc, 16);
357
358	octeon_wdt_write_string("\tepc\t0x");
359	octeon_wdt_write_hex(cp0_epc, 16);
360	octeon_wdt_write_string("\r\n");
361
362	octeon_wdt_write_string("\tstatus\t0x");
363	octeon_wdt_write_hex(cp0_status, 16);
364	octeon_wdt_write_string("\tcause\t0x");
365	octeon_wdt_write_hex(cp0_cause, 16);
366	octeon_wdt_write_string("\r\n");
367
368	octeon_wdt_write_string("\tsum0\t0x");
369	octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
370	octeon_wdt_write_string("\ten0\t0x");
371	octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
372	octeon_wdt_write_string("\r\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
373
374	octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
375}
376
377static void octeon_wdt_disable_interrupt(int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
378{
379	unsigned int core;
380	unsigned int irq;
381	union cvmx_ciu_wdogx ciu_wdog;
382
383	core = cpu2core(cpu);
384
385	irq = OCTEON_IRQ_WDOG0 + core;
386
387	/* Poke the watchdog to clear out its state */
388	cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
389
390	/* Disable the hardware. */
391	ciu_wdog.u64 = 0;
392	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
393
394	free_irq(irq, octeon_wdt_poke_irq);
 
395}
396
397static void octeon_wdt_setup_interrupt(int cpu)
398{
399	unsigned int core;
400	unsigned int irq;
401	union cvmx_ciu_wdogx ciu_wdog;
 
 
 
402
403	core = cpu2core(cpu);
 
 
 
404
405	/* Disable it before doing anything with the interrupts. */
406	ciu_wdog.u64 = 0;
407	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
408
409	per_cpu_countdown[cpu] = countdown_reset;
410
411	irq = OCTEON_IRQ_WDOG0 + core;
 
 
 
 
 
 
 
 
 
 
412
413	if (request_irq(irq, octeon_wdt_poke_irq,
414			IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq))
415		panic("octeon_wdt: Couldn't obtain irq %d", irq);
416
 
 
 
 
 
 
 
 
 
417	cpumask_set_cpu(cpu, &irq_enabled_cpus);
418
419	/* Poke the watchdog to clear out its state */
420	cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
421
422	/* Finally enable the watchdog now that all handlers are installed */
423	ciu_wdog.u64 = 0;
424	ciu_wdog.s.len = timeout_cnt;
425	ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
426	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
427}
428
429static int octeon_wdt_cpu_callback(struct notifier_block *nfb,
430					   unsigned long action, void *hcpu)
431{
432	unsigned int cpu = (unsigned long)hcpu;
433
434	switch (action) {
435	case CPU_DOWN_PREPARE:
436		octeon_wdt_disable_interrupt(cpu);
437		break;
438	case CPU_ONLINE:
439	case CPU_DOWN_FAILED:
440		octeon_wdt_setup_interrupt(cpu);
441		break;
442	default:
443		break;
444	}
445	return NOTIFY_OK;
446}
447
448static int octeon_wdt_ping(struct watchdog_device __always_unused *wdog)
449{
450	int cpu;
451	int coreid;
 
 
 
 
452
453	for_each_online_cpu(cpu) {
454		coreid = cpu2core(cpu);
455		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
 
456		per_cpu_countdown[cpu] = countdown_reset;
457		if ((countdown_reset || !do_coundown) &&
458		    !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
459			/* We have to enable the irq */
460			int irq = OCTEON_IRQ_WDOG0 + coreid;
461
462			enable_irq(irq);
463			cpumask_set_cpu(cpu, &irq_enabled_cpus);
464		}
465	}
466	return 0;
467}
468
469static void octeon_wdt_calc_parameters(int t)
470{
471	unsigned int periods;
472
473	timeout_sec = max_timeout_sec;
474
475
476	/*
477	 * Find the largest interrupt period, that can evenly divide
478	 * the requested heartbeat time.
479	 */
480	while ((t % timeout_sec) != 0)
481		timeout_sec--;
482
483	periods = t / timeout_sec;
484
485	/*
486	 * The last two periods are after the irq is disabled, and
487	 * then to the nmi, so we subtract them off.
488	 */
489
490	countdown_reset = periods > 2 ? periods - 2 : 0;
491	heartbeat = t;
492	timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * timeout_sec) >> 8;
493}
494
495static int octeon_wdt_set_timeout(struct watchdog_device *wdog,
496				  unsigned int t)
497{
498	int cpu;
499	int coreid;
500	union cvmx_ciu_wdogx ciu_wdog;
 
501
502	if (t <= 0)
503		return -1;
504
505	octeon_wdt_calc_parameters(t);
506
 
 
 
507	for_each_online_cpu(cpu) {
508		coreid = cpu2core(cpu);
509		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
 
510		ciu_wdog.u64 = 0;
511		ciu_wdog.s.len = timeout_cnt;
512		ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
513		cvmx_write_csr(CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
514		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
515	}
516	octeon_wdt_ping(wdog); /* Get the irqs back on. */
517	return 0;
518}
519
520static int octeon_wdt_start(struct watchdog_device *wdog)
521{
522	octeon_wdt_ping(wdog);
523	do_coundown = 1;
524	return 0;
525}
526
527static int octeon_wdt_stop(struct watchdog_device *wdog)
528{
529	do_coundown = 0;
530	octeon_wdt_ping(wdog);
531	return 0;
532}
533
534static struct notifier_block octeon_wdt_cpu_notifier = {
535	.notifier_call = octeon_wdt_cpu_callback,
536};
537
538static const struct watchdog_info octeon_wdt_info = {
539	.options = WDIOF_SETTIMEOUT | WDIOF_MAGICCLOSE | WDIOF_KEEPALIVEPING,
540	.identity = "OCTEON",
541};
542
543static const struct watchdog_ops octeon_wdt_ops = {
544	.owner		= THIS_MODULE,
545	.start		= octeon_wdt_start,
546	.stop		= octeon_wdt_stop,
547	.ping		= octeon_wdt_ping,
548	.set_timeout	= octeon_wdt_set_timeout,
549};
550
551static struct watchdog_device octeon_wdt = {
552	.info	= &octeon_wdt_info,
553	.ops	= &octeon_wdt_ops,
554};
555
 
556/**
557 * Module/ driver initialization.
558 *
559 * Returns Zero on success
560 */
561static int __init octeon_wdt_init(void)
562{
563	int i;
564	int ret;
565	int cpu;
566	u64 *ptr;
 
 
 
 
 
 
 
 
 
 
 
567
568	/*
569	 * Watchdog time expiration length = The 16 bits of LEN
570	 * represent the most significant bits of a 24 bit decrementer
571	 * that decrements every 256 cycles.
572	 *
573	 * Try for a timeout of 5 sec, if that fails a smaller number
574	 * of even seconds,
575	 */
576	max_timeout_sec = 6;
577	do {
578		max_timeout_sec--;
579		timeout_cnt = ((octeon_get_io_clock_rate() >> 8) *
580			      max_timeout_sec) >> 8;
581	} while (timeout_cnt > 65535);
582
583	BUG_ON(timeout_cnt == 0);
584
585	octeon_wdt_calc_parameters(heartbeat);
586
587	pr_info("Initial granularity %d Sec\n", timeout_sec);
588
589	octeon_wdt.timeout	= timeout_sec;
590	octeon_wdt.max_timeout	= UINT_MAX;
591
592	watchdog_set_nowayout(&octeon_wdt, nowayout);
593
594	ret = watchdog_register_device(&octeon_wdt);
595	if (ret) {
596		pr_err("watchdog_register_device() failed: %d\n", ret);
597		return ret;
598	}
599
600	/* Build the NMI handler ... */
601	octeon_wdt_build_stage1();
602
603	/* ... and install it. */
604	ptr = (u64 *) nmi_stage1_insns;
605	for (i = 0; i < 16; i++) {
606		cvmx_write_csr(CVMX_MIO_BOOT_LOC_ADR, i * 8);
607		cvmx_write_csr(CVMX_MIO_BOOT_LOC_DAT, ptr[i]);
608	}
609	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0x81fc0000);
610
611	cpumask_clear(&irq_enabled_cpus);
612
613	cpu_notifier_register_begin();
614	for_each_online_cpu(cpu)
615		octeon_wdt_setup_interrupt(cpu);
616
617	__register_hotcpu_notifier(&octeon_wdt_cpu_notifier);
618	cpu_notifier_register_done();
619
620	return 0;
 
 
 
 
621}
622
623/**
624 * Module / driver shutdown
625 */
626static void __exit octeon_wdt_cleanup(void)
627{
628	int cpu;
629
630	watchdog_unregister_device(&octeon_wdt);
631
632	cpu_notifier_register_begin();
633	__unregister_hotcpu_notifier(&octeon_wdt_cpu_notifier);
634
635	for_each_online_cpu(cpu) {
636		int core = cpu2core(cpu);
637		/* Disable the watchdog */
638		cvmx_write_csr(CVMX_CIU_WDOGX(core), 0);
639		/* Free the interrupt handler */
640		free_irq(OCTEON_IRQ_WDOG0 + core, octeon_wdt_poke_irq);
641	}
642
643	cpu_notifier_register_done();
644
645	/*
646	 * Disable the boot-bus memory, the code it points to is soon
647	 * to go missing.
648	 */
649	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
650}
651
652MODULE_LICENSE("GPL");
653MODULE_AUTHOR("Cavium Networks <support@caviumnetworks.com>");
654MODULE_DESCRIPTION("Cavium Networks Octeon Watchdog driver.");
655module_init(octeon_wdt_init);
656module_exit(octeon_wdt_cleanup);