Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
   4 * Author: Joerg Roedel <jroedel@suse.de>
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#define pr_fmt(fmt)    "iommu: " fmt
   8
   9#include <linux/amba/bus.h>
  10#include <linux/device.h>
  11#include <linux/kernel.h>
  12#include <linux/bits.h>
  13#include <linux/bug.h>
  14#include <linux/types.h>
  15#include <linux/init.h>
  16#include <linux/export.h>
  17#include <linux/slab.h>
  18#include <linux/errno.h>
  19#include <linux/host1x_context_bus.h>
  20#include <linux/iommu.h>
  21#include <linux/idr.h>
 
  22#include <linux/err.h>
  23#include <linux/pci.h>
  24#include <linux/pci-ats.h>
  25#include <linux/bitops.h>
  26#include <linux/platform_device.h>
  27#include <linux/property.h>
  28#include <linux/fsl/mc.h>
  29#include <linux/module.h>
  30#include <linux/cc_platform.h>
  31#include <trace/events/iommu.h>
  32#include <linux/sched/mm.h>
  33
  34#include "dma-iommu.h"
  35
  36#include "iommu-sva.h"
  37
  38static struct kset *iommu_group_kset;
  39static DEFINE_IDA(iommu_group_ida);
 
  40
  41static unsigned int iommu_def_domain_type __read_mostly;
  42static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
  43static u32 iommu_cmd_line __read_mostly;
  44
  45struct iommu_group {
  46	struct kobject kobj;
  47	struct kobject *devices_kobj;
  48	struct list_head devices;
  49	struct xarray pasid_array;
  50	struct mutex mutex;
 
  51	void *iommu_data;
  52	void (*iommu_data_release)(void *iommu_data);
  53	char *name;
  54	int id;
  55	struct iommu_domain *default_domain;
  56	struct iommu_domain *blocking_domain;
  57	struct iommu_domain *domain;
  58	struct list_head entry;
  59	unsigned int owner_cnt;
  60	void *owner;
  61};
  62
  63struct group_device {
  64	struct list_head list;
  65	struct device *dev;
  66	char *name;
  67};
  68
  69struct iommu_group_attribute {
  70	struct attribute attr;
  71	ssize_t (*show)(struct iommu_group *group, char *buf);
  72	ssize_t (*store)(struct iommu_group *group,
  73			 const char *buf, size_t count);
  74};
  75
  76static const char * const iommu_group_resv_type_string[] = {
  77	[IOMMU_RESV_DIRECT]			= "direct",
  78	[IOMMU_RESV_DIRECT_RELAXABLE]		= "direct-relaxable",
  79	[IOMMU_RESV_RESERVED]			= "reserved",
  80	[IOMMU_RESV_MSI]			= "msi",
  81	[IOMMU_RESV_SW_MSI]			= "msi",
  82};
  83
  84#define IOMMU_CMD_LINE_DMA_API		BIT(0)
  85#define IOMMU_CMD_LINE_STRICT		BIT(1)
  86
  87static int iommu_bus_notifier(struct notifier_block *nb,
  88			      unsigned long action, void *data);
  89static int iommu_alloc_default_domain(struct iommu_group *group,
  90				      struct device *dev);
  91static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
  92						 unsigned type);
  93static int __iommu_attach_device(struct iommu_domain *domain,
  94				 struct device *dev);
  95static int __iommu_attach_group(struct iommu_domain *domain,
  96				struct iommu_group *group);
  97static int __iommu_group_set_domain(struct iommu_group *group,
  98				    struct iommu_domain *new_domain);
  99static int iommu_create_device_direct_mappings(struct iommu_group *group,
 100					       struct device *dev);
 101static struct iommu_group *iommu_group_get_for_dev(struct device *dev);
 102static ssize_t iommu_group_store_type(struct iommu_group *group,
 103				      const char *buf, size_t count);
 104
 105#define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
 106struct iommu_group_attribute iommu_group_attr_##_name =		\
 107	__ATTR(_name, _mode, _show, _store)
 108
 109#define to_iommu_group_attr(_attr)	\
 110	container_of(_attr, struct iommu_group_attribute, attr)
 111#define to_iommu_group(_kobj)		\
 112	container_of(_kobj, struct iommu_group, kobj)
 113
 114static LIST_HEAD(iommu_device_list);
 115static DEFINE_SPINLOCK(iommu_device_lock);
 116
 117static struct bus_type * const iommu_buses[] = {
 118	&platform_bus_type,
 119#ifdef CONFIG_PCI
 120	&pci_bus_type,
 121#endif
 122#ifdef CONFIG_ARM_AMBA
 123	&amba_bustype,
 124#endif
 125#ifdef CONFIG_FSL_MC_BUS
 126	&fsl_mc_bus_type,
 127#endif
 128#ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS
 129	&host1x_context_device_bus_type,
 130#endif
 131};
 132
 133/*
 134 * Use a function instead of an array here because the domain-type is a
 135 * bit-field, so an array would waste memory.
 136 */
 137static const char *iommu_domain_type_str(unsigned int t)
 138{
 139	switch (t) {
 140	case IOMMU_DOMAIN_BLOCKED:
 141		return "Blocked";
 142	case IOMMU_DOMAIN_IDENTITY:
 143		return "Passthrough";
 144	case IOMMU_DOMAIN_UNMANAGED:
 145		return "Unmanaged";
 146	case IOMMU_DOMAIN_DMA:
 147	case IOMMU_DOMAIN_DMA_FQ:
 148		return "Translated";
 149	default:
 150		return "Unknown";
 151	}
 152}
 153
 154static int __init iommu_subsys_init(void)
 155{
 156	struct notifier_block *nb;
 157
 158	if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
 159		if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
 160			iommu_set_default_passthrough(false);
 161		else
 162			iommu_set_default_translated(false);
 163
 164		if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
 165			pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
 166			iommu_set_default_translated(false);
 167		}
 168	}
 169
 170	if (!iommu_default_passthrough() && !iommu_dma_strict)
 171		iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
 172
 173	pr_info("Default domain type: %s %s\n",
 174		iommu_domain_type_str(iommu_def_domain_type),
 175		(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
 176			"(set via kernel command line)" : "");
 177
 178	if (!iommu_default_passthrough())
 179		pr_info("DMA domain TLB invalidation policy: %s mode %s\n",
 180			iommu_dma_strict ? "strict" : "lazy",
 181			(iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
 182				"(set via kernel command line)" : "");
 183
 184	nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL);
 185	if (!nb)
 186		return -ENOMEM;
 187
 188	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) {
 189		nb[i].notifier_call = iommu_bus_notifier;
 190		bus_register_notifier(iommu_buses[i], &nb[i]);
 191	}
 192
 193	return 0;
 194}
 195subsys_initcall(iommu_subsys_init);
 196
 197static int remove_iommu_group(struct device *dev, void *data)
 198{
 199	if (dev->iommu && dev->iommu->iommu_dev == data)
 200		iommu_release_device(dev);
 201
 202	return 0;
 203}
 204
 205/**
 206 * iommu_device_register() - Register an IOMMU hardware instance
 207 * @iommu: IOMMU handle for the instance
 208 * @ops:   IOMMU ops to associate with the instance
 209 * @hwdev: (optional) actual instance device, used for fwnode lookup
 210 *
 211 * Return: 0 on success, or an error.
 212 */
 213int iommu_device_register(struct iommu_device *iommu,
 214			  const struct iommu_ops *ops, struct device *hwdev)
 215{
 216	int err = 0;
 217
 218	/* We need to be able to take module references appropriately */
 219	if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
 220		return -EINVAL;
 221	/*
 222	 * Temporarily enforce global restriction to a single driver. This was
 223	 * already the de-facto behaviour, since any possible combination of
 224	 * existing drivers would compete for at least the PCI or platform bus.
 225	 */
 226	if (iommu_buses[0]->iommu_ops && iommu_buses[0]->iommu_ops != ops)
 227		return -EBUSY;
 228
 229	iommu->ops = ops;
 230	if (hwdev)
 231		iommu->fwnode = dev_fwnode(hwdev);
 232
 233	spin_lock(&iommu_device_lock);
 234	list_add_tail(&iommu->list, &iommu_device_list);
 235	spin_unlock(&iommu_device_lock);
 236
 237	for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++) {
 238		iommu_buses[i]->iommu_ops = ops;
 239		err = bus_iommu_probe(iommu_buses[i]);
 240	}
 241	if (err)
 242		iommu_device_unregister(iommu);
 243	return err;
 244}
 245EXPORT_SYMBOL_GPL(iommu_device_register);
 246
 247void iommu_device_unregister(struct iommu_device *iommu)
 248{
 249	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++)
 250		bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group);
 251
 252	spin_lock(&iommu_device_lock);
 253	list_del(&iommu->list);
 254	spin_unlock(&iommu_device_lock);
 255}
 256EXPORT_SYMBOL_GPL(iommu_device_unregister);
 257
 258static struct dev_iommu *dev_iommu_get(struct device *dev)
 259{
 260	struct dev_iommu *param = dev->iommu;
 261
 262	if (param)
 263		return param;
 264
 265	param = kzalloc(sizeof(*param), GFP_KERNEL);
 266	if (!param)
 267		return NULL;
 268
 269	mutex_init(&param->lock);
 270	dev->iommu = param;
 271	return param;
 272}
 273
 274static void dev_iommu_free(struct device *dev)
 275{
 276	struct dev_iommu *param = dev->iommu;
 277
 278	dev->iommu = NULL;
 279	if (param->fwspec) {
 280		fwnode_handle_put(param->fwspec->iommu_fwnode);
 281		kfree(param->fwspec);
 282	}
 283	kfree(param);
 284}
 285
 286static u32 dev_iommu_get_max_pasids(struct device *dev)
 287{
 288	u32 max_pasids = 0, bits = 0;
 289	int ret;
 290
 291	if (dev_is_pci(dev)) {
 292		ret = pci_max_pasids(to_pci_dev(dev));
 293		if (ret > 0)
 294			max_pasids = ret;
 295	} else {
 296		ret = device_property_read_u32(dev, "pasid-num-bits", &bits);
 297		if (!ret)
 298			max_pasids = 1UL << bits;
 299	}
 300
 301	return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids);
 302}
 303
 304static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
 305{
 306	const struct iommu_ops *ops = dev->bus->iommu_ops;
 307	struct iommu_device *iommu_dev;
 308	struct iommu_group *group;
 309	static DEFINE_MUTEX(iommu_probe_device_lock);
 310	int ret;
 311
 312	if (!ops)
 313		return -ENODEV;
 314	/*
 315	 * Serialise to avoid races between IOMMU drivers registering in
 316	 * parallel and/or the "replay" calls from ACPI/OF code via client
 317	 * driver probe. Once the latter have been cleaned up we should
 318	 * probably be able to use device_lock() here to minimise the scope,
 319	 * but for now enforcing a simple global ordering is fine.
 320	 */
 321	mutex_lock(&iommu_probe_device_lock);
 322	if (!dev_iommu_get(dev)) {
 323		ret = -ENOMEM;
 324		goto err_unlock;
 325	}
 326
 327	if (!try_module_get(ops->owner)) {
 328		ret = -EINVAL;
 329		goto err_free;
 330	}
 331
 332	iommu_dev = ops->probe_device(dev);
 333	if (IS_ERR(iommu_dev)) {
 334		ret = PTR_ERR(iommu_dev);
 335		goto out_module_put;
 336	}
 337
 338	dev->iommu->iommu_dev = iommu_dev;
 339	dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev);
 340
 341	group = iommu_group_get_for_dev(dev);
 342	if (IS_ERR(group)) {
 343		ret = PTR_ERR(group);
 344		goto out_release;
 345	}
 346
 347	mutex_lock(&group->mutex);
 348	if (group_list && !group->default_domain && list_empty(&group->entry))
 349		list_add_tail(&group->entry, group_list);
 350	mutex_unlock(&group->mutex);
 351	iommu_group_put(group);
 352
 353	mutex_unlock(&iommu_probe_device_lock);
 354	iommu_device_link(iommu_dev, dev);
 355
 356	return 0;
 357
 358out_release:
 359	if (ops->release_device)
 360		ops->release_device(dev);
 361
 362out_module_put:
 363	module_put(ops->owner);
 364
 365err_free:
 366	dev_iommu_free(dev);
 367
 368err_unlock:
 369	mutex_unlock(&iommu_probe_device_lock);
 370
 371	return ret;
 372}
 373
 374int iommu_probe_device(struct device *dev)
 375{
 376	const struct iommu_ops *ops;
 377	struct iommu_group *group;
 378	int ret;
 379
 380	ret = __iommu_probe_device(dev, NULL);
 381	if (ret)
 382		goto err_out;
 383
 384	group = iommu_group_get(dev);
 385	if (!group) {
 386		ret = -ENODEV;
 387		goto err_release;
 388	}
 389
 390	/*
 391	 * Try to allocate a default domain - needs support from the
 392	 * IOMMU driver. There are still some drivers which don't
 393	 * support default domains, so the return value is not yet
 394	 * checked.
 395	 */
 396	mutex_lock(&group->mutex);
 397	iommu_alloc_default_domain(group, dev);
 398
 399	/*
 400	 * If device joined an existing group which has been claimed, don't
 401	 * attach the default domain.
 402	 */
 403	if (group->default_domain && !group->owner) {
 404		ret = __iommu_attach_device(group->default_domain, dev);
 405		if (ret) {
 406			mutex_unlock(&group->mutex);
 407			iommu_group_put(group);
 408			goto err_release;
 409		}
 410	}
 411
 412	iommu_create_device_direct_mappings(group, dev);
 413
 414	mutex_unlock(&group->mutex);
 415	iommu_group_put(group);
 416
 417	ops = dev_iommu_ops(dev);
 418	if (ops->probe_finalize)
 419		ops->probe_finalize(dev);
 420
 421	return 0;
 422
 423err_release:
 424	iommu_release_device(dev);
 425
 426err_out:
 427	return ret;
 428
 429}
 430
 431void iommu_release_device(struct device *dev)
 432{
 433	const struct iommu_ops *ops;
 434
 435	if (!dev->iommu)
 436		return;
 437
 438	iommu_device_unlink(dev->iommu->iommu_dev, dev);
 439
 440	ops = dev_iommu_ops(dev);
 441	if (ops->release_device)
 442		ops->release_device(dev);
 443
 444	iommu_group_remove_device(dev);
 445	module_put(ops->owner);
 446	dev_iommu_free(dev);
 447}
 448
 449static int __init iommu_set_def_domain_type(char *str)
 450{
 451	bool pt;
 452	int ret;
 453
 454	ret = kstrtobool(str, &pt);
 455	if (ret)
 456		return ret;
 457
 458	if (pt)
 459		iommu_set_default_passthrough(true);
 460	else
 461		iommu_set_default_translated(true);
 462
 463	return 0;
 464}
 465early_param("iommu.passthrough", iommu_set_def_domain_type);
 466
 467static int __init iommu_dma_setup(char *str)
 468{
 469	int ret = kstrtobool(str, &iommu_dma_strict);
 470
 471	if (!ret)
 472		iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
 473	return ret;
 474}
 475early_param("iommu.strict", iommu_dma_setup);
 476
 477void iommu_set_dma_strict(void)
 478{
 479	iommu_dma_strict = true;
 480	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
 481		iommu_def_domain_type = IOMMU_DOMAIN_DMA;
 482}
 483
 484static ssize_t iommu_group_attr_show(struct kobject *kobj,
 485				     struct attribute *__attr, char *buf)
 486{
 487	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
 488	struct iommu_group *group = to_iommu_group(kobj);
 489	ssize_t ret = -EIO;
 490
 491	if (attr->show)
 492		ret = attr->show(group, buf);
 493	return ret;
 494}
 495
 496static ssize_t iommu_group_attr_store(struct kobject *kobj,
 497				      struct attribute *__attr,
 498				      const char *buf, size_t count)
 499{
 500	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
 501	struct iommu_group *group = to_iommu_group(kobj);
 502	ssize_t ret = -EIO;
 503
 504	if (attr->store)
 505		ret = attr->store(group, buf, count);
 506	return ret;
 507}
 508
 509static const struct sysfs_ops iommu_group_sysfs_ops = {
 510	.show = iommu_group_attr_show,
 511	.store = iommu_group_attr_store,
 512};
 513
 514static int iommu_group_create_file(struct iommu_group *group,
 515				   struct iommu_group_attribute *attr)
 516{
 517	return sysfs_create_file(&group->kobj, &attr->attr);
 518}
 519
 520static void iommu_group_remove_file(struct iommu_group *group,
 521				    struct iommu_group_attribute *attr)
 522{
 523	sysfs_remove_file(&group->kobj, &attr->attr);
 524}
 525
 526static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
 527{
 528	return sprintf(buf, "%s\n", group->name);
 529}
 530
 531/**
 532 * iommu_insert_resv_region - Insert a new region in the
 533 * list of reserved regions.
 534 * @new: new region to insert
 535 * @regions: list of regions
 536 *
 537 * Elements are sorted by start address and overlapping segments
 538 * of the same type are merged.
 539 */
 540static int iommu_insert_resv_region(struct iommu_resv_region *new,
 541				    struct list_head *regions)
 542{
 543	struct iommu_resv_region *iter, *tmp, *nr, *top;
 544	LIST_HEAD(stack);
 545
 546	nr = iommu_alloc_resv_region(new->start, new->length,
 547				     new->prot, new->type, GFP_KERNEL);
 548	if (!nr)
 549		return -ENOMEM;
 550
 551	/* First add the new element based on start address sorting */
 552	list_for_each_entry(iter, regions, list) {
 553		if (nr->start < iter->start ||
 554		    (nr->start == iter->start && nr->type <= iter->type))
 555			break;
 556	}
 557	list_add_tail(&nr->list, &iter->list);
 558
 559	/* Merge overlapping segments of type nr->type in @regions, if any */
 560	list_for_each_entry_safe(iter, tmp, regions, list) {
 561		phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
 562
 563		/* no merge needed on elements of different types than @new */
 564		if (iter->type != new->type) {
 565			list_move_tail(&iter->list, &stack);
 566			continue;
 567		}
 568
 569		/* look for the last stack element of same type as @iter */
 570		list_for_each_entry_reverse(top, &stack, list)
 571			if (top->type == iter->type)
 572				goto check_overlap;
 573
 574		list_move_tail(&iter->list, &stack);
 575		continue;
 576
 577check_overlap:
 578		top_end = top->start + top->length - 1;
 579
 580		if (iter->start > top_end + 1) {
 581			list_move_tail(&iter->list, &stack);
 582		} else {
 583			top->length = max(top_end, iter_end) - top->start + 1;
 584			list_del(&iter->list);
 585			kfree(iter);
 586		}
 587	}
 588	list_splice(&stack, regions);
 589	return 0;
 590}
 591
 592static int
 593iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
 594				 struct list_head *group_resv_regions)
 595{
 596	struct iommu_resv_region *entry;
 597	int ret = 0;
 598
 599	list_for_each_entry(entry, dev_resv_regions, list) {
 600		ret = iommu_insert_resv_region(entry, group_resv_regions);
 601		if (ret)
 602			break;
 603	}
 604	return ret;
 605}
 606
 607int iommu_get_group_resv_regions(struct iommu_group *group,
 608				 struct list_head *head)
 609{
 610	struct group_device *device;
 611	int ret = 0;
 612
 613	mutex_lock(&group->mutex);
 614	list_for_each_entry(device, &group->devices, list) {
 615		struct list_head dev_resv_regions;
 616
 617		/*
 618		 * Non-API groups still expose reserved_regions in sysfs,
 619		 * so filter out calls that get here that way.
 620		 */
 621		if (!device->dev->iommu)
 622			break;
 623
 624		INIT_LIST_HEAD(&dev_resv_regions);
 625		iommu_get_resv_regions(device->dev, &dev_resv_regions);
 626		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
 627		iommu_put_resv_regions(device->dev, &dev_resv_regions);
 628		if (ret)
 629			break;
 630	}
 631	mutex_unlock(&group->mutex);
 632	return ret;
 633}
 634EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
 635
 636static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
 637					     char *buf)
 638{
 639	struct iommu_resv_region *region, *next;
 640	struct list_head group_resv_regions;
 641	char *str = buf;
 642
 643	INIT_LIST_HEAD(&group_resv_regions);
 644	iommu_get_group_resv_regions(group, &group_resv_regions);
 645
 646	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
 647		str += sprintf(str, "0x%016llx 0x%016llx %s\n",
 648			       (long long int)region->start,
 649			       (long long int)(region->start +
 650						region->length - 1),
 651			       iommu_group_resv_type_string[region->type]);
 652		kfree(region);
 653	}
 654
 655	return (str - buf);
 656}
 657
 658static ssize_t iommu_group_show_type(struct iommu_group *group,
 659				     char *buf)
 660{
 661	char *type = "unknown\n";
 662
 663	mutex_lock(&group->mutex);
 664	if (group->default_domain) {
 665		switch (group->default_domain->type) {
 666		case IOMMU_DOMAIN_BLOCKED:
 667			type = "blocked\n";
 668			break;
 669		case IOMMU_DOMAIN_IDENTITY:
 670			type = "identity\n";
 671			break;
 672		case IOMMU_DOMAIN_UNMANAGED:
 673			type = "unmanaged\n";
 674			break;
 675		case IOMMU_DOMAIN_DMA:
 676			type = "DMA\n";
 677			break;
 678		case IOMMU_DOMAIN_DMA_FQ:
 679			type = "DMA-FQ\n";
 680			break;
 681		}
 682	}
 683	mutex_unlock(&group->mutex);
 684	strcpy(buf, type);
 685
 686	return strlen(type);
 687}
 688
 689static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
 690
 691static IOMMU_GROUP_ATTR(reserved_regions, 0444,
 692			iommu_group_show_resv_regions, NULL);
 693
 694static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
 695			iommu_group_store_type);
 696
 697static void iommu_group_release(struct kobject *kobj)
 698{
 699	struct iommu_group *group = to_iommu_group(kobj);
 700
 701	pr_debug("Releasing group %d\n", group->id);
 702
 703	if (group->iommu_data_release)
 704		group->iommu_data_release(group->iommu_data);
 705
 706	ida_free(&iommu_group_ida, group->id);
 
 
 707
 708	if (group->default_domain)
 709		iommu_domain_free(group->default_domain);
 710	if (group->blocking_domain)
 711		iommu_domain_free(group->blocking_domain);
 712
 713	kfree(group->name);
 714	kfree(group);
 715}
 716
 717static struct kobj_type iommu_group_ktype = {
 718	.sysfs_ops = &iommu_group_sysfs_ops,
 719	.release = iommu_group_release,
 720};
 721
 722/**
 723 * iommu_group_alloc - Allocate a new group
 
 724 *
 725 * This function is called by an iommu driver to allocate a new iommu
 726 * group.  The iommu group represents the minimum granularity of the iommu.
 727 * Upon successful return, the caller holds a reference to the supplied
 728 * group in order to hold the group until devices are added.  Use
 729 * iommu_group_put() to release this extra reference count, allowing the
 730 * group to be automatically reclaimed once it has no devices or external
 731 * references.
 732 */
 733struct iommu_group *iommu_group_alloc(void)
 734{
 735	struct iommu_group *group;
 736	int ret;
 737
 738	group = kzalloc(sizeof(*group), GFP_KERNEL);
 739	if (!group)
 740		return ERR_PTR(-ENOMEM);
 741
 742	group->kobj.kset = iommu_group_kset;
 743	mutex_init(&group->mutex);
 744	INIT_LIST_HEAD(&group->devices);
 745	INIT_LIST_HEAD(&group->entry);
 746	xa_init(&group->pasid_array);
 747
 748	ret = ida_alloc(&iommu_group_ida, GFP_KERNEL);
 749	if (ret < 0) {
 
 
 750		kfree(group);
 751		return ERR_PTR(ret);
 
 752	}
 753	group->id = ret;
 
 
 
 
 754
 755	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
 756				   NULL, "%d", group->id);
 757	if (ret) {
 758		kobject_put(&group->kobj);
 
 
 
 759		return ERR_PTR(ret);
 760	}
 761
 762	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
 763	if (!group->devices_kobj) {
 764		kobject_put(&group->kobj); /* triggers .release & free */
 765		return ERR_PTR(-ENOMEM);
 766	}
 767
 768	/*
 769	 * The devices_kobj holds a reference on the group kobject, so
 770	 * as long as that exists so will the group.  We can therefore
 771	 * use the devices_kobj for reference counting.
 772	 */
 773	kobject_put(&group->kobj);
 774
 775	ret = iommu_group_create_file(group,
 776				      &iommu_group_attr_reserved_regions);
 777	if (ret)
 778		return ERR_PTR(ret);
 779
 780	ret = iommu_group_create_file(group, &iommu_group_attr_type);
 781	if (ret)
 782		return ERR_PTR(ret);
 783
 784	pr_debug("Allocated group %d\n", group->id);
 785
 786	return group;
 787}
 788EXPORT_SYMBOL_GPL(iommu_group_alloc);
 789
 790struct iommu_group *iommu_group_get_by_id(int id)
 791{
 792	struct kobject *group_kobj;
 793	struct iommu_group *group;
 794	const char *name;
 795
 796	if (!iommu_group_kset)
 797		return NULL;
 798
 799	name = kasprintf(GFP_KERNEL, "%d", id);
 800	if (!name)
 801		return NULL;
 802
 803	group_kobj = kset_find_obj(iommu_group_kset, name);
 804	kfree(name);
 805
 806	if (!group_kobj)
 807		return NULL;
 808
 809	group = container_of(group_kobj, struct iommu_group, kobj);
 810	BUG_ON(group->id != id);
 811
 812	kobject_get(group->devices_kobj);
 813	kobject_put(&group->kobj);
 814
 815	return group;
 816}
 817EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
 818
 819/**
 820 * iommu_group_get_iommudata - retrieve iommu_data registered for a group
 821 * @group: the group
 822 *
 823 * iommu drivers can store data in the group for use when doing iommu
 824 * operations.  This function provides a way to retrieve it.  Caller
 825 * should hold a group reference.
 826 */
 827void *iommu_group_get_iommudata(struct iommu_group *group)
 828{
 829	return group->iommu_data;
 830}
 831EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
 832
 833/**
 834 * iommu_group_set_iommudata - set iommu_data for a group
 835 * @group: the group
 836 * @iommu_data: new data
 837 * @release: release function for iommu_data
 838 *
 839 * iommu drivers can store data in the group for use when doing iommu
 840 * operations.  This function provides a way to set the data after
 841 * the group has been allocated.  Caller should hold a group reference.
 842 */
 843void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
 844			       void (*release)(void *iommu_data))
 845{
 846	group->iommu_data = iommu_data;
 847	group->iommu_data_release = release;
 848}
 849EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
 850
 851/**
 852 * iommu_group_set_name - set name for a group
 853 * @group: the group
 854 * @name: name
 855 *
 856 * Allow iommu driver to set a name for a group.  When set it will
 857 * appear in a name attribute file under the group in sysfs.
 858 */
 859int iommu_group_set_name(struct iommu_group *group, const char *name)
 860{
 861	int ret;
 862
 863	if (group->name) {
 864		iommu_group_remove_file(group, &iommu_group_attr_name);
 865		kfree(group->name);
 866		group->name = NULL;
 867		if (!name)
 868			return 0;
 869	}
 870
 871	group->name = kstrdup(name, GFP_KERNEL);
 872	if (!group->name)
 873		return -ENOMEM;
 874
 875	ret = iommu_group_create_file(group, &iommu_group_attr_name);
 876	if (ret) {
 877		kfree(group->name);
 878		group->name = NULL;
 879		return ret;
 880	}
 881
 882	return 0;
 883}
 884EXPORT_SYMBOL_GPL(iommu_group_set_name);
 885
 886static int iommu_create_device_direct_mappings(struct iommu_group *group,
 887					       struct device *dev)
 888{
 889	struct iommu_domain *domain = group->default_domain;
 890	struct iommu_resv_region *entry;
 891	struct list_head mappings;
 892	unsigned long pg_size;
 893	int ret = 0;
 894
 895	if (!domain || !iommu_is_dma_domain(domain))
 896		return 0;
 897
 898	BUG_ON(!domain->pgsize_bitmap);
 899
 900	pg_size = 1UL << __ffs(domain->pgsize_bitmap);
 901	INIT_LIST_HEAD(&mappings);
 902
 903	iommu_get_resv_regions(dev, &mappings);
 904
 905	/* We need to consider overlapping regions for different devices */
 906	list_for_each_entry(entry, &mappings, list) {
 907		dma_addr_t start, end, addr;
 908		size_t map_size = 0;
 909
 910		start = ALIGN(entry->start, pg_size);
 911		end   = ALIGN(entry->start + entry->length, pg_size);
 912
 913		if (entry->type != IOMMU_RESV_DIRECT &&
 914		    entry->type != IOMMU_RESV_DIRECT_RELAXABLE)
 915			continue;
 916
 917		for (addr = start; addr <= end; addr += pg_size) {
 918			phys_addr_t phys_addr;
 919
 920			if (addr == end)
 921				goto map_end;
 922
 923			phys_addr = iommu_iova_to_phys(domain, addr);
 924			if (!phys_addr) {
 925				map_size += pg_size;
 926				continue;
 927			}
 928
 929map_end:
 930			if (map_size) {
 931				ret = iommu_map(domain, addr - map_size,
 932						addr - map_size, map_size,
 933						entry->prot);
 934				if (ret)
 935					goto out;
 936				map_size = 0;
 937			}
 938		}
 939
 940	}
 941
 942	iommu_flush_iotlb_all(domain);
 943
 944out:
 945	iommu_put_resv_regions(dev, &mappings);
 946
 947	return ret;
 948}
 949
 950static bool iommu_is_attach_deferred(struct device *dev)
 951{
 952	const struct iommu_ops *ops = dev_iommu_ops(dev);
 953
 954	if (ops->is_attach_deferred)
 955		return ops->is_attach_deferred(dev);
 956
 957	return false;
 958}
 959
 960/**
 961 * iommu_group_add_device - add a device to an iommu group
 962 * @group: the group into which to add the device (reference should be held)
 963 * @dev: the device
 964 *
 965 * This function is called by an iommu driver to add a device into a
 966 * group.  Adding a device increments the group reference count.
 967 */
 968int iommu_group_add_device(struct iommu_group *group, struct device *dev)
 969{
 970	int ret, i = 0;
 971	struct group_device *device;
 972
 973	device = kzalloc(sizeof(*device), GFP_KERNEL);
 974	if (!device)
 975		return -ENOMEM;
 976
 977	device->dev = dev;
 978
 979	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
 980	if (ret)
 981		goto err_free_device;
 
 
 982
 983	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
 984rename:
 985	if (!device->name) {
 986		ret = -ENOMEM;
 987		goto err_remove_link;
 
 988	}
 989
 990	ret = sysfs_create_link_nowarn(group->devices_kobj,
 991				       &dev->kobj, device->name);
 992	if (ret) {
 
 993		if (ret == -EEXIST && i >= 0) {
 994			/*
 995			 * Account for the slim chance of collision
 996			 * and append an instance to the name.
 997			 */
 998			kfree(device->name);
 999			device->name = kasprintf(GFP_KERNEL, "%s.%d",
1000						 kobject_name(&dev->kobj), i++);
1001			goto rename;
1002		}
1003		goto err_free_name;
 
 
 
1004	}
1005
1006	kobject_get(group->devices_kobj);
1007
1008	dev->iommu_group = group;
1009
 
 
1010	mutex_lock(&group->mutex);
1011	list_add_tail(&device->list, &group->devices);
1012	if (group->domain  && !iommu_is_attach_deferred(dev))
1013		ret = __iommu_attach_device(group->domain, dev);
1014	mutex_unlock(&group->mutex);
1015	if (ret)
1016		goto err_put_group;
 
 
1017
1018	trace_add_device_to_group(group->id, dev);
1019
1020	dev_info(dev, "Adding to iommu group %d\n", group->id);
1021
1022	return 0;
1023
1024err_put_group:
1025	mutex_lock(&group->mutex);
1026	list_del(&device->list);
1027	mutex_unlock(&group->mutex);
1028	dev->iommu_group = NULL;
1029	kobject_put(group->devices_kobj);
1030	sysfs_remove_link(group->devices_kobj, device->name);
1031err_free_name:
1032	kfree(device->name);
1033err_remove_link:
1034	sysfs_remove_link(&dev->kobj, "iommu_group");
1035err_free_device:
1036	kfree(device);
1037	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
1038	return ret;
1039}
1040EXPORT_SYMBOL_GPL(iommu_group_add_device);
1041
1042/**
1043 * iommu_group_remove_device - remove a device from it's current group
1044 * @dev: device to be removed
1045 *
1046 * This function is called by an iommu driver to remove the device from
1047 * it's current group.  This decrements the iommu group reference count.
1048 */
1049void iommu_group_remove_device(struct device *dev)
1050{
1051	struct iommu_group *group = dev->iommu_group;
1052	struct group_device *tmp_device, *device = NULL;
1053
1054	if (!group)
1055		return;
1056
1057	dev_info(dev, "Removing from iommu group %d\n", group->id);
 
 
1058
1059	mutex_lock(&group->mutex);
1060	list_for_each_entry(tmp_device, &group->devices, list) {
1061		if (tmp_device->dev == dev) {
1062			device = tmp_device;
1063			list_del(&device->list);
1064			break;
1065		}
1066	}
1067	mutex_unlock(&group->mutex);
1068
1069	if (!device)
1070		return;
1071
1072	sysfs_remove_link(group->devices_kobj, device->name);
1073	sysfs_remove_link(&dev->kobj, "iommu_group");
1074
1075	trace_remove_device_from_group(group->id, dev);
1076
1077	kfree(device->name);
1078	kfree(device);
1079	dev->iommu_group = NULL;
1080	kobject_put(group->devices_kobj);
1081}
1082EXPORT_SYMBOL_GPL(iommu_group_remove_device);
1083
1084static int iommu_group_device_count(struct iommu_group *group)
1085{
1086	struct group_device *entry;
1087	int ret = 0;
1088
1089	list_for_each_entry(entry, &group->devices, list)
1090		ret++;
1091
1092	return ret;
1093}
1094
 
 
 
 
 
 
 
 
 
 
 
1095static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
1096				      int (*fn)(struct device *, void *))
1097{
1098	struct group_device *device;
1099	int ret = 0;
1100
1101	list_for_each_entry(device, &group->devices, list) {
1102		ret = fn(device->dev, data);
1103		if (ret)
1104			break;
1105	}
1106	return ret;
1107}
1108
1109/**
1110 * iommu_group_for_each_dev - iterate over each device in the group
1111 * @group: the group
1112 * @data: caller opaque data to be passed to callback function
1113 * @fn: caller supplied callback function
1114 *
1115 * This function is called by group users to iterate over group devices.
1116 * Callers should hold a reference count to the group during callback.
1117 * The group->mutex is held across callbacks, which will block calls to
1118 * iommu_group_add/remove_device.
1119 */
1120int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1121			     int (*fn)(struct device *, void *))
1122{
1123	int ret;
1124
1125	mutex_lock(&group->mutex);
1126	ret = __iommu_group_for_each_dev(group, data, fn);
1127	mutex_unlock(&group->mutex);
1128
1129	return ret;
1130}
1131EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1132
1133/**
1134 * iommu_group_get - Return the group for a device and increment reference
1135 * @dev: get the group that this device belongs to
1136 *
1137 * This function is called by iommu drivers and users to get the group
1138 * for the specified device.  If found, the group is returned and the group
1139 * reference in incremented, else NULL.
1140 */
1141struct iommu_group *iommu_group_get(struct device *dev)
1142{
1143	struct iommu_group *group = dev->iommu_group;
1144
1145	if (group)
1146		kobject_get(group->devices_kobj);
1147
1148	return group;
1149}
1150EXPORT_SYMBOL_GPL(iommu_group_get);
1151
1152/**
1153 * iommu_group_ref_get - Increment reference on a group
1154 * @group: the group to use, must not be NULL
1155 *
1156 * This function is called by iommu drivers to take additional references on an
1157 * existing group.  Returns the given group for convenience.
1158 */
1159struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1160{
1161	kobject_get(group->devices_kobj);
1162	return group;
1163}
1164EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1165
1166/**
1167 * iommu_group_put - Decrement group reference
1168 * @group: the group to use
1169 *
1170 * This function is called by iommu drivers and users to release the
1171 * iommu group.  Once the reference count is zero, the group is released.
1172 */
1173void iommu_group_put(struct iommu_group *group)
1174{
1175	if (group)
1176		kobject_put(group->devices_kobj);
1177}
1178EXPORT_SYMBOL_GPL(iommu_group_put);
1179
1180/**
1181 * iommu_register_device_fault_handler() - Register a device fault handler
1182 * @dev: the device
1183 * @handler: the fault handler
1184 * @data: private data passed as argument to the handler
1185 *
1186 * When an IOMMU fault event is received, this handler gets called with the
1187 * fault event and data as argument. The handler should return 0 on success. If
1188 * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
1189 * complete the fault by calling iommu_page_response() with one of the following
1190 * response code:
1191 * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
1192 * - IOMMU_PAGE_RESP_INVALID: terminate the fault
1193 * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
1194 *   page faults if possible.
1195 *
1196 * Return 0 if the fault handler was installed successfully, or an error.
 
 
1197 */
1198int iommu_register_device_fault_handler(struct device *dev,
1199					iommu_dev_fault_handler_t handler,
1200					void *data)
1201{
1202	struct dev_iommu *param = dev->iommu;
1203	int ret = 0;
1204
1205	if (!param)
1206		return -EINVAL;
1207
1208	mutex_lock(&param->lock);
1209	/* Only allow one fault handler registered for each device */
1210	if (param->fault_param) {
1211		ret = -EBUSY;
1212		goto done_unlock;
1213	}
1214
1215	get_device(dev);
1216	param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
1217	if (!param->fault_param) {
1218		put_device(dev);
1219		ret = -ENOMEM;
1220		goto done_unlock;
1221	}
1222	param->fault_param->handler = handler;
1223	param->fault_param->data = data;
1224	mutex_init(&param->fault_param->lock);
1225	INIT_LIST_HEAD(&param->fault_param->faults);
1226
1227done_unlock:
1228	mutex_unlock(&param->lock);
1229
1230	return ret;
1231}
1232EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
1233
1234/**
1235 * iommu_unregister_device_fault_handler() - Unregister the device fault handler
1236 * @dev: the device
1237 *
1238 * Remove the device fault handler installed with
1239 * iommu_register_device_fault_handler().
1240 *
1241 * Return 0 on success, or an error.
1242 */
1243int iommu_unregister_device_fault_handler(struct device *dev)
1244{
1245	struct dev_iommu *param = dev->iommu;
1246	int ret = 0;
1247
1248	if (!param)
1249		return -EINVAL;
1250
1251	mutex_lock(&param->lock);
1252
1253	if (!param->fault_param)
1254		goto unlock;
1255
1256	/* we cannot unregister handler if there are pending faults */
1257	if (!list_empty(&param->fault_param->faults)) {
1258		ret = -EBUSY;
1259		goto unlock;
1260	}
1261
1262	kfree(param->fault_param);
1263	param->fault_param = NULL;
1264	put_device(dev);
1265unlock:
1266	mutex_unlock(&param->lock);
1267
1268	return ret;
1269}
1270EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1271
1272/**
1273 * iommu_report_device_fault() - Report fault event to device driver
1274 * @dev: the device
1275 * @evt: fault event data
1276 *
1277 * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1278 * handler. When this function fails and the fault is recoverable, it is the
1279 * caller's responsibility to complete the fault.
1280 *
1281 * Return 0 on success, or an error.
1282 */
1283int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1284{
1285	struct dev_iommu *param = dev->iommu;
1286	struct iommu_fault_event *evt_pending = NULL;
1287	struct iommu_fault_param *fparam;
1288	int ret = 0;
1289
1290	if (!param || !evt)
1291		return -EINVAL;
1292
1293	/* we only report device fault if there is a handler registered */
1294	mutex_lock(&param->lock);
1295	fparam = param->fault_param;
1296	if (!fparam || !fparam->handler) {
1297		ret = -EINVAL;
1298		goto done_unlock;
1299	}
1300
1301	if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1302	    (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1303		evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1304				      GFP_KERNEL);
1305		if (!evt_pending) {
1306			ret = -ENOMEM;
1307			goto done_unlock;
1308		}
1309		mutex_lock(&fparam->lock);
1310		list_add_tail(&evt_pending->list, &fparam->faults);
1311		mutex_unlock(&fparam->lock);
1312	}
1313
1314	ret = fparam->handler(&evt->fault, fparam->data);
1315	if (ret && evt_pending) {
1316		mutex_lock(&fparam->lock);
1317		list_del(&evt_pending->list);
1318		mutex_unlock(&fparam->lock);
1319		kfree(evt_pending);
1320	}
1321done_unlock:
1322	mutex_unlock(&param->lock);
1323	return ret;
1324}
1325EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1326
1327int iommu_page_response(struct device *dev,
1328			struct iommu_page_response *msg)
1329{
1330	bool needs_pasid;
1331	int ret = -EINVAL;
1332	struct iommu_fault_event *evt;
1333	struct iommu_fault_page_request *prm;
1334	struct dev_iommu *param = dev->iommu;
1335	const struct iommu_ops *ops = dev_iommu_ops(dev);
1336	bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID;
1337
1338	if (!ops->page_response)
1339		return -ENODEV;
1340
1341	if (!param || !param->fault_param)
1342		return -EINVAL;
1343
1344	if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1345	    msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1346		return -EINVAL;
1347
1348	/* Only send response if there is a fault report pending */
1349	mutex_lock(&param->fault_param->lock);
1350	if (list_empty(&param->fault_param->faults)) {
1351		dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1352		goto done_unlock;
1353	}
1354	/*
1355	 * Check if we have a matching page request pending to respond,
1356	 * otherwise return -EINVAL
1357	 */
1358	list_for_each_entry(evt, &param->fault_param->faults, list) {
1359		prm = &evt->fault.prm;
1360		if (prm->grpid != msg->grpid)
1361			continue;
1362
1363		/*
1364		 * If the PASID is required, the corresponding request is
1365		 * matched using the group ID, the PASID valid bit and the PASID
1366		 * value. Otherwise only the group ID matches request and
1367		 * response.
1368		 */
1369		needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
1370		if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid))
1371			continue;
1372
1373		if (!needs_pasid && has_pasid) {
1374			/* No big deal, just clear it. */
1375			msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID;
1376			msg->pasid = 0;
1377		}
1378
1379		ret = ops->page_response(dev, evt, msg);
1380		list_del(&evt->list);
1381		kfree(evt);
1382		break;
1383	}
1384
1385done_unlock:
1386	mutex_unlock(&param->fault_param->lock);
1387	return ret;
1388}
1389EXPORT_SYMBOL_GPL(iommu_page_response);
1390
1391/**
1392 * iommu_group_id - Return ID for a group
1393 * @group: the group to ID
1394 *
1395 * Return the unique ID for the group matching the sysfs group number.
1396 */
1397int iommu_group_id(struct iommu_group *group)
1398{
1399	return group->id;
1400}
1401EXPORT_SYMBOL_GPL(iommu_group_id);
1402
1403static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1404					       unsigned long *devfns);
1405
1406/*
1407 * To consider a PCI device isolated, we require ACS to support Source
1408 * Validation, Request Redirection, Completer Redirection, and Upstream
1409 * Forwarding.  This effectively means that devices cannot spoof their
1410 * requester ID, requests and completions cannot be redirected, and all
1411 * transactions are forwarded upstream, even as it passes through a
1412 * bridge where the target device is downstream.
1413 */
1414#define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1415
1416/*
1417 * For multifunction devices which are not isolated from each other, find
1418 * all the other non-isolated functions and look for existing groups.  For
1419 * each function, we also need to look for aliases to or from other devices
1420 * that may already have a group.
1421 */
1422static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1423							unsigned long *devfns)
1424{
1425	struct pci_dev *tmp = NULL;
1426	struct iommu_group *group;
1427
1428	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1429		return NULL;
1430
1431	for_each_pci_dev(tmp) {
1432		if (tmp == pdev || tmp->bus != pdev->bus ||
1433		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1434		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1435			continue;
1436
1437		group = get_pci_alias_group(tmp, devfns);
1438		if (group) {
1439			pci_dev_put(tmp);
1440			return group;
1441		}
1442	}
1443
1444	return NULL;
1445}
1446
1447/*
1448 * Look for aliases to or from the given device for existing groups. DMA
1449 * aliases are only supported on the same bus, therefore the search
1450 * space is quite small (especially since we're really only looking at pcie
1451 * device, and therefore only expect multiple slots on the root complex or
1452 * downstream switch ports).  It's conceivable though that a pair of
1453 * multifunction devices could have aliases between them that would cause a
1454 * loop.  To prevent this, we use a bitmap to track where we've been.
1455 */
1456static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1457					       unsigned long *devfns)
1458{
1459	struct pci_dev *tmp = NULL;
1460	struct iommu_group *group;
1461
1462	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1463		return NULL;
1464
1465	group = iommu_group_get(&pdev->dev);
1466	if (group)
1467		return group;
1468
1469	for_each_pci_dev(tmp) {
1470		if (tmp == pdev || tmp->bus != pdev->bus)
1471			continue;
1472
1473		/* We alias them or they alias us */
1474		if (pci_devs_are_dma_aliases(pdev, tmp)) {
 
 
 
 
1475			group = get_pci_alias_group(tmp, devfns);
1476			if (group) {
1477				pci_dev_put(tmp);
1478				return group;
1479			}
1480
1481			group = get_pci_function_alias_group(tmp, devfns);
1482			if (group) {
1483				pci_dev_put(tmp);
1484				return group;
1485			}
1486		}
1487	}
1488
1489	return NULL;
1490}
1491
1492struct group_for_pci_data {
1493	struct pci_dev *pdev;
1494	struct iommu_group *group;
1495};
1496
1497/*
1498 * DMA alias iterator callback, return the last seen device.  Stop and return
1499 * the IOMMU group if we find one along the way.
1500 */
1501static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1502{
1503	struct group_for_pci_data *data = opaque;
1504
1505	data->pdev = pdev;
1506	data->group = iommu_group_get(&pdev->dev);
1507
1508	return data->group != NULL;
1509}
1510
1511/*
1512 * Generic device_group call-back function. It just allocates one
1513 * iommu-group per device.
1514 */
1515struct iommu_group *generic_device_group(struct device *dev)
1516{
1517	return iommu_group_alloc();
 
 
 
 
 
 
1518}
1519EXPORT_SYMBOL_GPL(generic_device_group);
1520
1521/*
1522 * Use standard PCI bus topology, isolation features, and DMA alias quirks
1523 * to find or create an IOMMU group for a device.
1524 */
1525struct iommu_group *pci_device_group(struct device *dev)
1526{
1527	struct pci_dev *pdev = to_pci_dev(dev);
1528	struct group_for_pci_data data;
1529	struct pci_bus *bus;
1530	struct iommu_group *group = NULL;
1531	u64 devfns[4] = { 0 };
1532
1533	if (WARN_ON(!dev_is_pci(dev)))
1534		return ERR_PTR(-EINVAL);
1535
1536	/*
1537	 * Find the upstream DMA alias for the device.  A device must not
1538	 * be aliased due to topology in order to have its own IOMMU group.
1539	 * If we find an alias along the way that already belongs to a
1540	 * group, use it.
1541	 */
1542	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1543		return data.group;
1544
1545	pdev = data.pdev;
1546
1547	/*
1548	 * Continue upstream from the point of minimum IOMMU granularity
1549	 * due to aliases to the point where devices are protected from
1550	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1551	 * group, use it.
1552	 */
1553	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1554		if (!bus->self)
1555			continue;
1556
1557		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1558			break;
1559
1560		pdev = bus->self;
1561
1562		group = iommu_group_get(&pdev->dev);
1563		if (group)
1564			return group;
1565	}
1566
1567	/*
1568	 * Look for existing groups on device aliases.  If we alias another
1569	 * device or another device aliases us, use the same group.
1570	 */
1571	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1572	if (group)
1573		return group;
1574
1575	/*
1576	 * Look for existing groups on non-isolated functions on the same
1577	 * slot and aliases of those funcions, if any.  No need to clear
1578	 * the search bitmap, the tested devfns are still valid.
1579	 */
1580	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1581	if (group)
1582		return group;
1583
1584	/* No shared group found, allocate new */
1585	return iommu_group_alloc();
1586}
1587EXPORT_SYMBOL_GPL(pci_device_group);
1588
1589/* Get the IOMMU group for device on fsl-mc bus */
1590struct iommu_group *fsl_mc_device_group(struct device *dev)
1591{
1592	struct device *cont_dev = fsl_mc_cont_dev(dev);
1593	struct iommu_group *group;
1594
1595	group = iommu_group_get(cont_dev);
1596	if (!group)
1597		group = iommu_group_alloc();
1598	return group;
1599}
1600EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1601
1602static int iommu_get_def_domain_type(struct device *dev)
1603{
1604	const struct iommu_ops *ops = dev_iommu_ops(dev);
1605
1606	if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
1607		return IOMMU_DOMAIN_DMA;
1608
1609	if (ops->def_domain_type)
1610		return ops->def_domain_type(dev);
1611
1612	return 0;
1613}
1614
1615static int iommu_group_alloc_default_domain(struct bus_type *bus,
1616					    struct iommu_group *group,
1617					    unsigned int type)
1618{
1619	struct iommu_domain *dom;
1620
1621	dom = __iommu_domain_alloc(bus, type);
1622	if (!dom && type != IOMMU_DOMAIN_DMA) {
1623		dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA);
1624		if (dom)
1625			pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1626				type, group->name);
1627	}
1628
1629	if (!dom)
1630		return -ENOMEM;
1631
1632	group->default_domain = dom;
1633	if (!group->domain)
1634		group->domain = dom;
1635	return 0;
1636}
1637
1638static int iommu_alloc_default_domain(struct iommu_group *group,
1639				      struct device *dev)
1640{
1641	unsigned int type;
1642
1643	if (group->default_domain)
1644		return 0;
1645
1646	type = iommu_get_def_domain_type(dev) ? : iommu_def_domain_type;
1647
1648	return iommu_group_alloc_default_domain(dev->bus, group, type);
1649}
1650
1651/**
1652 * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1653 * @dev: target device
1654 *
1655 * This function is intended to be called by IOMMU drivers and extended to
1656 * support common, bus-defined algorithms when determining or creating the
1657 * IOMMU group for a device.  On success, the caller will hold a reference
1658 * to the returned IOMMU group, which will already include the provided
1659 * device.  The reference should be released with iommu_group_put().
1660 */
1661static struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1662{
1663	const struct iommu_ops *ops = dev_iommu_ops(dev);
1664	struct iommu_group *group;
1665	int ret;
1666
1667	group = iommu_group_get(dev);
1668	if (group)
1669		return group;
1670
1671	group = ops->device_group(dev);
1672	if (WARN_ON_ONCE(group == NULL))
1673		return ERR_PTR(-EINVAL);
 
1674
1675	if (IS_ERR(group))
1676		return group;
1677
 
 
 
 
 
 
 
 
 
 
 
1678	ret = iommu_group_add_device(group, dev);
1679	if (ret)
1680		goto out_put_group;
 
 
1681
1682	return group;
1683
1684out_put_group:
1685	iommu_group_put(group);
1686
1687	return ERR_PTR(ret);
1688}
1689
1690struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1691{
1692	return group->default_domain;
1693}
1694
1695static int probe_iommu_group(struct device *dev, void *data)
1696{
1697	struct list_head *group_list = data;
1698	struct iommu_group *group;
1699	int ret;
1700
1701	/* Device is probed already if in a group */
1702	group = iommu_group_get(dev);
1703	if (group) {
1704		iommu_group_put(group);
1705		return 0;
1706	}
1707
1708	ret = __iommu_probe_device(dev, group_list);
 
 
 
 
 
 
 
 
1709	if (ret == -ENODEV)
1710		ret = 0;
1711
1712	return ret;
1713}
1714
1715static int iommu_bus_notifier(struct notifier_block *nb,
1716			      unsigned long action, void *data)
1717{
1718	struct device *dev = data;
1719
1720	if (action == BUS_NOTIFY_ADD_DEVICE) {
1721		int ret;
1722
1723		ret = iommu_probe_device(dev);
1724		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1725	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1726		iommu_release_device(dev);
1727		return NOTIFY_OK;
1728	}
1729
1730	return 0;
1731}
1732
1733struct __group_domain_type {
1734	struct device *dev;
1735	unsigned int type;
1736};
1737
1738static int probe_get_default_domain_type(struct device *dev, void *data)
1739{
1740	struct __group_domain_type *gtype = data;
1741	unsigned int type = iommu_get_def_domain_type(dev);
1742
1743	if (type) {
1744		if (gtype->type && gtype->type != type) {
1745			dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n",
1746				 iommu_domain_type_str(type),
1747				 dev_name(gtype->dev),
1748				 iommu_domain_type_str(gtype->type));
1749			gtype->type = 0;
1750		}
1751
1752		if (!gtype->dev) {
1753			gtype->dev  = dev;
1754			gtype->type = type;
 
 
 
 
 
 
 
 
1755		}
1756	}
1757
1758	return 0;
1759}
1760
1761static void probe_alloc_default_domain(struct bus_type *bus,
1762				       struct iommu_group *group)
1763{
1764	struct __group_domain_type gtype;
1765
1766	memset(&gtype, 0, sizeof(gtype));
1767
1768	/* Ask for default domain requirements of all devices in the group */
1769	__iommu_group_for_each_dev(group, &gtype,
1770				   probe_get_default_domain_type);
1771
1772	if (!gtype.type)
1773		gtype.type = iommu_def_domain_type;
 
 
 
 
 
 
 
 
 
 
 
 
1774
1775	iommu_group_alloc_default_domain(bus, group, gtype.type);
 
 
1776
 
 
1777}
1778
1779static int iommu_group_do_dma_attach(struct device *dev, void *data)
1780{
1781	struct iommu_domain *domain = data;
1782	int ret = 0;
 
 
 
1783
1784	if (!iommu_is_attach_deferred(dev))
1785		ret = __iommu_attach_device(domain, dev);
 
1786
1787	return ret;
1788}
1789
1790static int __iommu_group_dma_attach(struct iommu_group *group)
1791{
1792	return __iommu_group_for_each_dev(group, group->default_domain,
1793					  iommu_group_do_dma_attach);
1794}
1795
1796static int iommu_group_do_probe_finalize(struct device *dev, void *data)
1797{
1798	const struct iommu_ops *ops = dev_iommu_ops(dev);
1799
1800	if (ops->probe_finalize)
1801		ops->probe_finalize(dev);
1802
1803	return 0;
1804}
1805
1806static void __iommu_group_dma_finalize(struct iommu_group *group)
1807{
1808	__iommu_group_for_each_dev(group, group->default_domain,
1809				   iommu_group_do_probe_finalize);
1810}
1811
1812static int iommu_do_create_direct_mappings(struct device *dev, void *data)
1813{
1814	struct iommu_group *group = data;
 
1815
1816	iommu_create_device_direct_mappings(group, dev);
 
1817
1818	return 0;
1819}
1820
1821static int iommu_group_create_direct_mappings(struct iommu_group *group)
1822{
1823	return __iommu_group_for_each_dev(group, group,
1824					  iommu_do_create_direct_mappings);
1825}
1826
1827int bus_iommu_probe(struct bus_type *bus)
 
 
 
 
 
 
 
 
 
 
 
 
 
1828{
1829	struct iommu_group *group, *next;
1830	LIST_HEAD(group_list);
1831	int ret;
1832
1833	/*
1834	 * This code-path does not allocate the default domain when
1835	 * creating the iommu group, so do it after the groups are
1836	 * created.
1837	 */
1838	ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1839	if (ret)
1840		return ret;
1841
1842	list_for_each_entry_safe(group, next, &group_list, entry) {
1843		mutex_lock(&group->mutex);
1844
1845		/* Remove item from the list */
1846		list_del_init(&group->entry);
1847
1848		/* Try to allocate default domain */
1849		probe_alloc_default_domain(bus, group);
1850
1851		if (!group->default_domain) {
1852			mutex_unlock(&group->mutex);
1853			continue;
1854		}
1855
1856		iommu_group_create_direct_mappings(group);
1857
1858		ret = __iommu_group_dma_attach(group);
1859
1860		mutex_unlock(&group->mutex);
1861
1862		if (ret)
1863			break;
1864
1865		__iommu_group_dma_finalize(group);
1866	}
1867
1868	return ret;
1869}
 
1870
1871bool iommu_present(struct bus_type *bus)
1872{
1873	return bus->iommu_ops != NULL;
1874}
1875EXPORT_SYMBOL_GPL(iommu_present);
1876
1877/**
1878 * device_iommu_capable() - check for a general IOMMU capability
1879 * @dev: device to which the capability would be relevant, if available
1880 * @cap: IOMMU capability
1881 *
1882 * Return: true if an IOMMU is present and supports the given capability
1883 * for the given device, otherwise false.
1884 */
1885bool device_iommu_capable(struct device *dev, enum iommu_cap cap)
1886{
1887	const struct iommu_ops *ops;
1888
1889	if (!dev->iommu || !dev->iommu->iommu_dev)
1890		return false;
1891
1892	ops = dev_iommu_ops(dev);
1893	if (!ops->capable)
1894		return false;
1895
1896	return ops->capable(dev, cap);
1897}
1898EXPORT_SYMBOL_GPL(device_iommu_capable);
1899
1900/**
1901 * iommu_set_fault_handler() - set a fault handler for an iommu domain
1902 * @domain: iommu domain
1903 * @handler: fault handler
1904 * @token: user data, will be passed back to the fault handler
1905 *
1906 * This function should be used by IOMMU users which want to be notified
1907 * whenever an IOMMU fault happens.
1908 *
1909 * The fault handler itself should return 0 on success, and an appropriate
1910 * error code otherwise.
1911 */
1912void iommu_set_fault_handler(struct iommu_domain *domain,
1913					iommu_fault_handler_t handler,
1914					void *token)
1915{
1916	BUG_ON(!domain);
1917
1918	domain->handler = handler;
1919	domain->handler_token = token;
1920}
1921EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1922
1923static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1924						 unsigned type)
1925{
1926	struct iommu_domain *domain;
1927
1928	if (bus == NULL || bus->iommu_ops == NULL)
1929		return NULL;
1930
1931	domain = bus->iommu_ops->domain_alloc(type);
1932	if (!domain)
1933		return NULL;
1934
 
1935	domain->type = type;
1936	/* Assume all sizes by default; the driver may override this later */
1937	domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap;
1938	if (!domain->ops)
1939		domain->ops = bus->iommu_ops->default_domain_ops;
1940
1941	if (iommu_is_dma_domain(domain) && iommu_get_dma_cookie(domain)) {
1942		iommu_domain_free(domain);
1943		domain = NULL;
1944	}
1945	return domain;
1946}
1947
1948struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1949{
1950	return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1951}
1952EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1953
1954void iommu_domain_free(struct iommu_domain *domain)
1955{
1956	if (domain->type == IOMMU_DOMAIN_SVA)
1957		mmdrop(domain->mm);
1958	iommu_put_dma_cookie(domain);
1959	domain->ops->free(domain);
1960}
1961EXPORT_SYMBOL_GPL(iommu_domain_free);
1962
1963/*
1964 * Put the group's domain back to the appropriate core-owned domain - either the
1965 * standard kernel-mode DMA configuration or an all-DMA-blocked domain.
1966 */
1967static void __iommu_group_set_core_domain(struct iommu_group *group)
1968{
1969	struct iommu_domain *new_domain;
1970	int ret;
1971
1972	if (group->owner)
1973		new_domain = group->blocking_domain;
1974	else
1975		new_domain = group->default_domain;
1976
1977	ret = __iommu_group_set_domain(group, new_domain);
1978	WARN(ret, "iommu driver failed to attach the default/blocking domain");
1979}
1980
1981static int __iommu_attach_device(struct iommu_domain *domain,
1982				 struct device *dev)
1983{
1984	int ret;
1985
1986	if (unlikely(domain->ops->attach_dev == NULL))
1987		return -ENODEV;
1988
1989	ret = domain->ops->attach_dev(domain, dev);
1990	if (!ret)
1991		trace_attach_device_to_domain(dev);
1992	return ret;
1993}
1994
1995/**
1996 * iommu_attach_device - Attach an IOMMU domain to a device
1997 * @domain: IOMMU domain to attach
1998 * @dev: Device that will be attached
1999 *
2000 * Returns 0 on success and error code on failure
2001 *
2002 * Note that EINVAL can be treated as a soft failure, indicating
2003 * that certain configuration of the domain is incompatible with
2004 * the device. In this case attaching a different domain to the
2005 * device may succeed.
2006 */
2007int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
2008{
2009	struct iommu_group *group;
2010	int ret;
2011
2012	group = iommu_group_get(dev);
2013	if (!group)
2014		return -ENODEV;
 
2015
2016	/*
2017	 * Lock the group to make sure the device-count doesn't
2018	 * change while we are attaching
2019	 */
2020	mutex_lock(&group->mutex);
2021	ret = -EINVAL;
2022	if (iommu_group_device_count(group) != 1)
2023		goto out_unlock;
2024
2025	ret = __iommu_attach_group(domain, group);
2026
2027out_unlock:
2028	mutex_unlock(&group->mutex);
2029	iommu_group_put(group);
2030
2031	return ret;
2032}
2033EXPORT_SYMBOL_GPL(iommu_attach_device);
2034
2035int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2036{
2037	if (iommu_is_attach_deferred(dev))
2038		return __iommu_attach_device(domain, dev);
2039
2040	return 0;
2041}
2042
2043static void __iommu_detach_device(struct iommu_domain *domain,
2044				  struct device *dev)
2045{
2046	if (iommu_is_attach_deferred(dev))
2047		return;
2048
2049	domain->ops->detach_dev(domain, dev);
2050	trace_detach_device_from_domain(dev);
2051}
2052
2053void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2054{
2055	struct iommu_group *group;
2056
2057	group = iommu_group_get(dev);
2058	if (!group)
2059		return;
 
2060
2061	mutex_lock(&group->mutex);
2062	if (WARN_ON(domain != group->domain) ||
2063	    WARN_ON(iommu_group_device_count(group) != 1))
2064		goto out_unlock;
2065	__iommu_group_set_core_domain(group);
 
 
2066
2067out_unlock:
2068	mutex_unlock(&group->mutex);
2069	iommu_group_put(group);
2070}
2071EXPORT_SYMBOL_GPL(iommu_detach_device);
2072
2073struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2074{
2075	struct iommu_domain *domain;
2076	struct iommu_group *group;
2077
2078	group = iommu_group_get(dev);
2079	if (!group)
 
2080		return NULL;
2081
2082	domain = group->domain;
2083
2084	iommu_group_put(group);
2085
2086	return domain;
2087}
2088EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2089
2090/*
2091 * For IOMMU_DOMAIN_DMA implementations which already provide their own
2092 * guarantees that the group and its default domain are valid and correct.
2093 */
2094struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2095{
2096	return dev->iommu_group->default_domain;
2097}
2098
2099/*
2100 * IOMMU groups are really the natural working unit of the IOMMU, but
2101 * the IOMMU API works on domains and devices.  Bridge that gap by
2102 * iterating over the devices in a group.  Ideally we'd have a single
2103 * device which represents the requestor ID of the group, but we also
2104 * allow IOMMU drivers to create policy defined minimum sets, where
2105 * the physical hardware may be able to distiguish members, but we
2106 * wish to group them at a higher level (ex. untrusted multi-function
2107 * PCI devices).  Thus we attach each device.
2108 */
2109static int iommu_group_do_attach_device(struct device *dev, void *data)
2110{
2111	struct iommu_domain *domain = data;
2112
2113	return __iommu_attach_device(domain, dev);
2114}
2115
2116static int __iommu_attach_group(struct iommu_domain *domain,
2117				struct iommu_group *group)
2118{
2119	int ret;
2120
2121	if (group->domain && group->domain != group->default_domain &&
2122	    group->domain != group->blocking_domain)
2123		return -EBUSY;
2124
2125	ret = __iommu_group_for_each_dev(group, domain,
2126					 iommu_group_do_attach_device);
2127	if (ret == 0)
2128		group->domain = domain;
2129
2130	return ret;
2131}
2132
2133/**
2134 * iommu_attach_group - Attach an IOMMU domain to an IOMMU group
2135 * @domain: IOMMU domain to attach
2136 * @group: IOMMU group that will be attached
2137 *
2138 * Returns 0 on success and error code on failure
2139 *
2140 * Note that EINVAL can be treated as a soft failure, indicating
2141 * that certain configuration of the domain is incompatible with
2142 * the group. In this case attaching a different domain to the
2143 * group may succeed.
2144 */
2145int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2146{
2147	int ret;
2148
2149	mutex_lock(&group->mutex);
2150	ret = __iommu_attach_group(domain, group);
2151	mutex_unlock(&group->mutex);
2152
2153	return ret;
2154}
2155EXPORT_SYMBOL_GPL(iommu_attach_group);
2156
2157static int iommu_group_do_detach_device(struct device *dev, void *data)
2158{
2159	struct iommu_domain *domain = data;
2160
2161	__iommu_detach_device(domain, dev);
2162
2163	return 0;
2164}
2165
2166static int __iommu_group_set_domain(struct iommu_group *group,
2167				    struct iommu_domain *new_domain)
2168{
2169	int ret;
2170
2171	if (group->domain == new_domain)
2172		return 0;
2173
2174	/*
2175	 * New drivers should support default domains and so the detach_dev() op
2176	 * will never be called. Otherwise the NULL domain represents some
2177	 * platform specific behavior.
2178	 */
2179	if (!new_domain) {
2180		if (WARN_ON(!group->domain->ops->detach_dev))
2181			return -EINVAL;
2182		__iommu_group_for_each_dev(group, group->domain,
2183					   iommu_group_do_detach_device);
2184		group->domain = NULL;
2185		return 0;
2186	}
2187
2188	/*
2189	 * Changing the domain is done by calling attach_dev() on the new
2190	 * domain. This switch does not have to be atomic and DMA can be
2191	 * discarded during the transition. DMA must only be able to access
2192	 * either new_domain or group->domain, never something else.
2193	 *
2194	 * Note that this is called in error unwind paths, attaching to a
2195	 * domain that has already been attached cannot fail.
2196	 */
2197	ret = __iommu_group_for_each_dev(group, new_domain,
2198					 iommu_group_do_attach_device);
2199	if (ret)
2200		return ret;
2201	group->domain = new_domain;
2202	return 0;
2203}
2204
2205void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2206{
2207	mutex_lock(&group->mutex);
2208	__iommu_group_set_core_domain(group);
2209	mutex_unlock(&group->mutex);
2210}
2211EXPORT_SYMBOL_GPL(iommu_detach_group);
2212
2213phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2214{
2215	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2216		return iova;
2217
2218	if (domain->type == IOMMU_DOMAIN_BLOCKED)
2219		return 0;
2220
2221	return domain->ops->iova_to_phys(domain, iova);
2222}
2223EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2224
2225static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2226			   phys_addr_t paddr, size_t size, size_t *count)
2227{
2228	unsigned int pgsize_idx, pgsize_idx_next;
2229	unsigned long pgsizes;
2230	size_t offset, pgsize, pgsize_next;
2231	unsigned long addr_merge = paddr | iova;
2232
2233	/* Page sizes supported by the hardware and small enough for @size */
2234	pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2235
2236	/* Constrain the page sizes further based on the maximum alignment */
2237	if (likely(addr_merge))
2238		pgsizes &= GENMASK(__ffs(addr_merge), 0);
2239
2240	/* Make sure we have at least one suitable page size */
2241	BUG_ON(!pgsizes);
2242
2243	/* Pick the biggest page size remaining */
2244	pgsize_idx = __fls(pgsizes);
2245	pgsize = BIT(pgsize_idx);
2246	if (!count)
2247		return pgsize;
2248
2249	/* Find the next biggest support page size, if it exists */
2250	pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2251	if (!pgsizes)
2252		goto out_set_count;
2253
2254	pgsize_idx_next = __ffs(pgsizes);
2255	pgsize_next = BIT(pgsize_idx_next);
2256
2257	/*
2258	 * There's no point trying a bigger page size unless the virtual
2259	 * and physical addresses are similarly offset within the larger page.
2260	 */
2261	if ((iova ^ paddr) & (pgsize_next - 1))
2262		goto out_set_count;
2263
2264	/* Calculate the offset to the next page size alignment boundary */
2265	offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2266
2267	/*
2268	 * If size is big enough to accommodate the larger page, reduce
2269	 * the number of smaller pages.
2270	 */
2271	if (offset + pgsize_next <= size)
2272		size = offset;
2273
2274out_set_count:
2275	*count = size >> pgsize_idx;
2276	return pgsize;
2277}
2278
2279static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova,
2280			     phys_addr_t paddr, size_t size, int prot,
2281			     gfp_t gfp, size_t *mapped)
2282{
2283	const struct iommu_domain_ops *ops = domain->ops;
2284	size_t pgsize, count;
2285	int ret;
2286
2287	pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
 
2288
2289	pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2290		 iova, &paddr, pgsize, count);
2291
2292	if (ops->map_pages) {
2293		ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2294				     gfp, mapped);
2295	} else {
2296		ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);
2297		*mapped = ret ? 0 : pgsize;
2298	}
2299
2300	return ret;
2301}
2302
2303static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2304		       phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2305{
2306	const struct iommu_domain_ops *ops = domain->ops;
2307	unsigned long orig_iova = iova;
2308	unsigned int min_pagesz;
2309	size_t orig_size = size;
2310	phys_addr_t orig_paddr = paddr;
2311	int ret = 0;
2312
2313	if (unlikely(!(ops->map || ops->map_pages) ||
2314		     domain->pgsize_bitmap == 0UL))
2315		return -ENODEV;
2316
2317	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2318		return -EINVAL;
2319
2320	/* find out the minimum page size supported */
2321	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2322
2323	/*
2324	 * both the virtual address and the physical one, as well as
2325	 * the size of the mapping, must be aligned (at least) to the
2326	 * size of the smallest page supported by the hardware
2327	 */
2328	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2329		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2330		       iova, &paddr, size, min_pagesz);
2331		return -EINVAL;
2332	}
2333
2334	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2335
2336	while (size) {
2337		size_t mapped = 0;
2338
2339		ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp,
2340					&mapped);
2341		/*
2342		 * Some pages may have been mapped, even if an error occurred,
2343		 * so we should account for those so they can be unmapped.
2344		 */
2345		size -= mapped;
2346
 
2347		if (ret)
2348			break;
2349
2350		iova += mapped;
2351		paddr += mapped;
 
2352	}
2353
2354	/* unroll mapping in case something went wrong */
2355	if (ret)
2356		iommu_unmap(domain, orig_iova, orig_size - size);
2357	else
2358		trace_map(orig_iova, orig_paddr, orig_size);
2359
2360	return ret;
2361}
2362
2363static int _iommu_map(struct iommu_domain *domain, unsigned long iova,
2364		      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2365{
2366	const struct iommu_domain_ops *ops = domain->ops;
2367	int ret;
2368
2369	ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2370	if (ret == 0 && ops->iotlb_sync_map)
2371		ops->iotlb_sync_map(domain, iova, size);
2372
2373	return ret;
2374}
2375
2376int iommu_map(struct iommu_domain *domain, unsigned long iova,
2377	      phys_addr_t paddr, size_t size, int prot)
2378{
2379	might_sleep();
2380	return _iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL);
2381}
2382EXPORT_SYMBOL_GPL(iommu_map);
2383
2384int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova,
2385	      phys_addr_t paddr, size_t size, int prot)
2386{
2387	return _iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC);
2388}
2389EXPORT_SYMBOL_GPL(iommu_map_atomic);
2390
2391static size_t __iommu_unmap_pages(struct iommu_domain *domain,
2392				  unsigned long iova, size_t size,
2393				  struct iommu_iotlb_gather *iotlb_gather)
2394{
2395	const struct iommu_domain_ops *ops = domain->ops;
2396	size_t pgsize, count;
2397
2398	pgsize = iommu_pgsize(domain, iova, iova, size, &count);
2399	return ops->unmap_pages ?
2400	       ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) :
2401	       ops->unmap(domain, iova, pgsize, iotlb_gather);
2402}
2403
2404static size_t __iommu_unmap(struct iommu_domain *domain,
2405			    unsigned long iova, size_t size,
2406			    struct iommu_iotlb_gather *iotlb_gather)
2407{
2408	const struct iommu_domain_ops *ops = domain->ops;
2409	size_t unmapped_page, unmapped = 0;
2410	unsigned long orig_iova = iova;
2411	unsigned int min_pagesz;
 
2412
2413	if (unlikely(!(ops->unmap || ops->unmap_pages) ||
2414		     domain->pgsize_bitmap == 0UL))
2415		return 0;
2416
2417	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2418		return 0;
2419
2420	/* find out the minimum page size supported */
2421	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2422
2423	/*
2424	 * The virtual address, as well as the size of the mapping, must be
2425	 * aligned (at least) to the size of the smallest page supported
2426	 * by the hardware
2427	 */
2428	if (!IS_ALIGNED(iova | size, min_pagesz)) {
2429		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2430		       iova, size, min_pagesz);
2431		return 0;
2432	}
2433
2434	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2435
2436	/*
2437	 * Keep iterating until we either unmap 'size' bytes (or more)
2438	 * or we hit an area that isn't mapped.
2439	 */
2440	while (unmapped < size) {
2441		unmapped_page = __iommu_unmap_pages(domain, iova,
2442						    size - unmapped,
2443						    iotlb_gather);
2444		if (!unmapped_page)
2445			break;
2446
2447		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2448			 iova, unmapped_page);
2449
2450		iova += unmapped_page;
2451		unmapped += unmapped_page;
2452	}
2453
2454	trace_unmap(orig_iova, size, unmapped);
2455	return unmapped;
2456}
2457
2458size_t iommu_unmap(struct iommu_domain *domain,
2459		   unsigned long iova, size_t size)
2460{
2461	struct iommu_iotlb_gather iotlb_gather;
2462	size_t ret;
2463
2464	iommu_iotlb_gather_init(&iotlb_gather);
2465	ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2466	iommu_iotlb_sync(domain, &iotlb_gather);
2467
2468	return ret;
2469}
2470EXPORT_SYMBOL_GPL(iommu_unmap);
2471
2472size_t iommu_unmap_fast(struct iommu_domain *domain,
2473			unsigned long iova, size_t size,
2474			struct iommu_iotlb_gather *iotlb_gather)
2475{
2476	return __iommu_unmap(domain, iova, size, iotlb_gather);
2477}
2478EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2479
2480static ssize_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2481		struct scatterlist *sg, unsigned int nents, int prot,
2482		gfp_t gfp)
2483{
2484	const struct iommu_domain_ops *ops = domain->ops;
2485	size_t len = 0, mapped = 0;
2486	phys_addr_t start;
2487	unsigned int i = 0;
2488	int ret;
2489
2490	while (i <= nents) {
2491		phys_addr_t s_phys = sg_phys(sg);
2492
2493		if (len && s_phys != start + len) {
2494			ret = __iommu_map(domain, iova + mapped, start,
2495					len, prot, gfp);
2496
2497			if (ret)
2498				goto out_err;
2499
2500			mapped += len;
2501			len = 0;
2502		}
2503
2504		if (sg_is_dma_bus_address(sg))
2505			goto next;
 
 
 
 
 
 
2506
2507		if (len) {
2508			len += sg->length;
2509		} else {
2510			len = sg->length;
2511			start = s_phys;
2512		}
2513
2514next:
2515		if (++i < nents)
2516			sg = sg_next(sg);
2517	}
2518
2519	if (ops->iotlb_sync_map)
2520		ops->iotlb_sync_map(domain, iova, mapped);
2521	return mapped;
2522
2523out_err:
2524	/* undo mappings already done */
2525	iommu_unmap(domain, iova, mapped);
2526
2527	return ret;
2528}
2529
2530ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2531		     struct scatterlist *sg, unsigned int nents, int prot)
2532{
2533	might_sleep();
2534	return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL);
2535}
2536EXPORT_SYMBOL_GPL(iommu_map_sg);
2537
2538ssize_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova,
2539		    struct scatterlist *sg, unsigned int nents, int prot)
2540{
2541	return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
 
 
 
 
2542}
 
2543
2544/**
2545 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2546 * @domain: the iommu domain where the fault has happened
2547 * @dev: the device where the fault has happened
2548 * @iova: the faulting address
2549 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2550 *
2551 * This function should be called by the low-level IOMMU implementations
2552 * whenever IOMMU faults happen, to allow high-level users, that are
2553 * interested in such events, to know about them.
2554 *
2555 * This event may be useful for several possible use cases:
2556 * - mere logging of the event
2557 * - dynamic TLB/PTE loading
2558 * - if restarting of the faulting device is required
2559 *
2560 * Returns 0 on success and an appropriate error code otherwise (if dynamic
2561 * PTE/TLB loading will one day be supported, implementations will be able
2562 * to tell whether it succeeded or not according to this return value).
2563 *
2564 * Specifically, -ENOSYS is returned if a fault handler isn't installed
2565 * (though fault handlers can also return -ENOSYS, in case they want to
2566 * elicit the default behavior of the IOMMU drivers).
2567 */
2568int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2569		       unsigned long iova, int flags)
2570{
2571	int ret = -ENOSYS;
2572
2573	/*
2574	 * if upper layers showed interest and installed a fault handler,
2575	 * invoke it.
2576	 */
2577	if (domain->handler)
2578		ret = domain->handler(domain, dev, iova, flags,
2579						domain->handler_token);
2580
2581	trace_io_page_fault(dev, iova, flags);
2582	return ret;
2583}
2584EXPORT_SYMBOL_GPL(report_iommu_fault);
2585
2586static int __init iommu_init(void)
2587{
2588	iommu_group_kset = kset_create_and_add("iommu_groups",
2589					       NULL, kernel_kobj);
2590	BUG_ON(!iommu_group_kset);
 
2591
2592	iommu_debugfs_setup();
2593
2594	return 0;
2595}
2596core_initcall(iommu_init);
2597
2598int iommu_enable_nesting(struct iommu_domain *domain)
2599{
2600	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2601		return -EINVAL;
2602	if (!domain->ops->enable_nesting)
2603		return -EINVAL;
2604	return domain->ops->enable_nesting(domain);
2605}
2606EXPORT_SYMBOL_GPL(iommu_enable_nesting);
2607
2608int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2609		unsigned long quirk)
2610{
2611	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2612		return -EINVAL;
2613	if (!domain->ops->set_pgtable_quirks)
2614		return -EINVAL;
2615	return domain->ops->set_pgtable_quirks(domain, quirk);
2616}
2617EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2618
2619void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2620{
2621	const struct iommu_ops *ops = dev_iommu_ops(dev);
 
 
 
2622
2623	if (ops->get_resv_regions)
2624		ops->get_resv_regions(dev, list);
2625}
 
2626
2627/**
2628 * iommu_put_resv_regions - release resered regions
2629 * @dev: device for which to free reserved regions
2630 * @list: reserved region list for device
2631 *
2632 * This releases a reserved region list acquired by iommu_get_resv_regions().
2633 */
2634void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2635{
2636	struct iommu_resv_region *entry, *next;
2637
2638	list_for_each_entry_safe(entry, next, list, list) {
2639		if (entry->free)
2640			entry->free(dev, entry);
2641		else
2642			kfree(entry);
2643	}
2644}
2645EXPORT_SYMBOL(iommu_put_resv_regions);
2646
2647struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2648						  size_t length, int prot,
2649						  enum iommu_resv_type type,
2650						  gfp_t gfp)
2651{
2652	struct iommu_resv_region *region;
2653
2654	region = kzalloc(sizeof(*region), gfp);
2655	if (!region)
2656		return NULL;
2657
2658	INIT_LIST_HEAD(&region->list);
2659	region->start = start;
2660	region->length = length;
2661	region->prot = prot;
2662	region->type = type;
2663	return region;
2664}
2665EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2666
2667void iommu_set_default_passthrough(bool cmd_line)
2668{
2669	if (cmd_line)
2670		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2671	iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2672}
2673
2674void iommu_set_default_translated(bool cmd_line)
2675{
2676	if (cmd_line)
2677		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2678	iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2679}
2680
2681bool iommu_default_passthrough(void)
2682{
2683	return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2684}
2685EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2686
2687const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2688{
2689	const struct iommu_ops *ops = NULL;
2690	struct iommu_device *iommu;
2691
2692	spin_lock(&iommu_device_lock);
2693	list_for_each_entry(iommu, &iommu_device_list, list)
2694		if (iommu->fwnode == fwnode) {
2695			ops = iommu->ops;
2696			break;
2697		}
2698	spin_unlock(&iommu_device_lock);
2699	return ops;
2700}
2701
2702int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2703		      const struct iommu_ops *ops)
2704{
2705	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2706
2707	if (fwspec)
2708		return ops == fwspec->ops ? 0 : -EINVAL;
2709
2710	if (!dev_iommu_get(dev))
2711		return -ENOMEM;
2712
2713	/* Preallocate for the overwhelmingly common case of 1 ID */
2714	fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2715	if (!fwspec)
2716		return -ENOMEM;
2717
2718	of_node_get(to_of_node(iommu_fwnode));
2719	fwspec->iommu_fwnode = iommu_fwnode;
2720	fwspec->ops = ops;
2721	dev_iommu_fwspec_set(dev, fwspec);
2722	return 0;
2723}
2724EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2725
2726void iommu_fwspec_free(struct device *dev)
2727{
2728	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2729
2730	if (fwspec) {
2731		fwnode_handle_put(fwspec->iommu_fwnode);
2732		kfree(fwspec);
2733		dev_iommu_fwspec_set(dev, NULL);
2734	}
2735}
2736EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2737
2738int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2739{
2740	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2741	int i, new_num;
2742
2743	if (!fwspec)
2744		return -EINVAL;
2745
2746	new_num = fwspec->num_ids + num_ids;
2747	if (new_num > 1) {
2748		fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2749				  GFP_KERNEL);
2750		if (!fwspec)
2751			return -ENOMEM;
2752
2753		dev_iommu_fwspec_set(dev, fwspec);
2754	}
2755
2756	for (i = 0; i < num_ids; i++)
2757		fwspec->ids[fwspec->num_ids + i] = ids[i];
2758
2759	fwspec->num_ids = new_num;
2760	return 0;
2761}
2762EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2763
2764/*
2765 * Per device IOMMU features.
2766 */
2767int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2768{
2769	if (dev->iommu && dev->iommu->iommu_dev) {
2770		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2771
2772		if (ops->dev_enable_feat)
2773			return ops->dev_enable_feat(dev, feat);
2774	}
2775
2776	return -ENODEV;
2777}
2778EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2779
2780/*
2781 * The device drivers should do the necessary cleanups before calling this.
2782 */
2783int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2784{
2785	if (dev->iommu && dev->iommu->iommu_dev) {
2786		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2787
2788		if (ops->dev_disable_feat)
2789			return ops->dev_disable_feat(dev, feat);
2790	}
2791
2792	return -EBUSY;
2793}
2794EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2795
2796/*
2797 * Changes the default domain of an iommu group that has *only* one device
2798 *
2799 * @group: The group for which the default domain should be changed
2800 * @prev_dev: The device in the group (this is used to make sure that the device
2801 *	 hasn't changed after the caller has called this function)
2802 * @type: The type of the new default domain that gets associated with the group
2803 *
2804 * Returns 0 on success and error code on failure
2805 *
2806 * Note:
2807 * 1. Presently, this function is called only when user requests to change the
2808 *    group's default domain type through /sys/kernel/iommu_groups/<grp_id>/type
2809 *    Please take a closer look if intended to use for other purposes.
2810 */
2811static int iommu_change_dev_def_domain(struct iommu_group *group,
2812				       struct device *prev_dev, int type)
2813{
2814	struct iommu_domain *prev_dom;
2815	struct group_device *grp_dev;
2816	int ret, dev_def_dom;
2817	struct device *dev;
2818
2819	mutex_lock(&group->mutex);
2820
2821	if (group->default_domain != group->domain) {
2822		dev_err_ratelimited(prev_dev, "Group not assigned to default domain\n");
2823		ret = -EBUSY;
2824		goto out;
2825	}
2826
2827	/*
2828	 * iommu group wasn't locked while acquiring device lock in
2829	 * iommu_group_store_type(). So, make sure that the device count hasn't
2830	 * changed while acquiring device lock.
2831	 *
2832	 * Changing default domain of an iommu group with two or more devices
2833	 * isn't supported because there could be a potential deadlock. Consider
2834	 * the following scenario. T1 is trying to acquire device locks of all
2835	 * the devices in the group and before it could acquire all of them,
2836	 * there could be another thread T2 (from different sub-system and use
2837	 * case) that has already acquired some of the device locks and might be
2838	 * waiting for T1 to release other device locks.
2839	 */
2840	if (iommu_group_device_count(group) != 1) {
2841		dev_err_ratelimited(prev_dev, "Cannot change default domain: Group has more than one device\n");
2842		ret = -EINVAL;
2843		goto out;
2844	}
2845
2846	/* Since group has only one device */
2847	grp_dev = list_first_entry(&group->devices, struct group_device, list);
2848	dev = grp_dev->dev;
2849
2850	if (prev_dev != dev) {
2851		dev_err_ratelimited(prev_dev, "Cannot change default domain: Device has been changed\n");
2852		ret = -EBUSY;
2853		goto out;
2854	}
2855
2856	prev_dom = group->default_domain;
2857	if (!prev_dom) {
2858		ret = -EINVAL;
2859		goto out;
2860	}
2861
2862	dev_def_dom = iommu_get_def_domain_type(dev);
2863	if (!type) {
2864		/*
2865		 * If the user hasn't requested any specific type of domain and
2866		 * if the device supports both the domains, then default to the
2867		 * domain the device was booted with
2868		 */
2869		type = dev_def_dom ? : iommu_def_domain_type;
2870	} else if (dev_def_dom && type != dev_def_dom) {
2871		dev_err_ratelimited(prev_dev, "Device cannot be in %s domain\n",
2872				    iommu_domain_type_str(type));
2873		ret = -EINVAL;
2874		goto out;
2875	}
2876
2877	/*
2878	 * Switch to a new domain only if the requested domain type is different
2879	 * from the existing default domain type
2880	 */
2881	if (prev_dom->type == type) {
2882		ret = 0;
2883		goto out;
2884	}
2885
2886	/* We can bring up a flush queue without tearing down the domain */
2887	if (type == IOMMU_DOMAIN_DMA_FQ && prev_dom->type == IOMMU_DOMAIN_DMA) {
2888		ret = iommu_dma_init_fq(prev_dom);
2889		if (!ret)
2890			prev_dom->type = IOMMU_DOMAIN_DMA_FQ;
2891		goto out;
2892	}
2893
2894	/* Sets group->default_domain to the newly allocated domain */
2895	ret = iommu_group_alloc_default_domain(dev->bus, group, type);
2896	if (ret)
2897		goto out;
2898
2899	ret = iommu_create_device_direct_mappings(group, dev);
2900	if (ret)
2901		goto free_new_domain;
2902
2903	ret = __iommu_attach_device(group->default_domain, dev);
2904	if (ret)
2905		goto free_new_domain;
2906
2907	group->domain = group->default_domain;
2908
2909	/*
2910	 * Release the mutex here because ops->probe_finalize() call-back of
2911	 * some vendor IOMMU drivers calls arm_iommu_attach_device() which
2912	 * in-turn might call back into IOMMU core code, where it tries to take
2913	 * group->mutex, resulting in a deadlock.
2914	 */
2915	mutex_unlock(&group->mutex);
2916
2917	/* Make sure dma_ops is appropriatley set */
2918	iommu_group_do_probe_finalize(dev, group->default_domain);
2919	iommu_domain_free(prev_dom);
2920	return 0;
2921
2922free_new_domain:
2923	iommu_domain_free(group->default_domain);
2924	group->default_domain = prev_dom;
2925	group->domain = prev_dom;
2926
2927out:
2928	mutex_unlock(&group->mutex);
2929
2930	return ret;
2931}
2932
2933/*
2934 * Changing the default domain through sysfs requires the users to unbind the
2935 * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
2936 * transition. Return failure if this isn't met.
2937 *
2938 * We need to consider the race between this and the device release path.
2939 * device_lock(dev) is used here to guarantee that the device release path
2940 * will not be entered at the same time.
2941 */
2942static ssize_t iommu_group_store_type(struct iommu_group *group,
2943				      const char *buf, size_t count)
2944{
2945	struct group_device *grp_dev;
2946	struct device *dev;
2947	int ret, req_type;
2948
2949	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
2950		return -EACCES;
2951
2952	if (WARN_ON(!group) || !group->default_domain)
2953		return -EINVAL;
2954
2955	if (sysfs_streq(buf, "identity"))
2956		req_type = IOMMU_DOMAIN_IDENTITY;
2957	else if (sysfs_streq(buf, "DMA"))
2958		req_type = IOMMU_DOMAIN_DMA;
2959	else if (sysfs_streq(buf, "DMA-FQ"))
2960		req_type = IOMMU_DOMAIN_DMA_FQ;
2961	else if (sysfs_streq(buf, "auto"))
2962		req_type = 0;
2963	else
2964		return -EINVAL;
2965
2966	/*
2967	 * Lock/Unlock the group mutex here before device lock to
2968	 * 1. Make sure that the iommu group has only one device (this is a
2969	 *    prerequisite for step 2)
2970	 * 2. Get struct *dev which is needed to lock device
2971	 */
2972	mutex_lock(&group->mutex);
2973	if (iommu_group_device_count(group) != 1) {
2974		mutex_unlock(&group->mutex);
2975		pr_err_ratelimited("Cannot change default domain: Group has more than one device\n");
2976		return -EINVAL;
2977	}
2978
2979	/* Since group has only one device */
2980	grp_dev = list_first_entry(&group->devices, struct group_device, list);
2981	dev = grp_dev->dev;
2982	get_device(dev);
2983
2984	/*
2985	 * Don't hold the group mutex because taking group mutex first and then
2986	 * the device lock could potentially cause a deadlock as below. Assume
2987	 * two threads T1 and T2. T1 is trying to change default domain of an
2988	 * iommu group and T2 is trying to hot unplug a device or release [1] VF
2989	 * of a PCIe device which is in the same iommu group. T1 takes group
2990	 * mutex and before it could take device lock assume T2 has taken device
2991	 * lock and is yet to take group mutex. Now, both the threads will be
2992	 * waiting for the other thread to release lock. Below, lock order was
2993	 * suggested.
2994	 * device_lock(dev);
2995	 *	mutex_lock(&group->mutex);
2996	 *		iommu_change_dev_def_domain();
2997	 *	mutex_unlock(&group->mutex);
2998	 * device_unlock(dev);
2999	 *
3000	 * [1] Typical device release path
3001	 * device_lock() from device/driver core code
3002	 *  -> bus_notifier()
3003	 *   -> iommu_bus_notifier()
3004	 *    -> iommu_release_device()
3005	 *     -> ops->release_device() vendor driver calls back iommu core code
3006	 *      -> mutex_lock() from iommu core code
3007	 */
3008	mutex_unlock(&group->mutex);
3009
3010	/* Check if the device in the group still has a driver bound to it */
3011	device_lock(dev);
3012	if (device_is_bound(dev) && !(req_type == IOMMU_DOMAIN_DMA_FQ &&
3013	    group->default_domain->type == IOMMU_DOMAIN_DMA)) {
3014		pr_err_ratelimited("Device is still bound to driver\n");
3015		ret = -EBUSY;
3016		goto out;
3017	}
3018
3019	ret = iommu_change_dev_def_domain(group, dev, req_type);
3020	ret = ret ?: count;
3021
3022out:
3023	device_unlock(dev);
3024	put_device(dev);
3025
3026	return ret;
3027}
 
3028
3029static bool iommu_is_default_domain(struct iommu_group *group)
 
3030{
3031	if (group->domain == group->default_domain)
3032		return true;
3033
3034	/*
3035	 * If the default domain was set to identity and it is still an identity
3036	 * domain then we consider this a pass. This happens because of
3037	 * amd_iommu_init_device() replacing the default idenytity domain with an
3038	 * identity domain that has a different configuration for AMDGPU.
3039	 */
3040	if (group->default_domain &&
3041	    group->default_domain->type == IOMMU_DOMAIN_IDENTITY &&
3042	    group->domain && group->domain->type == IOMMU_DOMAIN_IDENTITY)
3043		return true;
3044	return false;
3045}
3046
3047/**
3048 * iommu_device_use_default_domain() - Device driver wants to handle device
3049 *                                     DMA through the kernel DMA API.
3050 * @dev: The device.
3051 *
3052 * The device driver about to bind @dev wants to do DMA through the kernel
3053 * DMA API. Return 0 if it is allowed, otherwise an error.
3054 */
3055int iommu_device_use_default_domain(struct device *dev)
3056{
3057	struct iommu_group *group = iommu_group_get(dev);
3058	int ret = 0;
 
3059
3060	if (!group)
3061		return 0;
3062
3063	mutex_lock(&group->mutex);
3064	if (group->owner_cnt) {
3065		if (group->owner || !iommu_is_default_domain(group) ||
3066		    !xa_empty(&group->pasid_array)) {
3067			ret = -EBUSY;
3068			goto unlock_out;
3069		}
3070	}
3071
3072	group->owner_cnt++;
3073
3074unlock_out:
3075	mutex_unlock(&group->mutex);
3076	iommu_group_put(group);
3077
3078	return ret;
3079}
3080
3081/**
3082 * iommu_device_unuse_default_domain() - Device driver stops handling device
3083 *                                       DMA through the kernel DMA API.
3084 * @dev: The device.
3085 *
3086 * The device driver doesn't want to do DMA through kernel DMA API anymore.
3087 * It must be called after iommu_device_use_default_domain().
3088 */
3089void iommu_device_unuse_default_domain(struct device *dev)
3090{
3091	struct iommu_group *group = iommu_group_get(dev);
3092
3093	if (!group)
3094		return;
3095
3096	mutex_lock(&group->mutex);
3097	if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array)))
3098		group->owner_cnt--;
3099
3100	mutex_unlock(&group->mutex);
3101	iommu_group_put(group);
3102}
3103
3104static int __iommu_group_alloc_blocking_domain(struct iommu_group *group)
3105{
3106	struct group_device *dev =
3107		list_first_entry(&group->devices, struct group_device, list);
3108
3109	if (group->blocking_domain)
3110		return 0;
 
 
3111
3112	group->blocking_domain =
3113		__iommu_domain_alloc(dev->dev->bus, IOMMU_DOMAIN_BLOCKED);
3114	if (!group->blocking_domain) {
3115		/*
3116		 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED
3117		 * create an empty domain instead.
3118		 */
3119		group->blocking_domain = __iommu_domain_alloc(
3120			dev->dev->bus, IOMMU_DOMAIN_UNMANAGED);
3121		if (!group->blocking_domain)
3122			return -EINVAL;
3123	}
3124	return 0;
3125}
3126
3127static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner)
3128{
3129	int ret;
3130
3131	if ((group->domain && group->domain != group->default_domain) ||
3132	    !xa_empty(&group->pasid_array))
3133		return -EBUSY;
3134
3135	ret = __iommu_group_alloc_blocking_domain(group);
3136	if (ret)
3137		return ret;
3138	ret = __iommu_group_set_domain(group, group->blocking_domain);
3139	if (ret)
3140		return ret;
3141
3142	group->owner = owner;
3143	group->owner_cnt++;
3144	return 0;
3145}
3146
3147/**
3148 * iommu_group_claim_dma_owner() - Set DMA ownership of a group
3149 * @group: The group.
3150 * @owner: Caller specified pointer. Used for exclusive ownership.
3151 *
3152 * This is to support backward compatibility for vfio which manages the dma
3153 * ownership in iommu_group level. New invocations on this interface should be
3154 * prohibited. Only a single owner may exist for a group.
3155 */
3156int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner)
3157{
3158	int ret = 0;
3159
3160	if (WARN_ON(!owner))
3161		return -EINVAL;
3162
3163	mutex_lock(&group->mutex);
3164	if (group->owner_cnt) {
3165		ret = -EPERM;
3166		goto unlock_out;
3167	}
3168
3169	ret = __iommu_take_dma_ownership(group, owner);
3170unlock_out:
3171	mutex_unlock(&group->mutex);
3172
3173	return ret;
3174}
3175EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner);
3176
3177/**
3178 * iommu_device_claim_dma_owner() - Set DMA ownership of a device
3179 * @dev: The device.
3180 * @owner: Caller specified pointer. Used for exclusive ownership.
3181 *
3182 * Claim the DMA ownership of a device. Multiple devices in the same group may
3183 * concurrently claim ownership if they present the same owner value. Returns 0
3184 * on success and error code on failure
3185 */
3186int iommu_device_claim_dma_owner(struct device *dev, void *owner)
3187{
3188	struct iommu_group *group;
3189	int ret = 0;
3190
3191	if (WARN_ON(!owner))
3192		return -EINVAL;
3193
3194	group = iommu_group_get(dev);
3195	if (!group)
3196		return -ENODEV;
3197
3198	mutex_lock(&group->mutex);
3199	if (group->owner_cnt) {
3200		if (group->owner != owner) {
3201			ret = -EPERM;
3202			goto unlock_out;
3203		}
3204		group->owner_cnt++;
3205		goto unlock_out;
3206	}
3207
3208	ret = __iommu_take_dma_ownership(group, owner);
3209unlock_out:
3210	mutex_unlock(&group->mutex);
3211	iommu_group_put(group);
3212
3213	return ret;
 
3214}
3215EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner);
3216
3217static void __iommu_release_dma_ownership(struct iommu_group *group)
3218{
3219	int ret;
3220
3221	if (WARN_ON(!group->owner_cnt || !group->owner ||
3222		    !xa_empty(&group->pasid_array)))
3223		return;
3224
3225	group->owner_cnt = 0;
3226	group->owner = NULL;
3227	ret = __iommu_group_set_domain(group, group->default_domain);
3228	WARN(ret, "iommu driver failed to attach the default domain");
3229}
3230
3231/**
3232 * iommu_group_release_dma_owner() - Release DMA ownership of a group
3233 * @dev: The device
3234 *
3235 * Release the DMA ownership claimed by iommu_group_claim_dma_owner().
3236 */
3237void iommu_group_release_dma_owner(struct iommu_group *group)
3238{
3239	mutex_lock(&group->mutex);
3240	__iommu_release_dma_ownership(group);
3241	mutex_unlock(&group->mutex);
3242}
3243EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner);
3244
3245/**
3246 * iommu_device_release_dma_owner() - Release DMA ownership of a device
3247 * @group: The device.
3248 *
3249 * Release the DMA ownership claimed by iommu_device_claim_dma_owner().
3250 */
3251void iommu_device_release_dma_owner(struct device *dev)
3252{
3253	struct iommu_group *group = iommu_group_get(dev);
3254
3255	mutex_lock(&group->mutex);
3256	if (group->owner_cnt > 1)
3257		group->owner_cnt--;
3258	else
3259		__iommu_release_dma_ownership(group);
3260	mutex_unlock(&group->mutex);
3261	iommu_group_put(group);
3262}
3263EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner);
3264
3265/**
3266 * iommu_group_dma_owner_claimed() - Query group dma ownership status
3267 * @group: The group.
3268 *
3269 * This provides status query on a given group. It is racy and only for
3270 * non-binding status reporting.
3271 */
3272bool iommu_group_dma_owner_claimed(struct iommu_group *group)
3273{
3274	unsigned int user;
3275
3276	mutex_lock(&group->mutex);
3277	user = group->owner_cnt;
3278	mutex_unlock(&group->mutex);
3279
3280	return user;
3281}
3282EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed);
3283
3284static int __iommu_set_group_pasid(struct iommu_domain *domain,
3285				   struct iommu_group *group, ioasid_t pasid)
3286{
3287	struct group_device *device;
3288	int ret = 0;
3289
3290	list_for_each_entry(device, &group->devices, list) {
3291		ret = domain->ops->set_dev_pasid(domain, device->dev, pasid);
3292		if (ret)
3293			break;
3294	}
3295
3296	return ret;
3297}
3298
3299static void __iommu_remove_group_pasid(struct iommu_group *group,
3300				       ioasid_t pasid)
3301{
3302	struct group_device *device;
3303	const struct iommu_ops *ops;
3304
3305	list_for_each_entry(device, &group->devices, list) {
3306		ops = dev_iommu_ops(device->dev);
3307		ops->remove_dev_pasid(device->dev, pasid);
3308	}
3309}
3310
3311/*
3312 * iommu_attach_device_pasid() - Attach a domain to pasid of device
3313 * @domain: the iommu domain.
3314 * @dev: the attached device.
3315 * @pasid: the pasid of the device.
3316 *
3317 * Return: 0 on success, or an error.
3318 */
3319int iommu_attach_device_pasid(struct iommu_domain *domain,
3320			      struct device *dev, ioasid_t pasid)
3321{
3322	struct iommu_group *group;
3323	void *curr;
3324	int ret;
3325
3326	if (!domain->ops->set_dev_pasid)
3327		return -EOPNOTSUPP;
3328
3329	group = iommu_group_get(dev);
3330	if (!group)
3331		return -ENODEV;
 
3332
3333	mutex_lock(&group->mutex);
3334	curr = xa_cmpxchg(&group->pasid_array, pasid, NULL, domain, GFP_KERNEL);
3335	if (curr) {
3336		ret = xa_err(curr) ? : -EBUSY;
3337		goto out_unlock;
3338	}
3339
3340	ret = __iommu_set_group_pasid(domain, group, pasid);
 
3341	if (ret) {
3342		__iommu_remove_group_pasid(group, pasid);
3343		xa_erase(&group->pasid_array, pasid);
3344	}
3345out_unlock:
3346	mutex_unlock(&group->mutex);
3347	iommu_group_put(group);
3348
3349	return ret;
3350}
3351EXPORT_SYMBOL_GPL(iommu_attach_device_pasid);
 
3352
3353/*
3354 * iommu_detach_device_pasid() - Detach the domain from pasid of device
3355 * @domain: the iommu domain.
3356 * @dev: the attached device.
3357 * @pasid: the pasid of the device.
3358 *
3359 * The @domain must have been attached to @pasid of the @dev with
3360 * iommu_attach_device_pasid().
3361 */
3362void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev,
3363			       ioasid_t pasid)
3364{
3365	struct iommu_group *group = iommu_group_get(dev);
3366
3367	mutex_lock(&group->mutex);
3368	__iommu_remove_group_pasid(group, pasid);
3369	WARN_ON(xa_erase(&group->pasid_array, pasid) != domain);
3370	mutex_unlock(&group->mutex);
3371
3372	iommu_group_put(group);
3373}
3374EXPORT_SYMBOL_GPL(iommu_detach_device_pasid);
3375
3376/*
3377 * iommu_get_domain_for_dev_pasid() - Retrieve domain for @pasid of @dev
3378 * @dev: the queried device
3379 * @pasid: the pasid of the device
3380 * @type: matched domain type, 0 for any match
3381 *
3382 * This is a variant of iommu_get_domain_for_dev(). It returns the existing
3383 * domain attached to pasid of a device. Callers must hold a lock around this
3384 * function, and both iommu_attach/detach_dev_pasid() whenever a domain of
3385 * type is being manipulated. This API does not internally resolve races with
3386 * attach/detach.
3387 *
3388 * Return: attached domain on success, NULL otherwise.
3389 */
3390struct iommu_domain *iommu_get_domain_for_dev_pasid(struct device *dev,
3391						    ioasid_t pasid,
3392						    unsigned int type)
3393{
3394	struct iommu_domain *domain;
3395	struct iommu_group *group;
3396
3397	group = iommu_group_get(dev);
3398	if (!group)
3399		return NULL;
3400
3401	xa_lock(&group->pasid_array);
3402	domain = xa_load(&group->pasid_array, pasid);
3403	if (type && domain && domain->type != type)
3404		domain = ERR_PTR(-EBUSY);
3405	xa_unlock(&group->pasid_array);
3406	iommu_group_put(group);
3407
3408	return domain;
3409}
3410EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev_pasid);
3411
3412struct iommu_domain *iommu_sva_domain_alloc(struct device *dev,
3413					    struct mm_struct *mm)
3414{
3415	const struct iommu_ops *ops = dev_iommu_ops(dev);
3416	struct iommu_domain *domain;
3417
3418	domain = ops->domain_alloc(IOMMU_DOMAIN_SVA);
3419	if (!domain)
3420		return NULL;
3421
3422	domain->type = IOMMU_DOMAIN_SVA;
3423	mmgrab(mm);
3424	domain->mm = mm;
3425	domain->iopf_handler = iommu_sva_handle_iopf;
3426	domain->fault_data = mm;
3427
3428	return domain;
3429}
v4.6
 
   1/*
   2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
   3 * Author: Joerg Roedel <jroedel@suse.de>
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms of the GNU General Public License version 2 as published
   7 * by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  17 */
  18
  19#define pr_fmt(fmt)    "iommu: " fmt
  20
 
  21#include <linux/device.h>
  22#include <linux/kernel.h>
 
  23#include <linux/bug.h>
  24#include <linux/types.h>
  25#include <linux/module.h>
 
  26#include <linux/slab.h>
  27#include <linux/errno.h>
 
  28#include <linux/iommu.h>
  29#include <linux/idr.h>
  30#include <linux/notifier.h>
  31#include <linux/err.h>
  32#include <linux/pci.h>
 
  33#include <linux/bitops.h>
 
 
 
 
 
  34#include <trace/events/iommu.h>
 
 
 
 
 
  35
  36static struct kset *iommu_group_kset;
  37static struct ida iommu_group_ida;
  38static struct mutex iommu_group_mutex;
  39
  40struct iommu_callback_data {
  41	const struct iommu_ops *ops;
  42};
  43
  44struct iommu_group {
  45	struct kobject kobj;
  46	struct kobject *devices_kobj;
  47	struct list_head devices;
 
  48	struct mutex mutex;
  49	struct blocking_notifier_head notifier;
  50	void *iommu_data;
  51	void (*iommu_data_release)(void *iommu_data);
  52	char *name;
  53	int id;
  54	struct iommu_domain *default_domain;
 
  55	struct iommu_domain *domain;
 
 
 
  56};
  57
  58struct iommu_device {
  59	struct list_head list;
  60	struct device *dev;
  61	char *name;
  62};
  63
  64struct iommu_group_attribute {
  65	struct attribute attr;
  66	ssize_t (*show)(struct iommu_group *group, char *buf);
  67	ssize_t (*store)(struct iommu_group *group,
  68			 const char *buf, size_t count);
  69};
  70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  71#define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
  72struct iommu_group_attribute iommu_group_attr_##_name =		\
  73	__ATTR(_name, _mode, _show, _store)
  74
  75#define to_iommu_group_attr(_attr)	\
  76	container_of(_attr, struct iommu_group_attribute, attr)
  77#define to_iommu_group(_kobj)		\
  78	container_of(_kobj, struct iommu_group, kobj)
  79
  80static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
  81						 unsigned type);
  82static int __iommu_attach_device(struct iommu_domain *domain,
  83				 struct device *dev);
  84static int __iommu_attach_group(struct iommu_domain *domain,
  85				struct iommu_group *group);
  86static void __iommu_detach_group(struct iommu_domain *domain,
  87				 struct iommu_group *group);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  88
  89static ssize_t iommu_group_attr_show(struct kobject *kobj,
  90				     struct attribute *__attr, char *buf)
  91{
  92	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
  93	struct iommu_group *group = to_iommu_group(kobj);
  94	ssize_t ret = -EIO;
  95
  96	if (attr->show)
  97		ret = attr->show(group, buf);
  98	return ret;
  99}
 100
 101static ssize_t iommu_group_attr_store(struct kobject *kobj,
 102				      struct attribute *__attr,
 103				      const char *buf, size_t count)
 104{
 105	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
 106	struct iommu_group *group = to_iommu_group(kobj);
 107	ssize_t ret = -EIO;
 108
 109	if (attr->store)
 110		ret = attr->store(group, buf, count);
 111	return ret;
 112}
 113
 114static const struct sysfs_ops iommu_group_sysfs_ops = {
 115	.show = iommu_group_attr_show,
 116	.store = iommu_group_attr_store,
 117};
 118
 119static int iommu_group_create_file(struct iommu_group *group,
 120				   struct iommu_group_attribute *attr)
 121{
 122	return sysfs_create_file(&group->kobj, &attr->attr);
 123}
 124
 125static void iommu_group_remove_file(struct iommu_group *group,
 126				    struct iommu_group_attribute *attr)
 127{
 128	sysfs_remove_file(&group->kobj, &attr->attr);
 129}
 130
 131static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
 132{
 133	return sprintf(buf, "%s\n", group->name);
 134}
 135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
 137
 
 
 
 
 
 
 138static void iommu_group_release(struct kobject *kobj)
 139{
 140	struct iommu_group *group = to_iommu_group(kobj);
 141
 142	pr_debug("Releasing group %d\n", group->id);
 143
 144	if (group->iommu_data_release)
 145		group->iommu_data_release(group->iommu_data);
 146
 147	mutex_lock(&iommu_group_mutex);
 148	ida_remove(&iommu_group_ida, group->id);
 149	mutex_unlock(&iommu_group_mutex);
 150
 151	if (group->default_domain)
 152		iommu_domain_free(group->default_domain);
 
 
 153
 154	kfree(group->name);
 155	kfree(group);
 156}
 157
 158static struct kobj_type iommu_group_ktype = {
 159	.sysfs_ops = &iommu_group_sysfs_ops,
 160	.release = iommu_group_release,
 161};
 162
 163/**
 164 * iommu_group_alloc - Allocate a new group
 165 * @name: Optional name to associate with group, visible in sysfs
 166 *
 167 * This function is called by an iommu driver to allocate a new iommu
 168 * group.  The iommu group represents the minimum granularity of the iommu.
 169 * Upon successful return, the caller holds a reference to the supplied
 170 * group in order to hold the group until devices are added.  Use
 171 * iommu_group_put() to release this extra reference count, allowing the
 172 * group to be automatically reclaimed once it has no devices or external
 173 * references.
 174 */
 175struct iommu_group *iommu_group_alloc(void)
 176{
 177	struct iommu_group *group;
 178	int ret;
 179
 180	group = kzalloc(sizeof(*group), GFP_KERNEL);
 181	if (!group)
 182		return ERR_PTR(-ENOMEM);
 183
 184	group->kobj.kset = iommu_group_kset;
 185	mutex_init(&group->mutex);
 186	INIT_LIST_HEAD(&group->devices);
 187	BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier);
 
 188
 189	mutex_lock(&iommu_group_mutex);
 190
 191again:
 192	if (unlikely(0 == ida_pre_get(&iommu_group_ida, GFP_KERNEL))) {
 193		kfree(group);
 194		mutex_unlock(&iommu_group_mutex);
 195		return ERR_PTR(-ENOMEM);
 196	}
 197
 198	if (-EAGAIN == ida_get_new(&iommu_group_ida, &group->id))
 199		goto again;
 200
 201	mutex_unlock(&iommu_group_mutex);
 202
 203	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
 204				   NULL, "%d", group->id);
 205	if (ret) {
 206		mutex_lock(&iommu_group_mutex);
 207		ida_remove(&iommu_group_ida, group->id);
 208		mutex_unlock(&iommu_group_mutex);
 209		kfree(group);
 210		return ERR_PTR(ret);
 211	}
 212
 213	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
 214	if (!group->devices_kobj) {
 215		kobject_put(&group->kobj); /* triggers .release & free */
 216		return ERR_PTR(-ENOMEM);
 217	}
 218
 219	/*
 220	 * The devices_kobj holds a reference on the group kobject, so
 221	 * as long as that exists so will the group.  We can therefore
 222	 * use the devices_kobj for reference counting.
 223	 */
 224	kobject_put(&group->kobj);
 225
 
 
 
 
 
 
 
 
 
 226	pr_debug("Allocated group %d\n", group->id);
 227
 228	return group;
 229}
 230EXPORT_SYMBOL_GPL(iommu_group_alloc);
 231
 232struct iommu_group *iommu_group_get_by_id(int id)
 233{
 234	struct kobject *group_kobj;
 235	struct iommu_group *group;
 236	const char *name;
 237
 238	if (!iommu_group_kset)
 239		return NULL;
 240
 241	name = kasprintf(GFP_KERNEL, "%d", id);
 242	if (!name)
 243		return NULL;
 244
 245	group_kobj = kset_find_obj(iommu_group_kset, name);
 246	kfree(name);
 247
 248	if (!group_kobj)
 249		return NULL;
 250
 251	group = container_of(group_kobj, struct iommu_group, kobj);
 252	BUG_ON(group->id != id);
 253
 254	kobject_get(group->devices_kobj);
 255	kobject_put(&group->kobj);
 256
 257	return group;
 258}
 259EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
 260
 261/**
 262 * iommu_group_get_iommudata - retrieve iommu_data registered for a group
 263 * @group: the group
 264 *
 265 * iommu drivers can store data in the group for use when doing iommu
 266 * operations.  This function provides a way to retrieve it.  Caller
 267 * should hold a group reference.
 268 */
 269void *iommu_group_get_iommudata(struct iommu_group *group)
 270{
 271	return group->iommu_data;
 272}
 273EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
 274
 275/**
 276 * iommu_group_set_iommudata - set iommu_data for a group
 277 * @group: the group
 278 * @iommu_data: new data
 279 * @release: release function for iommu_data
 280 *
 281 * iommu drivers can store data in the group for use when doing iommu
 282 * operations.  This function provides a way to set the data after
 283 * the group has been allocated.  Caller should hold a group reference.
 284 */
 285void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
 286			       void (*release)(void *iommu_data))
 287{
 288	group->iommu_data = iommu_data;
 289	group->iommu_data_release = release;
 290}
 291EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
 292
 293/**
 294 * iommu_group_set_name - set name for a group
 295 * @group: the group
 296 * @name: name
 297 *
 298 * Allow iommu driver to set a name for a group.  When set it will
 299 * appear in a name attribute file under the group in sysfs.
 300 */
 301int iommu_group_set_name(struct iommu_group *group, const char *name)
 302{
 303	int ret;
 304
 305	if (group->name) {
 306		iommu_group_remove_file(group, &iommu_group_attr_name);
 307		kfree(group->name);
 308		group->name = NULL;
 309		if (!name)
 310			return 0;
 311	}
 312
 313	group->name = kstrdup(name, GFP_KERNEL);
 314	if (!group->name)
 315		return -ENOMEM;
 316
 317	ret = iommu_group_create_file(group, &iommu_group_attr_name);
 318	if (ret) {
 319		kfree(group->name);
 320		group->name = NULL;
 321		return ret;
 322	}
 323
 324	return 0;
 325}
 326EXPORT_SYMBOL_GPL(iommu_group_set_name);
 327
 328static int iommu_group_create_direct_mappings(struct iommu_group *group,
 329					      struct device *dev)
 330{
 331	struct iommu_domain *domain = group->default_domain;
 332	struct iommu_dm_region *entry;
 333	struct list_head mappings;
 334	unsigned long pg_size;
 335	int ret = 0;
 336
 337	if (!domain || domain->type != IOMMU_DOMAIN_DMA)
 338		return 0;
 339
 340	BUG_ON(!domain->ops->pgsize_bitmap);
 341
 342	pg_size = 1UL << __ffs(domain->ops->pgsize_bitmap);
 343	INIT_LIST_HEAD(&mappings);
 344
 345	iommu_get_dm_regions(dev, &mappings);
 346
 347	/* We need to consider overlapping regions for different devices */
 348	list_for_each_entry(entry, &mappings, list) {
 349		dma_addr_t start, end, addr;
 
 350
 351		start = ALIGN(entry->start, pg_size);
 352		end   = ALIGN(entry->start + entry->length, pg_size);
 353
 354		for (addr = start; addr < end; addr += pg_size) {
 
 
 
 
 355			phys_addr_t phys_addr;
 356
 
 
 
 357			phys_addr = iommu_iova_to_phys(domain, addr);
 358			if (phys_addr)
 
 359				continue;
 
 360
 361			ret = iommu_map(domain, addr, addr, pg_size, entry->prot);
 362			if (ret)
 363				goto out;
 
 
 
 
 
 
 364		}
 365
 366	}
 367
 
 
 368out:
 369	iommu_put_dm_regions(dev, &mappings);
 370
 371	return ret;
 372}
 373
 
 
 
 
 
 
 
 
 
 
 374/**
 375 * iommu_group_add_device - add a device to an iommu group
 376 * @group: the group into which to add the device (reference should be held)
 377 * @dev: the device
 378 *
 379 * This function is called by an iommu driver to add a device into a
 380 * group.  Adding a device increments the group reference count.
 381 */
 382int iommu_group_add_device(struct iommu_group *group, struct device *dev)
 383{
 384	int ret, i = 0;
 385	struct iommu_device *device;
 386
 387	device = kzalloc(sizeof(*device), GFP_KERNEL);
 388	if (!device)
 389		return -ENOMEM;
 390
 391	device->dev = dev;
 392
 393	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
 394	if (ret) {
 395		kfree(device);
 396		return ret;
 397	}
 398
 399	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
 400rename:
 401	if (!device->name) {
 402		sysfs_remove_link(&dev->kobj, "iommu_group");
 403		kfree(device);
 404		return -ENOMEM;
 405	}
 406
 407	ret = sysfs_create_link_nowarn(group->devices_kobj,
 408				       &dev->kobj, device->name);
 409	if (ret) {
 410		kfree(device->name);
 411		if (ret == -EEXIST && i >= 0) {
 412			/*
 413			 * Account for the slim chance of collision
 414			 * and append an instance to the name.
 415			 */
 
 416			device->name = kasprintf(GFP_KERNEL, "%s.%d",
 417						 kobject_name(&dev->kobj), i++);
 418			goto rename;
 419		}
 420
 421		sysfs_remove_link(&dev->kobj, "iommu_group");
 422		kfree(device);
 423		return ret;
 424	}
 425
 426	kobject_get(group->devices_kobj);
 427
 428	dev->iommu_group = group;
 429
 430	iommu_group_create_direct_mappings(group, dev);
 431
 432	mutex_lock(&group->mutex);
 433	list_add_tail(&device->list, &group->devices);
 434	if (group->domain)
 435		__iommu_attach_device(group->domain, dev);
 436	mutex_unlock(&group->mutex);
 437
 438	/* Notify any listeners about change to group. */
 439	blocking_notifier_call_chain(&group->notifier,
 440				     IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev);
 441
 442	trace_add_device_to_group(group->id, dev);
 443
 444	pr_info("Adding device %s to group %d\n", dev_name(dev), group->id);
 445
 446	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 447}
 448EXPORT_SYMBOL_GPL(iommu_group_add_device);
 449
 450/**
 451 * iommu_group_remove_device - remove a device from it's current group
 452 * @dev: device to be removed
 453 *
 454 * This function is called by an iommu driver to remove the device from
 455 * it's current group.  This decrements the iommu group reference count.
 456 */
 457void iommu_group_remove_device(struct device *dev)
 458{
 459	struct iommu_group *group = dev->iommu_group;
 460	struct iommu_device *tmp_device, *device = NULL;
 461
 462	pr_info("Removing device %s from group %d\n", dev_name(dev), group->id);
 
 463
 464	/* Pre-notify listeners that a device is being removed. */
 465	blocking_notifier_call_chain(&group->notifier,
 466				     IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev);
 467
 468	mutex_lock(&group->mutex);
 469	list_for_each_entry(tmp_device, &group->devices, list) {
 470		if (tmp_device->dev == dev) {
 471			device = tmp_device;
 472			list_del(&device->list);
 473			break;
 474		}
 475	}
 476	mutex_unlock(&group->mutex);
 477
 478	if (!device)
 479		return;
 480
 481	sysfs_remove_link(group->devices_kobj, device->name);
 482	sysfs_remove_link(&dev->kobj, "iommu_group");
 483
 484	trace_remove_device_from_group(group->id, dev);
 485
 486	kfree(device->name);
 487	kfree(device);
 488	dev->iommu_group = NULL;
 489	kobject_put(group->devices_kobj);
 490}
 491EXPORT_SYMBOL_GPL(iommu_group_remove_device);
 492
 493static int iommu_group_device_count(struct iommu_group *group)
 494{
 495	struct iommu_device *entry;
 496	int ret = 0;
 497
 498	list_for_each_entry(entry, &group->devices, list)
 499		ret++;
 500
 501	return ret;
 502}
 503
 504/**
 505 * iommu_group_for_each_dev - iterate over each device in the group
 506 * @group: the group
 507 * @data: caller opaque data to be passed to callback function
 508 * @fn: caller supplied callback function
 509 *
 510 * This function is called by group users to iterate over group devices.
 511 * Callers should hold a reference count to the group during callback.
 512 * The group->mutex is held across callbacks, which will block calls to
 513 * iommu_group_add/remove_device.
 514 */
 515static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
 516				      int (*fn)(struct device *, void *))
 517{
 518	struct iommu_device *device;
 519	int ret = 0;
 520
 521	list_for_each_entry(device, &group->devices, list) {
 522		ret = fn(device->dev, data);
 523		if (ret)
 524			break;
 525	}
 526	return ret;
 527}
 528
 529
 
 
 
 
 
 
 
 
 
 
 530int iommu_group_for_each_dev(struct iommu_group *group, void *data,
 531			     int (*fn)(struct device *, void *))
 532{
 533	int ret;
 534
 535	mutex_lock(&group->mutex);
 536	ret = __iommu_group_for_each_dev(group, data, fn);
 537	mutex_unlock(&group->mutex);
 538
 539	return ret;
 540}
 541EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
 542
 543/**
 544 * iommu_group_get - Return the group for a device and increment reference
 545 * @dev: get the group that this device belongs to
 546 *
 547 * This function is called by iommu drivers and users to get the group
 548 * for the specified device.  If found, the group is returned and the group
 549 * reference in incremented, else NULL.
 550 */
 551struct iommu_group *iommu_group_get(struct device *dev)
 552{
 553	struct iommu_group *group = dev->iommu_group;
 554
 555	if (group)
 556		kobject_get(group->devices_kobj);
 557
 558	return group;
 559}
 560EXPORT_SYMBOL_GPL(iommu_group_get);
 561
 562/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 563 * iommu_group_put - Decrement group reference
 564 * @group: the group to use
 565 *
 566 * This function is called by iommu drivers and users to release the
 567 * iommu group.  Once the reference count is zero, the group is released.
 568 */
 569void iommu_group_put(struct iommu_group *group)
 570{
 571	if (group)
 572		kobject_put(group->devices_kobj);
 573}
 574EXPORT_SYMBOL_GPL(iommu_group_put);
 575
 576/**
 577 * iommu_group_register_notifier - Register a notifier for group changes
 578 * @group: the group to watch
 579 * @nb: notifier block to signal
 
 
 
 
 
 
 
 
 
 
 
 580 *
 581 * This function allows iommu group users to track changes in a group.
 582 * See include/linux/iommu.h for actions sent via this notifier.  Caller
 583 * should hold a reference to the group throughout notifier registration.
 584 */
 585int iommu_group_register_notifier(struct iommu_group *group,
 586				  struct notifier_block *nb)
 
 587{
 588	return blocking_notifier_chain_register(&group->notifier, nb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 589}
 590EXPORT_SYMBOL_GPL(iommu_group_register_notifier);
 591
 592/**
 593 * iommu_group_unregister_notifier - Unregister a notifier
 594 * @group: the group to watch
 595 * @nb: notifier block to signal
 
 
 596 *
 597 * Unregister a previously registered group notifier block.
 598 */
 599int iommu_group_unregister_notifier(struct iommu_group *group,
 600				    struct notifier_block *nb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 601{
 602	return blocking_notifier_chain_unregister(&group->notifier, nb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 603}
 604EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier);
 605
 606/**
 607 * iommu_group_id - Return ID for a group
 608 * @group: the group to ID
 609 *
 610 * Return the unique ID for the group matching the sysfs group number.
 611 */
 612int iommu_group_id(struct iommu_group *group)
 613{
 614	return group->id;
 615}
 616EXPORT_SYMBOL_GPL(iommu_group_id);
 617
 618static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
 619					       unsigned long *devfns);
 620
 621/*
 622 * To consider a PCI device isolated, we require ACS to support Source
 623 * Validation, Request Redirection, Completer Redirection, and Upstream
 624 * Forwarding.  This effectively means that devices cannot spoof their
 625 * requester ID, requests and completions cannot be redirected, and all
 626 * transactions are forwarded upstream, even as it passes through a
 627 * bridge where the target device is downstream.
 628 */
 629#define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
 630
 631/*
 632 * For multifunction devices which are not isolated from each other, find
 633 * all the other non-isolated functions and look for existing groups.  For
 634 * each function, we also need to look for aliases to or from other devices
 635 * that may already have a group.
 636 */
 637static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
 638							unsigned long *devfns)
 639{
 640	struct pci_dev *tmp = NULL;
 641	struct iommu_group *group;
 642
 643	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
 644		return NULL;
 645
 646	for_each_pci_dev(tmp) {
 647		if (tmp == pdev || tmp->bus != pdev->bus ||
 648		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
 649		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
 650			continue;
 651
 652		group = get_pci_alias_group(tmp, devfns);
 653		if (group) {
 654			pci_dev_put(tmp);
 655			return group;
 656		}
 657	}
 658
 659	return NULL;
 660}
 661
 662/*
 663 * Look for aliases to or from the given device for exisiting groups.  The
 664 * dma_alias_devfn only supports aliases on the same bus, therefore the search
 665 * space is quite small (especially since we're really only looking at pcie
 666 * device, and therefore only expect multiple slots on the root complex or
 667 * downstream switch ports).  It's conceivable though that a pair of
 668 * multifunction devices could have aliases between them that would cause a
 669 * loop.  To prevent this, we use a bitmap to track where we've been.
 670 */
 671static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
 672					       unsigned long *devfns)
 673{
 674	struct pci_dev *tmp = NULL;
 675	struct iommu_group *group;
 676
 677	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
 678		return NULL;
 679
 680	group = iommu_group_get(&pdev->dev);
 681	if (group)
 682		return group;
 683
 684	for_each_pci_dev(tmp) {
 685		if (tmp == pdev || tmp->bus != pdev->bus)
 686			continue;
 687
 688		/* We alias them or they alias us */
 689		if (((pdev->dev_flags & PCI_DEV_FLAGS_DMA_ALIAS_DEVFN) &&
 690		     pdev->dma_alias_devfn == tmp->devfn) ||
 691		    ((tmp->dev_flags & PCI_DEV_FLAGS_DMA_ALIAS_DEVFN) &&
 692		     tmp->dma_alias_devfn == pdev->devfn)) {
 693
 694			group = get_pci_alias_group(tmp, devfns);
 695			if (group) {
 696				pci_dev_put(tmp);
 697				return group;
 698			}
 699
 700			group = get_pci_function_alias_group(tmp, devfns);
 701			if (group) {
 702				pci_dev_put(tmp);
 703				return group;
 704			}
 705		}
 706	}
 707
 708	return NULL;
 709}
 710
 711struct group_for_pci_data {
 712	struct pci_dev *pdev;
 713	struct iommu_group *group;
 714};
 715
 716/*
 717 * DMA alias iterator callback, return the last seen device.  Stop and return
 718 * the IOMMU group if we find one along the way.
 719 */
 720static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
 721{
 722	struct group_for_pci_data *data = opaque;
 723
 724	data->pdev = pdev;
 725	data->group = iommu_group_get(&pdev->dev);
 726
 727	return data->group != NULL;
 728}
 729
 730/*
 731 * Generic device_group call-back function. It just allocates one
 732 * iommu-group per device.
 733 */
 734struct iommu_group *generic_device_group(struct device *dev)
 735{
 736	struct iommu_group *group;
 737
 738	group = iommu_group_alloc();
 739	if (IS_ERR(group))
 740		return NULL;
 741
 742	return group;
 743}
 
 744
 745/*
 746 * Use standard PCI bus topology, isolation features, and DMA alias quirks
 747 * to find or create an IOMMU group for a device.
 748 */
 749struct iommu_group *pci_device_group(struct device *dev)
 750{
 751	struct pci_dev *pdev = to_pci_dev(dev);
 752	struct group_for_pci_data data;
 753	struct pci_bus *bus;
 754	struct iommu_group *group = NULL;
 755	u64 devfns[4] = { 0 };
 756
 757	if (WARN_ON(!dev_is_pci(dev)))
 758		return ERR_PTR(-EINVAL);
 759
 760	/*
 761	 * Find the upstream DMA alias for the device.  A device must not
 762	 * be aliased due to topology in order to have its own IOMMU group.
 763	 * If we find an alias along the way that already belongs to a
 764	 * group, use it.
 765	 */
 766	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
 767		return data.group;
 768
 769	pdev = data.pdev;
 770
 771	/*
 772	 * Continue upstream from the point of minimum IOMMU granularity
 773	 * due to aliases to the point where devices are protected from
 774	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
 775	 * group, use it.
 776	 */
 777	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
 778		if (!bus->self)
 779			continue;
 780
 781		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
 782			break;
 783
 784		pdev = bus->self;
 785
 786		group = iommu_group_get(&pdev->dev);
 787		if (group)
 788			return group;
 789	}
 790
 791	/*
 792	 * Look for existing groups on device aliases.  If we alias another
 793	 * device or another device aliases us, use the same group.
 794	 */
 795	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
 796	if (group)
 797		return group;
 798
 799	/*
 800	 * Look for existing groups on non-isolated functions on the same
 801	 * slot and aliases of those funcions, if any.  No need to clear
 802	 * the search bitmap, the tested devfns are still valid.
 803	 */
 804	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
 805	if (group)
 806		return group;
 807
 808	/* No shared group found, allocate new */
 809	group = iommu_group_alloc();
 810	if (IS_ERR(group))
 811		return NULL;
 
 
 
 
 
 
 812
 
 
 
 813	return group;
 814}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 815
 816/**
 817 * iommu_group_get_for_dev - Find or create the IOMMU group for a device
 818 * @dev: target device
 819 *
 820 * This function is intended to be called by IOMMU drivers and extended to
 821 * support common, bus-defined algorithms when determining or creating the
 822 * IOMMU group for a device.  On success, the caller will hold a reference
 823 * to the returned IOMMU group, which will already include the provided
 824 * device.  The reference should be released with iommu_group_put().
 825 */
 826struct iommu_group *iommu_group_get_for_dev(struct device *dev)
 827{
 828	const struct iommu_ops *ops = dev->bus->iommu_ops;
 829	struct iommu_group *group;
 830	int ret;
 831
 832	group = iommu_group_get(dev);
 833	if (group)
 834		return group;
 835
 836	group = ERR_PTR(-EINVAL);
 837
 838	if (ops && ops->device_group)
 839		group = ops->device_group(dev);
 840
 841	if (IS_ERR(group))
 842		return group;
 843
 844	/*
 845	 * Try to allocate a default domain - needs support from the
 846	 * IOMMU driver.
 847	 */
 848	if (!group->default_domain) {
 849		group->default_domain = __iommu_domain_alloc(dev->bus,
 850							     IOMMU_DOMAIN_DMA);
 851		if (!group->domain)
 852			group->domain = group->default_domain;
 853	}
 854
 855	ret = iommu_group_add_device(group, dev);
 856	if (ret) {
 857		iommu_group_put(group);
 858		return ERR_PTR(ret);
 859	}
 860
 861	return group;
 
 
 
 
 
 862}
 863
 864struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
 865{
 866	return group->default_domain;
 867}
 868
 869static int add_iommu_group(struct device *dev, void *data)
 870{
 871	struct iommu_callback_data *cb = data;
 872	const struct iommu_ops *ops = cb->ops;
 873	int ret;
 874
 875	if (!ops->add_device)
 
 
 
 876		return 0;
 
 877
 878	WARN_ON(dev->iommu_group);
 879
 880	ret = ops->add_device(dev);
 881
 882	/*
 883	 * We ignore -ENODEV errors for now, as they just mean that the
 884	 * device is not translated by an IOMMU. We still care about
 885	 * other errors and fail to initialize when they happen.
 886	 */
 887	if (ret == -ENODEV)
 888		ret = 0;
 889
 890	return ret;
 891}
 892
 893static int remove_iommu_group(struct device *dev, void *data)
 
 894{
 895	struct iommu_callback_data *cb = data;
 896	const struct iommu_ops *ops = cb->ops;
 
 
 897
 898	if (ops->remove_device && dev->iommu_group)
 899		ops->remove_device(dev);
 
 
 
 
 900
 901	return 0;
 902}
 903
 904static int iommu_bus_notifier(struct notifier_block *nb,
 905			      unsigned long action, void *data)
 
 
 
 
 906{
 907	struct device *dev = data;
 908	const struct iommu_ops *ops = dev->bus->iommu_ops;
 909	struct iommu_group *group;
 910	unsigned long group_action = 0;
 
 
 
 
 
 
 
 911
 912	/*
 913	 * ADD/DEL call into iommu driver ops if provided, which may
 914	 * result in ADD/DEL notifiers to group->notifier
 915	 */
 916	if (action == BUS_NOTIFY_ADD_DEVICE) {
 917		if (ops->add_device)
 918			return ops->add_device(dev);
 919	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
 920		if (ops->remove_device && dev->iommu_group) {
 921			ops->remove_device(dev);
 922			return 0;
 923		}
 924	}
 925
 926	/*
 927	 * Remaining BUS_NOTIFYs get filtered and republished to the
 928	 * group, if anyone is listening
 929	 */
 930	group = iommu_group_get(dev);
 931	if (!group)
 932		return 0;
 
 
 
 
 
 
 933
 934	switch (action) {
 935	case BUS_NOTIFY_BIND_DRIVER:
 936		group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER;
 937		break;
 938	case BUS_NOTIFY_BOUND_DRIVER:
 939		group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER;
 940		break;
 941	case BUS_NOTIFY_UNBIND_DRIVER:
 942		group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER;
 943		break;
 944	case BUS_NOTIFY_UNBOUND_DRIVER:
 945		group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER;
 946		break;
 947	}
 948
 949	if (group_action)
 950		blocking_notifier_call_chain(&group->notifier,
 951					     group_action, dev);
 952
 953	iommu_group_put(group);
 954	return 0;
 955}
 956
 957static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops)
 958{
 959	int err;
 960	struct notifier_block *nb;
 961	struct iommu_callback_data cb = {
 962		.ops = ops,
 963	};
 964
 965	nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL);
 966	if (!nb)
 967		return -ENOMEM;
 968
 969	nb->notifier_call = iommu_bus_notifier;
 
 970
 971	err = bus_register_notifier(bus, nb);
 972	if (err)
 973		goto out_free;
 
 
 974
 975	err = bus_for_each_dev(bus, NULL, &cb, add_iommu_group);
 976	if (err)
 977		goto out_err;
 978
 
 
 979
 980	return 0;
 
 
 
 
 
 
 
 981
 982out_err:
 983	/* Clean up */
 984	bus_for_each_dev(bus, NULL, &cb, remove_iommu_group);
 985	bus_unregister_notifier(bus, nb);
 986
 987out_free:
 988	kfree(nb);
 989
 990	return err;
 
 
 
 
 
 
 991}
 992
 993/**
 994 * bus_set_iommu - set iommu-callbacks for the bus
 995 * @bus: bus.
 996 * @ops: the callbacks provided by the iommu-driver
 997 *
 998 * This function is called by an iommu driver to set the iommu methods
 999 * used for a particular bus. Drivers for devices on that bus can use
1000 * the iommu-api after these ops are registered.
1001 * This special function is needed because IOMMUs are usually devices on
1002 * the bus itself, so the iommu drivers are not initialized when the bus
1003 * is set up. With this function the iommu-driver can set the iommu-ops
1004 * afterwards.
1005 */
1006int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops)
1007{
1008	int err;
 
 
 
 
 
 
 
 
 
 
 
1009
1010	if (bus->iommu_ops != NULL)
1011		return -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1012
1013	bus->iommu_ops = ops;
1014
1015	/* Do IOMMU specific setup for this bus-type */
1016	err = iommu_bus_init(bus, ops);
1017	if (err)
1018		bus->iommu_ops = NULL;
 
1019
1020	return err;
1021}
1022EXPORT_SYMBOL_GPL(bus_set_iommu);
1023
1024bool iommu_present(struct bus_type *bus)
1025{
1026	return bus->iommu_ops != NULL;
1027}
1028EXPORT_SYMBOL_GPL(iommu_present);
1029
1030bool iommu_capable(struct bus_type *bus, enum iommu_cap cap)
 
 
 
 
 
 
 
 
1031{
1032	if (!bus->iommu_ops || !bus->iommu_ops->capable)
 
 
 
 
 
 
1033		return false;
1034
1035	return bus->iommu_ops->capable(cap);
1036}
1037EXPORT_SYMBOL_GPL(iommu_capable);
1038
1039/**
1040 * iommu_set_fault_handler() - set a fault handler for an iommu domain
1041 * @domain: iommu domain
1042 * @handler: fault handler
1043 * @token: user data, will be passed back to the fault handler
1044 *
1045 * This function should be used by IOMMU users which want to be notified
1046 * whenever an IOMMU fault happens.
1047 *
1048 * The fault handler itself should return 0 on success, and an appropriate
1049 * error code otherwise.
1050 */
1051void iommu_set_fault_handler(struct iommu_domain *domain,
1052					iommu_fault_handler_t handler,
1053					void *token)
1054{
1055	BUG_ON(!domain);
1056
1057	domain->handler = handler;
1058	domain->handler_token = token;
1059}
1060EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1061
1062static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1063						 unsigned type)
1064{
1065	struct iommu_domain *domain;
1066
1067	if (bus == NULL || bus->iommu_ops == NULL)
1068		return NULL;
1069
1070	domain = bus->iommu_ops->domain_alloc(type);
1071	if (!domain)
1072		return NULL;
1073
1074	domain->ops  = bus->iommu_ops;
1075	domain->type = type;
1076
 
 
 
 
 
 
 
 
1077	return domain;
1078}
1079
1080struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1081{
1082	return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1083}
1084EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1085
1086void iommu_domain_free(struct iommu_domain *domain)
1087{
1088	domain->ops->domain_free(domain);
 
 
 
1089}
1090EXPORT_SYMBOL_GPL(iommu_domain_free);
1091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1092static int __iommu_attach_device(struct iommu_domain *domain,
1093				 struct device *dev)
1094{
1095	int ret;
 
1096	if (unlikely(domain->ops->attach_dev == NULL))
1097		return -ENODEV;
1098
1099	ret = domain->ops->attach_dev(domain, dev);
1100	if (!ret)
1101		trace_attach_device_to_domain(dev);
1102	return ret;
1103}
1104
 
 
 
 
 
 
 
 
 
 
 
 
1105int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
1106{
1107	struct iommu_group *group;
1108	int ret;
1109
1110	group = iommu_group_get(dev);
1111	/* FIXME: Remove this when groups a mandatory for iommu drivers */
1112	if (group == NULL)
1113		return __iommu_attach_device(domain, dev);
1114
1115	/*
1116	 * We have a group - lock it to make sure the device-count doesn't
1117	 * change while we are attaching
1118	 */
1119	mutex_lock(&group->mutex);
1120	ret = -EINVAL;
1121	if (iommu_group_device_count(group) != 1)
1122		goto out_unlock;
1123
1124	ret = __iommu_attach_group(domain, group);
1125
1126out_unlock:
1127	mutex_unlock(&group->mutex);
1128	iommu_group_put(group);
1129
1130	return ret;
1131}
1132EXPORT_SYMBOL_GPL(iommu_attach_device);
1133
 
 
 
 
 
 
 
 
1134static void __iommu_detach_device(struct iommu_domain *domain,
1135				  struct device *dev)
1136{
1137	if (unlikely(domain->ops->detach_dev == NULL))
1138		return;
1139
1140	domain->ops->detach_dev(domain, dev);
1141	trace_detach_device_from_domain(dev);
1142}
1143
1144void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
1145{
1146	struct iommu_group *group;
1147
1148	group = iommu_group_get(dev);
1149	/* FIXME: Remove this when groups a mandatory for iommu drivers */
1150	if (group == NULL)
1151		return __iommu_detach_device(domain, dev);
1152
1153	mutex_lock(&group->mutex);
1154	if (iommu_group_device_count(group) != 1) {
1155		WARN_ON(1);
1156		goto out_unlock;
1157	}
1158
1159	__iommu_detach_group(domain, group);
1160
1161out_unlock:
1162	mutex_unlock(&group->mutex);
1163	iommu_group_put(group);
1164}
1165EXPORT_SYMBOL_GPL(iommu_detach_device);
1166
1167struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
1168{
1169	struct iommu_domain *domain;
1170	struct iommu_group *group;
1171
1172	group = iommu_group_get(dev);
1173	/* FIXME: Remove this when groups a mandatory for iommu drivers */
1174	if (group == NULL)
1175		return NULL;
1176
1177	domain = group->domain;
1178
1179	iommu_group_put(group);
1180
1181	return domain;
1182}
1183EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
1184
1185/*
1186 * IOMMU groups are really the natrual working unit of the IOMMU, but
 
 
 
 
 
 
 
 
 
1187 * the IOMMU API works on domains and devices.  Bridge that gap by
1188 * iterating over the devices in a group.  Ideally we'd have a single
1189 * device which represents the requestor ID of the group, but we also
1190 * allow IOMMU drivers to create policy defined minimum sets, where
1191 * the physical hardware may be able to distiguish members, but we
1192 * wish to group them at a higher level (ex. untrusted multi-function
1193 * PCI devices).  Thus we attach each device.
1194 */
1195static int iommu_group_do_attach_device(struct device *dev, void *data)
1196{
1197	struct iommu_domain *domain = data;
1198
1199	return __iommu_attach_device(domain, dev);
1200}
1201
1202static int __iommu_attach_group(struct iommu_domain *domain,
1203				struct iommu_group *group)
1204{
1205	int ret;
1206
1207	if (group->default_domain && group->domain != group->default_domain)
 
1208		return -EBUSY;
1209
1210	ret = __iommu_group_for_each_dev(group, domain,
1211					 iommu_group_do_attach_device);
1212	if (ret == 0)
1213		group->domain = domain;
1214
1215	return ret;
1216}
1217
 
 
 
 
 
 
 
 
 
 
 
 
1218int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
1219{
1220	int ret;
1221
1222	mutex_lock(&group->mutex);
1223	ret = __iommu_attach_group(domain, group);
1224	mutex_unlock(&group->mutex);
1225
1226	return ret;
1227}
1228EXPORT_SYMBOL_GPL(iommu_attach_group);
1229
1230static int iommu_group_do_detach_device(struct device *dev, void *data)
1231{
1232	struct iommu_domain *domain = data;
1233
1234	__iommu_detach_device(domain, dev);
1235
1236	return 0;
1237}
1238
1239static void __iommu_detach_group(struct iommu_domain *domain,
1240				 struct iommu_group *group)
1241{
1242	int ret;
1243
1244	if (!group->default_domain) {
1245		__iommu_group_for_each_dev(group, domain,
 
 
 
 
 
 
 
 
 
 
1246					   iommu_group_do_detach_device);
1247		group->domain = NULL;
1248		return;
1249	}
1250
1251	if (group->domain == group->default_domain)
1252		return;
1253
1254	/* Detach by re-attaching to the default domain */
1255	ret = __iommu_group_for_each_dev(group, group->default_domain,
 
 
 
 
 
1256					 iommu_group_do_attach_device);
1257	if (ret != 0)
1258		WARN_ON(1);
1259	else
1260		group->domain = group->default_domain;
1261}
1262
1263void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
1264{
1265	mutex_lock(&group->mutex);
1266	__iommu_detach_group(domain, group);
1267	mutex_unlock(&group->mutex);
1268}
1269EXPORT_SYMBOL_GPL(iommu_detach_group);
1270
1271phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1272{
1273	if (unlikely(domain->ops->iova_to_phys == NULL))
 
 
 
1274		return 0;
1275
1276	return domain->ops->iova_to_phys(domain, iova);
1277}
1278EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
1279
1280static size_t iommu_pgsize(struct iommu_domain *domain,
1281			   unsigned long addr_merge, size_t size)
1282{
1283	unsigned int pgsize_idx;
1284	size_t pgsize;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1285
1286	/* Max page size that still fits into 'size' */
1287	pgsize_idx = __fls(size);
1288
1289	/* need to consider alignment requirements ? */
1290	if (likely(addr_merge)) {
1291		/* Max page size allowed by address */
1292		unsigned int align_pgsize_idx = __ffs(addr_merge);
1293		pgsize_idx = min(pgsize_idx, align_pgsize_idx);
1294	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1295
1296	/* build a mask of acceptable page sizes */
1297	pgsize = (1UL << (pgsize_idx + 1)) - 1;
 
 
 
 
 
1298
1299	/* throw away page sizes not supported by the hardware */
1300	pgsize &= domain->ops->pgsize_bitmap;
1301
1302	/* make sure we're still sane */
1303	BUG_ON(!pgsize);
1304
1305	/* pick the biggest page */
1306	pgsize_idx = __fls(pgsize);
1307	pgsize = 1UL << pgsize_idx;
 
 
 
 
1308
1309	return pgsize;
1310}
1311
1312int iommu_map(struct iommu_domain *domain, unsigned long iova,
1313	      phys_addr_t paddr, size_t size, int prot)
1314{
 
1315	unsigned long orig_iova = iova;
1316	unsigned int min_pagesz;
1317	size_t orig_size = size;
1318	phys_addr_t orig_paddr = paddr;
1319	int ret = 0;
1320
1321	if (unlikely(domain->ops->map == NULL ||
1322		     domain->ops->pgsize_bitmap == 0UL))
1323		return -ENODEV;
1324
1325	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
1326		return -EINVAL;
1327
1328	/* find out the minimum page size supported */
1329	min_pagesz = 1 << __ffs(domain->ops->pgsize_bitmap);
1330
1331	/*
1332	 * both the virtual address and the physical one, as well as
1333	 * the size of the mapping, must be aligned (at least) to the
1334	 * size of the smallest page supported by the hardware
1335	 */
1336	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
1337		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
1338		       iova, &paddr, size, min_pagesz);
1339		return -EINVAL;
1340	}
1341
1342	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
1343
1344	while (size) {
1345		size_t pgsize = iommu_pgsize(domain, iova | paddr, size);
1346
1347		pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n",
1348			 iova, &paddr, pgsize);
 
 
 
 
 
1349
1350		ret = domain->ops->map(domain, iova, paddr, pgsize, prot);
1351		if (ret)
1352			break;
1353
1354		iova += pgsize;
1355		paddr += pgsize;
1356		size -= pgsize;
1357	}
1358
1359	/* unroll mapping in case something went wrong */
1360	if (ret)
1361		iommu_unmap(domain, orig_iova, orig_size - size);
1362	else
1363		trace_map(orig_iova, orig_paddr, orig_size);
1364
1365	return ret;
1366}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1367EXPORT_SYMBOL_GPL(iommu_map);
1368
1369size_t iommu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
 
1370{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1371	size_t unmapped_page, unmapped = 0;
 
1372	unsigned int min_pagesz;
1373	unsigned long orig_iova = iova;
1374
1375	if (unlikely(domain->ops->unmap == NULL ||
1376		     domain->ops->pgsize_bitmap == 0UL))
1377		return -ENODEV;
1378
1379	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
1380		return -EINVAL;
1381
1382	/* find out the minimum page size supported */
1383	min_pagesz = 1 << __ffs(domain->ops->pgsize_bitmap);
1384
1385	/*
1386	 * The virtual address, as well as the size of the mapping, must be
1387	 * aligned (at least) to the size of the smallest page supported
1388	 * by the hardware
1389	 */
1390	if (!IS_ALIGNED(iova | size, min_pagesz)) {
1391		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
1392		       iova, size, min_pagesz);
1393		return -EINVAL;
1394	}
1395
1396	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
1397
1398	/*
1399	 * Keep iterating until we either unmap 'size' bytes (or more)
1400	 * or we hit an area that isn't mapped.
1401	 */
1402	while (unmapped < size) {
1403		size_t pgsize = iommu_pgsize(domain, iova, size - unmapped);
1404
1405		unmapped_page = domain->ops->unmap(domain, iova, pgsize);
1406		if (!unmapped_page)
1407			break;
1408
1409		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
1410			 iova, unmapped_page);
1411
1412		iova += unmapped_page;
1413		unmapped += unmapped_page;
1414	}
1415
1416	trace_unmap(orig_iova, size, unmapped);
1417	return unmapped;
1418}
 
 
 
 
 
 
 
 
 
 
 
 
 
1419EXPORT_SYMBOL_GPL(iommu_unmap);
1420
1421size_t default_iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
1422			 struct scatterlist *sg, unsigned int nents, int prot)
1423{
1424	struct scatterlist *s;
1425	size_t mapped = 0;
1426	unsigned int i, min_pagesz;
 
 
 
 
 
 
 
 
 
 
1427	int ret;
1428
1429	if (unlikely(domain->ops->pgsize_bitmap == 0UL))
1430		return 0;
 
 
 
 
1431
1432	min_pagesz = 1 << __ffs(domain->ops->pgsize_bitmap);
 
1433
1434	for_each_sg(sg, s, nents, i) {
1435		phys_addr_t phys = page_to_phys(sg_page(s)) + s->offset;
 
1436
1437		/*
1438		 * We are mapping on IOMMU page boundaries, so offset within
1439		 * the page must be 0. However, the IOMMU may support pages
1440		 * smaller than PAGE_SIZE, so s->offset may still represent
1441		 * an offset of that boundary within the CPU page.
1442		 */
1443		if (!IS_ALIGNED(s->offset, min_pagesz))
1444			goto out_err;
1445
1446		ret = iommu_map(domain, iova + mapped, phys, s->length, prot);
1447		if (ret)
1448			goto out_err;
 
 
 
1449
1450		mapped += s->length;
 
 
1451	}
1452
 
 
1453	return mapped;
1454
1455out_err:
1456	/* undo mappings already done */
1457	iommu_unmap(domain, iova, mapped);
1458
1459	return 0;
 
1460
 
 
 
 
 
1461}
1462EXPORT_SYMBOL_GPL(default_iommu_map_sg);
1463
1464int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr,
1465			       phys_addr_t paddr, u64 size, int prot)
1466{
1467	if (unlikely(domain->ops->domain_window_enable == NULL))
1468		return -ENODEV;
1469
1470	return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size,
1471						 prot);
1472}
1473EXPORT_SYMBOL_GPL(iommu_domain_window_enable);
1474
1475void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1476{
1477	if (unlikely(domain->ops->domain_window_disable == NULL))
1478		return;
 
 
 
 
 
 
 
1479
1480	return domain->ops->domain_window_disable(domain, wnd_nr);
 
1481}
1482EXPORT_SYMBOL_GPL(iommu_domain_window_disable);
1483
1484static int __init iommu_init(void)
1485{
1486	iommu_group_kset = kset_create_and_add("iommu_groups",
1487					       NULL, kernel_kobj);
1488	ida_init(&iommu_group_ida);
1489	mutex_init(&iommu_group_mutex);
1490
1491	BUG_ON(!iommu_group_kset);
1492
1493	return 0;
1494}
1495core_initcall(iommu_init);
1496
1497int iommu_domain_get_attr(struct iommu_domain *domain,
1498			  enum iommu_attr attr, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1499{
1500	struct iommu_domain_geometry *geometry;
1501	bool *paging;
1502	int ret = 0;
1503	u32 *count;
1504
1505	switch (attr) {
1506	case DOMAIN_ATTR_GEOMETRY:
1507		geometry  = data;
1508		*geometry = domain->geometry;
1509
1510		break;
1511	case DOMAIN_ATTR_PAGING:
1512		paging  = data;
1513		*paging = (domain->ops->pgsize_bitmap != 0UL);
1514		break;
1515	case DOMAIN_ATTR_WINDOWS:
1516		count = data;
 
 
 
1517
1518		if (domain->ops->domain_get_windows != NULL)
1519			*count = domain->ops->domain_get_windows(domain);
 
1520		else
1521			ret = -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1522
1523		break;
1524	default:
1525		if (!domain->ops->domain_get_attr)
1526			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1527
1528		ret = domain->ops->domain_get_attr(domain, attr, data);
 
 
 
 
 
 
1529	}
1530
 
 
 
 
 
 
 
1531	return ret;
1532}
1533EXPORT_SYMBOL_GPL(iommu_domain_get_attr);
1534
1535int iommu_domain_set_attr(struct iommu_domain *domain,
1536			  enum iommu_attr attr, void *data)
1537{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1538	int ret = 0;
1539	u32 *count;
1540
1541	switch (attr) {
1542	case DOMAIN_ATTR_WINDOWS:
1543		count = data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1544
1545		if (domain->ops->domain_set_windows != NULL)
1546			ret = domain->ops->domain_set_windows(domain, *count);
1547		else
1548			ret = -ENODEV;
1549
1550		break;
1551	default:
1552		if (domain->ops->domain_set_attr == NULL)
 
 
 
 
 
 
 
1553			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1554
1555		ret = domain->ops->domain_set_attr(domain, attr, data);
 
 
 
1556	}
1557
 
 
 
 
1558	return ret;
1559}
1560EXPORT_SYMBOL_GPL(iommu_domain_set_attr);
1561
1562void iommu_get_dm_regions(struct device *dev, struct list_head *list)
 
 
 
 
 
 
 
 
 
1563{
1564	const struct iommu_ops *ops = dev->bus->iommu_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1565
1566	if (ops && ops->get_dm_regions)
1567		ops->get_dm_regions(dev, list);
1568}
 
1569
1570void iommu_put_dm_regions(struct device *dev, struct list_head *list)
1571{
1572	const struct iommu_ops *ops = dev->bus->iommu_ops;
 
 
 
 
1573
1574	if (ops && ops->put_dm_regions)
1575		ops->put_dm_regions(dev, list);
 
 
1576}
1577
1578/* Request that a device is direct mapped by the IOMMU */
1579int iommu_request_dm_for_dev(struct device *dev)
 
 
 
 
 
1580{
1581	struct iommu_domain *dm_domain;
1582	struct iommu_group *group;
1583	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1584
1585	/* Device must already be in a group before calling this function */
1586	group = iommu_group_get_for_dev(dev);
1587	if (IS_ERR(group))
1588		return PTR_ERR(group);
 
 
 
 
 
 
1589
1590	mutex_lock(&group->mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1591
1592	/* Check if the default domain is already direct mapped */
1593	ret = 0;
1594	if (group->default_domain &&
1595	    group->default_domain->type == IOMMU_DOMAIN_IDENTITY)
1596		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1597
1598	/* Don't change mappings of existing devices */
1599	ret = -EBUSY;
1600	if (iommu_group_device_count(group) != 1)
1601		goto out;
1602
1603	/* Allocate a direct mapped domain */
1604	ret = -ENOMEM;
1605	dm_domain = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_IDENTITY);
1606	if (!dm_domain)
1607		goto out;
 
1608
1609	/* Attach the device to the domain */
1610	ret = __iommu_attach_group(dm_domain, group);
1611	if (ret) {
1612		iommu_domain_free(dm_domain);
1613		goto out;
1614	}
 
 
 
1615
1616	/* Make the direct mapped domain the default for this group */
1617	if (group->default_domain)
1618		iommu_domain_free(group->default_domain);
1619	group->default_domain = dm_domain;
1620
1621	pr_info("Using direct mapping for device %s\n", dev_name(dev));
 
 
 
 
 
 
 
 
 
 
 
 
1622
1623	ret = 0;
1624out:
 
1625	mutex_unlock(&group->mutex);
 
1626	iommu_group_put(group);
 
 
1627
1628	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1629}