Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.2.
   1/*
   2 * Copyright 2002 Andi Kleen, SuSE Labs.
   3 * Thanks to Ben LaHaise for precious feedback.
   4 */
   5#include <linux/highmem.h>
   6#include <linux/bootmem.h>
   7#include <linux/sched.h>
   8#include <linux/mm.h>
   9#include <linux/interrupt.h>
  10#include <linux/seq_file.h>
  11#include <linux/debugfs.h>
  12#include <linux/pfn.h>
  13#include <linux/percpu.h>
  14#include <linux/gfp.h>
  15#include <linux/pci.h>
  16#include <linux/vmalloc.h>
  17
  18#include <asm/e820.h>
  19#include <asm/processor.h>
  20#include <asm/tlbflush.h>
  21#include <asm/sections.h>
  22#include <asm/setup.h>
  23#include <asm/uaccess.h>
  24#include <asm/pgalloc.h>
  25#include <asm/proto.h>
  26#include <asm/pat.h>
  27
  28/*
  29 * The current flushing context - we pass it instead of 5 arguments:
  30 */
  31struct cpa_data {
  32	unsigned long	*vaddr;
  33	pgd_t		*pgd;
  34	pgprot_t	mask_set;
  35	pgprot_t	mask_clr;
  36	unsigned long	numpages;
  37	int		flags;
  38	unsigned long	pfn;
  39	unsigned	force_split : 1;
  40	int		curpage;
  41	struct page	**pages;
  42};
  43
  44/*
  45 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
  46 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
  47 * entries change the page attribute in parallel to some other cpu
  48 * splitting a large page entry along with changing the attribute.
  49 */
  50static DEFINE_SPINLOCK(cpa_lock);
  51
  52#define CPA_FLUSHTLB 1
  53#define CPA_ARRAY 2
  54#define CPA_PAGES_ARRAY 4
  55
  56#ifdef CONFIG_PROC_FS
  57static unsigned long direct_pages_count[PG_LEVEL_NUM];
  58
  59void update_page_count(int level, unsigned long pages)
  60{
  61	/* Protect against CPA */
  62	spin_lock(&pgd_lock);
  63	direct_pages_count[level] += pages;
  64	spin_unlock(&pgd_lock);
  65}
  66
  67static void split_page_count(int level)
  68{
  69	if (direct_pages_count[level] == 0)
  70		return;
  71
  72	direct_pages_count[level]--;
  73	direct_pages_count[level - 1] += PTRS_PER_PTE;
  74}
  75
  76void arch_report_meminfo(struct seq_file *m)
  77{
  78	seq_printf(m, "DirectMap4k:    %8lu kB\n",
  79			direct_pages_count[PG_LEVEL_4K] << 2);
  80#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
  81	seq_printf(m, "DirectMap2M:    %8lu kB\n",
  82			direct_pages_count[PG_LEVEL_2M] << 11);
  83#else
  84	seq_printf(m, "DirectMap4M:    %8lu kB\n",
  85			direct_pages_count[PG_LEVEL_2M] << 12);
  86#endif
  87	if (direct_gbpages)
  88		seq_printf(m, "DirectMap1G:    %8lu kB\n",
  89			direct_pages_count[PG_LEVEL_1G] << 20);
  90}
  91#else
  92static inline void split_page_count(int level) { }
  93#endif
  94
  95#ifdef CONFIG_X86_64
  96
  97static inline unsigned long highmap_start_pfn(void)
  98{
  99	return __pa_symbol(_text) >> PAGE_SHIFT;
 100}
 101
 102static inline unsigned long highmap_end_pfn(void)
 103{
 104	return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
 105}
 106
 107#endif
 108
 109static inline int
 110within(unsigned long addr, unsigned long start, unsigned long end)
 111{
 112	return addr >= start && addr < end;
 113}
 114
 115/*
 116 * Flushing functions
 117 */
 118
 119/**
 120 * clflush_cache_range - flush a cache range with clflush
 121 * @vaddr:	virtual start address
 122 * @size:	number of bytes to flush
 123 *
 124 * clflushopt is an unordered instruction which needs fencing with mfence or
 125 * sfence to avoid ordering issues.
 126 */
 127void clflush_cache_range(void *vaddr, unsigned int size)
 128{
 129	const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
 130	void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
 131	void *vend = vaddr + size;
 132
 133	if (p >= vend)
 134		return;
 135
 136	mb();
 137
 138	for (; p < vend; p += clflush_size)
 139		clflushopt(p);
 140
 141	mb();
 142}
 143EXPORT_SYMBOL_GPL(clflush_cache_range);
 144
 145static void __cpa_flush_all(void *arg)
 146{
 147	unsigned long cache = (unsigned long)arg;
 148
 149	/*
 150	 * Flush all to work around Errata in early athlons regarding
 151	 * large page flushing.
 152	 */
 153	__flush_tlb_all();
 154
 155	if (cache && boot_cpu_data.x86 >= 4)
 156		wbinvd();
 157}
 158
 159static void cpa_flush_all(unsigned long cache)
 160{
 161	BUG_ON(irqs_disabled());
 162
 163	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
 164}
 165
 166static void __cpa_flush_range(void *arg)
 167{
 168	/*
 169	 * We could optimize that further and do individual per page
 170	 * tlb invalidates for a low number of pages. Caveat: we must
 171	 * flush the high aliases on 64bit as well.
 172	 */
 173	__flush_tlb_all();
 174}
 175
 176static void cpa_flush_range(unsigned long start, int numpages, int cache)
 177{
 178	unsigned int i, level;
 179	unsigned long addr;
 180
 181	BUG_ON(irqs_disabled());
 182	WARN_ON(PAGE_ALIGN(start) != start);
 183
 184	on_each_cpu(__cpa_flush_range, NULL, 1);
 185
 186	if (!cache)
 187		return;
 188
 189	/*
 190	 * We only need to flush on one CPU,
 191	 * clflush is a MESI-coherent instruction that
 192	 * will cause all other CPUs to flush the same
 193	 * cachelines:
 194	 */
 195	for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
 196		pte_t *pte = lookup_address(addr, &level);
 197
 198		/*
 199		 * Only flush present addresses:
 200		 */
 201		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
 202			clflush_cache_range((void *) addr, PAGE_SIZE);
 203	}
 204}
 205
 206static void cpa_flush_array(unsigned long *start, int numpages, int cache,
 207			    int in_flags, struct page **pages)
 208{
 209	unsigned int i, level;
 210	unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
 211
 212	BUG_ON(irqs_disabled());
 213
 214	on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
 215
 216	if (!cache || do_wbinvd)
 217		return;
 218
 219	/*
 220	 * We only need to flush on one CPU,
 221	 * clflush is a MESI-coherent instruction that
 222	 * will cause all other CPUs to flush the same
 223	 * cachelines:
 224	 */
 225	for (i = 0; i < numpages; i++) {
 226		unsigned long addr;
 227		pte_t *pte;
 228
 229		if (in_flags & CPA_PAGES_ARRAY)
 230			addr = (unsigned long)page_address(pages[i]);
 231		else
 232			addr = start[i];
 233
 234		pte = lookup_address(addr, &level);
 235
 236		/*
 237		 * Only flush present addresses:
 238		 */
 239		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
 240			clflush_cache_range((void *)addr, PAGE_SIZE);
 241	}
 242}
 243
 244/*
 245 * Certain areas of memory on x86 require very specific protection flags,
 246 * for example the BIOS area or kernel text. Callers don't always get this
 247 * right (again, ioremap() on BIOS memory is not uncommon) so this function
 248 * checks and fixes these known static required protection bits.
 249 */
 250static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
 251				   unsigned long pfn)
 252{
 253	pgprot_t forbidden = __pgprot(0);
 254
 255	/*
 256	 * The BIOS area between 640k and 1Mb needs to be executable for
 257	 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
 258	 */
 259#ifdef CONFIG_PCI_BIOS
 260	if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
 261		pgprot_val(forbidden) |= _PAGE_NX;
 262#endif
 263
 264	/*
 265	 * The kernel text needs to be executable for obvious reasons
 266	 * Does not cover __inittext since that is gone later on. On
 267	 * 64bit we do not enforce !NX on the low mapping
 268	 */
 269	if (within(address, (unsigned long)_text, (unsigned long)_etext))
 270		pgprot_val(forbidden) |= _PAGE_NX;
 271
 272	/*
 273	 * The .rodata section needs to be read-only. Using the pfn
 274	 * catches all aliases.
 275	 */
 276	if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
 277		   __pa_symbol(__end_rodata) >> PAGE_SHIFT))
 278		pgprot_val(forbidden) |= _PAGE_RW;
 279
 280#if defined(CONFIG_X86_64)
 281	/*
 282	 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
 283	 * kernel text mappings for the large page aligned text, rodata sections
 284	 * will be always read-only. For the kernel identity mappings covering
 285	 * the holes caused by this alignment can be anything that user asks.
 286	 *
 287	 * This will preserve the large page mappings for kernel text/data
 288	 * at no extra cost.
 289	 */
 290	if (kernel_set_to_readonly &&
 291	    within(address, (unsigned long)_text,
 292		   (unsigned long)__end_rodata_hpage_align)) {
 293		unsigned int level;
 294
 295		/*
 296		 * Don't enforce the !RW mapping for the kernel text mapping,
 297		 * if the current mapping is already using small page mapping.
 298		 * No need to work hard to preserve large page mappings in this
 299		 * case.
 300		 *
 301		 * This also fixes the Linux Xen paravirt guest boot failure
 302		 * (because of unexpected read-only mappings for kernel identity
 303		 * mappings). In this paravirt guest case, the kernel text
 304		 * mapping and the kernel identity mapping share the same
 305		 * page-table pages. Thus we can't really use different
 306		 * protections for the kernel text and identity mappings. Also,
 307		 * these shared mappings are made of small page mappings.
 308		 * Thus this don't enforce !RW mapping for small page kernel
 309		 * text mapping logic will help Linux Xen parvirt guest boot
 310		 * as well.
 311		 */
 312		if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
 313			pgprot_val(forbidden) |= _PAGE_RW;
 314	}
 315#endif
 316
 317	prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
 318
 319	return prot;
 320}
 321
 322/*
 323 * Lookup the page table entry for a virtual address in a specific pgd.
 324 * Return a pointer to the entry and the level of the mapping.
 325 */
 326pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
 327			     unsigned int *level)
 328{
 329	pud_t *pud;
 330	pmd_t *pmd;
 331
 332	*level = PG_LEVEL_NONE;
 333
 334	if (pgd_none(*pgd))
 335		return NULL;
 336
 337	pud = pud_offset(pgd, address);
 338	if (pud_none(*pud))
 339		return NULL;
 340
 341	*level = PG_LEVEL_1G;
 342	if (pud_large(*pud) || !pud_present(*pud))
 343		return (pte_t *)pud;
 344
 345	pmd = pmd_offset(pud, address);
 346	if (pmd_none(*pmd))
 347		return NULL;
 348
 349	*level = PG_LEVEL_2M;
 350	if (pmd_large(*pmd) || !pmd_present(*pmd))
 351		return (pte_t *)pmd;
 352
 353	*level = PG_LEVEL_4K;
 354
 355	return pte_offset_kernel(pmd, address);
 356}
 357
 358/*
 359 * Lookup the page table entry for a virtual address. Return a pointer
 360 * to the entry and the level of the mapping.
 361 *
 362 * Note: We return pud and pmd either when the entry is marked large
 363 * or when the present bit is not set. Otherwise we would return a
 364 * pointer to a nonexisting mapping.
 365 */
 366pte_t *lookup_address(unsigned long address, unsigned int *level)
 367{
 368        return lookup_address_in_pgd(pgd_offset_k(address), address, level);
 369}
 370EXPORT_SYMBOL_GPL(lookup_address);
 371
 372static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
 373				  unsigned int *level)
 374{
 375        if (cpa->pgd)
 376		return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
 377					       address, level);
 378
 379        return lookup_address(address, level);
 380}
 381
 382/*
 383 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
 384 * or NULL if not present.
 385 */
 386pmd_t *lookup_pmd_address(unsigned long address)
 387{
 388	pgd_t *pgd;
 389	pud_t *pud;
 390
 391	pgd = pgd_offset_k(address);
 392	if (pgd_none(*pgd))
 393		return NULL;
 394
 395	pud = pud_offset(pgd, address);
 396	if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
 397		return NULL;
 398
 399	return pmd_offset(pud, address);
 400}
 401
 402/*
 403 * This is necessary because __pa() does not work on some
 404 * kinds of memory, like vmalloc() or the alloc_remap()
 405 * areas on 32-bit NUMA systems.  The percpu areas can
 406 * end up in this kind of memory, for instance.
 407 *
 408 * This could be optimized, but it is only intended to be
 409 * used at inititalization time, and keeping it
 410 * unoptimized should increase the testing coverage for
 411 * the more obscure platforms.
 412 */
 413phys_addr_t slow_virt_to_phys(void *__virt_addr)
 414{
 415	unsigned long virt_addr = (unsigned long)__virt_addr;
 416	phys_addr_t phys_addr;
 417	unsigned long offset;
 418	enum pg_level level;
 419	pte_t *pte;
 420
 421	pte = lookup_address(virt_addr, &level);
 422	BUG_ON(!pte);
 423
 424	/*
 425	 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
 426	 * before being left-shifted PAGE_SHIFT bits -- this trick is to
 427	 * make 32-PAE kernel work correctly.
 428	 */
 429	switch (level) {
 430	case PG_LEVEL_1G:
 431		phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
 432		offset = virt_addr & ~PUD_PAGE_MASK;
 433		break;
 434	case PG_LEVEL_2M:
 435		phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
 436		offset = virt_addr & ~PMD_PAGE_MASK;
 437		break;
 438	default:
 439		phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
 440		offset = virt_addr & ~PAGE_MASK;
 441	}
 442
 443	return (phys_addr_t)(phys_addr | offset);
 444}
 445EXPORT_SYMBOL_GPL(slow_virt_to_phys);
 446
 447/*
 448 * Set the new pmd in all the pgds we know about:
 449 */
 450static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
 451{
 452	/* change init_mm */
 453	set_pte_atomic(kpte, pte);
 454#ifdef CONFIG_X86_32
 455	if (!SHARED_KERNEL_PMD) {
 456		struct page *page;
 457
 458		list_for_each_entry(page, &pgd_list, lru) {
 459			pgd_t *pgd;
 460			pud_t *pud;
 461			pmd_t *pmd;
 462
 463			pgd = (pgd_t *)page_address(page) + pgd_index(address);
 464			pud = pud_offset(pgd, address);
 465			pmd = pmd_offset(pud, address);
 466			set_pte_atomic((pte_t *)pmd, pte);
 467		}
 468	}
 469#endif
 470}
 471
 472static int
 473try_preserve_large_page(pte_t *kpte, unsigned long address,
 474			struct cpa_data *cpa)
 475{
 476	unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
 477	pte_t new_pte, old_pte, *tmp;
 478	pgprot_t old_prot, new_prot, req_prot;
 479	int i, do_split = 1;
 480	enum pg_level level;
 481
 482	if (cpa->force_split)
 483		return 1;
 484
 485	spin_lock(&pgd_lock);
 486	/*
 487	 * Check for races, another CPU might have split this page
 488	 * up already:
 489	 */
 490	tmp = _lookup_address_cpa(cpa, address, &level);
 491	if (tmp != kpte)
 492		goto out_unlock;
 493
 494	switch (level) {
 495	case PG_LEVEL_2M:
 496		old_prot = pmd_pgprot(*(pmd_t *)kpte);
 497		old_pfn = pmd_pfn(*(pmd_t *)kpte);
 498		break;
 499	case PG_LEVEL_1G:
 500		old_prot = pud_pgprot(*(pud_t *)kpte);
 501		old_pfn = pud_pfn(*(pud_t *)kpte);
 502		break;
 503	default:
 504		do_split = -EINVAL;
 505		goto out_unlock;
 506	}
 507
 508	psize = page_level_size(level);
 509	pmask = page_level_mask(level);
 510
 511	/*
 512	 * Calculate the number of pages, which fit into this large
 513	 * page starting at address:
 514	 */
 515	nextpage_addr = (address + psize) & pmask;
 516	numpages = (nextpage_addr - address) >> PAGE_SHIFT;
 517	if (numpages < cpa->numpages)
 518		cpa->numpages = numpages;
 519
 520	/*
 521	 * We are safe now. Check whether the new pgprot is the same:
 522	 * Convert protection attributes to 4k-format, as cpa->mask* are set
 523	 * up accordingly.
 524	 */
 525	old_pte = *kpte;
 526	req_prot = pgprot_large_2_4k(old_prot);
 527
 528	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
 529	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
 530
 531	/*
 532	 * req_prot is in format of 4k pages. It must be converted to large
 533	 * page format: the caching mode includes the PAT bit located at
 534	 * different bit positions in the two formats.
 535	 */
 536	req_prot = pgprot_4k_2_large(req_prot);
 537
 538	/*
 539	 * Set the PSE and GLOBAL flags only if the PRESENT flag is
 540	 * set otherwise pmd_present/pmd_huge will return true even on
 541	 * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
 542	 * for the ancient hardware that doesn't support it.
 543	 */
 544	if (pgprot_val(req_prot) & _PAGE_PRESENT)
 545		pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
 546	else
 547		pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
 548
 549	req_prot = canon_pgprot(req_prot);
 550
 551	/*
 552	 * old_pfn points to the large page base pfn. So we need
 553	 * to add the offset of the virtual address:
 554	 */
 555	pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
 556	cpa->pfn = pfn;
 557
 558	new_prot = static_protections(req_prot, address, pfn);
 559
 560	/*
 561	 * We need to check the full range, whether
 562	 * static_protection() requires a different pgprot for one of
 563	 * the pages in the range we try to preserve:
 564	 */
 565	addr = address & pmask;
 566	pfn = old_pfn;
 567	for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
 568		pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
 569
 570		if (pgprot_val(chk_prot) != pgprot_val(new_prot))
 571			goto out_unlock;
 572	}
 573
 574	/*
 575	 * If there are no changes, return. maxpages has been updated
 576	 * above:
 577	 */
 578	if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
 579		do_split = 0;
 580		goto out_unlock;
 581	}
 582
 583	/*
 584	 * We need to change the attributes. Check, whether we can
 585	 * change the large page in one go. We request a split, when
 586	 * the address is not aligned and the number of pages is
 587	 * smaller than the number of pages in the large page. Note
 588	 * that we limited the number of possible pages already to
 589	 * the number of pages in the large page.
 590	 */
 591	if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
 592		/*
 593		 * The address is aligned and the number of pages
 594		 * covers the full page.
 595		 */
 596		new_pte = pfn_pte(old_pfn, new_prot);
 597		__set_pmd_pte(kpte, address, new_pte);
 598		cpa->flags |= CPA_FLUSHTLB;
 599		do_split = 0;
 600	}
 601
 602out_unlock:
 603	spin_unlock(&pgd_lock);
 604
 605	return do_split;
 606}
 607
 608static int
 609__split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
 610		   struct page *base)
 611{
 612	pte_t *pbase = (pte_t *)page_address(base);
 613	unsigned long ref_pfn, pfn, pfninc = 1;
 614	unsigned int i, level;
 615	pte_t *tmp;
 616	pgprot_t ref_prot;
 617
 618	spin_lock(&pgd_lock);
 619	/*
 620	 * Check for races, another CPU might have split this page
 621	 * up for us already:
 622	 */
 623	tmp = _lookup_address_cpa(cpa, address, &level);
 624	if (tmp != kpte) {
 625		spin_unlock(&pgd_lock);
 626		return 1;
 627	}
 628
 629	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
 630
 631	switch (level) {
 632	case PG_LEVEL_2M:
 633		ref_prot = pmd_pgprot(*(pmd_t *)kpte);
 634		/* clear PSE and promote PAT bit to correct position */
 635		ref_prot = pgprot_large_2_4k(ref_prot);
 636		ref_pfn = pmd_pfn(*(pmd_t *)kpte);
 637		break;
 638
 639	case PG_LEVEL_1G:
 640		ref_prot = pud_pgprot(*(pud_t *)kpte);
 641		ref_pfn = pud_pfn(*(pud_t *)kpte);
 642		pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
 643
 644		/*
 645		 * Clear the PSE flags if the PRESENT flag is not set
 646		 * otherwise pmd_present/pmd_huge will return true
 647		 * even on a non present pmd.
 648		 */
 649		if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
 650			pgprot_val(ref_prot) &= ~_PAGE_PSE;
 651		break;
 652
 653	default:
 654		spin_unlock(&pgd_lock);
 655		return 1;
 656	}
 657
 658	/*
 659	 * Set the GLOBAL flags only if the PRESENT flag is set
 660	 * otherwise pmd/pte_present will return true even on a non
 661	 * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
 662	 * for the ancient hardware that doesn't support it.
 663	 */
 664	if (pgprot_val(ref_prot) & _PAGE_PRESENT)
 665		pgprot_val(ref_prot) |= _PAGE_GLOBAL;
 666	else
 667		pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
 668
 669	/*
 670	 * Get the target pfn from the original entry:
 671	 */
 672	pfn = ref_pfn;
 673	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
 674		set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
 675
 676	if (virt_addr_valid(address)) {
 677		unsigned long pfn = PFN_DOWN(__pa(address));
 678
 679		if (pfn_range_is_mapped(pfn, pfn + 1))
 680			split_page_count(level);
 681	}
 682
 683	/*
 684	 * Install the new, split up pagetable.
 685	 *
 686	 * We use the standard kernel pagetable protections for the new
 687	 * pagetable protections, the actual ptes set above control the
 688	 * primary protection behavior:
 689	 */
 690	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
 691
 692	/*
 693	 * Intel Atom errata AAH41 workaround.
 694	 *
 695	 * The real fix should be in hw or in a microcode update, but
 696	 * we also probabilistically try to reduce the window of having
 697	 * a large TLB mixed with 4K TLBs while instruction fetches are
 698	 * going on.
 699	 */
 700	__flush_tlb_all();
 701	spin_unlock(&pgd_lock);
 702
 703	return 0;
 704}
 705
 706static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
 707			    unsigned long address)
 708{
 709	struct page *base;
 710
 711	if (!debug_pagealloc_enabled())
 712		spin_unlock(&cpa_lock);
 713	base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
 714	if (!debug_pagealloc_enabled())
 715		spin_lock(&cpa_lock);
 716	if (!base)
 717		return -ENOMEM;
 718
 719	if (__split_large_page(cpa, kpte, address, base))
 720		__free_page(base);
 721
 722	return 0;
 723}
 724
 725static bool try_to_free_pte_page(pte_t *pte)
 726{
 727	int i;
 728
 729	for (i = 0; i < PTRS_PER_PTE; i++)
 730		if (!pte_none(pte[i]))
 731			return false;
 732
 733	free_page((unsigned long)pte);
 734	return true;
 735}
 736
 737static bool try_to_free_pmd_page(pmd_t *pmd)
 738{
 739	int i;
 740
 741	for (i = 0; i < PTRS_PER_PMD; i++)
 742		if (!pmd_none(pmd[i]))
 743			return false;
 744
 745	free_page((unsigned long)pmd);
 746	return true;
 747}
 748
 749static bool try_to_free_pud_page(pud_t *pud)
 750{
 751	int i;
 752
 753	for (i = 0; i < PTRS_PER_PUD; i++)
 754		if (!pud_none(pud[i]))
 755			return false;
 756
 757	free_page((unsigned long)pud);
 758	return true;
 759}
 760
 761static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
 762{
 763	pte_t *pte = pte_offset_kernel(pmd, start);
 764
 765	while (start < end) {
 766		set_pte(pte, __pte(0));
 767
 768		start += PAGE_SIZE;
 769		pte++;
 770	}
 771
 772	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
 773		pmd_clear(pmd);
 774		return true;
 775	}
 776	return false;
 777}
 778
 779static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
 780			      unsigned long start, unsigned long end)
 781{
 782	if (unmap_pte_range(pmd, start, end))
 783		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
 784			pud_clear(pud);
 785}
 786
 787static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
 788{
 789	pmd_t *pmd = pmd_offset(pud, start);
 790
 791	/*
 792	 * Not on a 2MB page boundary?
 793	 */
 794	if (start & (PMD_SIZE - 1)) {
 795		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
 796		unsigned long pre_end = min_t(unsigned long, end, next_page);
 797
 798		__unmap_pmd_range(pud, pmd, start, pre_end);
 799
 800		start = pre_end;
 801		pmd++;
 802	}
 803
 804	/*
 805	 * Try to unmap in 2M chunks.
 806	 */
 807	while (end - start >= PMD_SIZE) {
 808		if (pmd_large(*pmd))
 809			pmd_clear(pmd);
 810		else
 811			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
 812
 813		start += PMD_SIZE;
 814		pmd++;
 815	}
 816
 817	/*
 818	 * 4K leftovers?
 819	 */
 820	if (start < end)
 821		return __unmap_pmd_range(pud, pmd, start, end);
 822
 823	/*
 824	 * Try again to free the PMD page if haven't succeeded above.
 825	 */
 826	if (!pud_none(*pud))
 827		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
 828			pud_clear(pud);
 829}
 830
 831static void unmap_pud_range(pgd_t *pgd, unsigned long start, unsigned long end)
 832{
 833	pud_t *pud = pud_offset(pgd, start);
 834
 835	/*
 836	 * Not on a GB page boundary?
 837	 */
 838	if (start & (PUD_SIZE - 1)) {
 839		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
 840		unsigned long pre_end	= min_t(unsigned long, end, next_page);
 841
 842		unmap_pmd_range(pud, start, pre_end);
 843
 844		start = pre_end;
 845		pud++;
 846	}
 847
 848	/*
 849	 * Try to unmap in 1G chunks?
 850	 */
 851	while (end - start >= PUD_SIZE) {
 852
 853		if (pud_large(*pud))
 854			pud_clear(pud);
 855		else
 856			unmap_pmd_range(pud, start, start + PUD_SIZE);
 857
 858		start += PUD_SIZE;
 859		pud++;
 860	}
 861
 862	/*
 863	 * 2M leftovers?
 864	 */
 865	if (start < end)
 866		unmap_pmd_range(pud, start, end);
 867
 868	/*
 869	 * No need to try to free the PUD page because we'll free it in
 870	 * populate_pgd's error path
 871	 */
 872}
 873
 874static void unmap_pgd_range(pgd_t *root, unsigned long addr, unsigned long end)
 875{
 876	pgd_t *pgd_entry = root + pgd_index(addr);
 877
 878	unmap_pud_range(pgd_entry, addr, end);
 879
 880	if (try_to_free_pud_page((pud_t *)pgd_page_vaddr(*pgd_entry)))
 881		pgd_clear(pgd_entry);
 882}
 883
 884static int alloc_pte_page(pmd_t *pmd)
 885{
 886	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
 887	if (!pte)
 888		return -1;
 889
 890	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
 891	return 0;
 892}
 893
 894static int alloc_pmd_page(pud_t *pud)
 895{
 896	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
 897	if (!pmd)
 898		return -1;
 899
 900	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
 901	return 0;
 902}
 903
 904static void populate_pte(struct cpa_data *cpa,
 905			 unsigned long start, unsigned long end,
 906			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
 907{
 908	pte_t *pte;
 909
 910	pte = pte_offset_kernel(pmd, start);
 911
 912	/*
 913	 * Set the GLOBAL flags only if the PRESENT flag is
 914	 * set otherwise pte_present will return true even on
 915	 * a non present pte. The canon_pgprot will clear
 916	 * _PAGE_GLOBAL for the ancient hardware that doesn't
 917	 * support it.
 918	 */
 919	if (pgprot_val(pgprot) & _PAGE_PRESENT)
 920		pgprot_val(pgprot) |= _PAGE_GLOBAL;
 921	else
 922		pgprot_val(pgprot) &= ~_PAGE_GLOBAL;
 923
 924	pgprot = canon_pgprot(pgprot);
 925
 926	while (num_pages-- && start < end) {
 927		set_pte(pte, pfn_pte(cpa->pfn, pgprot));
 928
 929		start	 += PAGE_SIZE;
 930		cpa->pfn++;
 931		pte++;
 932	}
 933}
 934
 935static int populate_pmd(struct cpa_data *cpa,
 936			unsigned long start, unsigned long end,
 937			unsigned num_pages, pud_t *pud, pgprot_t pgprot)
 938{
 939	unsigned int cur_pages = 0;
 940	pmd_t *pmd;
 941	pgprot_t pmd_pgprot;
 942
 943	/*
 944	 * Not on a 2M boundary?
 945	 */
 946	if (start & (PMD_SIZE - 1)) {
 947		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
 948		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
 949
 950		pre_end   = min_t(unsigned long, pre_end, next_page);
 951		cur_pages = (pre_end - start) >> PAGE_SHIFT;
 952		cur_pages = min_t(unsigned int, num_pages, cur_pages);
 953
 954		/*
 955		 * Need a PTE page?
 956		 */
 957		pmd = pmd_offset(pud, start);
 958		if (pmd_none(*pmd))
 959			if (alloc_pte_page(pmd))
 960				return -1;
 961
 962		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
 963
 964		start = pre_end;
 965	}
 966
 967	/*
 968	 * We mapped them all?
 969	 */
 970	if (num_pages == cur_pages)
 971		return cur_pages;
 972
 973	pmd_pgprot = pgprot_4k_2_large(pgprot);
 974
 975	while (end - start >= PMD_SIZE) {
 976
 977		/*
 978		 * We cannot use a 1G page so allocate a PMD page if needed.
 979		 */
 980		if (pud_none(*pud))
 981			if (alloc_pmd_page(pud))
 982				return -1;
 983
 984		pmd = pmd_offset(pud, start);
 985
 986		set_pmd(pmd, __pmd(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
 987				   massage_pgprot(pmd_pgprot)));
 988
 989		start	  += PMD_SIZE;
 990		cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
 991		cur_pages += PMD_SIZE >> PAGE_SHIFT;
 992	}
 993
 994	/*
 995	 * Map trailing 4K pages.
 996	 */
 997	if (start < end) {
 998		pmd = pmd_offset(pud, start);
 999		if (pmd_none(*pmd))
1000			if (alloc_pte_page(pmd))
1001				return -1;
1002
1003		populate_pte(cpa, start, end, num_pages - cur_pages,
1004			     pmd, pgprot);
1005	}
1006	return num_pages;
1007}
1008
1009static int populate_pud(struct cpa_data *cpa, unsigned long start, pgd_t *pgd,
1010			pgprot_t pgprot)
1011{
1012	pud_t *pud;
1013	unsigned long end;
1014	int cur_pages = 0;
1015	pgprot_t pud_pgprot;
1016
1017	end = start + (cpa->numpages << PAGE_SHIFT);
1018
1019	/*
1020	 * Not on a Gb page boundary? => map everything up to it with
1021	 * smaller pages.
1022	 */
1023	if (start & (PUD_SIZE - 1)) {
1024		unsigned long pre_end;
1025		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1026
1027		pre_end   = min_t(unsigned long, end, next_page);
1028		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1029		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1030
1031		pud = pud_offset(pgd, start);
1032
1033		/*
1034		 * Need a PMD page?
1035		 */
1036		if (pud_none(*pud))
1037			if (alloc_pmd_page(pud))
1038				return -1;
1039
1040		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1041					 pud, pgprot);
1042		if (cur_pages < 0)
1043			return cur_pages;
1044
1045		start = pre_end;
1046	}
1047
1048	/* We mapped them all? */
1049	if (cpa->numpages == cur_pages)
1050		return cur_pages;
1051
1052	pud = pud_offset(pgd, start);
1053	pud_pgprot = pgprot_4k_2_large(pgprot);
1054
1055	/*
1056	 * Map everything starting from the Gb boundary, possibly with 1G pages
1057	 */
1058	while (cpu_has_gbpages && end - start >= PUD_SIZE) {
1059		set_pud(pud, __pud(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
1060				   massage_pgprot(pud_pgprot)));
1061
1062		start	  += PUD_SIZE;
1063		cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1064		cur_pages += PUD_SIZE >> PAGE_SHIFT;
1065		pud++;
1066	}
1067
1068	/* Map trailing leftover */
1069	if (start < end) {
1070		int tmp;
1071
1072		pud = pud_offset(pgd, start);
1073		if (pud_none(*pud))
1074			if (alloc_pmd_page(pud))
1075				return -1;
1076
1077		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1078				   pud, pgprot);
1079		if (tmp < 0)
1080			return cur_pages;
1081
1082		cur_pages += tmp;
1083	}
1084	return cur_pages;
1085}
1086
1087/*
1088 * Restrictions for kernel page table do not necessarily apply when mapping in
1089 * an alternate PGD.
1090 */
1091static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1092{
1093	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1094	pud_t *pud = NULL;	/* shut up gcc */
1095	pgd_t *pgd_entry;
1096	int ret;
1097
1098	pgd_entry = cpa->pgd + pgd_index(addr);
1099
1100	/*
1101	 * Allocate a PUD page and hand it down for mapping.
1102	 */
1103	if (pgd_none(*pgd_entry)) {
1104		pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1105		if (!pud)
1106			return -1;
1107
1108		set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
1109	}
1110
1111	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1112	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1113
1114	ret = populate_pud(cpa, addr, pgd_entry, pgprot);
1115	if (ret < 0) {
1116		unmap_pgd_range(cpa->pgd, addr,
1117				addr + (cpa->numpages << PAGE_SHIFT));
1118		return ret;
1119	}
1120
1121	cpa->numpages = ret;
1122	return 0;
1123}
1124
1125static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1126			       int primary)
1127{
1128	if (cpa->pgd)
1129		return populate_pgd(cpa, vaddr);
1130
1131	/*
1132	 * Ignore all non primary paths.
1133	 */
1134	if (!primary) {
1135		cpa->numpages = 1;
1136		return 0;
1137	}
1138
1139	/*
1140	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1141	 * to have holes.
1142	 * Also set numpages to '1' indicating that we processed cpa req for
1143	 * one virtual address page and its pfn. TBD: numpages can be set based
1144	 * on the initial value and the level returned by lookup_address().
1145	 */
1146	if (within(vaddr, PAGE_OFFSET,
1147		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1148		cpa->numpages = 1;
1149		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1150		return 0;
1151	} else {
1152		WARN(1, KERN_WARNING "CPA: called for zero pte. "
1153			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1154			*cpa->vaddr);
1155
1156		return -EFAULT;
1157	}
1158}
1159
1160static int __change_page_attr(struct cpa_data *cpa, int primary)
1161{
1162	unsigned long address;
1163	int do_split, err;
1164	unsigned int level;
1165	pte_t *kpte, old_pte;
1166
1167	if (cpa->flags & CPA_PAGES_ARRAY) {
1168		struct page *page = cpa->pages[cpa->curpage];
1169		if (unlikely(PageHighMem(page)))
1170			return 0;
1171		address = (unsigned long)page_address(page);
1172	} else if (cpa->flags & CPA_ARRAY)
1173		address = cpa->vaddr[cpa->curpage];
1174	else
1175		address = *cpa->vaddr;
1176repeat:
1177	kpte = _lookup_address_cpa(cpa, address, &level);
1178	if (!kpte)
1179		return __cpa_process_fault(cpa, address, primary);
1180
1181	old_pte = *kpte;
1182	if (!pte_val(old_pte))
1183		return __cpa_process_fault(cpa, address, primary);
1184
1185	if (level == PG_LEVEL_4K) {
1186		pte_t new_pte;
1187		pgprot_t new_prot = pte_pgprot(old_pte);
1188		unsigned long pfn = pte_pfn(old_pte);
1189
1190		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1191		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1192
1193		new_prot = static_protections(new_prot, address, pfn);
1194
1195		/*
1196		 * Set the GLOBAL flags only if the PRESENT flag is
1197		 * set otherwise pte_present will return true even on
1198		 * a non present pte. The canon_pgprot will clear
1199		 * _PAGE_GLOBAL for the ancient hardware that doesn't
1200		 * support it.
1201		 */
1202		if (pgprot_val(new_prot) & _PAGE_PRESENT)
1203			pgprot_val(new_prot) |= _PAGE_GLOBAL;
1204		else
1205			pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1206
1207		/*
1208		 * We need to keep the pfn from the existing PTE,
1209		 * after all we're only going to change it's attributes
1210		 * not the memory it points to
1211		 */
1212		new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1213		cpa->pfn = pfn;
1214		/*
1215		 * Do we really change anything ?
1216		 */
1217		if (pte_val(old_pte) != pte_val(new_pte)) {
1218			set_pte_atomic(kpte, new_pte);
1219			cpa->flags |= CPA_FLUSHTLB;
1220		}
1221		cpa->numpages = 1;
1222		return 0;
1223	}
1224
1225	/*
1226	 * Check, whether we can keep the large page intact
1227	 * and just change the pte:
1228	 */
1229	do_split = try_preserve_large_page(kpte, address, cpa);
1230	/*
1231	 * When the range fits into the existing large page,
1232	 * return. cp->numpages and cpa->tlbflush have been updated in
1233	 * try_large_page:
1234	 */
1235	if (do_split <= 0)
1236		return do_split;
1237
1238	/*
1239	 * We have to split the large page:
1240	 */
1241	err = split_large_page(cpa, kpte, address);
1242	if (!err) {
1243		/*
1244	 	 * Do a global flush tlb after splitting the large page
1245	 	 * and before we do the actual change page attribute in the PTE.
1246	 	 *
1247	 	 * With out this, we violate the TLB application note, that says
1248	 	 * "The TLBs may contain both ordinary and large-page
1249		 *  translations for a 4-KByte range of linear addresses. This
1250		 *  may occur if software modifies the paging structures so that
1251		 *  the page size used for the address range changes. If the two
1252		 *  translations differ with respect to page frame or attributes
1253		 *  (e.g., permissions), processor behavior is undefined and may
1254		 *  be implementation-specific."
1255	 	 *
1256	 	 * We do this global tlb flush inside the cpa_lock, so that we
1257		 * don't allow any other cpu, with stale tlb entries change the
1258		 * page attribute in parallel, that also falls into the
1259		 * just split large page entry.
1260	 	 */
1261		flush_tlb_all();
1262		goto repeat;
1263	}
1264
1265	return err;
1266}
1267
1268static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1269
1270static int cpa_process_alias(struct cpa_data *cpa)
1271{
1272	struct cpa_data alias_cpa;
1273	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1274	unsigned long vaddr;
1275	int ret;
1276
1277	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1278		return 0;
1279
1280	/*
1281	 * No need to redo, when the primary call touched the direct
1282	 * mapping already:
1283	 */
1284	if (cpa->flags & CPA_PAGES_ARRAY) {
1285		struct page *page = cpa->pages[cpa->curpage];
1286		if (unlikely(PageHighMem(page)))
1287			return 0;
1288		vaddr = (unsigned long)page_address(page);
1289	} else if (cpa->flags & CPA_ARRAY)
1290		vaddr = cpa->vaddr[cpa->curpage];
1291	else
1292		vaddr = *cpa->vaddr;
1293
1294	if (!(within(vaddr, PAGE_OFFSET,
1295		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1296
1297		alias_cpa = *cpa;
1298		alias_cpa.vaddr = &laddr;
1299		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1300
1301		ret = __change_page_attr_set_clr(&alias_cpa, 0);
1302		if (ret)
1303			return ret;
1304	}
1305
1306#ifdef CONFIG_X86_64
1307	/*
1308	 * If the primary call didn't touch the high mapping already
1309	 * and the physical address is inside the kernel map, we need
1310	 * to touch the high mapped kernel as well:
1311	 */
1312	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1313	    within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
1314		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1315					       __START_KERNEL_map - phys_base;
1316		alias_cpa = *cpa;
1317		alias_cpa.vaddr = &temp_cpa_vaddr;
1318		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1319
1320		/*
1321		 * The high mapping range is imprecise, so ignore the
1322		 * return value.
1323		 */
1324		__change_page_attr_set_clr(&alias_cpa, 0);
1325	}
1326#endif
1327
1328	return 0;
1329}
1330
1331static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1332{
1333	int ret, numpages = cpa->numpages;
1334
1335	while (numpages) {
1336		/*
1337		 * Store the remaining nr of pages for the large page
1338		 * preservation check.
1339		 */
1340		cpa->numpages = numpages;
1341		/* for array changes, we can't use large page */
1342		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1343			cpa->numpages = 1;
1344
1345		if (!debug_pagealloc_enabled())
1346			spin_lock(&cpa_lock);
1347		ret = __change_page_attr(cpa, checkalias);
1348		if (!debug_pagealloc_enabled())
1349			spin_unlock(&cpa_lock);
1350		if (ret)
1351			return ret;
1352
1353		if (checkalias) {
1354			ret = cpa_process_alias(cpa);
1355			if (ret)
1356				return ret;
1357		}
1358
1359		/*
1360		 * Adjust the number of pages with the result of the
1361		 * CPA operation. Either a large page has been
1362		 * preserved or a single page update happened.
1363		 */
1364		BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1365		numpages -= cpa->numpages;
1366		if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1367			cpa->curpage++;
1368		else
1369			*cpa->vaddr += cpa->numpages * PAGE_SIZE;
1370
1371	}
1372	return 0;
1373}
1374
1375static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1376				    pgprot_t mask_set, pgprot_t mask_clr,
1377				    int force_split, int in_flag,
1378				    struct page **pages)
1379{
1380	struct cpa_data cpa;
1381	int ret, cache, checkalias;
1382	unsigned long baddr = 0;
1383
1384	memset(&cpa, 0, sizeof(cpa));
1385
1386	/*
1387	 * Check, if we are requested to change a not supported
1388	 * feature:
1389	 */
1390	mask_set = canon_pgprot(mask_set);
1391	mask_clr = canon_pgprot(mask_clr);
1392	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1393		return 0;
1394
1395	/* Ensure we are PAGE_SIZE aligned */
1396	if (in_flag & CPA_ARRAY) {
1397		int i;
1398		for (i = 0; i < numpages; i++) {
1399			if (addr[i] & ~PAGE_MASK) {
1400				addr[i] &= PAGE_MASK;
1401				WARN_ON_ONCE(1);
1402			}
1403		}
1404	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
1405		/*
1406		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1407		 * No need to cehck in that case
1408		 */
1409		if (*addr & ~PAGE_MASK) {
1410			*addr &= PAGE_MASK;
1411			/*
1412			 * People should not be passing in unaligned addresses:
1413			 */
1414			WARN_ON_ONCE(1);
1415		}
1416		/*
1417		 * Save address for cache flush. *addr is modified in the call
1418		 * to __change_page_attr_set_clr() below.
1419		 */
1420		baddr = *addr;
1421	}
1422
1423	/* Must avoid aliasing mappings in the highmem code */
1424	kmap_flush_unused();
1425
1426	vm_unmap_aliases();
1427
1428	cpa.vaddr = addr;
1429	cpa.pages = pages;
1430	cpa.numpages = numpages;
1431	cpa.mask_set = mask_set;
1432	cpa.mask_clr = mask_clr;
1433	cpa.flags = 0;
1434	cpa.curpage = 0;
1435	cpa.force_split = force_split;
1436
1437	if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1438		cpa.flags |= in_flag;
1439
1440	/* No alias checking for _NX bit modifications */
1441	checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1442
1443	ret = __change_page_attr_set_clr(&cpa, checkalias);
1444
1445	/*
1446	 * Check whether we really changed something:
1447	 */
1448	if (!(cpa.flags & CPA_FLUSHTLB))
1449		goto out;
1450
1451	/*
1452	 * No need to flush, when we did not set any of the caching
1453	 * attributes:
1454	 */
1455	cache = !!pgprot2cachemode(mask_set);
1456
1457	/*
1458	 * On success we use CLFLUSH, when the CPU supports it to
1459	 * avoid the WBINVD. If the CPU does not support it and in the
1460	 * error case we fall back to cpa_flush_all (which uses
1461	 * WBINVD):
1462	 */
1463	if (!ret && cpu_has_clflush) {
1464		if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1465			cpa_flush_array(addr, numpages, cache,
1466					cpa.flags, pages);
1467		} else
1468			cpa_flush_range(baddr, numpages, cache);
1469	} else
1470		cpa_flush_all(cache);
1471
1472out:
1473	return ret;
1474}
1475
1476static inline int change_page_attr_set(unsigned long *addr, int numpages,
1477				       pgprot_t mask, int array)
1478{
1479	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1480		(array ? CPA_ARRAY : 0), NULL);
1481}
1482
1483static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1484					 pgprot_t mask, int array)
1485{
1486	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1487		(array ? CPA_ARRAY : 0), NULL);
1488}
1489
1490static inline int cpa_set_pages_array(struct page **pages, int numpages,
1491				       pgprot_t mask)
1492{
1493	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1494		CPA_PAGES_ARRAY, pages);
1495}
1496
1497static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1498					 pgprot_t mask)
1499{
1500	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1501		CPA_PAGES_ARRAY, pages);
1502}
1503
1504int _set_memory_uc(unsigned long addr, int numpages)
1505{
1506	/*
1507	 * for now UC MINUS. see comments in ioremap_nocache()
1508	 * If you really need strong UC use ioremap_uc(), but note
1509	 * that you cannot override IO areas with set_memory_*() as
1510	 * these helpers cannot work with IO memory.
1511	 */
1512	return change_page_attr_set(&addr, numpages,
1513				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1514				    0);
1515}
1516
1517int set_memory_uc(unsigned long addr, int numpages)
1518{
1519	int ret;
1520
1521	/*
1522	 * for now UC MINUS. see comments in ioremap_nocache()
1523	 */
1524	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1525			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
1526	if (ret)
1527		goto out_err;
1528
1529	ret = _set_memory_uc(addr, numpages);
1530	if (ret)
1531		goto out_free;
1532
1533	return 0;
1534
1535out_free:
1536	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1537out_err:
1538	return ret;
1539}
1540EXPORT_SYMBOL(set_memory_uc);
1541
1542static int _set_memory_array(unsigned long *addr, int addrinarray,
1543		enum page_cache_mode new_type)
1544{
1545	enum page_cache_mode set_type;
1546	int i, j;
1547	int ret;
1548
1549	for (i = 0; i < addrinarray; i++) {
1550		ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1551					new_type, NULL);
1552		if (ret)
1553			goto out_free;
1554	}
1555
1556	/* If WC, set to UC- first and then WC */
1557	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1558				_PAGE_CACHE_MODE_UC_MINUS : new_type;
1559
1560	ret = change_page_attr_set(addr, addrinarray,
1561				   cachemode2pgprot(set_type), 1);
1562
1563	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1564		ret = change_page_attr_set_clr(addr, addrinarray,
1565					       cachemode2pgprot(
1566						_PAGE_CACHE_MODE_WC),
1567					       __pgprot(_PAGE_CACHE_MASK),
1568					       0, CPA_ARRAY, NULL);
1569	if (ret)
1570		goto out_free;
1571
1572	return 0;
1573
1574out_free:
1575	for (j = 0; j < i; j++)
1576		free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1577
1578	return ret;
1579}
1580
1581int set_memory_array_uc(unsigned long *addr, int addrinarray)
1582{
1583	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1584}
1585EXPORT_SYMBOL(set_memory_array_uc);
1586
1587int set_memory_array_wc(unsigned long *addr, int addrinarray)
1588{
1589	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1590}
1591EXPORT_SYMBOL(set_memory_array_wc);
1592
1593int set_memory_array_wt(unsigned long *addr, int addrinarray)
1594{
1595	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1596}
1597EXPORT_SYMBOL_GPL(set_memory_array_wt);
1598
1599int _set_memory_wc(unsigned long addr, int numpages)
1600{
1601	int ret;
1602	unsigned long addr_copy = addr;
1603
1604	ret = change_page_attr_set(&addr, numpages,
1605				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1606				   0);
1607	if (!ret) {
1608		ret = change_page_attr_set_clr(&addr_copy, numpages,
1609					       cachemode2pgprot(
1610						_PAGE_CACHE_MODE_WC),
1611					       __pgprot(_PAGE_CACHE_MASK),
1612					       0, 0, NULL);
1613	}
1614	return ret;
1615}
1616
1617int set_memory_wc(unsigned long addr, int numpages)
1618{
1619	int ret;
1620
1621	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1622		_PAGE_CACHE_MODE_WC, NULL);
1623	if (ret)
1624		return ret;
1625
1626	ret = _set_memory_wc(addr, numpages);
1627	if (ret)
1628		free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1629
1630	return ret;
1631}
1632EXPORT_SYMBOL(set_memory_wc);
1633
1634int _set_memory_wt(unsigned long addr, int numpages)
1635{
1636	return change_page_attr_set(&addr, numpages,
1637				    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1638}
1639
1640int set_memory_wt(unsigned long addr, int numpages)
1641{
1642	int ret;
1643
1644	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1645			      _PAGE_CACHE_MODE_WT, NULL);
1646	if (ret)
1647		return ret;
1648
1649	ret = _set_memory_wt(addr, numpages);
1650	if (ret)
1651		free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1652
1653	return ret;
1654}
1655EXPORT_SYMBOL_GPL(set_memory_wt);
1656
1657int _set_memory_wb(unsigned long addr, int numpages)
1658{
1659	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1660	return change_page_attr_clear(&addr, numpages,
1661				      __pgprot(_PAGE_CACHE_MASK), 0);
1662}
1663
1664int set_memory_wb(unsigned long addr, int numpages)
1665{
1666	int ret;
1667
1668	ret = _set_memory_wb(addr, numpages);
1669	if (ret)
1670		return ret;
1671
1672	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1673	return 0;
1674}
1675EXPORT_SYMBOL(set_memory_wb);
1676
1677int set_memory_array_wb(unsigned long *addr, int addrinarray)
1678{
1679	int i;
1680	int ret;
1681
1682	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1683	ret = change_page_attr_clear(addr, addrinarray,
1684				      __pgprot(_PAGE_CACHE_MASK), 1);
1685	if (ret)
1686		return ret;
1687
1688	for (i = 0; i < addrinarray; i++)
1689		free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1690
1691	return 0;
1692}
1693EXPORT_SYMBOL(set_memory_array_wb);
1694
1695int set_memory_x(unsigned long addr, int numpages)
1696{
1697	if (!(__supported_pte_mask & _PAGE_NX))
1698		return 0;
1699
1700	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1701}
1702EXPORT_SYMBOL(set_memory_x);
1703
1704int set_memory_nx(unsigned long addr, int numpages)
1705{
1706	if (!(__supported_pte_mask & _PAGE_NX))
1707		return 0;
1708
1709	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1710}
1711EXPORT_SYMBOL(set_memory_nx);
1712
1713int set_memory_ro(unsigned long addr, int numpages)
1714{
1715	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1716}
1717
1718int set_memory_rw(unsigned long addr, int numpages)
1719{
1720	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1721}
1722
1723int set_memory_np(unsigned long addr, int numpages)
1724{
1725	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1726}
1727
1728int set_memory_4k(unsigned long addr, int numpages)
1729{
1730	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1731					__pgprot(0), 1, 0, NULL);
1732}
1733
1734int set_pages_uc(struct page *page, int numpages)
1735{
1736	unsigned long addr = (unsigned long)page_address(page);
1737
1738	return set_memory_uc(addr, numpages);
1739}
1740EXPORT_SYMBOL(set_pages_uc);
1741
1742static int _set_pages_array(struct page **pages, int addrinarray,
1743		enum page_cache_mode new_type)
1744{
1745	unsigned long start;
1746	unsigned long end;
1747	enum page_cache_mode set_type;
1748	int i;
1749	int free_idx;
1750	int ret;
1751
1752	for (i = 0; i < addrinarray; i++) {
1753		if (PageHighMem(pages[i]))
1754			continue;
1755		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1756		end = start + PAGE_SIZE;
1757		if (reserve_memtype(start, end, new_type, NULL))
1758			goto err_out;
1759	}
1760
1761	/* If WC, set to UC- first and then WC */
1762	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1763				_PAGE_CACHE_MODE_UC_MINUS : new_type;
1764
1765	ret = cpa_set_pages_array(pages, addrinarray,
1766				  cachemode2pgprot(set_type));
1767	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1768		ret = change_page_attr_set_clr(NULL, addrinarray,
1769					       cachemode2pgprot(
1770						_PAGE_CACHE_MODE_WC),
1771					       __pgprot(_PAGE_CACHE_MASK),
1772					       0, CPA_PAGES_ARRAY, pages);
1773	if (ret)
1774		goto err_out;
1775	return 0; /* Success */
1776err_out:
1777	free_idx = i;
1778	for (i = 0; i < free_idx; i++) {
1779		if (PageHighMem(pages[i]))
1780			continue;
1781		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1782		end = start + PAGE_SIZE;
1783		free_memtype(start, end);
1784	}
1785	return -EINVAL;
1786}
1787
1788int set_pages_array_uc(struct page **pages, int addrinarray)
1789{
1790	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1791}
1792EXPORT_SYMBOL(set_pages_array_uc);
1793
1794int set_pages_array_wc(struct page **pages, int addrinarray)
1795{
1796	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1797}
1798EXPORT_SYMBOL(set_pages_array_wc);
1799
1800int set_pages_array_wt(struct page **pages, int addrinarray)
1801{
1802	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1803}
1804EXPORT_SYMBOL_GPL(set_pages_array_wt);
1805
1806int set_pages_wb(struct page *page, int numpages)
1807{
1808	unsigned long addr = (unsigned long)page_address(page);
1809
1810	return set_memory_wb(addr, numpages);
1811}
1812EXPORT_SYMBOL(set_pages_wb);
1813
1814int set_pages_array_wb(struct page **pages, int addrinarray)
1815{
1816	int retval;
1817	unsigned long start;
1818	unsigned long end;
1819	int i;
1820
1821	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1822	retval = cpa_clear_pages_array(pages, addrinarray,
1823			__pgprot(_PAGE_CACHE_MASK));
1824	if (retval)
1825		return retval;
1826
1827	for (i = 0; i < addrinarray; i++) {
1828		if (PageHighMem(pages[i]))
1829			continue;
1830		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1831		end = start + PAGE_SIZE;
1832		free_memtype(start, end);
1833	}
1834
1835	return 0;
1836}
1837EXPORT_SYMBOL(set_pages_array_wb);
1838
1839int set_pages_x(struct page *page, int numpages)
1840{
1841	unsigned long addr = (unsigned long)page_address(page);
1842
1843	return set_memory_x(addr, numpages);
1844}
1845EXPORT_SYMBOL(set_pages_x);
1846
1847int set_pages_nx(struct page *page, int numpages)
1848{
1849	unsigned long addr = (unsigned long)page_address(page);
1850
1851	return set_memory_nx(addr, numpages);
1852}
1853EXPORT_SYMBOL(set_pages_nx);
1854
1855int set_pages_ro(struct page *page, int numpages)
1856{
1857	unsigned long addr = (unsigned long)page_address(page);
1858
1859	return set_memory_ro(addr, numpages);
1860}
1861
1862int set_pages_rw(struct page *page, int numpages)
1863{
1864	unsigned long addr = (unsigned long)page_address(page);
1865
1866	return set_memory_rw(addr, numpages);
1867}
1868
1869#ifdef CONFIG_DEBUG_PAGEALLOC
1870
1871static int __set_pages_p(struct page *page, int numpages)
1872{
1873	unsigned long tempaddr = (unsigned long) page_address(page);
1874	struct cpa_data cpa = { .vaddr = &tempaddr,
1875				.pgd = NULL,
1876				.numpages = numpages,
1877				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1878				.mask_clr = __pgprot(0),
1879				.flags = 0};
1880
1881	/*
1882	 * No alias checking needed for setting present flag. otherwise,
1883	 * we may need to break large pages for 64-bit kernel text
1884	 * mappings (this adds to complexity if we want to do this from
1885	 * atomic context especially). Let's keep it simple!
1886	 */
1887	return __change_page_attr_set_clr(&cpa, 0);
1888}
1889
1890static int __set_pages_np(struct page *page, int numpages)
1891{
1892	unsigned long tempaddr = (unsigned long) page_address(page);
1893	struct cpa_data cpa = { .vaddr = &tempaddr,
1894				.pgd = NULL,
1895				.numpages = numpages,
1896				.mask_set = __pgprot(0),
1897				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1898				.flags = 0};
1899
1900	/*
1901	 * No alias checking needed for setting not present flag. otherwise,
1902	 * we may need to break large pages for 64-bit kernel text
1903	 * mappings (this adds to complexity if we want to do this from
1904	 * atomic context especially). Let's keep it simple!
1905	 */
1906	return __change_page_attr_set_clr(&cpa, 0);
1907}
1908
1909void __kernel_map_pages(struct page *page, int numpages, int enable)
1910{
1911	if (PageHighMem(page))
1912		return;
1913	if (!enable) {
1914		debug_check_no_locks_freed(page_address(page),
1915					   numpages * PAGE_SIZE);
1916	}
1917
1918	/*
1919	 * The return value is ignored as the calls cannot fail.
1920	 * Large pages for identity mappings are not used at boot time
1921	 * and hence no memory allocations during large page split.
1922	 */
1923	if (enable)
1924		__set_pages_p(page, numpages);
1925	else
1926		__set_pages_np(page, numpages);
1927
1928	/*
1929	 * We should perform an IPI and flush all tlbs,
1930	 * but that can deadlock->flush only current cpu:
1931	 */
1932	__flush_tlb_all();
1933
1934	arch_flush_lazy_mmu_mode();
1935}
1936
1937#ifdef CONFIG_HIBERNATION
1938
1939bool kernel_page_present(struct page *page)
1940{
1941	unsigned int level;
1942	pte_t *pte;
1943
1944	if (PageHighMem(page))
1945		return false;
1946
1947	pte = lookup_address((unsigned long)page_address(page), &level);
1948	return (pte_val(*pte) & _PAGE_PRESENT);
1949}
1950
1951#endif /* CONFIG_HIBERNATION */
1952
1953#endif /* CONFIG_DEBUG_PAGEALLOC */
1954
1955int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
1956			    unsigned numpages, unsigned long page_flags)
1957{
1958	int retval = -EINVAL;
1959
1960	struct cpa_data cpa = {
1961		.vaddr = &address,
1962		.pfn = pfn,
1963		.pgd = pgd,
1964		.numpages = numpages,
1965		.mask_set = __pgprot(0),
1966		.mask_clr = __pgprot(0),
1967		.flags = 0,
1968	};
1969
1970	if (!(__supported_pte_mask & _PAGE_NX))
1971		goto out;
1972
1973	if (!(page_flags & _PAGE_NX))
1974		cpa.mask_clr = __pgprot(_PAGE_NX);
1975
1976	if (!(page_flags & _PAGE_RW))
1977		cpa.mask_clr = __pgprot(_PAGE_RW);
1978
1979	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
1980
1981	retval = __change_page_attr_set_clr(&cpa, 0);
1982	__flush_tlb_all();
1983
1984out:
1985	return retval;
1986}
1987
1988void kernel_unmap_pages_in_pgd(pgd_t *root, unsigned long address,
1989			       unsigned numpages)
1990{
1991	unmap_pgd_range(root, address, address + (numpages << PAGE_SHIFT));
1992}
1993
1994/*
1995 * The testcases use internal knowledge of the implementation that shouldn't
1996 * be exposed to the rest of the kernel. Include these directly here.
1997 */
1998#ifdef CONFIG_CPA_DEBUG
1999#include "pageattr-test.c"
2000#endif