Linux Audio

Check our new training course

Loading...
v6.2
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 2004-2017 Cavium, Inc.
   7 * Copyright (C) 2008 Wind River Systems
   8 */
   9
  10#include <linux/etherdevice.h>
 
 
 
 
 
 
 
 
 
  11#include <linux/of_platform.h>
  12#include <linux/of_fdt.h>
  13#include <linux/libfdt.h>
 
 
  14
  15#include <asm/octeon/octeon.h>
 
 
  16#include <asm/octeon/cvmx-helper-board.h>
  17
  18#ifdef CONFIG_USB
  19#include <linux/usb/ehci_def.h>
  20#include <linux/usb/ehci_pdriver.h>
  21#include <linux/usb/ohci_pdriver.h>
  22#include <asm/octeon/cvmx-uctlx-defs.h>
  23
  24#define CVMX_UAHCX_EHCI_USBCMD	(CVMX_ADD_IO_SEG(0x00016F0000000010ull))
  25#define CVMX_UAHCX_OHCI_USBCMD	(CVMX_ADD_IO_SEG(0x00016F0000000408ull))
 
 
 
  26
  27static DEFINE_MUTEX(octeon2_usb_clocks_mutex);
 
 
 
 
 
 
 
 
 
 
  28
  29static int octeon2_usb_clock_start_cnt;
 
 
 
 
  30
  31static int __init octeon2_usb_reset(void)
  32{
  33	union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
  34	u32 ucmd;
  35
  36	if (!OCTEON_IS_OCTEON2())
  37		return 0;
 
  38
  39	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
  40	if (clk_rst_ctl.s.hrst) {
  41		ucmd = cvmx_read64_uint32(CVMX_UAHCX_EHCI_USBCMD);
  42		ucmd &= ~CMD_RUN;
  43		cvmx_write64_uint32(CVMX_UAHCX_EHCI_USBCMD, ucmd);
  44		mdelay(2);
  45		ucmd |= CMD_RESET;
  46		cvmx_write64_uint32(CVMX_UAHCX_EHCI_USBCMD, ucmd);
  47		ucmd = cvmx_read64_uint32(CVMX_UAHCX_OHCI_USBCMD);
  48		ucmd |= CMD_RUN;
  49		cvmx_write64_uint32(CVMX_UAHCX_OHCI_USBCMD, ucmd);
  50	}
  51
  52	return 0;
 
  53}
  54arch_initcall(octeon2_usb_reset);
 
 
 
 
 
 
  55
  56static void octeon2_usb_clocks_start(struct device *dev)
  57{
  58	u64 div;
  59	union cvmx_uctlx_if_ena if_ena;
  60	union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
 
  61	union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status;
  62	int i;
  63	unsigned long io_clk_64_to_ns;
  64	u32 clock_rate = 12000000;
  65	bool is_crystal_clock = false;
  66
  67
  68	mutex_lock(&octeon2_usb_clocks_mutex);
  69
  70	octeon2_usb_clock_start_cnt++;
  71	if (octeon2_usb_clock_start_cnt != 1)
  72		goto exit;
  73
  74	io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate();
  75
  76	if (dev->of_node) {
  77		struct device_node *uctl_node;
  78		const char *clock_type;
  79
  80		uctl_node = of_get_parent(dev->of_node);
  81		if (!uctl_node) {
  82			dev_err(dev, "No UCTL device node\n");
  83			goto exit;
  84		}
  85		i = of_property_read_u32(uctl_node,
  86					 "refclk-frequency", &clock_rate);
  87		if (i) {
  88			dev_err(dev, "No UCTL \"refclk-frequency\"\n");
  89			of_node_put(uctl_node);
  90			goto exit;
  91		}
  92		i = of_property_read_string(uctl_node,
  93					    "refclk-type", &clock_type);
  94		of_node_put(uctl_node);
  95		if (!i && strcmp("crystal", clock_type) == 0)
  96			is_crystal_clock = true;
  97	}
  98
  99	/*
 100	 * Step 1: Wait for voltages stable.  That surely happened
 101	 * before starting the kernel.
 102	 *
 103	 * Step 2: Enable  SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1
 104	 */
 105	if_ena.u64 = 0;
 106	if_ena.s.en = 1;
 107	cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64);
 108
 109	for (i = 0; i <= 1; i++) {
 110		port_ctl_status.u64 =
 111			cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0));
 112		/* Set txvreftune to 15 to obtain compliant 'eye' diagram. */
 113		port_ctl_status.s.txvreftune = 15;
 114		port_ctl_status.s.txrisetune = 1;
 115		port_ctl_status.s.txpreemphasistune = 1;
 116		cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0),
 117			       port_ctl_status.u64);
 118	}
 119
 120	/* Step 3: Configure the reference clock, PHY, and HCLK */
 121	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
 122
 123	/*
 124	 * If the UCTL looks like it has already been started, skip
 125	 * the initialization, otherwise bus errors are obtained.
 126	 */
 127	if (clk_rst_ctl.s.hrst)
 128		goto end_clock;
 129	/* 3a */
 130	clk_rst_ctl.s.p_por = 1;
 131	clk_rst_ctl.s.hrst = 0;
 132	clk_rst_ctl.s.p_prst = 0;
 133	clk_rst_ctl.s.h_clkdiv_rst = 0;
 134	clk_rst_ctl.s.o_clkdiv_rst = 0;
 135	clk_rst_ctl.s.h_clkdiv_en = 0;
 136	clk_rst_ctl.s.o_clkdiv_en = 0;
 137	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 138
 139	/* 3b */
 140	clk_rst_ctl.s.p_refclk_sel = is_crystal_clock ? 0 : 1;
 141	switch (clock_rate) {
 142	default:
 143		pr_err("Invalid UCTL clock rate of %u, using 12000000 instead\n",
 144			clock_rate);
 145		fallthrough;
 146	case 12000000:
 147		clk_rst_ctl.s.p_refclk_div = 0;
 148		break;
 149	case 24000000:
 150		clk_rst_ctl.s.p_refclk_div = 1;
 151		break;
 152	case 48000000:
 153		clk_rst_ctl.s.p_refclk_div = 2;
 154		break;
 155	}
 156	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 157
 158	/* 3c */
 159	div = octeon_get_io_clock_rate() / 130000000ull;
 160
 161	switch (div) {
 162	case 0:
 163		div = 1;
 164		break;
 165	case 1:
 166	case 2:
 167	case 3:
 168	case 4:
 169		break;
 170	case 5:
 171		div = 4;
 172		break;
 173	case 6:
 174	case 7:
 175		div = 6;
 176		break;
 177	case 8:
 178	case 9:
 179	case 10:
 180	case 11:
 181		div = 8;
 182		break;
 183	default:
 184		div = 12;
 185		break;
 186	}
 187	clk_rst_ctl.s.h_div = div;
 188	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 189	/* Read it back, */
 190	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
 191	clk_rst_ctl.s.h_clkdiv_en = 1;
 192	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 193	/* 3d */
 194	clk_rst_ctl.s.h_clkdiv_rst = 1;
 195	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 196
 197	/* 3e: delay 64 io clocks */
 198	ndelay(io_clk_64_to_ns);
 199
 200	/*
 201	 * Step 4: Program the power-on reset field in the UCTL
 202	 * clock-reset-control register.
 203	 */
 204	clk_rst_ctl.s.p_por = 0;
 205	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 206
 207	/* Step 5:    Wait 3 ms for the PHY clock to start. */
 208	mdelay(3);
 209
 210	/* Steps 6..9 for ATE only, are skipped. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 211
 212	/* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */
 213	/* 10a */
 214	clk_rst_ctl.s.o_clkdiv_rst = 1;
 215	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 216
 217	/* 10b */
 218	clk_rst_ctl.s.o_clkdiv_en = 1;
 219	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 220
 221	/* 10c */
 222	ndelay(io_clk_64_to_ns);
 223
 224	/*
 225	 * Step 11: Program the PHY reset field:
 226	 * UCTL0_CLK_RST_CTL[P_PRST] = 1
 227	 */
 228	clk_rst_ctl.s.p_prst = 1;
 229	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 230
 231	/* Step 11b */
 232	udelay(1);
 233
 234	/* Step 11c */
 235	clk_rst_ctl.s.p_prst = 0;
 236	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 237
 238	/* Step 11d */
 239	mdelay(1);
 240
 241	/* Step 11e */
 242	clk_rst_ctl.s.p_prst = 1;
 243	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 244
 245	/* Step 12: Wait 1 uS. */
 246	udelay(1);
 247
 248	/* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */
 249	clk_rst_ctl.s.hrst = 1;
 250	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 251
 252end_clock:
 
 
 
 
 
 
 
 
 
 
 
 
 
 253	/* Set uSOF cycle period to 60,000 bits. */
 254	cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull);
 255
 256exit:
 257	mutex_unlock(&octeon2_usb_clocks_mutex);
 258}
 259
 260static void octeon2_usb_clocks_stop(void)
 261{
 262	mutex_lock(&octeon2_usb_clocks_mutex);
 263	octeon2_usb_clock_start_cnt--;
 264	mutex_unlock(&octeon2_usb_clocks_mutex);
 265}
 266
 267static int octeon_ehci_power_on(struct platform_device *pdev)
 268{
 269	octeon2_usb_clocks_start(&pdev->dev);
 270	return 0;
 271}
 272
 273static void octeon_ehci_power_off(struct platform_device *pdev)
 274{
 275	octeon2_usb_clocks_stop();
 276}
 277
 278static struct usb_ehci_pdata octeon_ehci_pdata = {
 279	/* Octeon EHCI matches CPU endianness. */
 280#ifdef __BIG_ENDIAN
 281	.big_endian_mmio	= 1,
 282#endif
 283	/*
 284	 * We can DMA from anywhere. But the descriptors must be in
 285	 * the lower 4GB.
 286	 */
 287	.dma_mask_64	= 0,
 288	.power_on	= octeon_ehci_power_on,
 289	.power_off	= octeon_ehci_power_off,
 290};
 291
 292static void __init octeon_ehci_hw_start(struct device *dev)
 293{
 294	union cvmx_uctlx_ehci_ctl ehci_ctl;
 295
 296	octeon2_usb_clocks_start(dev);
 297
 298	ehci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_EHCI_CTL(0));
 299	/* Use 64-bit addressing. */
 300	ehci_ctl.s.ehci_64b_addr_en = 1;
 301	ehci_ctl.s.l2c_addr_msb = 0;
 302#ifdef __BIG_ENDIAN
 303	ehci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
 304	ehci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
 305#else
 306	ehci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
 307	ehci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
 308	ehci_ctl.s.inv_reg_a2 = 1;
 309#endif
 310	cvmx_write_csr(CVMX_UCTLX_EHCI_CTL(0), ehci_ctl.u64);
 311
 312	octeon2_usb_clocks_stop();
 313}
 314
 315static int __init octeon_ehci_device_init(void)
 316{
 317	struct platform_device *pd;
 318	struct device_node *ehci_node;
 319	int ret = 0;
 320
 321	ehci_node = of_find_node_by_name(NULL, "ehci");
 322	if (!ehci_node)
 323		return 0;
 324
 325	pd = of_find_device_by_node(ehci_node);
 326	of_node_put(ehci_node);
 327	if (!pd)
 328		return 0;
 329
 330	pd->dev.platform_data = &octeon_ehci_pdata;
 331	octeon_ehci_hw_start(&pd->dev);
 332	put_device(&pd->dev);
 333
 334	return ret;
 335}
 336device_initcall(octeon_ehci_device_init);
 337
 338static int octeon_ohci_power_on(struct platform_device *pdev)
 339{
 340	octeon2_usb_clocks_start(&pdev->dev);
 341	return 0;
 342}
 343
 344static void octeon_ohci_power_off(struct platform_device *pdev)
 345{
 346	octeon2_usb_clocks_stop();
 347}
 348
 349static struct usb_ohci_pdata octeon_ohci_pdata = {
 350	/* Octeon OHCI matches CPU endianness. */
 351#ifdef __BIG_ENDIAN
 352	.big_endian_mmio	= 1,
 353#endif
 354	.power_on	= octeon_ohci_power_on,
 355	.power_off	= octeon_ohci_power_off,
 356};
 357
 358static void __init octeon_ohci_hw_start(struct device *dev)
 359{
 360	union cvmx_uctlx_ohci_ctl ohci_ctl;
 361
 362	octeon2_usb_clocks_start(dev);
 363
 364	ohci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_OHCI_CTL(0));
 365	ohci_ctl.s.l2c_addr_msb = 0;
 366#ifdef __BIG_ENDIAN
 367	ohci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
 368	ohci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
 369#else
 370	ohci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
 371	ohci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
 372	ohci_ctl.s.inv_reg_a2 = 1;
 373#endif
 374	cvmx_write_csr(CVMX_UCTLX_OHCI_CTL(0), ohci_ctl.u64);
 375
 376	octeon2_usb_clocks_stop();
 377}
 378
 379static int __init octeon_ohci_device_init(void)
 380{
 381	struct platform_device *pd;
 382	struct device_node *ohci_node;
 383	int ret = 0;
 384
 385	ohci_node = of_find_node_by_name(NULL, "ohci");
 386	if (!ohci_node)
 387		return 0;
 388
 389	pd = of_find_device_by_node(ohci_node);
 390	of_node_put(ohci_node);
 391	if (!pd)
 392		return 0;
 393
 394	pd->dev.platform_data = &octeon_ohci_pdata;
 395	octeon_ohci_hw_start(&pd->dev);
 396	put_device(&pd->dev);
 397
 398	return ret;
 399}
 400device_initcall(octeon_ohci_device_init);
 401
 402#endif /* CONFIG_USB */
 403
 404/* Octeon Random Number Generator.  */
 405static int __init octeon_rng_device_init(void)
 406{
 407	struct platform_device *pd;
 408	int ret = 0;
 409
 410	struct resource rng_resources[] = {
 411		{
 412			.flags	= IORESOURCE_MEM,
 413			.start	= XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS),
 414			.end	= XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf
 415		}, {
 416			.flags	= IORESOURCE_MEM,
 417			.start	= cvmx_build_io_address(8, 0),
 418			.end	= cvmx_build_io_address(8, 0) + 0x7
 419		}
 420	};
 421
 422	pd = platform_device_alloc("octeon_rng", -1);
 423	if (!pd) {
 424		ret = -ENOMEM;
 425		goto out;
 426	}
 427
 428	ret = platform_device_add_resources(pd, rng_resources,
 429					    ARRAY_SIZE(rng_resources));
 430	if (ret)
 431		goto fail;
 432
 433	ret = platform_device_add(pd);
 434	if (ret)
 435		goto fail;
 436
 437	return ret;
 438fail:
 439	platform_device_put(pd);
 440
 441out:
 442	return ret;
 443}
 444device_initcall(octeon_rng_device_init);
 445
 446static const struct of_device_id octeon_ids[] __initconst = {
 447	{ .compatible = "simple-bus", },
 448	{ .compatible = "cavium,octeon-6335-uctl", },
 449	{ .compatible = "cavium,octeon-5750-usbn", },
 450	{ .compatible = "cavium,octeon-3860-bootbus", },
 451	{ .compatible = "cavium,mdio-mux", },
 452	{ .compatible = "gpio-leds", },
 453	{ .compatible = "cavium,octeon-7130-usb-uctl", },
 454	{},
 455};
 456
 457static bool __init octeon_has_88e1145(void)
 458{
 459	return !OCTEON_IS_MODEL(OCTEON_CN52XX) &&
 460	       !OCTEON_IS_MODEL(OCTEON_CN6XXX) &&
 461	       !OCTEON_IS_MODEL(OCTEON_CN56XX);
 462}
 463
 464static bool __init octeon_has_fixed_link(int ipd_port)
 465{
 466	switch (cvmx_sysinfo_get()->board_type) {
 467	case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
 468	case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
 469	case CVMX_BOARD_TYPE_CN3020_EVB_HS5:
 470	case CVMX_BOARD_TYPE_CUST_NB5:
 471	case CVMX_BOARD_TYPE_EBH3100:
 472		/* Port 1 on these boards is always gigabit. */
 473		return ipd_port == 1;
 474	case CVMX_BOARD_TYPE_BBGW_REF:
 475		/* Ports 0 and 1 connect to the switch. */
 476		return ipd_port == 0 || ipd_port == 1;
 477	}
 478	return false;
 479}
 480
 481static void __init octeon_fdt_set_phy(int eth, int phy_addr)
 482{
 483	const __be32 *phy_handle;
 484	const __be32 *alt_phy_handle;
 485	const __be32 *reg;
 486	u32 phandle;
 487	int phy;
 488	int alt_phy;
 489	const char *p;
 490	int current_len;
 491	char new_name[20];
 492
 493	phy_handle = fdt_getprop(initial_boot_params, eth, "phy-handle", NULL);
 494	if (!phy_handle)
 495		return;
 496
 497	phandle = be32_to_cpup(phy_handle);
 498	phy = fdt_node_offset_by_phandle(initial_boot_params, phandle);
 499
 500	alt_phy_handle = fdt_getprop(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
 501	if (alt_phy_handle) {
 502		u32 alt_phandle = be32_to_cpup(alt_phy_handle);
 503
 504		alt_phy = fdt_node_offset_by_phandle(initial_boot_params, alt_phandle);
 505	} else {
 506		alt_phy = -1;
 507	}
 508
 509	if (phy_addr < 0 || phy < 0) {
 510		/* Delete the PHY things */
 511		fdt_nop_property(initial_boot_params, eth, "phy-handle");
 512		/* This one may fail */
 513		fdt_nop_property(initial_boot_params, eth, "cavium,alt-phy-handle");
 514		if (phy >= 0)
 515			fdt_nop_node(initial_boot_params, phy);
 516		if (alt_phy >= 0)
 517			fdt_nop_node(initial_boot_params, alt_phy);
 518		return;
 519	}
 520
 521	if (phy_addr >= 256 && alt_phy > 0) {
 522		const struct fdt_property *phy_prop;
 523		struct fdt_property *alt_prop;
 524		fdt32_t phy_handle_name;
 525
 526		/* Use the alt phy node instead.*/
 527		phy_prop = fdt_get_property(initial_boot_params, eth, "phy-handle", NULL);
 528		phy_handle_name = phy_prop->nameoff;
 529		fdt_nop_node(initial_boot_params, phy);
 530		fdt_nop_property(initial_boot_params, eth, "phy-handle");
 531		alt_prop = fdt_get_property_w(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
 532		alt_prop->nameoff = phy_handle_name;
 533		phy = alt_phy;
 534	}
 535
 536	phy_addr &= 0xff;
 537
 538	if (octeon_has_88e1145()) {
 539		fdt_nop_property(initial_boot_params, phy, "marvell,reg-init");
 540		memset(new_name, 0, sizeof(new_name));
 541		strcpy(new_name, "marvell,88e1145");
 542		p = fdt_getprop(initial_boot_params, phy, "compatible",
 543				&current_len);
 544		if (p && current_len >= strlen(new_name))
 545			fdt_setprop_inplace(initial_boot_params, phy,
 546					"compatible", new_name, current_len);
 547	}
 548
 549	reg = fdt_getprop(initial_boot_params, phy, "reg", NULL);
 550	if (phy_addr == be32_to_cpup(reg))
 551		return;
 552
 553	fdt_setprop_inplace_cell(initial_boot_params, phy, "reg", phy_addr);
 554
 555	snprintf(new_name, sizeof(new_name), "ethernet-phy@%x", phy_addr);
 556
 557	p = fdt_get_name(initial_boot_params, phy, &current_len);
 558	if (p && current_len == strlen(new_name))
 559		fdt_set_name(initial_boot_params, phy, new_name);
 560	else
 561		pr_err("Error: could not rename ethernet phy: <%s>", p);
 562}
 563
 564static void __init octeon_fdt_set_mac_addr(int n, u64 *pmac)
 565{
 566	const u8 *old_mac;
 567	int old_len;
 568	u8 new_mac[6];
 569	u64 mac = *pmac;
 570	int r;
 571
 572	old_mac = fdt_getprop(initial_boot_params, n, "local-mac-address",
 573			      &old_len);
 574	if (!old_mac || old_len != 6 || is_valid_ether_addr(old_mac))
 575		return;
 576
 577	new_mac[0] = (mac >> 40) & 0xff;
 578	new_mac[1] = (mac >> 32) & 0xff;
 579	new_mac[2] = (mac >> 24) & 0xff;
 580	new_mac[3] = (mac >> 16) & 0xff;
 581	new_mac[4] = (mac >> 8) & 0xff;
 582	new_mac[5] = mac & 0xff;
 583
 584	r = fdt_setprop_inplace(initial_boot_params, n, "local-mac-address",
 585				new_mac, sizeof(new_mac));
 586
 587	if (r) {
 588		pr_err("Setting \"local-mac-address\" failed %d", r);
 589		return;
 590	}
 591	*pmac = mac + 1;
 592}
 593
 594static void __init octeon_fdt_rm_ethernet(int node)
 595{
 596	const __be32 *phy_handle;
 597
 598	phy_handle = fdt_getprop(initial_boot_params, node, "phy-handle", NULL);
 599	if (phy_handle) {
 600		u32 ph = be32_to_cpup(phy_handle);
 601		int p = fdt_node_offset_by_phandle(initial_boot_params, ph);
 602
 603		if (p >= 0)
 604			fdt_nop_node(initial_boot_params, p);
 605	}
 606	fdt_nop_node(initial_boot_params, node);
 607}
 608
 609static void __init _octeon_rx_tx_delay(int eth, int rx_delay, int tx_delay)
 610{
 611	fdt_setprop_inplace_cell(initial_boot_params, eth, "rx-delay",
 612				 rx_delay);
 613	fdt_setprop_inplace_cell(initial_boot_params, eth, "tx-delay",
 614				 tx_delay);
 615}
 616
 617static void __init octeon_rx_tx_delay(int eth, int iface, int port)
 618{
 619	switch (cvmx_sysinfo_get()->board_type) {
 620	case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
 621		if (iface == 0) {
 622			if (port == 0) {
 623				/*
 624				 * Boards with gigabit WAN ports need a
 625				 * different setting that is compatible with
 626				 * 100 Mbit settings
 627				 */
 628				_octeon_rx_tx_delay(eth, 0xc, 0x0c);
 629				return;
 630			} else if (port == 1) {
 631				/* Different config for switch port. */
 632				_octeon_rx_tx_delay(eth, 0x0, 0x0);
 633				return;
 634			}
 635		}
 636		break;
 637	case CVMX_BOARD_TYPE_UBNT_E100:
 638		if (iface == 0 && port <= 2) {
 639			_octeon_rx_tx_delay(eth, 0x0, 0x10);
 640			return;
 641		}
 642		break;
 643	}
 644	fdt_nop_property(initial_boot_params, eth, "rx-delay");
 645	fdt_nop_property(initial_boot_params, eth, "tx-delay");
 646}
 647
 648static void __init octeon_fdt_pip_port(int iface, int i, int p, int max)
 649{
 650	char name_buffer[20];
 651	int eth;
 652	int phy_addr;
 653	int ipd_port;
 654	int fixed_link;
 655
 656	snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x", p);
 657	eth = fdt_subnode_offset(initial_boot_params, iface, name_buffer);
 658	if (eth < 0)
 659		return;
 660	if (p > max) {
 661		pr_debug("Deleting port %x:%x\n", i, p);
 662		octeon_fdt_rm_ethernet(eth);
 663		return;
 664	}
 665	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
 666		ipd_port = (0x100 * i) + (0x10 * p) + 0x800;
 667	else
 668		ipd_port = 16 * i + p;
 669
 670	phy_addr = cvmx_helper_board_get_mii_address(ipd_port);
 671	octeon_fdt_set_phy(eth, phy_addr);
 672
 673	fixed_link = fdt_subnode_offset(initial_boot_params, eth, "fixed-link");
 674	if (fixed_link < 0)
 675		WARN_ON(octeon_has_fixed_link(ipd_port));
 676	else if (!octeon_has_fixed_link(ipd_port))
 677		fdt_nop_node(initial_boot_params, fixed_link);
 678	octeon_rx_tx_delay(eth, i, p);
 679}
 680
 681static void __init octeon_fdt_pip_iface(int pip, int idx)
 682{
 683	char name_buffer[20];
 684	int iface;
 685	int p;
 686	int count = 0;
 687
 688	snprintf(name_buffer, sizeof(name_buffer), "interface@%d", idx);
 689	iface = fdt_subnode_offset(initial_boot_params, pip, name_buffer);
 690	if (iface < 0)
 691		return;
 692
 693	if (cvmx_helper_interface_enumerate(idx) == 0)
 694		count = cvmx_helper_ports_on_interface(idx);
 695
 696	for (p = 0; p < 16; p++)
 697		octeon_fdt_pip_port(iface, idx, p, count - 1);
 698}
 699
 700void __init octeon_fill_mac_addresses(void)
 701{
 702	const char *alias_prop;
 703	char name_buffer[20];
 704	u64 mac_addr_base;
 705	int aliases;
 706	int pip;
 707	int i;
 708
 709	aliases = fdt_path_offset(initial_boot_params, "/aliases");
 710	if (aliases < 0)
 711		return;
 712
 713	mac_addr_base =
 714		((octeon_bootinfo->mac_addr_base[0] & 0xffull)) << 40 |
 715		((octeon_bootinfo->mac_addr_base[1] & 0xffull)) << 32 |
 716		((octeon_bootinfo->mac_addr_base[2] & 0xffull)) << 24 |
 717		((octeon_bootinfo->mac_addr_base[3] & 0xffull)) << 16 |
 718		((octeon_bootinfo->mac_addr_base[4] & 0xffull)) << 8 |
 719		 (octeon_bootinfo->mac_addr_base[5] & 0xffull);
 720
 721	for (i = 0; i < 2; i++) {
 722		int mgmt;
 723
 724		snprintf(name_buffer, sizeof(name_buffer), "mix%d", i);
 725		alias_prop = fdt_getprop(initial_boot_params, aliases,
 726					 name_buffer, NULL);
 727		if (!alias_prop)
 728			continue;
 729		mgmt = fdt_path_offset(initial_boot_params, alias_prop);
 730		if (mgmt < 0)
 731			continue;
 732		octeon_fdt_set_mac_addr(mgmt, &mac_addr_base);
 733	}
 734
 735	alias_prop = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
 736	if (!alias_prop)
 737		return;
 738
 739	pip = fdt_path_offset(initial_boot_params, alias_prop);
 740	if (pip < 0)
 741		return;
 742
 743	for (i = 0; i <= 4; i++) {
 744		int iface;
 745		int p;
 746
 747		snprintf(name_buffer, sizeof(name_buffer), "interface@%d", i);
 748		iface = fdt_subnode_offset(initial_boot_params, pip,
 749					   name_buffer);
 750		if (iface < 0)
 751			continue;
 752		for (p = 0; p < 16; p++) {
 753			int eth;
 754
 755			snprintf(name_buffer, sizeof(name_buffer),
 756				 "ethernet@%x", p);
 757			eth = fdt_subnode_offset(initial_boot_params, iface,
 758						 name_buffer);
 759			if (eth < 0)
 760				continue;
 761			octeon_fdt_set_mac_addr(eth, &mac_addr_base);
 762		}
 763	}
 764}
 765
 766int __init octeon_prune_device_tree(void)
 767{
 768	int i, max_port, uart_mask;
 769	const char *pip_path;
 770	const char *alias_prop;
 771	char name_buffer[20];
 772	int aliases;
 
 773
 774	if (fdt_check_header(initial_boot_params))
 775		panic("Corrupt Device Tree.");
 776
 777	WARN(octeon_bootinfo->board_type == CVMX_BOARD_TYPE_CUST_DSR1000N,
 778	     "Built-in DTB booting is deprecated on %s. Please switch to use appended DTB.",
 779	     cvmx_board_type_to_string(octeon_bootinfo->board_type));
 780
 781	aliases = fdt_path_offset(initial_boot_params, "/aliases");
 782	if (aliases < 0) {
 783		pr_err("Error: No /aliases node in device tree.");
 784		return -EINVAL;
 785	}
 786
 
 
 
 
 
 
 
 
 
 787	if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX))
 788		max_port = 2;
 789	else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN68XX))
 790		max_port = 1;
 791	else
 792		max_port = 0;
 793
 794	if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E)
 795		max_port = 0;
 796
 797	for (i = 0; i < 2; i++) {
 798		int mgmt;
 799
 800		snprintf(name_buffer, sizeof(name_buffer),
 801			 "mix%d", i);
 802		alias_prop = fdt_getprop(initial_boot_params, aliases,
 803					name_buffer, NULL);
 804		if (alias_prop) {
 805			mgmt = fdt_path_offset(initial_boot_params, alias_prop);
 806			if (mgmt < 0)
 807				continue;
 808			if (i >= max_port) {
 809				pr_debug("Deleting mix%d\n", i);
 810				octeon_fdt_rm_ethernet(mgmt);
 811				fdt_nop_property(initial_boot_params, aliases,
 812						 name_buffer);
 813			} else {
 814				int phy_addr = cvmx_helper_board_get_mii_address(CVMX_HELPER_BOARD_MGMT_IPD_PORT + i);
 815
 816				octeon_fdt_set_phy(mgmt, phy_addr);
 
 817			}
 818		}
 819	}
 820
 821	pip_path = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
 822	if (pip_path) {
 823		int pip = fdt_path_offset(initial_boot_params, pip_path);
 824
 825		if (pip	 >= 0)
 826			for (i = 0; i <= 4; i++)
 827				octeon_fdt_pip_iface(pip, i);
 828	}
 829
 830	/* I2C */
 831	if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
 832	    OCTEON_IS_MODEL(OCTEON_CN63XX) ||
 833	    OCTEON_IS_MODEL(OCTEON_CN68XX) ||
 834	    OCTEON_IS_MODEL(OCTEON_CN56XX))
 835		max_port = 2;
 836	else
 837		max_port = 1;
 838
 839	for (i = 0; i < 2; i++) {
 840		int i2c;
 841
 842		snprintf(name_buffer, sizeof(name_buffer),
 843			 "twsi%d", i);
 844		alias_prop = fdt_getprop(initial_boot_params, aliases,
 845					name_buffer, NULL);
 846
 847		if (alias_prop) {
 848			i2c = fdt_path_offset(initial_boot_params, alias_prop);
 849			if (i2c < 0)
 850				continue;
 851			if (i >= max_port) {
 852				pr_debug("Deleting twsi%d\n", i);
 853				fdt_nop_node(initial_boot_params, i2c);
 854				fdt_nop_property(initial_boot_params, aliases,
 855						 name_buffer);
 856			}
 857		}
 858	}
 859
 860	/* SMI/MDIO */
 861	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
 862		max_port = 4;
 863	else if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
 864		 OCTEON_IS_MODEL(OCTEON_CN63XX) ||
 865		 OCTEON_IS_MODEL(OCTEON_CN56XX))
 866		max_port = 2;
 867	else
 868		max_port = 1;
 869
 870	for (i = 0; i < 2; i++) {
 871		int i2c;
 872
 873		snprintf(name_buffer, sizeof(name_buffer),
 874			 "smi%d", i);
 875		alias_prop = fdt_getprop(initial_boot_params, aliases,
 876					name_buffer, NULL);
 
 877		if (alias_prop) {
 878			i2c = fdt_path_offset(initial_boot_params, alias_prop);
 879			if (i2c < 0)
 880				continue;
 881			if (i >= max_port) {
 882				pr_debug("Deleting smi%d\n", i);
 883				fdt_nop_node(initial_boot_params, i2c);
 884				fdt_nop_property(initial_boot_params, aliases,
 885						 name_buffer);
 886			}
 887		}
 888	}
 889
 890	/* Serial */
 891	uart_mask = 3;
 892
 893	/* Right now CN52XX is the only chip with a third uart */
 894	if (OCTEON_IS_MODEL(OCTEON_CN52XX))
 895		uart_mask |= 4; /* uart2 */
 896
 897	for (i = 0; i < 3; i++) {
 898		int uart;
 899
 900		snprintf(name_buffer, sizeof(name_buffer),
 901			 "uart%d", i);
 902		alias_prop = fdt_getprop(initial_boot_params, aliases,
 903					name_buffer, NULL);
 904
 905		if (alias_prop) {
 906			uart = fdt_path_offset(initial_boot_params, alias_prop);
 907			if (uart_mask & (1 << i)) {
 908				__be32 f;
 909
 910				f = cpu_to_be32(octeon_get_io_clock_rate());
 911				fdt_setprop_inplace(initial_boot_params,
 912						    uart, "clock-frequency",
 913						    &f, sizeof(f));
 914				continue;
 915			}
 916			pr_debug("Deleting uart%d\n", i);
 917			fdt_nop_node(initial_boot_params, uart);
 918			fdt_nop_property(initial_boot_params, aliases,
 919					 name_buffer);
 920		}
 921	}
 922
 923	/* Compact Flash */
 924	alias_prop = fdt_getprop(initial_boot_params, aliases,
 925				 "cf0", NULL);
 926	if (alias_prop) {
 927		union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
 928		unsigned long base_ptr, region_base, region_size;
 929		unsigned long region1_base = 0;
 930		unsigned long region1_size = 0;
 931		int cs, bootbus;
 932		bool is_16bit = false;
 933		bool is_true_ide = false;
 934		__be32 new_reg[6];
 935		__be32 *ranges;
 936		int len;
 937
 938		int cf = fdt_path_offset(initial_boot_params, alias_prop);
 939
 940		base_ptr = 0;
 941		if (octeon_bootinfo->major_version == 1
 942			&& octeon_bootinfo->minor_version >= 1) {
 943			if (octeon_bootinfo->compact_flash_common_base_addr)
 944				base_ptr = octeon_bootinfo->compact_flash_common_base_addr;
 945		} else {
 946			base_ptr = 0x1d000800;
 947		}
 948
 949		if (!base_ptr)
 950			goto no_cf;
 951
 952		/* Find CS0 region. */
 953		for (cs = 0; cs < 8; cs++) {
 954			mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
 955			region_base = mio_boot_reg_cfg.s.base << 16;
 956			region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
 957			if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
 958				&& base_ptr < region_base + region_size) {
 959				is_16bit = mio_boot_reg_cfg.s.width;
 960				break;
 961			}
 962		}
 963		if (cs >= 7) {
 964			/* cs and cs + 1 are CS0 and CS1, both must be less than 8. */
 965			goto no_cf;
 966		}
 967
 968		if (!(base_ptr & 0xfffful)) {
 969			/*
 970			 * Boot loader signals availability of DMA (true_ide
 971			 * mode) by setting low order bits of base_ptr to
 972			 * zero.
 973			 */
 974
 975			/* Asume that CS1 immediately follows. */
 976			mio_boot_reg_cfg.u64 =
 977				cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs + 1));
 978			region1_base = mio_boot_reg_cfg.s.base << 16;
 979			region1_size = (mio_boot_reg_cfg.s.size + 1) << 16;
 980			if (!mio_boot_reg_cfg.s.en)
 981				goto no_cf;
 982			is_true_ide = true;
 983
 984		} else {
 985			fdt_nop_property(initial_boot_params, cf, "cavium,true-ide");
 986			fdt_nop_property(initial_boot_params, cf, "cavium,dma-engine-handle");
 987			if (!is_16bit) {
 988				__be32 width = cpu_to_be32(8);
 989
 990				fdt_setprop_inplace(initial_boot_params, cf,
 991						"cavium,bus-width", &width, sizeof(width));
 992			}
 993		}
 994		new_reg[0] = cpu_to_be32(cs);
 995		new_reg[1] = cpu_to_be32(0);
 996		new_reg[2] = cpu_to_be32(0x10000);
 997		new_reg[3] = cpu_to_be32(cs + 1);
 998		new_reg[4] = cpu_to_be32(0);
 999		new_reg[5] = cpu_to_be32(0x10000);
1000		fdt_setprop_inplace(initial_boot_params, cf,
1001				    "reg",  new_reg, sizeof(new_reg));
1002
1003		bootbus = fdt_parent_offset(initial_boot_params, cf);
1004		if (bootbus < 0)
1005			goto no_cf;
1006		ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
1007		if (!ranges || len < (5 * 8 * sizeof(__be32)))
1008			goto no_cf;
1009
1010		ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
1011		ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
1012		ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
1013		if (is_true_ide) {
1014			cs++;
1015			ranges[(cs * 5) + 2] = cpu_to_be32(region1_base >> 32);
1016			ranges[(cs * 5) + 3] = cpu_to_be32(region1_base & 0xffffffff);
1017			ranges[(cs * 5) + 4] = cpu_to_be32(region1_size);
1018		}
1019		goto end_cf;
1020no_cf:
1021		fdt_nop_node(initial_boot_params, cf);
1022
1023end_cf:
1024		;
1025	}
1026
1027	/* 8 char LED */
1028	alias_prop = fdt_getprop(initial_boot_params, aliases,
1029				 "led0", NULL);
1030	if (alias_prop) {
1031		union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
1032		unsigned long base_ptr, region_base, region_size;
1033		int cs, bootbus;
1034		__be32 new_reg[6];
1035		__be32 *ranges;
1036		int len;
1037		int led = fdt_path_offset(initial_boot_params, alias_prop);
1038
1039		base_ptr = octeon_bootinfo->led_display_base_addr;
1040		if (base_ptr == 0)
1041			goto no_led;
1042		/* Find CS0 region. */
1043		for (cs = 0; cs < 8; cs++) {
1044			mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
1045			region_base = mio_boot_reg_cfg.s.base << 16;
1046			region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
1047			if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
1048				&& base_ptr < region_base + region_size)
1049				break;
1050		}
1051
1052		if (cs > 7)
1053			goto no_led;
1054
1055		new_reg[0] = cpu_to_be32(cs);
1056		new_reg[1] = cpu_to_be32(0x20);
1057		new_reg[2] = cpu_to_be32(0x20);
1058		new_reg[3] = cpu_to_be32(cs);
1059		new_reg[4] = cpu_to_be32(0);
1060		new_reg[5] = cpu_to_be32(0x20);
1061		fdt_setprop_inplace(initial_boot_params, led,
1062				    "reg",  new_reg, sizeof(new_reg));
1063
1064		bootbus = fdt_parent_offset(initial_boot_params, led);
1065		if (bootbus < 0)
1066			goto no_led;
1067		ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
1068		if (!ranges || len < (5 * 8 * sizeof(__be32)))
1069			goto no_led;
1070
1071		ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
1072		ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
1073		ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
1074		goto end_led;
1075
1076no_led:
1077		fdt_nop_node(initial_boot_params, led);
1078end_led:
1079		;
1080	}
1081
1082#ifdef CONFIG_USB
1083	/* OHCI/UHCI USB */
1084	alias_prop = fdt_getprop(initial_boot_params, aliases,
1085				 "uctl", NULL);
1086	if (alias_prop) {
1087		int uctl = fdt_path_offset(initial_boot_params, alias_prop);
1088
1089		if (uctl >= 0 && (!OCTEON_IS_MODEL(OCTEON_CN6XXX) ||
1090				  octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC2E)) {
1091			pr_debug("Deleting uctl\n");
1092			fdt_nop_node(initial_boot_params, uctl);
1093			fdt_nop_property(initial_boot_params, aliases, "uctl");
1094		} else if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E ||
1095			   octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC4E) {
1096			/* Missing "refclk-type" defaults to crystal. */
1097			fdt_nop_property(initial_boot_params, uctl, "refclk-type");
1098		}
1099	}
1100
1101	/* DWC2 USB */
1102	alias_prop = fdt_getprop(initial_boot_params, aliases,
1103				 "usbn", NULL);
1104	if (alias_prop) {
1105		int usbn = fdt_path_offset(initial_boot_params, alias_prop);
1106
1107		if (usbn >= 0 && (current_cpu_type() == CPU_CAVIUM_OCTEON2 ||
1108				  !octeon_has_feature(OCTEON_FEATURE_USB))) {
1109			pr_debug("Deleting usbn\n");
1110			fdt_nop_node(initial_boot_params, usbn);
1111			fdt_nop_property(initial_boot_params, aliases, "usbn");
1112		} else  {
1113			__be32 new_f[1];
1114			enum cvmx_helper_board_usb_clock_types c;
1115
1116			c = __cvmx_helper_board_usb_get_clock_type();
1117			switch (c) {
1118			case USB_CLOCK_TYPE_REF_48:
1119				new_f[0] = cpu_to_be32(48000000);
1120				fdt_setprop_inplace(initial_boot_params, usbn,
1121						    "refclk-frequency",  new_f, sizeof(new_f));
1122				fallthrough;
1123			case USB_CLOCK_TYPE_REF_12:
1124				/* Missing "refclk-type" defaults to external. */
1125				fdt_nop_property(initial_boot_params, usbn, "refclk-type");
1126				break;
1127			default:
1128				break;
1129			}
1130		}
1131	}
1132#endif
 
 
 
 
 
 
1133
1134	return 0;
1135}
1136
1137static int __init octeon_publish_devices(void)
1138{
1139	return of_platform_populate(NULL, octeon_ids, NULL, NULL);
1140}
1141arch_initcall(octeon_publish_devices);
 
 
 
 
v4.6
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2004-2011 Cavium Networks
  7 * Copyright (C) 2008 Wind River Systems
  8 */
  9
 10#include <linux/delay.h>
 11#include <linux/init.h>
 12#include <linux/irq.h>
 13#include <linux/i2c.h>
 14#include <linux/usb.h>
 15#include <linux/dma-mapping.h>
 16#include <linux/module.h>
 17#include <linux/mutex.h>
 18#include <linux/slab.h>
 19#include <linux/platform_device.h>
 20#include <linux/of_platform.h>
 21#include <linux/of_fdt.h>
 22#include <linux/libfdt.h>
 23#include <linux/usb/ehci_pdriver.h>
 24#include <linux/usb/ohci_pdriver.h>
 25
 26#include <asm/octeon/octeon.h>
 27#include <asm/octeon/cvmx-rnm-defs.h>
 28#include <asm/octeon/cvmx-helper.h>
 29#include <asm/octeon/cvmx-helper-board.h>
 
 
 
 
 
 30#include <asm/octeon/cvmx-uctlx-defs.h>
 31
 32/* Octeon Random Number Generator.  */
 33static int __init octeon_rng_device_init(void)
 34{
 35	struct platform_device *pd;
 36	int ret = 0;
 37
 38	struct resource rng_resources[] = {
 39		{
 40			.flags	= IORESOURCE_MEM,
 41			.start	= XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS),
 42			.end	= XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf
 43		}, {
 44			.flags	= IORESOURCE_MEM,
 45			.start	= cvmx_build_io_address(8, 0),
 46			.end	= cvmx_build_io_address(8, 0) + 0x7
 47		}
 48	};
 49
 50	pd = platform_device_alloc("octeon_rng", -1);
 51	if (!pd) {
 52		ret = -ENOMEM;
 53		goto out;
 54	}
 55
 56	ret = platform_device_add_resources(pd, rng_resources,
 57					    ARRAY_SIZE(rng_resources));
 58	if (ret)
 59		goto fail;
 60
 61	ret = platform_device_add(pd);
 62	if (ret)
 63		goto fail;
 64
 65	return ret;
 66fail:
 67	platform_device_put(pd);
 
 
 
 
 
 
 
 
 
 68
 69out:
 70	return ret;
 71}
 72device_initcall(octeon_rng_device_init);
 73
 74#ifdef CONFIG_USB
 75
 76static DEFINE_MUTEX(octeon2_usb_clocks_mutex);
 77
 78static int octeon2_usb_clock_start_cnt;
 79
 80static void octeon2_usb_clocks_start(struct device *dev)
 81{
 82	u64 div;
 83	union cvmx_uctlx_if_ena if_ena;
 84	union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
 85	union cvmx_uctlx_uphy_ctl_status uphy_ctl_status;
 86	union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status;
 87	int i;
 88	unsigned long io_clk_64_to_ns;
 89	u32 clock_rate = 12000000;
 90	bool is_crystal_clock = false;
 91
 92
 93	mutex_lock(&octeon2_usb_clocks_mutex);
 94
 95	octeon2_usb_clock_start_cnt++;
 96	if (octeon2_usb_clock_start_cnt != 1)
 97		goto exit;
 98
 99	io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate();
100
101	if (dev->of_node) {
102		struct device_node *uctl_node;
103		const char *clock_type;
104
105		uctl_node = of_get_parent(dev->of_node);
106		if (!uctl_node) {
107			dev_err(dev, "No UCTL device node\n");
108			goto exit;
109		}
110		i = of_property_read_u32(uctl_node,
111					 "refclk-frequency", &clock_rate);
112		if (i) {
113			dev_err(dev, "No UCTL \"refclk-frequency\"\n");
 
114			goto exit;
115		}
116		i = of_property_read_string(uctl_node,
117					    "refclk-type", &clock_type);
118
119		if (!i && strcmp("crystal", clock_type) == 0)
120			is_crystal_clock = true;
121	}
122
123	/*
124	 * Step 1: Wait for voltages stable.  That surely happened
125	 * before starting the kernel.
126	 *
127	 * Step 2: Enable  SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1
128	 */
129	if_ena.u64 = 0;
130	if_ena.s.en = 1;
131	cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64);
132
 
 
 
 
 
 
 
 
 
 
 
133	/* Step 3: Configure the reference clock, PHY, and HCLK */
134	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
135
136	/*
137	 * If the UCTL looks like it has already been started, skip
138	 * the initialization, otherwise bus errors are obtained.
139	 */
140	if (clk_rst_ctl.s.hrst)
141		goto end_clock;
142	/* 3a */
143	clk_rst_ctl.s.p_por = 1;
144	clk_rst_ctl.s.hrst = 0;
145	clk_rst_ctl.s.p_prst = 0;
146	clk_rst_ctl.s.h_clkdiv_rst = 0;
147	clk_rst_ctl.s.o_clkdiv_rst = 0;
148	clk_rst_ctl.s.h_clkdiv_en = 0;
149	clk_rst_ctl.s.o_clkdiv_en = 0;
150	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
151
152	/* 3b */
153	clk_rst_ctl.s.p_refclk_sel = is_crystal_clock ? 0 : 1;
154	switch (clock_rate) {
155	default:
156		pr_err("Invalid UCTL clock rate of %u, using 12000000 instead\n",
157			clock_rate);
158		/* Fall through */
159	case 12000000:
160		clk_rst_ctl.s.p_refclk_div = 0;
161		break;
162	case 24000000:
163		clk_rst_ctl.s.p_refclk_div = 1;
164		break;
165	case 48000000:
166		clk_rst_ctl.s.p_refclk_div = 2;
167		break;
168	}
169	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
170
171	/* 3c */
172	div = octeon_get_io_clock_rate() / 130000000ull;
173
174	switch (div) {
175	case 0:
176		div = 1;
177		break;
178	case 1:
179	case 2:
180	case 3:
181	case 4:
182		break;
183	case 5:
184		div = 4;
185		break;
186	case 6:
187	case 7:
188		div = 6;
189		break;
190	case 8:
191	case 9:
192	case 10:
193	case 11:
194		div = 8;
195		break;
196	default:
197		div = 12;
198		break;
199	}
200	clk_rst_ctl.s.h_div = div;
201	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
202	/* Read it back, */
203	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
204	clk_rst_ctl.s.h_clkdiv_en = 1;
205	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
206	/* 3d */
207	clk_rst_ctl.s.h_clkdiv_rst = 1;
208	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
209
210	/* 3e: delay 64 io clocks */
211	ndelay(io_clk_64_to_ns);
212
213	/*
214	 * Step 4: Program the power-on reset field in the UCTL
215	 * clock-reset-control register.
216	 */
217	clk_rst_ctl.s.p_por = 0;
218	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
219
220	/* Step 5:    Wait 1 ms for the PHY clock to start. */
221	mdelay(1);
222
223	/*
224	 * Step 6: Program the reset input from automatic test
225	 * equipment field in the UPHY CSR
226	 */
227	uphy_ctl_status.u64 = cvmx_read_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0));
228	uphy_ctl_status.s.ate_reset = 1;
229	cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);
230
231	/* Step 7: Wait for at least 10ns. */
232	ndelay(10);
233
234	/* Step 8: Clear the ATE_RESET field in the UPHY CSR. */
235	uphy_ctl_status.s.ate_reset = 0;
236	cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);
237
238	/*
239	 * Step 9: Wait for at least 20ns for UPHY to output PHY clock
240	 * signals and OHCI_CLK48
241	 */
242	ndelay(20);
243
244	/* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */
245	/* 10a */
246	clk_rst_ctl.s.o_clkdiv_rst = 1;
247	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
248
249	/* 10b */
250	clk_rst_ctl.s.o_clkdiv_en = 1;
251	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
252
253	/* 10c */
254	ndelay(io_clk_64_to_ns);
255
256	/*
257	 * Step 11: Program the PHY reset field:
258	 * UCTL0_CLK_RST_CTL[P_PRST] = 1
259	 */
260	clk_rst_ctl.s.p_prst = 1;
261	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
263	/* Step 12: Wait 1 uS. */
264	udelay(1);
265
266	/* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */
267	clk_rst_ctl.s.hrst = 1;
268	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
269
270end_clock:
271	/* Now we can set some other registers.  */
272
273	for (i = 0; i <= 1; i++) {
274		port_ctl_status.u64 =
275			cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0));
276		/* Set txvreftune to 15 to obtain compliant 'eye' diagram. */
277		port_ctl_status.s.txvreftune = 15;
278		port_ctl_status.s.txrisetune = 1;
279		port_ctl_status.s.txpreemphasistune = 1;
280		cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0),
281			       port_ctl_status.u64);
282	}
283
284	/* Set uSOF cycle period to 60,000 bits. */
285	cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull);
 
286exit:
287	mutex_unlock(&octeon2_usb_clocks_mutex);
288}
289
290static void octeon2_usb_clocks_stop(void)
291{
292	mutex_lock(&octeon2_usb_clocks_mutex);
293	octeon2_usb_clock_start_cnt--;
294	mutex_unlock(&octeon2_usb_clocks_mutex);
295}
296
297static int octeon_ehci_power_on(struct platform_device *pdev)
298{
299	octeon2_usb_clocks_start(&pdev->dev);
300	return 0;
301}
302
303static void octeon_ehci_power_off(struct platform_device *pdev)
304{
305	octeon2_usb_clocks_stop();
306}
307
308static struct usb_ehci_pdata octeon_ehci_pdata = {
309	/* Octeon EHCI matches CPU endianness. */
310#ifdef __BIG_ENDIAN
311	.big_endian_mmio	= 1,
312#endif
313	.dma_mask_64	= 1,
 
 
 
 
314	.power_on	= octeon_ehci_power_on,
315	.power_off	= octeon_ehci_power_off,
316};
317
318static void __init octeon_ehci_hw_start(struct device *dev)
319{
320	union cvmx_uctlx_ehci_ctl ehci_ctl;
321
322	octeon2_usb_clocks_start(dev);
323
324	ehci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_EHCI_CTL(0));
325	/* Use 64-bit addressing. */
326	ehci_ctl.s.ehci_64b_addr_en = 1;
327	ehci_ctl.s.l2c_addr_msb = 0;
328#ifdef __BIG_ENDIAN
329	ehci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
330	ehci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
331#else
332	ehci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
333	ehci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
334	ehci_ctl.s.inv_reg_a2 = 1;
335#endif
336	cvmx_write_csr(CVMX_UCTLX_EHCI_CTL(0), ehci_ctl.u64);
337
338	octeon2_usb_clocks_stop();
339}
340
341static int __init octeon_ehci_device_init(void)
342{
343	struct platform_device *pd;
344	struct device_node *ehci_node;
345	int ret = 0;
346
347	ehci_node = of_find_node_by_name(NULL, "ehci");
348	if (!ehci_node)
349		return 0;
350
351	pd = of_find_device_by_node(ehci_node);
 
352	if (!pd)
353		return 0;
354
355	pd->dev.platform_data = &octeon_ehci_pdata;
356	octeon_ehci_hw_start(&pd->dev);
 
357
358	return ret;
359}
360device_initcall(octeon_ehci_device_init);
361
362static int octeon_ohci_power_on(struct platform_device *pdev)
363{
364	octeon2_usb_clocks_start(&pdev->dev);
365	return 0;
366}
367
368static void octeon_ohci_power_off(struct platform_device *pdev)
369{
370	octeon2_usb_clocks_stop();
371}
372
373static struct usb_ohci_pdata octeon_ohci_pdata = {
374	/* Octeon OHCI matches CPU endianness. */
375#ifdef __BIG_ENDIAN
376	.big_endian_mmio	= 1,
377#endif
378	.power_on	= octeon_ohci_power_on,
379	.power_off	= octeon_ohci_power_off,
380};
381
382static void __init octeon_ohci_hw_start(struct device *dev)
383{
384	union cvmx_uctlx_ohci_ctl ohci_ctl;
385
386	octeon2_usb_clocks_start(dev);
387
388	ohci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_OHCI_CTL(0));
389	ohci_ctl.s.l2c_addr_msb = 0;
390#ifdef __BIG_ENDIAN
391	ohci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
392	ohci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
393#else
394	ohci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
395	ohci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
396	ohci_ctl.s.inv_reg_a2 = 1;
397#endif
398	cvmx_write_csr(CVMX_UCTLX_OHCI_CTL(0), ohci_ctl.u64);
399
400	octeon2_usb_clocks_stop();
401}
402
403static int __init octeon_ohci_device_init(void)
404{
405	struct platform_device *pd;
406	struct device_node *ohci_node;
407	int ret = 0;
408
409	ohci_node = of_find_node_by_name(NULL, "ohci");
410	if (!ohci_node)
411		return 0;
412
413	pd = of_find_device_by_node(ohci_node);
 
414	if (!pd)
415		return 0;
416
417	pd->dev.platform_data = &octeon_ohci_pdata;
418	octeon_ohci_hw_start(&pd->dev);
 
419
420	return ret;
421}
422device_initcall(octeon_ohci_device_init);
423
424#endif /* CONFIG_USB */
425
 
 
 
 
 
426
427static struct of_device_id __initdata octeon_ids[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
428	{ .compatible = "simple-bus", },
429	{ .compatible = "cavium,octeon-6335-uctl", },
430	{ .compatible = "cavium,octeon-5750-usbn", },
431	{ .compatible = "cavium,octeon-3860-bootbus", },
432	{ .compatible = "cavium,mdio-mux", },
433	{ .compatible = "gpio-leds", },
 
434	{},
435};
436
437static bool __init octeon_has_88e1145(void)
438{
439	return !OCTEON_IS_MODEL(OCTEON_CN52XX) &&
440	       !OCTEON_IS_MODEL(OCTEON_CN6XXX) &&
441	       !OCTEON_IS_MODEL(OCTEON_CN56XX);
442}
443
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
444static void __init octeon_fdt_set_phy(int eth, int phy_addr)
445{
446	const __be32 *phy_handle;
447	const __be32 *alt_phy_handle;
448	const __be32 *reg;
449	u32 phandle;
450	int phy;
451	int alt_phy;
452	const char *p;
453	int current_len;
454	char new_name[20];
455
456	phy_handle = fdt_getprop(initial_boot_params, eth, "phy-handle", NULL);
457	if (!phy_handle)
458		return;
459
460	phandle = be32_to_cpup(phy_handle);
461	phy = fdt_node_offset_by_phandle(initial_boot_params, phandle);
462
463	alt_phy_handle = fdt_getprop(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
464	if (alt_phy_handle) {
465		u32 alt_phandle = be32_to_cpup(alt_phy_handle);
 
466		alt_phy = fdt_node_offset_by_phandle(initial_boot_params, alt_phandle);
467	} else {
468		alt_phy = -1;
469	}
470
471	if (phy_addr < 0 || phy < 0) {
472		/* Delete the PHY things */
473		fdt_nop_property(initial_boot_params, eth, "phy-handle");
474		/* This one may fail */
475		fdt_nop_property(initial_boot_params, eth, "cavium,alt-phy-handle");
476		if (phy >= 0)
477			fdt_nop_node(initial_boot_params, phy);
478		if (alt_phy >= 0)
479			fdt_nop_node(initial_boot_params, alt_phy);
480		return;
481	}
482
483	if (phy_addr >= 256 && alt_phy > 0) {
484		const struct fdt_property *phy_prop;
485		struct fdt_property *alt_prop;
486		u32 phy_handle_name;
487
488		/* Use the alt phy node instead.*/
489		phy_prop = fdt_get_property(initial_boot_params, eth, "phy-handle", NULL);
490		phy_handle_name = phy_prop->nameoff;
491		fdt_nop_node(initial_boot_params, phy);
492		fdt_nop_property(initial_boot_params, eth, "phy-handle");
493		alt_prop = fdt_get_property_w(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
494		alt_prop->nameoff = phy_handle_name;
495		phy = alt_phy;
496	}
497
498	phy_addr &= 0xff;
499
500	if (octeon_has_88e1145()) {
501		fdt_nop_property(initial_boot_params, phy, "marvell,reg-init");
502		memset(new_name, 0, sizeof(new_name));
503		strcpy(new_name, "marvell,88e1145");
504		p = fdt_getprop(initial_boot_params, phy, "compatible",
505				&current_len);
506		if (p && current_len >= strlen(new_name))
507			fdt_setprop_inplace(initial_boot_params, phy,
508					"compatible", new_name, current_len);
509	}
510
511	reg = fdt_getprop(initial_boot_params, phy, "reg", NULL);
512	if (phy_addr == be32_to_cpup(reg))
513		return;
514
515	fdt_setprop_inplace_cell(initial_boot_params, phy, "reg", phy_addr);
516
517	snprintf(new_name, sizeof(new_name), "ethernet-phy@%x", phy_addr);
518
519	p = fdt_get_name(initial_boot_params, phy, &current_len);
520	if (p && current_len == strlen(new_name))
521		fdt_set_name(initial_boot_params, phy, new_name);
522	else
523		pr_err("Error: could not rename ethernet phy: <%s>", p);
524}
525
526static void __init octeon_fdt_set_mac_addr(int n, u64 *pmac)
527{
 
 
528	u8 new_mac[6];
529	u64 mac = *pmac;
530	int r;
531
 
 
 
 
 
532	new_mac[0] = (mac >> 40) & 0xff;
533	new_mac[1] = (mac >> 32) & 0xff;
534	new_mac[2] = (mac >> 24) & 0xff;
535	new_mac[3] = (mac >> 16) & 0xff;
536	new_mac[4] = (mac >> 8) & 0xff;
537	new_mac[5] = mac & 0xff;
538
539	r = fdt_setprop_inplace(initial_boot_params, n, "local-mac-address",
540				new_mac, sizeof(new_mac));
541
542	if (r) {
543		pr_err("Setting \"local-mac-address\" failed %d", r);
544		return;
545	}
546	*pmac = mac + 1;
547}
548
549static void __init octeon_fdt_rm_ethernet(int node)
550{
551	const __be32 *phy_handle;
552
553	phy_handle = fdt_getprop(initial_boot_params, node, "phy-handle", NULL);
554	if (phy_handle) {
555		u32 ph = be32_to_cpup(phy_handle);
556		int p = fdt_node_offset_by_phandle(initial_boot_params, ph);
 
557		if (p >= 0)
558			fdt_nop_node(initial_boot_params, p);
559	}
560	fdt_nop_node(initial_boot_params, node);
561}
562
563static void __init octeon_fdt_pip_port(int iface, int i, int p, int max, u64 *pmac)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
564{
565	char name_buffer[20];
566	int eth;
567	int phy_addr;
568	int ipd_port;
 
569
570	snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x", p);
571	eth = fdt_subnode_offset(initial_boot_params, iface, name_buffer);
572	if (eth < 0)
573		return;
574	if (p > max) {
575		pr_debug("Deleting port %x:%x\n", i, p);
576		octeon_fdt_rm_ethernet(eth);
577		return;
578	}
579	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
580		ipd_port = (0x100 * i) + (0x10 * p) + 0x800;
581	else
582		ipd_port = 16 * i + p;
583
584	phy_addr = cvmx_helper_board_get_mii_address(ipd_port);
585	octeon_fdt_set_phy(eth, phy_addr);
586	octeon_fdt_set_mac_addr(eth, pmac);
 
 
 
 
 
 
587}
588
589static void __init octeon_fdt_pip_iface(int pip, int idx, u64 *pmac)
590{
591	char name_buffer[20];
592	int iface;
593	int p;
594	int count = 0;
595
596	snprintf(name_buffer, sizeof(name_buffer), "interface@%d", idx);
597	iface = fdt_subnode_offset(initial_boot_params, pip, name_buffer);
598	if (iface < 0)
599		return;
600
601	if (cvmx_helper_interface_enumerate(idx) == 0)
602		count = cvmx_helper_ports_on_interface(idx);
603
604	for (p = 0; p < 16; p++)
605		octeon_fdt_pip_port(iface, idx, p, count - 1, pmac);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
606}
607
608int __init octeon_prune_device_tree(void)
609{
610	int i, max_port, uart_mask;
611	const char *pip_path;
612	const char *alias_prop;
613	char name_buffer[20];
614	int aliases;
615	u64 mac_addr_base;
616
617	if (fdt_check_header(initial_boot_params))
618		panic("Corrupt Device Tree.");
619
 
 
 
 
620	aliases = fdt_path_offset(initial_boot_params, "/aliases");
621	if (aliases < 0) {
622		pr_err("Error: No /aliases node in device tree.");
623		return -EINVAL;
624	}
625
626
627	mac_addr_base =
628		((octeon_bootinfo->mac_addr_base[0] & 0xffull)) << 40 |
629		((octeon_bootinfo->mac_addr_base[1] & 0xffull)) << 32 |
630		((octeon_bootinfo->mac_addr_base[2] & 0xffull)) << 24 |
631		((octeon_bootinfo->mac_addr_base[3] & 0xffull)) << 16 |
632		((octeon_bootinfo->mac_addr_base[4] & 0xffull)) << 8 |
633		(octeon_bootinfo->mac_addr_base[5] & 0xffull);
634
635	if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX))
636		max_port = 2;
637	else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN68XX))
638		max_port = 1;
639	else
640		max_port = 0;
641
642	if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E)
643		max_port = 0;
644
645	for (i = 0; i < 2; i++) {
646		int mgmt;
 
647		snprintf(name_buffer, sizeof(name_buffer),
648			 "mix%d", i);
649		alias_prop = fdt_getprop(initial_boot_params, aliases,
650					name_buffer, NULL);
651		if (alias_prop) {
652			mgmt = fdt_path_offset(initial_boot_params, alias_prop);
653			if (mgmt < 0)
654				continue;
655			if (i >= max_port) {
656				pr_debug("Deleting mix%d\n", i);
657				octeon_fdt_rm_ethernet(mgmt);
658				fdt_nop_property(initial_boot_params, aliases,
659						 name_buffer);
660			} else {
661				int phy_addr = cvmx_helper_board_get_mii_address(CVMX_HELPER_BOARD_MGMT_IPD_PORT + i);
 
662				octeon_fdt_set_phy(mgmt, phy_addr);
663				octeon_fdt_set_mac_addr(mgmt, &mac_addr_base);
664			}
665		}
666	}
667
668	pip_path = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
669	if (pip_path) {
670		int pip = fdt_path_offset(initial_boot_params, pip_path);
 
671		if (pip	 >= 0)
672			for (i = 0; i <= 4; i++)
673				octeon_fdt_pip_iface(pip, i, &mac_addr_base);
674	}
675
676	/* I2C */
677	if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
678	    OCTEON_IS_MODEL(OCTEON_CN63XX) ||
679	    OCTEON_IS_MODEL(OCTEON_CN68XX) ||
680	    OCTEON_IS_MODEL(OCTEON_CN56XX))
681		max_port = 2;
682	else
683		max_port = 1;
684
685	for (i = 0; i < 2; i++) {
686		int i2c;
 
687		snprintf(name_buffer, sizeof(name_buffer),
688			 "twsi%d", i);
689		alias_prop = fdt_getprop(initial_boot_params, aliases,
690					name_buffer, NULL);
691
692		if (alias_prop) {
693			i2c = fdt_path_offset(initial_boot_params, alias_prop);
694			if (i2c < 0)
695				continue;
696			if (i >= max_port) {
697				pr_debug("Deleting twsi%d\n", i);
698				fdt_nop_node(initial_boot_params, i2c);
699				fdt_nop_property(initial_boot_params, aliases,
700						 name_buffer);
701			}
702		}
703	}
704
705	/* SMI/MDIO */
706	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
707		max_port = 4;
708	else if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
709		 OCTEON_IS_MODEL(OCTEON_CN63XX) ||
710		 OCTEON_IS_MODEL(OCTEON_CN56XX))
711		max_port = 2;
712	else
713		max_port = 1;
714
715	for (i = 0; i < 2; i++) {
716		int i2c;
 
717		snprintf(name_buffer, sizeof(name_buffer),
718			 "smi%d", i);
719		alias_prop = fdt_getprop(initial_boot_params, aliases,
720					name_buffer, NULL);
721
722		if (alias_prop) {
723			i2c = fdt_path_offset(initial_boot_params, alias_prop);
724			if (i2c < 0)
725				continue;
726			if (i >= max_port) {
727				pr_debug("Deleting smi%d\n", i);
728				fdt_nop_node(initial_boot_params, i2c);
729				fdt_nop_property(initial_boot_params, aliases,
730						 name_buffer);
731			}
732		}
733	}
734
735	/* Serial */
736	uart_mask = 3;
737
738	/* Right now CN52XX is the only chip with a third uart */
739	if (OCTEON_IS_MODEL(OCTEON_CN52XX))
740		uart_mask |= 4; /* uart2 */
741
742	for (i = 0; i < 3; i++) {
743		int uart;
 
744		snprintf(name_buffer, sizeof(name_buffer),
745			 "uart%d", i);
746		alias_prop = fdt_getprop(initial_boot_params, aliases,
747					name_buffer, NULL);
748
749		if (alias_prop) {
750			uart = fdt_path_offset(initial_boot_params, alias_prop);
751			if (uart_mask & (1 << i)) {
752				__be32 f;
753
754				f = cpu_to_be32(octeon_get_io_clock_rate());
755				fdt_setprop_inplace(initial_boot_params,
756						    uart, "clock-frequency",
757						    &f, sizeof(f));
758				continue;
759			}
760			pr_debug("Deleting uart%d\n", i);
761			fdt_nop_node(initial_boot_params, uart);
762			fdt_nop_property(initial_boot_params, aliases,
763					 name_buffer);
764		}
765	}
766
767	/* Compact Flash */
768	alias_prop = fdt_getprop(initial_boot_params, aliases,
769				 "cf0", NULL);
770	if (alias_prop) {
771		union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
772		unsigned long base_ptr, region_base, region_size;
773		unsigned long region1_base = 0;
774		unsigned long region1_size = 0;
775		int cs, bootbus;
776		bool is_16bit = false;
777		bool is_true_ide = false;
778		__be32 new_reg[6];
779		__be32 *ranges;
780		int len;
781
782		int cf = fdt_path_offset(initial_boot_params, alias_prop);
 
783		base_ptr = 0;
784		if (octeon_bootinfo->major_version == 1
785			&& octeon_bootinfo->minor_version >= 1) {
786			if (octeon_bootinfo->compact_flash_common_base_addr)
787				base_ptr = octeon_bootinfo->compact_flash_common_base_addr;
788		} else {
789			base_ptr = 0x1d000800;
790		}
791
792		if (!base_ptr)
793			goto no_cf;
794
795		/* Find CS0 region. */
796		for (cs = 0; cs < 8; cs++) {
797			mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
798			region_base = mio_boot_reg_cfg.s.base << 16;
799			region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
800			if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
801				&& base_ptr < region_base + region_size) {
802				is_16bit = mio_boot_reg_cfg.s.width;
803				break;
804			}
805		}
806		if (cs >= 7) {
807			/* cs and cs + 1 are CS0 and CS1, both must be less than 8. */
808			goto no_cf;
809		}
810
811		if (!(base_ptr & 0xfffful)) {
812			/*
813			 * Boot loader signals availability of DMA (true_ide
814			 * mode) by setting low order bits of base_ptr to
815			 * zero.
816			 */
817
818			/* Asume that CS1 immediately follows. */
819			mio_boot_reg_cfg.u64 =
820				cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs + 1));
821			region1_base = mio_boot_reg_cfg.s.base << 16;
822			region1_size = (mio_boot_reg_cfg.s.size + 1) << 16;
823			if (!mio_boot_reg_cfg.s.en)
824				goto no_cf;
825			is_true_ide = true;
826
827		} else {
828			fdt_nop_property(initial_boot_params, cf, "cavium,true-ide");
829			fdt_nop_property(initial_boot_params, cf, "cavium,dma-engine-handle");
830			if (!is_16bit) {
831				__be32 width = cpu_to_be32(8);
 
832				fdt_setprop_inplace(initial_boot_params, cf,
833						"cavium,bus-width", &width, sizeof(width));
834			}
835		}
836		new_reg[0] = cpu_to_be32(cs);
837		new_reg[1] = cpu_to_be32(0);
838		new_reg[2] = cpu_to_be32(0x10000);
839		new_reg[3] = cpu_to_be32(cs + 1);
840		new_reg[4] = cpu_to_be32(0);
841		new_reg[5] = cpu_to_be32(0x10000);
842		fdt_setprop_inplace(initial_boot_params, cf,
843				    "reg",  new_reg, sizeof(new_reg));
844
845		bootbus = fdt_parent_offset(initial_boot_params, cf);
846		if (bootbus < 0)
847			goto no_cf;
848		ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
849		if (!ranges || len < (5 * 8 * sizeof(__be32)))
850			goto no_cf;
851
852		ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
853		ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
854		ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
855		if (is_true_ide) {
856			cs++;
857			ranges[(cs * 5) + 2] = cpu_to_be32(region1_base >> 32);
858			ranges[(cs * 5) + 3] = cpu_to_be32(region1_base & 0xffffffff);
859			ranges[(cs * 5) + 4] = cpu_to_be32(region1_size);
860		}
861		goto end_cf;
862no_cf:
863		fdt_nop_node(initial_boot_params, cf);
864
865end_cf:
866		;
867	}
868
869	/* 8 char LED */
870	alias_prop = fdt_getprop(initial_boot_params, aliases,
871				 "led0", NULL);
872	if (alias_prop) {
873		union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
874		unsigned long base_ptr, region_base, region_size;
875		int cs, bootbus;
876		__be32 new_reg[6];
877		__be32 *ranges;
878		int len;
879		int led = fdt_path_offset(initial_boot_params, alias_prop);
880
881		base_ptr = octeon_bootinfo->led_display_base_addr;
882		if (base_ptr == 0)
883			goto no_led;
884		/* Find CS0 region. */
885		for (cs = 0; cs < 8; cs++) {
886			mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
887			region_base = mio_boot_reg_cfg.s.base << 16;
888			region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
889			if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
890				&& base_ptr < region_base + region_size)
891				break;
892		}
893
894		if (cs > 7)
895			goto no_led;
896
897		new_reg[0] = cpu_to_be32(cs);
898		new_reg[1] = cpu_to_be32(0x20);
899		new_reg[2] = cpu_to_be32(0x20);
900		new_reg[3] = cpu_to_be32(cs);
901		new_reg[4] = cpu_to_be32(0);
902		new_reg[5] = cpu_to_be32(0x20);
903		fdt_setprop_inplace(initial_boot_params, led,
904				    "reg",  new_reg, sizeof(new_reg));
905
906		bootbus = fdt_parent_offset(initial_boot_params, led);
907		if (bootbus < 0)
908			goto no_led;
909		ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
910		if (!ranges || len < (5 * 8 * sizeof(__be32)))
911			goto no_led;
912
913		ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
914		ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
915		ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
916		goto end_led;
917
918no_led:
919		fdt_nop_node(initial_boot_params, led);
920end_led:
921		;
922	}
923
 
924	/* OHCI/UHCI USB */
925	alias_prop = fdt_getprop(initial_boot_params, aliases,
926				 "uctl", NULL);
927	if (alias_prop) {
928		int uctl = fdt_path_offset(initial_boot_params, alias_prop);
929
930		if (uctl >= 0 && (!OCTEON_IS_MODEL(OCTEON_CN6XXX) ||
931				  octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC2E)) {
932			pr_debug("Deleting uctl\n");
933			fdt_nop_node(initial_boot_params, uctl);
934			fdt_nop_property(initial_boot_params, aliases, "uctl");
935		} else if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E ||
936			   octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC4E) {
937			/* Missing "refclk-type" defaults to crystal. */
938			fdt_nop_property(initial_boot_params, uctl, "refclk-type");
939		}
940	}
941
942	/* DWC2 USB */
943	alias_prop = fdt_getprop(initial_boot_params, aliases,
944				 "usbn", NULL);
945	if (alias_prop) {
946		int usbn = fdt_path_offset(initial_boot_params, alias_prop);
947
948		if (usbn >= 0 && (current_cpu_type() == CPU_CAVIUM_OCTEON2 ||
949				  !octeon_has_feature(OCTEON_FEATURE_USB))) {
950			pr_debug("Deleting usbn\n");
951			fdt_nop_node(initial_boot_params, usbn);
952			fdt_nop_property(initial_boot_params, aliases, "usbn");
953		} else  {
954			__be32 new_f[1];
955			enum cvmx_helper_board_usb_clock_types c;
 
956			c = __cvmx_helper_board_usb_get_clock_type();
957			switch (c) {
958			case USB_CLOCK_TYPE_REF_48:
959				new_f[0] = cpu_to_be32(48000000);
960				fdt_setprop_inplace(initial_boot_params, usbn,
961						    "refclk-frequency",  new_f, sizeof(new_f));
962				/* Fall through ...*/
963			case USB_CLOCK_TYPE_REF_12:
964				/* Missing "refclk-type" defaults to external. */
965				fdt_nop_property(initial_boot_params, usbn, "refclk-type");
966				break;
967			default:
968				break;
969			}
970		}
971	}
972
973	if (octeon_bootinfo->board_type != CVMX_BOARD_TYPE_CUST_DSR1000N) {
974		int dsr1000n_leds = fdt_path_offset(initial_boot_params,
975						    "/dsr1000n-leds");
976		if (dsr1000n_leds >= 0)
977			fdt_nop_node(initial_boot_params, dsr1000n_leds);
978	}
979
980	return 0;
981}
982
983static int __init octeon_publish_devices(void)
984{
985	return of_platform_bus_probe(NULL, octeon_ids, NULL);
986}
987device_initcall(octeon_publish_devices);
988
989MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
990MODULE_LICENSE("GPL");
991MODULE_DESCRIPTION("Platform driver for Octeon SOC");