Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Primary bucket allocation code
  4 *
  5 * Copyright 2012 Google, Inc.
  6 *
  7 * Allocation in bcache is done in terms of buckets:
  8 *
  9 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
 10 * btree pointers - they must match for the pointer to be considered valid.
 11 *
 12 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
 13 * bucket simply by incrementing its gen.
 14 *
 15 * The gens (along with the priorities; it's really the gens are important but
 16 * the code is named as if it's the priorities) are written in an arbitrary list
 17 * of buckets on disk, with a pointer to them in the journal header.
 18 *
 19 * When we invalidate a bucket, we have to write its new gen to disk and wait
 20 * for that write to complete before we use it - otherwise after a crash we
 21 * could have pointers that appeared to be good but pointed to data that had
 22 * been overwritten.
 23 *
 24 * Since the gens and priorities are all stored contiguously on disk, we can
 25 * batch this up: We fill up the free_inc list with freshly invalidated buckets,
 26 * call prio_write(), and when prio_write() finishes we pull buckets off the
 27 * free_inc list and optionally discard them.
 28 *
 29 * free_inc isn't the only freelist - if it was, we'd often to sleep while
 30 * priorities and gens were being written before we could allocate. c->free is a
 31 * smaller freelist, and buckets on that list are always ready to be used.
 32 *
 33 * If we've got discards enabled, that happens when a bucket moves from the
 34 * free_inc list to the free list.
 35 *
 36 * There is another freelist, because sometimes we have buckets that we know
 37 * have nothing pointing into them - these we can reuse without waiting for
 38 * priorities to be rewritten. These come from freed btree nodes and buckets
 39 * that garbage collection discovered no longer had valid keys pointing into
 40 * them (because they were overwritten). That's the unused list - buckets on the
 41 * unused list move to the free list, optionally being discarded in the process.
 42 *
 43 * It's also important to ensure that gens don't wrap around - with respect to
 44 * either the oldest gen in the btree or the gen on disk. This is quite
 45 * difficult to do in practice, but we explicitly guard against it anyways - if
 46 * a bucket is in danger of wrapping around we simply skip invalidating it that
 47 * time around, and we garbage collect or rewrite the priorities sooner than we
 48 * would have otherwise.
 49 *
 50 * bch_bucket_alloc() allocates a single bucket from a specific cache.
 51 *
 52 * bch_bucket_alloc_set() allocates one  bucket from different caches
 53 * out of a cache set.
 54 *
 55 * free_some_buckets() drives all the processes described above. It's called
 56 * from bch_bucket_alloc() and a few other places that need to make sure free
 57 * buckets are ready.
 58 *
 59 * invalidate_buckets_(lru|fifo)() find buckets that are available to be
 60 * invalidated, and then invalidate them and stick them on the free_inc list -
 61 * in either lru or fifo order.
 62 */
 63
 64#include "bcache.h"
 65#include "btree.h"
 66
 67#include <linux/blkdev.h>
 
 68#include <linux/kthread.h>
 69#include <linux/random.h>
 70#include <trace/events/bcache.h>
 71
 72#define MAX_OPEN_BUCKETS 128
 73
 74/* Bucket heap / gen */
 75
 76uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
 77{
 78	uint8_t ret = ++b->gen;
 79
 80	ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
 81	WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
 82
 83	return ret;
 84}
 85
 86void bch_rescale_priorities(struct cache_set *c, int sectors)
 87{
 88	struct cache *ca;
 89	struct bucket *b;
 90	unsigned long next = c->nbuckets * c->cache->sb.bucket_size / 1024;
 
 91	int r;
 92
 93	atomic_sub(sectors, &c->rescale);
 94
 95	do {
 96		r = atomic_read(&c->rescale);
 97
 98		if (r >= 0)
 99			return;
100	} while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
101
102	mutex_lock(&c->bucket_lock);
103
104	c->min_prio = USHRT_MAX;
105
106	ca = c->cache;
107	for_each_bucket(b, ca)
108		if (b->prio &&
109		    b->prio != BTREE_PRIO &&
110		    !atomic_read(&b->pin)) {
111			b->prio--;
112			c->min_prio = min(c->min_prio, b->prio);
113		}
114
115	mutex_unlock(&c->bucket_lock);
116}
117
118/*
119 * Background allocation thread: scans for buckets to be invalidated,
120 * invalidates them, rewrites prios/gens (marking them as invalidated on disk),
121 * then optionally issues discard commands to the newly free buckets, then puts
122 * them on the various freelists.
123 */
124
125static inline bool can_inc_bucket_gen(struct bucket *b)
126{
127	return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX;
128}
129
130bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b)
131{
132	BUG_ON(!ca->set->gc_mark_valid);
133
134	return (!GC_MARK(b) ||
135		GC_MARK(b) == GC_MARK_RECLAIMABLE) &&
136		!atomic_read(&b->pin) &&
137		can_inc_bucket_gen(b);
138}
139
140void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
141{
142	lockdep_assert_held(&ca->set->bucket_lock);
143	BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE);
144
145	if (GC_SECTORS_USED(b))
146		trace_bcache_invalidate(ca, b - ca->buckets);
147
148	bch_inc_gen(ca, b);
149	b->prio = INITIAL_PRIO;
150	atomic_inc(&b->pin);
151}
152
153static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
154{
155	__bch_invalidate_one_bucket(ca, b);
156
157	fifo_push(&ca->free_inc, b - ca->buckets);
158}
159
160/*
161 * Determines what order we're going to reuse buckets, smallest bucket_prio()
162 * first: we also take into account the number of sectors of live data in that
163 * bucket, and in order for that multiply to make sense we have to scale bucket
164 *
165 * Thus, we scale the bucket priorities so that the bucket with the smallest
166 * prio is worth 1/8th of what INITIAL_PRIO is worth.
167 */
168
169#define bucket_prio(b)							\
170({									\
171	unsigned int min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8;	\
172									\
173	(b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b);	\
174})
175
176#define bucket_max_cmp(l, r)	(bucket_prio(l) < bucket_prio(r))
177#define bucket_min_cmp(l, r)	(bucket_prio(l) > bucket_prio(r))
178
179static void invalidate_buckets_lru(struct cache *ca)
180{
181	struct bucket *b;
182	ssize_t i;
183
184	ca->heap.used = 0;
185
186	for_each_bucket(b, ca) {
187		if (!bch_can_invalidate_bucket(ca, b))
188			continue;
189
190		if (!heap_full(&ca->heap))
191			heap_add(&ca->heap, b, bucket_max_cmp);
192		else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
193			ca->heap.data[0] = b;
194			heap_sift(&ca->heap, 0, bucket_max_cmp);
195		}
196	}
197
198	for (i = ca->heap.used / 2 - 1; i >= 0; --i)
199		heap_sift(&ca->heap, i, bucket_min_cmp);
200
201	while (!fifo_full(&ca->free_inc)) {
202		if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
203			/*
204			 * We don't want to be calling invalidate_buckets()
205			 * multiple times when it can't do anything
206			 */
207			ca->invalidate_needs_gc = 1;
208			wake_up_gc(ca->set);
209			return;
210		}
211
212		bch_invalidate_one_bucket(ca, b);
213	}
214}
215
216static void invalidate_buckets_fifo(struct cache *ca)
217{
218	struct bucket *b;
219	size_t checked = 0;
220
221	while (!fifo_full(&ca->free_inc)) {
222		if (ca->fifo_last_bucket <  ca->sb.first_bucket ||
223		    ca->fifo_last_bucket >= ca->sb.nbuckets)
224			ca->fifo_last_bucket = ca->sb.first_bucket;
225
226		b = ca->buckets + ca->fifo_last_bucket++;
227
228		if (bch_can_invalidate_bucket(ca, b))
229			bch_invalidate_one_bucket(ca, b);
230
231		if (++checked >= ca->sb.nbuckets) {
232			ca->invalidate_needs_gc = 1;
233			wake_up_gc(ca->set);
234			return;
235		}
236	}
237}
238
239static void invalidate_buckets_random(struct cache *ca)
240{
241	struct bucket *b;
242	size_t checked = 0;
243
244	while (!fifo_full(&ca->free_inc)) {
245		size_t n;
246
247		get_random_bytes(&n, sizeof(n));
248
249		n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
250		n += ca->sb.first_bucket;
251
252		b = ca->buckets + n;
253
254		if (bch_can_invalidate_bucket(ca, b))
255			bch_invalidate_one_bucket(ca, b);
256
257		if (++checked >= ca->sb.nbuckets / 2) {
258			ca->invalidate_needs_gc = 1;
259			wake_up_gc(ca->set);
260			return;
261		}
262	}
263}
264
265static void invalidate_buckets(struct cache *ca)
266{
267	BUG_ON(ca->invalidate_needs_gc);
268
269	switch (CACHE_REPLACEMENT(&ca->sb)) {
270	case CACHE_REPLACEMENT_LRU:
271		invalidate_buckets_lru(ca);
272		break;
273	case CACHE_REPLACEMENT_FIFO:
274		invalidate_buckets_fifo(ca);
275		break;
276	case CACHE_REPLACEMENT_RANDOM:
277		invalidate_buckets_random(ca);
278		break;
279	}
280}
281
282#define allocator_wait(ca, cond)					\
283do {									\
284	while (1) {							\
285		set_current_state(TASK_INTERRUPTIBLE);			\
286		if (cond)						\
287			break;						\
288									\
289		mutex_unlock(&(ca)->set->bucket_lock);			\
290		if (kthread_should_stop() ||				\
291		    test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)) {	\
292			set_current_state(TASK_RUNNING);		\
293			goto out;					\
294		}							\
295									\
 
296		schedule();						\
297		mutex_lock(&(ca)->set->bucket_lock);			\
298	}								\
299	__set_current_state(TASK_RUNNING);				\
300} while (0)
301
302static int bch_allocator_push(struct cache *ca, long bucket)
303{
304	unsigned int i;
305
306	/* Prios/gens are actually the most important reserve */
307	if (fifo_push(&ca->free[RESERVE_PRIO], bucket))
308		return true;
309
310	for (i = 0; i < RESERVE_NR; i++)
311		if (fifo_push(&ca->free[i], bucket))
312			return true;
313
314	return false;
315}
316
317static int bch_allocator_thread(void *arg)
318{
319	struct cache *ca = arg;
320
321	mutex_lock(&ca->set->bucket_lock);
322
323	while (1) {
324		/*
325		 * First, we pull buckets off of the unused and free_inc lists,
326		 * possibly issue discards to them, then we add the bucket to
327		 * the free list:
328		 */
329		while (1) {
330			long bucket;
331
332			if (!fifo_pop(&ca->free_inc, bucket))
333				break;
334
335			if (ca->discard) {
336				mutex_unlock(&ca->set->bucket_lock);
337				blkdev_issue_discard(ca->bdev,
338					bucket_to_sector(ca->set, bucket),
339					ca->sb.bucket_size, GFP_KERNEL);
340				mutex_lock(&ca->set->bucket_lock);
341			}
342
343			allocator_wait(ca, bch_allocator_push(ca, bucket));
344			wake_up(&ca->set->btree_cache_wait);
345			wake_up(&ca->set->bucket_wait);
346		}
347
348		/*
349		 * We've run out of free buckets, we need to find some buckets
350		 * we can invalidate. First, invalidate them in memory and add
351		 * them to the free_inc list:
352		 */
353
354retry_invalidate:
355		allocator_wait(ca, ca->set->gc_mark_valid &&
356			       !ca->invalidate_needs_gc);
357		invalidate_buckets(ca);
358
359		/*
360		 * Now, we write their new gens to disk so we can start writing
361		 * new stuff to them:
362		 */
363		allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
364		if (CACHE_SYNC(&ca->sb)) {
365			/*
366			 * This could deadlock if an allocation with a btree
367			 * node locked ever blocked - having the btree node
368			 * locked would block garbage collection, but here we're
369			 * waiting on garbage collection before we invalidate
370			 * and free anything.
371			 *
372			 * But this should be safe since the btree code always
373			 * uses btree_check_reserve() before allocating now, and
374			 * if it fails it blocks without btree nodes locked.
375			 */
376			if (!fifo_full(&ca->free_inc))
377				goto retry_invalidate;
378
379			if (bch_prio_write(ca, false) < 0) {
380				ca->invalidate_needs_gc = 1;
381				wake_up_gc(ca->set);
382			}
383		}
384	}
385out:
386	wait_for_kthread_stop();
387	return 0;
388}
389
390/* Allocation */
391
392long bch_bucket_alloc(struct cache *ca, unsigned int reserve, bool wait)
393{
394	DEFINE_WAIT(w);
395	struct bucket *b;
396	long r;
397
398
399	/* No allocation if CACHE_SET_IO_DISABLE bit is set */
400	if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)))
401		return -1;
402
403	/* fastpath */
404	if (fifo_pop(&ca->free[RESERVE_NONE], r) ||
405	    fifo_pop(&ca->free[reserve], r))
406		goto out;
407
408	if (!wait) {
409		trace_bcache_alloc_fail(ca, reserve);
410		return -1;
411	}
412
413	do {
414		prepare_to_wait(&ca->set->bucket_wait, &w,
415				TASK_UNINTERRUPTIBLE);
416
417		mutex_unlock(&ca->set->bucket_lock);
418		schedule();
419		mutex_lock(&ca->set->bucket_lock);
420	} while (!fifo_pop(&ca->free[RESERVE_NONE], r) &&
421		 !fifo_pop(&ca->free[reserve], r));
422
423	finish_wait(&ca->set->bucket_wait, &w);
424out:
425	if (ca->alloc_thread)
426		wake_up_process(ca->alloc_thread);
427
428	trace_bcache_alloc(ca, reserve);
429
430	if (expensive_debug_checks(ca->set)) {
431		size_t iter;
432		long i;
433		unsigned int j;
434
435		for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
436			BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
437
438		for (j = 0; j < RESERVE_NR; j++)
439			fifo_for_each(i, &ca->free[j], iter)
440				BUG_ON(i == r);
441		fifo_for_each(i, &ca->free_inc, iter)
442			BUG_ON(i == r);
443	}
444
445	b = ca->buckets + r;
446
447	BUG_ON(atomic_read(&b->pin) != 1);
448
449	SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
450
451	if (reserve <= RESERVE_PRIO) {
452		SET_GC_MARK(b, GC_MARK_METADATA);
453		SET_GC_MOVE(b, 0);
454		b->prio = BTREE_PRIO;
455	} else {
456		SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
457		SET_GC_MOVE(b, 0);
458		b->prio = INITIAL_PRIO;
459	}
460
461	if (ca->set->avail_nbuckets > 0) {
462		ca->set->avail_nbuckets--;
463		bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
464	}
465
466	return r;
467}
468
469void __bch_bucket_free(struct cache *ca, struct bucket *b)
470{
471	SET_GC_MARK(b, 0);
472	SET_GC_SECTORS_USED(b, 0);
473
474	if (ca->set->avail_nbuckets < ca->set->nbuckets) {
475		ca->set->avail_nbuckets++;
476		bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
477	}
478}
479
480void bch_bucket_free(struct cache_set *c, struct bkey *k)
481{
482	unsigned int i;
483
484	for (i = 0; i < KEY_PTRS(k); i++)
485		__bch_bucket_free(c->cache, PTR_BUCKET(c, k, i));
 
486}
487
488int __bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
489			   struct bkey *k, bool wait)
490{
491	struct cache *ca;
492	long b;
493
494	/* No allocation if CACHE_SET_IO_DISABLE bit is set */
495	if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags)))
496		return -1;
497
498	lockdep_assert_held(&c->bucket_lock);
 
499
500	bkey_init(k);
501
502	ca = c->cache;
503	b = bch_bucket_alloc(ca, reserve, wait);
504	if (b == -1)
505		goto err;
506
507	k->ptr[0] = MAKE_PTR(ca->buckets[b].gen,
508			     bucket_to_sector(c, b),
509			     ca->sb.nr_this_dev);
510
511	SET_KEY_PTRS(k, 1);
 
 
 
 
 
512
513	return 0;
514err:
515	bch_bucket_free(c, k);
516	bkey_put(c, k);
517	return -1;
518}
519
520int bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
521			 struct bkey *k, bool wait)
522{
523	int ret;
524
525	mutex_lock(&c->bucket_lock);
526	ret = __bch_bucket_alloc_set(c, reserve, k, wait);
527	mutex_unlock(&c->bucket_lock);
528	return ret;
529}
530
531/* Sector allocator */
532
533struct open_bucket {
534	struct list_head	list;
535	unsigned int		last_write_point;
536	unsigned int		sectors_free;
537	BKEY_PADDED(key);
538};
539
540/*
541 * We keep multiple buckets open for writes, and try to segregate different
542 * write streams for better cache utilization: first we try to segregate flash
543 * only volume write streams from cached devices, secondly we look for a bucket
544 * where the last write to it was sequential with the current write, and
545 * failing that we look for a bucket that was last used by the same task.
546 *
547 * The ideas is if you've got multiple tasks pulling data into the cache at the
548 * same time, you'll get better cache utilization if you try to segregate their
549 * data and preserve locality.
550 *
551 * For example, dirty sectors of flash only volume is not reclaimable, if their
552 * dirty sectors mixed with dirty sectors of cached device, such buckets will
553 * be marked as dirty and won't be reclaimed, though the dirty data of cached
554 * device have been written back to backend device.
555 *
556 * And say you've starting Firefox at the same time you're copying a
557 * bunch of files. Firefox will likely end up being fairly hot and stay in the
558 * cache awhile, but the data you copied might not be; if you wrote all that
559 * data to the same buckets it'd get invalidated at the same time.
560 *
561 * Both of those tasks will be doing fairly random IO so we can't rely on
562 * detecting sequential IO to segregate their data, but going off of the task
563 * should be a sane heuristic.
564 */
565static struct open_bucket *pick_data_bucket(struct cache_set *c,
566					    const struct bkey *search,
567					    unsigned int write_point,
568					    struct bkey *alloc)
569{
570	struct open_bucket *ret, *ret_task = NULL;
571
572	list_for_each_entry_reverse(ret, &c->data_buckets, list)
573		if (UUID_FLASH_ONLY(&c->uuids[KEY_INODE(&ret->key)]) !=
574		    UUID_FLASH_ONLY(&c->uuids[KEY_INODE(search)]))
575			continue;
576		else if (!bkey_cmp(&ret->key, search))
577			goto found;
578		else if (ret->last_write_point == write_point)
579			ret_task = ret;
580
581	ret = ret_task ?: list_first_entry(&c->data_buckets,
582					   struct open_bucket, list);
583found:
584	if (!ret->sectors_free && KEY_PTRS(alloc)) {
585		ret->sectors_free = c->cache->sb.bucket_size;
586		bkey_copy(&ret->key, alloc);
587		bkey_init(alloc);
588	}
589
590	if (!ret->sectors_free)
591		ret = NULL;
592
593	return ret;
594}
595
596/*
597 * Allocates some space in the cache to write to, and k to point to the newly
598 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
599 * end of the newly allocated space).
600 *
601 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
602 * sectors were actually allocated.
603 *
604 * If s->writeback is true, will not fail.
605 */
606bool bch_alloc_sectors(struct cache_set *c,
607		       struct bkey *k,
608		       unsigned int sectors,
609		       unsigned int write_point,
610		       unsigned int write_prio,
611		       bool wait)
612{
613	struct open_bucket *b;
614	BKEY_PADDED(key) alloc;
615	unsigned int i;
616
617	/*
618	 * We might have to allocate a new bucket, which we can't do with a
619	 * spinlock held. So if we have to allocate, we drop the lock, allocate
620	 * and then retry. KEY_PTRS() indicates whether alloc points to
621	 * allocated bucket(s).
622	 */
623
624	bkey_init(&alloc.key);
625	spin_lock(&c->data_bucket_lock);
626
627	while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
628		unsigned int watermark = write_prio
629			? RESERVE_MOVINGGC
630			: RESERVE_NONE;
631
632		spin_unlock(&c->data_bucket_lock);
633
634		if (bch_bucket_alloc_set(c, watermark, &alloc.key, wait))
635			return false;
636
637		spin_lock(&c->data_bucket_lock);
638	}
639
640	/*
641	 * If we had to allocate, we might race and not need to allocate the
642	 * second time we call pick_data_bucket(). If we allocated a bucket but
643	 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
644	 */
645	if (KEY_PTRS(&alloc.key))
646		bkey_put(c, &alloc.key);
647
648	for (i = 0; i < KEY_PTRS(&b->key); i++)
649		EBUG_ON(ptr_stale(c, &b->key, i));
650
651	/* Set up the pointer to the space we're allocating: */
652
653	for (i = 0; i < KEY_PTRS(&b->key); i++)
654		k->ptr[i] = b->key.ptr[i];
655
656	sectors = min(sectors, b->sectors_free);
657
658	SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
659	SET_KEY_SIZE(k, sectors);
660	SET_KEY_PTRS(k, KEY_PTRS(&b->key));
661
662	/*
663	 * Move b to the end of the lru, and keep track of what this bucket was
664	 * last used for:
665	 */
666	list_move_tail(&b->list, &c->data_buckets);
667	bkey_copy_key(&b->key, k);
668	b->last_write_point = write_point;
669
670	b->sectors_free	-= sectors;
671
672	for (i = 0; i < KEY_PTRS(&b->key); i++) {
673		SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
674
675		atomic_long_add(sectors,
676				&c->cache->sectors_written);
677	}
678
679	if (b->sectors_free < c->cache->sb.block_size)
680		b->sectors_free = 0;
681
682	/*
683	 * k takes refcounts on the buckets it points to until it's inserted
684	 * into the btree, but if we're done with this bucket we just transfer
685	 * get_data_bucket()'s refcount.
686	 */
687	if (b->sectors_free)
688		for (i = 0; i < KEY_PTRS(&b->key); i++)
689			atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
690
691	spin_unlock(&c->data_bucket_lock);
692	return true;
693}
694
695/* Init */
696
697void bch_open_buckets_free(struct cache_set *c)
698{
699	struct open_bucket *b;
700
701	while (!list_empty(&c->data_buckets)) {
702		b = list_first_entry(&c->data_buckets,
703				     struct open_bucket, list);
704		list_del(&b->list);
705		kfree(b);
706	}
707}
708
709int bch_open_buckets_alloc(struct cache_set *c)
710{
711	int i;
712
713	spin_lock_init(&c->data_bucket_lock);
714
715	for (i = 0; i < MAX_OPEN_BUCKETS; i++) {
716		struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
717
718		if (!b)
719			return -ENOMEM;
720
721		list_add(&b->list, &c->data_buckets);
722	}
723
724	return 0;
725}
726
727int bch_cache_allocator_start(struct cache *ca)
728{
729	struct task_struct *k = kthread_run(bch_allocator_thread,
730					    ca, "bcache_allocator");
731	if (IS_ERR(k))
732		return PTR_ERR(k);
733
734	ca->alloc_thread = k;
735	return 0;
736}
v4.6
 
  1/*
  2 * Primary bucket allocation code
  3 *
  4 * Copyright 2012 Google, Inc.
  5 *
  6 * Allocation in bcache is done in terms of buckets:
  7 *
  8 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
  9 * btree pointers - they must match for the pointer to be considered valid.
 10 *
 11 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
 12 * bucket simply by incrementing its gen.
 13 *
 14 * The gens (along with the priorities; it's really the gens are important but
 15 * the code is named as if it's the priorities) are written in an arbitrary list
 16 * of buckets on disk, with a pointer to them in the journal header.
 17 *
 18 * When we invalidate a bucket, we have to write its new gen to disk and wait
 19 * for that write to complete before we use it - otherwise after a crash we
 20 * could have pointers that appeared to be good but pointed to data that had
 21 * been overwritten.
 22 *
 23 * Since the gens and priorities are all stored contiguously on disk, we can
 24 * batch this up: We fill up the free_inc list with freshly invalidated buckets,
 25 * call prio_write(), and when prio_write() finishes we pull buckets off the
 26 * free_inc list and optionally discard them.
 27 *
 28 * free_inc isn't the only freelist - if it was, we'd often to sleep while
 29 * priorities and gens were being written before we could allocate. c->free is a
 30 * smaller freelist, and buckets on that list are always ready to be used.
 31 *
 32 * If we've got discards enabled, that happens when a bucket moves from the
 33 * free_inc list to the free list.
 34 *
 35 * There is another freelist, because sometimes we have buckets that we know
 36 * have nothing pointing into them - these we can reuse without waiting for
 37 * priorities to be rewritten. These come from freed btree nodes and buckets
 38 * that garbage collection discovered no longer had valid keys pointing into
 39 * them (because they were overwritten). That's the unused list - buckets on the
 40 * unused list move to the free list, optionally being discarded in the process.
 41 *
 42 * It's also important to ensure that gens don't wrap around - with respect to
 43 * either the oldest gen in the btree or the gen on disk. This is quite
 44 * difficult to do in practice, but we explicitly guard against it anyways - if
 45 * a bucket is in danger of wrapping around we simply skip invalidating it that
 46 * time around, and we garbage collect or rewrite the priorities sooner than we
 47 * would have otherwise.
 48 *
 49 * bch_bucket_alloc() allocates a single bucket from a specific cache.
 50 *
 51 * bch_bucket_alloc_set() allocates one or more buckets from different caches
 52 * out of a cache set.
 53 *
 54 * free_some_buckets() drives all the processes described above. It's called
 55 * from bch_bucket_alloc() and a few other places that need to make sure free
 56 * buckets are ready.
 57 *
 58 * invalidate_buckets_(lru|fifo)() find buckets that are available to be
 59 * invalidated, and then invalidate them and stick them on the free_inc list -
 60 * in either lru or fifo order.
 61 */
 62
 63#include "bcache.h"
 64#include "btree.h"
 65
 66#include <linux/blkdev.h>
 67#include <linux/freezer.h>
 68#include <linux/kthread.h>
 69#include <linux/random.h>
 70#include <trace/events/bcache.h>
 71
 
 
 72/* Bucket heap / gen */
 73
 74uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
 75{
 76	uint8_t ret = ++b->gen;
 77
 78	ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
 79	WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
 80
 81	return ret;
 82}
 83
 84void bch_rescale_priorities(struct cache_set *c, int sectors)
 85{
 86	struct cache *ca;
 87	struct bucket *b;
 88	unsigned next = c->nbuckets * c->sb.bucket_size / 1024;
 89	unsigned i;
 90	int r;
 91
 92	atomic_sub(sectors, &c->rescale);
 93
 94	do {
 95		r = atomic_read(&c->rescale);
 96
 97		if (r >= 0)
 98			return;
 99	} while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
100
101	mutex_lock(&c->bucket_lock);
102
103	c->min_prio = USHRT_MAX;
104
105	for_each_cache(ca, c, i)
106		for_each_bucket(b, ca)
107			if (b->prio &&
108			    b->prio != BTREE_PRIO &&
109			    !atomic_read(&b->pin)) {
110				b->prio--;
111				c->min_prio = min(c->min_prio, b->prio);
112			}
113
114	mutex_unlock(&c->bucket_lock);
115}
116
117/*
118 * Background allocation thread: scans for buckets to be invalidated,
119 * invalidates them, rewrites prios/gens (marking them as invalidated on disk),
120 * then optionally issues discard commands to the newly free buckets, then puts
121 * them on the various freelists.
122 */
123
124static inline bool can_inc_bucket_gen(struct bucket *b)
125{
126	return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX;
127}
128
129bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b)
130{
131	BUG_ON(!ca->set->gc_mark_valid);
132
133	return (!GC_MARK(b) ||
134		GC_MARK(b) == GC_MARK_RECLAIMABLE) &&
135		!atomic_read(&b->pin) &&
136		can_inc_bucket_gen(b);
137}
138
139void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
140{
141	lockdep_assert_held(&ca->set->bucket_lock);
142	BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE);
143
144	if (GC_SECTORS_USED(b))
145		trace_bcache_invalidate(ca, b - ca->buckets);
146
147	bch_inc_gen(ca, b);
148	b->prio = INITIAL_PRIO;
149	atomic_inc(&b->pin);
150}
151
152static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
153{
154	__bch_invalidate_one_bucket(ca, b);
155
156	fifo_push(&ca->free_inc, b - ca->buckets);
157}
158
159/*
160 * Determines what order we're going to reuse buckets, smallest bucket_prio()
161 * first: we also take into account the number of sectors of live data in that
162 * bucket, and in order for that multiply to make sense we have to scale bucket
163 *
164 * Thus, we scale the bucket priorities so that the bucket with the smallest
165 * prio is worth 1/8th of what INITIAL_PRIO is worth.
166 */
167
168#define bucket_prio(b)							\
169({									\
170	unsigned min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8;	\
171									\
172	(b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b);	\
173})
174
175#define bucket_max_cmp(l, r)	(bucket_prio(l) < bucket_prio(r))
176#define bucket_min_cmp(l, r)	(bucket_prio(l) > bucket_prio(r))
177
178static void invalidate_buckets_lru(struct cache *ca)
179{
180	struct bucket *b;
181	ssize_t i;
182
183	ca->heap.used = 0;
184
185	for_each_bucket(b, ca) {
186		if (!bch_can_invalidate_bucket(ca, b))
187			continue;
188
189		if (!heap_full(&ca->heap))
190			heap_add(&ca->heap, b, bucket_max_cmp);
191		else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
192			ca->heap.data[0] = b;
193			heap_sift(&ca->heap, 0, bucket_max_cmp);
194		}
195	}
196
197	for (i = ca->heap.used / 2 - 1; i >= 0; --i)
198		heap_sift(&ca->heap, i, bucket_min_cmp);
199
200	while (!fifo_full(&ca->free_inc)) {
201		if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
202			/*
203			 * We don't want to be calling invalidate_buckets()
204			 * multiple times when it can't do anything
205			 */
206			ca->invalidate_needs_gc = 1;
207			wake_up_gc(ca->set);
208			return;
209		}
210
211		bch_invalidate_one_bucket(ca, b);
212	}
213}
214
215static void invalidate_buckets_fifo(struct cache *ca)
216{
217	struct bucket *b;
218	size_t checked = 0;
219
220	while (!fifo_full(&ca->free_inc)) {
221		if (ca->fifo_last_bucket <  ca->sb.first_bucket ||
222		    ca->fifo_last_bucket >= ca->sb.nbuckets)
223			ca->fifo_last_bucket = ca->sb.first_bucket;
224
225		b = ca->buckets + ca->fifo_last_bucket++;
226
227		if (bch_can_invalidate_bucket(ca, b))
228			bch_invalidate_one_bucket(ca, b);
229
230		if (++checked >= ca->sb.nbuckets) {
231			ca->invalidate_needs_gc = 1;
232			wake_up_gc(ca->set);
233			return;
234		}
235	}
236}
237
238static void invalidate_buckets_random(struct cache *ca)
239{
240	struct bucket *b;
241	size_t checked = 0;
242
243	while (!fifo_full(&ca->free_inc)) {
244		size_t n;
 
245		get_random_bytes(&n, sizeof(n));
246
247		n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
248		n += ca->sb.first_bucket;
249
250		b = ca->buckets + n;
251
252		if (bch_can_invalidate_bucket(ca, b))
253			bch_invalidate_one_bucket(ca, b);
254
255		if (++checked >= ca->sb.nbuckets / 2) {
256			ca->invalidate_needs_gc = 1;
257			wake_up_gc(ca->set);
258			return;
259		}
260	}
261}
262
263static void invalidate_buckets(struct cache *ca)
264{
265	BUG_ON(ca->invalidate_needs_gc);
266
267	switch (CACHE_REPLACEMENT(&ca->sb)) {
268	case CACHE_REPLACEMENT_LRU:
269		invalidate_buckets_lru(ca);
270		break;
271	case CACHE_REPLACEMENT_FIFO:
272		invalidate_buckets_fifo(ca);
273		break;
274	case CACHE_REPLACEMENT_RANDOM:
275		invalidate_buckets_random(ca);
276		break;
277	}
278}
279
280#define allocator_wait(ca, cond)					\
281do {									\
282	while (1) {							\
283		set_current_state(TASK_INTERRUPTIBLE);			\
284		if (cond)						\
285			break;						\
286									\
287		mutex_unlock(&(ca)->set->bucket_lock);			\
288		if (kthread_should_stop())				\
289			return 0;					\
 
 
 
290									\
291		try_to_freeze();					\
292		schedule();						\
293		mutex_lock(&(ca)->set->bucket_lock);			\
294	}								\
295	__set_current_state(TASK_RUNNING);				\
296} while (0)
297
298static int bch_allocator_push(struct cache *ca, long bucket)
299{
300	unsigned i;
301
302	/* Prios/gens are actually the most important reserve */
303	if (fifo_push(&ca->free[RESERVE_PRIO], bucket))
304		return true;
305
306	for (i = 0; i < RESERVE_NR; i++)
307		if (fifo_push(&ca->free[i], bucket))
308			return true;
309
310	return false;
311}
312
313static int bch_allocator_thread(void *arg)
314{
315	struct cache *ca = arg;
316
317	mutex_lock(&ca->set->bucket_lock);
318
319	while (1) {
320		/*
321		 * First, we pull buckets off of the unused and free_inc lists,
322		 * possibly issue discards to them, then we add the bucket to
323		 * the free list:
324		 */
325		while (!fifo_empty(&ca->free_inc)) {
326			long bucket;
327
328			fifo_pop(&ca->free_inc, bucket);
 
329
330			if (ca->discard) {
331				mutex_unlock(&ca->set->bucket_lock);
332				blkdev_issue_discard(ca->bdev,
333					bucket_to_sector(ca->set, bucket),
334					ca->sb.bucket_size, GFP_KERNEL, 0);
335				mutex_lock(&ca->set->bucket_lock);
336			}
337
338			allocator_wait(ca, bch_allocator_push(ca, bucket));
339			wake_up(&ca->set->btree_cache_wait);
340			wake_up(&ca->set->bucket_wait);
341		}
342
343		/*
344		 * We've run out of free buckets, we need to find some buckets
345		 * we can invalidate. First, invalidate them in memory and add
346		 * them to the free_inc list:
347		 */
348
349retry_invalidate:
350		allocator_wait(ca, ca->set->gc_mark_valid &&
351			       !ca->invalidate_needs_gc);
352		invalidate_buckets(ca);
353
354		/*
355		 * Now, we write their new gens to disk so we can start writing
356		 * new stuff to them:
357		 */
358		allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
359		if (CACHE_SYNC(&ca->set->sb)) {
360			/*
361			 * This could deadlock if an allocation with a btree
362			 * node locked ever blocked - having the btree node
363			 * locked would block garbage collection, but here we're
364			 * waiting on garbage collection before we invalidate
365			 * and free anything.
366			 *
367			 * But this should be safe since the btree code always
368			 * uses btree_check_reserve() before allocating now, and
369			 * if it fails it blocks without btree nodes locked.
370			 */
371			if (!fifo_full(&ca->free_inc))
372				goto retry_invalidate;
373
374			bch_prio_write(ca);
 
 
 
375		}
376	}
 
 
 
377}
378
379/* Allocation */
380
381long bch_bucket_alloc(struct cache *ca, unsigned reserve, bool wait)
382{
383	DEFINE_WAIT(w);
384	struct bucket *b;
385	long r;
386
 
 
 
 
 
387	/* fastpath */
388	if (fifo_pop(&ca->free[RESERVE_NONE], r) ||
389	    fifo_pop(&ca->free[reserve], r))
390		goto out;
391
392	if (!wait) {
393		trace_bcache_alloc_fail(ca, reserve);
394		return -1;
395	}
396
397	do {
398		prepare_to_wait(&ca->set->bucket_wait, &w,
399				TASK_UNINTERRUPTIBLE);
400
401		mutex_unlock(&ca->set->bucket_lock);
402		schedule();
403		mutex_lock(&ca->set->bucket_lock);
404	} while (!fifo_pop(&ca->free[RESERVE_NONE], r) &&
405		 !fifo_pop(&ca->free[reserve], r));
406
407	finish_wait(&ca->set->bucket_wait, &w);
408out:
409	wake_up_process(ca->alloc_thread);
 
410
411	trace_bcache_alloc(ca, reserve);
412
413	if (expensive_debug_checks(ca->set)) {
414		size_t iter;
415		long i;
416		unsigned j;
417
418		for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
419			BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
420
421		for (j = 0; j < RESERVE_NR; j++)
422			fifo_for_each(i, &ca->free[j], iter)
423				BUG_ON(i == r);
424		fifo_for_each(i, &ca->free_inc, iter)
425			BUG_ON(i == r);
426	}
427
428	b = ca->buckets + r;
429
430	BUG_ON(atomic_read(&b->pin) != 1);
431
432	SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
433
434	if (reserve <= RESERVE_PRIO) {
435		SET_GC_MARK(b, GC_MARK_METADATA);
436		SET_GC_MOVE(b, 0);
437		b->prio = BTREE_PRIO;
438	} else {
439		SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
440		SET_GC_MOVE(b, 0);
441		b->prio = INITIAL_PRIO;
442	}
443
 
 
 
 
 
444	return r;
445}
446
447void __bch_bucket_free(struct cache *ca, struct bucket *b)
448{
449	SET_GC_MARK(b, 0);
450	SET_GC_SECTORS_USED(b, 0);
 
 
 
 
 
451}
452
453void bch_bucket_free(struct cache_set *c, struct bkey *k)
454{
455	unsigned i;
456
457	for (i = 0; i < KEY_PTRS(k); i++)
458		__bch_bucket_free(PTR_CACHE(c, k, i),
459				  PTR_BUCKET(c, k, i));
460}
461
462int __bch_bucket_alloc_set(struct cache_set *c, unsigned reserve,
463			   struct bkey *k, int n, bool wait)
464{
465	int i;
 
 
 
 
 
466
467	lockdep_assert_held(&c->bucket_lock);
468	BUG_ON(!n || n > c->caches_loaded || n > 8);
469
470	bkey_init(k);
471
472	/* sort by free space/prio of oldest data in caches */
473
474	for (i = 0; i < n; i++) {
475		struct cache *ca = c->cache_by_alloc[i];
476		long b = bch_bucket_alloc(ca, reserve, wait);
477
478		if (b == -1)
479			goto err;
480
481		k->ptr[i] = PTR(ca->buckets[b].gen,
482				bucket_to_sector(c, b),
483				ca->sb.nr_this_dev);
484
485		SET_KEY_PTRS(k, i + 1);
486	}
487
488	return 0;
489err:
490	bch_bucket_free(c, k);
491	bkey_put(c, k);
492	return -1;
493}
494
495int bch_bucket_alloc_set(struct cache_set *c, unsigned reserve,
496			 struct bkey *k, int n, bool wait)
497{
498	int ret;
 
499	mutex_lock(&c->bucket_lock);
500	ret = __bch_bucket_alloc_set(c, reserve, k, n, wait);
501	mutex_unlock(&c->bucket_lock);
502	return ret;
503}
504
505/* Sector allocator */
506
507struct open_bucket {
508	struct list_head	list;
509	unsigned		last_write_point;
510	unsigned		sectors_free;
511	BKEY_PADDED(key);
512};
513
514/*
515 * We keep multiple buckets open for writes, and try to segregate different
516 * write streams for better cache utilization: first we look for a bucket where
517 * the last write to it was sequential with the current write, and failing that
518 * we look for a bucket that was last used by the same task.
 
519 *
520 * The ideas is if you've got multiple tasks pulling data into the cache at the
521 * same time, you'll get better cache utilization if you try to segregate their
522 * data and preserve locality.
523 *
524 * For example, say you've starting Firefox at the same time you're copying a
 
 
 
 
 
525 * bunch of files. Firefox will likely end up being fairly hot and stay in the
526 * cache awhile, but the data you copied might not be; if you wrote all that
527 * data to the same buckets it'd get invalidated at the same time.
528 *
529 * Both of those tasks will be doing fairly random IO so we can't rely on
530 * detecting sequential IO to segregate their data, but going off of the task
531 * should be a sane heuristic.
532 */
533static struct open_bucket *pick_data_bucket(struct cache_set *c,
534					    const struct bkey *search,
535					    unsigned write_point,
536					    struct bkey *alloc)
537{
538	struct open_bucket *ret, *ret_task = NULL;
539
540	list_for_each_entry_reverse(ret, &c->data_buckets, list)
541		if (!bkey_cmp(&ret->key, search))
 
 
 
542			goto found;
543		else if (ret->last_write_point == write_point)
544			ret_task = ret;
545
546	ret = ret_task ?: list_first_entry(&c->data_buckets,
547					   struct open_bucket, list);
548found:
549	if (!ret->sectors_free && KEY_PTRS(alloc)) {
550		ret->sectors_free = c->sb.bucket_size;
551		bkey_copy(&ret->key, alloc);
552		bkey_init(alloc);
553	}
554
555	if (!ret->sectors_free)
556		ret = NULL;
557
558	return ret;
559}
560
561/*
562 * Allocates some space in the cache to write to, and k to point to the newly
563 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
564 * end of the newly allocated space).
565 *
566 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
567 * sectors were actually allocated.
568 *
569 * If s->writeback is true, will not fail.
570 */
571bool bch_alloc_sectors(struct cache_set *c, struct bkey *k, unsigned sectors,
572		       unsigned write_point, unsigned write_prio, bool wait)
 
 
 
 
573{
574	struct open_bucket *b;
575	BKEY_PADDED(key) alloc;
576	unsigned i;
577
578	/*
579	 * We might have to allocate a new bucket, which we can't do with a
580	 * spinlock held. So if we have to allocate, we drop the lock, allocate
581	 * and then retry. KEY_PTRS() indicates whether alloc points to
582	 * allocated bucket(s).
583	 */
584
585	bkey_init(&alloc.key);
586	spin_lock(&c->data_bucket_lock);
587
588	while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
589		unsigned watermark = write_prio
590			? RESERVE_MOVINGGC
591			: RESERVE_NONE;
592
593		spin_unlock(&c->data_bucket_lock);
594
595		if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait))
596			return false;
597
598		spin_lock(&c->data_bucket_lock);
599	}
600
601	/*
602	 * If we had to allocate, we might race and not need to allocate the
603	 * second time we call find_data_bucket(). If we allocated a bucket but
604	 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
605	 */
606	if (KEY_PTRS(&alloc.key))
607		bkey_put(c, &alloc.key);
608
609	for (i = 0; i < KEY_PTRS(&b->key); i++)
610		EBUG_ON(ptr_stale(c, &b->key, i));
611
612	/* Set up the pointer to the space we're allocating: */
613
614	for (i = 0; i < KEY_PTRS(&b->key); i++)
615		k->ptr[i] = b->key.ptr[i];
616
617	sectors = min(sectors, b->sectors_free);
618
619	SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
620	SET_KEY_SIZE(k, sectors);
621	SET_KEY_PTRS(k, KEY_PTRS(&b->key));
622
623	/*
624	 * Move b to the end of the lru, and keep track of what this bucket was
625	 * last used for:
626	 */
627	list_move_tail(&b->list, &c->data_buckets);
628	bkey_copy_key(&b->key, k);
629	b->last_write_point = write_point;
630
631	b->sectors_free	-= sectors;
632
633	for (i = 0; i < KEY_PTRS(&b->key); i++) {
634		SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
635
636		atomic_long_add(sectors,
637				&PTR_CACHE(c, &b->key, i)->sectors_written);
638	}
639
640	if (b->sectors_free < c->sb.block_size)
641		b->sectors_free = 0;
642
643	/*
644	 * k takes refcounts on the buckets it points to until it's inserted
645	 * into the btree, but if we're done with this bucket we just transfer
646	 * get_data_bucket()'s refcount.
647	 */
648	if (b->sectors_free)
649		for (i = 0; i < KEY_PTRS(&b->key); i++)
650			atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
651
652	spin_unlock(&c->data_bucket_lock);
653	return true;
654}
655
656/* Init */
657
658void bch_open_buckets_free(struct cache_set *c)
659{
660	struct open_bucket *b;
661
662	while (!list_empty(&c->data_buckets)) {
663		b = list_first_entry(&c->data_buckets,
664				     struct open_bucket, list);
665		list_del(&b->list);
666		kfree(b);
667	}
668}
669
670int bch_open_buckets_alloc(struct cache_set *c)
671{
672	int i;
673
674	spin_lock_init(&c->data_bucket_lock);
675
676	for (i = 0; i < 6; i++) {
677		struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
 
678		if (!b)
679			return -ENOMEM;
680
681		list_add(&b->list, &c->data_buckets);
682	}
683
684	return 0;
685}
686
687int bch_cache_allocator_start(struct cache *ca)
688{
689	struct task_struct *k = kthread_run(bch_allocator_thread,
690					    ca, "bcache_allocator");
691	if (IS_ERR(k))
692		return PTR_ERR(k);
693
694	ca->alloc_thread = k;
695	return 0;
696}