Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * x86 FPU boot time init code:
  4 */
  5#include <asm/fpu/api.h>
  6#include <asm/tlbflush.h>
  7#include <asm/setup.h>
 
  8
  9#include <linux/sched.h>
 10#include <linux/sched/task.h>
 11#include <linux/init.h>
 12
 13#include "internal.h"
 14#include "legacy.h"
 15#include "xstate.h"
 
 
 
 
 
 
 
 
 16
 17/*
 18 * Initialize the registers found in all CPUs, CR0 and CR4:
 19 */
 20static void fpu__init_cpu_generic(void)
 21{
 22	unsigned long cr0;
 23	unsigned long cr4_mask = 0;
 24
 25	if (boot_cpu_has(X86_FEATURE_FXSR))
 26		cr4_mask |= X86_CR4_OSFXSR;
 27	if (boot_cpu_has(X86_FEATURE_XMM))
 28		cr4_mask |= X86_CR4_OSXMMEXCPT;
 29	if (cr4_mask)
 30		cr4_set_bits(cr4_mask);
 31
 32	cr0 = read_cr0();
 33	cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
 34	if (!boot_cpu_has(X86_FEATURE_FPU))
 35		cr0 |= X86_CR0_EM;
 36	write_cr0(cr0);
 37
 38	/* Flush out any pending x87 state: */
 39#ifdef CONFIG_MATH_EMULATION
 40	if (!boot_cpu_has(X86_FEATURE_FPU))
 41		fpstate_init_soft(&current->thread.fpu.fpstate->regs.soft);
 42	else
 43#endif
 44		asm volatile ("fninit");
 45}
 46
 47/*
 48 * Enable all supported FPU features. Called when a CPU is brought online:
 49 */
 50void fpu__init_cpu(void)
 51{
 52	fpu__init_cpu_generic();
 53	fpu__init_cpu_xstate();
 
 54}
 55
 56static bool fpu__probe_without_cpuid(void)
 
 
 
 
 
 
 57{
 58	unsigned long cr0;
 59	u16 fsw, fcw;
 60
 61	fsw = fcw = 0xffff;
 62
 63	cr0 = read_cr0();
 64	cr0 &= ~(X86_CR0_TS | X86_CR0_EM);
 65	write_cr0(cr0);
 66
 67	asm volatile("fninit ; fnstsw %0 ; fnstcw %1" : "+m" (fsw), "+m" (fcw));
 68
 69	pr_info("x86/fpu: Probing for FPU: FSW=0x%04hx FCW=0x%04hx\n", fsw, fcw);
 70
 71	return fsw == 0 && (fcw & 0x103f) == 0x003f;
 72}
 73
 74static void fpu__init_system_early_generic(struct cpuinfo_x86 *c)
 75{
 76	if (!boot_cpu_has(X86_FEATURE_CPUID) &&
 77	    !test_bit(X86_FEATURE_FPU, (unsigned long *)cpu_caps_cleared)) {
 78		if (fpu__probe_without_cpuid())
 79			setup_force_cpu_cap(X86_FEATURE_FPU);
 80		else
 81			setup_clear_cpu_cap(X86_FEATURE_FPU);
 82	}
 83
 84#ifndef CONFIG_MATH_EMULATION
 85	if (!test_cpu_cap(&boot_cpu_data, X86_FEATURE_FPU)) {
 86		pr_emerg("x86/fpu: Giving up, no FPU found and no math emulation present\n");
 87		for (;;)
 88			asm volatile("hlt");
 89	}
 90#endif
 91}
 92
 93/*
 94 * Boot time FPU feature detection code:
 95 */
 96unsigned int mxcsr_feature_mask __ro_after_init = 0xffffffffu;
 97EXPORT_SYMBOL_GPL(mxcsr_feature_mask);
 98
 99static void __init fpu__init_system_mxcsr(void)
100{
101	unsigned int mask = 0;
102
103	if (boot_cpu_has(X86_FEATURE_FXSR)) {
104		/* Static because GCC does not get 16-byte stack alignment right: */
105		static struct fxregs_state fxregs __initdata;
106
107		asm volatile("fxsave %0" : "+m" (fxregs));
108
109		mask = fxregs.mxcsr_mask;
110
111		/*
112		 * If zero then use the default features mask,
113		 * which has all features set, except the
114		 * denormals-are-zero feature bit:
115		 */
116		if (mask == 0)
117			mask = 0x0000ffbf;
118	}
119	mxcsr_feature_mask &= mask;
120}
121
122/*
123 * Once per bootup FPU initialization sequences that will run on most x86 CPUs:
124 */
125static void __init fpu__init_system_generic(void)
126{
127	/*
128	 * Set up the legacy init FPU context. Will be updated when the
129	 * CPU supports XSAVE[S].
130	 */
131	fpstate_init_user(&init_fpstate);
132
133	fpu__init_system_mxcsr();
134}
135
136/*
 
 
 
 
 
 
 
 
 
 
 
 
137 * Enforce that 'MEMBER' is the last field of 'TYPE'.
138 *
139 * Align the computed size with alignment of the TYPE,
140 * because that's how C aligns structs.
141 */
142#define CHECK_MEMBER_AT_END_OF(TYPE, MEMBER) \
143	BUILD_BUG_ON(sizeof(TYPE) !=         \
144		     ALIGN(offsetofend(TYPE, MEMBER), _Alignof(TYPE)))
145
146/*
147 * We append the 'struct fpu' to the task_struct:
148 */
149static void __init fpu__init_task_struct_size(void)
150{
151	int task_size = sizeof(struct task_struct);
152
153	/*
154	 * Subtract off the static size of the register state.
155	 * It potentially has a bunch of padding.
156	 */
157	task_size -= sizeof(current->thread.fpu.__fpstate.regs);
158
159	/*
160	 * Add back the dynamically-calculated register state
161	 * size.
162	 */
163	task_size += fpu_kernel_cfg.default_size;
164
165	/*
166	 * We dynamically size 'struct fpu', so we require that
167	 * it be at the end of 'thread_struct' and that
168	 * 'thread_struct' be at the end of 'task_struct'.  If
169	 * you hit a compile error here, check the structure to
170	 * see if something got added to the end.
171	 */
172	CHECK_MEMBER_AT_END_OF(struct fpu, __fpstate);
173	CHECK_MEMBER_AT_END_OF(struct thread_struct, fpu);
174	CHECK_MEMBER_AT_END_OF(struct task_struct, thread);
175
176	arch_task_struct_size = task_size;
177}
178
179/*
180 * Set up the user and kernel xstate sizes based on the legacy FPU context size.
181 *
182 * We set this up first, and later it will be overwritten by
183 * fpu__init_system_xstate() if the CPU knows about xstates.
184 */
185static void __init fpu__init_system_xstate_size_legacy(void)
186{
187	unsigned int size;
 
 
 
188
189	/*
190	 * Note that the size configuration might be overwritten later
191	 * during fpu__init_system_xstate().
192	 */
193	if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
194		size = sizeof(struct swregs_state);
195	} else if (cpu_feature_enabled(X86_FEATURE_FXSR)) {
196		size = sizeof(struct fxregs_state);
197		fpu_user_cfg.legacy_features = XFEATURE_MASK_FPSSE;
 
 
 
 
198	} else {
199		size = sizeof(struct fregs_state);
200		fpu_user_cfg.legacy_features = XFEATURE_MASK_FP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201	}
202
203	fpu_kernel_cfg.max_size = size;
204	fpu_kernel_cfg.default_size = size;
205	fpu_user_cfg.max_size = size;
206	fpu_user_cfg.default_size = size;
207	fpstate_reset(&current->thread.fpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208}
209
210/*
211 * Called on the boot CPU once per system bootup, to set up the initial
212 * FPU state that is later cloned into all processes:
213 */
214void __init fpu__init_system(struct cpuinfo_x86 *c)
215{
216	fpstate_reset(&current->thread.fpu);
217	fpu__init_system_early_generic(c);
218
219	/*
220	 * The FPU has to be operational for some of the
221	 * later FPU init activities:
222	 */
223	fpu__init_cpu();
224
 
 
 
 
 
 
 
 
225	fpu__init_system_generic();
226	fpu__init_system_xstate_size_legacy();
227	fpu__init_system_xstate(fpu_kernel_cfg.max_size);
228	fpu__init_task_struct_size();
 
 
229}
v4.6
 
  1/*
  2 * x86 FPU boot time init code:
  3 */
  4#include <asm/fpu/internal.h>
  5#include <asm/tlbflush.h>
  6#include <asm/setup.h>
  7#include <asm/cmdline.h>
  8
  9#include <linux/sched.h>
 
 10#include <linux/init.h>
 11
 12/*
 13 * Initialize the TS bit in CR0 according to the style of context-switches
 14 * we are using:
 15 */
 16static void fpu__init_cpu_ctx_switch(void)
 17{
 18	if (!boot_cpu_has(X86_FEATURE_EAGER_FPU))
 19		stts();
 20	else
 21		clts();
 22}
 23
 24/*
 25 * Initialize the registers found in all CPUs, CR0 and CR4:
 26 */
 27static void fpu__init_cpu_generic(void)
 28{
 29	unsigned long cr0;
 30	unsigned long cr4_mask = 0;
 31
 32	if (cpu_has_fxsr)
 33		cr4_mask |= X86_CR4_OSFXSR;
 34	if (cpu_has_xmm)
 35		cr4_mask |= X86_CR4_OSXMMEXCPT;
 36	if (cr4_mask)
 37		cr4_set_bits(cr4_mask);
 38
 39	cr0 = read_cr0();
 40	cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
 41	if (!cpu_has_fpu)
 42		cr0 |= X86_CR0_EM;
 43	write_cr0(cr0);
 44
 45	/* Flush out any pending x87 state: */
 46#ifdef CONFIG_MATH_EMULATION
 47	if (!cpu_has_fpu)
 48		fpstate_init_soft(&current->thread.fpu.state.soft);
 49	else
 50#endif
 51		asm volatile ("fninit");
 52}
 53
 54/*
 55 * Enable all supported FPU features. Called when a CPU is brought online:
 56 */
 57void fpu__init_cpu(void)
 58{
 59	fpu__init_cpu_generic();
 60	fpu__init_cpu_xstate();
 61	fpu__init_cpu_ctx_switch();
 62}
 63
 64/*
 65 * The earliest FPU detection code.
 66 *
 67 * Set the X86_FEATURE_FPU CPU-capability bit based on
 68 * trying to execute an actual sequence of FPU instructions:
 69 */
 70static void fpu__init_system_early_generic(struct cpuinfo_x86 *c)
 71{
 72	unsigned long cr0;
 73	u16 fsw, fcw;
 74
 75	fsw = fcw = 0xffff;
 76
 77	cr0 = read_cr0();
 78	cr0 &= ~(X86_CR0_TS | X86_CR0_EM);
 79	write_cr0(cr0);
 80
 81	if (!test_bit(X86_FEATURE_FPU, (unsigned long *)cpu_caps_cleared)) {
 82		asm volatile("fninit ; fnstsw %0 ; fnstcw %1"
 83			     : "+m" (fsw), "+m" (fcw));
 84
 85		if (fsw == 0 && (fcw & 0x103f) == 0x003f)
 86			set_cpu_cap(c, X86_FEATURE_FPU);
 
 
 
 
 
 
 
 87		else
 88			clear_cpu_cap(c, X86_FEATURE_FPU);
 89	}
 90
 91#ifndef CONFIG_MATH_EMULATION
 92	if (!cpu_has_fpu) {
 93		pr_emerg("x86/fpu: Giving up, no FPU found and no math emulation present\n");
 94		for (;;)
 95			asm volatile("hlt");
 96	}
 97#endif
 98}
 99
100/*
101 * Boot time FPU feature detection code:
102 */
103unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
 
104
105static void __init fpu__init_system_mxcsr(void)
106{
107	unsigned int mask = 0;
108
109	if (cpu_has_fxsr) {
110		/* Static because GCC does not get 16-byte stack alignment right: */
111		static struct fxregs_state fxregs __initdata;
112
113		asm volatile("fxsave %0" : "+m" (fxregs));
114
115		mask = fxregs.mxcsr_mask;
116
117		/*
118		 * If zero then use the default features mask,
119		 * which has all features set, except the
120		 * denormals-are-zero feature bit:
121		 */
122		if (mask == 0)
123			mask = 0x0000ffbf;
124	}
125	mxcsr_feature_mask &= mask;
126}
127
128/*
129 * Once per bootup FPU initialization sequences that will run on most x86 CPUs:
130 */
131static void __init fpu__init_system_generic(void)
132{
133	/*
134	 * Set up the legacy init FPU context. (xstate init might overwrite this
135	 * with a more modern format, if the CPU supports it.)
136	 */
137	fpstate_init(&init_fpstate);
138
139	fpu__init_system_mxcsr();
140}
141
142/*
143 * Size of the FPU context state. All tasks in the system use the
144 * same context size, regardless of what portion they use.
145 * This is inherent to the XSAVE architecture which puts all state
146 * components into a single, continuous memory block:
147 */
148unsigned int xstate_size;
149EXPORT_SYMBOL_GPL(xstate_size);
150
151/* Get alignment of the TYPE. */
152#define TYPE_ALIGN(TYPE) offsetof(struct { char x; TYPE test; }, test)
153
154/*
155 * Enforce that 'MEMBER' is the last field of 'TYPE'.
156 *
157 * Align the computed size with alignment of the TYPE,
158 * because that's how C aligns structs.
159 */
160#define CHECK_MEMBER_AT_END_OF(TYPE, MEMBER) \
161	BUILD_BUG_ON(sizeof(TYPE) != ALIGN(offsetofend(TYPE, MEMBER), \
162					   TYPE_ALIGN(TYPE)))
163
164/*
165 * We append the 'struct fpu' to the task_struct:
166 */
167static void __init fpu__init_task_struct_size(void)
168{
169	int task_size = sizeof(struct task_struct);
170
171	/*
172	 * Subtract off the static size of the register state.
173	 * It potentially has a bunch of padding.
174	 */
175	task_size -= sizeof(((struct task_struct *)0)->thread.fpu.state);
176
177	/*
178	 * Add back the dynamically-calculated register state
179	 * size.
180	 */
181	task_size += xstate_size;
182
183	/*
184	 * We dynamically size 'struct fpu', so we require that
185	 * it be at the end of 'thread_struct' and that
186	 * 'thread_struct' be at the end of 'task_struct'.  If
187	 * you hit a compile error here, check the structure to
188	 * see if something got added to the end.
189	 */
190	CHECK_MEMBER_AT_END_OF(struct fpu, state);
191	CHECK_MEMBER_AT_END_OF(struct thread_struct, fpu);
192	CHECK_MEMBER_AT_END_OF(struct task_struct, thread);
193
194	arch_task_struct_size = task_size;
195}
196
197/*
198 * Set up the xstate_size based on the legacy FPU context size.
199 *
200 * We set this up first, and later it will be overwritten by
201 * fpu__init_system_xstate() if the CPU knows about xstates.
202 */
203static void __init fpu__init_system_xstate_size_legacy(void)
204{
205	static int on_boot_cpu __initdata = 1;
206
207	WARN_ON_FPU(!on_boot_cpu);
208	on_boot_cpu = 0;
209
210	/*
211	 * Note that xstate_size might be overwriten later during
212	 * fpu__init_system_xstate().
213	 */
214
215	if (!cpu_has_fpu) {
216		/*
217		 * Disable xsave as we do not support it if i387
218		 * emulation is enabled.
219		 */
220		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
221		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
222		xstate_size = sizeof(struct swregs_state);
223	} else {
224		if (cpu_has_fxsr)
225			xstate_size = sizeof(struct fxregs_state);
226		else
227			xstate_size = sizeof(struct fregs_state);
228	}
229	/*
230	 * Quirk: we don't yet handle the XSAVES* instructions
231	 * correctly, as we don't correctly convert between
232	 * standard and compacted format when interfacing
233	 * with user-space - so disable it for now.
234	 *
235	 * The difference is small: with recent CPUs the
236	 * compacted format is only marginally smaller than
237	 * the standard FPU state format.
238	 *
239	 * ( This is easy to backport while we are fixing
240	 *   XSAVES* support. )
241	 */
242	setup_clear_cpu_cap(X86_FEATURE_XSAVES);
243}
244
245/*
246 * FPU context switching strategies:
247 *
248 * Against popular belief, we don't do lazy FPU saves, due to the
249 * task migration complications it brings on SMP - we only do
250 * lazy FPU restores.
251 *
252 * 'lazy' is the traditional strategy, which is based on setting
253 * CR0::TS to 1 during context-switch (instead of doing a full
254 * restore of the FPU state), which causes the first FPU instruction
255 * after the context switch (whenever it is executed) to fault - at
256 * which point we lazily restore the FPU state into FPU registers.
257 *
258 * Tasks are of course under no obligation to execute FPU instructions,
259 * so it can easily happen that another context-switch occurs without
260 * a single FPU instruction being executed. If we eventually switch
261 * back to the original task (that still owns the FPU) then we have
262 * not only saved the restores along the way, but we also have the
263 * FPU ready to be used for the original task.
264 *
265 * 'lazy' is deprecated because it's almost never a performance win
266 * and it's much more complicated than 'eager'.
267 *
268 * 'eager' switching is by default on all CPUs, there we switch the FPU
269 * state during every context switch, regardless of whether the task
270 * has used FPU instructions in that time slice or not. This is done
271 * because modern FPU context saving instructions are able to optimize
272 * state saving and restoration in hardware: they can detect both
273 * unused and untouched FPU state and optimize accordingly.
274 *
275 * [ Note that even in 'lazy' mode we might optimize context switches
276 *   to use 'eager' restores, if we detect that a task is using the FPU
277 *   frequently. See the fpu->counter logic in fpu/internal.h for that. ]
278 */
279static enum { ENABLE, DISABLE } eagerfpu = ENABLE;
280
281/*
282 * Find supported xfeatures based on cpu features and command-line input.
283 * This must be called after fpu__init_parse_early_param() is called and
284 * xfeatures_mask is enumerated.
285 */
286u64 __init fpu__get_supported_xfeatures_mask(void)
287{
288	/* Support all xfeatures known to us */
289	if (eagerfpu != DISABLE)
290		return XCNTXT_MASK;
291
292	/* Warning of xfeatures being disabled for no eagerfpu mode */
293	if (xfeatures_mask & XFEATURE_MASK_EAGER) {
294		pr_err("x86/fpu: eagerfpu switching disabled, disabling the following xstate features: 0x%llx.\n",
295			xfeatures_mask & XFEATURE_MASK_EAGER);
296	}
297
298	/* Return a mask that masks out all features requiring eagerfpu mode */
299	return ~XFEATURE_MASK_EAGER;
300}
301
302/*
303 * Disable features dependent on eagerfpu.
304 */
305static void __init fpu__clear_eager_fpu_features(void)
306{
307	setup_clear_cpu_cap(X86_FEATURE_MPX);
308}
309
310/*
311 * Pick the FPU context switching strategy:
312 *
313 * When eagerfpu is AUTO or ENABLE, we ensure it is ENABLE if either of
314 * the following is true:
315 *
316 * (1) the cpu has xsaveopt, as it has the optimization and doing eager
317 *     FPU switching has a relatively low cost compared to a plain xsave;
318 * (2) the cpu has xsave features (e.g. MPX) that depend on eager FPU
319 *     switching. Should the kernel boot with noxsaveopt, we support MPX
320 *     with eager FPU switching at a higher cost.
321 */
322static void __init fpu__init_system_ctx_switch(void)
323{
324	static bool on_boot_cpu __initdata = 1;
325
326	WARN_ON_FPU(!on_boot_cpu);
327	on_boot_cpu = 0;
328
329	WARN_ON_FPU(current->thread.fpu.fpstate_active);
330	current_thread_info()->status = 0;
331
332	if (boot_cpu_has(X86_FEATURE_XSAVEOPT) && eagerfpu != DISABLE)
333		eagerfpu = ENABLE;
334
335	if (xfeatures_mask & XFEATURE_MASK_EAGER)
336		eagerfpu = ENABLE;
337
338	if (eagerfpu == ENABLE)
339		setup_force_cpu_cap(X86_FEATURE_EAGER_FPU);
340
341	printk(KERN_INFO "x86/fpu: Using '%s' FPU context switches.\n", eagerfpu == ENABLE ? "eager" : "lazy");
342}
343
344/*
345 * We parse fpu parameters early because fpu__init_system() is executed
346 * before parse_early_param().
347 */
348static void __init fpu__init_parse_early_param(void)
349{
350	if (cmdline_find_option_bool(boot_command_line, "eagerfpu=off")) {
351		eagerfpu = DISABLE;
352		fpu__clear_eager_fpu_features();
353	}
354
355	if (cmdline_find_option_bool(boot_command_line, "no387"))
356		setup_clear_cpu_cap(X86_FEATURE_FPU);
357
358	if (cmdline_find_option_bool(boot_command_line, "nofxsr")) {
359		setup_clear_cpu_cap(X86_FEATURE_FXSR);
360		setup_clear_cpu_cap(X86_FEATURE_FXSR_OPT);
361		setup_clear_cpu_cap(X86_FEATURE_XMM);
362	}
363
364	if (cmdline_find_option_bool(boot_command_line, "noxsave"))
365		fpu__xstate_clear_all_cpu_caps();
366
367	if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
368		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
369
370	if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
371		setup_clear_cpu_cap(X86_FEATURE_XSAVES);
372}
373
374/*
375 * Called on the boot CPU once per system bootup, to set up the initial
376 * FPU state that is later cloned into all processes:
377 */
378void __init fpu__init_system(struct cpuinfo_x86 *c)
379{
380	fpu__init_parse_early_param();
381	fpu__init_system_early_generic(c);
382
383	/*
384	 * The FPU has to be operational for some of the
385	 * later FPU init activities:
386	 */
387	fpu__init_cpu();
388
389	/*
390	 * But don't leave CR0::TS set yet, as some of the FPU setup
391	 * methods depend on being able to execute FPU instructions
392	 * that will fault on a set TS, such as the FXSAVE in
393	 * fpu__init_system_mxcsr().
394	 */
395	clts();
396
397	fpu__init_system_generic();
398	fpu__init_system_xstate_size_legacy();
399	fpu__init_system_xstate();
400	fpu__init_task_struct_size();
401
402	fpu__init_system_ctx_switch();
403}