Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
   4 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
 
 
 
 
 
 
 
 
 
   5 */
   6#include <linux/kernel.h>
   7#include <linux/wait.h>
   8#include <linux/blkdev.h>
   9#include <linux/slab.h>
  10#include <linux/raid/md_p.h>
  11#include <linux/crc32c.h>
  12#include <linux/random.h>
  13#include <linux/kthread.h>
  14#include <linux/types.h>
  15#include "md.h"
  16#include "raid5.h"
  17#include "md-bitmap.h"
  18#include "raid5-log.h"
  19
  20/*
  21 * metadata/data stored in disk with 4k size unit (a block) regardless
  22 * underneath hardware sector size. only works with PAGE_SIZE == 4096
  23 */
  24#define BLOCK_SECTORS (8)
  25#define BLOCK_SECTOR_SHIFT (3)
  26
  27/*
  28 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
  29 *
  30 * In write through mode, the reclaim runs every log->max_free_space.
  31 * This can prevent the recovery scans for too long
  32 */
  33#define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
  34#define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
  35
  36/* wake up reclaim thread periodically */
  37#define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
  38/* start flush with these full stripes */
  39#define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
  40/* reclaim stripes in groups */
  41#define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
  42
  43/*
  44 * We only need 2 bios per I/O unit to make progress, but ensure we
  45 * have a few more available to not get too tight.
  46 */
  47#define R5L_POOL_SIZE	4
  48
  49static char *r5c_journal_mode_str[] = {"write-through",
  50				       "write-back"};
  51/*
  52 * raid5 cache state machine
  53 *
  54 * With the RAID cache, each stripe works in two phases:
  55 *	- caching phase
  56 *	- writing-out phase
  57 *
  58 * These two phases are controlled by bit STRIPE_R5C_CACHING:
  59 *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
  60 *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
  61 *
  62 * When there is no journal, or the journal is in write-through mode,
  63 * the stripe is always in writing-out phase.
  64 *
  65 * For write-back journal, the stripe is sent to caching phase on write
  66 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
  67 * the write-out phase by clearing STRIPE_R5C_CACHING.
  68 *
  69 * Stripes in caching phase do not write the raid disks. Instead, all
  70 * writes are committed from the log device. Therefore, a stripe in
  71 * caching phase handles writes as:
  72 *	- write to log device
  73 *	- return IO
  74 *
  75 * Stripes in writing-out phase handle writes as:
  76 *	- calculate parity
  77 *	- write pending data and parity to journal
  78 *	- write data and parity to raid disks
  79 *	- return IO for pending writes
  80 */
  81
  82struct r5l_log {
  83	struct md_rdev *rdev;
  84
  85	u32 uuid_checksum;
  86
  87	sector_t device_size;		/* log device size, round to
  88					 * BLOCK_SECTORS */
  89	sector_t max_free_space;	/* reclaim run if free space is at
  90					 * this size */
  91
  92	sector_t last_checkpoint;	/* log tail. where recovery scan
  93					 * starts from */
  94	u64 last_cp_seq;		/* log tail sequence */
  95
  96	sector_t log_start;		/* log head. where new data appends */
  97	u64 seq;			/* log head sequence */
  98
  99	sector_t next_checkpoint;
 
 100
 101	struct mutex io_mutex;
 102	struct r5l_io_unit *current_io;	/* current io_unit accepting new data */
 103
 104	spinlock_t io_list_lock;
 105	struct list_head running_ios;	/* io_units which are still running,
 106					 * and have not yet been completely
 107					 * written to the log */
 108	struct list_head io_end_ios;	/* io_units which have been completely
 109					 * written to the log but not yet written
 110					 * to the RAID */
 111	struct list_head flushing_ios;	/* io_units which are waiting for log
 112					 * cache flush */
 113	struct list_head finished_ios;	/* io_units which settle down in log disk */
 114	struct bio flush_bio;
 115
 116	struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
 117
 118	struct kmem_cache *io_kc;
 119	mempool_t io_pool;
 120	struct bio_set bs;
 121	mempool_t meta_pool;
 122
 123	struct md_thread *reclaim_thread;
 124	unsigned long reclaim_target;	/* number of space that need to be
 125					 * reclaimed.  if it's 0, reclaim spaces
 126					 * used by io_units which are in
 127					 * IO_UNIT_STRIPE_END state (eg, reclaim
 128					 * doesn't wait for specific io_unit
 129					 * switching to IO_UNIT_STRIPE_END
 130					 * state) */
 131	wait_queue_head_t iounit_wait;
 132
 133	struct list_head no_space_stripes; /* pending stripes, log has no space */
 134	spinlock_t no_space_stripes_lock;
 135
 136	bool need_cache_flush;
 137
 138	/* for r5c_cache */
 139	enum r5c_journal_mode r5c_journal_mode;
 140
 141	/* all stripes in r5cache, in the order of seq at sh->log_start */
 142	struct list_head stripe_in_journal_list;
 143
 144	spinlock_t stripe_in_journal_lock;
 145	atomic_t stripe_in_journal_count;
 146
 147	/* to submit async io_units, to fulfill ordering of flush */
 148	struct work_struct deferred_io_work;
 149	/* to disable write back during in degraded mode */
 150	struct work_struct disable_writeback_work;
 151
 152	/* to for chunk_aligned_read in writeback mode, details below */
 153	spinlock_t tree_lock;
 154	struct radix_tree_root big_stripe_tree;
 155};
 156
 157/*
 158 * Enable chunk_aligned_read() with write back cache.
 159 *
 160 * Each chunk may contain more than one stripe (for example, a 256kB
 161 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
 162 * chunk_aligned_read, these stripes are grouped into one "big_stripe".
 163 * For each big_stripe, we count how many stripes of this big_stripe
 164 * are in the write back cache. These data are tracked in a radix tree
 165 * (big_stripe_tree). We use radix_tree item pointer as the counter.
 166 * r5c_tree_index() is used to calculate keys for the radix tree.
 167 *
 168 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
 169 * big_stripe of each chunk in the tree. If this big_stripe is in the
 170 * tree, chunk_aligned_read() aborts. This look up is protected by
 171 * rcu_read_lock().
 172 *
 173 * It is necessary to remember whether a stripe is counted in
 174 * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
 175 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
 176 * two flags are set, the stripe is counted in big_stripe_tree. This
 177 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
 178 * r5c_try_caching_write(); and moving clear_bit of
 179 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
 180 * r5c_finish_stripe_write_out().
 181 */
 182
 183/*
 184 * radix tree requests lowest 2 bits of data pointer to be 2b'00.
 185 * So it is necessary to left shift the counter by 2 bits before using it
 186 * as data pointer of the tree.
 187 */
 188#define R5C_RADIX_COUNT_SHIFT 2
 189
 190/*
 191 * calculate key for big_stripe_tree
 192 *
 193 * sect: align_bi->bi_iter.bi_sector or sh->sector
 194 */
 195static inline sector_t r5c_tree_index(struct r5conf *conf,
 196				      sector_t sect)
 197{
 198	sector_div(sect, conf->chunk_sectors);
 199	return sect;
 200}
 201
 202/*
 203 * an IO range starts from a meta data block and end at the next meta data
 204 * block. The io unit's the meta data block tracks data/parity followed it. io
 205 * unit is written to log disk with normal write, as we always flush log disk
 206 * first and then start move data to raid disks, there is no requirement to
 207 * write io unit with FLUSH/FUA
 208 */
 209struct r5l_io_unit {
 210	struct r5l_log *log;
 211
 212	struct page *meta_page;	/* store meta block */
 213	int meta_offset;	/* current offset in meta_page */
 214
 215	struct bio *current_bio;/* current_bio accepting new data */
 216
 217	atomic_t pending_stripe;/* how many stripes not flushed to raid */
 218	u64 seq;		/* seq number of the metablock */
 219	sector_t log_start;	/* where the io_unit starts */
 220	sector_t log_end;	/* where the io_unit ends */
 221	struct list_head log_sibling; /* log->running_ios */
 222	struct list_head stripe_list; /* stripes added to the io_unit */
 223
 224	int state;
 225	bool need_split_bio;
 226	struct bio *split_bio;
 227
 228	unsigned int has_flush:1;		/* include flush request */
 229	unsigned int has_fua:1;			/* include fua request */
 230	unsigned int has_null_flush:1;		/* include null flush request */
 231	unsigned int has_flush_payload:1;	/* include flush payload  */
 232	/*
 233	 * io isn't sent yet, flush/fua request can only be submitted till it's
 234	 * the first IO in running_ios list
 235	 */
 236	unsigned int io_deferred:1;
 237
 238	struct bio_list flush_barriers;   /* size == 0 flush bios */
 239};
 240
 241/* r5l_io_unit state */
 242enum r5l_io_unit_state {
 243	IO_UNIT_RUNNING = 0,	/* accepting new IO */
 244	IO_UNIT_IO_START = 1,	/* io_unit bio start writing to log,
 245				 * don't accepting new bio */
 246	IO_UNIT_IO_END = 2,	/* io_unit bio finish writing to log */
 247	IO_UNIT_STRIPE_END = 3,	/* stripes data finished writing to raid */
 248};
 249
 250bool r5c_is_writeback(struct r5l_log *log)
 251{
 252	return (log != NULL &&
 253		log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
 254}
 255
 256static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
 257{
 258	start += inc;
 259	if (start >= log->device_size)
 260		start = start - log->device_size;
 261	return start;
 262}
 263
 264static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
 265				  sector_t end)
 266{
 267	if (end >= start)
 268		return end - start;
 269	else
 270		return end + log->device_size - start;
 271}
 272
 273static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
 274{
 275	sector_t used_size;
 276
 277	used_size = r5l_ring_distance(log, log->last_checkpoint,
 278					log->log_start);
 279
 280	return log->device_size > used_size + size;
 281}
 282
 283static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
 284				    enum r5l_io_unit_state state)
 285{
 286	if (WARN_ON(io->state >= state))
 287		return;
 288	io->state = state;
 289}
 290
 291static void
 292r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
 293{
 294	struct bio *wbi, *wbi2;
 295
 296	wbi = dev->written;
 297	dev->written = NULL;
 298	while (wbi && wbi->bi_iter.bi_sector <
 299	       dev->sector + RAID5_STRIPE_SECTORS(conf)) {
 300		wbi2 = r5_next_bio(conf, wbi, dev->sector);
 301		md_write_end(conf->mddev);
 302		bio_endio(wbi);
 303		wbi = wbi2;
 304	}
 305}
 306
 307void r5c_handle_cached_data_endio(struct r5conf *conf,
 308				  struct stripe_head *sh, int disks)
 309{
 310	int i;
 311
 312	for (i = sh->disks; i--; ) {
 313		if (sh->dev[i].written) {
 314			set_bit(R5_UPTODATE, &sh->dev[i].flags);
 315			r5c_return_dev_pending_writes(conf, &sh->dev[i]);
 316			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
 317					   RAID5_STRIPE_SECTORS(conf),
 318					   !test_bit(STRIPE_DEGRADED, &sh->state),
 319					   0);
 320		}
 321	}
 322}
 323
 324void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
 325
 326/* Check whether we should flush some stripes to free up stripe cache */
 327void r5c_check_stripe_cache_usage(struct r5conf *conf)
 328{
 329	int total_cached;
 330
 331	if (!r5c_is_writeback(conf->log))
 332		return;
 333
 334	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
 335		atomic_read(&conf->r5c_cached_full_stripes);
 336
 337	/*
 338	 * The following condition is true for either of the following:
 339	 *   - stripe cache pressure high:
 340	 *          total_cached > 3/4 min_nr_stripes ||
 341	 *          empty_inactive_list_nr > 0
 342	 *   - stripe cache pressure moderate:
 343	 *          total_cached > 1/2 min_nr_stripes
 344	 */
 345	if (total_cached > conf->min_nr_stripes * 1 / 2 ||
 346	    atomic_read(&conf->empty_inactive_list_nr) > 0)
 347		r5l_wake_reclaim(conf->log, 0);
 348}
 349
 350/*
 351 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
 352 * stripes in the cache
 353 */
 354void r5c_check_cached_full_stripe(struct r5conf *conf)
 355{
 356	if (!r5c_is_writeback(conf->log))
 357		return;
 358
 359	/*
 360	 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
 361	 * or a full stripe (chunk size / 4k stripes).
 362	 */
 363	if (atomic_read(&conf->r5c_cached_full_stripes) >=
 364	    min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
 365		conf->chunk_sectors >> RAID5_STRIPE_SHIFT(conf)))
 366		r5l_wake_reclaim(conf->log, 0);
 367}
 368
 369/*
 370 * Total log space (in sectors) needed to flush all data in cache
 371 *
 372 * To avoid deadlock due to log space, it is necessary to reserve log
 373 * space to flush critical stripes (stripes that occupying log space near
 374 * last_checkpoint). This function helps check how much log space is
 375 * required to flush all cached stripes.
 376 *
 377 * To reduce log space requirements, two mechanisms are used to give cache
 378 * flush higher priorities:
 379 *    1. In handle_stripe_dirtying() and schedule_reconstruction(),
 380 *       stripes ALREADY in journal can be flushed w/o pending writes;
 381 *    2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
 382 *       can be delayed (r5l_add_no_space_stripe).
 383 *
 384 * In cache flush, the stripe goes through 1 and then 2. For a stripe that
 385 * already passed 1, flushing it requires at most (conf->max_degraded + 1)
 386 * pages of journal space. For stripes that has not passed 1, flushing it
 387 * requires (conf->raid_disks + 1) pages of journal space. There are at
 388 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
 389 * required to flush all cached stripes (in pages) is:
 390 *
 391 *     (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
 392 *     (group_cnt + 1) * (raid_disks + 1)
 393 * or
 394 *     (stripe_in_journal_count) * (max_degraded + 1) +
 395 *     (group_cnt + 1) * (raid_disks - max_degraded)
 396 */
 397static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
 398{
 399	struct r5l_log *log = conf->log;
 400
 401	if (!r5c_is_writeback(log))
 402		return 0;
 403
 404	return BLOCK_SECTORS *
 405		((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
 406		 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
 407}
 408
 409/*
 410 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
 411 *
 412 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
 413 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
 414 * device is less than 2x of reclaim_required_space.
 415 */
 416static inline void r5c_update_log_state(struct r5l_log *log)
 417{
 418	struct r5conf *conf = log->rdev->mddev->private;
 419	sector_t free_space;
 420	sector_t reclaim_space;
 421	bool wake_reclaim = false;
 422
 423	if (!r5c_is_writeback(log))
 424		return;
 425
 426	free_space = r5l_ring_distance(log, log->log_start,
 427				       log->last_checkpoint);
 428	reclaim_space = r5c_log_required_to_flush_cache(conf);
 429	if (free_space < 2 * reclaim_space)
 430		set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
 431	else {
 432		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
 433			wake_reclaim = true;
 434		clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
 435	}
 436	if (free_space < 3 * reclaim_space)
 437		set_bit(R5C_LOG_TIGHT, &conf->cache_state);
 438	else
 439		clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
 440
 441	if (wake_reclaim)
 442		r5l_wake_reclaim(log, 0);
 443}
 444
 445/*
 446 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
 447 * This function should only be called in write-back mode.
 448 */
 449void r5c_make_stripe_write_out(struct stripe_head *sh)
 450{
 451	struct r5conf *conf = sh->raid_conf;
 452	struct r5l_log *log = conf->log;
 453
 454	BUG_ON(!r5c_is_writeback(log));
 455
 456	WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
 457	clear_bit(STRIPE_R5C_CACHING, &sh->state);
 458
 459	if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 460		atomic_inc(&conf->preread_active_stripes);
 461}
 462
 463static void r5c_handle_data_cached(struct stripe_head *sh)
 464{
 465	int i;
 466
 467	for (i = sh->disks; i--; )
 468		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
 469			set_bit(R5_InJournal, &sh->dev[i].flags);
 470			clear_bit(R5_LOCKED, &sh->dev[i].flags);
 471		}
 472	clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
 473}
 474
 475/*
 476 * this journal write must contain full parity,
 477 * it may also contain some data pages
 478 */
 479static void r5c_handle_parity_cached(struct stripe_head *sh)
 480{
 481	int i;
 482
 483	for (i = sh->disks; i--; )
 484		if (test_bit(R5_InJournal, &sh->dev[i].flags))
 485			set_bit(R5_Wantwrite, &sh->dev[i].flags);
 486}
 487
 488/*
 489 * Setting proper flags after writing (or flushing) data and/or parity to the
 490 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
 491 */
 492static void r5c_finish_cache_stripe(struct stripe_head *sh)
 493{
 494	struct r5l_log *log = sh->raid_conf->log;
 495
 496	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
 497		BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
 498		/*
 499		 * Set R5_InJournal for parity dev[pd_idx]. This means
 500		 * all data AND parity in the journal. For RAID 6, it is
 501		 * NOT necessary to set the flag for dev[qd_idx], as the
 502		 * two parities are written out together.
 503		 */
 504		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
 505	} else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
 506		r5c_handle_data_cached(sh);
 507	} else {
 508		r5c_handle_parity_cached(sh);
 509		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
 510	}
 511}
 512
 513static void r5l_io_run_stripes(struct r5l_io_unit *io)
 514{
 515	struct stripe_head *sh, *next;
 516
 517	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
 518		list_del_init(&sh->log_list);
 519
 520		r5c_finish_cache_stripe(sh);
 521
 522		set_bit(STRIPE_HANDLE, &sh->state);
 523		raid5_release_stripe(sh);
 524	}
 525}
 526
 527static void r5l_log_run_stripes(struct r5l_log *log)
 528{
 529	struct r5l_io_unit *io, *next;
 530
 531	lockdep_assert_held(&log->io_list_lock);
 532
 533	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
 534		/* don't change list order */
 535		if (io->state < IO_UNIT_IO_END)
 536			break;
 537
 538		list_move_tail(&io->log_sibling, &log->finished_ios);
 539		r5l_io_run_stripes(io);
 540	}
 541}
 542
 543static void r5l_move_to_end_ios(struct r5l_log *log)
 544{
 545	struct r5l_io_unit *io, *next;
 546
 547	lockdep_assert_held(&log->io_list_lock);
 548
 549	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
 550		/* don't change list order */
 551		if (io->state < IO_UNIT_IO_END)
 552			break;
 553		list_move_tail(&io->log_sibling, &log->io_end_ios);
 554	}
 555}
 556
 557static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
 558static void r5l_log_endio(struct bio *bio)
 559{
 560	struct r5l_io_unit *io = bio->bi_private;
 561	struct r5l_io_unit *io_deferred;
 562	struct r5l_log *log = io->log;
 563	unsigned long flags;
 564	bool has_null_flush;
 565	bool has_flush_payload;
 566
 567	if (bio->bi_status)
 568		md_error(log->rdev->mddev, log->rdev);
 569
 570	bio_put(bio);
 571	mempool_free(io->meta_page, &log->meta_pool);
 572
 573	spin_lock_irqsave(&log->io_list_lock, flags);
 574	__r5l_set_io_unit_state(io, IO_UNIT_IO_END);
 575
 576	/*
 577	 * if the io doesn't not have null_flush or flush payload,
 578	 * it is not safe to access it after releasing io_list_lock.
 579	 * Therefore, it is necessary to check the condition with
 580	 * the lock held.
 581	 */
 582	has_null_flush = io->has_null_flush;
 583	has_flush_payload = io->has_flush_payload;
 584
 585	if (log->need_cache_flush && !list_empty(&io->stripe_list))
 586		r5l_move_to_end_ios(log);
 587	else
 588		r5l_log_run_stripes(log);
 589	if (!list_empty(&log->running_ios)) {
 590		/*
 591		 * FLUSH/FUA io_unit is deferred because of ordering, now we
 592		 * can dispatch it
 593		 */
 594		io_deferred = list_first_entry(&log->running_ios,
 595					       struct r5l_io_unit, log_sibling);
 596		if (io_deferred->io_deferred)
 597			schedule_work(&log->deferred_io_work);
 598	}
 599
 600	spin_unlock_irqrestore(&log->io_list_lock, flags);
 601
 602	if (log->need_cache_flush)
 603		md_wakeup_thread(log->rdev->mddev->thread);
 604
 605	/* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
 606	if (has_null_flush) {
 607		struct bio *bi;
 608
 609		WARN_ON(bio_list_empty(&io->flush_barriers));
 610		while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
 611			bio_endio(bi);
 612			if (atomic_dec_and_test(&io->pending_stripe)) {
 613				__r5l_stripe_write_finished(io);
 614				return;
 615			}
 616		}
 617	}
 618	/* decrease pending_stripe for flush payload */
 619	if (has_flush_payload)
 620		if (atomic_dec_and_test(&io->pending_stripe))
 621			__r5l_stripe_write_finished(io);
 622}
 623
 624static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
 625{
 626	unsigned long flags;
 627
 628	spin_lock_irqsave(&log->io_list_lock, flags);
 629	__r5l_set_io_unit_state(io, IO_UNIT_IO_START);
 630	spin_unlock_irqrestore(&log->io_list_lock, flags);
 631
 632	/*
 633	 * In case of journal device failures, submit_bio will get error
 634	 * and calls endio, then active stripes will continue write
 635	 * process. Therefore, it is not necessary to check Faulty bit
 636	 * of journal device here.
 637	 *
 638	 * We can't check split_bio after current_bio is submitted. If
 639	 * io->split_bio is null, after current_bio is submitted, current_bio
 640	 * might already be completed and the io_unit is freed. We submit
 641	 * split_bio first to avoid the issue.
 642	 */
 643	if (io->split_bio) {
 644		if (io->has_flush)
 645			io->split_bio->bi_opf |= REQ_PREFLUSH;
 646		if (io->has_fua)
 647			io->split_bio->bi_opf |= REQ_FUA;
 648		submit_bio(io->split_bio);
 649	}
 650
 651	if (io->has_flush)
 652		io->current_bio->bi_opf |= REQ_PREFLUSH;
 653	if (io->has_fua)
 654		io->current_bio->bi_opf |= REQ_FUA;
 655	submit_bio(io->current_bio);
 656}
 657
 658/* deferred io_unit will be dispatched here */
 659static void r5l_submit_io_async(struct work_struct *work)
 660{
 661	struct r5l_log *log = container_of(work, struct r5l_log,
 662					   deferred_io_work);
 663	struct r5l_io_unit *io = NULL;
 664	unsigned long flags;
 665
 666	spin_lock_irqsave(&log->io_list_lock, flags);
 667	if (!list_empty(&log->running_ios)) {
 668		io = list_first_entry(&log->running_ios, struct r5l_io_unit,
 669				      log_sibling);
 670		if (!io->io_deferred)
 671			io = NULL;
 672		else
 673			io->io_deferred = 0;
 674	}
 675	spin_unlock_irqrestore(&log->io_list_lock, flags);
 676	if (io)
 677		r5l_do_submit_io(log, io);
 678}
 679
 680static void r5c_disable_writeback_async(struct work_struct *work)
 681{
 682	struct r5l_log *log = container_of(work, struct r5l_log,
 683					   disable_writeback_work);
 684	struct mddev *mddev = log->rdev->mddev;
 685	struct r5conf *conf = mddev->private;
 686	int locked = 0;
 687
 688	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
 689		return;
 690	pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
 691		mdname(mddev));
 692
 693	/* wait superblock change before suspend */
 694	wait_event(mddev->sb_wait,
 695		   conf->log == NULL ||
 696		   (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) &&
 697		    (locked = mddev_trylock(mddev))));
 698	if (locked) {
 699		mddev_suspend(mddev);
 700		log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
 701		mddev_resume(mddev);
 702		mddev_unlock(mddev);
 703	}
 704}
 705
 706static void r5l_submit_current_io(struct r5l_log *log)
 707{
 708	struct r5l_io_unit *io = log->current_io;
 709	struct r5l_meta_block *block;
 710	unsigned long flags;
 711	u32 crc;
 712	bool do_submit = true;
 713
 714	if (!io)
 715		return;
 716
 717	block = page_address(io->meta_page);
 718	block->meta_size = cpu_to_le32(io->meta_offset);
 719	crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
 720	block->checksum = cpu_to_le32(crc);
 721
 722	log->current_io = NULL;
 723	spin_lock_irqsave(&log->io_list_lock, flags);
 724	if (io->has_flush || io->has_fua) {
 725		if (io != list_first_entry(&log->running_ios,
 726					   struct r5l_io_unit, log_sibling)) {
 727			io->io_deferred = 1;
 728			do_submit = false;
 729		}
 730	}
 731	spin_unlock_irqrestore(&log->io_list_lock, flags);
 732	if (do_submit)
 733		r5l_do_submit_io(log, io);
 734}
 735
 736static struct bio *r5l_bio_alloc(struct r5l_log *log)
 737{
 738	struct bio *bio = bio_alloc_bioset(log->rdev->bdev, BIO_MAX_VECS,
 739					   REQ_OP_WRITE, GFP_NOIO, &log->bs);
 740
 
 
 741	bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
 742
 743	return bio;
 744}
 745
 746static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
 747{
 748	log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
 749
 750	r5c_update_log_state(log);
 751	/*
 752	 * If we filled up the log device start from the beginning again,
 753	 * which will require a new bio.
 754	 *
 755	 * Note: for this to work properly the log size needs to me a multiple
 756	 * of BLOCK_SECTORS.
 757	 */
 758	if (log->log_start == 0)
 759		io->need_split_bio = true;
 760
 761	io->log_end = log->log_start;
 762}
 763
 764static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
 765{
 766	struct r5l_io_unit *io;
 767	struct r5l_meta_block *block;
 768
 769	io = mempool_alloc(&log->io_pool, GFP_ATOMIC);
 770	if (!io)
 771		return NULL;
 772	memset(io, 0, sizeof(*io));
 773
 774	io->log = log;
 775	INIT_LIST_HEAD(&io->log_sibling);
 776	INIT_LIST_HEAD(&io->stripe_list);
 777	bio_list_init(&io->flush_barriers);
 778	io->state = IO_UNIT_RUNNING;
 779
 780	io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO);
 781	block = page_address(io->meta_page);
 782	clear_page(block);
 783	block->magic = cpu_to_le32(R5LOG_MAGIC);
 784	block->version = R5LOG_VERSION;
 785	block->seq = cpu_to_le64(log->seq);
 786	block->position = cpu_to_le64(log->log_start);
 787
 788	io->log_start = log->log_start;
 789	io->meta_offset = sizeof(struct r5l_meta_block);
 790	io->seq = log->seq++;
 791
 792	io->current_bio = r5l_bio_alloc(log);
 793	io->current_bio->bi_end_io = r5l_log_endio;
 794	io->current_bio->bi_private = io;
 795	bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
 796
 797	r5_reserve_log_entry(log, io);
 798
 799	spin_lock_irq(&log->io_list_lock);
 800	list_add_tail(&io->log_sibling, &log->running_ios);
 801	spin_unlock_irq(&log->io_list_lock);
 802
 803	return io;
 804}
 805
 806static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
 807{
 808	if (log->current_io &&
 809	    log->current_io->meta_offset + payload_size > PAGE_SIZE)
 810		r5l_submit_current_io(log);
 811
 812	if (!log->current_io) {
 813		log->current_io = r5l_new_meta(log);
 814		if (!log->current_io)
 815			return -ENOMEM;
 816	}
 817
 818	return 0;
 819}
 820
 821static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
 822				    sector_t location,
 823				    u32 checksum1, u32 checksum2,
 824				    bool checksum2_valid)
 825{
 826	struct r5l_io_unit *io = log->current_io;
 827	struct r5l_payload_data_parity *payload;
 828
 829	payload = page_address(io->meta_page) + io->meta_offset;
 830	payload->header.type = cpu_to_le16(type);
 831	payload->header.flags = cpu_to_le16(0);
 832	payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
 833				    (PAGE_SHIFT - 9));
 834	payload->location = cpu_to_le64(location);
 835	payload->checksum[0] = cpu_to_le32(checksum1);
 836	if (checksum2_valid)
 837		payload->checksum[1] = cpu_to_le32(checksum2);
 838
 839	io->meta_offset += sizeof(struct r5l_payload_data_parity) +
 840		sizeof(__le32) * (1 + !!checksum2_valid);
 841}
 842
 843static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
 844{
 845	struct r5l_io_unit *io = log->current_io;
 846
 847	if (io->need_split_bio) {
 848		BUG_ON(io->split_bio);
 849		io->split_bio = io->current_bio;
 850		io->current_bio = r5l_bio_alloc(log);
 851		bio_chain(io->current_bio, io->split_bio);
 852		io->need_split_bio = false;
 
 853	}
 854
 855	if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
 856		BUG();
 857
 858	r5_reserve_log_entry(log, io);
 859}
 860
 861static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
 862{
 863	struct mddev *mddev = log->rdev->mddev;
 864	struct r5conf *conf = mddev->private;
 865	struct r5l_io_unit *io;
 866	struct r5l_payload_flush *payload;
 867	int meta_size;
 868
 869	/*
 870	 * payload_flush requires extra writes to the journal.
 871	 * To avoid handling the extra IO in quiesce, just skip
 872	 * flush_payload
 873	 */
 874	if (conf->quiesce)
 875		return;
 876
 877	mutex_lock(&log->io_mutex);
 878	meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
 879
 880	if (r5l_get_meta(log, meta_size)) {
 881		mutex_unlock(&log->io_mutex);
 882		return;
 883	}
 884
 885	/* current implementation is one stripe per flush payload */
 886	io = log->current_io;
 887	payload = page_address(io->meta_page) + io->meta_offset;
 888	payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
 889	payload->header.flags = cpu_to_le16(0);
 890	payload->size = cpu_to_le32(sizeof(__le64));
 891	payload->flush_stripes[0] = cpu_to_le64(sect);
 892	io->meta_offset += meta_size;
 893	/* multiple flush payloads count as one pending_stripe */
 894	if (!io->has_flush_payload) {
 895		io->has_flush_payload = 1;
 896		atomic_inc(&io->pending_stripe);
 897	}
 898	mutex_unlock(&log->io_mutex);
 899}
 900
 901static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
 902			   int data_pages, int parity_pages)
 903{
 904	int i;
 905	int meta_size;
 906	int ret;
 907	struct r5l_io_unit *io;
 908
 909	meta_size =
 910		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
 911		 * data_pages) +
 912		sizeof(struct r5l_payload_data_parity) +
 913		sizeof(__le32) * parity_pages;
 914
 915	ret = r5l_get_meta(log, meta_size);
 916	if (ret)
 917		return ret;
 918
 919	io = log->current_io;
 920
 921	if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
 922		io->has_flush = 1;
 923
 924	for (i = 0; i < sh->disks; i++) {
 925		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
 926		    test_bit(R5_InJournal, &sh->dev[i].flags))
 927			continue;
 928		if (i == sh->pd_idx || i == sh->qd_idx)
 929			continue;
 930		if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
 931		    log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
 932			io->has_fua = 1;
 933			/*
 934			 * we need to flush journal to make sure recovery can
 935			 * reach the data with fua flag
 936			 */
 937			io->has_flush = 1;
 938		}
 939		r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
 940					raid5_compute_blocknr(sh, i, 0),
 941					sh->dev[i].log_checksum, 0, false);
 942		r5l_append_payload_page(log, sh->dev[i].page);
 943	}
 944
 945	if (parity_pages == 2) {
 946		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
 947					sh->sector, sh->dev[sh->pd_idx].log_checksum,
 948					sh->dev[sh->qd_idx].log_checksum, true);
 949		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
 950		r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
 951	} else if (parity_pages == 1) {
 952		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
 953					sh->sector, sh->dev[sh->pd_idx].log_checksum,
 954					0, false);
 955		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
 956	} else  /* Just writing data, not parity, in caching phase */
 957		BUG_ON(parity_pages != 0);
 958
 959	list_add_tail(&sh->log_list, &io->stripe_list);
 960	atomic_inc(&io->pending_stripe);
 961	sh->log_io = io;
 962
 963	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
 964		return 0;
 965
 966	if (sh->log_start == MaxSector) {
 967		BUG_ON(!list_empty(&sh->r5c));
 968		sh->log_start = io->log_start;
 969		spin_lock_irq(&log->stripe_in_journal_lock);
 970		list_add_tail(&sh->r5c,
 971			      &log->stripe_in_journal_list);
 972		spin_unlock_irq(&log->stripe_in_journal_lock);
 973		atomic_inc(&log->stripe_in_journal_count);
 974	}
 975	return 0;
 976}
 977
 978/* add stripe to no_space_stripes, and then wake up reclaim */
 979static inline void r5l_add_no_space_stripe(struct r5l_log *log,
 980					   struct stripe_head *sh)
 981{
 982	spin_lock(&log->no_space_stripes_lock);
 983	list_add_tail(&sh->log_list, &log->no_space_stripes);
 984	spin_unlock(&log->no_space_stripes_lock);
 985}
 986
 987/*
 988 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
 989 * data from log to raid disks), so we shouldn't wait for reclaim here
 990 */
 991int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
 992{
 993	struct r5conf *conf = sh->raid_conf;
 994	int write_disks = 0;
 995	int data_pages, parity_pages;
 
 996	int reserve;
 997	int i;
 998	int ret = 0;
 999	bool wake_reclaim = false;
1000
1001	if (!log)
1002		return -EAGAIN;
1003	/* Don't support stripe batch */
1004	if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
1005	    test_bit(STRIPE_SYNCING, &sh->state)) {
1006		/* the stripe is written to log, we start writing it to raid */
1007		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
1008		return -EAGAIN;
1009	}
1010
1011	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
1012
1013	for (i = 0; i < sh->disks; i++) {
1014		void *addr;
1015
1016		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1017		    test_bit(R5_InJournal, &sh->dev[i].flags))
1018			continue;
1019
1020		write_disks++;
1021		/* checksum is already calculated in last run */
1022		if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1023			continue;
1024		addr = kmap_atomic(sh->dev[i].page);
1025		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1026						    addr, PAGE_SIZE);
1027		kunmap_atomic(addr);
1028	}
1029	parity_pages = 1 + !!(sh->qd_idx >= 0);
1030	data_pages = write_disks - parity_pages;
1031
 
 
 
 
 
 
 
 
 
1032	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1033	/*
1034	 * The stripe must enter state machine again to finish the write, so
1035	 * don't delay.
1036	 */
1037	clear_bit(STRIPE_DELAYED, &sh->state);
1038	atomic_inc(&sh->count);
1039
1040	mutex_lock(&log->io_mutex);
1041	/* meta + data */
1042	reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
 
 
 
 
1043
1044	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1045		if (!r5l_has_free_space(log, reserve)) {
1046			r5l_add_no_space_stripe(log, sh);
1047			wake_reclaim = true;
1048		} else {
1049			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1050			if (ret) {
1051				spin_lock_irq(&log->io_list_lock);
1052				list_add_tail(&sh->log_list,
1053					      &log->no_mem_stripes);
1054				spin_unlock_irq(&log->io_list_lock);
1055			}
1056		}
1057	} else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
1058		/*
1059		 * log space critical, do not process stripes that are
1060		 * not in cache yet (sh->log_start == MaxSector).
1061		 */
1062		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1063		    sh->log_start == MaxSector) {
1064			r5l_add_no_space_stripe(log, sh);
1065			wake_reclaim = true;
1066			reserve = 0;
1067		} else if (!r5l_has_free_space(log, reserve)) {
1068			if (sh->log_start == log->last_checkpoint)
1069				BUG();
1070			else
1071				r5l_add_no_space_stripe(log, sh);
1072		} else {
1073			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1074			if (ret) {
1075				spin_lock_irq(&log->io_list_lock);
1076				list_add_tail(&sh->log_list,
1077					      &log->no_mem_stripes);
1078				spin_unlock_irq(&log->io_list_lock);
1079			}
1080		}
1081	}
1082
1083	mutex_unlock(&log->io_mutex);
1084	if (wake_reclaim)
1085		r5l_wake_reclaim(log, reserve);
1086	return 0;
1087}
1088
1089void r5l_write_stripe_run(struct r5l_log *log)
1090{
1091	if (!log)
1092		return;
1093	mutex_lock(&log->io_mutex);
1094	r5l_submit_current_io(log);
1095	mutex_unlock(&log->io_mutex);
1096}
1097
1098int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1099{
1100	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1101		/*
1102		 * in write through (journal only)
1103		 * we flush log disk cache first, then write stripe data to
1104		 * raid disks. So if bio is finished, the log disk cache is
1105		 * flushed already. The recovery guarantees we can recovery
1106		 * the bio from log disk, so we don't need to flush again
1107		 */
1108		if (bio->bi_iter.bi_size == 0) {
1109			bio_endio(bio);
1110			return 0;
1111		}
1112		bio->bi_opf &= ~REQ_PREFLUSH;
1113	} else {
1114		/* write back (with cache) */
1115		if (bio->bi_iter.bi_size == 0) {
1116			mutex_lock(&log->io_mutex);
1117			r5l_get_meta(log, 0);
1118			bio_list_add(&log->current_io->flush_barriers, bio);
1119			log->current_io->has_flush = 1;
1120			log->current_io->has_null_flush = 1;
1121			atomic_inc(&log->current_io->pending_stripe);
1122			r5l_submit_current_io(log);
1123			mutex_unlock(&log->io_mutex);
1124			return 0;
1125		}
1126	}
 
1127	return -EAGAIN;
1128}
1129
1130/* This will run after log space is reclaimed */
1131static void r5l_run_no_space_stripes(struct r5l_log *log)
1132{
1133	struct stripe_head *sh;
1134
1135	spin_lock(&log->no_space_stripes_lock);
1136	while (!list_empty(&log->no_space_stripes)) {
1137		sh = list_first_entry(&log->no_space_stripes,
1138				      struct stripe_head, log_list);
1139		list_del_init(&sh->log_list);
1140		set_bit(STRIPE_HANDLE, &sh->state);
1141		raid5_release_stripe(sh);
1142	}
1143	spin_unlock(&log->no_space_stripes_lock);
1144}
1145
1146/*
1147 * calculate new last_checkpoint
1148 * for write through mode, returns log->next_checkpoint
1149 * for write back, returns log_start of first sh in stripe_in_journal_list
1150 */
1151static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1152{
1153	struct stripe_head *sh;
1154	struct r5l_log *log = conf->log;
1155	sector_t new_cp;
1156	unsigned long flags;
1157
1158	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1159		return log->next_checkpoint;
1160
1161	spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1162	if (list_empty(&conf->log->stripe_in_journal_list)) {
1163		/* all stripes flushed */
1164		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1165		return log->next_checkpoint;
1166	}
1167	sh = list_first_entry(&conf->log->stripe_in_journal_list,
1168			      struct stripe_head, r5c);
1169	new_cp = sh->log_start;
1170	spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1171	return new_cp;
1172}
1173
1174static sector_t r5l_reclaimable_space(struct r5l_log *log)
1175{
1176	struct r5conf *conf = log->rdev->mddev->private;
1177
1178	return r5l_ring_distance(log, log->last_checkpoint,
1179				 r5c_calculate_new_cp(conf));
1180}
1181
1182static void r5l_run_no_mem_stripe(struct r5l_log *log)
1183{
1184	struct stripe_head *sh;
1185
1186	lockdep_assert_held(&log->io_list_lock);
1187
1188	if (!list_empty(&log->no_mem_stripes)) {
1189		sh = list_first_entry(&log->no_mem_stripes,
1190				      struct stripe_head, log_list);
1191		list_del_init(&sh->log_list);
1192		set_bit(STRIPE_HANDLE, &sh->state);
1193		raid5_release_stripe(sh);
1194	}
1195}
1196
1197static bool r5l_complete_finished_ios(struct r5l_log *log)
1198{
1199	struct r5l_io_unit *io, *next;
1200	bool found = false;
1201
1202	lockdep_assert_held(&log->io_list_lock);
1203
1204	list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1205		/* don't change list order */
1206		if (io->state < IO_UNIT_STRIPE_END)
1207			break;
1208
1209		log->next_checkpoint = io->log_start;
 
1210
1211		list_del(&io->log_sibling);
1212		mempool_free(io, &log->io_pool);
1213		r5l_run_no_mem_stripe(log);
1214
1215		found = true;
1216	}
1217
1218	return found;
1219}
1220
1221static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1222{
1223	struct r5l_log *log = io->log;
1224	struct r5conf *conf = log->rdev->mddev->private;
1225	unsigned long flags;
1226
1227	spin_lock_irqsave(&log->io_list_lock, flags);
1228	__r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1229
1230	if (!r5l_complete_finished_ios(log)) {
1231		spin_unlock_irqrestore(&log->io_list_lock, flags);
1232		return;
1233	}
1234
1235	if (r5l_reclaimable_space(log) > log->max_free_space ||
1236	    test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1237		r5l_wake_reclaim(log, 0);
1238
1239	spin_unlock_irqrestore(&log->io_list_lock, flags);
1240	wake_up(&log->iounit_wait);
1241}
1242
1243void r5l_stripe_write_finished(struct stripe_head *sh)
1244{
1245	struct r5l_io_unit *io;
1246
1247	io = sh->log_io;
1248	sh->log_io = NULL;
1249
1250	if (io && atomic_dec_and_test(&io->pending_stripe))
1251		__r5l_stripe_write_finished(io);
1252}
1253
1254static void r5l_log_flush_endio(struct bio *bio)
1255{
1256	struct r5l_log *log = container_of(bio, struct r5l_log,
1257		flush_bio);
1258	unsigned long flags;
1259	struct r5l_io_unit *io;
1260
1261	if (bio->bi_status)
1262		md_error(log->rdev->mddev, log->rdev);
1263
1264	spin_lock_irqsave(&log->io_list_lock, flags);
1265	list_for_each_entry(io, &log->flushing_ios, log_sibling)
1266		r5l_io_run_stripes(io);
1267	list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1268	spin_unlock_irqrestore(&log->io_list_lock, flags);
1269
1270	bio_uninit(bio);
1271}
1272
1273/*
1274 * Starting dispatch IO to raid.
1275 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1276 * broken meta in the middle of a log causes recovery can't find meta at the
1277 * head of log. If operations require meta at the head persistent in log, we
1278 * must make sure meta before it persistent in log too. A case is:
1279 *
1280 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1281 * data/parity must be persistent in log before we do the write to raid disks.
1282 *
1283 * The solution is we restrictly maintain io_unit list order. In this case, we
1284 * only write stripes of an io_unit to raid disks till the io_unit is the first
1285 * one whose data/parity is in log.
1286 */
1287void r5l_flush_stripe_to_raid(struct r5l_log *log)
1288{
1289	bool do_flush;
1290
1291	if (!log || !log->need_cache_flush)
1292		return;
1293
1294	spin_lock_irq(&log->io_list_lock);
1295	/* flush bio is running */
1296	if (!list_empty(&log->flushing_ios)) {
1297		spin_unlock_irq(&log->io_list_lock);
1298		return;
1299	}
1300	list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1301	do_flush = !list_empty(&log->flushing_ios);
1302	spin_unlock_irq(&log->io_list_lock);
1303
1304	if (!do_flush)
1305		return;
1306	bio_init(&log->flush_bio, log->rdev->bdev, NULL, 0,
1307		  REQ_OP_WRITE | REQ_PREFLUSH);
1308	log->flush_bio.bi_end_io = r5l_log_flush_endio;
1309	submit_bio(&log->flush_bio);
1310}
1311
1312static void r5l_write_super(struct r5l_log *log, sector_t cp);
1313static void r5l_write_super_and_discard_space(struct r5l_log *log,
1314	sector_t end)
1315{
1316	struct block_device *bdev = log->rdev->bdev;
1317	struct mddev *mddev;
1318
1319	r5l_write_super(log, end);
1320
1321	if (!bdev_max_discard_sectors(bdev))
1322		return;
1323
1324	mddev = log->rdev->mddev;
1325	/*
1326	 * Discard could zero data, so before discard we must make sure
1327	 * superblock is updated to new log tail. Updating superblock (either
1328	 * directly call md_update_sb() or depend on md thread) must hold
1329	 * reconfig mutex. On the other hand, raid5_quiesce is called with
1330	 * reconfig_mutex hold. The first step of raid5_quiesce() is waiting
1331	 * for all IO finish, hence waiting for reclaim thread, while reclaim
1332	 * thread is calling this function and waiting for reconfig mutex. So
1333	 * there is a deadlock. We workaround this issue with a trylock.
1334	 * FIXME: we could miss discard if we can't take reconfig mutex
1335	 */
1336	set_mask_bits(&mddev->sb_flags, 0,
1337		BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1338	if (!mddev_trylock(mddev))
1339		return;
1340	md_update_sb(mddev, 1);
1341	mddev_unlock(mddev);
 
 
 
 
 
 
 
 
 
 
 
1342
1343	/* discard IO error really doesn't matter, ignore it */
1344	if (log->last_checkpoint < end) {
1345		blkdev_issue_discard(bdev,
1346				log->last_checkpoint + log->rdev->data_offset,
1347				end - log->last_checkpoint, GFP_NOIO);
1348	} else {
1349		blkdev_issue_discard(bdev,
1350				log->last_checkpoint + log->rdev->data_offset,
1351				log->device_size - log->last_checkpoint,
1352				GFP_NOIO);
1353		blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1354				GFP_NOIO);
1355	}
1356}
1357
1358/*
1359 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1360 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1361 *
1362 * must hold conf->device_lock
1363 */
1364static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1365{
1366	BUG_ON(list_empty(&sh->lru));
1367	BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1368	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1369
1370	/*
1371	 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1372	 * raid5_release_stripe() while holding conf->device_lock
1373	 */
1374	BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1375	lockdep_assert_held(&conf->device_lock);
1376
1377	list_del_init(&sh->lru);
1378	atomic_inc(&sh->count);
1379
1380	set_bit(STRIPE_HANDLE, &sh->state);
1381	atomic_inc(&conf->active_stripes);
1382	r5c_make_stripe_write_out(sh);
1383
1384	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1385		atomic_inc(&conf->r5c_flushing_partial_stripes);
1386	else
1387		atomic_inc(&conf->r5c_flushing_full_stripes);
1388	raid5_release_stripe(sh);
1389}
1390
1391/*
1392 * if num == 0, flush all full stripes
1393 * if num > 0, flush all full stripes. If less than num full stripes are
1394 *             flushed, flush some partial stripes until totally num stripes are
1395 *             flushed or there is no more cached stripes.
1396 */
1397void r5c_flush_cache(struct r5conf *conf, int num)
1398{
1399	int count;
1400	struct stripe_head *sh, *next;
1401
1402	lockdep_assert_held(&conf->device_lock);
1403	if (!conf->log)
1404		return;
1405
1406	count = 0;
1407	list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1408		r5c_flush_stripe(conf, sh);
1409		count++;
1410	}
1411
1412	if (count >= num)
1413		return;
1414	list_for_each_entry_safe(sh, next,
1415				 &conf->r5c_partial_stripe_list, lru) {
1416		r5c_flush_stripe(conf, sh);
1417		if (++count >= num)
1418			break;
1419	}
1420}
1421
1422static void r5c_do_reclaim(struct r5conf *conf)
1423{
1424	struct r5l_log *log = conf->log;
1425	struct stripe_head *sh;
1426	int count = 0;
1427	unsigned long flags;
1428	int total_cached;
1429	int stripes_to_flush;
1430	int flushing_partial, flushing_full;
1431
1432	if (!r5c_is_writeback(log))
1433		return;
1434
1435	flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1436	flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1437	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1438		atomic_read(&conf->r5c_cached_full_stripes) -
1439		flushing_full - flushing_partial;
1440
1441	if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1442	    atomic_read(&conf->empty_inactive_list_nr) > 0)
1443		/*
1444		 * if stripe cache pressure high, flush all full stripes and
1445		 * some partial stripes
1446		 */
1447		stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1448	else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1449		 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1450		 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1451		/*
1452		 * if stripe cache pressure moderate, or if there is many full
1453		 * stripes,flush all full stripes
1454		 */
1455		stripes_to_flush = 0;
1456	else
1457		/* no need to flush */
1458		stripes_to_flush = -1;
1459
1460	if (stripes_to_flush >= 0) {
1461		spin_lock_irqsave(&conf->device_lock, flags);
1462		r5c_flush_cache(conf, stripes_to_flush);
1463		spin_unlock_irqrestore(&conf->device_lock, flags);
1464	}
1465
1466	/* if log space is tight, flush stripes on stripe_in_journal_list */
1467	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1468		spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1469		spin_lock(&conf->device_lock);
1470		list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1471			/*
1472			 * stripes on stripe_in_journal_list could be in any
1473			 * state of the stripe_cache state machine. In this
1474			 * case, we only want to flush stripe on
1475			 * r5c_cached_full/partial_stripes. The following
1476			 * condition makes sure the stripe is on one of the
1477			 * two lists.
1478			 */
1479			if (!list_empty(&sh->lru) &&
1480			    !test_bit(STRIPE_HANDLE, &sh->state) &&
1481			    atomic_read(&sh->count) == 0) {
1482				r5c_flush_stripe(conf, sh);
1483				if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1484					break;
1485			}
1486		}
1487		spin_unlock(&conf->device_lock);
1488		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1489	}
1490
1491	if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1492		r5l_run_no_space_stripes(log);
1493
1494	md_wakeup_thread(conf->mddev->thread);
1495}
1496
1497static void r5l_do_reclaim(struct r5l_log *log)
1498{
1499	struct r5conf *conf = log->rdev->mddev->private;
1500	sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1501	sector_t reclaimable;
1502	sector_t next_checkpoint;
1503	bool write_super;
1504
1505	spin_lock_irq(&log->io_list_lock);
1506	write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1507		reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1508	/*
1509	 * move proper io_unit to reclaim list. We should not change the order.
1510	 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1511	 * shouldn't reuse space of an unreclaimable io_unit
1512	 */
1513	while (1) {
1514		reclaimable = r5l_reclaimable_space(log);
1515		if (reclaimable >= reclaim_target ||
1516		    (list_empty(&log->running_ios) &&
1517		     list_empty(&log->io_end_ios) &&
1518		     list_empty(&log->flushing_ios) &&
1519		     list_empty(&log->finished_ios)))
1520			break;
1521
1522		md_wakeup_thread(log->rdev->mddev->thread);
1523		wait_event_lock_irq(log->iounit_wait,
1524				    r5l_reclaimable_space(log) > reclaimable,
1525				    log->io_list_lock);
1526	}
1527
1528	next_checkpoint = r5c_calculate_new_cp(conf);
 
1529	spin_unlock_irq(&log->io_list_lock);
1530
1531	if (reclaimable == 0 || !write_super)
 
1532		return;
1533
1534	/*
1535	 * write_super will flush cache of each raid disk. We must write super
1536	 * here, because the log area might be reused soon and we don't want to
1537	 * confuse recovery
1538	 */
1539	r5l_write_super_and_discard_space(log, next_checkpoint);
1540
1541	mutex_lock(&log->io_mutex);
1542	log->last_checkpoint = next_checkpoint;
1543	r5c_update_log_state(log);
1544	mutex_unlock(&log->io_mutex);
1545
1546	r5l_run_no_space_stripes(log);
1547}
1548
1549static void r5l_reclaim_thread(struct md_thread *thread)
1550{
1551	struct mddev *mddev = thread->mddev;
1552	struct r5conf *conf = mddev->private;
1553	struct r5l_log *log = conf->log;
1554
1555	if (!log)
1556		return;
1557	r5c_do_reclaim(conf);
1558	r5l_do_reclaim(log);
1559}
1560
1561void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1562{
1563	unsigned long target;
1564	unsigned long new = (unsigned long)space; /* overflow in theory */
1565
1566	if (!log)
1567		return;
1568
1569	target = READ_ONCE(log->reclaim_target);
1570	do {
 
1571		if (new < target)
1572			return;
1573	} while (!try_cmpxchg(&log->reclaim_target, &target, new));
1574	md_wakeup_thread(log->reclaim_thread);
1575}
1576
1577void r5l_quiesce(struct r5l_log *log, int quiesce)
1578{
1579	struct mddev *mddev;
1580
1581	if (quiesce) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1582		/* make sure r5l_write_super_and_discard_space exits */
1583		mddev = log->rdev->mddev;
1584		wake_up(&mddev->sb_wait);
1585		kthread_park(log->reclaim_thread->tsk);
1586		r5l_wake_reclaim(log, MaxSector);
1587		r5l_do_reclaim(log);
1588	} else
1589		kthread_unpark(log->reclaim_thread->tsk);
1590}
1591
1592bool r5l_log_disk_error(struct r5conf *conf)
1593{
1594	struct r5l_log *log = conf->log;
1595
1596	/* don't allow write if journal disk is missing */
 
 
 
1597	if (!log)
1598		return test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1599	else
1600		return test_bit(Faulty, &log->rdev->flags);
 
 
1601}
1602
1603#define R5L_RECOVERY_PAGE_POOL_SIZE 256
1604
1605struct r5l_recovery_ctx {
1606	struct page *meta_page;		/* current meta */
1607	sector_t meta_total_blocks;	/* total size of current meta and data */
1608	sector_t pos;			/* recovery position */
1609	u64 seq;			/* recovery position seq */
1610	int data_parity_stripes;	/* number of data_parity stripes */
1611	int data_only_stripes;		/* number of data_only stripes */
1612	struct list_head cached_list;
1613
1614	/*
1615	 * read ahead page pool (ra_pool)
1616	 * in recovery, log is read sequentially. It is not efficient to
1617	 * read every page with sync_page_io(). The read ahead page pool
1618	 * reads multiple pages with one IO, so further log read can
1619	 * just copy data from the pool.
1620	 */
1621	struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1622	struct bio_vec ra_bvec[R5L_RECOVERY_PAGE_POOL_SIZE];
1623	sector_t pool_offset;	/* offset of first page in the pool */
1624	int total_pages;	/* total allocated pages */
1625	int valid_pages;	/* pages with valid data */
1626};
1627
1628static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1629					    struct r5l_recovery_ctx *ctx)
1630{
1631	struct page *page;
1632
1633	ctx->valid_pages = 0;
1634	ctx->total_pages = 0;
1635	while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1636		page = alloc_page(GFP_KERNEL);
1637
1638		if (!page)
1639			break;
1640		ctx->ra_pool[ctx->total_pages] = page;
1641		ctx->total_pages += 1;
1642	}
1643
1644	if (ctx->total_pages == 0)
1645		return -ENOMEM;
1646
1647	ctx->pool_offset = 0;
1648	return 0;
1649}
1650
1651static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1652					struct r5l_recovery_ctx *ctx)
1653{
1654	int i;
1655
1656	for (i = 0; i < ctx->total_pages; ++i)
1657		put_page(ctx->ra_pool[i]);
1658}
1659
1660/*
1661 * fetch ctx->valid_pages pages from offset
1662 * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1663 * However, if the offset is close to the end of the journal device,
1664 * ctx->valid_pages could be smaller than ctx->total_pages
1665 */
1666static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1667				      struct r5l_recovery_ctx *ctx,
1668				      sector_t offset)
1669{
1670	struct bio bio;
1671	int ret;
1672
1673	bio_init(&bio, log->rdev->bdev, ctx->ra_bvec,
1674		 R5L_RECOVERY_PAGE_POOL_SIZE, REQ_OP_READ);
1675	bio.bi_iter.bi_sector = log->rdev->data_offset + offset;
1676
1677	ctx->valid_pages = 0;
1678	ctx->pool_offset = offset;
1679
1680	while (ctx->valid_pages < ctx->total_pages) {
1681		__bio_add_page(&bio, ctx->ra_pool[ctx->valid_pages], PAGE_SIZE,
1682			       0);
1683		ctx->valid_pages += 1;
1684
1685		offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1686
1687		if (offset == 0)  /* reached end of the device */
1688			break;
1689	}
1690
1691	ret = submit_bio_wait(&bio);
1692	bio_uninit(&bio);
1693	return ret;
1694}
1695
1696/*
1697 * try read a page from the read ahead page pool, if the page is not in the
1698 * pool, call r5l_recovery_fetch_ra_pool
1699 */
1700static int r5l_recovery_read_page(struct r5l_log *log,
1701				  struct r5l_recovery_ctx *ctx,
1702				  struct page *page,
1703				  sector_t offset)
1704{
1705	int ret;
1706
1707	if (offset < ctx->pool_offset ||
1708	    offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1709		ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1710		if (ret)
1711			return ret;
1712	}
1713
1714	BUG_ON(offset < ctx->pool_offset ||
1715	       offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1716
1717	memcpy(page_address(page),
1718	       page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1719					 BLOCK_SECTOR_SHIFT]),
1720	       PAGE_SIZE);
1721	return 0;
1722}
1723
1724static int r5l_recovery_read_meta_block(struct r5l_log *log,
1725					struct r5l_recovery_ctx *ctx)
1726{
1727	struct page *page = ctx->meta_page;
1728	struct r5l_meta_block *mb;
1729	u32 crc, stored_crc;
1730	int ret;
1731
1732	ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1733	if (ret != 0)
1734		return ret;
1735
1736	mb = page_address(page);
1737	stored_crc = le32_to_cpu(mb->checksum);
1738	mb->checksum = 0;
1739
1740	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1741	    le64_to_cpu(mb->seq) != ctx->seq ||
1742	    mb->version != R5LOG_VERSION ||
1743	    le64_to_cpu(mb->position) != ctx->pos)
1744		return -EINVAL;
1745
1746	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1747	if (stored_crc != crc)
1748		return -EINVAL;
1749
1750	if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1751		return -EINVAL;
1752
1753	ctx->meta_total_blocks = BLOCK_SECTORS;
1754
1755	return 0;
1756}
1757
1758static void
1759r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1760				     struct page *page,
1761				     sector_t pos, u64 seq)
1762{
1763	struct r5l_meta_block *mb;
1764
1765	mb = page_address(page);
1766	clear_page(mb);
1767	mb->magic = cpu_to_le32(R5LOG_MAGIC);
1768	mb->version = R5LOG_VERSION;
1769	mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1770	mb->seq = cpu_to_le64(seq);
1771	mb->position = cpu_to_le64(pos);
1772}
1773
1774static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1775					  u64 seq)
1776{
1777	struct page *page;
1778	struct r5l_meta_block *mb;
1779
1780	page = alloc_page(GFP_KERNEL);
1781	if (!page)
1782		return -ENOMEM;
1783	r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1784	mb = page_address(page);
1785	mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1786					     mb, PAGE_SIZE));
1787	if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE |
1788			  REQ_SYNC | REQ_FUA, false)) {
1789		__free_page(page);
1790		return -EIO;
1791	}
1792	__free_page(page);
1793	return 0;
1794}
1795
1796/*
1797 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1798 * to mark valid (potentially not flushed) data in the journal.
1799 *
1800 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1801 * so there should not be any mismatch here.
1802 */
1803static void r5l_recovery_load_data(struct r5l_log *log,
1804				   struct stripe_head *sh,
1805				   struct r5l_recovery_ctx *ctx,
1806				   struct r5l_payload_data_parity *payload,
1807				   sector_t log_offset)
1808{
1809	struct mddev *mddev = log->rdev->mddev;
1810	struct r5conf *conf = mddev->private;
1811	int dd_idx;
1812
1813	raid5_compute_sector(conf,
1814			     le64_to_cpu(payload->location), 0,
1815			     &dd_idx, sh);
1816	r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1817	sh->dev[dd_idx].log_checksum =
1818		le32_to_cpu(payload->checksum[0]);
1819	ctx->meta_total_blocks += BLOCK_SECTORS;
1820
1821	set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1822	set_bit(STRIPE_R5C_CACHING, &sh->state);
1823}
1824
1825static void r5l_recovery_load_parity(struct r5l_log *log,
1826				     struct stripe_head *sh,
1827				     struct r5l_recovery_ctx *ctx,
1828				     struct r5l_payload_data_parity *payload,
1829				     sector_t log_offset)
1830{
1831	struct mddev *mddev = log->rdev->mddev;
1832	struct r5conf *conf = mddev->private;
1833
1834	ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1835	r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1836	sh->dev[sh->pd_idx].log_checksum =
1837		le32_to_cpu(payload->checksum[0]);
1838	set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1839
1840	if (sh->qd_idx >= 0) {
1841		r5l_recovery_read_page(
1842			log, ctx, sh->dev[sh->qd_idx].page,
1843			r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1844		sh->dev[sh->qd_idx].log_checksum =
1845			le32_to_cpu(payload->checksum[1]);
1846		set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1847	}
1848	clear_bit(STRIPE_R5C_CACHING, &sh->state);
1849}
1850
1851static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1852{
1853	int i;
1854
1855	sh->state = 0;
1856	sh->log_start = MaxSector;
1857	for (i = sh->disks; i--; )
1858		sh->dev[i].flags = 0;
1859}
1860
1861static void
1862r5l_recovery_replay_one_stripe(struct r5conf *conf,
1863			       struct stripe_head *sh,
1864			       struct r5l_recovery_ctx *ctx)
1865{
1866	struct md_rdev *rdev, *rrdev;
1867	int disk_index;
1868	int data_count = 0;
1869
1870	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
 
 
 
1871		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1872			continue;
1873		if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1874			continue;
1875		data_count++;
 
 
1876	}
1877
1878	/*
1879	 * stripes that only have parity must have been flushed
1880	 * before the crash that we are now recovering from, so
1881	 * there is nothing more to recovery.
1882	 */
1883	if (data_count == 0)
1884		goto out;
1885
1886	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1887		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
 
 
 
1888			continue;
1889
1890		/* in case device is broken */
1891		rcu_read_lock();
1892		rdev = rcu_dereference(conf->disks[disk_index].rdev);
1893		if (rdev) {
1894			atomic_inc(&rdev->nr_pending);
1895			rcu_read_unlock();
1896			sync_page_io(rdev, sh->sector, PAGE_SIZE,
1897				     sh->dev[disk_index].page, REQ_OP_WRITE,
1898				     false);
1899			rdev_dec_pending(rdev, rdev->mddev);
1900			rcu_read_lock();
1901		}
1902		rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1903		if (rrdev) {
1904			atomic_inc(&rrdev->nr_pending);
1905			rcu_read_unlock();
1906			sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1907				     sh->dev[disk_index].page, REQ_OP_WRITE,
1908				     false);
1909			rdev_dec_pending(rrdev, rrdev->mddev);
1910			rcu_read_lock();
1911		}
1912		rcu_read_unlock();
1913	}
1914	ctx->data_parity_stripes++;
1915out:
1916	r5l_recovery_reset_stripe(sh);
1917}
1918
1919static struct stripe_head *
1920r5c_recovery_alloc_stripe(
1921		struct r5conf *conf,
1922		sector_t stripe_sect,
1923		int noblock)
1924{
1925	struct stripe_head *sh;
1926
1927	sh = raid5_get_active_stripe(conf, NULL, stripe_sect,
1928				     noblock ? R5_GAS_NOBLOCK : 0);
1929	if (!sh)
1930		return NULL;  /* no more stripe available */
1931
1932	r5l_recovery_reset_stripe(sh);
1933
1934	return sh;
1935}
1936
1937static struct stripe_head *
1938r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1939{
1940	struct stripe_head *sh;
1941
1942	list_for_each_entry(sh, list, lru)
1943		if (sh->sector == sect)
1944			return sh;
1945	return NULL;
1946}
1947
1948static void
1949r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1950			  struct r5l_recovery_ctx *ctx)
1951{
1952	struct stripe_head *sh, *next;
1953
1954	list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1955		r5l_recovery_reset_stripe(sh);
1956		list_del_init(&sh->lru);
1957		raid5_release_stripe(sh);
1958	}
1959}
1960
1961static void
1962r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1963			    struct r5l_recovery_ctx *ctx)
1964{
1965	struct stripe_head *sh, *next;
1966
1967	list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1968		if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1969			r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1970			list_del_init(&sh->lru);
1971			raid5_release_stripe(sh);
1972		}
1973}
1974
1975/* if matches return 0; otherwise return -EINVAL */
1976static int
1977r5l_recovery_verify_data_checksum(struct r5l_log *log,
1978				  struct r5l_recovery_ctx *ctx,
1979				  struct page *page,
1980				  sector_t log_offset, __le32 log_checksum)
1981{
1982	void *addr;
1983	u32 checksum;
1984
1985	r5l_recovery_read_page(log, ctx, page, log_offset);
1986	addr = kmap_atomic(page);
1987	checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1988	kunmap_atomic(addr);
1989	return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1990}
1991
1992/*
1993 * before loading data to stripe cache, we need verify checksum for all data,
1994 * if there is mismatch for any data page, we drop all data in the mata block
1995 */
1996static int
1997r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1998					 struct r5l_recovery_ctx *ctx)
1999{
2000	struct mddev *mddev = log->rdev->mddev;
2001	struct r5conf *conf = mddev->private;
2002	struct r5l_meta_block *mb = page_address(ctx->meta_page);
2003	sector_t mb_offset = sizeof(struct r5l_meta_block);
2004	sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2005	struct page *page;
2006	struct r5l_payload_data_parity *payload;
2007	struct r5l_payload_flush *payload_flush;
2008
2009	page = alloc_page(GFP_KERNEL);
2010	if (!page)
2011		return -ENOMEM;
2012
2013	while (mb_offset < le32_to_cpu(mb->meta_size)) {
2014		payload = (void *)mb + mb_offset;
2015		payload_flush = (void *)mb + mb_offset;
2016
2017		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2018			if (r5l_recovery_verify_data_checksum(
2019				    log, ctx, page, log_offset,
2020				    payload->checksum[0]) < 0)
2021				goto mismatch;
2022		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2023			if (r5l_recovery_verify_data_checksum(
2024				    log, ctx, page, log_offset,
2025				    payload->checksum[0]) < 0)
2026				goto mismatch;
2027			if (conf->max_degraded == 2 && /* q for RAID 6 */
2028			    r5l_recovery_verify_data_checksum(
2029				    log, ctx, page,
2030				    r5l_ring_add(log, log_offset,
2031						 BLOCK_SECTORS),
2032				    payload->checksum[1]) < 0)
2033				goto mismatch;
2034		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2035			/* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2036		} else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2037			goto mismatch;
2038
2039		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2040			mb_offset += sizeof(struct r5l_payload_flush) +
2041				le32_to_cpu(payload_flush->size);
2042		} else {
2043			/* DATA or PARITY payload */
2044			log_offset = r5l_ring_add(log, log_offset,
2045						  le32_to_cpu(payload->size));
2046			mb_offset += sizeof(struct r5l_payload_data_parity) +
2047				sizeof(__le32) *
2048				(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2049		}
2050
2051	}
2052
2053	put_page(page);
2054	return 0;
2055
2056mismatch:
2057	put_page(page);
 
 
2058	return -EINVAL;
2059}
2060
2061/*
2062 * Analyze all data/parity pages in one meta block
2063 * Returns:
2064 * 0 for success
2065 * -EINVAL for unknown playload type
2066 * -EAGAIN for checksum mismatch of data page
2067 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2068 */
2069static int
2070r5c_recovery_analyze_meta_block(struct r5l_log *log,
2071				struct r5l_recovery_ctx *ctx,
2072				struct list_head *cached_stripe_list)
2073{
2074	struct mddev *mddev = log->rdev->mddev;
2075	struct r5conf *conf = mddev->private;
2076	struct r5l_meta_block *mb;
2077	struct r5l_payload_data_parity *payload;
2078	struct r5l_payload_flush *payload_flush;
2079	int mb_offset;
2080	sector_t log_offset;
2081	sector_t stripe_sect;
2082	struct stripe_head *sh;
2083	int ret;
2084
2085	/*
2086	 * for mismatch in data blocks, we will drop all data in this mb, but
2087	 * we will still read next mb for other data with FLUSH flag, as
2088	 * io_unit could finish out of order.
2089	 */
2090	ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2091	if (ret == -EINVAL)
2092		return -EAGAIN;
2093	else if (ret)
2094		return ret;   /* -ENOMEM duo to alloc_page() failed */
2095
2096	mb = page_address(ctx->meta_page);
2097	mb_offset = sizeof(struct r5l_meta_block);
2098	log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2099
2100	while (mb_offset < le32_to_cpu(mb->meta_size)) {
2101		int dd;
2102
2103		payload = (void *)mb + mb_offset;
2104		payload_flush = (void *)mb + mb_offset;
2105
2106		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2107			int i, count;
2108
2109			count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2110			for (i = 0; i < count; ++i) {
2111				stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2112				sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2113								stripe_sect);
2114				if (sh) {
2115					WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2116					r5l_recovery_reset_stripe(sh);
2117					list_del_init(&sh->lru);
2118					raid5_release_stripe(sh);
2119				}
2120			}
2121
2122			mb_offset += sizeof(struct r5l_payload_flush) +
2123				le32_to_cpu(payload_flush->size);
2124			continue;
2125		}
2126
2127		/* DATA or PARITY payload */
2128		stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2129			raid5_compute_sector(
2130				conf, le64_to_cpu(payload->location), 0, &dd,
2131				NULL)
2132			: le64_to_cpu(payload->location);
2133
2134		sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2135						stripe_sect);
2136
2137		if (!sh) {
2138			sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1);
2139			/*
2140			 * cannot get stripe from raid5_get_active_stripe
2141			 * try replay some stripes
2142			 */
2143			if (!sh) {
2144				r5c_recovery_replay_stripes(
2145					cached_stripe_list, ctx);
2146				sh = r5c_recovery_alloc_stripe(
2147					conf, stripe_sect, 1);
2148			}
2149			if (!sh) {
2150				int new_size = conf->min_nr_stripes * 2;
2151				pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2152					mdname(mddev),
2153					new_size);
2154				ret = raid5_set_cache_size(mddev, new_size);
2155				if (conf->min_nr_stripes <= new_size / 2) {
2156					pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n",
2157						mdname(mddev),
2158						ret,
2159						new_size,
2160						conf->min_nr_stripes,
2161						conf->max_nr_stripes);
2162					return -ENOMEM;
2163				}
2164				sh = r5c_recovery_alloc_stripe(
2165					conf, stripe_sect, 0);
2166			}
2167			if (!sh) {
2168				pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2169					mdname(mddev));
2170				return -ENOMEM;
2171			}
2172			list_add_tail(&sh->lru, cached_stripe_list);
2173		}
2174
2175		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2176			if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2177			    test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2178				r5l_recovery_replay_one_stripe(conf, sh, ctx);
2179				list_move_tail(&sh->lru, cached_stripe_list);
2180			}
2181			r5l_recovery_load_data(log, sh, ctx, payload,
2182					       log_offset);
2183		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2184			r5l_recovery_load_parity(log, sh, ctx, payload,
2185						 log_offset);
2186		else
2187			return -EINVAL;
2188
2189		log_offset = r5l_ring_add(log, log_offset,
2190					  le32_to_cpu(payload->size));
2191
2192		mb_offset += sizeof(struct r5l_payload_data_parity) +
2193			sizeof(__le32) *
2194			(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2195	}
2196
2197	return 0;
2198}
2199
2200/*
2201 * Load the stripe into cache. The stripe will be written out later by
2202 * the stripe cache state machine.
2203 */
2204static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2205					 struct stripe_head *sh)
2206{
2207	struct r5dev *dev;
2208	int i;
2209
2210	for (i = sh->disks; i--; ) {
2211		dev = sh->dev + i;
2212		if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2213			set_bit(R5_InJournal, &dev->flags);
2214			set_bit(R5_UPTODATE, &dev->flags);
2215		}
2216	}
2217}
2218
2219/*
2220 * Scan through the log for all to-be-flushed data
2221 *
2222 * For stripes with data and parity, namely Data-Parity stripe
2223 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2224 *
2225 * For stripes with only data, namely Data-Only stripe
2226 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2227 *
2228 * For a stripe, if we see data after parity, we should discard all previous
2229 * data and parity for this stripe, as these data are already flushed to
2230 * the array.
2231 *
2232 * At the end of the scan, we return the new journal_tail, which points to
2233 * first data-only stripe on the journal device, or next invalid meta block.
2234 */
2235static int r5c_recovery_flush_log(struct r5l_log *log,
2236				  struct r5l_recovery_ctx *ctx)
2237{
2238	struct stripe_head *sh;
2239	int ret = 0;
2240
2241	/* scan through the log */
2242	while (1) {
2243		if (r5l_recovery_read_meta_block(log, ctx))
2244			break;
2245
2246		ret = r5c_recovery_analyze_meta_block(log, ctx,
2247						      &ctx->cached_list);
2248		/*
2249		 * -EAGAIN means mismatch in data block, in this case, we still
2250		 * try scan the next metablock
2251		 */
2252		if (ret && ret != -EAGAIN)
2253			break;   /* ret == -EINVAL or -ENOMEM */
2254		ctx->seq++;
2255		ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2256	}
2257
2258	if (ret == -ENOMEM) {
2259		r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2260		return ret;
2261	}
2262
2263	/* replay data-parity stripes */
2264	r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2265
2266	/* load data-only stripes to stripe cache */
2267	list_for_each_entry(sh, &ctx->cached_list, lru) {
2268		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2269		r5c_recovery_load_one_stripe(log, sh);
2270		ctx->data_only_stripes++;
2271	}
2272
2273	return 0;
2274}
2275
2276/*
2277 * we did a recovery. Now ctx.pos points to an invalid meta block. New
2278 * log will start here. but we can't let superblock point to last valid
2279 * meta block. The log might looks like:
2280 * | meta 1| meta 2| meta 3|
2281 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2282 * superblock points to meta 1, we write a new valid meta 2n.  if crash
2283 * happens again, new recovery will start from meta 1. Since meta 2n is
2284 * valid now, recovery will think meta 3 is valid, which is wrong.
2285 * The solution is we create a new meta in meta2 with its seq == meta
2286 * 1's seq + 10000 and let superblock points to meta2. The same recovery
2287 * will not think meta 3 is a valid meta, because its seq doesn't match
2288 */
2289
2290/*
2291 * Before recovery, the log looks like the following
2292 *
2293 *   ---------------------------------------------
2294 *   |           valid log        | invalid log  |
2295 *   ---------------------------------------------
2296 *   ^
2297 *   |- log->last_checkpoint
2298 *   |- log->last_cp_seq
2299 *
2300 * Now we scan through the log until we see invalid entry
2301 *
2302 *   ---------------------------------------------
2303 *   |           valid log        | invalid log  |
2304 *   ---------------------------------------------
2305 *   ^                            ^
2306 *   |- log->last_checkpoint      |- ctx->pos
2307 *   |- log->last_cp_seq          |- ctx->seq
2308 *
2309 * From this point, we need to increase seq number by 10 to avoid
2310 * confusing next recovery.
2311 *
2312 *   ---------------------------------------------
2313 *   |           valid log        | invalid log  |
2314 *   ---------------------------------------------
2315 *   ^                              ^
2316 *   |- log->last_checkpoint        |- ctx->pos+1
2317 *   |- log->last_cp_seq            |- ctx->seq+10001
2318 *
2319 * However, it is not safe to start the state machine yet, because data only
2320 * parities are not yet secured in RAID. To save these data only parities, we
2321 * rewrite them from seq+11.
2322 *
2323 *   -----------------------------------------------------------------
2324 *   |           valid log        | data only stripes | invalid log  |
2325 *   -----------------------------------------------------------------
2326 *   ^                                                ^
2327 *   |- log->last_checkpoint                          |- ctx->pos+n
2328 *   |- log->last_cp_seq                              |- ctx->seq+10000+n
2329 *
2330 * If failure happens again during this process, the recovery can safe start
2331 * again from log->last_checkpoint.
2332 *
2333 * Once data only stripes are rewritten to journal, we move log_tail
2334 *
2335 *   -----------------------------------------------------------------
2336 *   |     old log        |    data only stripes    | invalid log  |
2337 *   -----------------------------------------------------------------
2338 *                        ^                         ^
2339 *                        |- log->last_checkpoint   |- ctx->pos+n
2340 *                        |- log->last_cp_seq       |- ctx->seq+10000+n
2341 *
2342 * Then we can safely start the state machine. If failure happens from this
2343 * point on, the recovery will start from new log->last_checkpoint.
2344 */
2345static int
2346r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2347				       struct r5l_recovery_ctx *ctx)
2348{
2349	struct stripe_head *sh;
2350	struct mddev *mddev = log->rdev->mddev;
2351	struct page *page;
2352	sector_t next_checkpoint = MaxSector;
 
2353
2354	page = alloc_page(GFP_KERNEL);
2355	if (!page) {
2356		pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2357		       mdname(mddev));
2358		return -ENOMEM;
2359	}
2360
2361	WARN_ON(list_empty(&ctx->cached_list));
2362
2363	list_for_each_entry(sh, &ctx->cached_list, lru) {
2364		struct r5l_meta_block *mb;
2365		int i;
2366		int offset;
2367		sector_t write_pos;
2368
2369		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2370		r5l_recovery_create_empty_meta_block(log, page,
2371						     ctx->pos, ctx->seq);
2372		mb = page_address(page);
2373		offset = le32_to_cpu(mb->meta_size);
2374		write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2375
2376		for (i = sh->disks; i--; ) {
2377			struct r5dev *dev = &sh->dev[i];
2378			struct r5l_payload_data_parity *payload;
2379			void *addr;
2380
2381			if (test_bit(R5_InJournal, &dev->flags)) {
2382				payload = (void *)mb + offset;
2383				payload->header.type = cpu_to_le16(
2384					R5LOG_PAYLOAD_DATA);
2385				payload->size = cpu_to_le32(BLOCK_SECTORS);
2386				payload->location = cpu_to_le64(
2387					raid5_compute_blocknr(sh, i, 0));
2388				addr = kmap_atomic(dev->page);
2389				payload->checksum[0] = cpu_to_le32(
2390					crc32c_le(log->uuid_checksum, addr,
2391						  PAGE_SIZE));
2392				kunmap_atomic(addr);
2393				sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2394					     dev->page, REQ_OP_WRITE, false);
2395				write_pos = r5l_ring_add(log, write_pos,
2396							 BLOCK_SECTORS);
2397				offset += sizeof(__le32) +
2398					sizeof(struct r5l_payload_data_parity);
2399
2400			}
2401		}
2402		mb->meta_size = cpu_to_le32(offset);
2403		mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2404						     mb, PAGE_SIZE));
2405		sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2406			     REQ_OP_WRITE | REQ_SYNC | REQ_FUA, false);
2407		sh->log_start = ctx->pos;
2408		list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2409		atomic_inc(&log->stripe_in_journal_count);
2410		ctx->pos = write_pos;
2411		ctx->seq += 1;
2412		next_checkpoint = sh->log_start;
2413	}
2414	log->next_checkpoint = next_checkpoint;
2415	__free_page(page);
2416	return 0;
2417}
2418
2419static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2420						 struct r5l_recovery_ctx *ctx)
2421{
2422	struct mddev *mddev = log->rdev->mddev;
2423	struct r5conf *conf = mddev->private;
2424	struct stripe_head *sh, *next;
2425	bool cleared_pending = false;
2426
2427	if (ctx->data_only_stripes == 0)
2428		return;
2429
2430	if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2431		cleared_pending = true;
2432		clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2433	}
2434	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2435
2436	list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2437		r5c_make_stripe_write_out(sh);
2438		set_bit(STRIPE_HANDLE, &sh->state);
2439		list_del_init(&sh->lru);
2440		raid5_release_stripe(sh);
2441	}
2442
2443	/* reuse conf->wait_for_quiescent in recovery */
2444	wait_event(conf->wait_for_quiescent,
2445		   atomic_read(&conf->active_stripes) == 0);
2446
2447	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2448	if (cleared_pending)
2449		set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2450}
2451
2452static int r5l_recovery_log(struct r5l_log *log)
2453{
2454	struct mddev *mddev = log->rdev->mddev;
2455	struct r5l_recovery_ctx *ctx;
2456	int ret;
2457	sector_t pos;
2458
2459	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2460	if (!ctx)
 
 
2461		return -ENOMEM;
2462
2463	ctx->pos = log->last_checkpoint;
2464	ctx->seq = log->last_cp_seq;
2465	INIT_LIST_HEAD(&ctx->cached_list);
2466	ctx->meta_page = alloc_page(GFP_KERNEL);
2467
2468	if (!ctx->meta_page) {
2469		ret =  -ENOMEM;
2470		goto meta_page;
2471	}
2472
2473	if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2474		ret = -ENOMEM;
2475		goto ra_pool;
2476	}
2477
2478	ret = r5c_recovery_flush_log(log, ctx);
2479
2480	if (ret)
2481		goto error;
2482
2483	pos = ctx->pos;
2484	ctx->seq += 10000;
2485
2486	if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2487		pr_info("md/raid:%s: starting from clean shutdown\n",
2488			 mdname(mddev));
2489	else
2490		pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2491			 mdname(mddev), ctx->data_only_stripes,
2492			 ctx->data_parity_stripes);
2493
2494	if (ctx->data_only_stripes == 0) {
2495		log->next_checkpoint = ctx->pos;
2496		r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2497		ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2498	} else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2499		pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2500		       mdname(mddev));
2501		ret =  -EIO;
2502		goto error;
2503	}
2504
2505	log->log_start = ctx->pos;
2506	log->seq = ctx->seq;
2507	log->last_checkpoint = pos;
2508	r5l_write_super(log, pos);
2509
2510	r5c_recovery_flush_data_only_stripes(log, ctx);
2511	ret = 0;
2512error:
2513	r5l_recovery_free_ra_pool(log, ctx);
2514ra_pool:
2515	__free_page(ctx->meta_page);
2516meta_page:
2517	kfree(ctx);
2518	return ret;
2519}
2520
2521static void r5l_write_super(struct r5l_log *log, sector_t cp)
2522{
2523	struct mddev *mddev = log->rdev->mddev;
2524
2525	log->rdev->journal_tail = cp;
2526	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2527}
2528
2529static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2530{
2531	struct r5conf *conf;
2532	int ret;
2533
2534	ret = mddev_lock(mddev);
2535	if (ret)
2536		return ret;
2537
2538	conf = mddev->private;
2539	if (!conf || !conf->log)
2540		goto out_unlock;
2541
2542	switch (conf->log->r5c_journal_mode) {
2543	case R5C_JOURNAL_MODE_WRITE_THROUGH:
2544		ret = snprintf(
2545			page, PAGE_SIZE, "[%s] %s\n",
2546			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2547			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2548		break;
2549	case R5C_JOURNAL_MODE_WRITE_BACK:
2550		ret = snprintf(
2551			page, PAGE_SIZE, "%s [%s]\n",
2552			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2553			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2554		break;
2555	default:
2556		ret = 0;
2557	}
2558
2559out_unlock:
2560	mddev_unlock(mddev);
2561	return ret;
2562}
2563
2564/*
2565 * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2566 *
2567 * @mode as defined in 'enum r5c_journal_mode'.
2568 *
2569 */
2570int r5c_journal_mode_set(struct mddev *mddev, int mode)
2571{
2572	struct r5conf *conf;
2573
2574	if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2575	    mode > R5C_JOURNAL_MODE_WRITE_BACK)
2576		return -EINVAL;
2577
2578	conf = mddev->private;
2579	if (!conf || !conf->log)
2580		return -ENODEV;
2581
2582	if (raid5_calc_degraded(conf) > 0 &&
2583	    mode == R5C_JOURNAL_MODE_WRITE_BACK)
2584		return -EINVAL;
2585
2586	mddev_suspend(mddev);
2587	conf->log->r5c_journal_mode = mode;
2588	mddev_resume(mddev);
2589
2590	pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2591		 mdname(mddev), mode, r5c_journal_mode_str[mode]);
2592	return 0;
2593}
2594EXPORT_SYMBOL(r5c_journal_mode_set);
2595
2596static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2597				      const char *page, size_t length)
2598{
2599	int mode = ARRAY_SIZE(r5c_journal_mode_str);
2600	size_t len = length;
2601	int ret;
2602
2603	if (len < 2)
2604		return -EINVAL;
2605
2606	if (page[len - 1] == '\n')
2607		len--;
2608
2609	while (mode--)
2610		if (strlen(r5c_journal_mode_str[mode]) == len &&
2611		    !strncmp(page, r5c_journal_mode_str[mode], len))
2612			break;
2613	ret = mddev_lock(mddev);
2614	if (ret)
2615		return ret;
2616	ret = r5c_journal_mode_set(mddev, mode);
2617	mddev_unlock(mddev);
2618	return ret ?: length;
2619}
2620
2621struct md_sysfs_entry
2622r5c_journal_mode = __ATTR(journal_mode, 0644,
2623			  r5c_journal_mode_show, r5c_journal_mode_store);
2624
2625/*
2626 * Try handle write operation in caching phase. This function should only
2627 * be called in write-back mode.
2628 *
2629 * If all outstanding writes can be handled in caching phase, returns 0
2630 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2631 * and returns -EAGAIN
2632 */
2633int r5c_try_caching_write(struct r5conf *conf,
2634			  struct stripe_head *sh,
2635			  struct stripe_head_state *s,
2636			  int disks)
2637{
2638	struct r5l_log *log = conf->log;
2639	int i;
2640	struct r5dev *dev;
2641	int to_cache = 0;
2642	void __rcu **pslot;
2643	sector_t tree_index;
2644	int ret;
2645	uintptr_t refcount;
2646
2647	BUG_ON(!r5c_is_writeback(log));
2648
2649	if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2650		/*
2651		 * There are two different scenarios here:
2652		 *  1. The stripe has some data cached, and it is sent to
2653		 *     write-out phase for reclaim
2654		 *  2. The stripe is clean, and this is the first write
2655		 *
2656		 * For 1, return -EAGAIN, so we continue with
2657		 * handle_stripe_dirtying().
2658		 *
2659		 * For 2, set STRIPE_R5C_CACHING and continue with caching
2660		 * write.
2661		 */
2662
2663		/* case 1: anything injournal or anything in written */
2664		if (s->injournal > 0 || s->written > 0)
2665			return -EAGAIN;
2666		/* case 2 */
2667		set_bit(STRIPE_R5C_CACHING, &sh->state);
2668	}
2669
2670	/*
2671	 * When run in degraded mode, array is set to write-through mode.
2672	 * This check helps drain pending write safely in the transition to
2673	 * write-through mode.
2674	 *
2675	 * When a stripe is syncing, the write is also handled in write
2676	 * through mode.
 
 
 
 
 
2677	 */
2678	if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2679		r5c_make_stripe_write_out(sh);
2680		return -EAGAIN;
2681	}
2682
2683	for (i = disks; i--; ) {
2684		dev = &sh->dev[i];
2685		/* if non-overwrite, use writing-out phase */
2686		if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2687		    !test_bit(R5_InJournal, &dev->flags)) {
2688			r5c_make_stripe_write_out(sh);
2689			return -EAGAIN;
2690		}
2691	}
2692
2693	/* if the stripe is not counted in big_stripe_tree, add it now */
2694	if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2695	    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2696		tree_index = r5c_tree_index(conf, sh->sector);
2697		spin_lock(&log->tree_lock);
2698		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2699					       tree_index);
2700		if (pslot) {
2701			refcount = (uintptr_t)radix_tree_deref_slot_protected(
2702				pslot, &log->tree_lock) >>
2703				R5C_RADIX_COUNT_SHIFT;
2704			radix_tree_replace_slot(
2705				&log->big_stripe_tree, pslot,
2706				(void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2707		} else {
2708			/*
2709			 * this radix_tree_insert can fail safely, so no
2710			 * need to call radix_tree_preload()
2711			 */
2712			ret = radix_tree_insert(
2713				&log->big_stripe_tree, tree_index,
2714				(void *)(1 << R5C_RADIX_COUNT_SHIFT));
2715			if (ret) {
2716				spin_unlock(&log->tree_lock);
2717				r5c_make_stripe_write_out(sh);
2718				return -EAGAIN;
2719			}
2720		}
2721		spin_unlock(&log->tree_lock);
2722
2723		/*
2724		 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2725		 * counted in the radix tree
2726		 */
2727		set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2728		atomic_inc(&conf->r5c_cached_partial_stripes);
2729	}
2730
2731	for (i = disks; i--; ) {
2732		dev = &sh->dev[i];
2733		if (dev->towrite) {
2734			set_bit(R5_Wantwrite, &dev->flags);
2735			set_bit(R5_Wantdrain, &dev->flags);
2736			set_bit(R5_LOCKED, &dev->flags);
2737			to_cache++;
2738		}
2739	}
2740
2741	if (to_cache) {
2742		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2743		/*
2744		 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2745		 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2746		 * r5c_handle_data_cached()
2747		 */
2748		set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2749	}
2750
2751	return 0;
2752}
2753
2754/*
2755 * free extra pages (orig_page) we allocated for prexor
2756 */
2757void r5c_release_extra_page(struct stripe_head *sh)
2758{
2759	struct r5conf *conf = sh->raid_conf;
2760	int i;
2761	bool using_disk_info_extra_page;
2762
2763	using_disk_info_extra_page =
2764		sh->dev[0].orig_page == conf->disks[0].extra_page;
2765
2766	for (i = sh->disks; i--; )
2767		if (sh->dev[i].page != sh->dev[i].orig_page) {
2768			struct page *p = sh->dev[i].orig_page;
2769
2770			sh->dev[i].orig_page = sh->dev[i].page;
2771			clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2772
2773			if (!using_disk_info_extra_page)
2774				put_page(p);
2775		}
2776
2777	if (using_disk_info_extra_page) {
2778		clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2779		md_wakeup_thread(conf->mddev->thread);
2780	}
2781}
2782
2783void r5c_use_extra_page(struct stripe_head *sh)
2784{
2785	struct r5conf *conf = sh->raid_conf;
2786	int i;
2787	struct r5dev *dev;
2788
2789	for (i = sh->disks; i--; ) {
2790		dev = &sh->dev[i];
2791		if (dev->orig_page != dev->page)
2792			put_page(dev->orig_page);
2793		dev->orig_page = conf->disks[i].extra_page;
2794	}
2795}
2796
2797/*
2798 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2799 * stripe is committed to RAID disks.
2800 */
2801void r5c_finish_stripe_write_out(struct r5conf *conf,
2802				 struct stripe_head *sh,
2803				 struct stripe_head_state *s)
2804{
2805	struct r5l_log *log = conf->log;
2806	int i;
2807	int do_wakeup = 0;
2808	sector_t tree_index;
2809	void __rcu **pslot;
2810	uintptr_t refcount;
2811
2812	if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2813		return;
2814
2815	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2816	clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2817
2818	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2819		return;
2820
2821	for (i = sh->disks; i--; ) {
2822		clear_bit(R5_InJournal, &sh->dev[i].flags);
2823		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2824			do_wakeup = 1;
2825	}
2826
2827	/*
2828	 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2829	 * We updated R5_InJournal, so we also update s->injournal.
2830	 */
2831	s->injournal = 0;
2832
2833	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2834		if (atomic_dec_and_test(&conf->pending_full_writes))
2835			md_wakeup_thread(conf->mddev->thread);
2836
2837	if (do_wakeup)
2838		wake_up(&conf->wait_for_overlap);
2839
2840	spin_lock_irq(&log->stripe_in_journal_lock);
2841	list_del_init(&sh->r5c);
2842	spin_unlock_irq(&log->stripe_in_journal_lock);
2843	sh->log_start = MaxSector;
2844
2845	atomic_dec(&log->stripe_in_journal_count);
2846	r5c_update_log_state(log);
2847
2848	/* stop counting this stripe in big_stripe_tree */
2849	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2850	    test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2851		tree_index = r5c_tree_index(conf, sh->sector);
2852		spin_lock(&log->tree_lock);
2853		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2854					       tree_index);
2855		BUG_ON(pslot == NULL);
2856		refcount = (uintptr_t)radix_tree_deref_slot_protected(
2857			pslot, &log->tree_lock) >>
2858			R5C_RADIX_COUNT_SHIFT;
2859		if (refcount == 1)
2860			radix_tree_delete(&log->big_stripe_tree, tree_index);
2861		else
2862			radix_tree_replace_slot(
2863				&log->big_stripe_tree, pslot,
2864				(void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2865		spin_unlock(&log->tree_lock);
2866	}
2867
2868	if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2869		BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2870		atomic_dec(&conf->r5c_flushing_partial_stripes);
2871		atomic_dec(&conf->r5c_cached_partial_stripes);
2872	}
2873
2874	if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2875		BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2876		atomic_dec(&conf->r5c_flushing_full_stripes);
2877		atomic_dec(&conf->r5c_cached_full_stripes);
2878	}
2879
2880	r5l_append_flush_payload(log, sh->sector);
2881	/* stripe is flused to raid disks, we can do resync now */
2882	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2883		set_bit(STRIPE_HANDLE, &sh->state);
2884}
2885
2886int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2887{
2888	struct r5conf *conf = sh->raid_conf;
2889	int pages = 0;
2890	int reserve;
2891	int i;
2892	int ret = 0;
2893
2894	BUG_ON(!log);
2895
2896	for (i = 0; i < sh->disks; i++) {
2897		void *addr;
2898
2899		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2900			continue;
2901		addr = kmap_atomic(sh->dev[i].page);
2902		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2903						    addr, PAGE_SIZE);
2904		kunmap_atomic(addr);
2905		pages++;
2906	}
2907	WARN_ON(pages == 0);
2908
2909	/*
2910	 * The stripe must enter state machine again to call endio, so
2911	 * don't delay.
2912	 */
2913	clear_bit(STRIPE_DELAYED, &sh->state);
2914	atomic_inc(&sh->count);
2915
2916	mutex_lock(&log->io_mutex);
2917	/* meta + data */
2918	reserve = (1 + pages) << (PAGE_SHIFT - 9);
2919
2920	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2921	    sh->log_start == MaxSector)
2922		r5l_add_no_space_stripe(log, sh);
2923	else if (!r5l_has_free_space(log, reserve)) {
2924		if (sh->log_start == log->last_checkpoint)
2925			BUG();
2926		else
2927			r5l_add_no_space_stripe(log, sh);
2928	} else {
2929		ret = r5l_log_stripe(log, sh, pages, 0);
2930		if (ret) {
2931			spin_lock_irq(&log->io_list_lock);
2932			list_add_tail(&sh->log_list, &log->no_mem_stripes);
2933			spin_unlock_irq(&log->io_list_lock);
2934		}
2935	}
2936
2937	mutex_unlock(&log->io_mutex);
2938	return 0;
2939}
2940
2941/* check whether this big stripe is in write back cache. */
2942bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2943{
2944	struct r5l_log *log = conf->log;
2945	sector_t tree_index;
2946	void *slot;
2947
2948	if (!log)
2949		return false;
2950
2951	WARN_ON_ONCE(!rcu_read_lock_held());
2952	tree_index = r5c_tree_index(conf, sect);
2953	slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2954	return slot != NULL;
2955}
2956
2957static int r5l_load_log(struct r5l_log *log)
2958{
2959	struct md_rdev *rdev = log->rdev;
2960	struct page *page;
2961	struct r5l_meta_block *mb;
2962	sector_t cp = log->rdev->journal_tail;
2963	u32 stored_crc, expected_crc;
2964	bool create_super = false;
2965	int ret = 0;
2966
2967	/* Make sure it's valid */
2968	if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2969		cp = 0;
2970	page = alloc_page(GFP_KERNEL);
2971	if (!page)
2972		return -ENOMEM;
2973
2974	if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, false)) {
2975		ret = -EIO;
2976		goto ioerr;
2977	}
2978	mb = page_address(page);
2979
2980	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2981	    mb->version != R5LOG_VERSION) {
2982		create_super = true;
2983		goto create;
2984	}
2985	stored_crc = le32_to_cpu(mb->checksum);
2986	mb->checksum = 0;
2987	expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2988	if (stored_crc != expected_crc) {
2989		create_super = true;
2990		goto create;
2991	}
2992	if (le64_to_cpu(mb->position) != cp) {
2993		create_super = true;
2994		goto create;
2995	}
2996create:
2997	if (create_super) {
2998		log->last_cp_seq = get_random_u32();
2999		cp = 0;
3000		r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
3001		/*
3002		 * Make sure super points to correct address. Log might have
3003		 * data very soon. If super hasn't correct log tail address,
3004		 * recovery can't find the log
3005		 */
3006		r5l_write_super(log, cp);
3007	} else
3008		log->last_cp_seq = le64_to_cpu(mb->seq);
3009
3010	log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
3011	log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
3012	if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
3013		log->max_free_space = RECLAIM_MAX_FREE_SPACE;
3014	log->last_checkpoint = cp;
3015
3016	__free_page(page);
3017
3018	if (create_super) {
3019		log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
3020		log->seq = log->last_cp_seq + 1;
3021		log->next_checkpoint = cp;
3022	} else
3023		ret = r5l_recovery_log(log);
3024
3025	r5c_update_log_state(log);
3026	return ret;
3027ioerr:
3028	__free_page(page);
3029	return ret;
3030}
3031
3032int r5l_start(struct r5l_log *log)
3033{
3034	int ret;
3035
3036	if (!log)
3037		return 0;
3038
3039	ret = r5l_load_log(log);
3040	if (ret) {
3041		struct mddev *mddev = log->rdev->mddev;
3042		struct r5conf *conf = mddev->private;
3043
3044		r5l_exit_log(conf);
3045	}
3046	return ret;
3047}
3048
3049void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
3050{
3051	struct r5conf *conf = mddev->private;
3052	struct r5l_log *log = conf->log;
3053
3054	if (!log)
3055		return;
3056
3057	if ((raid5_calc_degraded(conf) > 0 ||
3058	     test_bit(Journal, &rdev->flags)) &&
3059	    conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3060		schedule_work(&log->disable_writeback_work);
3061}
3062
3063int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3064{
3065	struct r5l_log *log;
3066	int ret;
3067
3068	pr_debug("md/raid:%s: using device %pg as journal\n",
3069		 mdname(conf->mddev), rdev->bdev);
3070
3071	if (PAGE_SIZE != 4096)
3072		return -EINVAL;
3073
3074	/*
3075	 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3076	 * raid_disks r5l_payload_data_parity.
3077	 *
3078	 * Write journal and cache does not work for very big array
3079	 * (raid_disks > 203)
3080	 */
3081	if (sizeof(struct r5l_meta_block) +
3082	    ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3083	     conf->raid_disks) > PAGE_SIZE) {
3084		pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3085		       mdname(conf->mddev), conf->raid_disks);
3086		return -EINVAL;
3087	}
3088
3089	log = kzalloc(sizeof(*log), GFP_KERNEL);
3090	if (!log)
3091		return -ENOMEM;
3092	log->rdev = rdev;
3093	log->need_cache_flush = bdev_write_cache(rdev->bdev);
 
 
3094	log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3095				       sizeof(rdev->mddev->uuid));
3096
3097	mutex_init(&log->io_mutex);
3098
3099	spin_lock_init(&log->io_list_lock);
3100	INIT_LIST_HEAD(&log->running_ios);
3101	INIT_LIST_HEAD(&log->io_end_ios);
3102	INIT_LIST_HEAD(&log->flushing_ios);
3103	INIT_LIST_HEAD(&log->finished_ios);
 
3104
3105	log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3106	if (!log->io_kc)
3107		goto io_kc;
3108
3109	ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc);
3110	if (ret)
3111		goto io_pool;
3112
3113	ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
3114	if (ret)
3115		goto io_bs;
3116
3117	ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0);
3118	if (ret)
3119		goto out_mempool;
3120
3121	spin_lock_init(&log->tree_lock);
3122	INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3123
3124	log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3125						 log->rdev->mddev, "reclaim");
3126	if (!log->reclaim_thread)
3127		goto reclaim_thread;
3128	log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3129
3130	init_waitqueue_head(&log->iounit_wait);
3131
3132	INIT_LIST_HEAD(&log->no_mem_stripes);
3133
3134	INIT_LIST_HEAD(&log->no_space_stripes);
3135	spin_lock_init(&log->no_space_stripes_lock);
3136
3137	INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3138	INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3139
3140	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3141	INIT_LIST_HEAD(&log->stripe_in_journal_list);
3142	spin_lock_init(&log->stripe_in_journal_lock);
3143	atomic_set(&log->stripe_in_journal_count, 0);
3144
3145	conf->log = log;
3146
 
3147	set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3148	return 0;
3149
 
 
3150reclaim_thread:
3151	mempool_exit(&log->meta_pool);
3152out_mempool:
3153	bioset_exit(&log->bs);
3154io_bs:
3155	mempool_exit(&log->io_pool);
3156io_pool:
3157	kmem_cache_destroy(log->io_kc);
3158io_kc:
3159	kfree(log);
3160	return -EINVAL;
3161}
3162
3163void r5l_exit_log(struct r5conf *conf)
3164{
3165	struct r5l_log *log = conf->log;
3166
3167	/* Ensure disable_writeback_work wakes up and exits */
3168	wake_up(&conf->mddev->sb_wait);
3169	flush_work(&log->disable_writeback_work);
3170	md_unregister_thread(&log->reclaim_thread);
3171
3172	conf->log = NULL;
3173
3174	mempool_exit(&log->meta_pool);
3175	bioset_exit(&log->bs);
3176	mempool_exit(&log->io_pool);
3177	kmem_cache_destroy(log->io_kc);
3178	kfree(log);
3179}
v4.6
 
   1/*
   2 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 */
  14#include <linux/kernel.h>
  15#include <linux/wait.h>
  16#include <linux/blkdev.h>
  17#include <linux/slab.h>
  18#include <linux/raid/md_p.h>
  19#include <linux/crc32c.h>
  20#include <linux/random.h>
 
 
  21#include "md.h"
  22#include "raid5.h"
 
 
  23
  24/*
  25 * metadata/data stored in disk with 4k size unit (a block) regardless
  26 * underneath hardware sector size. only works with PAGE_SIZE == 4096
  27 */
  28#define BLOCK_SECTORS (8)
 
  29
  30/*
  31 * reclaim runs every 1/4 disk size or 10G reclaimable space. This can prevent
  32 * recovery scans a very long log
 
 
  33 */
  34#define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
  35#define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
  36
 
 
 
 
 
 
 
  37/*
  38 * We only need 2 bios per I/O unit to make progress, but ensure we
  39 * have a few more available to not get too tight.
  40 */
  41#define R5L_POOL_SIZE	4
  42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43struct r5l_log {
  44	struct md_rdev *rdev;
  45
  46	u32 uuid_checksum;
  47
  48	sector_t device_size;		/* log device size, round to
  49					 * BLOCK_SECTORS */
  50	sector_t max_free_space;	/* reclaim run if free space is at
  51					 * this size */
  52
  53	sector_t last_checkpoint;	/* log tail. where recovery scan
  54					 * starts from */
  55	u64 last_cp_seq;		/* log tail sequence */
  56
  57	sector_t log_start;		/* log head. where new data appends */
  58	u64 seq;			/* log head sequence */
  59
  60	sector_t next_checkpoint;
  61	u64 next_cp_seq;
  62
  63	struct mutex io_mutex;
  64	struct r5l_io_unit *current_io;	/* current io_unit accepting new data */
  65
  66	spinlock_t io_list_lock;
  67	struct list_head running_ios;	/* io_units which are still running,
  68					 * and have not yet been completely
  69					 * written to the log */
  70	struct list_head io_end_ios;	/* io_units which have been completely
  71					 * written to the log but not yet written
  72					 * to the RAID */
  73	struct list_head flushing_ios;	/* io_units which are waiting for log
  74					 * cache flush */
  75	struct list_head finished_ios;	/* io_units which settle down in log disk */
  76	struct bio flush_bio;
  77
  78	struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
  79
  80	struct kmem_cache *io_kc;
  81	mempool_t *io_pool;
  82	struct bio_set *bs;
  83	mempool_t *meta_pool;
  84
  85	struct md_thread *reclaim_thread;
  86	unsigned long reclaim_target;	/* number of space that need to be
  87					 * reclaimed.  if it's 0, reclaim spaces
  88					 * used by io_units which are in
  89					 * IO_UNIT_STRIPE_END state (eg, reclaim
  90					 * dones't wait for specific io_unit
  91					 * switching to IO_UNIT_STRIPE_END
  92					 * state) */
  93	wait_queue_head_t iounit_wait;
  94
  95	struct list_head no_space_stripes; /* pending stripes, log has no space */
  96	spinlock_t no_space_stripes_lock;
  97
  98	bool need_cache_flush;
  99	bool in_teardown;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 100};
 101
 102/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 103 * an IO range starts from a meta data block and end at the next meta data
 104 * block. The io unit's the meta data block tracks data/parity followed it. io
 105 * unit is written to log disk with normal write, as we always flush log disk
 106 * first and then start move data to raid disks, there is no requirement to
 107 * write io unit with FLUSH/FUA
 108 */
 109struct r5l_io_unit {
 110	struct r5l_log *log;
 111
 112	struct page *meta_page;	/* store meta block */
 113	int meta_offset;	/* current offset in meta_page */
 114
 115	struct bio *current_bio;/* current_bio accepting new data */
 116
 117	atomic_t pending_stripe;/* how many stripes not flushed to raid */
 118	u64 seq;		/* seq number of the metablock */
 119	sector_t log_start;	/* where the io_unit starts */
 120	sector_t log_end;	/* where the io_unit ends */
 121	struct list_head log_sibling; /* log->running_ios */
 122	struct list_head stripe_list; /* stripes added to the io_unit */
 123
 124	int state;
 125	bool need_split_bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 126};
 127
 128/* r5l_io_unit state */
 129enum r5l_io_unit_state {
 130	IO_UNIT_RUNNING = 0,	/* accepting new IO */
 131	IO_UNIT_IO_START = 1,	/* io_unit bio start writing to log,
 132				 * don't accepting new bio */
 133	IO_UNIT_IO_END = 2,	/* io_unit bio finish writing to log */
 134	IO_UNIT_STRIPE_END = 3,	/* stripes data finished writing to raid */
 135};
 136
 
 
 
 
 
 
 137static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
 138{
 139	start += inc;
 140	if (start >= log->device_size)
 141		start = start - log->device_size;
 142	return start;
 143}
 144
 145static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
 146				  sector_t end)
 147{
 148	if (end >= start)
 149		return end - start;
 150	else
 151		return end + log->device_size - start;
 152}
 153
 154static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
 155{
 156	sector_t used_size;
 157
 158	used_size = r5l_ring_distance(log, log->last_checkpoint,
 159					log->log_start);
 160
 161	return log->device_size > used_size + size;
 162}
 163
 164static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
 165				    enum r5l_io_unit_state state)
 166{
 167	if (WARN_ON(io->state >= state))
 168		return;
 169	io->state = state;
 170}
 171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172static void r5l_io_run_stripes(struct r5l_io_unit *io)
 173{
 174	struct stripe_head *sh, *next;
 175
 176	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
 177		list_del_init(&sh->log_list);
 
 
 
 178		set_bit(STRIPE_HANDLE, &sh->state);
 179		raid5_release_stripe(sh);
 180	}
 181}
 182
 183static void r5l_log_run_stripes(struct r5l_log *log)
 184{
 185	struct r5l_io_unit *io, *next;
 186
 187	assert_spin_locked(&log->io_list_lock);
 188
 189	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
 190		/* don't change list order */
 191		if (io->state < IO_UNIT_IO_END)
 192			break;
 193
 194		list_move_tail(&io->log_sibling, &log->finished_ios);
 195		r5l_io_run_stripes(io);
 196	}
 197}
 198
 199static void r5l_move_to_end_ios(struct r5l_log *log)
 200{
 201	struct r5l_io_unit *io, *next;
 202
 203	assert_spin_locked(&log->io_list_lock);
 204
 205	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
 206		/* don't change list order */
 207		if (io->state < IO_UNIT_IO_END)
 208			break;
 209		list_move_tail(&io->log_sibling, &log->io_end_ios);
 210	}
 211}
 212
 
 213static void r5l_log_endio(struct bio *bio)
 214{
 215	struct r5l_io_unit *io = bio->bi_private;
 
 216	struct r5l_log *log = io->log;
 217	unsigned long flags;
 
 
 218
 219	if (bio->bi_error)
 220		md_error(log->rdev->mddev, log->rdev);
 221
 222	bio_put(bio);
 223	mempool_free(io->meta_page, log->meta_pool);
 224
 225	spin_lock_irqsave(&log->io_list_lock, flags);
 226	__r5l_set_io_unit_state(io, IO_UNIT_IO_END);
 227	if (log->need_cache_flush)
 
 
 
 
 
 
 
 
 
 
 228		r5l_move_to_end_ios(log);
 229	else
 230		r5l_log_run_stripes(log);
 
 
 
 
 
 
 
 
 
 
 
 231	spin_unlock_irqrestore(&log->io_list_lock, flags);
 232
 233	if (log->need_cache_flush)
 234		md_wakeup_thread(log->rdev->mddev->thread);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 235}
 236
 237static void r5l_submit_current_io(struct r5l_log *log)
 238{
 239	struct r5l_io_unit *io = log->current_io;
 240	struct r5l_meta_block *block;
 241	unsigned long flags;
 242	u32 crc;
 
 243
 244	if (!io)
 245		return;
 246
 247	block = page_address(io->meta_page);
 248	block->meta_size = cpu_to_le32(io->meta_offset);
 249	crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
 250	block->checksum = cpu_to_le32(crc);
 251
 252	log->current_io = NULL;
 253	spin_lock_irqsave(&log->io_list_lock, flags);
 254	__r5l_set_io_unit_state(io, IO_UNIT_IO_START);
 
 
 
 
 
 
 255	spin_unlock_irqrestore(&log->io_list_lock, flags);
 256
 257	submit_bio(WRITE, io->current_bio);
 258}
 259
 260static struct bio *r5l_bio_alloc(struct r5l_log *log)
 261{
 262	struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
 
 263
 264	bio->bi_rw = WRITE;
 265	bio->bi_bdev = log->rdev->bdev;
 266	bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
 267
 268	return bio;
 269}
 270
 271static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
 272{
 273	log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
 274
 
 275	/*
 276	 * If we filled up the log device start from the beginning again,
 277	 * which will require a new bio.
 278	 *
 279	 * Note: for this to work properly the log size needs to me a multiple
 280	 * of BLOCK_SECTORS.
 281	 */
 282	if (log->log_start == 0)
 283		io->need_split_bio = true;
 284
 285	io->log_end = log->log_start;
 286}
 287
 288static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
 289{
 290	struct r5l_io_unit *io;
 291	struct r5l_meta_block *block;
 292
 293	io = mempool_alloc(log->io_pool, GFP_ATOMIC);
 294	if (!io)
 295		return NULL;
 296	memset(io, 0, sizeof(*io));
 297
 298	io->log = log;
 299	INIT_LIST_HEAD(&io->log_sibling);
 300	INIT_LIST_HEAD(&io->stripe_list);
 
 301	io->state = IO_UNIT_RUNNING;
 302
 303	io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
 304	block = page_address(io->meta_page);
 305	clear_page(block);
 306	block->magic = cpu_to_le32(R5LOG_MAGIC);
 307	block->version = R5LOG_VERSION;
 308	block->seq = cpu_to_le64(log->seq);
 309	block->position = cpu_to_le64(log->log_start);
 310
 311	io->log_start = log->log_start;
 312	io->meta_offset = sizeof(struct r5l_meta_block);
 313	io->seq = log->seq++;
 314
 315	io->current_bio = r5l_bio_alloc(log);
 316	io->current_bio->bi_end_io = r5l_log_endio;
 317	io->current_bio->bi_private = io;
 318	bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
 319
 320	r5_reserve_log_entry(log, io);
 321
 322	spin_lock_irq(&log->io_list_lock);
 323	list_add_tail(&io->log_sibling, &log->running_ios);
 324	spin_unlock_irq(&log->io_list_lock);
 325
 326	return io;
 327}
 328
 329static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
 330{
 331	if (log->current_io &&
 332	    log->current_io->meta_offset + payload_size > PAGE_SIZE)
 333		r5l_submit_current_io(log);
 334
 335	if (!log->current_io) {
 336		log->current_io = r5l_new_meta(log);
 337		if (!log->current_io)
 338			return -ENOMEM;
 339	}
 340
 341	return 0;
 342}
 343
 344static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
 345				    sector_t location,
 346				    u32 checksum1, u32 checksum2,
 347				    bool checksum2_valid)
 348{
 349	struct r5l_io_unit *io = log->current_io;
 350	struct r5l_payload_data_parity *payload;
 351
 352	payload = page_address(io->meta_page) + io->meta_offset;
 353	payload->header.type = cpu_to_le16(type);
 354	payload->header.flags = cpu_to_le16(0);
 355	payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
 356				    (PAGE_SHIFT - 9));
 357	payload->location = cpu_to_le64(location);
 358	payload->checksum[0] = cpu_to_le32(checksum1);
 359	if (checksum2_valid)
 360		payload->checksum[1] = cpu_to_le32(checksum2);
 361
 362	io->meta_offset += sizeof(struct r5l_payload_data_parity) +
 363		sizeof(__le32) * (1 + !!checksum2_valid);
 364}
 365
 366static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
 367{
 368	struct r5l_io_unit *io = log->current_io;
 369
 370	if (io->need_split_bio) {
 371		struct bio *prev = io->current_bio;
 372
 373		io->current_bio = r5l_bio_alloc(log);
 374		bio_chain(io->current_bio, prev);
 375
 376		submit_bio(WRITE, prev);
 377	}
 378
 379	if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
 380		BUG();
 381
 382	r5_reserve_log_entry(log, io);
 383}
 384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 385static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
 386			   int data_pages, int parity_pages)
 387{
 388	int i;
 389	int meta_size;
 390	int ret;
 391	struct r5l_io_unit *io;
 392
 393	meta_size =
 394		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
 395		 * data_pages) +
 396		sizeof(struct r5l_payload_data_parity) +
 397		sizeof(__le32) * parity_pages;
 398
 399	ret = r5l_get_meta(log, meta_size);
 400	if (ret)
 401		return ret;
 402
 403	io = log->current_io;
 404
 
 
 
 405	for (i = 0; i < sh->disks; i++) {
 406		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
 
 407			continue;
 408		if (i == sh->pd_idx || i == sh->qd_idx)
 409			continue;
 
 
 
 
 
 
 
 
 
 410		r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
 411					raid5_compute_blocknr(sh, i, 0),
 412					sh->dev[i].log_checksum, 0, false);
 413		r5l_append_payload_page(log, sh->dev[i].page);
 414	}
 415
 416	if (sh->qd_idx >= 0) {
 417		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
 418					sh->sector, sh->dev[sh->pd_idx].log_checksum,
 419					sh->dev[sh->qd_idx].log_checksum, true);
 420		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
 421		r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
 422	} else {
 423		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
 424					sh->sector, sh->dev[sh->pd_idx].log_checksum,
 425					0, false);
 426		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
 427	}
 
 428
 429	list_add_tail(&sh->log_list, &io->stripe_list);
 430	atomic_inc(&io->pending_stripe);
 431	sh->log_io = io;
 432
 
 
 
 
 
 
 
 
 
 
 
 
 433	return 0;
 434}
 435
 436static void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
 
 
 
 
 
 
 
 
 437/*
 438 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
 439 * data from log to raid disks), so we shouldn't wait for reclaim here
 440 */
 441int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
 442{
 
 443	int write_disks = 0;
 444	int data_pages, parity_pages;
 445	int meta_size;
 446	int reserve;
 447	int i;
 448	int ret = 0;
 
 449
 450	if (!log)
 451		return -EAGAIN;
 452	/* Don't support stripe batch */
 453	if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
 454	    test_bit(STRIPE_SYNCING, &sh->state)) {
 455		/* the stripe is written to log, we start writing it to raid */
 456		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
 457		return -EAGAIN;
 458	}
 459
 
 
 460	for (i = 0; i < sh->disks; i++) {
 461		void *addr;
 462
 463		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
 
 464			continue;
 
 465		write_disks++;
 466		/* checksum is already calculated in last run */
 467		if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
 468			continue;
 469		addr = kmap_atomic(sh->dev[i].page);
 470		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
 471						    addr, PAGE_SIZE);
 472		kunmap_atomic(addr);
 473	}
 474	parity_pages = 1 + !!(sh->qd_idx >= 0);
 475	data_pages = write_disks - parity_pages;
 476
 477	meta_size =
 478		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
 479		 * data_pages) +
 480		sizeof(struct r5l_payload_data_parity) +
 481		sizeof(__le32) * parity_pages;
 482	/* Doesn't work with very big raid array */
 483	if (meta_size + sizeof(struct r5l_meta_block) > PAGE_SIZE)
 484		return -EINVAL;
 485
 486	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
 487	/*
 488	 * The stripe must enter state machine again to finish the write, so
 489	 * don't delay.
 490	 */
 491	clear_bit(STRIPE_DELAYED, &sh->state);
 492	atomic_inc(&sh->count);
 493
 494	mutex_lock(&log->io_mutex);
 495	/* meta + data */
 496	reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
 497	if (!r5l_has_free_space(log, reserve)) {
 498		spin_lock(&log->no_space_stripes_lock);
 499		list_add_tail(&sh->log_list, &log->no_space_stripes);
 500		spin_unlock(&log->no_space_stripes_lock);
 501
 502		r5l_wake_reclaim(log, reserve);
 503	} else {
 504		ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
 505		if (ret) {
 506			spin_lock_irq(&log->io_list_lock);
 507			list_add_tail(&sh->log_list, &log->no_mem_stripes);
 508			spin_unlock_irq(&log->io_list_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 509		}
 510	}
 511
 512	mutex_unlock(&log->io_mutex);
 
 
 513	return 0;
 514}
 515
 516void r5l_write_stripe_run(struct r5l_log *log)
 517{
 518	if (!log)
 519		return;
 520	mutex_lock(&log->io_mutex);
 521	r5l_submit_current_io(log);
 522	mutex_unlock(&log->io_mutex);
 523}
 524
 525int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
 526{
 527	if (!log)
 528		return -ENODEV;
 529	/*
 530	 * we flush log disk cache first, then write stripe data to raid disks.
 531	 * So if bio is finished, the log disk cache is flushed already. The
 532	 * recovery guarantees we can recovery the bio from log disk, so we
 533	 * don't need to flush again
 534	 */
 535	if (bio->bi_iter.bi_size == 0) {
 536		bio_endio(bio);
 537		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 538	}
 539	bio->bi_rw &= ~REQ_FLUSH;
 540	return -EAGAIN;
 541}
 542
 543/* This will run after log space is reclaimed */
 544static void r5l_run_no_space_stripes(struct r5l_log *log)
 545{
 546	struct stripe_head *sh;
 547
 548	spin_lock(&log->no_space_stripes_lock);
 549	while (!list_empty(&log->no_space_stripes)) {
 550		sh = list_first_entry(&log->no_space_stripes,
 551				      struct stripe_head, log_list);
 552		list_del_init(&sh->log_list);
 553		set_bit(STRIPE_HANDLE, &sh->state);
 554		raid5_release_stripe(sh);
 555	}
 556	spin_unlock(&log->no_space_stripes_lock);
 557}
 558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 559static sector_t r5l_reclaimable_space(struct r5l_log *log)
 560{
 
 
 561	return r5l_ring_distance(log, log->last_checkpoint,
 562				 log->next_checkpoint);
 563}
 564
 565static void r5l_run_no_mem_stripe(struct r5l_log *log)
 566{
 567	struct stripe_head *sh;
 568
 569	assert_spin_locked(&log->io_list_lock);
 570
 571	if (!list_empty(&log->no_mem_stripes)) {
 572		sh = list_first_entry(&log->no_mem_stripes,
 573				      struct stripe_head, log_list);
 574		list_del_init(&sh->log_list);
 575		set_bit(STRIPE_HANDLE, &sh->state);
 576		raid5_release_stripe(sh);
 577	}
 578}
 579
 580static bool r5l_complete_finished_ios(struct r5l_log *log)
 581{
 582	struct r5l_io_unit *io, *next;
 583	bool found = false;
 584
 585	assert_spin_locked(&log->io_list_lock);
 586
 587	list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
 588		/* don't change list order */
 589		if (io->state < IO_UNIT_STRIPE_END)
 590			break;
 591
 592		log->next_checkpoint = io->log_start;
 593		log->next_cp_seq = io->seq;
 594
 595		list_del(&io->log_sibling);
 596		mempool_free(io, log->io_pool);
 597		r5l_run_no_mem_stripe(log);
 598
 599		found = true;
 600	}
 601
 602	return found;
 603}
 604
 605static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
 606{
 607	struct r5l_log *log = io->log;
 
 608	unsigned long flags;
 609
 610	spin_lock_irqsave(&log->io_list_lock, flags);
 611	__r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
 612
 613	if (!r5l_complete_finished_ios(log)) {
 614		spin_unlock_irqrestore(&log->io_list_lock, flags);
 615		return;
 616	}
 617
 618	if (r5l_reclaimable_space(log) > log->max_free_space)
 
 619		r5l_wake_reclaim(log, 0);
 620
 621	spin_unlock_irqrestore(&log->io_list_lock, flags);
 622	wake_up(&log->iounit_wait);
 623}
 624
 625void r5l_stripe_write_finished(struct stripe_head *sh)
 626{
 627	struct r5l_io_unit *io;
 628
 629	io = sh->log_io;
 630	sh->log_io = NULL;
 631
 632	if (io && atomic_dec_and_test(&io->pending_stripe))
 633		__r5l_stripe_write_finished(io);
 634}
 635
 636static void r5l_log_flush_endio(struct bio *bio)
 637{
 638	struct r5l_log *log = container_of(bio, struct r5l_log,
 639		flush_bio);
 640	unsigned long flags;
 641	struct r5l_io_unit *io;
 642
 643	if (bio->bi_error)
 644		md_error(log->rdev->mddev, log->rdev);
 645
 646	spin_lock_irqsave(&log->io_list_lock, flags);
 647	list_for_each_entry(io, &log->flushing_ios, log_sibling)
 648		r5l_io_run_stripes(io);
 649	list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
 650	spin_unlock_irqrestore(&log->io_list_lock, flags);
 
 
 651}
 652
 653/*
 654 * Starting dispatch IO to raid.
 655 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
 656 * broken meta in the middle of a log causes recovery can't find meta at the
 657 * head of log. If operations require meta at the head persistent in log, we
 658 * must make sure meta before it persistent in log too. A case is:
 659 *
 660 * stripe data/parity is in log, we start write stripe to raid disks. stripe
 661 * data/parity must be persistent in log before we do the write to raid disks.
 662 *
 663 * The solution is we restrictly maintain io_unit list order. In this case, we
 664 * only write stripes of an io_unit to raid disks till the io_unit is the first
 665 * one whose data/parity is in log.
 666 */
 667void r5l_flush_stripe_to_raid(struct r5l_log *log)
 668{
 669	bool do_flush;
 670
 671	if (!log || !log->need_cache_flush)
 672		return;
 673
 674	spin_lock_irq(&log->io_list_lock);
 675	/* flush bio is running */
 676	if (!list_empty(&log->flushing_ios)) {
 677		spin_unlock_irq(&log->io_list_lock);
 678		return;
 679	}
 680	list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
 681	do_flush = !list_empty(&log->flushing_ios);
 682	spin_unlock_irq(&log->io_list_lock);
 683
 684	if (!do_flush)
 685		return;
 686	bio_reset(&log->flush_bio);
 687	log->flush_bio.bi_bdev = log->rdev->bdev;
 688	log->flush_bio.bi_end_io = r5l_log_flush_endio;
 689	submit_bio(WRITE_FLUSH, &log->flush_bio);
 690}
 691
 692static void r5l_write_super(struct r5l_log *log, sector_t cp);
 693static void r5l_write_super_and_discard_space(struct r5l_log *log,
 694	sector_t end)
 695{
 696	struct block_device *bdev = log->rdev->bdev;
 697	struct mddev *mddev;
 698
 699	r5l_write_super(log, end);
 700
 701	if (!blk_queue_discard(bdev_get_queue(bdev)))
 702		return;
 703
 704	mddev = log->rdev->mddev;
 705	/*
 706	 * This is to avoid a deadlock. r5l_quiesce holds reconfig_mutex and
 707	 * wait for this thread to finish. This thread waits for
 708	 * MD_CHANGE_PENDING clear, which is supposed to be done in
 709	 * md_check_recovery(). md_check_recovery() tries to get
 710	 * reconfig_mutex. Since r5l_quiesce already holds the mutex,
 711	 * md_check_recovery() fails, so the PENDING never get cleared. The
 712	 * in_teardown check workaround this issue.
 
 
 713	 */
 714	if (!log->in_teardown) {
 715		set_bit(MD_CHANGE_DEVS, &mddev->flags);
 716		set_bit(MD_CHANGE_PENDING, &mddev->flags);
 717		md_wakeup_thread(mddev->thread);
 718		wait_event(mddev->sb_wait,
 719			!test_bit(MD_CHANGE_PENDING, &mddev->flags) ||
 720			log->in_teardown);
 721		/*
 722		 * r5l_quiesce could run after in_teardown check and hold
 723		 * mutex first. Superblock might get updated twice.
 724		 */
 725		if (log->in_teardown)
 726			md_update_sb(mddev, 1);
 727	} else {
 728		WARN_ON(!mddev_is_locked(mddev));
 729		md_update_sb(mddev, 1);
 730	}
 731
 732	/* discard IO error really doesn't matter, ignore it */
 733	if (log->last_checkpoint < end) {
 734		blkdev_issue_discard(bdev,
 735				log->last_checkpoint + log->rdev->data_offset,
 736				end - log->last_checkpoint, GFP_NOIO, 0);
 737	} else {
 738		blkdev_issue_discard(bdev,
 739				log->last_checkpoint + log->rdev->data_offset,
 740				log->device_size - log->last_checkpoint,
 741				GFP_NOIO, 0);
 742		blkdev_issue_discard(bdev, log->rdev->data_offset, end,
 743				GFP_NOIO, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 744	}
 745}
 746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 747
 748static void r5l_do_reclaim(struct r5l_log *log)
 749{
 
 750	sector_t reclaim_target = xchg(&log->reclaim_target, 0);
 751	sector_t reclaimable;
 752	sector_t next_checkpoint;
 753	u64 next_cp_seq;
 754
 755	spin_lock_irq(&log->io_list_lock);
 
 
 756	/*
 757	 * move proper io_unit to reclaim list. We should not change the order.
 758	 * reclaimable/unreclaimable io_unit can be mixed in the list, we
 759	 * shouldn't reuse space of an unreclaimable io_unit
 760	 */
 761	while (1) {
 762		reclaimable = r5l_reclaimable_space(log);
 763		if (reclaimable >= reclaim_target ||
 764		    (list_empty(&log->running_ios) &&
 765		     list_empty(&log->io_end_ios) &&
 766		     list_empty(&log->flushing_ios) &&
 767		     list_empty(&log->finished_ios)))
 768			break;
 769
 770		md_wakeup_thread(log->rdev->mddev->thread);
 771		wait_event_lock_irq(log->iounit_wait,
 772				    r5l_reclaimable_space(log) > reclaimable,
 773				    log->io_list_lock);
 774	}
 775
 776	next_checkpoint = log->next_checkpoint;
 777	next_cp_seq = log->next_cp_seq;
 778	spin_unlock_irq(&log->io_list_lock);
 779
 780	BUG_ON(reclaimable < 0);
 781	if (reclaimable == 0)
 782		return;
 783
 784	/*
 785	 * write_super will flush cache of each raid disk. We must write super
 786	 * here, because the log area might be reused soon and we don't want to
 787	 * confuse recovery
 788	 */
 789	r5l_write_super_and_discard_space(log, next_checkpoint);
 790
 791	mutex_lock(&log->io_mutex);
 792	log->last_checkpoint = next_checkpoint;
 793	log->last_cp_seq = next_cp_seq;
 794	mutex_unlock(&log->io_mutex);
 795
 796	r5l_run_no_space_stripes(log);
 797}
 798
 799static void r5l_reclaim_thread(struct md_thread *thread)
 800{
 801	struct mddev *mddev = thread->mddev;
 802	struct r5conf *conf = mddev->private;
 803	struct r5l_log *log = conf->log;
 804
 805	if (!log)
 806		return;
 
 807	r5l_do_reclaim(log);
 808}
 809
 810static void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
 811{
 812	unsigned long target;
 813	unsigned long new = (unsigned long)space; /* overflow in theory */
 814
 
 
 
 
 815	do {
 816		target = log->reclaim_target;
 817		if (new < target)
 818			return;
 819	} while (cmpxchg(&log->reclaim_target, target, new) != target);
 820	md_wakeup_thread(log->reclaim_thread);
 821}
 822
 823void r5l_quiesce(struct r5l_log *log, int state)
 824{
 825	struct mddev *mddev;
 826	if (!log || state == 2)
 827		return;
 828	if (state == 0) {
 829		log->in_teardown = 0;
 830		/*
 831		 * This is a special case for hotadd. In suspend, the array has
 832		 * no journal. In resume, journal is initialized as well as the
 833		 * reclaim thread.
 834		 */
 835		if (log->reclaim_thread)
 836			return;
 837		log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
 838					log->rdev->mddev, "reclaim");
 839	} else if (state == 1) {
 840		/*
 841		 * at this point all stripes are finished, so io_unit is at
 842		 * least in STRIPE_END state
 843		 */
 844		log->in_teardown = 1;
 845		/* make sure r5l_write_super_and_discard_space exits */
 846		mddev = log->rdev->mddev;
 847		wake_up(&mddev->sb_wait);
 848		r5l_wake_reclaim(log, -1L);
 849		md_unregister_thread(&log->reclaim_thread);
 850		r5l_do_reclaim(log);
 851	}
 
 852}
 853
 854bool r5l_log_disk_error(struct r5conf *conf)
 855{
 856	struct r5l_log *log;
 857	bool ret;
 858	/* don't allow write if journal disk is missing */
 859	rcu_read_lock();
 860	log = rcu_dereference(conf->log);
 861
 862	if (!log)
 863		ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
 864	else
 865		ret = test_bit(Faulty, &log->rdev->flags);
 866	rcu_read_unlock();
 867	return ret;
 868}
 869
 
 
 870struct r5l_recovery_ctx {
 871	struct page *meta_page;		/* current meta */
 872	sector_t meta_total_blocks;	/* total size of current meta and data */
 873	sector_t pos;			/* recovery position */
 874	u64 seq;			/* recovery position seq */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 875};
 876
 877static int r5l_read_meta_block(struct r5l_log *log,
 878			       struct r5l_recovery_ctx *ctx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879{
 880	struct page *page = ctx->meta_page;
 881	struct r5l_meta_block *mb;
 882	u32 crc, stored_crc;
 
 883
 884	if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, READ, false))
 885		return -EIO;
 
 886
 887	mb = page_address(page);
 888	stored_crc = le32_to_cpu(mb->checksum);
 889	mb->checksum = 0;
 890
 891	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
 892	    le64_to_cpu(mb->seq) != ctx->seq ||
 893	    mb->version != R5LOG_VERSION ||
 894	    le64_to_cpu(mb->position) != ctx->pos)
 895		return -EINVAL;
 896
 897	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
 898	if (stored_crc != crc)
 899		return -EINVAL;
 900
 901	if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
 902		return -EINVAL;
 903
 904	ctx->meta_total_blocks = BLOCK_SECTORS;
 905
 906	return 0;
 907}
 908
 909static int r5l_recovery_flush_one_stripe(struct r5l_log *log,
 910					 struct r5l_recovery_ctx *ctx,
 911					 sector_t stripe_sect,
 912					 int *offset, sector_t *log_offset)
 913{
 914	struct r5conf *conf = log->rdev->mddev->private;
 915	struct stripe_head *sh;
 916	struct r5l_payload_data_parity *payload;
 917	int disk_index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918
 919	sh = raid5_get_active_stripe(conf, stripe_sect, 0, 0, 0);
 920	while (1) {
 921		payload = page_address(ctx->meta_page) + *offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 922
 923		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
 924			raid5_compute_sector(conf,
 925					     le64_to_cpu(payload->location), 0,
 926					     &disk_index, sh);
 927
 928			sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
 929				     sh->dev[disk_index].page, READ, false);
 930			sh->dev[disk_index].log_checksum =
 931				le32_to_cpu(payload->checksum[0]);
 932			set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
 933			ctx->meta_total_blocks += BLOCK_SECTORS;
 934		} else {
 935			disk_index = sh->pd_idx;
 936			sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
 937				     sh->dev[disk_index].page, READ, false);
 938			sh->dev[disk_index].log_checksum =
 939				le32_to_cpu(payload->checksum[0]);
 940			set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
 941
 942			if (sh->qd_idx >= 0) {
 943				disk_index = sh->qd_idx;
 944				sync_page_io(log->rdev,
 945					     r5l_ring_add(log, *log_offset, BLOCK_SECTORS),
 946					     PAGE_SIZE, sh->dev[disk_index].page,
 947					     READ, false);
 948				sh->dev[disk_index].log_checksum =
 949					le32_to_cpu(payload->checksum[1]);
 950				set_bit(R5_Wantwrite,
 951					&sh->dev[disk_index].flags);
 952			}
 953			ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
 954		}
 955
 956		*log_offset = r5l_ring_add(log, *log_offset,
 957					   le32_to_cpu(payload->size));
 958		*offset += sizeof(struct r5l_payload_data_parity) +
 959			sizeof(__le32) *
 960			(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
 961		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
 962			break;
 963	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 964
 965	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
 966		void *addr;
 967		u32 checksum;
 968
 969		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
 970			continue;
 971		addr = kmap_atomic(sh->dev[disk_index].page);
 972		checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
 973		kunmap_atomic(addr);
 974		if (checksum != sh->dev[disk_index].log_checksum)
 975			goto error;
 976	}
 977
 
 
 
 
 
 
 
 
 978	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
 979		struct md_rdev *rdev, *rrdev;
 980
 981		if (!test_and_clear_bit(R5_Wantwrite,
 982					&sh->dev[disk_index].flags))
 983			continue;
 984
 985		/* in case device is broken */
 
 986		rdev = rcu_dereference(conf->disks[disk_index].rdev);
 987		if (rdev)
 988			sync_page_io(rdev, stripe_sect, PAGE_SIZE,
 989				     sh->dev[disk_index].page, WRITE, false);
 
 
 
 
 
 
 990		rrdev = rcu_dereference(conf->disks[disk_index].replacement);
 991		if (rrdev)
 992			sync_page_io(rrdev, stripe_sect, PAGE_SIZE,
 993				     sh->dev[disk_index].page, WRITE, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 994	}
 995	raid5_release_stripe(sh);
 
 996	return 0;
 997
 998error:
 999	for (disk_index = 0; disk_index < sh->disks; disk_index++)
1000		sh->dev[disk_index].flags = 0;
1001	raid5_release_stripe(sh);
1002	return -EINVAL;
1003}
1004
1005static int r5l_recovery_flush_one_meta(struct r5l_log *log,
1006				       struct r5l_recovery_ctx *ctx)
 
 
 
 
 
 
 
 
 
 
1007{
1008	struct r5conf *conf = log->rdev->mddev->private;
 
 
1009	struct r5l_payload_data_parity *payload;
1010	struct r5l_meta_block *mb;
1011	int offset;
1012	sector_t log_offset;
1013	sector_t stripe_sector;
 
 
 
 
 
 
 
 
 
 
 
 
 
1014
1015	mb = page_address(ctx->meta_page);
1016	offset = sizeof(struct r5l_meta_block);
1017	log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1018
1019	while (offset < le32_to_cpu(mb->meta_size)) {
1020		int dd;
1021
1022		payload = (void *)mb + offset;
1023		stripe_sector = raid5_compute_sector(conf,
1024						     le64_to_cpu(payload->location), 0, &dd, NULL);
1025		if (r5l_recovery_flush_one_stripe(log, ctx, stripe_sector,
1026						  &offset, &log_offset))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1027			return -EINVAL;
 
 
 
 
 
 
 
1028	}
 
1029	return 0;
1030}
1031
1032/* copy data/parity from log to raid disks */
1033static void r5l_recovery_flush_log(struct r5l_log *log,
1034				   struct r5l_recovery_ctx *ctx)
 
 
 
1035{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1036	while (1) {
1037		if (r5l_read_meta_block(log, ctx))
1038			return;
1039		if (r5l_recovery_flush_one_meta(log, ctx))
1040			return;
 
 
 
 
 
 
 
1041		ctx->seq++;
1042		ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
1043	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1044}
1045
1046static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1047					  u64 seq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1048{
 
 
1049	struct page *page;
1050	struct r5l_meta_block *mb;
1051	u32 crc;
1052
1053	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1054	if (!page)
 
 
1055		return -ENOMEM;
1056	mb = page_address(page);
1057	mb->magic = cpu_to_le32(R5LOG_MAGIC);
1058	mb->version = R5LOG_VERSION;
1059	mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1060	mb->seq = cpu_to_le64(seq);
1061	mb->position = cpu_to_le64(pos);
1062	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1063	mb->checksum = cpu_to_le32(crc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1064
1065	if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, WRITE_FUA, false)) {
1066		__free_page(page);
1067		return -EIO;
 
 
 
 
 
 
 
 
 
 
1068	}
 
1069	__free_page(page);
1070	return 0;
1071}
1072
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1073static int r5l_recovery_log(struct r5l_log *log)
1074{
1075	struct r5l_recovery_ctx ctx;
 
 
 
1076
1077	ctx.pos = log->last_checkpoint;
1078	ctx.seq = log->last_cp_seq;
1079	ctx.meta_page = alloc_page(GFP_KERNEL);
1080	if (!ctx.meta_page)
1081		return -ENOMEM;
1082
1083	r5l_recovery_flush_log(log, &ctx);
1084	__free_page(ctx.meta_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1085
1086	/*
1087	 * we did a recovery. Now ctx.pos points to an invalid meta block. New
1088	 * log will start here. but we can't let superblock point to last valid
1089	 * meta block. The log might looks like:
1090	 * | meta 1| meta 2| meta 3|
1091	 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
1092	 * superblock points to meta 1, we write a new valid meta 2n.  if crash
1093	 * happens again, new recovery will start from meta 1. Since meta 2n is
1094	 * valid now, recovery will think meta 3 is valid, which is wrong.
1095	 * The solution is we create a new meta in meta2 with its seq == meta
1096	 * 1's seq + 10 and let superblock points to meta2. The same recovery will
1097	 * not think meta 3 is a valid meta, because its seq doesn't match
1098	 */
1099	if (ctx.seq > log->last_cp_seq + 1) {
1100		int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1101
1102		ret = r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq + 10);
1103		if (ret)
1104			return ret;
1105		log->seq = ctx.seq + 11;
1106		log->log_start = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS);
1107		r5l_write_super(log, ctx.pos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1108	} else {
1109		log->log_start = ctx.pos;
1110		log->seq = ctx.seq;
 
 
 
 
1111	}
 
 
1112	return 0;
1113}
1114
1115static void r5l_write_super(struct r5l_log *log, sector_t cp)
 
1116{
1117	struct mddev *mddev = log->rdev->mddev;
 
 
 
 
 
1118
1119	log->rdev->journal_tail = cp;
1120	set_bit(MD_CHANGE_DEVS, &mddev->flags);
 
 
1121}
1122
1123static int r5l_load_log(struct r5l_log *log)
1124{
1125	struct md_rdev *rdev = log->rdev;
1126	struct page *page;
1127	struct r5l_meta_block *mb;
1128	sector_t cp = log->rdev->journal_tail;
1129	u32 stored_crc, expected_crc;
1130	bool create_super = false;
1131	int ret;
1132
1133	/* Make sure it's valid */
1134	if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
1135		cp = 0;
1136	page = alloc_page(GFP_KERNEL);
1137	if (!page)
1138		return -ENOMEM;
1139
1140	if (!sync_page_io(rdev, cp, PAGE_SIZE, page, READ, false)) {
1141		ret = -EIO;
1142		goto ioerr;
1143	}
1144	mb = page_address(page);
1145
1146	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1147	    mb->version != R5LOG_VERSION) {
1148		create_super = true;
1149		goto create;
1150	}
1151	stored_crc = le32_to_cpu(mb->checksum);
1152	mb->checksum = 0;
1153	expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1154	if (stored_crc != expected_crc) {
1155		create_super = true;
1156		goto create;
1157	}
1158	if (le64_to_cpu(mb->position) != cp) {
1159		create_super = true;
1160		goto create;
1161	}
1162create:
1163	if (create_super) {
1164		log->last_cp_seq = prandom_u32();
1165		cp = 0;
 
1166		/*
1167		 * Make sure super points to correct address. Log might have
1168		 * data very soon. If super hasn't correct log tail address,
1169		 * recovery can't find the log
1170		 */
1171		r5l_write_super(log, cp);
1172	} else
1173		log->last_cp_seq = le64_to_cpu(mb->seq);
1174
1175	log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
1176	log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
1177	if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
1178		log->max_free_space = RECLAIM_MAX_FREE_SPACE;
1179	log->last_checkpoint = cp;
1180
1181	__free_page(page);
1182
1183	return r5l_recovery_log(log);
 
 
 
 
 
 
 
 
1184ioerr:
1185	__free_page(page);
1186	return ret;
1187}
1188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1189int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
1190{
1191	struct r5l_log *log;
 
 
 
 
1192
1193	if (PAGE_SIZE != 4096)
1194		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1195	log = kzalloc(sizeof(*log), GFP_KERNEL);
1196	if (!log)
1197		return -ENOMEM;
1198	log->rdev = rdev;
1199
1200	log->need_cache_flush = (rdev->bdev->bd_disk->queue->flush_flags != 0);
1201
1202	log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
1203				       sizeof(rdev->mddev->uuid));
1204
1205	mutex_init(&log->io_mutex);
1206
1207	spin_lock_init(&log->io_list_lock);
1208	INIT_LIST_HEAD(&log->running_ios);
1209	INIT_LIST_HEAD(&log->io_end_ios);
1210	INIT_LIST_HEAD(&log->flushing_ios);
1211	INIT_LIST_HEAD(&log->finished_ios);
1212	bio_init(&log->flush_bio);
1213
1214	log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
1215	if (!log->io_kc)
1216		goto io_kc;
1217
1218	log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
1219	if (!log->io_pool)
1220		goto io_pool;
1221
1222	log->bs = bioset_create(R5L_POOL_SIZE, 0);
1223	if (!log->bs)
1224		goto io_bs;
1225
1226	log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
1227	if (!log->meta_pool)
1228		goto out_mempool;
1229
 
 
 
1230	log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
1231						 log->rdev->mddev, "reclaim");
1232	if (!log->reclaim_thread)
1233		goto reclaim_thread;
 
 
1234	init_waitqueue_head(&log->iounit_wait);
1235
1236	INIT_LIST_HEAD(&log->no_mem_stripes);
1237
1238	INIT_LIST_HEAD(&log->no_space_stripes);
1239	spin_lock_init(&log->no_space_stripes_lock);
1240
1241	if (r5l_load_log(log))
1242		goto error;
 
 
 
 
 
 
 
1243
1244	rcu_assign_pointer(conf->log, log);
1245	set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1246	return 0;
1247
1248error:
1249	md_unregister_thread(&log->reclaim_thread);
1250reclaim_thread:
1251	mempool_destroy(log->meta_pool);
1252out_mempool:
1253	bioset_free(log->bs);
1254io_bs:
1255	mempool_destroy(log->io_pool);
1256io_pool:
1257	kmem_cache_destroy(log->io_kc);
1258io_kc:
1259	kfree(log);
1260	return -EINVAL;
1261}
1262
1263void r5l_exit_log(struct r5l_log *log)
1264{
 
 
 
 
 
1265	md_unregister_thread(&log->reclaim_thread);
1266	mempool_destroy(log->meta_pool);
1267	bioset_free(log->bs);
1268	mempool_destroy(log->io_pool);
 
 
 
1269	kmem_cache_destroy(log->io_kc);
1270	kfree(log);
1271}